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1 Introduction

A number of papers have considered how habit preferences impact the moments of the aggregate

equity price-dividend ratio, the aggregate equity return, and the riskfree rate. Early papers by

Constantinides (1990), and Sundaresan (1989) show how preferences with internal habit can gen-

erate a higher equity premium for a given curvature parameter, γ, while Abel (1990) obtains a

similar result using external habit. One issue with habit preferences is its impact on the volatility

of the riskfree rate: many specifications generate too much relative to what we see in U.S. data.

Campbell and Cochrane (1999), hereafter CC, consider an economy with i.i.d. consumption and a

representative agent with external habit preferences, and model the habit process in such a way as

to produce a constant riskfree rate. They specify a process for the log consumption surplus, which

is defined to be the log of consumption in excess of habit scaled by consumption. The conditional

volatility of the log surplus is specified to vary inversely with the log surplus in such a way that

the effect of variation in the log surplus on the riskfree rate due to the intertemporal substitution

motive is exactly offset by its effect on the riskfree rate due to the precautionary saving motive.

The implication is that the shock to the price of risk is close to perfectly negatively correlated with

the shock to consumption growth in their specification. CC allow the log surplus to be a highly

persistent process so that in their economy the price-dividend ratio is also highly persistent and

long-horizon stock returns are forecastable using the price-dividend ratio. Both are features of U.S.

data.

Recently Lettau and Wachter (2007), hereafter LW, consider how the correlation between the shock

to the price of risk and the shock to log consumption growth affects the expected return differential

between value and growth stocks when the state variable driving the price of risk is highly persistent

and the mean of consumption growth is a slowly mean-reverting process as in Bansal and Yaron

(2004). They find that large negative correlation between the shock to the price-of-risk state

variable and the shock to consumption growth generates a growth premium for expected excess

returns, in contrast to the value premium found in U.S. data. To produce a value premium, they

set this correlation to zero. This finding raises the question whether habit preferences can generate

a value premium as in U.S. data.

When the log surplus is as persistent as in CC and LW, the two most recent years of consumption

contribute a much smaller fraction to the agent’s habit level (less than 26%) than all past consump-

tion from more than two years ago, which seems counterintuitive and appears to be inconsistent
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with the micro evidence. The last two years of consumption would be expected to make a much

larger contribution to the agent’s habit level than the sum of the contributions to the habit level

by consumption from more than two years ago. Moreover, the 4 most recent years of consumption

still contribute less to the agent’s habit level than all past consumption from more than 4 years

ago.

Motivated by this intuition, our paper examines how a less persistent state variable for the price

of risk, which would be implied by a less persistent log surplus ratio, affects the moments of the

aggregate equity price-dividend ratio and return, and the expected return differential and CAPM-

alpha differential between value and growth stocks. Roughly matching the data Sharpe ratio and

expected price-dividend ratio for aggregate equity, we find that when the persistence of the price-

of-risk state variable is low, a large negative correlation between the shock to the price-of-risk state

variable and the shock to log consumption growth can generate a value premium for expected

excess returns and for CAPM alpha, consistent with U.S. data, and in contrast to LW’s findings

when the persistence of the price-of-risk state variable is high. We also find that, so long as the

conditional mean of consumption growth is allowed to be slowly mean-reverting as parameterized

by LW and Bansal and Yaron based on U.S. data, the price-dividend ratio exhibits first order

autocorrelation comparable to that in U.S. data even when the persistence of the price-of-risk

state variable is low. This is because the expression for the price-dividend ratio for zero-coupon

aggregate equity (which pays the aggregate market dividend at a given point in the future) suggests

that the autocorrelation of the aggregate market’s price-dividend ratio is approximately a weighted

average of the autocorrelations of the conditional mean of log consumption growth and price-of-risk

processes, and the mean of log consumption growth is still slowly mean-reverting.

Our baseline specification follows LW and assumes that the aggregate consumption process and the

aggregate dividend process are the same by calibrating both to the aggregate dividend process for

U.S. stocks. It is unable to generate the aggregate equity return volatility found in the data. In

addition to this specification, we also consider two specifications that allow the consumption process

to differ from the dividend process, by calibrating the consumption process to data and leaving the

dividend process the same. The first of these specifications continues to allow the aggregate equity

return volatility to be much lower than that in the data, and generates an even larger value premium

in both expected excess returns and CAPM alpha relative to the baseline specification that sets

aggregate consumption and dividend equal. The second of these specifications moves aggregate

equity return volatility much closer to the data, but still is able to generate a value premium in

expected excess return that is considerably larger than that in the baseline specification, and a

3



value premium in CAPM alpha that is similar in magnitude to that in the baseline specification.

Unfortunately, these three specifications, with their implicit assumption that log consumption

growth is homoscedastic, are unable to replicate the strong predictability of long-horizon equity

returns found in the data when the price-dividend ratio is used as the predictor. However, when the

consumption and dividend processes are specified to be different, we are able to obtain long-horizon

return predictability of a magnitude much closer to that in the data, and without drastically reduc-

ing the value premia, by allowing the conditional volatility of consumption growth to also be slowly

mean reverting. This specification with slowly mean reverting consumption volatility delivers value

premia in both expected excess return and CAPM alpha that are larger than for any of the other

three specifications: in fact, we are able to generate a value premium in expected excess return that

is very close to the one found in the data using a book-to-market sort. This specification also comes

very close to matching the volatility of aggregate equity return found in the data. Allowing the

conditional volatility of consumption growth to be an autoregressive process is in the spirit of the

second model in Bansal and Yaron (2004), which allows the conditional variance of consumption

growth to be an autoregressive process. Long run risk in consumption volatility also helps match

the data along several other dimensions: for example, while all our specifications counterfactually

deliver negative market return autocorrelation, the specification with long run risk in consumption

volatility, by producing the least negative autocorrelation, comes closest to matching the positive

autocorrelation in the data.

Thus, our results suggest that an external habit model in the spirit of CC can deliver an empirically

sensible value premium once the persistence of the surplus consumption ratio is calibrated to the

micro evidence rather than set to a value close to one. Simultaneously allowing the conditional

mean consumption growth to be slowly mean reverting delivers a log price-dividend ratio that

exhibits empirically sensible persistence, without eroding the value premium. Also allowing the

conditional volatility of consumption growth to be slowly mean reverting gives rise to empirically

sensible predictability of long-horizon returns using the price-dividend ratio, again without eroding

the value premium.

The micro evidence in support of slow-moving habit is quite weak. Brunnermeier and Nagel (2006)

test an implication of slow-moving habit that risky asset holdings as a fraction of financial wealth

increase in response to wealth increases, but find very little evidence in support of this hypothesis.

In contrast, when habit moves rapidly in response to recent consumption, the hypothesized increase

in risky asset holdings is much reduced, so this evidence does not contradict the presence of a habit
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that moves rapidly in response to recent consumption. The idea behind the hypothesis is the

following. When habit is slow-moving, it is like a subsistence level. When utility is CRRA with a

subsistence level, the agent puts the present value of future subsistence levels into the riskless asset

and the rest into the CRRA-optimal portfolio. When wealth increases, the entire increase is placed

in the CRRA-optimal portfolio, causing the agent’s risky asset holding as a fraction of financial

wealth to increase. If habit is fast-moving, it will increase as consumption adjusts to the wealth

increase. Consequently, the agent will only put a fraction of the wealth increase in the CRRA-

optimal portfolio because the agent will be compelled to put a fraction of the wealth increase in the

riskless asset to cover the habit increase. Hence, the increase in the agent’s risky asset holding as

a fraction of wealth in response to a wealth increase is much smaller when the habit is fast-moving

rather than slow-moving in response to recent consumption.

With access to a unique credit-card panel data set, Ravina (2007) uses quarterly credit card pur-

chases as a measure of quarterly consumption and then estimates a habit model in which a house-

hold’s internal habit depends on its own consumption last quarter, and external habit depends on

current and last quarter’s consumption in the city where the household lived. Testing a version of

the habit model in which internal and external habit are subtracted directly from consumption in

the utility function, Ravina finds that the coefficient of lagged own consumption in internal habit

is 0.5 and the coefficient on current household city consumption in external habit is 0.29. Both

these numbers are way too high to be consistent with the slow-moving habit assumed by CC, since

slow-moving habit means that last period’s consumption has very little effect on this period’s habit.

Dynan (2000) uses a similar methodology to Ravina but a different data set, namely annual PSID

data, and finds coefficients on lagged own consumption that are insignificantly different from zero.

However, Ravina’s data set allows her to use household-specific financial information as controls

in the estimation. Once Ravina omits these controls from the estimation, the coefficient on lagged

own consumption drops to 0.10, a value similar to that obtained by Dynan.

Our paper is closely related to a recent paper by Santos and Veronesi (2008) which, like LW, finds

that when firm cash flows are fractions of aggregate consumption flows, with value firms receiving

larger fractions of these flows in the near future and growth firms receiving larger fractions in the

distant future, habit preferences deliver a growth premium rather than a value premium. Santos

and Veronesi introduce cash flow heterogeneity across firms to obtain a value premium, but find

that the heterogenity needed is too high relative to that found in the data. Also related is a

paper by Bekaert and Engstrom (2009) that considers an economy whose representative agent has

persistent external habit preferences. Their innovation is that log consumption growth is comprised
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of positively-skewed ”good environment” shocks and negatively-skewed ”bad environment” shocks,

which allows them to match higher moments of the time series of asset returns. The paper focuses

on the time-series, rather than the cross-section, of expected returns. Kroce, Lettau and Ludvigson

(2010) examine how incorporating limited information in a long-run risk model can result in short-

duration assets having higher expected returns than long-maturity assets, as in the data. Using

the long-run risk model of Bansal and Yaron for aggregate consumption growth together with

Epstein-Zin preferences, Kiku (2006) documents how value stocks have relatively higher exposures

to long-run consumption shocks while growth firm are more exposed to short-lived consumption

fluctuations, and then shows how these different exposures lead to a value premium in expected

return, CAPM alpha, and consumption-CAPM alpha. Finally, Hansen, Heaton, and Li (2008)

report that the cash flows of value stocks but not growth stocks exhibit positive comovement with

macroeconomic risks in the long run, and then examine how equilibrium pricing depend on investor

preferences and the cash flow horizon.

Section 2 describes the model while section 3 presents the calibration details. Results are in section

4, and section 5 concludes.

2 The Model

We consider two versions of a model that is in the spirit of LW.

2.1 Model with One Price of Risk Variable

The model has 4 shocks: a shock to dividend growth, a shock to expected dividend growth, a shock

to the price of risk variable, and a shock to consumption growth. These shocks are assumed to be

multivariate normal, and independent over time. Let Dm
t denote aggregate dividends at time t,

and define dmt ≡ log (Dm
t ). It evolves as follows:

∆dmt+1 = gm + zmt + εmt+1 (1)

with a time-varying conditional mean, gm + zmt , where zmt follows an AR(1) process:

zmt+1 = φzz
m
t + εzt+1 (2)
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with 0 ≤ φz < 1. Let Dt denote aggregate consumption at time t, and define dt ≡ log (Dt). Log

aggregate consumption growth evolves as follows:

∆dt+1 = g + zt + εdt+1 (3)

where g ≡ gm

δm and zt ≡ zmt
δm . The shock to dividend growth is composed of a levered version of the

shock to consumption growth plus an additional shock: εmt+1 ≡ δmεdt+1 + εut+1. This specification

allows separation between the aggregate dividend and aggregate consumption, with log dividend

growth a levered version of log consumption growth as in Abel (1999). In the base case, we set log

consumption growth equal to log market dividend growth by setting δm = 1 and εu = 0. Define

σ2
i ≡ σ2[εi] for i = d, z, x, u, and σi,j ≡ σ[εi, εj ] and ρi,j ≡ ρ[εi, εj ] for i, j = d, z, x, u.

The stochastic discount factor is driven by a single state variable xt which also follows an AR(1)

process:

xt+1 = (1− φx)x̄+ φxxt + εxt+1 (4)

with 0 ≤ φx < 1. We specify that only the shock to consumption growth is priced, and that the

stochastic discount factor takes the form:

Mt+1 = exp

{
a+ bzt − 1

2
x2t −

xt
σd

εdt+1

}
. (5)

Since the conditional log-normality of Mt+1 implies that Et[Mt+1] = exp {a+ bzt}, the log of the

riskfree rate from time t to t+ 1 is given by:

rft ≡ −a− bzt (6)

If b 6= 0, the riskless rate is time varying. Since the most relevant papers to ours, LW and CC, both

assume that the riskfree rate is constant, we assume this too, i.e. that b = 0, so we can directly

compare our results to theirs.

We consider four cases using this version of model. We examine a case, the LW case, that essentially

replicates LW by having the shocks to x and d be uncorrelated (ρx,d = 0), the x process highly

persistent (φx close to 1), and a consumption process that matches the dividend process which has

been calibrated to data. Our base case also sets the consumption process equal to the calibrated

dividend process, but allows the x process to be less persistent, as suggested by recent evidence

about the persistence of habit, and ρx,d = −0.99, as implied by the habit specification used in

CC. We also examine two wedge cases that resemble our base case except that the consumption

process is calibrated to data rather than matched to the dividend process. Further details of the

calibrations follow in section 3.
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2.1.1 Price-Dividend Ratio and Expected Returns for Zero-coupon Equity

Let Pm
n,t be the time-t price of a claim to zero-coupon market equity, paying off in n periods.

Following LW, it can be shown that Pm
n,t takes the following recursive form:

Pm
n,t

Dm
t

= F (xt, z
m
t , n) = exp{A(n) +Bx(n)xt +Bz(n)z

m
t } (7)

Using the boundary condition Pm
0,t = Dm

t we see A(0) = Bz(0) = Bx(0) = 0, and proceeding by

induction on n, we can show the following recursive relationships hold:

A(n) = A(n− 1) + a+ gm +Bx(n− 1)x̄(1− φx) +
1

2
(Cm

n−1)
′Σε,εC

m
n−1

Bx(n) = φxBx(n− 1)− 1

σd
Σd,εC

m
n−1 (8)

Bz(n) =
(1 + b/δm)(1− φn

z )

1− φz
(9)

where Cm
n ≡ [δm 1 Bx(n) Bz(n)]

′, ε ≡ [εd εu εx εz]′, Σd,ε ≡ E[εdε′], and Σε,ε ≡ E[εε′].

Let Rm
n,t+1 be the return from time t to t+1 of a claim to zero-coupon market equity paying off at

time t+ n, and define rmn,t+1 ≡ log(Rm
n,t+1). It can be shown that (see LW):

rmn,t+1 = Et[r
m
n,t+1] + (Cm

n−1)
′εt+1 (10)

σ2
t [r

m
n,t+1] = (Cm

n−1)
′Σε,εC

m
n−1. (11)

We can show that the risk premium on a zero-coupon claim depends on Bz, Bx, x, the variance of

the consumption shock and its covariances with the other shocks:

log

(
Et

[
Rm

n,t+1

Rf
t

])
= Et[r

m
n,t+1 − rft ] +

1

2
σ2
t [r

m
n,t+1]

=
(
δmσ2

d + σd,u +Bx(n− 1)σx,d +Bz(n− 1)σz,d
) 1

σd
xt (12)

2.1.2 Implications for the value/growth premium

Since Bz(n) is positive for all n, it follows that the the conditional risk premium for n-period zero-

coupon market equity increases monotonically with the covariance between shocks to z and d for

all n. Moreover, Bz(n) is increasing in n. So taking the covariance between shocks to z and d to be

negative, the conditional risk premium evaluated at the unconditional mean of xt is declining in n

whenever the covariance between shocks to x and d is assumed to be zero. As reported in LW, this
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generates a value premium in expected excess returns because value stocks have shorter cash flow

durations than growth stocks. Since Bz(n) is positive for any n, a positive shock to zt+1 causes a

positive shock to Pm
n,t+1/D

m
t+1 which causes a positive shock to Rm

n,t+1. When ρd,z is taken to be

negative, this positive shock to Rm
n,t+1 is typically associated with a negative shock to dt+1 which

makes the zero-coupon market equity a hedge against shocks to aggregate consumption and causes

its conditional premium to be lower than when ρd,z is taken to be zero.

Turning to the covariance between shocks to x and d, its effect on the conditional risk premia for

n-period zero-coupon market equity depends on the sign of Bx(n). If Bx(n) is negative, which is

usually the case, then it follows that the conditional risk premium for n-period zero-coupon market

equity decreases monotonically with the covariance between shocks to x and d for all n. If the

correlation between shocks to x and d is close to -1, as the CC external habit model implies, the

conditional risk premium for n-period zero-coupon market equity increases in the absolute value

of Bx(n) for all n. Moreover, the relation between the conditional risk premia for the n-period

zero-coupon market equity and its maturity n depends on how Bx(n)σx,d, which is positive, and

Bz(n)σz,d, which is negative, vary with n. We have already seen that Bz(n)σz,d is decreasing in

maturity. Whether there is still a value premium when the correlation between shocks to x and d

is close to -1 depends on how Bx(n)σx,d varies with n. When the persistence of x is high, a shock

to x today impacts the value of x for many periods in the future. Consequently, the absolute value

of Bx(n) increases monotonically for many periods into the future, which causes a growth premium

rather than a value premium. However, when the persistence of x is low, a shock to x today only

affects the value of x for a few periods into the future. Consequently, the absolute value value of

Bx(n) increases monotonically for a few periods into the future before starting to decline. If the

persistence of x is sufficiently low, this turning point can be sufficiently early that there is still a

value premium in expected excess return. This intuition explains why the almost perfect negative

correlation between shocks to x and d in our base and wedge cases is still able to generate a value

premium when the persistence of x is assumed to be low.

2.2 Model with heteroscedasctic log consumption growth

The base and wedge cases fail to match the price-dividend ratio’s ability to predict the returns of

long-horizon equity we see in the data. To match this feature, we consider a second model for which

the conditional volatility of log consumption growth, σt, is a highly persistent AR(1) process, i.e.
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log consumption growth evolves as:

∆dt+1 = g + zt + σtε
d
t+1 (13)

where

σt+1 = σ̄ + φσ(σt − σ̄) + εwt+1 (14)

and εwt+1 ∼ N(0, σ2
w), uncorrelated with the other shocks. This specification is closely related to

Bansal and Yaron (2004), who specify that the variance, not the volatility, is an AR(1). The

stochastic discount factor of our base and wedge cases becomes:

Mt+1 = exp

{
a+ bzt − 1

2
(xtσt)

2 − xtσt
εdt+1

σd

}
(15)

Using a first order Taylor approximation, we can approximate the price of risk as follows:

xtσt ≈ x̄σ̄ + x̄(σt − σ̄) + σ̄(xt − x̄) (16)

= x̄(σt − σ̄) + σ̄xt, (17)

which gives us the following stochastic discount factor

Mt+1 = exp

{
a+ bmzmt − 1

2
(x̄(σt − σ̄) + σ̄xt)

2 − (x̄(σt − σ̄) + σ̄xt)
εdt+1

σd

}
(18)

We consider one case using this version of model, a long run risk in volatility case (the LRR-vol

case), that resembles the two wedge cases described above, except that log consumption growth’s

conditional volatility, as well as its conditional mean, is allowed to be mean reverting. As mentioned

above, the aggregate consumption process considered in the LRR-vol case is in the spirit of Bansal

and Yaron (2004), except that in the LRR-vol case, aggregate consumption growth’s conditional

volatility is an AR(1) process, while in Bansal and Yaron, its conditional variance is an AR(1)

process.1 Further details of the calibration of this case are provided in section 3.

2.2.1 Price-Dividend Ratio and Expected Returns for Zero-coupon Equity

It can be shown that Pm
n,t takes the following recursive form for this model:

Pm
n,t

Dm
t

= F (xt, σt, z
m
t , n) = exp{A(n) +Bx(n)xt +Bσ(n)(σt − σ̄) +Bz(n)z

m
t } (19)

1We also ran a case where σ2
t is an AR(1), using a first order Taylor expansion for xt

√
σ2
t in the stochastic discount

factor, and the results were qualitatively the same.
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Using the boundary condition Pm
0,t = Dm

t we see A(0) = Bz(0) = Bx(0) = Bσ(0) = 0, and

proceeding by induction on n, we can show the following recursive relationships hold:

A(n) = A(n− 1) + a+ gm +Bx(n− 1)x̄(1− φx) +
1

2
(Cm

n−1)
′Σε,εC

m
n−1

Bx(n) = φxBx(n− 1)− σ̄

σd
Σd,εC

m
n−1 (20)

Bσ(n) = φσBσ(n− 1)− x̄

σd
Σd,εC

m
n−1 (21)

Bz(n) =
(1 + b/δm)(1− φn

z )

1− φz
(22)

where Cm
n ≡ [δm 1 Bx(n) Bσ(n) Bz(n)]

′, ε ≡ [εd εu εx εw εz]′, Σd,ε ≡ E[εdε′], and Σε,ε ≡ E[εε′].

It can be shown that rmn,t+1 can be written as follows in this model:

rmn,t+1 = Et[r
m
n,t+1] + (Cm

n−1)
′εt+1 (23)

σ2
t [r

m
n,t+1] = (Cm

n−1)
′Σε,εC

m
n−1. (24)

We can show that the risk premium on a zero-coupon claim now depends on Bx, Bσ, Bz, xt, σt,

the variance of the consumption shock and its covariances with the other shocks:

log

(
Et

[
Rm

n,t+1

Rf
t

])

= Et[r
m
n,t+1 − rft ] +

1

2
σ2
t [r

m
n,t+1] (25)

=
(
δmσ2

d + σd,u +Bx(n− 1)σx,d +Bσ(n− 1)σw,d +Bz(n− 1)σz,d
)( σ̄

σd
xt +

x̄

σd
(σt − σ̄)

)

In the LRR-vol case, εw is uncorrelated with all other shocks. So we can see that for this case,

the first expression in parentheses on the right hand side of equation (25) has the same terms

as the first expression in parentheses on the right hand side of equation (12). Now x̄ is always

positive, and σ̄ is positive in the LRR-vol case. So holding σ2
d, σx,d and σz,d fixed, the shape of

E[Et[r
m
n,t+1−rft ]+

1
2σ

2
t [r

m
n,t+1]] as a function of n in the first model and in the LRR-vol case depends

on the shapes of Bx(n − 1) and Bz(n − 1) as functions of n. So if the shapes of Bx(n − 1) and

Bz(n − 1) as functions of n remain similar once σt is allowed to be slowly mean-reverting rather

than constant, then allowing σt to be slowly mean reverting rather than constant won’t affect the

ability of the CC model with low persistence of the surplus consumption ratio to deliver a value

premium in expected excess return.
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2.3 Aggregate Equity Price Dividend Ratios and Returns

Aggregate equity is the claim to all future aggregate dividends. By the law of one price, a claim

to aggregate equity is equal in price to the sum of the prices of zero-coupon market equity over all

future horizons. We specify that dividends are paid at a quarterly frequency, so we can calculate

the annual price-dividend ratio as follows:

Pm
t∑3

τ=0D
m
t−τ

=
∞∑

n=1

Pm
n,t∑3

τ=0D
m
t−τ

. (26)

Market returns can be calculated as a function of the market price-dividend ratio and dividend

growth:

Rm
t+1 =

Pm
t+1 +Dm

t+1

Pm
t

(27)

=

(
Pm
t+1/D

m
t+1 + 1

Pm
t /Dm

t

)(
Dm

t+1

Dm
t

)
. (28)

We simulate at a quarterly frequency, and we calculate annual returns by compounding quarterly

returns. This approach is equivalent to reinvesting dividends at the end of each quarter and can

be contrasted with the calculation of annual returns using annual price-dividend ratios, which is

equivalent to assuming that dividends earn a zero net return within a year.2

2.4 Relation to other models

These two specifications are related to a number of other models.

2.4.1 LW

LW don’t distinguish between consumption and dividends and specify a stochastic discount factor

of the form:

Mt+1 = exp

{
−rf − 1

2
x2t −

xt
σd

εdt+1

}

where rf is the log of the riskfree rate, and is constant over time. Notice that our first model nests

LW by setting a = −rf , b = 0, δm = 1, and σu = 0.

2We reproduced all our tables using the return calculation that sums dividends within a year and the results that
we obtained were very similar to the ones we report in the paper.
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2.4.2 CC with i.i.d. Consumption Growth

CC assume that a representative agent maximizes the utility function:

E

∞∑

t=0

δt
(Dt −Ht)

1−γ − 1

1− γ
(29)

where Ht is the level of external habit at time t and δ is the subjective discount factor. Defining

st ≡ log
(
Dt−Ht

Dt

)
, the log of the surplus-consumption ratio at time t, they specify the following

dynamics:

∆dt+1 = g + εdt+1

st+1 = (1− φs)s̄+ φsst + λ(st)ε
d
t+1

where εd ∼ N(0, σ2
d) and λ(.) is a sensitivity function. They specify the sensitivity function to be:

λ(st) =

{
1
S̄

√
1− 2(st − s̄)− 1 st ≤ smax

0 st ≥ smax

where S̄ ≡ σd
√

γ
1−φs

, s̄ ≡ log(S̄), and smax = s̄+ 1
2(1− (S̄)2). These dynamics imply a stochastic

discount factor equal to:

Mt+1 = exp{−γg + log(δ) + γ(1− φs)(st − s̄)− γ(1 + λ(st))ε
d
t+1}

Our first model approximates CC by setting a = log(δ) − γg + γ(1−φs)
2 , δm = 1, σu = 0, σz = 0,

and xt = γσd(1 + λ(st)). The model approximates the heteroskedastic process for γσd(1 + λ(st))

in CC by specifying xt as a homoskedastic AR(1) process. As long as the sensitivity function is

rarely zero, it follows that our first model can approximate CC when ρd,x ≈ −1 and φx ≈ φs.

2.4.3 CC with Persistent Conditional Mean Consumption Growth

CC with persistent conditional mean consumption growth can be approximated by the first model

when σz 6= 0 . Suppose the representative agent again maximizes the habit specification in equation

(29), but the conditional mean of aggregate consumption growth is slowly mean-reverting, following

equations (2) and (3). We extend the dynamics for the log consumption surplus in CC to the case in

which there is long run risk in mean consumption growth by assuming that CC’s sensitivity function

loads on the innovation to log consumption growth above its conditional mean, ∆dt+1 − g − zt,

13



which is equal to εdt+1. We also assume that the log consumption surplus depends linearly on zt

with coefficient λ(s̄). Putting these two together, the consumption surplus evolves as follows:

st+1 = (1− φs)s̄+ φsst + λ(s̄)zt + λ(st)ε
d
t+1 (30)

where λ(.) is the same sensitivity function as used by CC and described in the previous subsection.

Using the same sensitivity function as in CC, and setting zt’s loading to be the sensitivity function

evaluated at the steady state surplus consumption value, allows the riskfree rate to depend only on

zt. The specification in (30) also implies the following desirable properties for the habit process:

at the consumption surplus’s steady state, log habit is predetermined only by an exponentially-

weighted sum of past lagged log consumption (see section 2.5 below); and, habit next period moves

positively with consumption next period irrespective of the consumption surplus this period. Note

that CC’s specification for surplus consumption implies that their habit process satisfied these same

two properties, given their assumptions about the consumption growth process.

This specification implies the following stochastic discount factor:

Mt+1 = exp{−γg + log(δ)− γ(1 + λ(s̄))zt + γ(1− φs)(st − s̄)− γ(1 + λ(st))ε
d
t+1}

Matching coefficients in the stochastic discount factor we see that the riskfree rate is affine in zt.

So we can approximate CC with persistent mean consumption growth using our first model by

setting a = log(δ)− γg+ γ(1−φs)
2 , b = −γ(1 + λ(s̄)), δm = 1, σu = 0 and xt = γσd(1 + λ(st)). As in

the previous subsection, our first model uses xt, a homoskedastic AR(1) process, to approximate

γσd(1+λ(st)), a heteroskedastic AR(1) process, and so, as long as the sensitivity function is rarely

zero, ρd,x ≈ −1 and φx ≈ φs.

2.4.4 CC with Persistent Conditional Mean and Volatility of Consumption Growth

CC with persistent conditional mean and volatility of consumption growth can be approximated by

our second model when σz and σw are both strictly positive. Suppose the representative agent again

maximizes the habit specification in equation (29) but both the conditional mean and volatility of

aggregate consumption growth are slowly mean-reverting, following equations (2), (13) and (14).

We extend the dynamics for the log consumption surplus in CC to the case in which there is long run

risk in the mean and volatility of consumption growth, by assuming that CC’s sensitivity function

loads on the innovation to log consumption growth above its conditional mean, ∆dt+1 − g − zt,
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which becomes equal to σtε
d
t+1. As in the previous subsection, we assume that the log consumption

surplus depends linearly on zt with coefficient λ(s̄). Specifically we assume the consumption surplus

evolves as follows:

st+1 = (1− φs)s̄+ φsst + λ(s̄)zt + λ(st)σtε
d
t+1 (31)

where λ(.) is the same sensitivity function as used by CC which is described in subsection 2.4.2.

Using the same sensitivity function as in CC, and setting zt’s loading to be the sensitivity function

evaluated at the steady state surplus consumption value, allows the riskfree rate to depend only on

zt and σ2
t . The specification in (31) also delivers the same two desirable properties for the habit

process that we obtained in the previous subsection.

This specification implies the following stochastic discount factor:

Mt+1 = exp{−γg + log(δ)− γ(1 + λ(s̄))zt + γ(1− φs)(st − s̄)− γ(1 + λ(st))σtε
d
t+1}

Matching coefficients in the stochastic discount factor we see that the riskfree rate is affine in zt

and σ2
t . So our second model can be used to approximate CC with persistent conditional mean

and volatility of consumption growth by first using the same approximation in (16) applied to

γ(1 + λ(st)) and σt, and then setting a = log(δ)− γg + γ(1−φs)
2 , b = −γ(1 + λ(s̄)), δm = 1, σu = 0

and xt = γσd(1 + λ(st)) and σt equal to itself. As in the previous subsections, our second model

approximates γσd(1 + λ(st)), a heteroskedastic AR(1) process, with xt, an homoskedastic AR(1)

process. So again, as long as the sensitivity function is rarely zero, ρd,x ≈ −1 and φx ≈ φs.

2.4.5 Power Utility with Persistent Mean Consumption Growth

When σx = 0, we see xt ≡ x̄, and the model reduces to a representative agent with power utility:

E
∞∑

t=0

δt
(Dt)

1−γ

1− γ

Again, the conditional mean of aggregate consumption growth is slowly mean-reverting, following

equations (2) and (3). This specification implies the following stochastic discount factor.

Mt+1 = exp{−γg + log(δ)− γzt − γεdt+1}
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2.5 Relation between External Habit and Past Consumption

Following an earlier version of CC, we can show that log habit is approximately a moving average

of lagged log consumption, for the specification of log consumption growth and the log surplus con-

sumption ratio in subsection 2.4.4, which allows the conditional mean and volatility of consumption

growth to be slowly mean reverting as in Bansal and Yaron (2004). Define ht ≡ log(Ht), and apply

a log-linear approximation to the definition of st:

st = log
(
1− eht−dt

)

≈ log
(
1− eh−d

)
+

[
(ht − dt)−

(
h− d

)]
(

−eh−d

1− eh−d

)

Substituting this in to the law of motion for s described in (31), and utilizing the imposed restriction

that ht+1 is predetermined at the steady state, we can show that:

ht+1 ≈ h− d+ (1− φs)
∞∑

j=0

(φs)
j dt−j +

g

1− φs
(32)

This is precisely the same expression derived in an earlier version of CC, in which consumption

growth is assumed i.i.d.. Almost by definition, habit should only depend on lagged consumption so

this is an attractive property of the specification for st given in equation (31) when consumption

growth has a persistent conditional mean and volatility as in Bansal and Yaron. We can also derive

an expression for the innovation to habit, which is a function of how far consumption is above

habit:

ht+1 − ht ≈ g + (1− φs)
[
(dt − ht)− d− h

]
(33)

The lower the persistence of the surplus-consumption ratio, the more impact the most recent

consumption has on habit. Notice that these expressions also hold for the specification of log

consumption growth and the log surplus consumption ratio in subsection 2.4.3, which only allow

the conditional mean of consumption growth to be slowly mean reverting. This follows because the

specification in subsection 2.4.4 nests the one in 2.4.3.

These expressions highlight a point made in the introduction, namely that when habit is slow-

moving with φs close to 1, recent consumption contributes very little to current habit. The co-

efficient on log lagged consumption, dt, in the expression for log habit, ht+1, in equation (32) is

(1− φs). So when φs is close to 1, as in CC, this coefficient is close to 0. This expression for habit

shows clearly how the large coefficient on lagged own consumption obtained by Ravina is consistent

with habit being fast-moving in response to recent consumption.
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2.6 Specifying the Share Process

We follow LW and specify that the market is made up of 200 firms that generate dividends which

aggregate to the market dividend. The share of the aggregate dividend produced by each firm is set

deterministically. Let s be the minimum share of any firm. Without loss of generality suppose firm

1 produces this share initially. LW choose a growth rate of 5% per quarter for the share process

so that the cross-sectional distribution of dividend growth rates in the model matches that in the

sample. Following LW subject to rounding, we choose a growth rate of 5.5% per quarter for the

share process. With this growth rate choice, firm 1’s share increases by 5.5% a quarter for 100

quarters to a maximum share of 1.055100s, then declines at the same rate for 100 quarters such

that its share after 200 quarters exactly equals its initial share. Firm 2 starts at the second point

in the cycle, and so on, so that each firm is at a different point in the cycle at any time. Here s

is set so that the shares of the 200 firms add up to 1 at all times. So firm i, with share si of the

aggregate dividend, pays a dividend sitDt at time t.

The law of one price determines that firm i’s ex-dividend price equals:

P i
t =

∞∑

n=1

sit+nP
m
n,t (34)

Quarterly returns for individual firms can be calculated similarly to the market, as a function of the

firm’s quarterly price-dividend ratio and quarterly dividend growth. Annual returns are calculated

as described above, by compounding the quarterly returns.

2.7 Forming the Value/Growth Deciles

Recall that we specify a period in the model to be a quarter as in LW. At the start of each year,

we sort firms into deciles from value to growth based on their annual price-dividend ratios, which

are given by P i
t /

∑3
τ=0D

i
t−τ for firm i. We calculate moments for the decile excess annual returns

and annual CAPM alpha by simulating the model at a quarterly frequency and then compounding

the quarterly firm returns to obtain annual firm returns, as described above.
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3 Calibration

As a comparison point, we first implement the calibration in LW using their parameter values.3

Both the LW case and our base case assume the aggregate consumption process is the same as the

aggregate dividend process. We also consider two wedge cases and a LRR-vol case in which the ag-

gregate consumption process is allowed to differ from the aggregate dividend process. Consumption

growth is homoscedastic in the two wedge cases, and heteroscedastic in the LRR-vol case. Table 1

reports the parameters used by these cases, which all use exactly the same calibration for the zm

process, ∆dm process and rf as used by LW.

Our base, two wedge and LRR-vol cases depart from LW in the calibration of the parameters of the

price-of-risk state variable, the x process. The external habit model of CC implies a value close to

-1 for ρ[εd, εx] but LW show that at their chosen parameter values, a large negative value for this

correlation generates a growth rather than value premium in expected return. For this reason, they

set this correlation equal to 0 and are able to generate a value premium for both expected return

and CAPM alpha. However, one of the main goals of our paper is to show that a value premium

is possible for both expected return and CAPM alpha when this correlation is close to -1 so long

as the price-of-risk state variable is not too persistent. For this reason, we set this correlation to

-0.99 in the base, two wedge and LRR-vol cases.4

While the model is quarterly, the log riskfree rate rf is converted into an annual number in Table

1 by multiplying by a factor of 4. We express the persistence parameters φx and φz at annual

frequencies by raising each of them to the power of 4.

3.1 Calibration of the base case: the x process

To ensure the covariance matrix of (εd, εz, εx) is positive definite, we specify σ[εx, εz] so that εx

and εz are correlated only through their correlations with εd. That is, σ[εx, εz] is calculated as

follows: 1) Regress εd on εz, yielding εd = βd,zε
z + ud where ρ[εz, ud] = 0; and, 2) Regress εx on

3The values reported in LW are likely subject to rounding which explains why our parameter values are slightly
different from those reported in LW.

4Choosing -0.99 instead of 1 seems unimportant since the base case results are unaffected by setting this correlation
to -0.995 or -0.999.
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εd, yielding εx = βx,dε
d + ux where ρ[εd, ux] = 0. The following expression can be derived:

σ[εx, εz] = σ
[
βx,dβd,zε

z + βx,du
d + ux, εz

]

=

(
ρ[εd, εx]ρ[εd, εz] +

[
1− ρ[εd, εx]2

] 1
2
ρ[ux, εz]

)
σzσx (35)

When ρ[εd, εx] = −0.99, the chosen value for ρ[ux, εz] does not much affect ρ[εx, εz] or σ[εx, εz],

so we use (35) with ρ[ux, εz] = 0 to calculate σ[εx, εz]. Notice this specification has the attractive

property that when σ[εd, εz] is set equal to 0, σ[εx, εz] is set equal to 0 as well. Since ρ[εd, εz] is

set equal to -0.82, the assumed value for ρ[εx, εz] is 0.81. Note that this correlation measures the

correlation of the shock to future expected returns with the shock to future expected consumption

growth (which is also the shock to future expected dividend growth in the base case).

The next parameter of the x process to be calibrated is the persistence parameter. LW calibrate

the autocorrelation of x to equal the data autocorrelation of the log price-dividend ratio for the

aggregate market (0.87 annually), arguing that since the variance of expected dividend growth

(gm + zmt ) is small, the autocorrelation of the log price-dividend ratio is primarily driven by the

autocorrelation of x. However, the expression for the price-dividend ratio for zero-coupon aggregate

equity, equation (7) in section 2, suggests that the autocorrelation of the aggregate market’s price-

dividend ratio is approximately a weighted average of the autocorrelations of the z and x processes.

So the fact that the z process is highly persistent, with an annualized autocorrelation of 0.91,

means that it may be possible to have an x process that is not very persistent and still have a log

price-dividend ratio for the aggregate market with an annualized autocorrelation of 0.87.

Moreover, there are good theoretical reasons for why the x process might not be very persistent.

In particular, it is easy to show that the CC model implies that the persistence of our price-of-risk

state variable x is approximately equal to the persistence of the log surplus s in their model. While

CC themselves use a very large value for the autocorrelation of the log surplus in their model, the

use of such a large value implies that habit depends much less on the consumption in the recent past

than consumption in the distant past. For example, Table 2 uses the expression in (32) that relates

log habit to past log consumption in CC to calculate the contribution of lagged log consumption to

log habit when x’s persistence parameter is set equal to the LW annualized value of 0.87 and to the

value in our base and wedge cases. At the LW value, the contribution of the most recent 5 years is

just a little over 50% and so the contribution of log consumption more than 5 years ago is almost

50% which seems very high. We choose an annualized value for φx of 0.14 which is sufficiently low

that the most recent 2 years of log consumption contribute over 98% of all past consumption to

log habit, which is a much more reasonable number than the 25% contribution generated by the
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LW value. Subsection 2.1.2 discussed the intuition for why a value premium can be generated by

an x-variable whose shock is highly negatively correlated with the d-variable shock so long as it is

not too persistent.

The remaining parameters of the x process left to calibrate are its mean x̄ and its conditional

volatility σx. LW calibrate x̄ such that the maximum conditional quarterly Sharpe ratio
√

ex̄2 − 1

equals 0.70, which corresponds to x̄ = 0.625. They calibrate σx to match the volatility of the

price-dividend ratio for aggregate equity. When choosing x̄ and σx, we concentrate on matching

the mean rather than the volatility of the price-dividend ratio for aggregate equity, in addition to

the unconditional Sharpe ratio for aggregate equity in the data. Both the unconditional Sharpe

ratio and the expected price-dividend ratio for aggregate equity move positively with both x̄ and

σx. We choose our x̄ and σx to produce a Sharpe ratio that roughly corresponds to the 0.41 value

obtained by LW (0.42 in our simulation of LW) and an expected price-dividend ratio for aggregate

equity whose mean absolute error relative to the data value is similar to that obtained by LW. The

data value of the Sharpe ratio, at 0.33, is a little lower than the values obtained by LW and our

base case. While the LW value for the expected price-dividend ratio is about 5.5 lower than the

data value of 25.55, the value obtained by our base case is about 5.5 higher than the data value.

3.2 Calibration of the wedge cases: distinguishing between consumption and
dividends

In the base case we do not make a distinction between dividend growth and consumption growth;

i.e. we set δm = 1 and σ2
u = 0. In the two wedge cases we do make this distinction, and consider log

dividend growth to be a levered version of log consumption growth. The two wedge cases both have

the same processes for log dividend growth and log consumption growth but each has a different

specification for the x process.

We keep the volatility of εm and the covariance of εm with εz the same as in the base case, matching

the following to LW’s data moments:

σ2[εm] = (δm)2σ2
d + σ2

u + 2δmσd,u (36)

σ[εmt+1, ε
z
t+1] = δmσd,z + σu,z (37)

We can get a closed-form expression for the annual covariance of log consumption and dividend

growth:
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σ
[∑4

i=1∆dt+i,
∑4

i=1∆dmt+i

]

=
1

(1− φz)2δm

(
(1− φ4

z)(1 + φ2
z) + 3− 2φz(1− φ3

z)

1− φz
+

φ2
z(1− φ6

z)

1− φ2
z

)
σ2
z

+
2

(1− φz)2
(3− 4φ+ φ4)σz,d +

1

δm(1− φ2
z)
(3− 4φz + φ4

z)σz,u + 4δmσ2
d + 4σd,u

The annual correlation of log consumption growth with log dividend growth is 0.55 in Bansal-

Yaron’s sample period. This value for the annual correlation requires x̄ < 0 for the price-dividend

ratio to converge, which is a problem since the x process is positive in CC. The correlation of log

consumption growth with log dividend growth at a quarterly frequency is a simple expression:

ρ[εmt+1, ε
d
t+1] =

δmσd
σ[εm]

+
σd,u

σ[εm]σd
. (38)

Simulations suggest that the annual and quarterly correlations are very similar, at least for the

range of parameter values we consider, so we focus on the quarterly number because its expression

is much simpler. Since the x process is positive in CC, we instead chose a larger correlation than

in the data, 0.82 at a quarterly frequency, for which the price-dividend ratio converges for a range

of x̄ > 0 in the base case.

Using the methods of Stambaugh (1997) and Lynch and Wachter (2008), and given the volatility

of annual log consumption and dividend growth and their correlation in the Bansal-Yaron sample

period (1929-1998), and the volatility of annual log dividend growth for the LW sample period

(1890-2002), we can estimate the volatility of annual log consumption growth in the LW sample

period. The Bansal-Yaron moments allow us to regress annual log consumption growth on annual

log dividend growth, estimating the regression coefficient and the variance of the residuals. Using

these and the volatility of annual log dividend growth for the LW sample period, we can back out

an estimate for the volatility of annual log consumption growth for this period. This comes out to

be 3.18%, and we square this and match it to our analytical expression for the variance of annual

log consumption growth:

σ2

[
4∑

i=1

∆dt+i

]
=

(
(1 + φz + φ2

z + φ3
z)

2

1− φ2
z

+ 1 + (1 + φz)
2 + (1 + φz + φ2

z)
2

)
σ2
z

(δm)2

+4σ2
d +

2σd,z(3 + 2φz + φ2
z)

δm
(39)

Typically in the literature δm is set equal to σm
σd

. Our set-up allows δm to be different from

this, but we chose this value as the natural point of departure. Since LW calibrate their divi-

dend/consumption process to U.S dividend data, we keep the joint {zm,∆dm} process the same,
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i.e. φz, σz, σm, gm, ρm,z are unchanged from the base case. We set ρ[εd, εz] = ρ[εm, εz] which has

a couple of attractive features in our setting. First, there is an asset in the wedge cases with the

same cash-flows and price as produced by the market dividend in the base case. Second, given σz

and σm fixed and δm = σm
σd

, then as ρ[εd, εm] tends to 1, the pricing implications for the two wedge

cases, in which aggregate consumption and dividends are allowed to differ, converge to those for

our base case in which the two are the same.

Given a δm value and ρ[εd, εz] = ρ[εm, εz], the system of equations defined in (36)-(39) yields

σd, σu, σd,u and σz,u. The resulting σd can be used to calculate σm
σd

, which becomes the new δm

value. We iterate until convergence, namely, until the obtained σm
σd

value equals the δm used to

obtain it.

Turning to the x process, we set ρ[εd, εx] = −0.99 as in the base case, in the spirit of CC, and

φx = 0.14 as in the base case, in the spirit of the micro evidence concerning the persistence of

the log consumption surplus. The covariances σ[εx, εz] and σ[εx, εu] are set to ensure that the

covariance matrix of (εd, εz, εx, εu) is positive definite. As in the base case, σ[εx, εz] is obtained

using equation (35) with ρ[ux, εz] = 0, while σ[εx, εu] is calculated similarly using

σ[εx, εu] = σ
[
βx,dβd,zε

u + βx,du
d + ux, εu

]

=

(
ρ[εd, εx]ρ[εd, εu] +

[
1− ρ[εd, εx]2

] 1
2
ρ[ux, εu]

)
σzσx, (40)

with ρ[ux, εu] set equal to 0 to calculate σ[εx, εu].

Both wedges cases choose the x̄ and σx values to match the mean of the price-dividend ratio and

the unconditional Sharpe ratio. Table 3 shows that both wedge cases are able to match both these

aggregate moments about as well as the LW and base cases. However, the first wedge case, like

the base case, does not try to match the unconditional volatility of the excess return on aggregate

equity, understating it by a magnitude comparable to the base case, while the second wedge case

tries to match this unconditional volatility and does a much better job than the first of doing so.

3.3 Calibration of the LRR-Vol case: making the conditional volatility of log
consumption growth stochastic

When we calibrate the LRR-vol case, φx is set at 0.14 annually and ρd,x is set equal to -0.99, as

in the base and wedge cases. The expressions for σ2[εm] and σ[εmt+1, ε
z
t+1] are the same as in the
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wedge cases. The expression for the annual variance of consumption growth becomes

σ2

[
4∑

i=1

∆dt+i

]
=

(
(1 + φz + φ2

z + φ3
z)

2

1− φ2
z

+ 1 + (1 + φz)
2 + (1 + φz + φ2

z)
2

)
σ2
z

(δm)2

+4σ2
dE[σ2

t ] +
2σd,z(3 + 2φz + φ2

z)

δm
σ̄, (41)

and the expression for the quarterly correlation between the shocks to dividend growth and con-

sumption growth becomes

ρ[εmt+1, σtε
d
t+1] =

(δmσ2
d + σd,u)σ̄

σmσd
√
E[σ2

t ]
. (42)

We choose the values of δm, ρd,u, g
m, φz and σz as in the wedge cases, so that the joint distribution

of zm and dm is the same as in the base and wedge cases.

When we calibrate the process for σt in the LRR-vol case, we want the shock to monthly log

consumption growth to match that used by Bansal, Kiku, and Yaron (2009). To do this, we

start by simulating the conditional variance of monthly log consumption growth using the AR(1)

specification and parameters from Bansal, Kiku, and Yaron. We discard any negative draws, as

they do. We approximate the quarterly variance by the sum of the variance for the 3 consecutive

months in the quarter. We then compute the quarterly volatility as the square root of this quarterly

time series, and fit the volatility to an AR(1) process. This nails down the value for φσ. Since

εd in Bansal, Kiku, and Yaron is scaled to have unit variance, while ours is not, we scale our

volatility process to preserve the unconditional second moment of the shock to log consumption

growth from the wedge cases, i.e. E[(σtε
d
t+1)

2] in the LRR-vol case equals E[(εdt+1)
2] in the wedge

cases. Combining this with the 4 moment conditions in (36)-(37) and (41)-(42), we solve for the

volatility scaling factor, σd, σu, σd,z and σz,u. These values nail down the values for σ̄ and σw. It

follows that the unconditional correlation between the shock to log consumption growth and the

shock to the mean of log consumption growth is the same as in the wedge cases; i.e. ρ[σtε
d
t+1, ε

z
t+1]

in the LRR-vol case equals ρ[εdt+1, ε
z
t+1] in the wedge cases. The estimated parameters for σ̄, φσ

and σw are given in Table 1. The calibrated volatility process goes negative less than 0.3% of the

time. Finally, we follow Bansal and Yaron (2004) and impose that εw is uncorrelated with all other

shocks.

Turning to the x process, σ[εx, εz] is obtained using equation (35) with ρ[ux, εz] set equal to zero,

and σ[εx, εu] is obtained using equation (40) with ρ[ux, εu] set equal to zero. The reasons for doing

this are the same as in the base and wedge cases. Finally, just as with the second wedge cases, x̄

and σx are chosen to best match the data values for the unconditional volatility of the excess return

on aggregate equity, as well as its unconditional Sharpe ratio and its expected price-dividend ratio.
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As Table 3 shows, the LRR-vol case matches these three aggregate moments better than either

wedge case.

4 Results

This section reports the results for the five cases: LW, base, two wedge, and LRR-vol. We also

report results for U.S. data. The data are the same as that in LW: the aggregate data are annual

from 1890-2002, while the data for the value and growth portfolios are monthly from Ken French’s

website and span 1952 to 2002. Means are annualized by multiplying by 12 and volatilities by 120.5.

Each model is simulated at a quarterly frequency for at least 4 million quarters, and until the

mean price-dividend ratio and Sharpe ratio of the aggregate market and the two value premia

have converged: i.e., until an additional 10% of simulated quarters causes the values of all these

variables to change by less than small prespecified tolerances. The unconditional mean and volatility

of annual excess market equity return on zero-coupon equity with n years to maturity are simulated

to convergence in the same way.

4.1 Base Case

This subsection discusses the results for the base case and compares them to the results from the

data and for the LW case. As in LW, the aggregate consumption process is assumed to be equal to

the market dividend process, which is calibrated to data. The market dividend process used in the

base case is the same as that used by LW. The correlation between the change in log consumption

and the price-of-risk variable x is 0 in LW but is set to -0.99 in the base case, consistent with habit

preferences. As discussed in section 3, the persistence of the x process is set to 0.14 annualized,

which is a much lower value than the 0.87 annualized used by LW based on CC. Recall from section

3 that in the base case, the remaining x parameters are chosen to match the mean of the equity

price-dividend ratio and its unconditional Sharpe ratio.

4.1.1 Aggregate Moments

Table 3 reports moments for aggregate equity return, aggregate equity price-dividend ratio and

aggregate dividend growth. The first column reports moments for the data, the second reports
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simulated moments for the LW case, and the third reports simulated moments for the base case.

Returns, dividends, and price-dividend ratios are aggregated to annual frequencies: so Pm
t /Dm

t =

Pm
t /

∑3
τ=0D

m
t−τ and pmt − dmt ≡ log(Pm

t /Dm
t ). Sharpem is the unconditional Sharpe ratio of the

aggregate equity, and AC denotes autocorrelation.

Since the parameters of ∆dm are chosen to match the data, it is to be expected that the base

case is able to closely match the autocorrelation and unconditional volatility of ∆dm. And as

discussed above, the expected price-dividend ratio obtained from the base case is as close to the

data value as the LW value, and the base-case unconditional Sharpe ratio is virtually the same

as the LW value. But these close matches are to be expected and are not evidence of the base

case’s ability to match data moments, since the parameters of the x process not nailed down by

the habit specification were chosen to match these parameters. However, because parameter values

were not chosen specifically to match the autocorrelation of the price-dividend ratio in the data,

it is impressive that the base-case value of this autocorrelation, 0.895, is higher than, but close to,

both the data value of 0.87 and the LW value of 0.883.

While the base case is calibrated to match the unconditional Sharpe ratio, it delivers an expected

excess market return and a market excess return volatility that is too low relative to the data and

LW values. The delivered volatility of 10.69% is particularly low relative to the data volatility of

19.41% which LW does a good job matching. The base case also delivers a price-dividend ratio

volatility of 0.261 that is much lower than the data value of 0.38. Again, the LW case matches the

data moment quite closely, delivering a value of 0.382. Excess market returns also exhibit negative

autocorrelation of -0.13, which is counterfactual: the data value is 0.03. The LW case also delivers

excess market returns that are negatively autocorrelated, though much less so than in our base

case, at a value of -0.04.

4.1.2 Predictive Regressions

Table 4 reports results for three predictive regressions. The regression reported in the top panel

regresses the future log excess aggregate equity return on today’s log aggregate equity price-dividend

ratio. The regression reported in the middle panel regresses future changes in log aggregate equity

dividend on today’s log aggregate equity price-dividend ratio. The regression reported in the bottom

panel regresses future changes in log aggregate equity dividend on today’s consumption-aggregate

equity dividend ratio for the data and today’s zm for the cases. The first column reports results
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for the data, the second reports results for the LW case, and the third reports results for the base

case. Log returns, log dividend growth, log price-dividend ratios and log consumption-aggregate

dividend ratios are all aggregated to annual frequencies, as described above. Results are reported

for horizons of 1 and 10 years for future return and dividend growth. R2 is the regression R2.

Perhaps the most glaring inability of the base case to match data moments concerns the excess

market return predictability regressions. The data and the LW case deliver R2s and negative

predictability coefficients that are both larger in absolute value at a 1 year return horizon than at a

10 year return horizon. While the base case is able to produce negative predictability coefficients,

their magnitudes are much smaller than those observed in the data, and the base-case R2s at

horizons of 1 and 10 years are both negligible. As in LW, the base case does a poor job of

reproducing the predictability of 1 or 10 year log dividend growth found in the data using the log

price-dividend ratio, especially at the 10 year horizon, where the sign of the predictive coefficient

is negative for the data and positive for the base case. All the cases considered calibrate the

joint process for log market dividend and zm in exactly the same way as LW. Consequently, when

forecasting 1 or 10 year log dividend growth using zm for the cases and a proxy for zm in the data,

all the cases considered here replicate LW’s ability to match the R2s of the regressions and also

their ability to match the sign but not the magnitude of the predictive coefficients.

4.1.3 Value vs Growth Portfolios

Table 5 reports results for the extreme growth decile (portfolio 1), the extreme value decile (portfolio

10), and the portfolio which is long portfolio 10 and short portfolio 1 (the HML portfolio). The

top panel reports expected excess annual return, the volatility of excess annual return and the

unconditional Sharpe ratio for annual return. The bottom panel reports CAPM alpha, CAPM

beta and regression R2 using annual returns. The first three columns report results for the data,

the fourth reports results for the LW case, and the fifth reports results for the base case. For the

data, the first column obtains the extreme portfolios by sorting on earnings yield (E/P), the second

column by sorting on equity cash flow to market value (C/P), and the third column by sorting

on equity book-to-market value (B/M). For the models, we sort the 200 firms into deciles at the

start of each year from value to growth based on their annual price-dividend ratios, which are given

by: P i
t /D

i
t = P i

t /
∑3

τ=0D
i
t−τ for firm i. Sharpei is the unconditional Sharpe ratio for portfolio i’s

annual return while R2
i is the regression R2.
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Table 5 shows that the base case can generate a positive value premium in both expected excess

return and CAPM alpha, though the magnitudes of the two are less than those found in the data

or delivered by the LW case. In the data, using B/M to sort stocks into deciles, the expected

excess return spread between the value and the growth portfolio is 4.88% versus the 1.91% per

annum delivered by the base case. Similarly, the CAPM-alpha spread for these two extreme book-

to-market deciles is 5.63% per annum in the data, but only 1.20% per annum in the base case.

Moreover, both the data and LW deliver a CAPM-alpha spread between the extreme value and the

growth deciles that is larger than the expected excess return spread, while the converse is true for

the base case. The reason is that the CAPM beta for the extreme value decile is lower than for

the extreme growth decile for the data and LW, while the converse is true for the base case, as the

rows labeled βi in Table 5 show. The base case delivers excess return volatility that is higher for

the extreme value decile than for the extreme growth decile, which is consistent with the data when

B/M is used to construct the extreme deciles, but inconsistent when E/P or C/P is used. The

volatility numbers for the two extreme deciles and especially for HML are much lower for the base

case than for the data. The LW case also delivers lower volatility for HML than the data, though

not as low as delivered by the base case. The implication is the returns on the extreme deciles are

much more correlated for the two cases, especially the base case, than for the data, which is not

surprising given that the dividend shares received by the firms are deterministic. Consistent with

this observation, the R2s of the CAPM market model regressions for the two extreme deciles are

typically largest for the base case and smallest for the data, with the LW case in the middle. The

R2s of the CAPM market model regressions for HML are below 15% for all the data sorts and the

base and LW cases. The unconditional Sharpe ratio is lowest for the extreme growth decile for the

two cases and all the data sorts, and is highest for the extreme value decile for all but the LW case.

The main message of Table 5 is that the base case can deliver a value premium both in expected

excess return and CAPM alpha. To better understand why the base case delivers a value premium

in expected excess return, we now turn our attention to the zero-coupon market dividend claims

described in section 2. Figure 1 plots, as a function of maturity for zero-coupon equity with n years

to maturity, the unconditional expected annual excess return, the unconditional volatility of annual

return and the unconditional Sharpe ratio for annual return in the top, middle and bottom graphs

respectively. In each graph, the solid black line is for the LW case and the dot-dashed line is for

the base case. The quarterly return on zero-coupon equity with n years to maturity is calculated

as the return from holding zero-coupon equity with n years to maturity at the start of the quarter.

The annual return on zero-coupon equity with n years to maturity is then obtained by rolling over
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these quarterly returns for 4 quarters.

It is worth noting that the excess return on the market equity portfolio is a weighted average of the

excess returns on the zero-coupon equity claims, where all the weights are positive. Further, the

firms in the extreme value decile receive fractions of the market dividend that are relatively larger

in the near future than in the far future. The converse is true for the firms in the extreme growth

decile. The top graph of Figure 1 shows that in the LW case, the expected excess return on the

zero-coupon equity claim is declining in the claim’s maturity which explains why this case delivers

a value premium in expected excess return. For the base case, it is hump-shaped as a function

of maturity, but the hump occurs at a sufficiently short maturity to still deliver a value premium

in expected excess return, as discussed in section 2.1. The middle graph shows that excess return

volatility is hump-shaped in both cases, though the hump occurs much earlier for the base case.

The bottom graph shows that the Sharpe ratio declines monotonically for both cases, though the

relation is strongly convex for the LW case and concave at most maturities for the base case.

Using the expressions for the excess return on zero-coupon equity and its first two moments in

equations (10)-(12), the shapes of A(n), Bz(n) and Bx(n) as functions of n can be used to better

understand the relations plotted in Figure 1, especially the relation between the expected excess

return on zero-coupon equity and its maturity plotted in the top graph. Figure 2 plots, as a function

of maturity for zero-coupon equity with n years to maturity, A(n), Bz(n)(1−φz) and Bx(n) in the

top left, top right, and bottom left graphs respectively. In each graph, the solid black line is for

the LW case and the dot-dashed line is for the base case. A(n), Bz(n) and Bx(n) are, respectively,

the constant coefficient, the coefficient on zm and the coefficient on x in equation (7) for the price-

dividend ratio of zero-coupon aggregate equity paying out in n periods. Bz(n) is multiplied by

(1− φz). Note that Bz(n) is the same in all cases considered, including these two.

As was pointed out in subsection 2.1, Bz(n) is always positive and increasing in n. Moreover, Bz(n)

is the same for the LW and base cases. The right hand side of equation (12) provides an expression

for Et[R
m
n,t+1/R

f
t ], and since Et[R

m
n,t+1/R

f
t ] is likely to be highly correlated with Et[R

m
n,t+1 − Rf

t ],

this right hand side of (12) can be used to understand how the unconditional expected excess return

on a zero-coupon equity claim (E[Rm
n,t+1−Rf

t ]) varies with maturity. This analysis is performed in

section 2.1 by exploiting the fact that the unconditional mean of x is positive. Since σx,d is zero in

the LW case, the shape of Et[R
m
n,t+1/R

f
t ] as a function of its maturity n depends on the shape of

Bz(n) and the sign of σz,d. Since σz,d is negative and Bz(n) positive and increasing, Et[R
m
n,t+1/R

f
t ]

is decreasing in n as reported in Figure 1. Hence the LW case delivers a value premium in expected
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excess return as reported in Table 5.

Now σx,d is negative in the base case, so the shape of Bx(n) matters for the shape of Et[R
m
n,t+1/R

f ].

Figure 2 shows that Bx(n) is negative and has an inverted hump shape, consistent with the observa-

tion of section 2. Consequently, Bx(n−1)σx,d in equation (12) is hump-shaped and the implication

is that Et[R
m
n,t+1/R

f ] can be hump-shaped, as reported in Figure 1. Hence, the base case is able

to deliver a value premium in expected excess return as reported in Table 5.

4.2 Wedge Cases

This subsection discusses the results for the two wedge cases and compares them to the results

from the data and for the LW and base cases. In contrast to the LW and base cases, the aggregate

consumption process is allowed to differ from the market dividend process in the two wedge cases.

This process is the same for both wedge cases and is calibrated to the data, while the market

dividend process in both wedge cases is the same as that used in the base case. As in the base case,

the correlation between the change in log consumption and the price-of-risk variable x is set to -0.99

in the 2 wedge cases, consistent with habit preferences. The persistence of the x process in the two

wedge cases is the same low annualized value of 0.14 used in the base case. As discussed in section

3, the x parameters in wedge case 1 are chosen to match the mean of the equity price-dividend

ratio and its unconditional Sharpe ratio, as in the base case. For wedge case 2, the x parameters

are also chosen to get close to the unconditional volatility of the market equity excess return.

4.2.1 Aggregate Moments

The two columns of Table 3 labeled “Wedge” contain moments for aggregate equity return, ag-

gregate equity price-dividend ratio and aggregate dividend growth for the two wedge cases. Both

wedge cases are calibrated to match the unconditional equity Sharpe ratio and the unconditional

mean of its price-dividend ratio, and Table 3 shows that they both get close to both moments.

Wedge case 1 does not attempt to match the volatility of the market equity excess return and pro-

duces a much lower value than in the data, just as the base case does. On the other hand, wedge

case 2 does attempt to match this volatility and the last column of Table 3 shows that it does so

with some success. Because wedge case 2 is calibrated to match the equity Sharpe ratio and the

volatility of the equity excess return, it also matches the data expected excess market return. Since

wedge case 2 successfully matches the volatility of equity excess return, it is somewhat surprising
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that it suffers the same fate as wedge case 1 and the base case of substantially understating the

volatility of the equity price-dividend ratio. Again, because parameter values for the 2 wedge cases

were not chosen specifically to match the autocorrelation of the price-dividend ratio in the data, it

is impressive that this autocorrelation is above 0.90 for wedge case 1 and still above 0.84 for wedge

case 2. Finally, as with the base case, excess market returns exhibit negative autocorrelation for

both wedge cases, especially the second, which is counterfactual.

4.2.2 Predictive Regressions

Table 4 reports results for the predictive regressions and the two columns labeled “Wedge” report

results for the 2 wedge cases. The most glaring weakness of the base case was its inability to generate

the excess market return predictability observed in the data. Unfortunately, the two wedge cases

do not perform much better than the base case along this dimension. While the 2 wedge cases are

also able to produce the data’s negative predictability coefficients, their magnitudes are again much

smaller than those observed in the data, and the predictive regression R2s at horizons of 1 and 10

years are still negligible. As in the base case, the two wedge cases do a poor job of reproducing the

predictability of 1 or 10 year log dividend growth found in the data using the log price-dividend

ratio, especially at the 10 year horizon, where the sign of the predictive coefficient is negative for

the data and positive for the wedge cases.

4.2.3 Value vs Growth Portfolios

Table 5 reports results for the extreme growth and value deciles as well as HML and the two

columns labeled “Wedge” report results for the 2 wedge cases. These “Wedge” columns show that

the 2 wedge cases can also generate a value premium in both expected excess return and CAPM

alpha. Moreover, the premia in expected excess return generated by the two cases, while still less

than in the data, is much closer than the premium generated by the base case. The same is true for

the premium in CAPM alpha for wedge case 1, while the premium in CAPM alpha for wedge case

2 is similar in magnitude to that obtained from the base case. In wedge cases 1 and 2, the expected

excess return spreads between the value and the growth portfolio are 4.05% per annum and 3.82%

per annum respectively, which are much closer to the data value of 4.88% per annum when sorting

on B/M than the 1.91% per annum delivered by the base case. For wedge case 1, the CAPM-alpha

spread for these two extreme book-to-market deciles is 2.71% per annum which is also closer to the
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5.63% per annum in the data than the 1.20% per annum in the base case. However, wedge case 2

delivers a CAPM-alpha spread of 1.30% per annum which is comparable to the value generated by

the base case. Figure 1 plots, as a function of maturity, important statistics for the annual return

on zero-coupon equity with n years to maturity, with the dotted lines representing wedge case 1 and

the dashed lines representing wedge case 2. The top graph in Figure 1 shows that the unconditional

expected annual return on the zero-coupon equity is hump-shaped in maturity with the both humps

occurring at maturities less than 10 years. Recall that the firms in the extreme value decile receive

fractions of the market dividend that are relatively larger in the near future than in the far future,

while the converse is true for the firms in the extreme growth decile. Consequently, these hump-

shapes in the top graph of Figure 1 are consistent with the two wedge cases delivering value premia

in expected excess returns, just as the base case delivering the same hump-shape is consistent with

it also delivering a value premium in expected excess return. Moreover, Bx(n) plotted in Figure 2

as a function of n is u-shaped for the two wedge cases just as it is for the base case.

The two wedge cases generate results that are similar to the results for the base case in a number

of other respects. First, both wedge cases deliver a CAPM-alpha spread between the extreme value

and the growth deciles that is smaller than the expected excess return spread. Second, both wedge

cases deliver excess return volatility that is higher for the extreme value decile than for the extreme

growth decile. Third, the volatility numbers in the two wedge cases for the two extreme deciles

and especially for HML, though not as low as in the base case, are much lower than in the data,

except for the extreme value decile in wedge case 2, whose excess return volatility is close to that

in the data.

For the two wedge cases, the R2s of the CAPM market model regressions are similar to the data

R2 values for the growth decile, but, as in the base case, are larger than the data R2 values for the

value decile and HML. As for all the data sorts and the base case, the extreme growth decile has

the lowest Sharpe ratio of the two extreme portfolios and HML for both wedge cases. The extreme

value decile has the highest Sharpe ratio for all the data sorts and the base case, while HML has

the highest Sharpe ratio for both of the wedge cases.

4.3 LRR-Vol Case

This subsection discusses the results for the LRR-vol case and compares them to the results from

the data and for the LW, base and two wedge cases. As in the two wedge cases, the aggregate
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consumption process is allowed to differ from the market dividend process in the LRR-vol case.

This process has mean and volatility that is slowly mean reverting and is calibrated to the data,

while the market dividend process in both wedge cases is the same as that used in the base case. As

in the base case and the two wedge cases, the correlation between the change in log consumption

and the price-of-risk variable x is set to -0.99 in the LRR-vol case, consistent with habit preferences.

The persistence of the x process in the LRR-vol case is the same low annualized value of 0.14 used

in the base and two wedge cases. As discussed in section 3, the x parameters are chosen to match

the unconditional volatility of the market equity excess return as well as the mean of the equity

price-dividend ratio and its unconditional Sharpe ratio, as in the second wedge case.

4.3.1 Aggregate Moments

The last column of Table 3 contains moments for aggregate equity return, aggregate equity price-

dividend ratio and aggregate dividend growth for the LRR-vol case. The LRR-vol case is calibrated

to match the unconditional Sharpe ratio of market equity, the volatility of its excess return and

the unconditional mean of its price-dividend ratio, and Table 3 shows that it matches all three

moments better than wedge case 2. As with wedge case 2, since the LRR-vol case does a good

job matching the unconditional market equity Sharpe ratio and the volatility of the market equity

excess return, it also does a good job matching the unconditional market equity excess return.

However, while wedge case 2 successfully matches the volatility of equity excess return, it severely

understates the volatility of the equity price-dividend ratio. This is not a problem that the LRR-vol

case suffers from. In fact, the volatility value obtained for the LRR-vol case of 0.480 is higher than

the data value of 0.38. As would be expected given the high persistence of the σt process, the

autocorrelation of the price-dividend ratio is higher than in either wedge case, taking a value that

is even higher than the data value. One problem for wedge case 2 is the autocorrelation of the

excess market equity return, since it’s 0.03 in the data but -0.27 for wedge case 2. Allowing σt to

be slowly mean reverting rather than constant attenuates this problem since the autocorrelation

increases to -0.10 in the LRR-vol case.

4.3.2 Predictive Regressions

Table 4 reports results for the predictive regressions and the last column reports results for the

LRR-vol case. We see that the LRR-vol case remedies the most glaring weakness of the base
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and two wedge cases, namely their inability to generate the excess market return predictability

observed in the data using market equity price-dividend ratio. The LRR-vol case is much closer

to the data than the base or either wedge case because it is able to produce much more negative

predictability coefficients and much larger R2s for the regressions than those cases. For the 10 year

return horizon regression, the R2 is 0.31 for the data, 0.27 for the LRR-vol case, and less than

0.02 for these other cases. While the R2s are still a little low relative to the data, they represent

a significant improvement over the results for the base and two wedge cases. The implication is

that allowing consumption growth to have volatility that is slowly mean reverting can help models

with external habit preferences to generate the return predictability in the data. The question

(answered in the next subsection) is whether the value premium survives the introduction of long

run risk in consumption growth volatility. As in the other cases, the LRR-vol case does a poor job

of reproducing the predictability of 1 or 10 year log dividend growth found in the data using the

log price-dividend ratio, especially at the 10 year horizon.

4.3.3 Value vs Growth Portfolios

Table 5 reports results for the extreme growth and value deciles as well as HML and the last

column reports results for the LRR-vol cases. This last column shows that the LRR-vol case can

also generate a value premium in both expected excess return and CAPM alpha. Moreover, the

premia in both expected excess return and CAPM alpha generated by the LRR-vol case is higher

than those obtained for either wedge case. In the LRR-vol case, the expected excess return spreads

between the value and the growth portfolio is 4.39% which is higher than the maximum value of

4.05% obtained by the other non-LW cases and actually quite close to the data value of 4.88%

per annum when sorting on B/M. The CAPM-alpha spread for these two extreme book-to-market

deciles is 4.03% per annum which is also closer to the 5.63% per annum in the data than the 2.71%

per annum in wedge case 1.

Figure 1 plots, as a function of maturity, important statistics for the annual return on zero-coupon

equity with n years to maturity, with the pale solid line representing the LRR-vol case. The top

graph of Figure 1 shows that the unconditional expected annual excess return on the zero-coupon

equity is hump-shaped in maturity with the hump occurring at a maturity less than 10 years, same

as for all the other cases except LW. Recall once more that the firms in the extreme value decile

receive fractions of the market dividend that are relatively larger in the near future than in the

far future, while the converse is true for the firms in the extreme growth decile. Consequently,

33



this hump-shape in the top graph of Figure 1 is consistent with the LRR-vol case delivering value

premia in expected excess return, just as the base and wedge cases deliver a value premium in

expected excess return by delivering the same hump-shape. Further, across the cases, the top

graph of Figure 1 shows that the difference between the expected annual return on the zero-coupon

market equity maturing in 3 and 13 years is largest for the LRR-vol case, which is consistent with

the value premium in expected excess return being the largest for this case.

Moreover, Bx(n) plotted in Figure 2 as a function of n is u-shaped for the LRR-vol case just as it is

for the base and two wedge cases. The Bx(n) curve for the LRR-vol case lies just above the Bx(n)

curve for the two wedge cases, but from equation (25) we see this generates a larger value premium

in expected excess return, because x̄ for the LRR-vol case is larger than for the two wedge cases.

The shape of Bσ(n), which is plotted in the bottom right-hand graph of Figure 2 as a function

of n, does not matter for the value premium in expected excess return, because the LRR-vol case

imposes ρd,w = 0, and equation (25) also shows that ρd,w = 0 means Bσ(n) does not matter for

unconditional mean excess market equity returns.

The LRR-vol case generates results that are similar to the results for the base and two wedge cases

in a number of other respects. First, the LRR-vol case delivers a CAPM-alpha spread between the

extreme value and the growth deciles that is smaller than the expected excess return spread, which

is counterfactual. Second, the LRR-vol case delivers excess return volatility that is higher for the

extreme value decile than for the extreme growth decile. However, the volatility numbers produced

by the LRR-vol case for the two extreme deciles, though lower, are actually quite close to the data

values, which is in contrast to the much lower numbers produced by the base and wedge cases.

Similar to the other non-LW cases, the R2s of the CAPM market model regressions in the LRR-vol

case are slightly higher than the data R2 values for the growth decile, but much larger than the

data R2 values for the value decile. All the other cases produce R2s for HML that are much too

high, while the LRR-vol case produces a low R2 that is quite close to the data values. As in all the

data sorts and the other cases, the extreme growth decile has the lowest Sharpe ratio of the two

extreme portfolios and HML in the LRR-vol case. Across the three portfolios, the extreme value

decile has the highest Sharpe ratio for all the data sorts, while HML has the highest Sharpe ratio

for the LRR-vol case, just like both of the wedge cases.
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5 Conclusion

This paper finds that the external-habit model of Campbell and Cochrane (1999) can generate a

value premium in both CAPM alpha and expected excess return when the log surplus-consumption

ratio is allowed to be not very persistent. In contrast, Lettau and Wachter (2007) find that when

the log surplus-consumption ratio is assumed to be highly persistent as in Campbell-Cochrane

(by assuming that the price-of-risk state variable is highly persistent), the external-habit model

generates a growth premium in expected excess return. However, recent micro evidence indicates

that the persistence of the log surplus-consumption ratio is likely to be quite low. Brunnermeier

and Nagel (2006) examine how risky asset holdings change in response to wealth shocks and reject

a persistent habit specification, while Ravina (2007) shows that credit card purchases are more in

line with a fast-moving habit than a slow-moving habit. Moreover, the high persistence assumed

by Lettau-Wachter’s specification implies that the contribution of the most recent 5 years of log

consumption to log habit is just a little over 50% and so the contribution of log consumption more

than 5 years ago is almost 50%, which seems very high. We choose a value for this persistence that

is more in line with the micro evidence and which is sufficiently low that the most recent 2 years of

log consumption contribute over 98% of all past consumption to log habit, which is a much more

reasonable number than the 25% contribution generated by the Lettau-Wachter value.

In our specification, expected consumption is slowly mean-reverting, as in the long-run risk model

of Bansal and Yaron (2004), which is why our model is able to generate a price-dividend ratio

for aggregate equity that exhibits the high autocorrelation found in the data, despite the very low

persistence of the price-of-risk state variable. When aggregate consumption and market dividend

are assumed to be the same and are both calibrated to market dividends, the model is able to

match the mean equity price-dividend ratio and equity Sharpe ratio, but is unable to generate a

sufficiently volatile equity return. Driving a wedge between aggregate consumption and market

dividend by calibrating the former to aggregate consumption data also allows the model to more

closely match the volatility of the equity return.

One important dimension of equity return behavior that low persistence has difficulty replicating

when consumption growth is homoscedastic is the predictability of long-horizon equity return using

the price-dividend ratio. However, in a setting in which the consumption and dividend processes

are specified to be different, we are able to obtain long-horizon return predictability of a magni-

tude much closer to that in the data, and without destroying the value premium, by allowing the
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conditional volatility of consumption growth to also be slowly mean reverting. Our results suggest

that external-habit preferences and long-run risk in the mean and volatility of consumption growth

may both play important roles in explaining the time-series and cross-sectional properties of equity

returns and prices.

An interesting dimension not considered here is the extent to which long horizon returns on the

extreme value and growth portfolios are predictable using aggregate equity’s price-dividend ratio

and other measures of the aggregate state. It would be interesting to see if fast moving habit

and aggregate consumption specified to possess long-run risk in mean and volatility and calibrated

to data can generate the low return predictability documented for these extreme portfolios by

Roussanov (2011) and others. We leave an examination of this question to future research.
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Table 1: Model Parameters. This table lists the parameter values used by LW (first column)
and for our base, wedge and LRR-vol cases (final four columns). All parameters are as defined in
section 2. The model is quarterly, but the mean of the log dividend growth gm and the log riskfree
rate rf are converted into an annual number by multiplying by a factor of 4 and we express the
persistence parameters φx and φz at annual frequencies by raising each of them to the power of 4.

Variable Frequency LW Base Wedge LRR-Vol
1 2

gm annual 2.28% 2.28% 2.28% 2.28% 2.28%
rf = −a annual 1.93% 1.93% 1.93% 1.93% 1.93%
b or bm 0 0 0 0 0
x̄ quarterly 0.625 0.25 0.3493 0.28 0.365
φz annual 0.91 0.91 0.91 0.91 0.91
φx annual 0.865 0.14 0.14 0.14 0.14
σm quarterly 0.0724 0.0724 0.0724 0.0724 0.0724
σd quarterly 0.0724 0.0724 0.0160 0.0160 0.0164
σz quarterly 0.00165 0.00165 0.00165 0.00165 0.00165
σx quarterly 0.1225 0.16 0.3049 0.3305 0.29
σu quarterly 0 0 0.0435 0.0435 0.037

ρm,z = ρd,z quarterly -0.82 -0.82 -0.82 -0.82 -0.82
ρd,x quarterly 0 -0.99 -0.99 -0.99 -0.99
ρz,x quarterly 0 0.81 0.81 0.81 0.81
ρd,u quarterly - - -0.30 -0.30 -0.30
ρz,u quarterly - - 0.0037 0.0037 0.15
ρx,u quarterly - - 0.30 0.30 0.30
δm quarterly 1 1 4.54 4.54 4.54
σ̄ quarterly 1 1 1 1 0.918
φσ quarterly - - - - 0.994
σw quarterly 0 0 0 0 0.037



Table 2: Contribution of Lagged Consumption to Habit. This table shows the percentage
contribution of lagged log consumption to log habit in the external habit model of CC for
parameters implied by the LW case (the first column) and our cases (the second column). Section 2
shows how to back out the implied CC parameters from the models and presents the approximate
relation between log habit and lagged log consumption used to calculate the contributions:

ht+1 ≈ h− d+ (1 − φs)
∑∞

j=0 (φs)
j dt−j + g

1−φs .

This table decomposes habit into the proportion from consumption within the last 5 years,
and the proportion from more than 5 years before, for LW and our calibrations.

Consumption Lag Habit Contribution (%)
(yrs) LW Ours

1 13.50 86.00
2 11.68 12.04
3 10.10 1.69
4 8.74 0.24
5 7.56 0.03

1 to 5 51.57 99.99
>5 48.43 0.01



Table 3: Aggregate Moments. This table reports moments for aggregate equity return, aggregate
equity price-dividend ratio and aggregate dividend growth. The first column reports moments
for the data, the second reports simulated moments for the LW case, and the final four report
simulated moments for the base, wedge and LRR-vol cases. The data are the same as that in
LW and are annual from 1890-2002. The models are simulated at a quarterly frequency for a
minimum of 4 million quarters, until the moments have converged: i.e. are sufficiently close to
those when an additional 10% of simulated quarters are also included. Returns, dividends, and
price-dividend ratios are aggregated to annual frequencies: so Pm/Dm = Pmt /

∑3
τ=0D

m
t−τ and

pm − dm ≡ log(Pm/Dm). Sharpem is the unconditional Sharpe ratio of the aggregate equity, and
AC is the autocorrelation.

Moment Data LW Base Wedge LRR-Vol
1 2

E[Pm/Dm] 25.55 20.04 30.94 31.09 23.06 25.08
σ[pm − dm] 0.38 0.382 0.261 0.279 0.260 0.480
AC[pm − dm] 0.87 0.883 0.895 0.900 0.843 0.946
E[Rm −Rf ] 6.33 8.116 4.497 4.512 6.180 6.835
σ[Rm −Rf ] 19.41 19.44 10.69 10.71 14.68 16.55
AC[Rm −Rf ] 0.03 -0.04 -0.13 -0.14 -0.27 -0.10
Sharpem 0.33 0.418 0.421 0.421 0.421 0.413
AC[∆dm] -0.09 -0.03 -0.03 -0.03 -0.03 -0.02
σ[∆dm] 14.48 14.42 14.38 14.38 14.39 14.43



Table 4: Predictive Regressions. The top panel is the regression of the future log excess return
on the aggregate equity on the log aggregate equity price-dividend ratio today. The middle panel
is the regression of future changes in log aggregate equity dividend on the log aggregate equity
price-dividend ratio today. The bottom panel is the regression of future changes in log aggregate
equity dividend on the consumption-aggregate equity dividend ratio for the data and zm today for
the models. The first column reports results for the data, the second reports results for the LW
case, and the final four report results for the base, wedge and LRR-vol cases. The data are the same
as that in LW and are annual from 1890-2002. The models are simulated at a quarterly frequency
for a minimum of 4 million quarters, until the moments have converged: i.e. are sufficiently close
to those when an additional 10% of simulated quarters are also included. Log returns, log dividend
growth, log price-dividend ratios and log consumption-aggregate dividend ratios are all aggregated
to annual frequencies: so Pmt /D

m
t = Pmt /

∑3
τ=0D

m
t−τ and pmt − dmt ≡ log(Pmt /D

m
t ). Results are

reported for horizons, H, of 1 and 10 years. R2 is the regression R2.

Horizon (yrs) Data LW Base Wedge LRR-Vol
1 2∑H

i=1(r
m
t+i − rft+i−1) = β0 + β1(p

m
t − dmt ) + εt

β1 1 -0.12 -0.12 -0.01 -0.01 -0.04 -0.06
10 -1.09 -0.68 -0.05 -0.11 -0.14 -0.49

R2 1 0.05 0.07 0.00 0.00 0.01 0.03
10 0.31 0.30 0.00 0.01 0.02 0.27∑H
i=1 ∆dmt+i = β0 + β1(p

m
t − dmt ) + εt

β1 1 0.02 0.05 0.11 0.10 0.10 0.03
10 -0.31 0.32 0.73 0.68 0.68 0.21

R2 1 -0.01 0.02 0.04 0.04 0.03 0.01
10 0.05 0.09 0.22 0.22 0.19 0.06∑H

i=1 ∆dmt+i = β0 + β1z
m
t + εt

β1 1 0.10 3.89 3.83 3.87 3.86 3.88
10 0.68 26.38 26.02 26.15 26.26 26.42

R2 1 0.03 0.04 0.04 0.04 0.04 0.04
10 0.25 0.25 0.25 0.25 0.25 0.24



Table 5: Value vs Growth Portfolios. The table reports results for the extreme growth decile
(portfolio 1), the extreme value decile (portfolio 10), and the portfolio which is long portfolio 10
and short portfolio 1 (the HML portfolio). The top panel reports expected excess annual return,
the volatility of annual excess return and the unconditional Sharpe ratio for annual return. The
bottom panel reports CAPM alpha, CAPM beta and regression R2 using annual returns. The first
three columns report results for the data, the fourth reports results for the LW case, and the final
four report results for the base, wedge and LRR-vol cases. Data are monthly from Ken French’s
website and span 1952 to 2002: means are annualized by multiplying by 12 and volatilities by 120.5.
For the models, we sort the 200 firms into deciles at the start of each year from value to growth
based on their annual price-dividend ratios, which are given by: P jt /D

j
t = P jt /

∑3
τ=0D

j
t−τ for firm

j. The models are simulated at a quarterly frequency for a minimum of 4 million quarters, until the
moments have converged: i.e. are sufficiently close to those when an additional 10% of simulated
quarters are also included. Sharpei is the unconditional Sharpe ratio for portfolio i’s annual return
while R2

i is the regression R2 for portfolio i.

Portfolio E/P C/P B/M LW Base Wedge LRR-Vol
1 2

Expected Excess Return: E[Ri] −Rf

E[Ri] −Rf 1 4.71 5.05 5.67 5.28 3.38 2.02 3.24 3.87
10 12.95 11.81 10.55 10.81 5.30 6.07 7.06 8.27

HML 8.25 6.77 4.88 5.53 1.91 4.05 3.82 4.39

σ[Ri −Rf ] 1 19.35 18.99 17.77 19.55 9.90 9.23 10.51 16.18
10 18.11 17.24 18.46 17.67 11.46 11.99 15.72 16.54

HML 15.40 14.57 15.15 8.84 4.47 6.40 8.24 8.62

Sharpei 1 0.24 0.27 0.32 0.27 0.34 0.22 0.31 0.24
10 0.72 0.69 0.57 0.61 0.46 0.51 0.45 0.50

HML 0.54 0.46 0.32 0.63 0.43 0.63 0.46 0.51

CAPM α: Rit −Rft = αi + βi(R
m
t −Rft ) + εit

αi 1 -3.09 -2.70 -1.66 -2.72 -0.66 -1.66 -0.82 -2.45
10 6.22 5.34 3.97 3.72 0.54 1.10 0.48 1.59

HML 9.31 8.04 5.63 6.45 1.20 2.71 1.30 4.03

βi 1 1.18 1.17 1.11 0.99 0.90 0.80 0.66 0.92
10 1.02 0.98 1.00 0.87 1.06 1.10 1.07 0.98

HML -0.16 -0.19 -0.11 -0.11 0.16 0.30 0.41 0.05

R2
i 1 0.83 0.85 0.87 0.96 0.95 0.87 0.84 0.90

10 0.71 0.72 0.65 0.92 0.97 0.97 0.99 0.96
HML 0.02 0.04 0.01 0.06 0.14 0.25 0.53 0.01
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Figure 1: Returns on Zero-coupon Equity: Base vs LW Case. The figure plots the uncondi-
tional expected annual return, the unconditional volatility of annual return and the unconditional
Sharpe ratio for annual return in the top, middle and bottom graphs respectively. In each graph,
the solid black line is for the LW case, the dot-dashed line is for the base case, the dotted line is
for wedge case 1, the dashed line is for wedge case 2, and the solid pale blue line is for the LRR-vol
case. The quarterly return on zero-coupon equity with n years to maturity is calculated as the
return from holding zero-coupon equity with n years to maturity at the start of the quarter. The
annual return on zero-coupon equity with n years to maturity is then obtained by rolling over these
quarterly returns for 4 quarters. The models are simulated at a quarterly frequency for a minimum
of 4 million quarters, until the moments have converged: i.e. are sufficiently close to those when
an additional 10% of simulated quarters are also included.
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Figure 2: Zero-coupon Aggregate Equity Log Price-dividend Ratio Coefficients A(n),
Bz(n) and Bx(n): Ours vs LW Case. The figure plots A(n), Bz(n)(1 − φz) and Bx(n) in the
top left, top right, and bottom left graphs respectively. In each graph, the solid black line is for the
LW case, the dot-dashed line is for the base case, the dotted line is for wedge case 1, the dashed
line is for wedge case 2, and the solid pale blue line is for the LRR-vol case. A(n), Bz(n) and Bx(n)
are, respectively, the constant coefficient, the coefficient on zm and the coefficient on x in equation
(7) of section 2 for the zero-coupon aggregate equity price-dividend ratio paying out in n periods.
Bz(n) is multiplied by (1 − φz).




