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1 Introduction

Let  = ( 0 0  0)0 denote a random vector drawn from some study population

of interest with distribution function  For some unique 0, and known function

 ( ) of the same dimension, we assume that

E [ ( 0)] = 0 (1)

where E [·] denotes expectations taken with respect to the study population. If a
random sample of  is available, then consistent estimation of 0 (under regularity

conditions) is straightforward (e.g., Newey and McFadden, 1994). Many statistical

models of interest can be represented in terms of moment restrictions like (1); see

Wooldridge (2002) for a textbook exposition.

In this paper we consider estimation of 0 when a random sample of  =

( 0 0  0)0 is unavailable. Instead two separate samples are available. The first

is drawn from the study population and contains  measurements of ( )  The

second is drawn from an auxiliary population (with distribution function ; E [·]
denotes expectations taken with respect to this distribution) and contains  mea-

surements of ( )  While the variable  is common to the two samples,  and

 are not. Hahn (1998) and Chen, Hong and Tarozzi (2008) show that identification

of 0 follows if (i) the conditional distributions of  given in the two populations

coincide (although their marginal distributions for  may differ), (ii) the support

of  in the auxiliary population is at least as large as that in the study population

and (iii)  ( 0) is separable in the components depending on the ‘non-common’
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variables  and 

 ( 0) =  ( 0)−  ( 0)  (2)

Examples of statistical problems to which the above setup applies include the

two sample instrumental variables (TSIV) model of Angrist and Krueger (1992)

and Ridder and Moffitt (2007), the average treatment effect on the treated (ATT)

estimand from the program evaluation literature (e.g., Heckman and Robb, 1985;

Imbens, 2004), counterfactual earnings/wealth decompositions as in Dinardo, Fortin

and Lemieux (1996) and Barsky, Bound, Charles and Lupton (2002), poverty map-

ping as in Elbers, Lanjouw and Lanjouw (2003) and Tarozzi and Deaton (2007), di-

rect standardization methods used in demography (e.g., Kitagawa, 1964), and models

with mismeasured regressors and validation samples (e.g., Carroll and Wand, 1991).

To help fix ideas consider the ATT example. Here  denotes an individual’s

potential outcome under active treatment, say earnings given participation in a job

training program,  denotes her outcome under control (earnings in the absence of

training) and  is a vector of baseline covariates. Available is a random sample

of ( ) from the population assigned active treatment (i.e., ‘the treated’). A

separate sample of measurements of ( ) is drawn from a population of controls.

The ATT, 0 = E [ −], is given by the solution to (1) with  ( 0) = 

and  ( 0) =  + 0.

Dehejia and Wahba (1999), revisiting earlier work by LaLonde (1986), com-

bine two distinct samples to estimate the effect of the National Supported Work

(NSW) demonstration, a labor training program, on the post-intervention earnings

of trainees. Their study sample consists of 185 NSW participants, while their auxil-
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iary sample includes 2,490 non-participants drawn from the Panel Study of Income

Dynamics (PSID). These two samples consist of random draws from distinct, non-

overlapping, populations. The two sample feature of their analysis distinguishes it

from one seeking to estimate a population average treatment effect (ATE). In that

case the researcher generally bases her analysis on a random sample from the pop-

ulation of interest, where some units happen to be treated, and others not (e.g.,

Rosenbaum and Rubin, 1983). There the inferential problem is usefully conceptual-

ized as one of missing data and the general theory of Robins, Rotnitzky and Zhao

(1994) directly applies.

The theoretical statistics literature has emphasized differences between data com-

bination and missing data problems. In an important paper Hahn (1998) showed that

while prior restrictions on the form of the propensity score do not lower the semi-

parametric variance bound for the ATE, they do lower the corresponding bound for

the ATT. Chen, Hong and Tarozzi (2008) generalize this result, showing that, unlike

in the missing data context (their ‘verify-in-sample’ case), knowledge of the form of

the propensity score is asymptotically valuable in data combination problems (their

‘verify-out-of-sample’ case).

Our contribution is to develop a flexible parametric estimator for general data

combination problems with good efficiency and robustness properties. Similar to the

augmented inverse probability weighting (AIPW) estimator for missing data prob-

lems due to Robins, Rotnitzky and Zhao (1994), our data combination procedure is

locally efficient and doubly robust. To our knowledge we are the first to propose a

locally efficient, doubly robust, estimator in the data combination context. Chen,

Hong and Tarozzi (2008) propose a globally efficient estimator, but their procedure

requires nonparametric modelling as opposed to the flexible parametric approach
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adopted here. Our methods provide a practical alternative to theirs when  is

high dimensional. Abadie (2005) develops a parametric propensity score reweighting

(PSR) estimate of the ATT. Qin and Zhang (2008) show that Abadie’s estimator

can have low efficiency in some settings and propose an alternative that uses empir-

ical likelihood ideas. Qin and Zhang (2008) do not characterize the semiparametric

efficiency or robustness properties of their ATT estimator, nor show how to extend

it to the wider class of problems considered here. Hirano and Imbens (2001) also

propose a modification of Abadie’s (2005) estimator. They demonstrate that their

modified estimator exhibits a double robustness property, but do not consider issues

of semiparametric efficiency nor general data combination problems as we do.

In Section 2 we define the semiparametric data combination model. We also

describe a number of specific data combination problems that arise frequently in ap-

plied statistics and econometrics. Slightly generalizing the work of Chen, Hong and

Tarozzi (2008) we calculate the semiparametric efficiency bound for our model. We

relate our efficiency bound analysis to prior work on distribution function estimation

based on a random sample from the population of interest and a second, biased,

sample from the same population (e.g., Qin, 1998; Gilbert, Lele, Vardi, 1999). In

Section 3 we define our estimator and formally characterize its large sample proper-

ties. Section 4 provides an empirical application and reports on the results of several

Monte Carlo experiments.

2 Semiparametric data combination model

A formal definition of the data combination model is given by Assumption 2.1 below.
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Assumption 2.1 Semiparametric Data Combination Model

(i) (Identification) For some  ( ) =  ( ) −  ( ), equation (1)

holds with E [ ( )] 6= 0 for all  6= 0  ∈ G ⊂ R,  ∈ Z ⊂ Rdim();
(ii) (Conditional Distributional Equality)  (|) =  (|) and  (|) =
 (|) for all  ∈W ⊂ Rdim( )  ∈ X ⊂ Rdim() and  ∈ Y ⊂ Rdim( );
(iii) (Weak Overlap) Let  = { :  ()  0} for  =  , then  ⊂ ;

(iv) (Multinomial Sampling) With probability 0 ∈ (0 1− 0) for 0  0  1

we draw a unit at random from  and record its realizations of  and  , other-

wise we draw a unit at random from  and record its realizations of  and  Let

 = 1 if the  draw ( = 1     ) corresponds to a study population unit and

 = 0 otherwise;

(v) (Propensity score model) There is a unique 0 ∈ D ⊂ R1+  known

vector  ( ) of linearly independent functions of  with a constant in the first

row, and known function  (·) such that (i)  (·) is strictly increasing, differentiable
and maps into the unit interval with lim

→−∞
 () = 0 and lim

→∞
 () = 1, (ii)

()

()
= 1−0

0

(()00)
1−(()00) for all  ∈ W, and (iii) 0   (()0) ≤   1 for all

 ∈ D and  ∈W.

The first part of Assumption 2.1 implies global identifiability of the complete data

model. The second part implies that the distributions of ( ) and ( ) in the

two populations differ only in terms of their marginal distributions for the always

measured variable,  . The third part ensures that, in large samples, for each unit

in the study sample there will be matching units with similar values of  in the

auxiliary sample. The fourth part of Assumption 2.1 allows us to treat the merged
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sample ©
(

0 (1−)
0


0
 )
0ª

=1


‘as if’ it were a random one from a pseudo merged population with distribution func-

tion  (let E [·] denote expectations taken with respect to this distribution). The
semiparametric data combination model is typically defined by specifying properties

of the merged population (e.g., Hahn, 1998; Chen, Hong and Tarozzi, 2008). We

prefer the formulation given above because it (i) emphasizes that the problem is fun-

damentally one of combining two datasets and (ii) in many applications the merged

population does not correspond a real world population. Formulating a model by im-

posing restrictions on a pseudo-population is somewhat awkward (cf., the discussion

in Abadie and Imbens (2006, p. 239)).

The sampling distribution induced by the multinomial scheme,  , has density

 ( ) = 
0 (1−0)

1−  ()
  ()

1− 

such that  (|  = 1) =  () and  (|  = 0) =  ()  Now consider the condi-

tional probability given  =  that a unit in the merged sample corresponds to a

draw from the study population. Let E[| = ] = 0 () denote this ‘propensity

score’, by Bayes’ Law we can define a relationship between the study and auxiliary

densities of  in terms of 0 ()

 () =  ()

½
1−0

0

0 ()

1− 0 ()

¾
 (3)

Under the merged population formulation of the problem it is clear that part (i) of

Assumption 2.1 corresponds to requiring that E [ ( 0)| = 1] = 0 part (ii) to
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conditional independence restrictions on the merged population distribution function

of  (|  = 1) =  (|  = 0) and  (|  = 1) =  (|  = 0)  and parts
(iii) and (iv) to assuming that 0 () is bounded away from one. Part (v) of the

assumption implies that the density ratio  ()  () takes a parametric form or,

equivalently, that the propensity score is known up to a finite dimensional parameter.

Identification of 0 follows from, using parts (ii) and (iii) of Assumption 2.1 and

Equation (3), the equality

E [ ( )] = E
∙


0

 ( )

¸
− E

∙
1−

0

0 ( )

1− 0 ( )
 ( )

¸
 (4)

which is, by part one of Assumption 2.1, uniquely zero at  = 0 See Lemma 3.1 of

Abadie (2005) for a formal proof.

2.1 Examples

To give some idea of the range of problems to which our methods apply, we outline

three examples (in addition to the program evaluation example discussed in the

introduction). Additional examples are described in Chen, Hong and Tarozzi (2008)

and Ridder and Moffitt (2007).

Two sample instrumental variables (TSIV) model: Ridder andMoffitt (2007)

consider two sample instrumental variables (TSIV) models of the form

E [{ ( ; )−  (1; )}  ( )] = 0
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with  = ( 0
0

0
1)
0
. The first sample consists of measurements of ( ) and the

second of ( ). They assume that both samples are random ones from the study

population (i.e., the samples are ‘compatible’). This corresponds to augmenting As-

sumption 2.1 with the additional requirement that  () =  ()  The TSIVmodel

is of the form required by (2) with  (  ) =  ( ; )  ( ) and  ( ) =

 (1; )  ( ). When  ( ) =  ,  ( ; ) =  and  (1; ) =  0 + 0
1

with 0 = (0 
0
0)
0
we have the linear model analyzed by Angrist and Krueger (1992).

Ridder and Moffitt (2007) show how one may estimate the Mixed Proportional Haz-

ard (MPH) model under this setup, while Ichimura and Martinez-Sanchis (2004)

discuss binary choice models.

A concrete example of a TSIV problem is provided by the work of Currie and

Yelowitz (2000), who consider the model

E [ ( − 00 − 0
10)] = 0

where  is an indicator for whether a school-aged child has repeated a grade, 

an indicator for residence in public housing, 0 equals the number of male siblings

in the household, and 1 equals the overall number of siblings and also contains

other household characteristics;  = ( 0
0

0
1)
0
. Their interest centers on the causal

effect of residence in public housing on human capital acquisition. The number of

male siblings changes the probability of residence in public housing since, conditional

on the overall number of siblings, families with a mixture of boys and girls qualify

for larger units and hence higher (implicit) housing subsidies. Currie and Yelowitz

(2000) additionally argue that, conditional on the total number of one’s siblings,

their gender mix should not influence schooling independently of any effect mediated
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by exposure to public housing. Hence 0 may serve as an instrumental variable for

.

Currie and Yelowitz (2000) observe  and for a random subsample of children

drawn from the US Census. The Census, however, does not collect information

on residence in public housing, . This information is available in the US Current

Population Survey (CPS), which also includes measurements of (but not  ). They

treat both the Census and CPS samples as random ones from their study population

(school-aged children living in the United States) and use a variant of Angrist and

Krueger’s (1992) method to estimate 0 = (0 
0
0)
0


In applications of the TSIV model, like Currie and Yelowitz’s (2000), it is often

found that the sample moments of the common variables differ significantly across

the two datasets being combined (see also Björkland and Jäntti, 1997). This suggests

that full compatibility may fail in practice (i.e.,  () 6=  ()). The estimator

presented below does not require full compatibility and is generally more efficient

than the one proposed by Angrist and Krueger (1992) (compare Theorem 3.1 below

with Angrist and Krueger (1992, p. 331) or Moffitt and Ridder (2007, p. 5505)).

Poverty mapping: Let  be an indicator denoting whether a household’s total

outlay falls below a poverty line and a vector of household characteristics. We seek

to estimate the poverty rate in a specific study municipality as in Elbers, Lanjouw

and Lanjouw (2003) and Tarozzi and Deaton (2007). Available is a random sample

of  observations of  from this municipality; however, no poverty measurements

are available in this sample. Also available is a random sample of size  of both

 and  from the entire country. Our estimand is 0 = E [] which corresponds

to setting  ( ) = 0 and  ( ) =  −  In this example part two of
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Assumption 2.1 implies that the conditional probability of begin poor given  = 

is the same in the entire country as it is in the specific municipality of interest.

Counterfactual distributions and direct standardization: We develop this

example in our empirical application below. Let  be wages of employed Black males

and  those of White males. Let be a vector of worker characteristics. A random

study sample of Black, and another auxiliary sample of White, workers are available.

We seek to decompose differences in specific quantiles of the Black and White wage

distributions into portions due to (i) differences in the distribution of characteristics,

and (ii) differences in the mapping from those characteristics into wages, across the

two populations. The latter difference is sometimes interpreted as a measure of labor

market discrimination, although this interpretation is not assumption free (cf., Darity

and Mason, 1998).

This decomposition requires knowledge of the distribution of White wages that

would prevail under the Black distribution of worker characteristics. That is, what

would the wage distribution look like in a hypothetical White population whose

distribution of  coincided with the one in the actual Black population? The 

quantile of this counterfactual distribution,  |, is identified by

E
£
1( ≤  |)− 

¤
= 0

which corresponds to setting 0 (0  ) =  − 1( ≤  |) and 1 (1 )

to a vector of zeros. The  quantiles of the actual Black and White earnings

distributions are denoted by | and  | . A decomposition into wage structure
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and compositional effects is then given by

| −  | =
¡
| −  |

¢− ¡ | −  |
¢


Barsky, Bound, Charles and Lupton (2002) and Fortin, Lemieux and Firpo (2010)

survey alternative decomposition methods. For discretely-valued  these methods

are similar to techniques used by demographers to standardize mortality rates across

localities (e.g., Kitagawa, 1964).

2.2 Efficiency bound

Hahn (1998, Theorem 1) calculated the semiparametric variance bound for the special

case where 0 is the ATT and part (v) of Assumption 2.1 is not part of the prior

restriction. Chen, Hong and Tarozzi (2008, Theorem 3) include part (v) in their

prior, but assume that  ( ) = 0. The following result generalizes that of

Chen, Hong and Tarozzi (2008) to the case where the moment function is of the

form given in (2). To present this result we require some additional notation. Let

Γ0 () = E
∙
 ( 0)

0

¯̄̄̄
 = 

¸
 0 () =  (()00)

 () = E [ ( 0)| = ]   () = E [ ( 0)| = ]

Σ (; 0) = V ( ( 0)| = )  Σ (; 0) = V ( ( 0)| = )

S =
 − (( )00)

 (( )00) [1− (( )00)]
1 (( )

00) ( )
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and

Λ ( ) =

µ
0 ( )

0

¶2½
Σ ( ; 0)

0 ( )
+

Σ ( ; 0)

1− 0 ( )
(5)

+ [ ( )−  ( )] [ ( )−  ( )]
0ª

+E
∙µ



0 ( )
− 1
¶
0 ( ) { ( )−  ( )}

0

S0
¸

×E [SS0]−1 E
∙µ



0 ( )
− 1
¶
0 ( ) { ( )−  ( )}

0

S0
¸0


Theorem 2.1 (Semiparametric Variance Bound) Under Assumption 2.1 the

maximal asymptotic precision with which 0 may be regularly estimated is given by

the inverse of I (0) = E
h
0( )

0
Γ0 ( )

i0
E [Λ ( )]−1 E

h
0( )

0
Γ0 ( )

i


Proof. See the supplemental appendix.

It is easy to show that the information bound for 0 is smaller in the model which

leaves 0 ( ) nonparametric (i.e., where part (v) of Assumption 2.1 is not part of the

prior). Knowledge of the parametric form of the propensity score increases the large

sample precision with which 0 may be estimated. In contrast, in semiparametric

missing data problems it is well-known that parametric restrictions on the propensity

score do not shift the efficiency bound (e.g., Robins, Rotnitzky and Zhao, 1994; Hahn,

1998). The value of prior restrictions on the propensity score distinguishes the data

combination problem from the missing data one.

To better understand this difference consider estimation of the study popula-

tion distribution of  . Since a random sample of  from the study population is

available, an obvious estimate is the study sample empirical distribution function

b () =
1



X
=1

1 ( ≤ )  (6)
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Here, and it what follows, we assume without loss of generality that the merged

sample is arranged such that its first  units correspond to study population draws,

and its remaining  units to auxiliary sample draws. If nothing is known about

the relationship between  () and  (), as is true when the propensity score is

left nonparametric, then this estimator is also efficient. However if the relationship

between  () and  () is a priori restricted, as occurs when the propensity score

is parametrically specified, a more efficient estimate can be constructed.

Let (()0b) denote the conditional maximum likelihood estimate of the

propensity score and b =
P

=1(()
0b) that of 0, then the estimate

b eff
 () =

X
=1

beff 1 ( ≤ )  beff =
(()

0b)P

=1(()0b)
(7)

efficiently uses the information in both the study and auxiliary samples to estimate

 (). To understand (7) note that Bayes’ law gives  () =  (| = 1) =

0 ()  () 0; replacing 0 () and 0 with their maximum likelihood esti-

mates, and  () with the empirical measure of the merged sample, 1 , givesb () = beff , for beff defined in (7). In contrast to (6), (7) uses both study and

auxiliary units — linked via a parametric form for the propensity score — to efficiently

estimate  () 

Parts (v) of Assumption 2.1 implies that we can view the auxiliary sample as a

biased sampled from the study population of interest where the biasing function is

known up to a finite dimensional parameter (cf., Qin, 1998; Gilbert, Lele and Vardi,

1999; Ridder and Moffitt, 2007). As is well known, a biased sample may be combined

with a random one to form a more efficient distribution function estimate as long as

the biasing function is known or parametrically specified. Equation (7) is a specific

13



application of this general idea.

Since 0 involves integration over the study population distributions of ( )

and ( ), these two distribution functions must be (implicitly) estimated in order

to estimate 0. The estimator we propose in the next section improves the efficiency

of these distribution function estimates by requiring them to share a finite number

of moments of  in common with b eff
 (). The idea of calibrating a distribution

function estimate to information garnered from auxiliary sources arises in other con-

texts. Little and Wu (1991) discuss contingency table calibration to known margins

and provide historical references (cf., Hellerstein and Imbens, 1999). Hirano, Im-

bens, Ridder and Rubin (2001) show how calibration to marginal information from

refreshment samples may be used to correct for certain types of nonignorable at-

trition in panel data. In the context of average treatment effect estimation, Tan

(2006) calibrates estimates of the two potential outcome distributions to features of

the empirical distribution of always observed variables (cf., Qin and Zhang, 2007;

Graham, Pinto and Egel, 2010). Recently Cheng, Small, Tan, and Ten Have (2009)

apply related ideas to an instrumental variables model.

We calibrate our estimates of the study population distributions of ( ) and

( ) to features of (7) (which is the most efficient estimate of  () when the

propensity score takes a parametric form). In missing data problems the population

of interest corresponds to what we have termed the merged population. The most

efficient estimate of the merged population distribution function of  is the merged

sample empirical distribution function. This is true irrespective of the form of the

propensity score. This provides one intuition for why prior knowledge of the form of

the propensity score is not valuable in the missing data context (cf., Graham, 2011).
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3 Auxiliary-to-Study Tilting

Our estimator for 0, which we call the auxiliary-to-study tilting (AST) estimator,

is a sequential method of moments estimator, as surveyed by, for example, Newey

and McFadden (1994). In the first step we estimate the propensity score parameter

 by conditional maximum likelihood:

1



X
=1

 −
³
 ()

0b

´

³
 ()

0b

´ h
1−

³
 ()

0b

´i1

³
 ()

0 b

´
 () = 0 (8)

In the second step we compute a reweighting of both the study and auxiliary

samples. Let  ( ) be vector of known linear independent functions of  with

a constant 1 in the first row and  and  be ‘tilting’ parameters of the same

dimension. We allow for  ( ) and  ( ) to include common elements or even

coincide. Fixing  at b and  at b =
P

=1(()
0b) we choose b to

solve:

1



X
=1

⎛⎝ 1−

1−
³
 ()

0 b +  ()
0 b´ − 1

⎞⎠ 
³
 ()

0 b

´
b

 () = 0 (9)

To understand this method of choosing b its helpful to rearrange (9) to get
1



X
=1

1−b


³
 ()

0b

´
 ()

1−
³
 ()

0 b +  ()
0 b´ =

1



X

=1


³
 ()

0b

´
 ()b

X
=+1

b  () =
X

=1
beff  ()  (10)
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for

b = 
³
 ()

0b

´
P

=1(()0b)

1

1−
³
 ()

0b +  ()
0 b´   =  + 1     

The term to the right of the equality in (10) is an estimate of E [ ()] — the study

population mean of  () — based on the efficient distribution function estimate

(7). It is consequently an efficient estimate of E [ ()]  The solution to (9) — our

estimate of  — is chosen to form a reweighting of the auxiliary sample such thatP

=1 b  () is numerically identical to the efficient estimate of E [ ()] based onb eff
 ().

To better understand (10) recall that, as shown by Abadie (2005) and others, the

propensity score reweighting type estimator

bPSR
 () =

1



X
=1

1−b


³
 ()

0b

´
1−

³
 ()

0 b

´1 ( ≤  ≤ ) 

is consistent for the study population distribution function of ( ). Our AST

estimator replaces bPSR
 () with the more efficient tilted version

bAST
 () =

X
=+1

b 1 ( ≤  ≤ ) 

This tilted distribution estimate, unlike bPSR
 (), is guaranteed to integrate to

one and shares a finite number of moment in common with b eff
 () 
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We also compute an analogous tilt of the study sample

1



X
=1

⎛⎝ 


³
 ()

0b +  ()
0 b´ − 1

⎞⎠ 
³
 ()

0 b

´
b

 () = 0 (11)

so that
X
=1

b  () =
X
=1

beff  ()  (12)

for

b = 
³
 ()

0b

´
P

=1(()0b)

1


³
 ()

0 b +  ()
0 b´   = 1     

With the auxiliary and study sample tilts in hand we then choose b to solve,
holding b and b fixed at their second step values,

X
=1

b (b )− X
=+1

b (b ) = 0 (13)

Inspection of (13) indicates that our estimate of 0 is based on two separate

estimates of the study population distribution function. The first, corresponding to

the study tilt {b}

=1 is an estimate of the study population distribution of (),

the second, corresponding to the auxiliary tilt, {b }=+1
, is an estimate of the study

population distribution of the (). Neither of these two estimates coincide with

the efficient estimate of the study population distribution of  alone (i.e, with (7)),

but they do share important features with it. Specifically they are constructed so

that the means of  ()  computed using the two tilts, coincide with the efficient

estimate.
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Our next two results provide formal descriptions of the asymptotic sampling prop-

erties of b under different combinations of assumptions. We begin by introducing
the following assumption.

Assumption 3.1 (Moment CEF) For some unique pair of matrices Π Π and

vector of linear independent functions  ( ) with a constant in the first row, we have

E [ ( 0)| ] = Π ( )  E [ ( 0)| ] = Π ( ) 

Assumption 3.1 posits a working model for the conditional expectation functions

(CEFs) of  ( 0) and  ( 0) given  . The substantive content of this

assumption is, of course, model and application specific. The ATT example discussed

in the introduction provides a simple illustration. In that case Assumption 3.1 implies

that the CEFs of the potential outcomes given active and control treatment,  and

, are linear in  ( ). Thus, if the object of interest is the ATT, the analyst should

pick the elements of  ( ) so as to provide a good approximation to these two CEFs.

For the two sample instrumental variables (TSIV) model it is possible to show that

the correct  ( ) is an implication of the structure of the first stage relationship

between the endogenous right hand side variable, , and the instrument vector,  .

Let E∗ [ |] denote the mean squared error minimizing linear predictor of 
given . If both Assumptions 2.1 and 3.1 hold the Appendix shows that b is
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asymptotically linear with representation

√
 (b − 0) = −Γ−10

1√


X
=1

½


0

{ ( 0)−  ()} (14)

−1−

0

0 ()

1− 0 ()
{ ( 0)−  ()}

+
0 ( )

0

{ ( )−  ( )}

+
1

0

E∗
∙µ



0 ( )
− 1
¶
0 ( ) ( ( )−  ( ))

¯̄̄̄
S
¸¾
+  (1) 

Equation (14) then gives our asymptotic efficiency result.

Theorem 3.1 (Local Semiparametric Efficiency) Consider the semipara-

metric data combination model defined by Assumption 2.1 and additional regularity

conditions, then for b the solution to (13), b is locally efficient at Assumption
3.1 such that

√
 (b − 0)

→ N ¡0 I (0)−1¢ with I (0) as defined in Theorem
2.1.

Proof. See Appendix A.

Our efficiency bound calculation, Theorem 2.1, gives the information bound for 0

without imposing the additional auxiliary Assumption 3.1. This assumption imposes

restrictions on the joint distribution of the data not implied by the baseline model. If

these restrictions are added to the prior used to calculate the efficiency bound, then

it may be possible to estimate 0 more precisely. Our estimator is not efficient with

respect to this augmented model. Rather it attains the bound provided by Theorem

2.1 if Assumption 3.1 happens to be true in the population being sampled from, but

is not part of the prior restriction used to calculate the bound. Newey (1990, p.

114), Robins, Rotnitzky and Zhao (1994, p. 852 - 3) and Tsiatis (2006) discuss the
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concept of local efficiency in detail. In what follows we will, for brevity, say b is
locally efficient at Assumption 3.1.

Next we give our double robustness result. Here our result is slightly less general

than similar results in the missing data literature, but nevertheless may be useful in

practice.

Theorem 3.2 (Double Robustness) Under parts (i) to (iv) of Assumption 2.1,

b → 0 with a limiting normal distribution if either (a) part (v) of Assumption

2.1 also holds or (b)  () = exp ()  [1 + exp ()]   ( ) =  ( )  and Assumption

3.1 holds.

Proof. See Appendix A.

Theorem 3.2 indicates that the advantage of choosing  ( ) with Assumption 3.1

in mind is twofold. Under the baseline model defined by Assumption 2.1, Theorem 3.1

implies that b will have low sampling variation if  () = E [ ( 0)| = ]

and  () = E [ ( 0)| = ] are approximately linear in  ()  If the ana-

lyst misspecifies the propensity score, then b will remain consistent for 0 if this
condition holds and  () takes the ‘logit’ form.

The peculiar feature of Theorem 3.2, relative to analogous results in the missing

data literature (e.g., Tsiatis, 2006), is the requirement that the assumed propensity

score take the logit form. To understand this requirement note that, in general, (7)

will be an inconsistent estimate of the study population distribution of  when the

propensity score is misspecified. Calibrating the study and auxiliary tilts to moments

of this distribution will therefore typically produce an inconsistent estimate of 0.

However when condition (b) of Theorem 3.2 holds we have, from the estimating
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equations for the propensity score parameter,

1



X
=1

³
 −

³
 ()

0b

´´
 () = 0 (15)

Now consider the mean of  () with respect to b eff
 (). Using (15), and the fact

that  () contains a constant so that
P

=1(()
0b) =

P
=1

, we have the

equalities

X
=1

beff  () =
X
=1

(()
0b)P

=1(()0b)
 () =

P

=1 ()P

=1



Therefore, under the conditions of part (b) of Theorem 3.2,
P
=1

beff  ()
→ E [ ( )]

irrespective of whether the propensity score is correctly model. This implies that the

study and auxiliary tilts will be correctly calibrated such that, when Assumption 3.1

holds, b will remain consistent for 0
We note that, unlike in the missing data problem, where the propensity score is

ancillary, it is surprising that any data combination estimator is consistent in the

presence of propensity score misspecification since it enters the actual definition of

0 :

E [ ( 0)| = 1] = −10

Z
 ( 0) 0 ()  () d

Collectively Theorems 3.1 and 3.2 provide a strong theoretical case for using

AST in practice. If Assumption 3.1 happens to be true in the sampled populations,

then AST will be more efficient than the propensity score reweighting approach of

Abadie (2005). This result is analogous to the enhanced efficiency of the Augmented

Inverse Probability Weighting (AIPW) estimator of Robins, Rotnitzky and Zhao
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(1994) relative to conventional Inverse Probability Weighting (IPW) in the missing

data context. Furthermore, if the propensity score is inadvertently misspecified, AST

nevertheless remains consistent for 0 if Assumption 3.1 holds. We acknowledge

that in settings where the researcher is highly confident in Assumption 3.1 a direct

imputation approach may be preferable (e.g., Kline, 2011; Chen, Hong and Tarozzi,

2008). Such an approach is valid under weaker support conditions than maintained

by Assumption 2.1. A disadvantage of imputation is its sensitivity to violations of

Assumption 3.1; this limitation is illustrated by our Monte Carlo experiments below.

4 Application and Monte Carlo experiments

Empirical application Neal and Johnson (1996) study the role of ‘pre-market’

(i.e., acquired prior to age 18) differences in cognitive achievement in explaining

differences in earnings between young Black and White men. Using a sample of

employed Black and White males drawn from the National Longitudinal Survey of

Youth 1979 (NLSY79), Neal and Johnson (1996) compute the least squares fit of the

logarithm of hourly wages on a constant, a black dummy, age, and AFQT percentile

score measured at age 16 to 18.2 They find that the coefficient on the black dummy

variable drops by two thirds to three quarters when AFQT score is included as a

covariate. On the basis of this finding they argue that differences in the rate of

cognitive skill acquisition across Blacks and White prior to age 18, due to differences

in family background, school quality and neighborhood characteristics, explains a

substantial portion of subsequent Black-White wage inequality. We do not provide

2The Armed Forces Qualification Test (AFQT) is used by the military for recruitment and

job assignment purposes. It is widely used as a measure of cognitive achievement in social science

research. The AFQT is a nationally normed test so that an individual’s percentile score corresponds

to her rank in the reference distribution.
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an assessment of this interpretation here, rather we are interested in the sensitivity

of their statistical finding to their maintained (linear) functional form assumptions.

Let  denote real average wages from 1990 to 1993 for a random draw from the

population of Black men aged 16 to 18 in 1979 and residing in the United States.

This population corresponds to our study population of interest. Let  denote real

wages for a random draw from the population of White men aged 16 to 18 in 1979

and residing in the United States. This corresponds to our auxiliary population. Let

 be a vector including year of birth and AFQT score (We transform the percentile

scores used by Neal and Johnson (1996) onto the real line using the inverse standard

normal CDF). We compare features of the observed distribution of Black wages with

those of a hypothetical White population whose age and AFQT distribution coincides

with that of the Blacks (i.e., with study population’s). These types of hypothetical

comparisons underlie Oaxaca decompositions, as used in labor and health economics,

and similar exercises undertaken in demography (e.g., Kitagawa, 1964). Barsky,

Bound, Charles and Lupton (2002) and Fortin, Lemieux and Firpo (2010) survey

the application of decomposition methods in economics.

Our sample closely resembles that used in Johnson and Neal (1998).3 It in-

cludes 1,371 measurements of real wages, race, age and AFQT score drawn from

the NLSY79. Throughout we replace the empirical measure of our sample with the

NLSY79 base year sampling weights (although this adjustment has little effect on

our results). The age distributions for Blacks and Whites in the merged sample are,

as would be expected, quite similar. The distribution of AFQT scores across the

two groups are quite different. The mean Black score is approximately one standard

3We attempted to exactly reconstruct the Johnson and Neal (1998) sample by following the

guidelines in their data appendix. Our sample differs form theirs negligibly, perhaps due to updates

in the NLSY79 databases since their research was undertaken.

23



deviation lower than the mean White score. The two distributions also substantially

differ in their second, third and fourth moments (not reported).

Panel A of Table 1 reports estimates of mean log Wages for Blacks (Column 1),

as well as the Black-White average difference (Column 2). On average Blacks earn

almost 28 percent less per hour than Whites in our sample. Panel A also reports

estimates of the CDF of the Black wage distribution at selected points, and the

corresponding Black-White CDF differences. For example, while over 45 percent of

Blacks earn less than $7.50 per hour in our sample, fewer than 30 percent of Whites

do (Table 1, Row 3). Inspection of the CDF differences indicates that, while the

distributions are most different at the lower wage levels, differences exist across the

entire support of wages.

Panel B of Table 1 reports average wage differences between Blacks and a hypo-

thetical population of Whites whose distribution of age and AFQT score coincides

with the Black distribution. This allows for a comparison between Black and White

wages that flexibly controls for differences between the two populations in age and

AFQT score.

In Column 1 of Panel B we report age- and AFQT-adjusted differences in mean

wages and wage CDFs based on the conditional expectation projection (CEP) esti-

mator of Chen, Hong, and Tarozzi (2008). Our implementation of their procedure

models the conditional expectation functions (CEFs) of  and  given  as a sep-

arable functions of a constant, two year of birth dummies, a quadratic polynomial in

transformed AFQT score, and twelve dummy variables for the transformed AFQT

score lying respectively below −2−175     05 Let  ( ) be the vector containing
all these functions of . In principle, if the dimension of the approximating model is

allowed to grow with the sample size, the Chen, Hong, and Tarozzi (2008) estimator
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Table 1: Raw and adjusted differences in Black versus White hourly wages

Panel A Panel B

(1)
Black

(2)
B−W

(1)
CEP

(2)
PSR

(3)
AST

Average (log(Wage))
6749
(0021)

−0279
(0026)

−01108
(00348)

−01072
(00303)

−01052
(00298)

Pr (Wage ≤ $500) 00801
(00125)

00566
(00135)

00243
(00216)

00246
(00193)

00278
(00187)

Pr (Wage ≤ $750) 04505
(00244)

02948
(00275)

01780
(00391)

01737
(00355)

01757
(00350)

Pr (Wage ≤ $1000) 06590
(00244)

02691
(00300)

00987
(00406)

00964
(00358)

00903
(00353)

Pr (Wage ≤ $1250) 08020
(00198)

02001
(00265)

00417
(00328)

00386
(00288)

00348
(00284)

Pr (Wage ≤ $1500) 08896
(00153)

01426
(00219)

00176
(00238)

00129
(00203)

00109
(00202)

Notes: Results based on extract of 1,371 Black and White men ages 16 to 18 in 1979 from
the NLSY79. Estimated standard errors, which account for within-household dependence

of outcomes across siblings, are reported in parentheses.

is consistent for, and efficient under, all data generating processes satisfying parts

(i) to (iv) of Assumption 2.1. In small samples the performance of the estimator is

heavily dependent on the quality of the two CEF approximations. After adjusting

for age and AFQT differences we find that, while a Black-White residual log wage

CDF gap remains at lower wage values, it disappears at higher values. The average

log wage gaps falls, after adjusting for age and AFQT differences, from −0279 to
−0111.
Column 2 of Panel B implements the propensity score reweighting (PSR) esti-

mator of Hirano and Imbens (2001) and Abadie (2005). We model the propensity

score as a logit function with an index linear in  ( ) as defined above for the CEP

estimator. The PSR estimates are very close in magnitude and precision to the CEP
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estimates.

Column 3 of Panel B implements our AST procedure using the same choice of

 ( ) and  ( ) =  ( )  This choice ensures that the study and auxiliary sample

tilts share the following features with the efficient distribution function estimate of

 : (i) the marginal year of birth distributions coincide, (ii) the means and variances

of the transformed AFQT score coincide, (iii) the probability masses assigned to

the intervals defined by the −2−175     05 grid of AFQT score intervals coincide.
Figure 1 plots undersmoothed kernel density estimates of the actual Black andWhite

AFQT score densities; the two distributions are very different from one another.

The figure also plots a density estimate based on the auxiliary sample tilt. This

corresponds to the AFQT score density in the hypothetical comparison population

of Whites. As is evident from the figure, our choice of  ( ) is rich enough to closely

match this density with is target Black one.

While the AST point estimates are similar to the corresponding CEP and PSR

ones, their estimated sampling precision is uniformly superior (as Theorem 3.1 would

suggest). The close correspondence between the CEP, PSR and AST point estimates

in our application likely reflects a combination of two factors. First, while the AFQT

distributions across Blacks and Whites differ dramatically, the support of the Black

distribution is clearly contained within that of the White distribution. Hence part

(iii) of Assumption 2.1 is well satisfied. Second the approximating models under-

lying each of the estimators are quite flexible. In settings where overlap is weaker,

and/or the approximating models more parsimonious (as would be required when

the dimension of  is large), we would expect the three estimators to more often

yield different point estimates depending on the true data generating process.

Our empirical application does generate new substantive findings relative to those
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Figure 1: AFQT Densities

Notes: The figure plots kernel density estimates of the actual Black and White
AFQT score distributions as well as an estimate based on the auxiliary sample tilt.

A Gaussian kernel is used with a bandwidth equal to 1/2 of Silverman’s ‘rule-of-

thumb’ choice. Undersmoothing highlights the ability of the auxiliary tilt to match

local features of the Black AQFT density.

of Neal and Johnson (1996). These are most easily described by reference to Figure 2.

Panel A of this figure plots differences in the quantiles of the unadjusted Black versus

White log wage distributions. Panel B plots the same differences after adjusting for

year of birth and AFQT differences using our AST procedure with  ( ) as described

above (i.e., differences in the quantiles of the study versus auxiliary sample tilts). The

shaded area in the two figures correspond to 95 percent pointwise confidence intervals.

These intervals were computed using a percentile bootstrap with 1000 replications

(sampling households with replacement). While the raw wage distributions differ

significantly at all quantiles, after adjusting for year of birth and AFQT differences,

they do not significantly differ for lower and higher quantiles. If we adopt the same

interpretative perspective as Neal and Johnson (1996), our results are consistent with

the conclusion that explicit labor market discrimination is less severe at the low and
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Figure 2: Actual and age- and AFQT-adjusted differences in the quantiles of the

Black versus White log wage distributions

Notes: Shaded areas correspond to 95 percent pointwise percentile bootstrap con-
fidence intervals.

high ends of the Black wage distribution, and most pronounced in the middle of

the wage distribution. The regression methods used by Neal and Johnson (1996)

preclude the discovery of these heterogeneous effects. Indeed the average age and

AFQT-adjusted wage gaps reported in row 1 of Table 1 are only two-thirds of the

difference of medians reported in Figure 2.

Monte Carlo We now report on a number of Monte Carlo experiments we con-

ducted to verify the theoretical properties described in Theorems 3.1 and 3.2. In

particular we wish to assess the relevance of our theoretical double robustness and

efficiency results. To do this we consider a stylized program evaluation setting. The

analyst wishes to estimate the average treatment effect on the treated (ATT).

In each of our first set of experiments we assume that  is distributed according

to a truncated normal distribution, with support [− ]  in both the study (treated)
and auxiliary (control) populations. The location and scale parameters of these two
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Table 2: Parameter values for Monte Carlo experiments

Design (1) (2) (3) (4)
2 1 23 1 23
2 34823 26590 17496 09253
2 0 0 −1 −1

distributions, respectively ( 
2
) and ( 

2
), may differ. We assume a multinomial

sampling scheme: with probability 0 = 12 a draw of ( ) is taken at random

from the study (treated) population, otherwise a draw of ( ) is taken from the

auxiliary (control) population. Finally we assume that  and , which play the

roles of the outcome under treatment and control, are generated according to

 | ∼ N ¡0 2 ¢
| ∼ N

³
0 + 1

¡
 −  |=1

¢
+ 2

h¡
 −  |=1

¢2 − 2 |=1
i
 2

´


where  |=1 and 
2
 |=1 are the study population mean and variance of (which

differ from  and 2 due to truncation).

The target parameter is 0 = E [ −] = 0. The propensity score induced by

these designs is of the logit form with an index quadratic in  :

0 () =
£
1 + exp

¡−0 − 1 − 2
2
¢¤−1



where 0, 1 and 2 are functions of ( 
2
) and ( 

2
) (cf., Anderson, 1982).

When the study and auxiliary population distributions of  have different means,

but a common variance, the logit index will be linear in  . When both the means

and variances differ, then the index will generally be nontrivially quadratic in  .
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Table 3: Monte Carlo results
(1)

Asymptotic

Scaled Bias

(2)

Median

Scaled Bias

(3)

Asymptotic

Std. Err.

(4)

Median

Std. Err.

(5)

Standard

Deviation

(6)

Coverage of

95% CI

(7)

RMSE

Design 1: 0 () linear,  () linear

CEP 0.0000 0.0097 0.0997 0.0996 0.0986 0.9526 0.0986

PSR 0.0000 0.0164 0.1007 0.1006 0.1005 0.9506 0.1005

AST 0.0000 0.0055 0.0100 0.0998 0.0998 0.9540 0.0997

Design 2: 0 () quadratic,  () linear

CEP 0.0000 0.0137 0.0925 0.0924 0.0947 0.9480 0.0947

PSR 0.5053 0.5437 0.0905 0.0911 0.0912 0.9126 0.1039

AST 0.0000 0.0169 0.0941 0.0931 0.0941 0.9470 0.0942

Design 3: 0 () linear,  () quadratic

CEP -1.6125 -2.0082 0.1309 0.1296 0.1627 0.6204 0.3111

PSR 0.0000 -0.0137 0.1063 0.1037 0.1068 0.9420 0.1068

AST 0.0000 -0.0266 0.1076 0.1054 0.1081 0.9416 0.1081

Design 4: 0 () quadratic,  () quadratic

CEP -4.6038 -6.7095 0.1192 0.1157 0.1728 0.0010 0.8196

PSR -3.0049 -3.1031 0.0847 0.0821 0.0858 0.1694 0.2670

AST -2.8789 -2.9313 0.0941 0.0873 0.0953 0.1726 0.2908
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Across all designs we assume a sample size of  = 1 000 and set  = 0 
2
 = 1

 = −12 0 = 0 1 = 12, 2 = 1 and  = 3 We vary 2 and 2 across

designs to, respectively, induce nonlinearity in the (index of) the propensity score

and E [ ( 0)| ] =  ( ). We vary 2 across designs to keep the variance

bound fixed. Across each of our designs an efficient estimator will have an asymptotic

standard error of

q
I (0)−1 1000 = 110

Table 2 gives the parameter configurations for each of four Monte Carlo de-

signs. In the first design both the propensity score, 0 (), and  () are ‘linear’

in  (for 0 () ‘linear’ means linear in the logit index). In the second design the

propensity score is quadratic in , while  () remains linear. In Design three

the reverse is true, while in Design four both objects are ‘quadratic’. Across each

design we implement the AST estimator with  (·) being the logit function and
 ( ) =  ( ) = (1 )0. For the conditional expectation projection (CEP) esti-

mator we proceed ‘as if’ E [| ] were linear in  , while our implementation of

propensity score reweighting (PSR) uses a logit propensity score with a linear index.

Our AST estimator is consistent for 0 in designs 1 through 3. CEP is consistent

in designs 1 and 2, but inconsistent in design 3. The PSR estimator is consistent

in designs 1 and 3, but inconsistent in design 2. All estimators are inconsistent in

design 4 due to the nonlinearity of both 0 () and  (). Table 3 reports the results

of our experiments. Column 1 lists a ‘pencil and paper’ asymptotic bias calculation,

while Column 2 gives the median bias across 5,000 Monte Carlo replications (in both

cases bias is scaled by the ‘pencil and paper’ asymptotic standard error reported in

Column 3). As predicted, AST is median unbiased (up to simulation error) in designs

1 through 3. In contrast, PSR is severely biased in design 2 and CEP in design 3.

As expected, all estimators perform poorly in design 4. These bias properties are
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reflected in the coverage of standard, Wald-based, 95 percent confidence intervals for

0 (Column 6). By comparing columns 1 and 2 and columns 3 and 5, we see that

— for the designs considered — the finite sample distributions of all of the estimators

are very well approximated by their asymptotic counterparts.

Recently Qin and Zhang (2008) have proposed an empirical likelihood type esti-

mator for the difference-in-differences program evaluation parameter (e.g., Abadie,

2005). This parameter may be viewed as a special case of the average treatment

effect on the treated (ATT) parameter. Their procedure, like ours, calibrates es-

timates of the study population distributions of ( ) and ( ) to features ofb eff
 (). They use empirical likelihood methods for this purpose, as opposed to our

‘tilting’ equations (9) and (11). In order to compare our method with the Qin and

Zhang (2008) EL procedure we replicated a subset of their Monte Carlo experiments.

Adapting their setup to our notation we let

1 ∼ N (0 1)  2|1 = 1 ∼ N (1 + 061 1) 

and

 | ∼ N ¡ ( )  2
2

¢
 | ∼ N ¡ ( )  2

2

¢


They assume the propensity score takes a logit form with an index linear in  =

(12)
0
(this in turn induces the conditional distributions of  given  = 0 1).

The intercept in the logit index is set equal to one across all designs, while the two

slope coefficients equal 01, 02 or 05 (corresponding to increasing selection bias).

The two conditional mean parameters are set equal to  ( ) = 2+21+22 and

 ( ) = 21+22 in Design (a) and  ( ) = 2+2
2
1−2+3

2
2 and  ( ) =

2 2
1 −2+3

2
2 in Design (b). Analogously to Qin and Zhang (2008) we choose two
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different specifications for  ( ). First, a ‘linear’ one of  ( ) = (112)
0  This

corresponds to the locally efficient choice in Design (a). Second, a ‘quadratic’ one of

 ( ) = (1 2
1 

2
2 )
0
 This choice in not efficient in either design, but is expected

to be more appropriate for Design (b). Across all designs the propensity score is

correctly specified with  ( ) = (112)
0  We set  = 1 000 and perform 1 000

Monte Carlo replications. The Monte Carlo statistics for the EL estimator are as

reported in Table 2 of Qin and Zhang (2008, p. 341).

By Theorems 3.1 and 3.2 above, and Theorem 3 of Qin and Zhang (2008, p.

339), both the AST estimator and the EL estimator should be consistent and as-

ymptotically normal across both designs and choices of  ( ). Our AST estimator

should be efficient in Design (a) when  ( ) takes the linear form. (see Table 5 in

the supplemental appendix).

In Design (a) the AST and EL estimator perform similarly in terms of bias (see

Table 4). However, when  ( ) is (correctly) specified to be linear in  AST has

substantially less sampling variation that the EL estimator (consistent with Theorem

3.1). This effect is largest when selection bias is severe. In that case the sampling

variation in the AST estimate is just over one half that of the EL one. When  ( )

is (incorrectly) specified to be quadratic, this efficiency ranking reverses. In Design

(b) the EL estimate exhibits lower sample variation than the corresponding AST

estimate when  ( ) is (incorrectly) specified to be linear. When  ( ) is quadratic,

which more closely approximates the efficient choice, this ranking is reversed. As

before the efficiency gains are increasing the degree of selection bias. In terms of

inference the AST Wald confidence intervals generally have actual coverage close to

nominal coverage, while the corresponding EL ones tend to be conservative.
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Table 4: Monte Carlo results: Qin and Zhang (2008) designs with N =1,000

(1)

Mean

Bias

(2)

Sample

Var.

(3)

Mean

Est. Var.

(4)

RMSE

(5)

Cov. of

95% CI

(1 2)  ( ) Design (a): Linear CEFs

(01 01) AST Lin -0.0004 0.0154 0.0151 0.1241 0.936

AST Qrd -0.0083 0.0285 0.0513 0.1690 0.988

EL Lin 0.0038 0.0204 0.0311 0.1429 0.981

EL Qrd 0.0040 0.0241 0.0357 0.1553 0.978

(02 02) AST Lin -0.0065 0.0216 0.0195 0.1471 0.930

AST Qrd -0.0039 0.0371 0.0555 0.1926 0.983

EL Lin 0.0031 0.0275 0.0402 0.1659 0.975

EL Qrd -0.0009 0.0306 0.0430 0.1749 0.972

(05 05) AST Lin 0.0024 0.0537 0.0428 0.2316 0.907

AST Qrd 0.0244 0.1015 0.0867 0.3193 0.920

EL Lin 0.0051 0.0900 0.7241 0.3000 0.912

EL Qrd -0.0089 0.1103 0.5842 0.3322 0.891

Design (b): Quadratic CEFs

(01 01) AST Lin 0.0009 0.3050 0.2856 0.5520 0.942

AST Qrd -0.0011 0.0168 0.0174 0.1297 0.947

EL Lin 0.0347 0.1561 0.2003 0.3966 0.966

EL Qrd 0.0029 0.0226 0.1181 0.1504 0.995

(02 02) AST Lin 0.0787 0.3620 0.3201 0.6065 0.916

AST Qrd 0.0078 0.0218 0.0217 0.1479 0.951

EL Lin 0.0477 0.1227 0.3790 0.3535 0.980

EL Qrd 0.0028 0.0309 0.4564 0.1758 0.998

(05 05) AST Lin 0.1943 0.7010 0.4425 0.8591 0.817

AST Qrd 0.0095 0.0549 0.0429 0.2343 0.906

EL Lin 0.1969 0.2647 3.2656 0.5509 0.959

EL Qrd 0.0075 0.1026 2.1138 0.3204 0.993
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While Qin and Zhang (2008) do not consider the semiparametric efficiency prop-

erties of their procedure, the results in Table 4 suggest that, in contrast to AST,

their estimator is not Locally Efficient at Assumption 3.1. Evidently the comparison

of the two estimators when Assumption 3.1 does not hold is more complicated.

5 Summary

When the propensity score is parametrically specified information in both the study

and auxiliary samples may be used to form an efficient estimate of  , the variable

common to both datasets. An intuition for this insight follows from recognizing that,

under part (v) of Assumption 2.1, the auxiliary sample is equivalent to a biased

sample from the study population with the biasing function known up to a finite

dimensional parameter. Using this efficient distribution function estimate we tilt the

propensity score reweighting type study population distribution function estimates

of ( ) and ( ) so that they share certain moments in common. By choosing

these moments carefully (i.e., with reference to Assumption 3.1) we can produce a

locally efficient estimate of 0 Even if the parametric relationship between the study

and auxiliary populations, as embodied in the propensity score model, is misspecified,

AST remains consist for 0 if Assumption 3.1 holds.

To our knowledge we are the first to propose a locally efficient, doubly robust

estimator for the class of data combination problems defined by Assumption 2.1.

Our results provide a useful complement to the work of Robins, Rotnitzky and Zhao

(1994), Tan (2006) and others for missing data problems. Relative to Chen, Hong

and Tarozzi (2008), who do provide explicit results for data combination problems

(their so called ‘verify-out-of-sample’ case), our approach may be useful when  is
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high dimensional such that their method, which requires nonparametric estimation

of  () and  (), is impractical. In future work it would be interesting to study

data dependent methods for choosing  ( ) 

A Proofs

Proof of Theorem 3.1: Let ( 0) be the 
 unit’s contribution to dim ( ( ))+

2 dim ( ( )) + dim (0) vector of estimating equations defined by (8), (9), (11) and

(13) in the main text. Let  = E [ ( 0) 0] ; a standard calculation gives the

asymptotically linear representation

√

³b − 0

´
= −−1

Ã
1√


X
=1

 ( 0)

!
+  (1)  (16)

The influence function for b corresponds to the last  elements of (16). By

tedious, but straightforward, calculation we can show that this subvector equals

√
 (b − 0) =

−−1
44√


X
=1

©
4 ( 0 0 0 0)−41

−1
11 1 ( 0) (17)

+42
−1
22

¡
21

−1
11 1 ( 0)−2 ( 0 0)

¢
+43

−1
33

¡
31

−1
11 1 ( 0)−3 ( 0 0)

¢ª
+  (1) 

where equals the expected value of the derivative of the 
 subvector of  ( )

with respect to the  subvector of  evaluated at  = 0.

Under part (v) of Assumption 2.1 the Information Matrix equality gives 11 =
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−E [SS0]. Evaluating 21 yields, after some manipulation,

21 = −E
∙µ

1−

1− 0 ( )
− 1
¶
0 ( )  ( )S0

¸
 (18)

where 0 ( ) = 
¡
 ( )0 0

¢
= 

¡
 ( )0 0 +  ( )0 0

¢
 These results imply that

21
−1
11 1 ( ) = E∗

∙µ
1−

1− 0 ( )
− 1
¶
0 ( )  ( )

¯̄̄̄
S
¸


with E∗ [ |] denoting the mean squared error minimizing linear predictor (LP) of
 given . Evaluating 22 and 42 yields

22 = E
∙

0 ( )

1− 0 ( )
1

¡
 ( )0 0

¢
 ( )  ( )0

¸
(19)

42 = − 1

0

E
∙

0 ( )

1− 0 ( )
1

¡
 ( )0 0

¢
 ( 0)  ( )

0
¸

(20)

Assumption 3.1 then gives 42
−1
22 = −Π0 Similar calculations give

31 = −E
∙µ



0 ( )
− 1
¶
0 ( )  ( )S0

¸
(21)

yielding

31
−1
11 1 ( 0) = E∗

∙µ


0 ( )
− 1
¶
0 ( )  ( )

¯̄̄̄
S
¸


Now consider 33 and 43; we have

33 = −E £1

¡
 ( )0 0

¢
 ( )  ( )0

¤
(22)

43 = − 1

0

E
£
1

¡
 ( )0 0

¢
 ( 0)  ( )

0¤  (23)
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Assumption 3.1 then gives 43
−1
33 = Π0 Tedious calculations give 41 equal

to

41 =
1

0

E
∙

1−

1− 0 ( )
 ( 0)S0

¸
 (24)

Using this result, iterated expectations and part (ii) of Assumption 2.1 we then get

−41
−1
11 1 ( 0) =

1

0

E∗
∙

1−

1−  ( )
 ( )

¯̄̄̄
S
¸


Substituting the above results into (17) and manipulating then gives (14).

Proof of Theorem 3.2: Asymptotic normality follows from standard results. Con-

sistency under part (a) is a consequence of Equation (4) in the main text. Showing

consistency under part (b) is more complicated. Denote the probability limits ofb, b,and b when part (v) of Assumption 2.1 fails to hold by, respectively ∗, ∗,

and ∗. Let ∗ ( ) = 
¡
 ( )0 ∗

¢
and  ( ) = 

¡
 ( )0 ∗ +  ( )0 ∗

¢
for

 =  . If  (·) takes the logit form, then ∗ ( ) will satisfy the population restric-
tion E [1 ( ∗)] = E [( − ∗ ( ))  ( )] = 0 so that, using iterated expectations

and rearranging, we have the equality.

E [ ( )| = 1] = E
∙
∗ ( )
0

 ( )

¸
 (25)

We also have E [2 ( ∗ ∗)] = E [3 ( ∗ ∗)] = 0, which, respectively multi-

plying by Π and Π (using Assumption 3.1), gives the additional equalities:

E
∙

1−

1−  ( )
∗ ( )  ( )

¸
= E [∗ ( )  ( )] (26)

E
∙



 ( )
∗ ( )  ( )

¸
= E [∗ ( )  ( )]  (27)
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Using (25), (26), (27), Assumption 3.1, iterated expectations, and part (ii) of As-

sumption 2.1 yields

E [4 ( ∗ ∗ ∗ )] = E
∙
∗ ( )
0

{ ( )−  ( )}
¸

= (Π −Π)E
∙
∗ ( )
0

 ( )

¸
= E [ ( )−  ( )| = 1]

= E [ ( )| = 1] 

which by part (i) of Assumption 2.1 is uniquely zero at  = 0.
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