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1 Introduction

The public periodically confronts a novel and unfamiliar threat, such as a terrorist attack
or new disease outbreak. These situations typically spur people to take extreme protective
actions such as avoiding public places, culling livestock, or curtailing air travel. In such
a crisis, a person must assess a new risk and decide how aggressively to protect himself.
However, it is unclear how people make these decisions given the scarcity of information
about the severity or prevalence of the threat.

The 2003 SARS epidemic in Taiwan allows us to study the response to unfamiliar risk.
SARS (severe acute respiratory syndrome) is a respiratory illness that resembles severe pneu-
monia and is transmitted through close interpersonal contact. SARS reached Taiwan from
Mainland China in March of 2003. 312 people were infected and 82 people died before
the epidemic disappeared in July of that year. Despite the low prevalence of SARS in the
general population, the public strongly eschewed restaurants, shopping centers, and other
public places (Chou et al. 2004, Siu and Wong 2004). The high infection rate in hospitals
also caused people to avoid the health care system: outpatient visits fell by 31 percent in
April and May of 2003 (Hsieh et al. 2004). This drop occurred both in locations with and
without SARS, and persisted for months after the epidemic had passed.

Health care avoidance during SARS is an example of a “prevalence response,” which is a
familiar topic in the literature on economic epidemiology (Ahituv et al. 1996, Gersovitz and
Hammer 2003, Lakdawalla et al. 2006). Facing an increase in disease risk, people protect
themselves and thereby limit the spread of infection. With few exceptions (de Paula et
al. 2010, Gong 2010), this literature has assumed that decision makers possess complete
information. Such an assumption is unrealistic for an outbreak. In even the most saturated
media markets, public announcements only weakly signal a person’s idiosyncratic infection
risk. The lack of a precise public signal may cause people to rely on private signals such
as the opinions or actions of their peers. This mechanism has the potential to cause an

“Information cascade” that magnifies the response to an unfamiliar risk (Bikchandani et



al. 1992, Banerjee 1992, Welch 1992). Although this phenomenon has ambiguous welfare
implications, social learning may mediate the effectiveness of public announcements or other
policies during an emergency.

This paper measures the contributions of public and private risk information to the SARS
response. Reports of local and national SARS incidence provide public risk signals. We show
theoretically that under some conditions, the change in health care utilization among peers
(from a pre-SARS baseline) provides a proxy for the risk perception of peers. A regression of
individual medical visits on these variables distinguishes between the contributions of public
and private information sources. Our analysis utilizes a nationally representative panel of
medical claims of 1 million people (4.3 percent of Taiwan’s population). This source allows
us to quantify the number of outpatient visits by patient, provider and two-week period from
2001 to 2003 for a sub-sample of 29,501 people. We proxy for peer groups, which the claims
data do not directly measure, using cohorts of patients who visit a common physician and
facility.

Identifying social learning through a regression of individual outcomes on group out-
comes is challenging because common unobservables jointly determine both variables (Manski
2000). Patients in the health care market may sort into peer groups because of common risk
or health preferences that affect their response to SARS. Heterogeneous supply shocks, such
as office closures by some doctors, may also induce a spurious correlation. A difference-in-
difference design addresses this concern by comparing the response of longtime community
residents to the response of recent arrivals who are less socially connected. We find that
social learning has a larger effect than local incidence reports, but a smaller effect than
national incidence reports.

Several supplemental results reinforce this finding. Under our definition of a peer group,
patients may belong to multiple groups, each of which offers a signal of risk. We regress
the patient’s visits to the doctor that defines group j on the signal from group j as well

as from other groups. This regression shows evidence of social learning from both group j



and other groups. A regression featuring the interaction between the signals from group j
and other groups indicates that these signals are substitutes. Both results are unlikely to
arise spuriously. A complementary identification strategy controls for common unobservables
using the current level of peer visits. Estimates from this approach resemble the difference-
in-difference results. In a final falsification test, we apply our methodology to the annual
drop in visits that occurs during Chinese New Year and find that social learning does not
explain this phenomenon.

Our study contributes to two literatures. In economic epidemiology, this paper is the
first examination of the individual behavioral response to a new outbreak. We demonstrate
that under incomplete information, the response elasticity varies by information source. This
paper also contributes to the literature on social learning. Several studies have examined
how social learning affects technology adoption (Foster and Rosenzweig 1995, Munshi 2004,
Conley and Udry 2010) or consumption (Moretti 2010). The few studies that examine social
learning in medical utilization (Aizer and Curry 2004, Rao et al. 2007, Deri 2005) do not
consider the context of an emergency.

This paper proceeds in Section [2| to develop a simple model that relates learning to our
empirical approach. This framework motivates the use of the change in visits as a proxy
for perceived risk and clarifies the relationship between regression coefficients and structural
parameters. Section [3] describes the health care setting in Taiwan, the SARS epidemic,
and the data set. Regression results appear in Section Section [9] describes a dynamic
simulation of the aggregate response to SARS. This exercise utilizes the regression estimates

to illustrate the dynamic impact of social learning. Section [6] concludes.

2 Theory

In this section, we motivate our empirical approach with a theoretical framework that relates
learning and health care utilization. First, we present a simple model of individual belief

formation about SARS risk. Rather than determine exactly how people form beliefs, our



goal is to offer a plausible structural interpretation for our subsequent empirical estimates.
We incorporate the decision to seek health care and illustrate the conditions under which a

chance in medical visits (from a risk-free period) proxies for the perception of SARS risk.

2.1 Learning About SARS Risk

People are indexed by i and belong to peer groups that are indexed by j and have size N;.
Each person decides whether to visit the doctor during period ¢t. By visiting, the patient
faces perceived risk s;;; € [0,1] of contracting SARS and dying. People may learn about s
from a common signal, s, € [0,1], an individual private signal, s7;, € [0, 1], and the private
signals of their peers, {sfijt}. We define each signal to be orthogonal to the others. In our
application, the common signal represents media coverage of SARS while the private signal
represents an individual’s idiosyncratic knowledge or assessment of SARS risk. People also
learn from other unobservable factors, €;;;, which may include their Bayesian prior beliefs.
Our empirical objective is to test whether individual risk perceptions depend upon the
common signal or peers’ private signals. To proceed, we assume that each person’s risk per-
ception is a linear weighted average of the common signal and private signals. For tractability,
we also assume that these weights are homogeneous across people and that people learn from

the average private signal of their peers. The following orthogonal decomposition represents

person i’s perception of SARS risk.E]

Sijt = ¢1S§t + ¢28fjt + ¢3§gijt + Eijt (1)

In this expression, s2,;, = > ;.2 87;,/(N; — 1) is the average private signal of peers and
¢m > 0 form € {1,2,3} are the weights on the signals. People learn from the common signal

if 1 > 0, from their own private signal if ¢ > 0, and from the private signals of peers if

LA more general model might include interactions between the common and private signals or allow the
weight associated with each signal to depend upon the signal’s precision. These embellishments make it
more difficult to map from the theory to the empirical estimates.



¢3 > 0. If each of these elements were observable, a regression based on equation would
identify these weights. Our primary empirical challenge is that the private signals of person

P

, . p _
i and his peers, s;;, and sZ,;,, are unobservable.

We propose to address the inability to observe the average private signal of peers, s it
by replacing it with the average overall risk perception of peers, 5.;;; = e 2510/ (N; — 1),
in the hypothetical regression equation. We justify this step by noting that under the

assumption that people place common weights on the signals, the average risk perception of

peers simplifies to the following expression:

—p )
Zle[,l;ﬁi Sﬂljt) n Zle],l;ﬁi Eljt

S-ijt = $185 + G255 + ¢3< N;—1 N;—1 @

The first two terms of this expression have the same interpretation as in equation ((1)). The
third term captures social learning by peers from other peers, including learning from person
1. This feedback complicates substitution of overall peer beliefs for peers’ private signals in
equation ({1)).

Both expressions and become more straightforward if NV is large.ﬂ As the group
size increases, the influence of person i’s private information on the average private infor-
mation of the group declines: limy, .o 5%, it = §§t. This fact simplifies the expression for

individual learning in equation below, and allows us to ignore the informational feedback

between person i and the group in equation (4)).

Siji = 185, + Pasiy + G35, + wije (3)
Soiji & 0185, + (2 + ¢3)55, + W-iji (4)

We obtain an expression for individual beliefs in terms of the average signal of peers by
isolating .§§t in equation and substituting into equation . After this substitution, coef-

ficients from a regression based on this expression no longer map directly into the structural

2A large N; assumption is reasonable because the median peer group size is 60 in our data.



parameters.
P19

! G2 + @3

G2+ @3

Moreover, even this equation cannot be estimated because we do not observe person i’s

} S5 + Pasi + { ] S-ijt T Uit (5)

private information.
Instead we propose a hypothetical regression of the individual’s risk perception on the

common signal and the group risk perception.

c _
Sijt = Qg + Q185 + (St + Uijt (6)

P

Person ¢’s private signal, s;;,, appears in equation but is an omitted variable in equation

@. Fortunately, it is safe to overlook this variable because the information sources in
equation are orthogonal. The orthogonality of the information sources directly ensures

that the omitting this variable does not bias a;. This assumption also ensures that s7;, is

p
ijt)

p

uncorrelated with s” b

Pt For large values of Nj, corr(s];, 5-iji) — corr(s,,s",;,), which is
zero. Thus, omitting the individual private signal does not bias «y if groups are large.
The regression in equation @ yields a system of three equations relating the regression

coefficients to the structural parameters of the learning model.

Eldo] = 6o5” )
L P19

Blaa] = P2 + O3 (®)

Elag) = —2 ()

:¢2+¢3

p
ijt)

In this expression, 57 denotes the sample mean of s;.,, which is unknown. Because the system
includes three equations and four unknowns, we cannot identify the structural parameters
directly. However equation @D shows that a non-zero coefficient on the risk perception of
peers is evidence of social learning. This coefficient represents the impact of social learning

relative to the combined impact of social learning and the individual private signal. Likewise,



a non-zero coefficient on the common signal is evidence of learning from public information.

2.2 The Change in Visits: a Proxy for Perceived Risk

To estimate regression @, we must either observe or proxy for individual and group risk
perceptions s;;; and 5-;;;. Here we motivate the use of the change in medical visits over time
as a proxy for perceived risk and explain how a regression employing this proxy reveals about
the structural parameters. When deciding whether to see the doctor, a person compares his
level of illness to his perceived cost of a visit. In general, this cost includes the copayment
(which is less than U.S. $5 per visit) and the cost of transportation to the medical facility.
During SARS, the cost also includes the risk of contracting SARS during the visit. Holding
illness and other costs constant, a change in visits indicates an increase in the perceived
SARS risk.

More formally, people receive utility from health and other consumption, h;j; and m;jq,
respectively. In each period, people experience a health shock, d;;; > 0, and must decide
whether to seek medical care, v;;; € {0,1}. A visit to the doctor restores the patient to his
baseline health, but forces him to pay copayment ¢;. During the SARS epidemic, people
also face the risk that a visit may cause them to catch SARS and die. After normalizing the

utility from death to be zero, the expected utility from visiting and not visiting the doctor

arefﬂ

EUvij = 1] = (1 = sgje)u(hije, mije — ¢;) (10)

EU[Uijt = 0] = u(hijt - dijta mijt) (11)

A person seeks care if the value of alleviating his illness exceeds the cost of treatment:

3Without loss of generality, we ignore the dynamic effects of current health decisions. Our approach
can incorporate these effects by reinterpreting the contemporaneous utility function as a value function that
embeds future optimizing behavior.



EUlv;jt = 1] > EUJvjr = 0]. Taking logs leads to the following equivalent expression.
hl(l — Sijt) + In u(hijt7 Mgt — Ct) —1In u(hijt — dijt7 mijt) >0

In this formulation, the probability of a visit depends upon the person’s health status and
his perceived SARS risk.

An observer wishing to interpret the change in visits as an indicator of perceived risk
must account for secular trends in health. To incorporate this requirement, we assume
that the net utility from a visit is a trend-stationary function of the person’s age: u(h;j —
dijt, Mijt) —w(hije, Myjr— ) = fhij+9aije+eie, where a;j is the person’s ageﬁ The error term,
€ijt, is identically and independently distributed throughout the population, with mean zero,
cumulative distribution F'(e), and density f(e). Under this formulation, people experience
idiosyncratic health shocks that with a mean that linearly increases with age. The first
expression below shows the probability of a visit under these assumptions. In the second
expression, we apply a first-order Taylor-series expansion at a suitable common point, €, in
the distribution of e;;;, and incorporate the approximation that In(1 — s;;;) &~ —s;;; for small

values of s;j;.

privie = 1] = FIn(1 = s45¢) — pij — gaijq] (12)

~ F(e) — f(€)[sijt + pij + gai: — €] (13)

The probability of a visit is an affine transformation of SARS risk, the idiosyncratic health
endowment, and age.

The first difference of this probability is our proxy for an individual’s perceived SARS
risk. We subtract the number of visits during a comparable pre-SARS period (when s;;; = 0)
from the number of visits in the index period. The change in visits, Av;j; = v;j; — viji—k, Dets

out the time-constant health endowment and F'(€). Likewise, the change in average peer

4Under the assumption of a quadratic trend, equations and become non-linear functions of age.



visits, Av_;js = V—jjt — V—iji—k, proxies for the average risk perception of the peer group.

ElAviji] = f(e)gk — f(€)sijt (14)

E[Avj] =~ f(€)gk — f(&)5-ijt (15)

A person who is familiar with f(e) and the effect of age on health, g, can infer s;;; and 5-;;;
from the change in individual and group visits, respectively.

Our empirical strategy uses these proxies to estimate a version of the following regression.

Avije = Bo + P15, + B2 AUt + Mije (16)

By substituting in the expressions for Awv;j, Ay, si5+ and 5.5, we find that 3 and f35 have

the following structural interpretations.

E[p] = — f(e) L}ff;g} (17)
A1 Ps
Bl = G2+ @3 (18)

Although the system (which also includes an expression for E[F]) is not identified, the
coefficient estimates test whether people learn from public information and from peers. A
significant value of Bl indicates that people learn from public information, while a significant
value of @ indicates that people learn from their peers. The signs on these coefficients differ
because an increase in Av_;;; indicates less risk while an increase in S5 indicates greater
risk. As above, Bg provides the contribution of social learning relative to the combined
contribution of social learning and the individual private signal. A coefficient estimate that
is significantly less than 1 indicates that people also respond to their own private information.

Equation also shows that Bl underestimates the response to public information

because ¢o /(P2 + ¢3) < 1. A complementary regression of the change in individual visits on



just the common signal, however, eliminates this source of attenuation.

Avije = B3 + Pasf, + wijt (19)

Because information sources are orthogonal in equation (1)), excluding Av_,j;; from this re-
gression does not cause omitted variables bias. The coefficient on the common signal has

the following structural interpretation:

Using this coefficient estimate rather Bl to measure this response leads to a larger and more
accurate estimate of learning from public information. A regression based on equation ((19)
proves useful for the dynamic simulation in Section [5], where it serves as a predictive model

that fully captures the response to public information.

3 Context and Data

3.1 The SARS Epidemic in Taiwan

Taiwan is a densely populated island located near mainland China. The country has a
population of 23.1 million and income per capita of around $31,000. Modern highways
and railways facilitate intercity travel. Taiwan is made up of 25 counties and cities, which
further subdivide into 368 townships and urban districts (hereafter labeled “counties” and
“townships” respectively). The population has a median age of 37 and a life expectancy
of 78. Chinese New Year, which occurs on a lunar schedule in January or February, is an
important holiday that causes a large decline in medical visits. During the two-week long
holiday, many families travel to visit relatives and some medical offices close. This holiday
has a large impact on health care utilization in the figures below.

In 1996, Taiwan implemented a universal fee-for-service health care system (Cheng 2003).

10



Under the system, patients make modest copayments of US$5 or less for visits, tests, and
prescriptions. The Bureau of National Health Insurance (BNHI) administers the system
and reimburses providers for most health care expenses. People may obtain outpatient
care from either hospital outpatient departments or small storefront clinics. Clinics, which
are ubiquitous in cities, serve around 70 percent of the outpatient market. With such low
copayments, many patients find it advantageous to visit the doctor (and obtain medicine) for
minor illnesses such as sore throats and colds. These conditions, classified broadly as “upper
respiratory infections,” comprise 38 percent of all outpatient visits. The low out-of-pocket
cost has led to intense health care utilization, with patients seeking care a median of 10
times per year.

SARS is a respiratory illness that resembles severe pneumonia. SARS is caused by a
coronavirus and is transmitted through close contact with an infected person. The SARS
epidemic originated in Guandong, China in November of 2002 and soon spread to Hong
Kong, Southeast Asia, and Canada. Taiwan’s first SARS case occurred in a traveler who
became ill on March 14, 2003 after arriving from Mainland China. The epidemic escalated
on April 22 when an indigenous outbreak among patients and hospital staff at the Ho-Ping
Hospital in Taipei led to several secondary outbreaks in other major cities. Figure [1| shows
the trajectory of the epidemic by plotting the number of reported and probable SARS cases
(explained below) by two-week period. The SARS epidemic lasted through June, leading
to a total of 312 confirmed infections and 82 deaths. At the peak of the epidemic, SARS
infected 60 and killed 6 people per day. Nevertheless, the overall burden of SARS was only
1.4 confirmed cases and 0.36 deaths per 100,000 people.

The Ho-Ping Outbreak, which took place during Period 9 in the figure, led to widespread
panic. According to Ko et al. (2006), “People started to hoard all possible protective equip-
ment, and reject people or materials with any risk of infection, including infected patients, the
families of patients, subjects quarantined, and even health providers.” Domestic and inter-

national air travel fell by 30 percent and 58 percent, respectively, from 2002 levels (National
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Policy Foundation 2003). The price of Isatidis Radix, a traditional Chinese antiviral remedy,
rose by 800 percent (Huang 2003).

The SARS epidemic also had a large impact on health care utilization. Figure [2] plots
the nationwide volume of outpatient visits by two-week period in 2001, 2002, 2003. In a
sharp deviation from the usual seasonal pattern, visits fell by over 30 percent from March
to June of 2003. Visits did not return to the pre-SARS level until September of that year,
three months after the last probable SARS case on June 16. To quantify the severity of
this reaction, we compare the SARS response to the decline in visits that occurred after
a 2002 increase in the copayment. Among medical centers (the most advanced facilities),
the copayment rose by US$3 and visits fell by 3 percent. Using $2 million as a benchmark
for the value of statistical life, SARS mortality risk increased the copayment by US$0.75
in expectation. However, scaling by the 2002 price response, the public reacted as though
SARS had increased the copayment by $34.

The self-protective response did not differentiate between townships that did and did
not experience actual SARS incidence. Figure [3| distinguishes between townships with and
without any SARS cases during the epidemic. The response to SARS is only slightly larger
in townships that actually experienced the outbreak. The large response in places where
there was zero ex-post SARS risk casts doubt on the premise that people had complete
information about SARS risk.

The timing and magnitude of the SARS response also depended on the nature of the visit.
Figure |4 categorizes visits as respiratory, critical, chronic, or otherﬁ Although utilization
fell in all categories, the response of respiratory visits was particularly sharp and extended.
These visits fell by over 50 percent and remained suppressed through the end of the year.
Although several mechanisms may be at play, the low marginal benefit of a respiratory visit

is the likely explanation for this pattern.ﬂ

5Critical visits include visits related to pregnancy, abortion, injury, appendicitis, stroke, heart attack,
and internal bleeding. Chronic visits include visits related to dialysis, chemotherapy, diabetes, and liver or
kidney failure.

6 Alternatively, patients with minor respiratory ailments may have feared that doctors would place them
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3.2 Signals of Risk

Decision makers who lack full information about disease risk may seek out new sources
of information and tailor their self-protective response to the credibility and precision of
the information source. Common risk signals, such as announcements about disease preva-
lence or incidence, can accurately convey the average risk in a population. However, these
announcements are not necessarily informative about a person’s idiosyncratic disease risk,
which depends upon personal behavior and social interactions. Objective data are particu-
larly noisy during the outbreak of a new disease, when even experts do not fully understand
the disease’s severity or mode of transmission. Without sufficient objective information,
people may learn from subjective signals such as the actions or opinions of their peers.

SARS incidence reports from the Taiwan Centers for Disease Control (TCDC) provide
an objective signal of SARS risk. The agency released these reports daily and to widespread
media coverage throughout the epidemic. The newspaper clipping from the Apple Daily News
on May 22, 2003 in Figure[5exemplifies the print coverage of SARS. The lead article describes
a SARS-related restriction on travel out of Taiwan. The map on the left, which shows the
cumulative number of SARS cases by county, sits above a summary of the number cases
and deaths nationwide. In principle, either local or national SARS incidence may provide
the most salient objective signal. Taiwan is a small island where an outbreak could easily
spread across jurisdictions. The country shares one media market with common television
and print outlets. These features suggest that national SARS reports may affect behavior
more than local reports.

Without a precise common signal of idiosyncratic risk, people may rely on private signals
such as the opinions or behavior of their peers. As the model describes, the change in
medical utilization from a previous (risk-free) period signals a person’s perception of SARS

risk. This signal is noisy as an individual metric because health varies idiosyncratically.

in quarantine (Hsieh et al. 2005). As a respiratory condition, SARS could also have increased respiratory
visits among people concerned about possible exposure.
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Any individual’s decline in visits may merely reflect the absence of an illness that existed
previously. Within-group aggregation abates the idiosyncratic noise in this variable and
improves its power as a signal of perceived risk.

During SARS, the rate of visitation became more disperse across groups. Figure [6] plots
the coefficient of variation (CV) in visits by two-week period and distinguishes between
variation within and across peer groupsﬂ In the figure, intergroup variation drives the
large increase in this statistic during SARS. This finding of “excess variation” motivates our
examination of social learning in this setting (Glaeser et al. 1996, Graham 2008). The reader
should interpret this increase cautiously since a decline in the mean may raise the coefficient
of variation mechanically. However the CV only increases slightly during Chinese New Year

(Period 3 of 2003), despite an even larger decline in visits at that time.

3.3 Data

Our primary data source is a large panel of medical claims furnished by the BNHI, which
administers Taiwan’s health care system. This data set contains all claims since 1997 for
a representative sample of one million people (4.3 percent of Taiwan’s population). This
sample is unmanageably large for our purposes, and we utilize a randomly-selected three-
percent subsample of 29,501 people. The outcome variable in our analysis is the number of
outpatient visits by patient, provider, and two-week period from 2001 to 2003.

A patient’s actual peer group consists of his family, friends, and neighbors. We proxy
for peer groups, which we do not observe directly, by constructing cohorts of patients who
visit the same doctor and health care facility. The baseline definition of a peer group is the
set of people who see a common physician x facility from 2001 to 2003E| The outpatient

health care market is highly localized, so that many neighbors frequent the same physicians.

"The decline in visits, which are bounded at zero, mechanically reduces the standard deviation in visits.
The CV partially overcomes this issue by dividing by the mean.

8Under this approach, we construct peer groups and measure behavior using the same raw data, which
allows us to observe the visits of movers to their current physicians. The regressions in Table [6] which do
not rely on a non-mover difference, are robust to using 1999-2000 activity to define cohorts.

14



The referral process also connects our proxy to actual peer groups. Many patients select
a physician through a friend’s referral, so that some people who visit a common physician
are directly acquainted (Hoerger and Howard 1995, Tu and Lauer 2008). The empirical
definition of a peer group as a patient cohort permits patients to belong to multiple peer
groups. Patients in our sample belong to a median of 7 peer groups, which contain a median
of 61 people. Regressions below show that results are robust under alternative definitions of
the peer group.

Measurement error in the definition of the network is a common issue that does not
ordinarily interfere the identification of social interactions. Blume et al. (2011) show that
identification is still possible in this setting as long as the true social network overlaps with
the proxy. Misidentification of the peer group most likely (though not necessarily) causes
attenuation bias through the same mechanism as classical measurement error. We verify
that members of a common group are similar by computing the intra-group correlation
in income, age, gender, and modal township (a proxy for residential location). Within a
common physician x facility, the correlation coefficients are 0.30, 0.65, 0.42, and 0.34 for
income, age, gender, and modal township respectively. These correlations decline as expected
if the facility, township or county is used as the peer group proxy instead.

As our model shows, the one-year change in average visits within the peer group provides
a proxy for the group’s SARS risk perception. v-;;; denotes the number of visits per person
in group j and period ¢, excluding the index person. The change in peer visits, Av_;;,
is the difference in v from the same two-week period in the previous year: Av;; =
U—ijt — U—iji—26. DBecause SARS lasted for less than a year, the lagged component of this
variable always captures pre-SARS utilization. Although the size of the lag is arbitrary, a
one-year difference implicitly removes seasonal variation from Av_;;;. Regressions in which
Av_;;; is constructed with a six month difference yield similar results.

Our identification strategy exploits the distinction between longtime community resi-

dents (“non-movers”) and people who have recently joined the community (“movers”). Since
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people form social connections over time, recent arrivals to the community are less socially
connected (Jackson 2009).E| To distinguish between these two types of people, we first cal-
culate the overlap in patient traffic between all pairwise combinations of townships. Next
we determine the modal township by year for each patient and define a move as a transition
across townships that have low overlap. A person becomes a mover by joining his or her 2003
township in 2001 or later. According to this definition, 6 percent of the population qualifies
as movers. The regression data set oversamples this group (movers are 40 percent of the
regression sample) to increase statistical power along this dimension. Probability weights in
the regressions below restore the representativeness of the sample.

The Taiwan CDC provides SARS incidence data. SARS cases may be “reported,” or
“probable.” A reported case is any case that the TCDC investigates as a possible SARS
infection. A probable case is a reported case that also (1) exhibits high fever and difficulty
breathing, (2) an epidemiological link to other SARS cases, and (3) radiographic evidence
of pneumonia or respiratory distress syndrome or a positive assay for the SARS coronavirus
(WHO 2003). To express SARS incidence, s, as an infection probability, we compute the
number of cases per 100 people. Regressions also utilize a SARS period indicator, which
equals 1 for Quarters 2-4 of 2003. To permit a delay between the development and commu-
nication of SARS risk, we construct both s and Av as sums over periods ¢t — 2 to t.

Summary statistics based on the pre-SARS period appear in Table [T Panel A, which
displays patient characteristics, shows that patients average 0.04 visits per two-week period
to a particular physician x facility. The patient is diagnosed with a respiratory infection
such as a sore throat or cold in 37-40 percent of these visits. Movers and non-movers
appear similar, although movers are younger and more likely to be male. These groups have

similar levels of income: movers earn US$ 30 less per month than non—movers.@ Movers also

9This identification strategy relies on heterogeneous exposure to social learning across different subsets of
the peer group. Cohen-Cole (2006) and Blume et al. (2011, Theorem 2) show the assumptions under which
this approach identifies social learning.

OIncome data are available for 62% of the sample, and are based on BNHI estimates of earnings by
occupational category.
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belong to more peer groups than non-movers. Because of the large sample size (there are
72 bi-weekly observations per patient X peer group), many small differences are statistically
significant.

Panel B summarizes the characteristics of peer groups. Movers and non-movers belong
to cohorts with similar characteristics, although the peers of movers are younger and more
likely to be male. Movers comprise a similar proportion of the peer groups of movers and non-
movers, and physicians serving these groups have a similar age and gender composition. The
peers of movers visit less frequently than the peers of non-movers, however the breakdown

by diagnostic category is similar.

4 Estimation

4.1 Empirical Approach

In this section, we estimate the response to public and peers’ private information about risk.
A difference-in-difference style specification identifies social learning as the differential effect

of Av_;j for non-movers during SARS.

Vijkt = 51S§Ct + Basy + P3SN AV + Bavijie—26
+ [levels and pairwise interactions of Sy, N;, and AT ;] (20)

+ Oéjk + (515 + eijkt

In this specification, ¢ indexes the patient, 7 indexes the physician x facility, k& indexes
the township, and ¢ indexes the two-week period. The dependent variable, v;j, is the
number of outpatient visits. Consistent with the interpretation of Awv;;y, as the patient’s risk

perception, the regression controls for the one-year lag of the dependent variable, vijkt_%ﬂ

UIncluding v;jkt—26 as a control variable is preferable to using Av;jx: as the dependent variable because it
avoids endogeneity that may arise because of serial correlation in individual risk perceptions. If perceptions
are serially correlated, then lags of v;ji; belong as controls in the specification. However these lags are
functionally dependent upon v;;x:—26. The most direct solution to this problem is to use v;jx:—26 as a control
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The specification includes the number of local and national SARS cases per 100 people,
sk, and s, and the one-year change in peer visits, Av_; ;. S; indicates the SARS period
(Quarters 2-4 of 2003) and N; identifies non-movers.

A peer group fixed effect, aji, controls for time constant attributes of the peer group,
allowing the regression to compare groups with similar levels of utilizationE A time fixed
effect, 0, controls for systematic time variation in visits. Because s} and d; are collinear,
specifications that include s} utilize separate period and year (rather than period x year)
fixed effects.

We estimate the model using OLS and cluster standard errors by the modal townships
of patients. The regressions employ probability weights to restore the population proportion
of movers and weight patients equally. Negative signs for ﬁAl and (3, indicate avoidance of
SARS risk conveyed by public information. A positive sign for 33 indicates a response to
the risk perceptions of peers.

The correlation between v;;r; and Av_;;x; may reflect the influence of common unob-
servables that jointly determine these variables (Manski 1993, Manski 2000). The SARS
period interaction ensures that any confounder must exhibit a differentially strong influence
during SARS to threaten identification. A remaining concern is that heterogeneous supply
shocks during SARS may induce a correlation between the visits of group members. Another
concern is that patients and their peers, having self-selected into the same group, may share
common traits such as risk aversion that affect the SARS response. Our approach addresses
these concerns by treating movers as a control group. By exploiting the interaction between
St, Ni, and Av_;;i, the regression differences out common unobservables that are constant
among movers and non-movers. The identifying assumption of this regression is that com-

mon unobservables with a differential impact during SARS apply equally to movers and

rather than a component of the dependent variable in equation .

12The use of a peer group fixed effect leads to bias in the coefficient on the lagged dependent variable.
However, Hsiao (2003, p. 72) notes that the bias vanishes as T — oo. With 78 time periods, this setting
features an unusually long panel. Moreover, bias in 4 is unlikely to contaminate the other coefficients: the
pairwise correlations of lagged visits with s!, s”, and Se¢Ni AV are 0.002, 0.007, and -0.021 respectively.
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1ON-11OoVvers.

4.2 Baseline Results

Results based on specification appear in Table . Columns 1 and 3 leave aside social
learning and show the response to local and national SARS incidence. These estimates show
a relatively small response to local SARS incidence. The elasticity with respect to local
incidence ranges from -0.0006 for probable cases to -0.0010 for reported cases. The elasticity
with respect to national incidence is six to eight times larger: -0.0050 for reported cases and
-0.006 for probable cases.E Local information contributes little to the response to SARS.
Columns 2 and 4 add subjective peer assessments to the regression with the proxy
SyN; AU and the associated pairwise interactions. The coefficient estimate is statistically
significant and implies a response elasticity of 0.0035. Perceiving a higher SARS risk, pa-
tients who observe a decline in peer visits also visit less often. Accounting for social learning
and unobservable shocks in this way attenuates the local incidence response by 61-65 per-
cent and the national incidence response by 23-30 percent. In Figure [7] which plots these
elasticities, national public information has the greatest impact, followed by social learning
and local public information. Although the figure facilitates a comparison of effect sizes for
the variables in the regression, our model makes clear that these effects do not map directly
into structural learning parameters. Column 5 estimates a baseline specification, which we
will compare to other results below. In lieu of SARS incidence variables, this model includes
a complete set of time fixed effects. This modification slightly increases the social learning

estimate.

13Regressions which also include county-level incidence (available from the authors) show a small and
insignificant response to county-level information.

19



4.3 Robustness

The remainder of this section evaluates the robustness of the social learning result. Table
varies the peer group definition under alternative fixed effects specifications. The baseline
specification above utilizes Av_;;x; and S; AV, to control for unobservable shocks. In
contrast, the odd columns of Table 3| also utilize a peer group x SARS fixed effect, o S;.
This specification controls for arbitrary unobservables that may differ between the pre-SARS
and SARS periods. Under the baseline peer group definition, which appears in Column 1,
the estimate diminishes by 24 percent but remains significant.

The even columns of the table utilize a peer group x time fixed effect, a;;,0,. This specifi-
cation, which is even more restrictive, absorbs 55-60 percent of the variation in the dependent
variable. In Column 2, the estimate diminishes by 50 percent but remains significant at the
10 percent threshold. The remainder of the table replicates these specifications while defin-
ing the peer group by facility (Columns 3-4), township (Columns 5-6) or county (Columns
7-8). Results are robust and statistically significant under these alternative formulations.

For the estimates above, we define a mover as anyone who has arrived in his or her 2003
community after 2000. In our data, tenure in the community may range from 1 to 74 years.
To test the sensitivity of our results to this definition, we interact S;Av_;j5 with dummies
for these tenure values. Figure |8 plots the coefficients and confidence intervals from this
regression. In the figure, the response to peers is uniformly higher among non-movers than
among recent arrivals.

The preceding analysis examines how a patient’s visits to the doctor affiliated with
peer group j respond to the private signal of peers from group j. In reality, a patient may
also incorporate the private signals of peers from groups other than group j. We construct
Sy N; A5, across an individual’s other peer groups by dividing the total number of visits to
other groups by the total membership of those groups. We also examine the complementarity
between group j and other groups by interacting the signals from group j and the signal

from other groups.
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Estimates based on these specifications appear in Table[dl Column 1 shows the response
to the private signals of group j and other peer groups, which are both positive and sig-
nificant. The coefficient estimate for other peer groups exceeds the estimate for group j.
In principle, people may rely more heavily on either source of information: although the
signal from group 7 is more specific to the risk in group j, the signal from all other groups
is more precise. Column 2 shows the interaction between the private signals of group j and
other groups. The interaction term is negative and significant, suggesting that the signals
of different peer groups are substitutes as information sources. Substitution among private
signals is a reasonable conjecture if the cost of searching for information is important.

Neither of the results in Table 4] is likely to arise through a spurious correlation. Our
primary concern (which the difference-in-difference specification already addresses) is that
common unobservables may jointly determine v,z and Av_;;x. For the result in Column 1
result to be spurious, an omitted variable must cause a correlation between a person’s visits
to group j and the visits of his peers in other groups over and above any correlation with
his group j peers. This would require unobservable shocks to occur both at and beyond the
particular peer group. Although both types of shocks are plausible, it is unlikely that shocks
at groups other than j would more strongly influence an individual’s visits to group j than
the group-j shocks themselves. In Column 2, it is also unlikely that a negative interaction
between the signals in group j and other groups would arise spuriously. To yield a spurious
result, shocks of adjacent groups would need to be negatively correlated. The difficulty
rationalizing these results as spurious correlations further validates our interpretation of
social learning.

Table |p|investigates the timing of the SARS response by category of diagnosis. Instead of
treating Quarters 2-4 as a common SARS period, these regressions interact N;Av_;;x; with
quarter-of-2003 dummies. Column 1 shows that, across all diagnoses, the social learning
effect is greatest in Quarter 2, followed by Quarter 4. While Quarter 2 coincides with the peak

of the epidemic, the result for Quarter 4 is initially surprising because visits fully resumed
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by the end of Quarter 3. The remainder of the table, which distinguishes among diagnosis
categories, may explain this finding. Social learning exerts a particularly strong influence
on respiratory visits, with no evidence of an effect on visits for critical or chronic diagnoses.
As Figure {4 illustrates, the SARS response among respiratory visits lasted through the end
of Quarter 4. Social learning may have contributed to the relatively large and prolonged

response in this category.

4.4 A Complementary Identification Strategy

As an alternative to the difference-in-difference identification strategy, a regression may
address common unobservables by controlling for v-;;;;. Holding v-;;,; constant, the patient
receives a stronger risk signal from Av_;;x if -;j1—26 is high. In a specification that includes

both Av_;jx and vk, social learning is identified through variation in v-;jx:—26.

Vijkt = V1AV—ijkt + V2 St AUkt + V30—ijir + VaStU-ijkt + V5Vijkt—26 + Qji + O¢ + €5t

The vz control addresses common unobservables directly. The identifying assumption of
this approach is that no omitted variables cause a spurious correlation between v;;;; and
Voijkt—26- OINCe V—jpe—26 enters AU, negatively, only a negative correlation between v;ji
and ;126 may generate a spurious positive effect. This approach has the advantage that
it does not require an assumption that movers are a suitable control group.

Regressions based on this specification appear in Table[6] Column 1, which utilizes peer
group and time fixed effects, yields an estimate that is similar to the baseline difference-in-
difference result (Table[2) Column 5). The lack of identifying variation within the peer group
prevents us from implementing this approach under more restrictive fixed effects specifica-
tions. Column 2 distinguishes between the signals from peer group j and other peer groups:
estimates conform with earlier results although the effect of other groups is insignificant.

Column 3 examines the interaction between the signals of group 7 and other groups. The
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interaction term is negative and significant at the 10 percent threshold with a magnitude
that resembles the result in Column 2 of Table [dl The similarity of these estimates despite
their reliance on different sources of variation suggests that these approaches have adequately

dealt with confounding factors.

4.5 Chinese New Year

A falsification test based on Chinese New Year further validates the social learning result.
During Chinese New Year, both patients and physicians travel to reunite with family, causing
a 20-30 percent decline in health care utilization that is plainly unrelated to social learning.
Our methodology should not find evidence of social learning as an explanation for this
phenomenon. We proceed by replacing S; and all related interactions with an indicator for
Chinese New Year in the primary specifications. Regressions exclude data from the SARS
period (Quarters 2-4 of 2003).

Results for Chinese New Year appear in Table The table implements both identi-
fication strategies described above and examines the effect of a signal from group j alone
(Columns 1 and 2), group j and other groups (Columns 3 and 4), and the interaction be-
tween group j and other groups (Columns 5 and 6). In contrast to the baseline finding
of a positive and significant social learning coefficient, the results in Columns 1 and 2 are
negative but insignificant. In Columns 3 and 4, estimates for group j and other peer groups
are insignificant and have opposites signs. Columns 5 and 6 show an insignificant but posi-
tive interaction between the signals of group j and other groups, the opposite of the SARS
finding. In summary, these results indirectly support our methodology by failing to find

spurious evidence of social learning during Chinese New Year.
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5 Dynamic Simulation

In this section, we simulate the dynamic response of visits to the SARS epidemic in order
to decompose the aggregate response by information source. The response to SARS may
have a dynamic component because individuals update their beliefs about SARS risk using
information from previous periods, including information from peers. To simulate the dy-
namic response to SARS risk, we iteratively predict the response to peer behavior in the
previous period and then update peer behavior by aggregating these individual responses.
This simulation complements the regression analysis from the last section. While our speci-
fication cannot identify structural parameters, it serves as a predictive model that captures
different sources of information. By manipulating the model and the estimation sample,
we selectively close off certain channels of learning and simulate the response path of visits

under alternative learning environments.

5.1 Simulation Methodology

The observed response to SARS in Figure [2| consists of a response to public and private
information, as well as unobservable shocks. Our simulation is based on a thought experiment
in which we sequentially remove social learning, peer group shocks, and learning from public
information from the aggregate response. To implement this exercise, we focus on movers
rather than non-movers because for non-movers, the response to peers may be correlated with
the responses to unobservable shocks and public information@ In contrast, it is plausible
that movers do not respond to social learning.

The simulation includes four counterfactuals, which we summarize in Table E In

14StNiA17ﬂ-jkt and N;AU-;;i:, which reflect social learning by non-movers, are correlated with S ATk
and Av-;jr. Limiting the sample to movers eliminates this concern.

15This exercise is based on the following algorithm. First, we create a simulation data set with 1000
hypothetical doctor’s offices, each populated with 61 patients, the median size of peer groups in the regression
sample. The simulation data set spans the period from 2002-2003. For each person, the number of visits
during period ¢ in 2002 equals the mean of this variable for movers in the regression sample. Beginning with
the first period in 2003, we construct v;;; using Av-;;; and v;5 26 based on lagged data according to the
requirements of each counterfactual.
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the first counterfactual, people respond to public SARS information, peer group shocks,
and social learning. As a predictive model, we estimate a variant of equation on the
combined sample of movers and non—moversm We simulate the visits of movers by iteratively
generating projections using the coefficient estimates from this model. The social learning
coefficients (on regressors N;Av_;;x and S;N; AU ;;1,), which apply only to non-movers in
the regression, also determine the visits of movers in the simulation.

The second counterfactual preserves the response to public information and peer group
shocks but shuts down the social learning channel. We construct two versions of this counter-
factual to reflect the ambiguous distinction between social learning and other unobservable
shocks. Both versions of this counterfactual reproduce the first counterfactual but set the
coefficient on S;N;Av_;;x; to zero. In Version 1, the predictive model continues to include
N; AU as a regressor that represents unobservable shocks, although some variation in this
variable also reflects social learning. This interpretation reflects a restrictive view of social
learning. For Version 2, we drop N; and all associated interactions and estimate the predic-
tive model with the subsample of movers. Because this version does not treat the effect of
N; AV, as an unobservable shock, it allows for a larger contribution of social learning to
the overall response. Therefore Version 2 reflects an expansive view of social learning.

Under the third counterfactual, people only respond to public information. As a predic-
tive model for this scenario, we modify Version 2 of Counterfactual 2 above by setting to zero
the coefficients on Av_;;; and all associated interactions. National SARS incidence is the
only remaining variable that contains information about the epidemic. Because this variable
is largely orthogonal to Av_;j, social learning does not contaminate the effect of national
SARS incidence in the modified regression. The fourth counterfactual also excludes the re-

sponse to national SARS incidence by setting the coefficient on s} to zero. This scenario

16Qur specification deviates from equation in three important ways. First, we construct the regressors
as sums over periods t —2 and ¢ — 1 (rather than t — 2 to t), to avoid the need to determine v;;; and Av_;;x;
jointly in the subsequent simulation. Secondly, our regression eliminates the need to assign simulated people
to actual townships by omitting local SARS incidence, for which the effect is small. Thirdly, we add an
interaction between N; and s} to allow movers and non-movers to respond differently to public information.
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provides a benchmark for comparison to the other counterfactuals.

5.2 Simulation Results

Figures [0] and [I0] show the paths of aggregate visits and respiratory visits under the coun-
terfactuals described above. The simulation focuses on respiratory visits because Figure
and Table [5| indicate that respiratory visits contribute substantially to the overall decline in
visits. In each figure, we calculate the ratio of aggregate visits by period under Counterfac-
tuals 1-3 to aggregate visits under Counterfactual 4. The solid black line presents average
visits by movers per period from our first counterfactual in which movers experience the
social learning of non-movers. The dashed and dash-dotted lines show results for Versions
1 and 2 of the second counterfactual, which excludes the response to social learning. The
difference between either of these lines and the solid line represents the contribution of so-
cial learning to the overall response. Finally the dotted line shows the response under the
third counterfactual, which only includes the response to public information. The difference
between the dotted line and either the dashed or dash-dotted lines represents the response
to unobservable peer group shocks.

Our simulation of visits for all diagnoses suggests that SARS incidence (public infor-
mation) was the sole driver of the initial, sharp decline in visits. Peer group shocks and
social learning prolonged the decline beyond the peak in SARS incidence. By the time vis-
its reached a low point in Period 13 (nearly three months into the epidemic), unobservable
shocks and social learning led to nearly half of the continued suppression in Visits.E] By the
end of the epidemic in Period 16, visits remained 20 percent below normalE Depending
upon whether it is restrictively or expansively defined, social learning contributes from one

quarter to one half of the visit suppression that cannot be explained by the response to

17Visits in our simulation closely track the actual decline in visits by movers, for whom all visits fell by
around 25 percent and respiratory visits fell by around 60 percent.

18This result differs slightly from the finding in Table [5| that social learning had the largest impact in
Quarters 2 and 4. This difference most likely arises because the simulation uses a single dummy for the
SARS period (Quarters 2-4), while regressions in the table use separate dummies for each quarter.
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actual SARS incidence. We find qualitatively similar results for respiratory visits in Figure
[10] Visits drop further and social learning plays a larger role, explaining no less than one

third of the visit suppression that is not in response to actual SARS incidence.

6 Conclusion

Emergencies such as the 2003 SARS epidemic occur with regularity. During an emerging
outbreak, terrorist attack, or other emergency, the private response to risk may affect the
severity and duration of the crisis. Facing incomplete information, people may respond to
risk signals from both public and subjective private sources. This paper argues that people
learned from the private risk assessments of their peers during SARS. Our results indicate
that this private signal influenced the response to SARS more than local public informa-
tion. According to a dynamic simulation based on regression estimates, social learning both
exacerbated and extended the response to SARS.

The private response to SARS has important implications for this and other epidemics.
Witnesses have suggested that health care avoidance during SARS probably limited the
spread of infection and shortened the epidemic. Although SARS may or may not return,
other emergencies are likely to exhibit similar dynamics. Policymakers need to understand
better the prevalence response mechanism in order to determine the optimal policy response.
Under the limited information that is available during an emergency, social learning appears

to influence behavior in important ways.
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Table 1: Summary Statistics for Movers and Non-Movers during the Non-SARS Period

Non-Movers Movers P Value
Mean S.D. Mean S.D.

1) 3] ®) (4) (©)
Panel A: Individual Characteristics
Male 0.50 0.50 0.53 0.50 0.00
Age 33.1 18.4 31.3 17.1 0.00
Income 828.7 579.6 798.3 565.3 0.00
Group membership 9.6 6.9 10.0 7.0 0.00
Visits
--All 0.045 0.252 0.035 0.218 0.00
--Respiratory 0.018 0.162 0.014 0.137 0.00
--Critical 0.004 0.075 0.003 0.068 0.00
--Chronic 0.002 0.047 0.001 0.040 0.00
--Other 0.021 0.166 0.017 0.148 0.00
Change in visits
--All 0.007 0.326 0.006 0.290 0.00
Panel B: Peer Group Characteristics
Male 0.49 0.50 0.53 0.50 0.00
Age 32.6 18.7 31.1 17.2 0.00
Income 783.8 112.0 781.8 146.3 0.19
Non-mover 0.92 0.12 0.92 0.07 0.01
Group size 589 347 592 335 0.14
Physician male 0.91 0.18 0.93 0.14 0.00
Physician age 44.2 7.8 44.8 6.3 0.00
Visits
--All 0.153 0.072 0.147 0.066 0.00
--Respiratory 0.073 0.059 0.067 0.052 0.00
--Critical 0.012 0.017 0.012 0.015 0.00
--Chronic 0.006 0.017 0.005 0.010 0.00
--Other 0.063 0.041 0.063 0.037 0.57
Change in visits
--All 0.015 0.048 0.015 0.047 0.33
Number of patients 17,625 -- 11,876 -- --

Note: visit counts are tallied by two-week interval during each period. Peer visits and the change in peer
visits are tallied from periods t to t-2 for consistency with subsequent regressors. Income is the approximate
monthly earnings in US Dollars.
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Table 4: Learning from Multiple Peer Groups

Dependent variable: Individual visits (group j)
@) 2
SARS x N x change in peer visits (group j) 0.082 0.055
(0.027) (0.027)
SARS x N x change in peer visits (other groups) 0.203 0.162
(0.041) (0.046)
SARS x N x change in peer visits (group j x other groups) -1.177
(0.555)
Fixed effects:
Peer group Yes Yes
Year x period Yes Yes
Sample size 17,239,224 17,239,224
R-squared 0.120 0.120

Note: standard errors appear in parentheses and are clustered by the patient's modal
township. The dependent variable is measured at time t while all of the regressors are
measured at time t to t-2.
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Table 5: Social Learning by Diagnosis and Quarter of 2003

Dependent variable: Individual visits
Type of visit: All Respiratory Critical Chronic Other
1) 2 Q) (4) ©)

N x change in peer visits:

x 2003 quarter 1 0.038 0.055 -0.008 -0.008 -0.002
(0.032) (0.021) (0.009) (0.005) (0.022)

x 2003 quarter 2 0.117 0.071 0.004 -0.002 0.046
(0.039) (0.020) (0.016) (0.006) (0.025)

x 2003 quarter 3 0.064 0.025 0.002 0.007 0.033
(0.037) (0.019) (0.012) (0.009) (0.024)

x 2003 quarter 4 0.082 0.037 0.003 0.010 0.037
(0.036) (0.020) (0.009) (0.008) (0.028)

Peer group fixed effects Yes Yes Yes Yes Yes

Year x period fixed effects Yes Yes Yes Yes Yes

Sample size 17,239,224 17,239,224 17,239,224 17,239,224 17,239,224

R-squared 0.121 0.111 0.129 0.214 0.113

Note: standard error appear in parentheses and are clustered by the patient's modal township. The
dependent variable is measured at time t, while all regressors are calculated from time t to t-2. Critical
visits include visits related to pregnancy, abortion, injury, appendicitis, stroke, heart attack, and internal
bleeding. Chronic visits include visits related to dialysis, chemotherapy, diabetes, and liver or kidney
failure.
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Table 6: Regressions that Utilize the Level of Visits as a Control

Dependent variable:

Individual visits

Specification: Group j Group jand Interaction of
other groups  group j and
other groups
() 2 @)
SARS x N x change in peer visits 0.076 0.069 0.059
(0.026) (0.026) (0.025)
SARS x N x change in peer visits (other groups) -- 0.096 0.077
(0.038) (0.041)
SARS x N x change in peer visits (group j x other groups) -- -- -0.666
(0.402)
SARS x N x peer visits -0.077 -0.081 -0.159
(0.023) (0.024) (0.049)
SARS x N x peer visits (other groups) -- 0.010 -0.104
(0.035) (0.048)
SARS x N x peer visits (group j x other groups) -- -- 0.590
(0.315)
Fixed effects:
Peer group Yes Yes Yes
Peer group x SARS No No No
Year x period Yes Yes Yes
Sample size 17,239,224 17,239,224 17,239,224
R-squared 0.123 0.121 0.121

Note: standard error appear in parentheses and are clustered by the patient's modal township. The

dependent variable is measured at time t, while all regressors are calculated from time t to t-2.
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