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ABSTRACT

This paper develops a general procedure for estimating age, period, and

cohort effects in demographic data. The procedure involves structuring,

mathematically, the effect of cross—cohort changes in the timing and level

of a vital event on period rates of occurrence of the event. The procedure

is illustrated and tested in an application to data on the first birth rates

of American women. Overall, the empirical results provide support for the

procedure. The results also provide evidence that period effects are highly

age—specific and that the size of cohort effects may be substantially

overestimated by models which fail to allow for the age specificity of period

effects.
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I. Introduction

Identifying age, period, and cohort patterns in demographic data is

perhaps the most time—worn activity of demographers.' These patterns are

interesting primarily because they reveal aspects of the underlying physiolog-

ical and behavioral mechanisms which lead to the occurrence of vital events.

For example, age is a proxy for the state of an individual's physiology which

itself directly influences variables such as fertility and mortality. Age can

also be regarded as a proxy for exposure to social forces which may influence

other variables such as nuptiality and divorce. Period, on the other hand, is

a proxy for changes in a vast set of conditions that can also influence the

occurrence of demographic events. Among this set of conditions we may include

the state of the economy, the existence of war, factors related to the legal

environment in a society, and technological developments such as those related

to improved medical care and contraception. Finally, cohort is a proxy for

variables whose influence on demographic events depends on the point in time

at which some other demographic event is experienced, e.g., birth, completion

of schooling, marriage, etc. It has been argued that such timing is important

because it determines the degree of competitiveness individuals face

throughout their lives in their search for spouses, jobs, housing, etc., which

itself may influence the occurrence of demographic events such as marriage and

fertility. Cohort effects have also been explained as being age—specific

period effects although little empirical evidence has been provided in connec-

tion with this proposition.

The most natural approach to estimating the effects of age, period, and

1. Robcraft, Menken, and Preston (1982) provide an excellent review of age,
period, and cohort effects in demography.
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cohort factors on some demographic rate (r) begins by specifying the following

general model:

(1) r r(a,p,c)

where a, p. and c are variables which measure age, period, and cohort and r is

some general function. This expression can be linearized to yield

(2) rapc = + A'a + P' + c'4 +
8apc

where a, 0, and are vectors of age, period, and cohort effect parameters, y

is a scaling constant, a is a remainder term, and A', P'. and C' are vectors

of indicator variables which have a single corresponding element equal to

unity for each observation, with all other elements equal to zero.

At first glance, it appears that the parameters of equation (3) can be

estimated by ordinary least squares regression. However, because the age,

period, and cohort variables are related by the identity

(3) a + c = p

the parameters of equation (3) are not separately identified, i.e., this is a

case of perfect multicollinearity. Thus, demographers and statisticians have

had to explore alternative approaches to estimation.

One set of alternative approaches involves a procedure in which

a and 4 are estimated under the assumption 0 = 0 (Ewbank, 1974; Rodgers

and Thornton, 1983), with period effects taken to be the residuals from this

model. However, because the assumption 0 = 0 omits P' from the regression,

and because p' is correlated with A' and C' by the identity in equation (3),

this procedure guarantees that the estimates of a and 4 will be biased. Thus,

the estimates of 0 computed from the residuals will also be biased.2
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Another approach to the identification problem involves the imposition of

constraints on the parameter vectors to be estimated. More specifically, it

has been shown that identification can be achieved by constraining, in a

variety of possible ways, the values of at least some of the parameters in

equation (2) (see Palmore, 1978; Feinberg and Mason, 1979). Thus, the solu-

tion to the identification problem lies in the imposition of mathematical

structure on equation (2). Unfortunately, however, little research has been

done regarding the nature of an appropriate structure, i.e., a set of reason-

able identifying constraints.

In this paper, we seek to remedy this deficiency by specifying a class of

assumptions which can be used to identify the parameters of equation (2). We

argue that the class of assumptions we propose is a priori reasonable and we

outline simple tests for choosing an assumption from among this class. We

then illustrate and test this technique using data on first birth rates

experienced by American women between 1917 and 1980. Two important substan-

tive findings which emerge from this example are that period effects are

highly age specific and that the size of cohort effects may be substantially

overestimated by models which fail to allow for the age specificity of period

effects.3

2. Indeed, given the identity in equation (3), the residuals will be
orthogonal to the true period effects by construction of the linear

regression.

3. A third class of solutions to the identification problem involves
replacing the age, period, or cohort variables by the underlying variables
which they proxy. Provided these underlying variables are not
definitionally dependent, this procedure solves the identification
problem. Unfortunately, this procedure is totally infeasible when, as is
often the case, data on the underlying variables are not available. See
Heckman and Robb (1983) for further discussion of this point.
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II. The Model

In this section, we propose a method for estimating age, period, and

cohort effects in demographic data. To begin with, we discuss a set of separ-

ability assumptions which allow equation (1) to be written in empirically more

tractable forms. In particular, let us consider the assumption of weak separ-

ability between age and period effects. This assumption suggests that equa-

tion (1) can be rewritten as

(4) r(a,p,c) =

where r1 and r2 are general functions. In other words, it suggests that there

is no interaction between cohort and period effects. Thus, period phenomena

may have age—specific effects, but not cohort—specific effects. Observe that

weak separability between both cohort and period effects and age and period

effects is a special case of this assumption. In this special case equation

(1) can be written as

(5) r(a,p,c) = r3(a,c)*r4(p)
where r3 and r4 are general functions. Observe that equation (5) implies that

period phenomena affect demographic data by the same multiplicative factor at

all ages.

With the stage set in this manner, we shall proceed by suggesting a class

of methods for estimating r2(a,p) and r4(p) in equations (4) and (5). Using

these estimates, we can remove the effects of period factors from the data

(e.g., by dividing r(a,p,c) by r2(a,p) or r4(p)) and then use least squares

regression to estimate age and cohort effects from the data that are purged in

this way.

Our procedure for estimating r2(a,p) builds on three findings from ear—
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her research on age, period, and cohort effects in demographic data (see, for

example, Ryder, 1964; Pullum, 1978; Hobcraft, Menken, and Preston, 1979;

Ryder, 1980; Bloom, 1982a; Bloom, 1982b; Bloom and Trussell, 1984). First,

much existing literature indicates that demographic rates exhibit greater

fluctuations in age and period dimensions than they do across cohorts.

Second, existing literature provides strong evidence that cohort—to—cohort

changes in most demographic rates are relatively small and that most series of

cohort rates are fairly smooth in nature. Third, Ryder (1964) has proven that

period rates may vary either because of genuine period effects or because of

cross—cohort changes in the level or timing of the demographic event of

interest.

We operationalize these three findings by assuming that the component of

period variations that is due to cross—cohort changes in timing or level can

be modeled as a low—order polynomial of the period index. Thus, for the case

in which period effects are assumed to be age—specific, we may write

(6) r(p) = +
1=0 p

0)

where r(p) is the period rate ( r(a,p)), j is the order of the polynomial,
a=0

and is a period effect which we treat as a random variable that has mean

zero and is uncorrelated with the cohort effects captured by the polynomial.

Observe that the can be estimated by ordinary least squares regression of

the period rate on a jth degree polynomial of the period index. Observe also

that if the cross—cohort change component of period rate variations is ade-

quately modeled, then the ratio r(p)/ i .p' is an estimate of the propor-
i=O 1

tionate period effect in any period p. Such period effect estimates can be

used to convert the raw data
rapc into r3(a,c) (see equation (5)). Standard
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regression analysis can then be applied to the transformed data to estimate

age and cohort effects (i.e., r3(a,c) y + A'a + c'4 +

We now consider the case in which period effects are assumed to be age—

specific. In this case, we seek to estimate period effects separately for

different ages or age groups. Following the method outlined above, a natural

approach to this problem involves modeling the cross—cohort component of

period variations in the demographic rate at a particular age or in a particu-

lar age group as a loworder polynomial of the period index. Thus we may

write

r*(a,p) = I Y.p' + 8*
i=O'

a2

where r*(a,p) = I r(ap) and a1 and a2 are the endpoints of the age group

a= a1

covered (a2>a1), and c* is a random period effect with the same properties as

in equation (6). Observe that are estimable parameters for the age

group and that it will be necessary to estimate more than one set of y, i.e.,

one set for each age or age group. Observe also that the estimated can be

used to remove period effects from the raw data so that cohort and age effects

can be estimated.

Before concluding this section, three additional comments deserve men-

tion. First, the degree of the polynomial (j) used to model cohort effects on

period rates is somewhat arbitrary. In this research, we have experimented

with linear (j = 1), quadratic (j = 2), and cubic (j = 3) specifications. In

most cases we have found the quadratic to be best and to provide results which

are little different from those computed using higher—order polynomial specif-

ications. Second, the degree of age—specificity allowed in the period effects
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is also somewhat arbitrary. However, it is possible to test for the age—

specificity of period effects by studying patterns of correlation among the

estimated period effects for different ages or age groups. In general, corre-

lations that significantly differ from positive unity suggest that period

effects . age specific. Third, goodness—of—fit in the period—adjusted

regressions is a useful criterion for choosing among different models (i.e.,

different degree polynomials and different degrees of age—specificity in

period effects) since the removal of period effects should in principle remove

unexplained variance from those regressions.

III. An Example

This section illustrates and tests the use of the procedure developed

above by applying it to data on the first birth rates of American women at

ages fourteen to forty—nine during the years 1917 to 1980. Period effects are

estimated using polynomials of varying degree and assuming different degrees

of age specificity. Age and cohort effects are then estimated and goodness—

of—fit statistics are analyzed to compare the performance of the procedure

under different assumptions.

Before presenting the estimation results, it should be noted that the

application of the procedure to first birth data provides a reasonable test of

the procedure. To begin with, much research has been done recently on the

form of cohort distributions of first births by age (see Trussell, Menken, and

Coale, 1981; Bloom, 1982a; Bloom, 1982b). In general, this body of research

has demonstrated the existence of strong regularities in the age pattern of

first births for cohorts of women in many different populations and over a

long period of time, i.e., in the absence of major temporal disturbances,
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these distributions are smooth, unimodal, have little density below age fif-

teen or above age fifty, and they are skewed to the right. Moreover, these

distributions are closely replicated by the Coale—McNeil marriage model, a

three—parameter, closed—form expression for the relative frequency of cohort

first births at different ages. This expression is presented in equation (7)

(7) g(a) . 1.2813 exp [ —1.145 (-- + .805) —exp t -1.896 + .805)]]

where g(a) is the proportion of women having a first birth at age a in the

observed population, x and c are parameters representing the mean and standard

deviation of age at first birth for those women who bear children, and E is a

parameter representing the proportion of women who bear children. We shall

proceed by assuming that in the absence of period effects the age distribution

of cohort first births follows the form of equation (7). Provided then, that

the adjustment model yields unbiased estimates of the true period effects,

equation (7) should replicate first birth data that have been adjusted for

period effects more closely than it replicates unadjusted data. We examine

this proposition empirically below. For the moment, however, we wish to

stress the fact that a test of this form, in which we utilize independent

information from outside the model, is essential since we are dealing with a

model that is fundamentally unidentified from the data.

rn order to conserve space, we do not present parameter estimates for all

of the age, period, and cohort effect estimates we have computed. Instead,

we report selected results in Tables I—Ill. First, Table I presents

goodness—of—fit measures for the Coale—MoNeil model fit to cohort first birth

distributions adjusted using a second—degree polynomial with each of three

assumptions about the age—specificity of period effects: (i) period phenomena

have identical multiplicative effects at all ages, (ii) period phenomena have
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different multiplicative effects in the seven age intervals 14—19, 20—24, 25—

29, 30—34, 35—39, 40—44, and 45—49, and (iii) period effects are single—year

age—specific. For completeness, Table I also presents goodness—of--fit results

for period—unadjusted data. The goodness—of—fit statistic reported is the

normalized mean absolute deviation (NMAD). This statistic represents the area

between the fitted and observed first birth distribution divided by the area

under the fitted distribution. Perfect fits are thus indicated by values of

NMAD equal to zero with worse fits indicated by successively larger positive

values of NMAD. Results are reported in Table I for all cohorts for whom com-

pleted first birth data are available (i.e., data for the entire age range 14

to 49 during the years 1917 to 1980).

The statistics reported in Table I are strongly supportive of the pro-

cedure developed in Section II. In particular, application of the procedure

results in improved goodness—of—fit statistics for every cohort studied and

for every successive increase in age—specificity. Moreover, in some cases,

the improvement is dramatic. For example, a 16.2 percent error for the 1924

birth cohort is reduced to 2.3 percent error. Thus, the model developed seems

to be providing extremely good estimates of the period effects.

The second finding worth noting relates to the age specificity of the

period effects. In this connection, Table II presents the correlation matrix

for period effects estimated under age—specificity assumptions (i) and (ii)

above. Note that the correlations are often substantially less than unity,

indicating that period effects do seem to be age—specific.4 This seems to be

the first empirical evidence demonstrating the age—specificity of period

4. Although not reported here, the correlation matrix for single—year age
specific period effects also exhibits non—perfect positive correlations
although the correlations within the seven age groups are relatively high.
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effects.

The third finding worth noting relates to the nature of the parameter

estimates for the cohort first birth distributions. These parameter esti-

mates, which are reported in Table III, show substantially less variation

across cohorts after the removal of period effects. This finding therefore

supports the proposition that much of what appears to be cohort effects is

simply age—specific period effects. For example, the age—specific period

adjustments reduce the standard deviations of the cross—cohort estimates of i,

a, and E by 71 percent, 47 percent, and 77 percent, respectively. Although

these reductions are not of sufficient magnitude to contradict the existence

of cohort effects, they do suggest that the size of cohort effects may be sub-

stantially overestimated by models which fail to allow for the age specificity

of period effects.



Table I
Normalized Mean Absolute Deviations',

1903—1931 Birth Cohorts, Women Aged 14—49

NMAD, Period — Adjusted
Birth NMAD No Period—Age Period Interaction Period Interaction
Cohort Unadjusted Interaction with 5 year age groups with single yr. age groups

1903 0.058 0.048 0.042 0.029
1904 0.057 0.052 0.040 0.028
1905 0.072 0.062 0.039 0.028
1906 0.093 0.068 0.037 0.029
1907 0.107 0.072 0.037 0.028
1908 0.116 0.075 0.034 0.028
1909 0.119 0.078 0.033 0.028
1910 0.129 0.079 0.034 0.028
1911 0.122 0.074 0.031 0.028
1912 0.113 0.071 0.033 0.028
1913 0.108 0.069 0.032 0.028
1914 0.099 0.069 0.035 0.028
1915 0.110 0.070 0.039 0.028
1916 0.122 0.072 0.037 0.027
1917 0.128 0.072 0.037 0.027
1918 0.138 0.073 0.040 0.027
1919 0.135 0.064 0.041 0.026
1920 0.136 0.059 0.036 0.026
1921 0.141 0.066 0.041 0.025
1922 0.153 0.075 0.053 0.024
1923 0.158 0.075 0.048 0.024
1924 0.162 0.073 0.040 0.023
1925 0.158 0.064 0.041 0.022
1926 0.136 0.063 0.045 0.022
1927 0.101 0.068 0.041 0.022
1928 0.088 0.067 0.034 0.021
1929 0.069 0.061 0.030 0.022
1930 0.060 0.045 0.034 0.023
1931 0.063 0.037 0.035 0.024

49
Ig(a) —

1. NMAD= a=14
49
I g(a)

a=14



Table II
Estimated Correlation Matrix for Period Effects

Computed for Selected Age Groups

14—49 14—19 20—24 25—29 30—34 35—39 40—44

14—49! 1.00 .75 .95 .64 .50 .61 .78

14—19! 1.00 .83 .02 —.14 .06 .42

20—24! 1.00 .41 .27 .44 .68

25—291 1.00 .92 .80 .64

30—34 I 1.00 .93 .71

35—391 1.00 .88

40—44 I 1.00



Table III

Estimated Parameters with No Period Adjustments (I) and

with Single—Year—Age—Specific Period Adjustments (II)

Par am e t e r

Birth ____________ E _____________
Cohort I II I II I II
1903 22.91 23.83 .79 .80 4.88 5.55
1904 22 .95 23 .79 .79 .81 4.99 5 .53
1905 22 .96 23 .76 .77 .82 5.02 5.51
1906 22.98 23 .71 .76 .82 5.07 5.45
1907 23 .09 23 .68 .76 .83 5.23 5.42
1908 23 .25 23.65 .76 .84 5.45 5.40
1909 23 .51 23 .61 .77 .84 5 .73 5.40
1910 23.81 23.58 .78 .85 6.01 5.35
1911 24.11 23.55 .79 .86 6.27 5.33
1912 24.39 23.52 .81 .86 6.47 5.29
1913 24.63 23.49 .83 .87 6.62 5.28
1914 24.79 23.46 .84 .87 6.58 5.25
1915 24.84 23.44 .85 .87 6.51 5.24
1916 24.83 23 .42 .86 .88 6.42 5.22
1917 24.83 23.39 .87 .88 6.36 5.19
1918 24.81 23.36 .88 .89 6.34 5.18
1919 24.69 23.34 .89 .89 6.11 5.17
1920 24.56 23.32 .90 .89 5.97 5.14
1921 24.47 23 .30 .92 .89 5.87 5.13
1922 24.37 23.28 .91 .90 5.72 5.11
1923 24.26 23 .25 .92 .90 5.57 5.10
1924 24.11 23.24 .93 .90 5.40 5.09
1925 23.92 23.22 .92 .90 5.13 5.07
1926 23 .62 23 .20 .90 .90 4.75 5.06
1927 23.25 23.20 .88 .90 4.44 5.04
1928 22.96 23.16 .88 .90 4.38 5.03
1929 22.85 23.14 .89 .90 4.50 5.02
1930 22.82 23 .12 .91 .90 4.64 5 .01
1931 22.79 23 .10 .92 .90 4.68 5.00
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