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1 Introduction

This paper proposes a tractable model of some dimensions of bounded rationality (BR). It
is designed to be easy to apply in concrete economic situations, and to inject a modicum
of bounded rationality into existing models. It allows to study how and when bounded
rationality makes an important difference for economic outcomes.

Its principles are the following. First, the decision maker in the model is not the tra-
ditional rational agent, but is best thought of as an economist building a simplified model
of the world (a model-in-model). He builds a representation of the world that is simple
enough, and thinks about the world through his partial model. Second, and most crucially,
this representation is “sparse,” i.e., uses few parameters that are non-zero or differ from
the usual state of affairs.! I draw from the fairly recent literature on statistics and image
processing to use a notion of “sparsity” that still leads to well-behaved, convex maximization
problems. Third, the maximization can itself be imperfect, with a penalty that rises as the
action taken becomes increasingly different from the default action, and it relies on the same
sparsity criterion.

The decision maker simplifies his model of the world. For instance, he builds a model
where some parameters are irrelevant (while they actually do matter to some degree), where
some future cash flows do not occur, and where some variables are deterministic rather
than random. He assumes convenient probability distributions rather than the complexity
of reality: e.g., he might assume a distribution with two outcomes rather than a continuum
of outcomes. These choices are controlled by an optimization of his representation of the
world.

To motivate the model, I first consider a simple situation in which the decision maker
wishes to make a decision that should be the weighted sum of many factors, such as his
own income but also GDP growth in his country, the interest rate, recent progress in the
construction of plastics, interest rates in Hungary, the state of the Amazonian forest, etc.
Since it would be too burdensome to take all of these variables into account, he is going to

discard most of them.? I study how to specify the cost of enriching the decision maker’s

!The meaning of “sparse” is that of a sparse vector or matrix. For instance, a vector in 6 € R199:000 with
only a few non-zero elements is sparse.

2Ignoring variables altogether and assuming that they do not differ from their usual values are the same
thing in the model. For instance, in most decisions we do not pay attention to the quantity of oxygen that is
available to us because there is plenty of it. In the model, ignoring the oxygen factor is modeled as assuming
that the quantity of oxygen available is the normal quantity. Indeed, the two are arguably the same thing.



representation of the world. Following antecedents in statistics and applied mathematics
(Tibshirani 1996, Candés and Tao 2006, Donoho 2006), I show that one is particularly
appealing: the ¢; norm, i.e., the sum of absolute values of the non-zero updates in the
variables. The reasons are as follows. First, a quadratic cost would not generate sparsity:
small updates would have a miniscule penalty, hence under that model the decision maker
would have non-sparse representations. Second, a fixed cost per variable would give sparsity
but lose tractability; fixed costs lead to non-convex problems that make the solution very
complicated in general. Instead, the ¢; penalty both gives sparsity and maintains tractability.
The model generates full or partial inattention to many variables.

The unweighted /¢, criterion, used in the basic quadratic target problem, may not work in
general: for instance, dimensions might not be comparable — e.g., the units could be different.
I study how to generalize it. It turns out that, under some reasonable conditions, there is
only one unique algorithm that (i) penalizes the sum of absolute values in the symmetric
quadratic target problem, and (ii) is invariant to changes in units and various rotations of
the problem. This is the algorithm I state as the “Sparse BR” algorithm. Hence, basic
invariance considerations lead to an algorithm that is fairly tightly constrained. In addition,
the algorithm involves just a simple optimization problem, so it is easy to apply.

I apply the model to a few of the main building blocks of economics, so that a modicum
of bounded rationality can be injected into them and we can see when and how bounded
rationality makes a difference for economic outcomes.

I first study intertemporal consumption. In this model, the agent may not think about
all sources of income variables. Namely, he anticipates more about the usually important
one, and less or nothing at all about the small ones. As a result, the marginal propensity to
consume is different across income streams, whereas it would be the same in the traditional
model. This is much like Thaler’s (1985) “mental accounts.” Also, this generates system-
atic deviations from Euler equations: they point towards inertia as agents will react in a
dampened way to many future variables.

The next basic machinery of economics I apply BR to is a decision maker buying a vector
of n goods. He is the traditional agent, except that he wishes to economize on thinking about
all prices. The model generates a zone of insensitivity to prices: when prices are close to
the average price, the decision maker does not pay attention to them. I then study how a
firm will optimally price goods sold to such BR consumers. It is clear that the firm will not
just choose any price strictly inside the zone of consumer inattention: it will rather select a
price at its upper bound. Hence, a whole zone of prices will not be picked by firms. Even
as the marginal cost of goods changes, there will be a zone of complete price rigidity. In

addition, there is an asymmetry: there will sometimes be discrete downward jumps of the



price (“sales”) but no corresponding upward jumps from the normal price (the asymmetry
is due to the fact that the firm wants to keep a price as high as possible). Hence, we yield
a tractable mechanism for price rigidity based on consumer bounded rationality rather than
firms’ menu costs.

Then, I also consider a few more psychological phenomena. One is that of cognitive
overload: when the agent is confronted with too many decisions to make, the “cognitive
budget constraint” becomes saturated and the quality of his decision making decreases. I
also consider the endowment effect. In the model, the agent wishes to stay close to the
default or status quo, which naturally generates an endowment effect. The value added by
the model is that it yields a prediction of the size of the effect. As the Sparse-BR agent
wishes to remain with the status quo when there is more model uncertainty, we obtain a
higher endowment effect when the value of the good is more uncertain. This is different from
prospect theory where the size of the effect depends only on the hedonic value of the good.
Hence, the model explains why more experienced traders (List 2003) exhibit a much weaker
endowment effect.

This paper tries to strike a balance between psychological realism and model tractability.
The goal for the model is to be applicable without extensive complexity, and at the same time
to capture some dimensions of bounded rationality. The central elements of this paper — the
use of the ¢; norm to model bounded rationality (rather than physical transaction costs), the
accent on sparsity, and the Sparse BR algorithm — are, to the best of my knowledge, novel.
I defer the discussion of the relationship between this paper and the rest of the literature to
later in the paper when the reader is familiar with the key elements of the model.

The plan of the paper is as follows. Section 2 motivates the model in the context of a
stylized model where the goal is to hit a target. Section 3 states the basic model. Section
4 applies the latter to a few basic economic problems. One is how a BR consumer selects
a bundle of n goods while not completely processing the vector of prices. I also work out
how a monopolist optimally sets prices given such a consumer: we will yield a novel source
of real price rigidity, alongside occasional “sales” with large temporary changes in prices.
Section 5 applies the idea of different representations to the simplification of random vari-
ables and categorization, using the language of “dictionaries” from the applied mathematics
literature. Section 6 presents various enrichments of the model, for instance to discrete ac-
tions and models with constraints. It also discusses links with existing themes in behavioral
economics. Section 7 discusses the limitations of this approach, and concludes. Many proofs

are delegated to the appendix or the online appendix.



2 A Motivation: Sparsity and ¢/; Norm

We are developing a model where agents have sparse representations of the world, i.e., many
parameters are set to “0,” the default values. To fix ideas, consider the following decision

problem.

Problem 1 (Choice Problem with Quadratic Loss) The random variables x; and weights fi;

are freely available to the decision maker though perhaps hard to process. The problem is:

pick a to mazimize V (a,z, p) (a — Z,ule

If the z;’s are taken into account, the optlmal action is

n
= E i T -
i=1

For instance, to choose consumption a (normalized from some baseline), the decision maker
should consider not only his wealth, x;, and the deviation of GDP from its trend, x5, but
also the interest rate, x19, demographic trends in China, xq9, recent discoveries in the supply
of copper, xaq9, etc. There are n > 10,000 (say) factors w1, ..., x,, that should in principle be
taken into account. However, most of them have a small impact on his decision, i.e., their
impact p; is small in absolute value.

Hence, we want to model an agent that does not wish to bear the costs of analyzing all

these dimensions. He will just analyze “the most important ones.” Hence, he will calculate

n
= E miTy
i=1

for some vector m that endogenously has lots of zeros, i.e., m is “sparse.” For instance, if
the agent only pays attention to his wage and the state of the economy, m; and ms will be
non-zero, and the other m;’s will be zero.
Consider the expected loss from taking the imperfect (but parsimonious) policy a (m)
rather than the fully inclusive (but very expensive) policy a (u): L =E [V (a (u),x, 1) =V (a (m), z, )]
We have L = E| Zmle Z“le , and assuming for simplicity that the x;’s are

i.i.d. with mean 0 and varlance 1,
L=33
= — m
2 i

We desire a systematic procedure to predict how an agent will pick the “important

dimensions” that will receive non-zero weights m;. We will formulate the choice of m as an



optimization problem:

.1 a
72%%52(% — i)’ +“Z || (1)

with £ > 0 and a > 0. The first term is the utility loss from an imperfect representation of
the world, m;. The second term, k. |m;|”, represents a penalty for lack of sparsity: when
the decision maker has a non-zero or large |m;|, he pays a cost x|m;|" where k is a cost
parameter.

Let us analyze what o would be appealing given that we want to capture that the decision
maker has a sparse vector m. One natural choice would be o = 2, which leads to a quadratic
cost function. Then, we obtain — (m; — ;) — 2km; = 0, i.e., m; = u;/ (1 + 2k). This does
not yield any sparsity: all features matter, regardless of whether p; is small or large. We
just get some uniform dampening. Hence, we seek something else.

Another natural modeling choice would be o = 0 (with the convention |m|* = 1,,4),
which leads to a fixed cost function: the decision maker pays a cost k for each non-zero
element. Then, the solution is: m; = pu; if ;] > V2k, and m; = 0 otherwise. Now we
do obtain sparsity. However, there is a large cost in terms of tractability. Problem 1 is
no longer convex when o = 0 (it is convex if and only if & > 1). Its general formulation
(ming,epn £ (m) + k>, 1, # 0, for a convex F') is very hard to solve, and indeed generally
untractable in a precise sense.?

Now consider the problem with o = 1, i.e., a linear cost (with absolute values), as argued
in the recent statistics and applied mathematics literature (Tibshirani 1996, Candés and Tao
2006, Donoho 2006). Then, problem (1) is convex. Let us solve it. Differentiating (1), we
have:

—(m; — ;) — K- sign(m) =0 (2)

where sign (m) is the sign of m (sign (0) is the shorthand for some number between —1 and
1). Let us solve (2) when p; > 0. When the solution is m; > 0, we obtain m; = p; — &,

which requires p; > k. When 0 < p; < k, m; = 0. In general, we have:

e =7 (s ) ®)

for the function 7 which is plotted in Figure 1 and defined as follows.

Definition 1 The “anchoring and adjustment” function T is

7 (1, k) = (|u| — |&]) ;. sign (n), (4)

3Tt is “NP-complete” (Mallat 2009, chapter 12) in the terminology of complexity theory (if vector u has
1,000 components, the brute-force solution would be to study the 21990 ~ 103%° subsets of fixed costs).
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Figure 1: The anchoring and adjustment function 7

i.e., for k >0,
pte ifp<—k
T(u, k) =4 0 if lpl <k - (5)
p—r ifp>k

The salient features of (3) are, first, that when |u;| < k, m; = 0: all the small components
are replaced by 0. This confers sparsity on the model. Second, for p; > xk, m; = p; — k.
This corresponds to a partial adjustment towards the correct value ;. This motivates the
term “anchoring and adjustment,” a phenomenon demonstrated by Tversky and Kahneman
(1974). In their experimental evidence there is anchoring on a default value and partial
adjustment towards the truth (e.g., people pay only partial attention to the base rate when
forming probability inferences).

Formulation (3) yields sparsity: all terms that have |u;| < x are replaced by m; = 0. For
Wi > K, we get m; = j1; — K, so there is a certain degree of dampening.*

The conclusion is that we can use the /; norm, i.e., the one that corresponds to & =1 in
(1), to generate sparsity and tractability at the same time. It is easy to check that sparsity
is obtained if and only if @ € [0,1], and tractability (a convex maximization problem) is
obtained if and only if o € [1,00). Hence, « =1 (the {1 norm) is the only parametrization
that yields both sparsity and tractability.

We record the following lemma. Note that, in the notation m¢, d indicates a default

value, not a power.

4 Also, it is easy to see that m has at most min (Hu/n”l , Hu/n”ﬁ) non-zero components (because m; # 0

implies |p;/k| > 1). Hence, even with infinite-dimensional y and m, provided the norm of u is bounded, m
has a finite number of non-zero components, and is therefore sparse.



Lemma 1 For A >0, K >0, and a real number m?, the solution of

miné(m—u)2+K|m—m

d
i |

18

K
m m—I—T<,u m,—A)

where T is the anchoring and adjustment function given in (4).

Proof. By shifting m — m —m¢4, u — p—m?, it is enough to consider the case m? = 0.
The f.o.c. is
A(m — p) + Ksign (m) = 0.

That is, m = 7 (u, K/A). =

Let me discuss the interpretation of the model. In this model, the decision maker is
aware of dimension i, and even z;: still, if its importance |u;| is less than s, he discards that
dimension. In that sense, he behaves like an economic modeler (or a physics modeler for
that matter): an economic modeler is aware that there are many things outside his model,
and he often knows how to model them; still, he wishes to discard those dimensions to keep
the model simple. The decision maker does the same here.

Hence, the interpretation suggests some change of focus compared to the more conven-
tional economic approach, which is that of “optimization under informational constraints”
(see Veldkamp 2011 for an excellent survey of this literature). In the present model, the
decision maker knows a lot, but prefers to discard a lot of minor information to keep his
model sparse. The differences with existing approaches will be discussed in greater depth
later.’

The 7 function generates underreaction. It is worth seeing that this is a robust feature
of models of noisy cognition. Take the canonical model where the agent receives a signal
s = p+¢, with a non-degenerate noise ¢ uncorrelated with ;1 whose variance diminishes with
cognitive effort. Then, to minimize a quadratic loss function (m — u)Q, it is well known that
for (u,e) Gaussian with mean 0, the optimal signal extraction is m (s) := E [ | s] = As with
A = wvar (u) /var (s) < 1. This implies that E [m (s) | p] = Au, which generates dampening
as A < 1. This can increase our confidence that it is sensible for our model to generate

dampening.

5In the Sims (2003) entropy framework with Gaussian x;’s, one may check that the DM’s action (and
signal) is a = ¢, ¢iz; + n for a positive constant ¢ and an independent Gaussian noise 7; ¢ and 7 are
parametrized by the DM’s information capacity. Hence, the DM pays attention to all z;’s. The decision is
noisy but not sparse.



A tempting other formulation, ultimately not adopted here, is the following: use (1)
to find which dimensions to eliminate, but for those that survive, use m; = u;, i.e., pay
full attention (like in the fixed cost model). In other terms, use the “hard thresholding”
function 77 (j1, k) = g - 1,5, rather than the “soft thresholding” function 7. Indeed,
this 77 function has been used in statistics (Belloni and Chernozhukov 2010). For some
applications, this may be a useful model. However, it has several disadvantages. First,
underreaction may actually be desirable, as argued above. Second, as it also seems to hold
empirically, response functions are likely to be continuous, at least in the aggregate — and a
goal of this paper is to find a tractable representation of a boundedly rational representative
agent. Indeed, the soft thresholding function 7 (i, k) with ¢; penalty and parameter x can
be seen as the representative agent aggregation of many heterogenous agents using the /g
penalty with different fixed costs £.° Third, and more technically, the fact that the hard
thresholding function yields discontinuous response functions makes the model harder to
handle. In contrast, the ¢; formulation yields a convex decision problem, hence actions
depend continuously on the environment.

Accordingly, I proceed with the ¢; model and the soft thresholding, anchoring and ad-
justment function 7. I next generalize this idea to more general problems than the quadratic

model.

3 The Basic Model

3.1 Model Statement

The decision maker has a value function V (a,x, m), and wishes to select an action maxi-
mizing:
max V (a,x, i) . (6)

a
The action a € R™ is potentially multi-dimensional, i.e., maximization implies several ac-
tions: it could be the consumption of a good, the chosen allocation for a stock, etc.

The notation m € R" indicates the “representation of the world” (or “model-in-model”)
chosen by the agent, while the true (but potentially very complex) model is represented by
a vector u. In the previous examples, m; is the importance on a dimension of the world:
when m; = 0, the agent does not think about dimension ¢, while when m; = p;, the agent
fully pays attention to it. The value function is V' (a, z,m), and ideally the agent would like

to maximize V' (a,x, i), i.e., the value function evaluated at the true model p. However, his

6Indeed, if the distribution of ks is f(k,k) = lgsxk/k?, aggregation is exact: 7 (u,k) =
Jo© T (n k) £ (K, &) dE.



concern for sparsity will make him choose a simpler (actually sparser) model m rather than
the true model of the world p. Vector z € R™ is a series of quantitative features the decision
maker might pay attention to (in a way modulated by m). When there is no such z (see
Example 2 below), the value function is simply V' (a, m).

Finally, the decision maker has a representation m? € R™ and a default action a? € R™.
A default representation could be m¢ = 0, i.e., “do not think about dimension i.” Typically, a
good value for a? is the best response given by the default model, a? = argmax, V' (a, x, md).
That will often imply a? = 0, “do nothing,” or more precisely “do not deviate from the usual
action.” Arguably, such “do nothing” heuristics are among the most common decisions we
make. It is directly at the core of the model as a default action.

It is useful to keep some examples in mind. The first one is the one we started with.

Example 1 (Quadratic Target) We have V (a,z,m) = —3(a— Y, m;xz;)*, with true weights

1 and sparser weights m.
The next example shows how the model can capture “narrow framing.”

Example 2 (Narrow Framing): Let a be the optimal stock holding. Call w the baseline
income wealth, T the excess stock return, and € the labor income shock of the agent, so that

time-1 consumption is ¢(m) = w + ar + mé, with the true weight p =1, and
V (a,m) = Bu(w + ar + me).

In this example, n = 1 means that when picking equities, the decision maker explicitly takes
into account the other gambles in his life, such as labor income shocks. However, when
m = 0, the decision maker uses “narrow framing” or “narrow bracketing” (e.g., Rabin and
Weizsdcker 2009). The agent thinks about his optimal allocation in equities while forgetting
about the other gambles in his life, such as future income shocks. Hence, the model can offer

predictions about when the agent deviates from a narrow bracket.

The third example demonstrates how the decision maker may not pay full attention to a

variable of interest, such as the interest rate.

Example 3 (Neglected Interest Rate) The decision maker starts with wealth w, consumes a

at time 1, invests at a gross interest rate R, and consumes at time 2. His utility function is:
V (a, Ry,m) = u(a) +v(R(m)(w—a)), R(m)=R'+m (R, — RY).

When m = u = 1, the decision maker consciously uses the true interest rate R,. However,

when m = m® = 0, the decision maker does not pay attention to the interest rate; instead, he

10



uses a default interest rate R. This interest rate might be the average historical real gross

interest rate. Note also that the Euler equation fails.

To state the model, we assume a prior knowledge of the normal range of variation in the
action, reflected by a variable 7,, and in the representation, indicated by 7,,. I discuss them
below. For X a random variable, I define: || X||, = E[|X ]a]l/ “ for a > 0. Unless specified
otherwise, I take o = 2.

I assume that the derivatives V,, and V,,, (i.e., the second derivatives with respect to a
and m) are defined at (ad, x, md), and that V,, is negative definite (which is the case if the
function is locally strictly concave in a).

This paper proposes the following algorithm as a useful model of agents’ behavior. It
may be called the “Sparse Boundedly Rational” algorithm, or “Sparse BR” algorithm for
short.

Algorithm 1 (Sparse BR Algorithm) To solve the problem max,V (a,x, ), the sparsity-
seeking decision maker uses the following two steps:
Step 1. Choose an optimally sparse representation of the world. Using the

realism loss matriz A,

A=-E [‘/tzm‘/;;l‘/am] ’ (7)
the agent chooses his optimally sparse representation of the world as the solution of:

min - (m — )/ A (m — 1) + ] (8)

The first part is a measure of expected loss from an imperfect model m, while the second part

s a psychic cost that is a penalty for the lack of sparsity in the model:

K [m] = &mZ\mi—mf\ Vinianal| - (9)

Step 2. Choose an optimal action. The agent mazimizes over the action a:

max V (a,z,m) — K [a] (10)

a

where the psychic cost of deviations from the default x [a] is
wla] = kY |as = af| |Vagmiin|l - (11)

In (7), (9), and (11), all derivatives of V are evaluated at the default (a?,m?). The

11



unitless parameters k™ and k® indicate the cost of deviations from the default. When r* =

k™ =0, the decision maker is simply the traditional frictionless agent.

Let me comment on the parts of the model.

First-pass intuition for the model When ™ = 0, the decision maker’s model of
the world is the correct one: m = p. When x* = 0, the maximization is perfect, conditional
on the model-in-model. Hence, the model continuously includes the traditional model with
no cognitive friction. When cognition costs £ are non-zero, the model exhibits inertia and
conservatism: the model-in-model is equal to the default, and so is the action.

For many applications, it might be enough to just turn on either Step 1 or Step 2 of
the model. In most of this paper, only Step 1 will be turned on, i.e., I will assume perfect

maximization given the representation of the world (k* = 0).

When selecting m, the decision maker uses a quadratic approximation of the
1

objective function The expression L% (m) = 3 (m —p)’A(m — p) is the quadratic
approximation of the expected loss from an imperfect model m. More specifically, consider
a function V' with no z, and a (m) = arg max, V' (a, m), the best action under model m. The
utility loss from using the approximate model m rather than the true model p is L (m) =
Via(p),p) —V(a(m),u). A Taylor expansion shows that for m close to u, L(m) =
L (m) to the leading order.” This motivates the use of the first term in (8): it is a
representation of the utility loss from an imperfect representation.

One modeling decision in writing the Sparse BR algorithm is to use L% (m) rather than
the exact loss L (m), which would be very complex to use for both the decision maker and the
economist. The decision maker uses a simplified representation of the loss from inattention.
This is one way to escape Simon’s “infinite regress problem” — that optimizing the allocation
of thinking cost can be even more complex than the original problem. I cut that Gordian
knot by assuming a simpler representation of it, namely a quadratic loss around the default.

Finally, in evaluating (7), it is sometimes useful to take the expectation E over the
distribution of z’s (as in the quadratic model in Section 2), or to just take the realized values

of z (then, E is simply conditional on z, i.e., it could be suppressed).

"As a solves V, (a,m) = 0, the implicit function theorem gives V,,0a+ Vo dm = 0, i.e., da = =V, Vo dm
with dm = m — pu. Hence, the loss is:

1 1
L= —Vaba = 50aVaada = 0+ 5 (m—p) A(m—p).

12



Defaults The model requires a default action a? and a default representation m?. In the
applications below, the default action will be “do nothing” or “do as usual” while the default
representation is “do not think about dimension i,” m¢ = 0. This said, richer defaults could
be considered: the literatures on learning and in behavioral economics contain insightful
theorizations of such defaults (Koszegi and Rabin 2006). Social and other processes might

affect defaults in interesting ways.

Units and scaling Sparsity penalties k™ and «® are unitless numbers. The model has
the correct units: equations (8)-(11) all have the dimensions of V. Also, the equations are

independent of the units in which the components of m and a are measured. For instance,

if |m;| does depend on the units of m;, |m;| ||Vin,al does not. More generally, the model is
invariant (for small changes) to reparametrizations of the action: for instance, if the agent
picks consumption or log consumption, the representation chosen by the decision maker is
the same. This adds some robustness and ease of use to the model.

The term V., denotes by how much a change in the dimension m; affects marginal

utility V, (i.e., 37‘2‘? ). Hence, it is a measure of how important dimension i is. However, the
concept of marginal utility V,, is not unit-independent: it has the units of utils divided by
actions. As we do need a unit-independent concept, (9) writes the penalty as Vj,.,7,, where
. represents the demeaned range of the action a. For instance, if a € [0, 100], then we could
have 7, a random variable uniform on [—50, 50]. Written this way, the term V},,,7, becomes
unit-independent. Variables 7, and n,, largely ensure that the model has the right units and
scaling properties. They are typically not crucial in applications. To fully close the model,
the following choices prove sensible: when they are one-dimensional, we can have n, = g,
the standard deviation of a. One can typically say that 7, simply follows the distribution
of i, and a follows the distribution of a? (1, x), for instance.

However, the model is not invariant to the representations of the world m: some will
be better for the agent than others. That is arguably a desirable feature of the model, and
offers a simple way to model framing. For instance, suppose that w is real wage growth, =
inflation, w"™ = w + 7 is nominal wage growth, and that the agent has to guess real wage
growth w. If the agent has access to w (say 27 = w), he will use it, and his problem is simple.
However, if the agent (which is more realistic in many contexts) has only direct access to

nom

nominal wage growth z; = w"™ and inflation z, = 7, with say m¢ = 1 and m¢ = 0, then

his task will be harder, and will typically feature an incomplete adjustment for inflation.

Isn’t the algorithm complex? The algorithm has been designed to be easy to use

in economic applications. Also, it is not hard to use for the agent. For instance, Step 1

13



involves the maximization of a linear-quadratic problem (with an absolute value), and uses
only the properties of the value function around the default. It is still not a completely trivial
task, but it is simpler than the task of the traditional agent. In many cases, it is simply a
collection of n,, independent maximization problems, for which the solution can be readily
written down using the 7 function (as we shall see below).

Step 2 is indeed rather complex, but not really more so than the traditional agent’s
problem. In some cases, it is simplified by the term & [a], which anchors many actions at

their default and thus reduces the effective dimension of the action set to optimize on.

Why is the model set this way? The algorithm is written, first of all, to have some
descriptive realism. That will be argued in the rest of the paper. Also, it is designed to
have the following properties (for notational simplicity I drop the dependence on z in the
remainder of this section):

(i) It generalizes the loss function of the quadratic problem in Section 2, as we shall soon
see.

(ii) It gives the same answer irrespective of whether the decision maker maximizes
V (a,m) or V (a,m) + B (m) for an arbitrary function B: it should do so because adding
such a number B (m) does not change the problem.

(iii) The model does not depend on third- and higher-order derivatives. This is to keep
the model simple, and in some sense independent (at least locally) of various details like the
third derivatives.

(iv) The model is invariant to the units of the components m and a.

The following proposition, proven in the appendix, says that there is a unique algorithm,
namely the Sparse BR algorithm, that satisfies the above four criteria. In that sense, the

model is tightly constrained, and equation (9) is rather necessary.

Proposition 1 Normalize m® = 0. Suppose that the determination of m is

o1
m"lbn 5 (m - ,u)/ A(m — ,U) + K ((ml)zzln sNay Vs Vins (Vami)izl,,,n s Vaa) (12)

for a penalty function K evaluated at V and its derivatives at point (ad, md). Suppose also
that K satisfies:

(7) (Invariance with the units of m and a, and invariance by rotations of a) The value
of K is unchanged under linear reparametrizations of m; (for i = 1...n,,) and of a: for all
Ai € R and A € R"eXMe,

K ()\zmw A,nm V7 Vma ‘/amm Vaa) =K (mia Na, V7 )\vala )\iA‘/;zmm A%aAI> (13)
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(17) (Degree-1 scaling by affine transformations of V') Given a real s > 0 and a function
b(m) differentiable at m?, a change V (a,m) — sV (a,m) + b (m) multiplies K by s.
(1ii) (¢4 norm in the basic quadratic problem) When the cost function K is evaluated for

V=—3(ag—m- 2)? with ||z]| = 1 for all i and ||na,|| = 1, we have

K=r"Y"|mi. (14)
Then, the penalty of m must be the one in Step 1 of Algorithm 1, i.e.,

K (miamaa ‘/7 V;zmm %a) =Rr" Z ‘mz’ vaianaH .

Proposition 1 justifies in some sense Step 1 of the algorithm. We match the basic
quadratic targeting of the earlier section, and the model satisfies scale invariance. That
leads to the formulation of & [m] in Step 1 of the algorithm.®

Step 2 is justified, heuristically, by using the idea that penalties for changing one’s rep-
resentation and penalties for changing one’s action are treated symmetrically. This is why
(11) is simply the rewriting of (9) by changing the roles of actions and representations.

The above might be a formal convenience, or perhaps it might reflect something slightly
deeper in people’s decision making: the “basic” algorithm would be given by the penalty
(14), and then the mind would simply use the core algorithm after rescaling for the particular

units of a situation. That leads the mind to the algorithm in (9).

Welfare In behavioral models, the welfare is often hard to assess, e.g., because of the
existence of multiple selves in one agent (Bernheim and Rangel 2009). In the present model,
this is relatively simpler as one might say that “fundamental” utility remains V' (a, u, ), not
V' (a, m,x) under the chosen model. Put differently, if a benevolent advisor were to suggest
perfect default models and actions, the DM would be better off, and would just follow the

advisor.

Potential variants The online appendix discusses some variants that can be useful in
some contexts but that I did not choose for the core model. For instance, rather than to

have (9) satisfy unit-invariance, one could think of modeling the penalty x [m] as:

K[m] = Z ki |mi —m{| (15)

7

8Note that the K function cannot depend on V, as this value is generally 0 in the default policy.
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where k; would be in utils over the units of m;. This proposal may appear simpler than (9),
but it turns out to be much more problematic to apply in practice: to use (15), at each stage
one needs to take a stance on the value of x; for each 7. Also, in a dynamic problem involving
growth (say with a utility > pfc; 7/ (1 — 7)), we should require ; to be proportional to
c% ~7 in order to make the model scale-invariant on the balanced growth path. This requires
to set ki c% ~7 more or less manually. On the other hand, the adoption of k; = K™ ||Vin,a7al|
automatically provides the problem with a sensible scaling. Hence, it confers some parsimony
on the model as there is no decision to make dimension-by-dimension (there is just one key
parameter, k™, or, if one wishes, £1,, which is the same across dimensions m;). At the
same time, we shall see from the consequences of the model that it leads to sensible economic
and psychological results.

This said, it is clear that some tasks (e.g., computing the 100th decimal of v/2) are much
harder than others; in some economic situations this is an important force, which could be
formulated with a higher ;. However, dispensing with that additional degree of freedom
does not significantly impact the model’s economic realism.

Let us now apply the model to a concrete problem, so we can better see how it works.

3.2 Application: Quadratic Target Problem

We detail the application of the model to the quadratic target problem, Example 1. The
online appendix develops Examples 2 and 3. The problem is:

max V (a,x, 1), V(a,x,m):_73(a—m-m)2

where s > 0 indicates the size of stakes and the z;’s are uncorrelated with mean 0 and
2

variances o;. The agent has access to a vector of information x. Vector m represents the
weights to put on z, whose true value is u. Instead, the agent will use V (a,z,m), with
m possibly sparse: m; = 0 corresponds to not thinking about dimension 7. The decision

maker’s response is as follows (the proof is in the appendix).

Proposition 2 (Quadratic Loss Problem) In the quadratic optimization problem, the repre-

sentation 1s
Ua
m; = mf + 7 (/M — mf, mm—) , (16)
o

7

and the action taken is

a=a+7 mexi—ad,m“ /Z‘Tfnﬂ? : (17)
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When k™ =0, m = and when k* =0
) ) )
*
a= g m; ;.
i

Equation (16) features anchoring on the default value m¢ and partial adjustment towards
the true value p;: m; € [mf, ui]. For most applications where dimension ¢ is non-salient,
mé = 0 is probably the right benchmark.

The decision maker does not deviate from the default iff }ui — mﬂ 0; < KMoy, i.e., when
dimension i cannot explain more than a fraction (k™) of the variance of action a. It is the
relative importance of attribute i in decision a that matters for whether or not the decision
maker will pay attention to attribute i, not its absolute importance in terms of, say, a dollar
payoff.

The model is scale-invariant in V' (e.g., equation 8 is homogenous of degree 1 in V'). As a
result, the total amount of attention concerning decision a is the same whatever the stakes
s. People will pay attention to say 80% of attributes, whether it is for a small decision (e.g.,
buying at the supermarket) or a big decision (e.g., buying a car). I conjecture that this feature
is a good benchmark which would be interesting to evaluate empirically (I do not claim it
will work perfectly, but I conjecture that it will hold more likely than the polar opposite
prediction that people would be 1 million times more precise for a good that costs 1 million
times more). Some evidence consistent with that is presented by Samuelson and Zeckhauser
(1988), who show similar percentage price dispersion between cheap and expensive goods,
and by Tversky and Kahneman (1981): people consider a $5 discount more worthy of an
extra shopping trip if it is for a $15 calculator than for a $125 jacket. Finally, there is casual
evidence that many people do not spend more than 1 hour on retirement planning. Still, in
some cases the scale-independence feature of the model may not be appropriate, and Section
6.1.3 endogenizes « and renders attention more important for more expensive goods.

Equation (17) indicates that when there is more uncertainty about the environment, the

action is more conservative and closer to the default: when /3", 02 o7 is higher, a is closer

4. In the model, for a given amount of information (m - z), the power of default is

to a
higher when there is more residual uncertainty in the environment. This implication might
be testable in the rich literature on defaults (Madrian and Shea 2001). In general, o, is the
amount of model uncertainty for the decision maker, in a way that will be more specific in

examples that are described below.

Calibration We can venture a word about calibration. As a rough baseline, we can

imagine that people will search for information that accounts for at least £2 = 10% of the
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variance of the decision, i.e., if |u;|0; < €o,. Then, using (16), we find k™ ~ £. That
leads to the baseline of k™ ~ 0.3. The reader may find that, rather than 10%, &2 = 1% is
better (though this may be very optimistic about people’s attention), which corresponds to
k™ = v/1% = 0.1 — a number still in the same order of magnitude as ™ ~ 0.3. By the same
heuristic reasoning, we can have as a baseline k* ~ 0.3. As it turns out, in subsequent work
(Gabaix 2011), the a-priori calibration k™ ~ 0.3 works quite well in predicting subject’s
behavior in experimental games.

To conclude, the model generates inattention and inertia that respond to the local (i.e.,
for the decision at hand) costs and benefits. We now explore the model’s consequences in a

few applications.

4 Some Applications of the Model

4.1 Myopia in an Intertemporal Consumption Choice Problem

The agent has initial wealth w and future income z, he can consume c; at time 1, and invest

the savings at a gross interest rate k. Hence, the problem is as follows.

Example 4 (2-Period Consumption Problem). Given initial wealth w, solve

maxu (c1) +v (v + R(w — c1))

Cc1

. . I . .
where income is ¥ = T, + Y ., x;: there are I sources of income x;, and we normalize

Let us study the solution of this problem with the Sparse BR algorithm. The decision
maker observes the income sources sparsely: he uses the model x (m) = z, + Zfil m;x; with
m; to be determined. The action is the date-1 consumption ¢;. We assume u (¢) = —e ¢
and v (¢) = —e Pe ¢ where 7 is the coefficient of absolute risk aversion and p the rate of

time preference. The value function is:

V(e z,m) =u(cy) +v (x*~|—2mia:i—l—R(w—cl)> )

i=1
We apply the basic Sparse BR algorithm for the case k* = 0 (frictional understanding of
the world, frictionless maximization given that understanding). Calculations in the appendix

show the following proposition.
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Proposition 3 (2-Period Consumption Model) With full mazimization of consumption, the

time-1 consumption 1s:

=1

_l’_
mi:T<1,(1+R)/€ UCI)

O,

k3

I
1

with the constant D = Rw + #. The marginal propensity to consume (MPC) at time 1

out of income source i, Ocy/0x;, is:

e, BR_ e, zC
() =() (19)

BR zZC
where (g—;) 1s the MPC under the BR model and <%> 1s the MPC under the zero

cognition cost model (i.e., the traditional model). Hence, in the BR model, unlike in the

traditional model, the marginal propensity to consume is source-dependent.

Different income sources have different marginal propensities to consume — this is remi-
niscent of Thaler’s (1985) mental accounts. Equation (19) makes another prediction, namely
that consumers pay more attention to sources of income that usually have large conse-
quences, i.e., have a high o,,. Slightly extending the model, it is plausible that a shock to
the stock market does not affect the agent’s disposable income much — hence, there will be
little sensitivity to it.’

There is a similarity of this model with models of inattention based on a fixed cost
of observing information (Duffie and Sun 1990), in particular with the optimal rules of
the allocation of attention developed by Abel, Eberly, and Panageas (2010), Gabaix and
Laibson (2002), and Reis (2006). Because of the fixed cost, in those models the rules are of
the type “look up the information every D periods.” Those models are relatively complex
(they necessitate many periods and either many agents or complex non-linear boundaries
for the multidimensional s, S rules) whereas the present model is simpler and can be applied
with one or several periods. As a result, the present model, with an equation like (19),
lends itself more directly to empirical testing. The presence of different models of boundedly
rational behavior may be helpful for empirical research in that area.

The Euler equation will only hold with the “modified” parameters. Hence, we have

E,, [RV' (c2) /u' (¢1)] = 1, but only using the expectation under model m. Note that it

In other cases, the default policy might be to consume what is in one’s wallet, up to keeping some
minimum amount. Then, the MPC of a dollar bill found on the sidewalk would be 1.
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features underreaction to future news, especially small future news.

4.2 Choosing n Consumption Goods

We next study a basic static consumption problem with n goods.

Example 5 Suppose that the vector of prices is p € R, and the budget is y. The fric-
tionless decision problem is to choose the optimal consumption bundle ¢ € R": max cgn u ()

subject to the budget constraint p - c < y.

The price of good i is p? + p;, where p¢ is the usual price and p; is some price change.
The decision maker may pay only partial attention to the price change, and consider the
price of good i to be p¢ + m;. If m; = 0, he proceeds as if the true price were the default
price p?, rather than the actual price p¢ + u;. For instance, in the experimental setup of
Chetty, Looney, and Kroft (2009), u; could be a tax added to the price.

In this subsection, we study the case where the utility function is quasi-linear in money:
there is a good n (“money”) with constant marginal utility A and price p¢ = 1. This
assumption will be relaxed in Section 6.1.2. We apply the model of Section 3.1, with an

action a = ¢ and value function V (¢, m) = u (c) — A3} (p? + my) ¢;.

Proposition 4 In the decision maker’s model, the deviation from the normal price is:

mPi0ln¢;
m; =T | pi, K . 20
( (05 ) 20)

If demand depends only on prices,
m; =T (i, K™op,) . (21)

Equation (20) says that controlling for the volatility of consumption, inattention is greater
for less elastic goods. The intuition is that for such goods the price is a small component of
the overall purchasing decision (whose range is measured by oy,.,). Equation (21) indicates
that in order to be remarked, a given price change has to be large as a fraction of the normal
price volatility. It would be insightful to test those predictions. Chetty, Looney, and Kroft
(2009) present evidence for inattention, but do not investigate empirically a relation like (20)
and (21).
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4.3 Optimal Monopoly Pricing and BR-Induced Price Stickiness

and Sales

I next study the behavior of a monopolist facing a BR consumer who has the utility function
uw(Q,y) = y+ Q" Y¥/ (1 —1/1) when he consumes a quantity @ of the good and has a
residual budget y. So, if the price is p, the demand is D (p) = p~% where ¢ > 1 is the
demand elasticity.! The consumer uses the Sparse BR algorithm; by the previous analysis,
his demand is:

DPR(p) =D (p*+ 7 (p—1".K)) (22)

where, by (20), kK = "p?o1, /1. Hence, the consumer is insensitive to price changes when
p € (p?— K, p? + k).1 The default price p? will be endogenized later to be the average price.

The monopolist picks p to maximize profits: max, (p — ¢) DP% (p) where c is the marginal
cost (in this section, to conform to the notations of the optimal pricing literature, ¢ denotes
a marginal cost rather than consumption). The following proposition describes the optimal

pricing policy.
Proposition 5 With a BR consumer, the monopolist’s optimal price is:

Pet+k ch S 1

o1
plc)=1% pl+kr ifcg<c<c (23)
lf;__f if ¢ > cy

where ¢; = ¢ —2/ck /1 +O (k) solves equation (43), and cy = ¢+ K with ¢ == (1—1/)p?
is the marginal cost that would correspond to the price p® in the model without cognitive

frictions. The pricing function is discontinuous at c; and continuous elsewhere.

Let us interpret Proposition 5. When p € (pd — R, pt + K}), the demand DP% (p) is insen-
sitive to price changes. Therefore, the monopolist will not charge a price p € (pd — Kk, p? + li):
he will rather charge a price p = p? + k. We yield a whole interval of prices that are not

used in equilibrium, and significant bunching at p = p? + k. There, the price is independent

0Previous work on rational firms and inattentive consumers includes Heidhues and Koszegi (2010) with
loss-averse consumers, L'Huillier (2010) with differently-informed consumers, and Matejka (2010) with a
Sims (2003)-type entropy penalty. Their models are quite different from the one presented here in specific
assumptions and results. Still, there is a common spirit that behavioral consumers can lead to interesting
behavioral by rational firms. A minimo, the present paper offers a particularly transparent and tractable
version of this theme. Chevalier and Kashyap (2011) offer a theory of price stickiness and sales based on
agents with heterogeneous search costs.

1 This is a testable implication: the price elasticity of demand is the smaller the closer the price is to its
default.
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Figure 2: Optimal price p set by the monopolist facing boundedly rational consumers, as a
function of the marginal cost c.

of the marginal cost. This is a real “stickiness.”!? This effect is illustrated in Figure 2.13 We
see that a whole zone of prices is not used in equilibrium: there is a gap distribution of price
deviations from the norm.

? There is a discrete

For low enough marginal cost ¢, the price falls discretely, like a “sale.
jump below the modal price but not above it: the asymmetry is due to the fact that in the
inattention region (p? — k,p? + k| the firm wishes to set a high price p? + x rather than a
low price. Hence, when we leave the inattention region, the price can rise a bit over p? + x,
or otherwise has to jump discretely below p? — k.

The cutoff ¢; is much more below ¢ than ¢, is above it. It deviates from the baseline ¢
proportionally to \/x whereas ¢ = ¢ + k.14

This simple model seems to account for a few key stylized facts. Prices are “sticky,” with
a wide range being insensitive to marginal cost. This paper predicts “sales:” a temporary
large fall in the price after which the price reverts to exactly where it was (if ¢ goes back to
(¢1,¢2)). This type of behavior is documented empirically by Eichenbaum, Jaimovich, and
Rebelo (forth.), Kehoe and Midrigan (2010), Klenow and Malin (forth.), and by Goldberg
and Hellerstein (2010), which demonstrates the existence of local-currency price stickiness
and sales in the domestic market of an exporter, consistent with this paper’s view of cognitive

frictions coming from the consumer side. In addition, the model says that the typical size of

121f the consumer’s default is in nominal terms and mentally adjusting for inflation is costly, this model
can easily yield nominal stickiness.

13The assumed values are 1) = 6, p? = 8.7, and x = 0.025p?. They imply x = 0.22, ¢? = 7.25, ¢; = 6.16,
¢y =746, p(c1) =7.43, and p (c2) = 8.92.

14 There is also a more minor effect. For very low marginal cost, consumers do not see that the price is
actually too low: they replace p by p + . Hence, they react less to prices than usually (demand is less
elastic), which leads the monopolist to raise prices. For high marginal cost, consumers replace the price by
p — K, so their demand is more elastic, and the price is less than the monopoly price.
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a sales will be p (cz) — p(¢1), i.e., to the leading order

(24)

where k = k™ploy, o /1. Hence, the model makes the testable prediction that the gap in the
distribution of price changes, and the size of sales, is higher for goods with high consumption
volatility and for goods that are less price elastic. The intuition is that for those goods price
is a less important factor in the overall purchasing decision.

To close the model, one needs a theory of the default price. In a stationary environment,

the simplest is to specify p? to be the average empirical price

p'=E[p(cp’)] (25)

given the distribution over the marginal costs ¢. By the implicit function theorem, for
sufficiently small k£ and a smooth non-degenerate distribution of costs, there is a fixed point
p?. In the small x limit one can show that p? = %E + M(E)J#K +o0(k) with ¢ := E ||
(the derivations are in the online appendix). Hence, the default price is higher than it would
be in the absence of bounded rationality.

The model is robust to some form of consumer heterogeneity. The key is that the aggre-
gate demand function D (p) has kinks. Hence, if there are, for example, two types of agents
—two p? + k; with i € {1,2} — then we might also expect two reference prices.

This example illustrates that it is useful to have a tractable model, such as the Sparse
BR algorithm, to think about the consequences of bounded rationality in market settings.'®
Also, the Sparse BR model is designed to generate inattention in the first place, not price
stickiness and sales. Rather, it generates a potential new approach to price stickiness as an

unexpected by-product.

4.4 'Trading Inertia and Freezes

Step 2 of the Sparse BR algorithm indicates that the decision maker sticks with the default
action when there is more model uncertainty (a higher |7,,|). Let us illustrate that effect in

the context of trading freezes — the stylized fact that in moments of higher uncertainty many

5 For instance, much of the analysis will carry over to a closely related setup where consumers are inat-
tentive to the decimal digits of the price, i.e., DPf (n + ) = DB (n) for n a positive integer and z € [0, 1).
There will be bunching at a price like $2.99. Likewise, the online appendix solves the model with a fixed
cost of thinking. It still yields price rigidity but loses the “sales” effect: there are two discontinuities in the
optimal price function, rather than one.
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agents simply withdraw from trading.
To be definite, take an agent with logarithmic preferences, selecting his equity share a

(i.e., action a) when the risk premium is 7 and stock volatility is o:

The decision maker is uncertain about the value of 7 (m). Assume that Step 1 is done
with k™ = 0 (no friction), but that the decision maker remembers the model uncertainty
|mz|| = 0= > 0. Then, Step 2 of the Sparse BR algorithm is:

L 5

max ma — 50 a® — Kk® ‘a — ad‘ Ox.
a

2

Differentiating in a, 7 — 0°a — k®sign (a — ad) o, =0, and

T(ﬂ'—’ﬂ'd

) ,iao-ﬂ—) d d 2. (26)

_d
a=a + 5 )

o
We see that, indeed, the portfolio is “frozen” at a = a® whenever ‘7r — 7Td| < k%0,. The
“freeze” range is higher when there is more uncertainty o, about fundamentals.
Trading freezes are often attributed to asymmetric information (lemons style) or Knight-
ian uncertainty (as in Caballero and Krishnamurthy 2008), but here trading freezes come

from bounded rationality.

4.5 Endowment Effect

The model generates an endowment effect alongside some additional predictions. Call a €
[0, 1] the quantity of mugs owned (the prototypical good used by Kahneman, Knetsch and
Thaler 1990), > 0 the (random) utility for having a costless mug, and p the mug price.
Net utility is V' (a,z) = a (v — p), and the decision problem is maxqcp 11V (a,2) = a (z — p).
Using Step 2 of the Sparse BR algorithm (equation 11), the problem is:
arél[%?l(] a(E[z] — p) — k%0, |a — o’
where o, = ||n,]| is the uncertainty about x.
The solution is simple and yields the willingness to pay (WTP) as well as the willingness
to accept (WTA) for the mug. If a? = 0 (i.e., the agent does not already own the mug), the
solution is to buy iff p < WTP = E[x] — k%,. If a® = 1 (i.e., the agent already owns the
mug), the solution is to sell iff E[z] < WTA = E|[z] + k%0,. The discrepancy between the
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two,

WTA—WTP = 2x%,, (27)

is the endowment effect. In contrast, with loss aversion, the discrepancy is
WTA—-WTP = (A—1)E]|z] (28)

where \ ~ 2 is the coefficient of loss aversion. (With loss aversion A, selling the good creates
a loss of AE [x] whereas getting it creates a gain of only E [z].)

Hence, this paper’s approach predicts that the endowment effect is increasing in the
uncertain subjective utility (o, ) of a good.

There is some consistent evidence: for instance, there is no endowment effect for, say,
dollar bills which have a known hedonic value. Liersch et al. (2011) find a large endowment
effect when extra noise (corresponding to a higher ¢, in the model) is added. Cao et al. (2011)
obtain a related prediction in a Gilboa and Schmeidler (1989) type of setting, and propose
that it helps understand a variety of behavioral finance phenomena. Finally, professional
traders (List 2003) do not exhibit an endowment effect — according to this theory, that is
because the value of the good is known.

To conclude, we have seen that the same model can shed light on a variety of situations
and propose comparative statics for them: the determinants of inattention to prices, price
rigidity, trading inertia and freezes, and the endowment effect. We can now turn to two

other rather different uses of the model.

5 Other Consequences of Sparsity-seeking Simplifica-
tion

I now show two fairly different instances of the theme that the decision maker simplifies

reality to make decisions.

5.1 Dictionaries and Stereotypical Thinking

One particular interpretation of m is potentially interesting. Following the image processing

literature (Mallat 2009), we could have a “dictionary” of prototypes: (z;(m;)) The

il
resulting representation is:
X (m) =Y x;(my).
icl

2

Note that the dictionary might be “redundant,” i.e., z; (m;) need not form a basis. For
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instance, take a geometrical example and the plane R%. We could have: z; (o, 3, R) a circle
with center (o, 3) and radius R (the index is in R3); x5 (o, 8,0/, 3') a square starting with
two “top” edges (c, 3) and (o/, ') (the index is then in R*). The total figure is the sum of
all those primitive figures. We describe a picture from the basic constituents.

In a more social setting, we could denote by = an n-dimensional vector of attributes such
as profession, nationality, income, social background, ethnicity, gender, height, etc. Then,
the primitive words in the dictionary could be zg,, for a stereotypical engineer, zagan for an
Asian person, etc.

The key is that it is simple (sparse) to think in terms of “ready-made” categories, but
harder (less sparse) to think in terms of a mix of categories. For instance, suppose that
attributes are x = (y1,y2), where y; is how good the person is at mathematics and ys is
how good she is at dancing. Say that there exists a “type” engineer with characteristics
Tpng = (8,—3), ie., engineers are quite good at math, but are rather bad dancers (on
average). Take a person called Johanna. First, we are told she is an engineer, and the first
representation is x; = Tgne. Next, we are told she is actually a good dancer, with level +4
in dancing. Her characteristics are x; = (8,4). How will she be remembered? We could say
(M) = Teng + MTpancer Where Tpancer = (0,1), but full updating to m = p = 7 is costly.
Hence, the information “good dancer” may be discarded, and only g, will be remembered.
The “stereotype” of the engineer eliminates the information that she is a good dancer.

More precisely, suppose that one wishes to maximize V = — (a; — :1:1)2 — v (az — x2)2,
i.e., have a good model of the person with a weight v on the dancing ability. We start
from ? = g, = (8,—3), and plan to move to (¢, z5) (it is clear that the first dimension
need not change). Applying the algorithm, we have max,, —%7 (ay — m2)* — Koayy }mz — xg‘

Hence, using Lemma 1, 23 = 25 + 7 (24 — 23, k04,), i.e.,
ro = =3+ 7(7,K0q,) .

Thus, we get partial adjustment, with xo between the stereotypical level of dancing (—3)
and Johanna’s true level (4).

Hence, a model of sparsity-seeking thinking with a dictionary would be the following.
Given a situation x € R™, find a sparse representation that approximates = well, e.g., find
the solution to:

min ||z (m) — z||* + E ki |mi —mi|.
m
i

Then, people will remember x (m) = >, ; x; (m;) rather than the true x. This generates a

simplification of the picture, using simple traits. The above may be a useful mathematical
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model of categorization. For instance, we might arrive at a model of “first impressions
matter.” The first impression determines the initial category. Then, by the normal inertia
in this model, opinions are adjusted only partially. I note that some of these effects can be
obtained in other models of categorization (Mullainathan 2001, Fryer and Jackson 2008).
An advantage here is that categorization comes naturally from a general model of sparsity.

It is also clear that it is useful to have a dictionary of such stereotypes: they make thinking
or, at the very least, remembering sparser. One may also speculate that education and life
events provide decision makers with new elements in their dictionaries, and that as some
dictionaries are more helpful to face new situations than others, “habits of thoughts” and

“cultural references” might be usefully modeled by dictionaries.

5.2 Simplification of Random Variables
5.2.1 Formalism

Consider a random variable Y with values in R™. In his model-in-model, the decision maker
might replace it with a random variable X that is “simpler” in some sense.

(i) X might have a different, arguably simpler distribution: for instance, we could replace
a continuous distribution with a one-point distribution (e.g., X = E [Y] with probability 1)
or with a two-point distribution X = E[Y] £ m. We could even have X to be a certainty
equivalent of Y.

(ii) X might have independent components. For example, we could have X; 2 Y;, but
are not.

the components (X;) are independent while the components (Y;)

i=1...n i=1...n

To formalize (i), call F' and G the CDFs of X and Y, respectively. Then, U = G (Y') has
a uniform [0, 1] distribution, and we can define X = F~! (U) with the same U, so that X
and Y are maximally affiliated.'

The choice of the model is subject to the same cost-benefit principles as in the rest of

the model, e.g., one can use the same criterion to pick a simplified X (m):'7

1
min AR (Y = X (m)*] + 5™ |mi = m| [Vin,atal |- (29)

6Ty formalize (ii), it is useful to use the machinery of copulas. For an n-dimensional vector Y, let
us write Y = (Gy'(U1),...,G;t (U,)) with U; having the copula C (uq,...,u,), so that E[¢(Y)] =
¢ (Gl_l (u1) .., Gt (un)) dC (u1, ...,uy). In the simplified distribution, the marginals Gi_1 and the copula
could be changed. To express X, we could have X = (G{'(U}),...,G;* (U})), where the U/’s have the
copula of independent variables, C? (uy,...,u,) = u; - - - u,. If we wish to have X;’s marginals to be simpler
than Y;’s, like in (i), we can set X = (Fy " (U]),..., ;1 (U},)) for some F;.

1" This way, E [(Y -X (m))ﬂ is the (squared) Wasserstein distance between the distributions of ¥ and
X (m), which has many good properties.
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Eyster and Weizsicker (2010) present experimental evidence for correlation neglect, i.e.,
the use of simplification (ii). The next example illustrates the possible relevance of simplifi-

cation (i).

5.2.2 Application: Acquiring-a-company Game

Samuelson and Bazerman (1985) propose the following ingenious problem.

Example 6 (Acquiring-a-company) The company is worthY (uniformly distributed on [0, 100])
to Ann, and worth 1.5Y to you (you are a better manager than Ann). You can make a take-

it-or-leave-it offer a to Ann, who knows Y. What offer do you make?

In addition, the experimental setup makes sure that “Ann” is a computer, so that its
answer can be assumed to be rational. Before reading the next paragraph, interested readers
are encouraged to solve (without paper and pencil) Example 6 for themselves.

Experimentally, subjects respond with a mode around 60 and a mean around 40 (Charness
and Levin 2009). However, the rational solution is @ = 0. This is an extreme case of
asymmetric information (related to the winner’s curse).

Let us generalize the problem and state the BR solution to it. Assume that the company
is worth Y ~ U [X, 7}, with Y < Y, and define the mean payoff E [Y] = (X + 7) /2. The
company is worth (A — 1)Y > 0 more to the decision maker than to Ann. Hence, in the
original problem Y = 0,Y = 100, and A = 1.5.

Let us see how to state the model-in-model. We will see how, if the agent uses a simpler
representation of probabilities, we account for the non-zero experimental value. This is
a different explanation from existing ones (Eyster and Rabin 2005, Crawford and Iriberri
2007) which emphasize the assumption that the other player is irrational whereas the decision
maker is rational. However, there is no “other player” in this game, as it is just a computer,
and then those models predict a bid of 0 (Charness and Levin 2009).

The agent uses a representation of the dispersion in values, X (m), simpler than the true
distribution, Y. For instance, the agent might form a model of the situation by simplifying
the distribution and replacing it by a distribution with point mass X (0) = E[Y]. Then,
the best response is a = E [Y], which is 50 in the basic game. This is not too far from the
empirical evidence.

In a richer model-in-model, let us replace the distribution Y ~ U [K, ?] by a distribution
X (m) = E[Y] £ m with equal probability, for some m € [0,A] with A = E[Y]-Y =
Y — E[Y] (we leave it to be an empirical matter to see what m is — the same way it is

an empirical matter to see what the local risk aversion is). Given this model, the agent
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maximizes V (a,m) = B [(AX (m) — a) 1x(n)<a|. The resulting action is stated here and

derived in the appendix.

Proposition 6 In the acquiring-a-company problem, the Sparse BR bid by the decision

maker is:

a =

. {E[Y]+m if m e [0, 2-1B[Y]]

as long as A\ < 3, and a* = E[Y]| + m otherwise. In particular, in the basic problem with

support in [0,100] and A = 1.5,

. [ 504m ifme[0,16.66.. ]
50 —m if m € (16.66...,50]

On the other hand, the model does not explain parts of the results in the Charness and
Levin (2009) experiments. In a design where the true distribution of X is 0 or 1 with equal
probability, the rational choice is a = 0. However, subjects’ choices exhibit two modes: one
very close to a = 0 and another around a = 1. The model explains the first mode but not
the second one. It could be enriched to account for that additional randomness, but that
would take us too far afield. One useful model is the contingency-matching variant in the
online appendix: with equal probability, the decision maker predicts that the outcome will
be 0 or 1, and best-responds to each event by playing 0 and 1 with equal probability. Hence,
reality seems to be reasonably well accounted for by a mixture of the basic model and its
contingencies-matching actions. All in all, the model is useful to describe behavior in the
basic acquiring-a-company game even though it does not account for all the patterns in the

other variants.

6 Complements and Discussion

6.1 Some Extensions of the Model

This subsection presents extensions of the Sparse BR algorithm that may be useful in some
situations.

6.1.1 Discrete Actions

The model is formulated with a Euclidean action space, which is the substrate in many
economic problems and confers a nice structure (e.g., a metric) on them. It extends to a

discrete action space, as I illustrate here; the online appendix provides further details.
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Action a € {1, ...., A} generates utility V (a, x, 1) of which the agent may use an imperfect
V (a,z,m). To formulate the model, some notations are useful: for a function f (a), define
1A, f(a)| = (% AR [(f (a)— f (ad))2}>1/2 to be the dispersion of f across actions.
Then, define 0" = HA

1: it is the typical size of the marginal enrichment m;. Define oy = HAWV (a,z, u)”, a

Vi, (@, z,m?) H, so that ¢ is analogous to ||Vi,a7.| in Algorithm

Na

scale for the dispersion in values across actions, which is analogous to ||7, V47| in the main

algorithm. A natural analogue of Step 1 is:

’ 1 (O-;n>2 2 m d| -m
Applying Lemma 1, it yields:
mf:m?—i—T(m—mf,ﬁ ZV). (30)

Step 2 is simply max, V' (a, m*, z) in the baseline case with k* = 0, and we can have a soft
maximum otherwise, e.g., the probability p, of picking a could be p, = ¢V (@m"2)/ Yo efViam.z)
with 5 > 0 (this is further discussed in Gabaix 2011).

To illustrate this formalism, consider the choice between A goods: good a € {1...A} has

a value:

n
Vi(a,m,z) = Z MiTiq
i=1

with the x;,’s i.i.d. across goods a, normalized to have mean 0 and standard deviations
0;. The dimensions i € {1,...,n} are (normalized) hedonic dimensions, e.g., price, weight,
usefulness, esthetical appeal of each good. The default is m? = 0. Applying the above Step

1’, we obtain 0]" = o, and finally:

Proposition 7 Suppose that the agent chooses among A goods where good a € {1...A} has
value V (a, p, ) =Y i | ftiTiq. Then, the boundedly rational perception of a good a is

V(a,m*, z) = ZT (,uz-, H(jl) Tia (31)

i=1 v

with oy = (0, i2o?)'"”.

Hence, we obtain a dimension-by-dimension dampening, with small dimensions (small ;)
dampened more or fully, very much in the spirit of the initial example we started from, but
for discrete actions. Compared to process models of discrete choice with partial attention
(e.g., Payne, Bettman and Johnson 1993, Gabaix, Laibson, Moloche and Weinberg 2006),
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this model eschews sequential search (which typically does not lead to a closed form for the
perceived value) and is thus much more tractable. Indeed, an equation such as (31) could
be fairly directly estimated: when ™ = 0, it is the rational actor model, while for k™ — oo

the agent is fully inattentive. Empirical agents are likely to be in between.

6.1.2 Model with Constraints

We extend the model, so that it handles maximization under constraints. The decision maker

wishes to solve:
max V' (a, x, 1) subject to B (a,z, ) >0 for k = 1...K. (32)

For instance, B! could be a budget constraint, B! =y — p(u) - ¢ where p (1) is a vector of
prices under the true model p. As usual, we assume that V' and —B* are concave in a.

We use Lagrange multipliers to formulate the extension of the model to constraints.

Algorithm 2 (Sparse BR Algorithm with Constraints) To solve the problem in (32), the

agent uses the following three steps.

1. Transformation into an unconstrained problem. Select the Lagrange multiplier \* € RX

associated with the problem at the default model m®:

max V' (a,x,md) +\-B (a,x,md) .

2. BR-solve the new, unconstrained problem. Use the Sparse BR algorithm 1 for the value
function V* defined as:

V*(a,z,m):=V (a,z,m)+ X" - B (a,z,m)

without constraints. That returns a representation m and an action a.

3. Adjustment to take the constraints fully into account. Callb = (V=)' B, the ngy x K
adjustment matriz and, for a vector of weights ¢ € RE, a(£) = a+ b€. Pick a ¢ that
ensures that the K budget constraints are satisfied (typically, there is just one such &,

but otherwise take the utility-mazimizing one).

Step 1 of Algorithm 2 picks a Lagrange multiplier \*, using the default representation m¢.

This way, in Step 2 we can define a surrogate value function V* that encodes the importance
of the constraints by their Lagrange multipliers: V* can be maximized without constraints,

so that the basic Sparse BR algorithm can be applied.
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The resulting recommended action may not respect the budget constraint. Hence, Step 3
adjusts the recommended action, so that all budget constraints are satisfied. The form a (£)
chosen is the linear form that returns the right answer to the benchmark case where x = 0,
as developed in Lemma 3 of the online appendix. Again, the model is in that sense quite
constrained. The interpretation of action b is easiest to see in the case of just one budget
constraint: suppose that there is a small income shock dy, so that the budget constraint
becomes B (a) + dy > 0. Then, to the first order, the optimal action is da = b¢ for some
¢ that ensures that the budget constraint is binding (B,da + 0y = 0, so & = — (B.b) ™" dy):
action b is proportional to da/dy, the marginal response of the action to a change in income.

As an illustration, let us revisit the basic problem of maximizing a utility function subject
to a budget set, which was developed in Section 4.2 by assuming a linear utility for residual
money but which we can now solve with a budget constraint. Recall that the true vector of
prices is p = p?+ u and the problem is max.cg~ u (¢) subject to y—p-c > 0. So, V (¢) = u (c),
and there is one constraint, B (¢,m) =y — (p* +m) - c.

In Step 1, we pick the Lagrange multiplier A\* that corresponds to the problem: max. u (¢)+
A (y —pt. c) under the default price vector p?. Then, we define:

V*(e,m) =u(c)+ \* <y - Z (pf + my) Ci) : (33)
This gives us a quasi-linear utility function, with linear utility for residual money.

Step 2 is as in Section 4.2, and yields a representation m (given by (20)) and as action
the consumption vector ¢ (pd + m). In Step 3 (applied with ¢? = 0), the decision maker picks
consumption ¢ = ¢ (pd + m) + &b with b = Oc (pd, y) /0y, and the scale factor £ € R ensures
that the budget constraint holds: £ = (y —p-¢) / (p - b). Psychologically, the decision maker
thinks “I missed my budget by dy dollars, so I am going to make the regular adjustment
dc = bdy to that change in income in order to match by budget constraint.” In that sense,

the algorithm has a commonsensical psychological interpretation.

6.1.3 Cognitive Overload and Decisions under Stress

I present a way to model “cognitive overload” and the impact of decisions under stress.!® This
may be useful for analyzing bad decisions of people under stress, e.g., very poor individuals
with difficult accidents in their lives or financiers in hectic markets (Hirshleifer, Lim, and
Teoh 2009).

A slight and natural generalization of the Sparse BR model is required. Step 1 of the

18] thank Abhijit Banerjee for suggesting this application.
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Sparse BR model becomes, using the notation x; = £™ ||Viy,a7al|:

-1 )
Joax —- (m — u) A(m — p) + Ko® (34)
subject to © + Z - |m; —m{| <C (35)

where © > 0 is a measure of “cognitive leisure” (e.g., how much time is left to enjoy oneself
rather than to think about decisions), kg is the value of leisure in utils, and C is the decision
maker’s cognitive capacity.

In (34), the first term is the loss due to an imperfect model m while the second term £(©
is the enjoyment of cognitive leisure.!” The budget constraint (35) reflects that the cognitive
capacity C is allocated between cognitive leisure © and the cost of processing m;.

Let us solve the problem in the separable case, with A a diagonal matrix A = diag (A;),_;

maX—ZA — 1) —|—/<ao® A(@—i-z |ml f|—C>+7T®

where A and 7 are the Lagrange multipliers associated with (35) and © > 0, respectively.
Maximizing over O, we have kg — A+ 7 = 0, i.e., if © > 0, A\ = kg, and A > ko otherwise.

Next, maximizing over m; and using Lemma 1, we have:

AR
m; = m; —I—T(u,—mf, IZ) (36)

When the cost of cognition A increases, the quality of decisions falls. To see this more
analytically, consider the case where the decision maker has to make n decisions with the
same K; = Kk, Ay = A, ji; = p > 0 for all 3, m¢ = 0, and the decisions are important enough,
so that Ay > k. Let us vary the number of decisions to be made (which is a way to model

periods of stress) while keeping the cognitive capacity constant.

Proposition 8 (Cognitive Overload) The attention paid to the problems i = 1...n is:

. ( K Clio)
m; =min | p— —,— | .
A kn

K

In particular, when n > n* = Ckq/ (/4: (u — K))7 the quality of deciston making for each

problem declines with the total number of problems n.

9The units of ko and k; are in utils, so we might have ro = ||, Waa7a|| to get a definite value for .
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Hence, in situations of extreme stress (n > n*), the performance of all decisions declines
because the decision maker hits his cognitive capacity.

Note that the formulation (34)-(35) may be useful in other domains. In particular,
relaxing k; = K™ ||Vin,a7.|| may be useful when some dimensions are significantly harder to
think about than others. For instance, a “salient” dimension could be modeled as having
a lower x;. When the decision maker thinks about a dimension, the fact that A and k;
enter multiplicatively in (36) implies that the impact of salience is greater under a higher
cognitive load. Finally, if the poor lead more stressful lives and therefore have a depleted
amount of cognition C, then the quality of their decision making is hampered and they are
likely poorer as a result. Hence, we may have multiple equilibria, like in the poverty traps
discussed in development economics. Currie (2009) reviews evidence that poor health leads
to lower human capital (corresponding to a proxy for a higher  in the model). Banerjee and
Mullainathan (2010) document the hypothesis that the poor are more subject to behavioral

biases, and derive some of its implications.

6.1.4 Diagonal Simplification for A

The following simplification is sometimes useful. Rather than A defined in (7), use a diagonal

matrix with diagonal elements A; instead:

—V2

A%9 = diag (A, ..., A\,), A; = max —1% (37)
ko Vaan
Then, Step 1 of the Sparse BR algorithm becomes:
n}ng C A= ) 13 g = | [ Vo (38)
whose solution is:
m;=m{ + 7 (Mz‘ —m{, K" ”VW;%H Vakiaki)
miag,

where k; is the maximand in (37). When « is unidimensional,

a Vaa
m; =m{ + 7 (u,- —md, mm%> : (39)

The intuition is as follows. For each dimension m;, select the “key action” that is related
2

V2. .. ag :
to it. That is the one with the maximum —-~=* in virtue of Footnote 7. The term A9 g
ARk

simple to calculate, and does not involve the matrix inversion of the general A in (7).
-V2 . 2
m;cg A

For instance, take the consumption example of Section 4.2. We have — = —y
CkCk CkCk
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if i = k, and 0 otherwise. Hence, the key action corresponding to the price m; is the
consumption of the good ¢;. Therefore, A% = X\2diag (—1/u,,.), which is simple to use.
Without the key action, the cross partials u.,, matter/ and things are more complex to

derive for the paper-and-pencil economist, and also perhaps for the decision maker.

6.2 Links with Themes of the Literature
6.2.1 Links with Themes in Behavioral Economics

In this section, I discuss the ways in which the Sparse BR approach meshes with themes in

behavioral economics: it draws from them, and is a framework to think about them.

Anchoring and adjustment The model exactly features anchoring and adjustment
for expectations and decisions: the anchor is the default model-in-model m¢ and action a?,
the adjustment is dictated by the circumstances. In this way, the model is a complement to
other models; for instance, Gennaioli and Shleifer (2010) model what “comes to mind” to
the decision maker, so that their work is a model of m?, while the present model is about

how the decision maker deviates from that simplified model m?.

Power of defaults Closely related to anchoring and adjustment, it has now been well
established that default actions are very often followed even in the field (Madrian and Shea
2001, Carroll et al. 2009). This model prominently features that stylized fact.

Rules of thumb Rules of thumb are rough guides to behavior, such as “invest 50/50
in stocks and bonds,” “save 15% of your income,” or “consume the dividend but not the
principal” (Baker, Nagel, and Wurgler 2007). They are easily modeled as default actions a?.
The advantage is that the Sparse BR model generates deviations from the rule (the default
action) when the circumstances call for it with enough force: for instance, if income is very

low, the agent will see that the current marginal utility is very high, and he should save less.

Temptation vs BR The present model is about bounded rationality, rather than
“emotions” such as hyperbolic discounting (Laibson 1997) or temptation. Following various
authors (e.g., Fudenberg and Levine 2006, Brocas and Carillo 2008), we can imagine an
interesting connection, though, operationalized via defaults. Suppose that System 1 (Kah-
neman 2003), the emotional and automatic system, wants to consume now. This could be
modeled as saying that System 1 resets the default action to high consumption now (it will
likely also shift the default representation). System 2, the cold analytical system, operates

like the Sparse BR model. It partially overrides the default when cognition costs are low,
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but will tend to follow it otherwise. While many papers have focused on modeling System

1, this paper attempts to model System 2.

Mental accounts Some of the above has a flavor of “mental accounts” (Thaler 1985).
For instance, in Section 4.1, the marginal propensity to consume out of income is source-

dependent.

Availability The theory is silent about the cost ! of each dimension, which is constant
at k™ in the benchmark model. It is, however, plausible that more “available” dimensions
will have a lower x]". For instance, availability is greater when a variable is large, familiar,

and frequently used.

Endowment effect The model generates an endowment effect (cf. Section 4.5), with
the additional feature (compared to the common explanation based on prospect theory) that

the better understood the good the lower the endowment effect.

1/n heuristics This heuristic (Bernatzi and Thaler 2001, Huberman and Jian 2006) is
to allocate an amount 1/n when choosing over n plans, irrespective of the plans’ correlation:
for instance, the agent allocates 1/3,1/3,1/3, no matter whether the offering is one bond
fund and two stock funds or one stock fund and two bond funds. The model can generate
this by using the “simplification of variables” (cf. Section 5.2). Here, the simplification would

be that the variables are treated as independent (or i.i.d.) rather than correlated.

6.2.2 Links with Other Approaches to Bounded Rationality and Inattention

This paper is another line of attack on the polymorphous problem of bounded rationality
(see surveys in Conslik 1996 and Rubinstein 1998). The present paper is best viewed as
a complement rather than a substitute for existing models. For instance, there is a vast
literature on learning (Sargent 1993, Fudenberg and Levine 2009) that sometimes generates
a host of stylized facts because agents may not set up their models optimally (Fuster, Laibson,
and Mendel 2010). One could imagine joining those literatures in a model of “sparse learning”
where the agent pays attention only to a subset of the world and thus perhaps learns only
partially about the world.

This said, some of the most active themes are the following.2’

20T omit many models here, in particular “process” models, e.g., Bolton and Faure-Grimaud (2009),
Compte and Postlewaite (2011), Gabaix, Laibson, Moloche, and Weinberg (2006), and MacLeod (2002).
They are instructive conceptually and descriptively, but yield somewhat complex mappings between situa-
tions and outcomes.
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Limited understanding of strategic interactions. In several types of models, the BR comes
from the interactions between the decision maker and other players, see Eyster and Rabin’s
(2005) cursed equilibrium, Jéhiel’s (2005) analogy-based equilibrium, k-level of thinking
models surveyed in Crawford, Costa-Gomes, and Iriberri (2010), and the related work of
Camerer, Ho, and Chong (2004).2! These models prove very useful for capturing naiveté
about strategic interactions, e.g., the winner’s curse in auctions or beauty contests. However,
they can only be one part (albeit an important one) of the problem of BR: indeed, in a single-
person context, they model the decision maker as fully rational. In contrast, in the present
paper the decision maker is boundedly rational even in isolation.

Decisions within € of the maximal utility. The near-rational approach of Akerlof and
Yellen (1985) is based on the premise that agents will tolerate decisions that make them lose
some ¢ utility, and still proves useful for empirical work (e.g., Chetty 2009). However, it
implies that the decision maker’s action will fall in a band (that gives him close to maximal
utility), but it does not yield definite predictions about what actions the decision maker will
take. This is in contrast to this paper.

Inattention and information acquisition. This paper is also related to the literature on
modeling inattention (see Veldkamp 2011 for a comprehensive survey). There are several
ways to model inattention. One strand of that literature uses fixed costs (Duffie and Sun
1990, Gabaix and Laibson 2002, Mankiw and Reis 2002, Reis 2006). I have argued that
a key benefit of this paper’s approach, with the ¢; penalty, is the tractability it confers.
Another influential proposal made by Sims (e.g., in 2003) is to use an entropy-based penalty.
This has the advantage of a nice foundation; however, it leads to non-deterministic models
(agents take stochastic decisions), and the modeling is very complex when it goes beyond
the linear-Gaussian case. The Sparse BR model presents some important differences. One
is that the model generates sparsity. Another is that the model is deterministic: in a given
situation, ex-ante identical agents remain identical ex post. This makes the analysis much
simpler.

Uncertainty aversion and concern for robustness. Hansen and Sargent (2007) have shown
that many consequences (e.g., prudent allocation to stocks) stem from the assumption that

the agents understand that they do not know the right model and have concerns for “ro-

’ which they model as optimization under the worse potential model. In contrast,

bustness,’
the decision maker is biased towards simplicity, not pessimism, in the present model.

It may be interesting to note that while all those frameworks are inspired by psychology,

21Gee also models of naive hyperbolic discounting (O’Donoghue and Rabin 1999, DellaVigna and Mal-
mendier 2004). Relatedly, an interesting literature studies BR in organizations (e.g., Radner and Van Zandt
2001), and aims at predictions on the level of large organizations rather than individual decision making.
See also Madardsz and Prat (2010) for a recent interesting advance in BR in a strategic context.
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some are also inspired by modeling advances in applied mathematics. The Sims framework
is based on Shannon’s information theory of the 1940s. The Hansen-Sargent framework is
influenced by the engineering literature of the 1970s. The present framework is inspired
by the sparsity-based literature of the 1990s-2000s (Tibshirani 1996, Candés and Tao 2006,
Donoho 2006, Mallat 2009), which shows that sparsity has many properties of tractability
and near-optimality.?? The present paper is the first paper in economic theory to use the

recent sparsity-based literature from statistics.

7 Conclusion

This paper proposes a tractable model with some boundedly rational features. Its key con-
tribution is to formulate a tractable version of the costs and benefits of thinking (captured
as an enrichment of the agent’s mental model). On the benefit side, the decision maker
uses a quadratic approximation of his utility function, which circumvents Simon’s infinite-
regress problem. On the cost side, the decision maker uses an ¢; norm to obtain sparsity and
tractability (drawn from a recent literature in applied mathematics), with feature-specific
weights that make the model largely invariant to many changes in scales, units, and repara-
metrization. This formulation leads to linear-quadratic problems (with a sparsity-inducing
absolute value) which are easy to solve in many cases of interest. At the same time, it ar-
guably features some psychological realism: we all simplify reality when thinking about it,
and this model represents one way to do that — indeed, it is the simplest tractable way that
I could devise.

The simplicity of the core model allows for the formulation of a BR version of a few
important building blocks of economics. For instance, we can study BR-optimal choice of
consumption bundles (the agent has an imperfect understanding of prices); and BR asset
allocation (with inertia and trading freezes). The model leads to a theory of price rigidity
based on stickiness in the consumer’s mind, rather than stickiness in the price-setting tech-
nology of firms. In ongoing work, I formulate a way to do BR dynamic programming, where
the agent builds on a simplified model with few state variables.

No doubt, the model could and should be greatly enriched. In the present work, there is
simply a lone agent. In work in progress, I extend the model to include multi-agent models
and the limited understanding of general equilibrium effects by agents. In addition, the

model is silent about some difficult operations such as Bayesian (or non-Bayesian) updating

22For instance, somewhat miraculously, one can do a regression with fewer observations than regressors (like
in genetics, or perhaps growth empirics) by assuming that the number of non-zero regressors is sparse and
using an {1 penalty for sparsity (see Belloni and Chernozhukov 2010), as in ming + Y% | (y; — B'z) 2+ X8 1
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and learning (see Gennaioli and Shleifer 2010 for recent progress in that direction), and
memory management (Mullainathan 2002).

Indeed, the model is a complement rather than a substitute for other models: one could as
well devise a model of BR learning or robustness with a sparsity constraint. Those extensions
are left to future research (e.g., Gabaix 2011). However, despite these current limitations,
given its tractability and fairly good generality, the Sparse BR model might be a useful tool

for thinking about the impact of bounded rationality in economic situations.

8 Proof Appendix

Proof of Proposition 1. We need the following lemmas. Here, n and p are positive

integers, and S is a set.

Lemma 2 (a) Consider a function f: R™ x R"*? — § such that for all z € R", y € R™*P,
and A € R, f(Ax,y) = f(x,A'y). Then, there ezists a function g : RP — S such that
f(z,y) = g(2'y). (b) Consider a function f : R™ x R™P x R™" — S such that for all
x €R™ ye R 2z e R and A € R, f(Az,y,z) = f(x,Ay,x, AzA). Then, there
exists a function g : RP X R — S such that f (z,y,2) = g (2'y, 2'2x).

Proof . Let us prove (b), which is more general than (a). Define e; = (1,0,_;)" and, for
a row vector Y € R? and a scalar Z € R, g (Y, Z) := f (e1,e1Y,e1Z¢}). We have:
= f(e1,e12'y, e12'zwe]) using the assumption with A = we]
=g

(2'y,2'zx) .

O
Hypothesis (i7) implies that K is independent of the values V' and V,, evaluated at the

default. Hence, one can write K ((m;),_; . M4, (Vam,) Via) for some function K (by a

i=1..n>
minor abuse of notation).

We use the invariance to reparametrization \; in hypothesis (i), and apply Lemma 2(a)
to K (my, Vo, , Z1) where Z; represents the other arguments. This implies that we can write
K (m1, Vamy, Z1) = K (m1Vam,, Z1) for a new function K. Proceeding the same way for
Viaa). We next

z = V,,. It implies that we can write:

(mi, Vam,) for i = 2..n, we see that we can write K = K (0q, (m:Vam, )1, »

apply Lemma 2(b) to z = n, and y = (m; V)

i=1..n0m

K=k ((770, : ‘/amimi)z‘zln_nm an;‘/;zana) (40)
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for some function £ : R"™ x R — R.

Let us next use assumption (7i7). When ||z;|| and ||7,, || are non-zero, define z; = x;/ ||x;]|,
a1 = a1/ |Mall; Ty = May/ |Marll, and m; = my ||z |9a,||. Then, the problem associ-
ated with (@, na,,7;,m;) has ||7;]| = 1 and ||ng| = 1. Hypothesis (iii) indicates that

A~ o~ A~

k (Do Timi),y ) = K™ 32, || Hence:
F((aywim) ey o 1) =k ((an@ii) iy ) = 67 |l = 6™ [nawims]|

This implies that & ((y)
(ii), we have that

1) = k™Y . |lyill. Using the homogeneity of degree 1 part of

i=1..n?

k((Y)izyr2) = K™ Z yill -

Using (40), we have:
K = /ﬁmz HnaximiH = Z ||(mz - m?) Vmia ) 77aH = Z ‘ml’ vaia ) naH - B

Proof of Proposition 2 By homogeneity, it is enough to consider the case s = 1.

Step 1: Representation. We calculate

=—a+m-z, Vim=x(a—m-x)

Va
V;za = _17 ‘/sz =, ‘/ami = T
so when x is one-dimensional, A = —E[V,,,V.-1V,,,] = E[z?. With n dimensions for m,

drawn independently, we have by the same calculation that A = Diag (o?).
Thus,

klm] =™ |mi = m| [Vipanall = ™ [mi — mi| @]l 1] = Ki|mi — m

with K; = s™o,0;.

So, the maximization (8) is

We use Lemma 1, which gives (16).
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Step 2: Approzimate mazximization. We calculate  [a] from equation (11):
K [a] = k® }a - ad} |Vamnml|| = &* |a — ad| |« || = K ‘a — ad‘ Zo?niaf =qQ !a — ad| .
Step 2 gives: max, —% (a—m-z)*—Q |a — ad}. This yields a = a® + 7 (m -z — a, Q)
|
Proof of Proposition 3. We calculate:
Vo= (1) =v' () R, Vigey =" (1) + 0" (2) B?, Viym, = —0" (¢2) Rai.

Let us proceed with the part related to future income. The program (8) is:

n(,.d\2 p2
minz %Uii (m; — 1) + & Z il [v" (¢5) Roe, | o,

cicy

where Vcch is a shorthand for V_,, (c‘f, cg). Hence, the solution is:

1% o
m; =7 (1, K K =Km—322 A 41
’ (1,k:) ’ v" () Row, -
We now use the functional form u (¢) = —e™7¢ and v (¢) = —e Pe~"°. Because under the

default o’ (c‘f) - (Cg) R = 0, the exponential specification gives u” (c‘f) =" (Cg) R, and

we have VI, =" (¢f) (1+ R), so (41) gives:

cic

K" (1+ R) o,

O,

3

R; =

In Step 2, the agent solves

M —e—1¢1 — =P @) +R(w—c1))
Cc1

which gives e %1 — e Pe @M +Rw-—c1)) R — () and

p—InR
fy
=x(m) — Rey + D with D = Rw +

aa=z(m)+R(w—c)+
p—InR
~
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as well as

1
cle—R(D—i-x(m))

1 o
—— (D+a, 1, 5™ (1 g
1+R< +x +Zi:T< K™ ( +R)Um‘)a:>

K3

Proof of Proposition 4 We calculate:

Ve =ui — A (pfl + mz) ) ‘/;iCj = Ujj, ‘/Cimj = —)\11':]'.

7

Hence, the components of the loss matrix are A;; = _’\:__ in two cases: namely, if the utility

17

function is separable in the goods (u (¢) = >, u’ (¢;)) or, for a non-separable utility function,

if we apply the “key action” enrichment developed below in Section 6.1.4 (the key action

corresponding to p; is ¢;).

Calling 0., = ||, ||, the allocation of attention is:

N (mi — ps)”
mlnz [m—ﬁ)+/€m)\|mz|o-q] )

so we have
m Citti; | 9e4
Uy c;

- K™ ]uii|acz. - g i i
Mi =T\ P = | =T |l =y

Using u; = Ap; and calling v; = wu;/ (—cju;) the price elasticity of demand of good i, we
obtain (20).

To proceed further, we examine the case where preferences are separable, so the f.o.c.
u; (¢;) = A\p; implies that a change in price dp; implies u;dc; = Adp;, and thus |u;| o¢, = Aoy,
Equation (21) follows.

Proof of Proposition 5. The monopolist solves
-
max7(p), 7w(p)=@—0c) (p'+7(p—1"~))

Consider first the interior solutions with p ¢ (pd — R, pt+ K). Call € = sign (p — pa).
Then, p + 7 (p —p?, H) = p — ek (equation 5). Therefore, 0,7 (p —p?, /i) = 1, and the f.o.c.

isp—ex—1Y(p—c)=0,ie,
e — ek

=1
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The profit is

, c—Ek c— €K v c—er)\ Y
)= () (=) = ()

Next, it is not optimal for the monopolist to have p € (pd — K, p? + /{) asp = p?+ kK

yields the same demand and strictly higher profits. The profit is

(' + k)= (' +r—Cc) (pd)fw.

It is optimal to choose p™ rather than p? + & iff R > 1 where

R(c,¢% k) = T _ v <%>lw v
- ™) (%Cd-i-/i— c) <%cd)_
(c— 5:)11%’ -

et + (= 1) (k= )] ()™

The cutoffs ¢; and ¢, are the solution to R (ci, c, /4;) = 1. The ¢, bound is easy to find

because it is clear (as the profit function is increasing for p < p™) that ¢, must be such that

Yea—k _ et
o—1 — Y1
where ¢ < ¢? as then there can be two local maxima (this is possible as the demand function

P (cy) = p? + K, ie., + K, 80 ¢o = ¢ + k. The more involved case is the one

is not log-concave). Hence, the cutoff ¢; satisfies, with e = —1,
R(ci,c% k) =1 (43)

and ¢; < ¢4. To obtain an approximate value of ¢;, note that R (c,¢,0) = 1: when k = 0,
the cutoff corresponds to ¢ = ¢?. Also, calculations show R; (c,¢,0) = 0 and Ry (¢, ¢,0) # 0.
Hence, a small x implies a change dc; such that, to the leading order, %RH . (56)2 +R3-k =0,

ie, ¢ = — /78 4 10 (k). Calculations yield ¢ = ¢ — 2\/c?r/y + O (x). B

Proof of Proposition 6 It is clear that the optimal solution a belongs to {E [Y] — m,E[Y] + m}.
If the offer is a = E[Y] — m, the offer is accepted only if X = E[Y] — m (in the model-in-

model), so:

VI (E[Y] - m) =
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If the offer is a = E[Y] + m, the buyer gets the firm for sure, which has a value to him of
AE [Y] in expectation, so:

VMEEY]+m) = E[Y] - (BE[Y]+m)=(\—-1DE[Y] —m.

Note that VM2 (E[Y]+m) > VM2(E[Y] —m) if A > 3. Once we have A\ < 3, the
two profits VM2 (E [Y] — m) and V2 (E [Y] + m) are the same if and only if m = 3= E[Y].
Thus, the optimal decision is as announced in the proposition. The maximum paid is E [Y]+
B[] = 2BV
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Online Appendix for “A Sparsity-Based Model of Bounded
Rationality,” Not for Publication
March 27, 2011

This appendix presents additional derivations and some reasonable variants of the model.

9 Additional Derivations

9.1 Derivation of the Fixed Point p? in the Monopoly Pricing
Model of Section 4.3

In the small » limit, I solve for the default price p?, which is the fixed point p? = E [p (E, pd)] .

The p () function is given by Proposition 5. Call F' and f = F’ the CDF and PDF of ¢, and

¢ =E|c]. Also, define A = 2./c?/9), so that ¢; = ¢ — Ay/k + O (k). When k =0, ¢? =¢, so

for small x we look for a solution ¢ close to ¢. We have:

G=-1E[p(cp?)]
=E [¥c] 4+ KE [Lece,] — KE [Lese,] + E [((¥ — 1) (p? + &) — 9¢) Leger 0]
=ye+r(F(a) = (1= F () +B[(0c + @ — 1) & = 1) Legler ]
=yc+ K (2F (¢) — 1)+ o (k) + YR [(02 —0) 166[61,02]} — kE [106[01,021] )

We calculate:

(f @) + O (VK)) (cs = er)?

N =

E [(02 —c) 106[01,CQ1] = /CC2 f(e)(ca—c)de =
1

5 (f(E) +0 (\/E)) (R+A\/E+O(/i))2 = 1AQ,'@f(E) +o0(k)

2
:14_Cdf(5)5+0(5):%(6)/1+0(/£).

Given KE [1egpe,e)] = O (k3/%), we have:
G=vyc+ (2¢f(c)+2F (¢) — 1)k +o(k).

Finally, . . 1
d:¢_1:w_la—i_w_l(2Ef(5)+2F(5)—1)/€+0(/i). (44)

p

20



Monopoly pricing model of Section 4.3 with a fixed cost It may be interesting
to compare the paper’s model to a variant with a fixed cost of cognition. We will see that we
maintain the stickiness, but we lose the “sales” effect: the pricing function stops exhibiting
the “clift” at c¢;. Instead, it exhibits two symmetrical jumps at ¢; and cs.

The agent sees the price p. If he pays a fixed cost K, he uses the price p in his decision.
If he does not, he simply uses the default price p?. With a fixed cost, the perceived price is

p? (p) = { ptif fp—pf <k

p if p—pf >k

for a constant « related to K.** The monopolist’s problem is max;, (p — ¢) D (pP# (p)), with

D (p) = p~¥. Its solution is as follows.

Proposition 9 When the BR consumer has a fized cost of cognition, the monopolist’s opti-

mal price is

(45)

K ifer <c<e
ple)=19 ", .
) if c ¢ (c1,c2)

where ¢; < ¢y solve equation (46), and are equal to ¢; = ¢+ % + O (k) for small k. The

pricing function is discontinuous at ¢y and co, and continuous elsewhere.

Proof. (Sketch) The proof is as above. When the consumer is inattentive, p = p? + &,
and the profit is 7 (p? + k) = (p?+r —¢) (p?) ~¥. When the consumer is attentive (and

1-¢
pays the fixed cost), m = ¢~¥ <¢f1> as above. So, the ¢;’s solve:
flci,k)=0 (46)
1)t N
Fle) = o o) ()

q/ﬂﬁ
For the Taylor expansion, observe that f (cd, 0) =0 for ¢ = p? (» — 1) /3 and, by the
envelope theorem, f; (cd, O) = 0. So a small x implies a change dc; such that, to the leading
order, 1 fi1-(6¢)* + fz- k=0, i.e., ¢; = ¢? £ Jc with dc = %ff” + O (k). Calculations then

yield éc = % +0 (k). m

2
pPR—p)
_Q,UQQ

k= /2K p}ﬁ’/’ /1. Chetty, Looney, and Kroft (2009) have similar analytics for the DM’s decision, but do

derive the monopolist’s response.

?3The derivation is: the DM picks min,sr + K1,5r4,, so we obtain the expression for p?#, with
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9.2 Derivations of Additional Examples

This section presents the solutions to some of the early examples in the paper.

Example 2. Consider the case u(c) = —e ¢ r ~ N (m, 0%), e ~ N(0,02), and r,e

jointly Gaussian with covariance o,.. Then, we have:

V (a,m) = Bu(w + ar + me)
< (a202 + m?o? )>
=ul|lw+amr—y #—l—amare

2 2 2 2
W—# + amJT€>> (7 — ymo,. — yac®). (47)

Vo (a,m) = —yu <w—|—a7r—7<
The default model is m? = 0 (the decision maker does not take into account the back-
ground risk). Hence, the default action, which is the optimal action under the default model,

satisfies V, (ad, 0) =0, i.e.,
a’ = —. (48)

Simple calculations yield:

Step 1 gives:
* LacL (ad7 0) 0'2
mt=r (,u, mm—a (a.0) Og | =T (1, ﬁm—0r60a>

where o, is the normal variation in allocation, e.g., coming from an underlying dynamic
problem (for instance, it might depend on variations in the estimated equity premium 7).
Finally, using k* = 0, Step 2 gives that the optimal allocation a* satisfies V, (a*, m*) = 0,
ie.,

*
* T —"7YM Opr¢
@ =3
yo
77 Ore
a-=——-—7 <—, ijda> : (49)
o2

vo?

As expected, if background risk covaries positively with stocks (o, is higher), then the

Ore
o2

allocation in stocks (a*) weakly falls. However, this effect is truncated: if

< k"o,
then 7 (%, nmaa) = 0, and there is no effect. Hence, the agent reacts only to large enough

background risk.
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Example 3. To reduce notational clutter, I solve this example with u (¢) = v (c) =
=7/ (1 —~), R* = 1. The net interest rate is r; = R; — 1. We have:

V(a,Ry,m) =wu(a)+u(R(m)(w—a))= +

Vo(a,Ry,m)=0a""—R(m)" " (w—a)".
So at m? =0, V, (a?, Ry, m?) = 0 gives a’ = w/2. Next,

Vi (ad7 Rt7md) — (ad) + (ad) R (md)l—”/ — o/ (ad) e
Vmn (ad, Ry, md) =0, [—R (m)' ™" (w — ad) _q

=(v—-1DR (mY)d (a”) = (v = 1) r/ (a?) . (50)

Finally, Step 1 gives:

Hence, the interest rate perceived by the decision maker is R (m*) =1 4+ m*ry, i.e.,

. m 2 0q
R(m)—l—f—T(Tt,H mﬁ)

The agent’s attention to the interest rate is lower when the net interest rate r; is small

and when the agent’s intertemporal elasticity of substitution, 1/7, is close to 1. Indeed,

when ’limﬁ% > |r¢| the decision maker does not pay attention to the interest rate at
all.
The agent’s optimal consumption at time 1 satisfies u’ (a) —u' (R (m) (w — a)) R (m) = 0,
le.,
a’=R(m)" 7 (w—a)",
hence
a* v (51)

B 1+ R (m"‘)lm_1 .
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9.3 Change in Lagrange Multiplier after a Shift

Consider the problem:
maxu (a,s) s.t. B(a,s) >0

a
where a is the action and s is a “shift” parameter (which is general and could represent a
shift in income, price, taste, etc.), and the objection function u and the budget constraint
— B are concave in a. We will derive the change in action da when there is an infinitesimal

parameter shift ds. Define the Lagrangian:
L(a,s,\)=u(a,s)+ AB(a,s). (52)
We suppose that the constraint binds, A > 0.

Lemma 3 (Change in Action and Lagrange Multiplier after a Shift) After a change )\, we

have:

oA = (BLL;'B,) ™" (Blds — B,L;! Lys0s) (53)

a~—aa a~—aa

and

da = —L, 1 (Las0s + ByoA) (54)

a~—aa a~—aa a~—aa

= — (L;)B,) (BLL; B,) " Blos — L)} [1 — B, (B.L;'B,) " B’L—l} Lasds.  (55)

With other notations, p = —B,, dy = B.ds (the notations are inspired by the example
B(a,s)=y(s)—p-a), b= L !B,, we have:

ba = —L, ! Ly05 — boA
where 0\ adjusts to satisfy the budget constraint:
—p'da+ oy =0. (56)

The interpretation is that b is the vector of the basis axis of adjustment when the dollar
budget changes. Call ¢ = —L_ ! L,.0s the “myopic” change without thinking about the
budget constraint. Then,

da = dc — boA

54



where d\ solves (56):

dy = p' (6c — o)
= 6\ = (p'b) " (o — dy),

SO

da = dc—b(p'b)~" (poc— by)
= b(p'b) " Sy + e —b(p'b) " péc. (57)

The interpretation of (54) is as follows. The first term, —L_! L,,ds, is the “myopic” change
in action, using the same prices (Lagrange multiplier) as before the shift and forgetting about
the budget constraint. The term is the change in action to satisfy the budget constraint.
This interpretation motivates Step 3 in the Sparse BR algorithm with constraints (Algorithm
2).

In equation (55), the first term is a direct change of income, and the second is the change
in the price, L,, that is orthogonal to the price vector B,.

Proof of Lemma : Differentiating L, (a, s, A) = 0,
0 = Lygoa + Lgs0s + LgrOA,

so as Ly = By,
ba = —L,} (Las6s + Bao)). (58)

The budget constraint B (a, s) gives:

0 = Blda+ B.is
= —B! L.} (L5 + B,6)) + B.6s,

a~—aa

SO
oA = (B,L;}B,) " (BL0s — BLL; Lyy0s) .

a -~ aa a-—aa

Note that when there are K budget constraints, then B! L 1B, € RE*K and B’ds and
B'L1L.6s € RE.

a~—aa
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Finally, we have:

§a = —L_ 1 (Las0s + B,oA)

a~—aa a~—aa

— Lo} (Lasds + Ba (BiLyt Ba) ™ (Blos = ByLy Lasds) )

a~—aa a~—aa a~—aa

— —L;'B, (B,L;}B,) ' Blos — L} (1 ~ B, (B.L;'B,) " B’L*1> Las0s.

10 Some Enrichments of the Model

10.1 Enrichments of the Basic Sparse BR Model

Operator language To express variants of the model, it is useful to use the following

operators on a function f (a,m):

(A, f) (m) = (mi = m{) O, f (M), (Aq f) (m) = (a; — af) Ou, f (m)

(59)
(A, f) (@) = N - O f (), (Ap, f) (@) = 1o 0af (a).

The notation 0, f (a) is the differential of f at point a, and the dot - is the vector product;
for instance, 17, - 0o f (@) = Y, nai% (a). With that notation, in the Sparse BR model, the

penalties (9) and (11) are equivalently expressed:
K [m] = K™ Z ||AmzA7]av (a,z,m)|, K [a] = K Z ||AaiA77mv (a,z,m)|.
However, the operator notation generalizes more easily.

Discrete sets, non-differential operators Sometimes (e.g., when the space under-
lying a is not continuous) it is useful to replace the differential operators used in Algorithm

1 by their non-differential counterparts (the superscript F' is a shorthand for “finite”):

(quf) (m) = f(msm_;) — f (mg,m—i) ) (AaFf) (m) = f(aj,a_;) — f (a;‘i7a—i) ,
(AF ) (m) = f(m+nm) = f(m), (AL f) (@) = fla+mn.) = f(a).

How to define “a + n,” when the action space A is finite? Assume that space A comes
equipped with a distance d (a,a’): for instance, if A = {1,...,n} ordered in N, d(a,d’) =
la — a’|, and if A is just a set of options with no clear metric (e.g., 4 options with no particular

2

spatial ordering), we can have d (a,a’) = 1,,. Then, “a+1,” stands for a random variable
variable @ with P (a = a/) = Ke # %) for some 3 > 0 and a constant K: it has a mode at

a, and decreases away from a.
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Likewise, sometimes (e.g., when dealing with functions with discrete support) it might
be useful to have a non-differential version of the A matrix. A simple device is to consider

values a* (m) and set:

Ai = (———l———gE[U(a*(u),u)—-U(a*(ﬂu,uJ,AO] (60)
mg; — /M;)

where a* (m) is the optimum under the model parametrized by m.

Averaging In the baseline model, A is evaluated at the default action and repre-
sentation. We could extend that by averaging around the baseline. For instance, define
A(a,m,x) = -V, V.-V, and

A=E[A (a® + ns,m? + ng, )] (61)

where the expectation is over 7,, 74, and z. So, we add noise around a¢ and m?.
For instance, if we use the default action (no saving), there is no impact of the interest
rate, the simple A is 0. But with averaging, the agent will see that for some other policies

(non-zero saving) the interest rate does matter.

Enrichment via loss aversion One interesting enrichment is to use a loss-aversion-
based penalty for negative outcomes but not positive ones. Denote =~ = max (—=z,0), i.e.,
= = —x for x < 0 and 0 for x > 0. Call A_ the “loss aversion” operator, (A_f) (z) =
(f (x))". Instead of the original formulation (11), & [a] = k%), [|As, Ay, V||, we could have

for a complexity parameter k%~ :
kla) = k" 3 ALA, V.

This operator A_ may be useful, first, because loss aversion seems important in many
parts of economic psychology. Also, it is serviceable in the (relatively rare) cases where a
gamble is offered with no downside. To see this, take the problem where the agent can pick
a quantity a € [0, 1] of a gamble g with non-negative support, i.e., the agent obtains utility
u (ag). It is clear that, whatever the complexity of g, by domination, picking a = 1 is the
right thing to do. This is missed by the basic algorithm, but is detected with the loss aversion

operator: normalizing u (0) = 0,

kla] = kY7 ||A_A)V|| = k¥ E [(u (ag) —u (O))_} =0
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because u (ag) — u(0) > 0 almost surely. Then, it is clear that there is no penalty for
complexity.

We can also mix and match, and replace (11) by
kla] = K" Z [A_Ag Ay, VI + %7 Z [A_Ag V]|

This is adding a “loss aversion” operator to the previous operators. It seems that in
many situations it is not worth bothering about the loss aversion operator A_ , which adds
some algebraic complexity, but it is good to have it available when “domination” patterns
are important.

Finally, the decision maker might restrict himself to a parametrization of the actions. For
instance, if the underlying action is A = (A, ..., A7) where A, is the savings rate at time ¢,
we can have A; (a) = ag + a1t, a savings rate that depends in an affine way on age, where

(ap,ap) is a 2-dimensional parametrization of the agent’s savings rate.

Contingencies-matching Suppose there is a random variable ¢ in the value function,
V' (a,z,m,e). Then, the following variant of Step 2 of Algorithm 1 may be useful.

Step 2’: For each realization of the noise ¢, pick the best action:

a(z,e) € maxV (a,x,m,e) — k [a] (62)

a

and then play a (¢) according to the probability of €.

This variant accounts for “probability matching.” In the paradigmatic game, a biased coin
will be tossed and come out as heads with probability 0.7, say, and heads with probability
0.3. Subjects have to predict which side will be drawn. They tend to predict heads with
probability 0.7. This is a deviation from rationality which implies betting on heads at all
times. Step 2’ above generates that behavior even when k® is set to 0: with probability 0.7

(resp. 0.3), the agent draws heads (resp. tails), and best-responds to it.

A Sparse BR model with fixed cost For some purposes, it may be useful to have a
model with a fixed cost of thinking, rather than the ¢; cost of thinking worked out in the
paper. To this end, I propose the following model. It pays keen attention to the scaling of

the various costs and benefits.

Algorithm 3 (Sparse BR Algorithm with Fized Costs) To solve the problem max, V (a, z, 1),

the agent uses the following two steps:
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. Optimize on the representation of the world. Using the realism loss matrix A

given in (7), determine m by solving for

minl(m—u)'A(m—u)—l—/{[m].

The first part is a measure of expected loss from a poor simulation while the second

part is the complexity cost of the representation with a fized cost:

(64)

K [m] = K™ Z [[7m:Ma Vinsal 1mﬁém§l-

. Optimize on the action. Maximize over the action a:
max V (a,x,m) — K [a]

where the expectation is over the realizations of € and where the complexity cost of the

action, k|al, is:

(65)

K [a] = K* Z 174, 1m Vi 1aﬁéa;fl-

In the formulation of Algorithm 3, the costs k [m] and & [a] are fixed costs. The agent

pays the cost only if m; # m¢. The model includes some scaling of the fixed cost: that is to

satisfy the invariance properties listed in Proposition 1. Here, 7, represents some variability

of m.

Problem (63)-(64) is non-convex, so in general it is very difficult to solve. However, when

A is a diagonal matrix, it allows a simple solution:

m
* K]
m; =
2%

P 26" [, Ma Vinia
v Aji

_ " m [ VaaTta
||Vmia|

SR

d
i
d
i

where

if ‘m —

if ‘m- —

il <K

1

when a is one-dimensional.

The idea is that agents pay the fixed cost only if the difference between the default and

the optimal representation is large enough (’mf — ,ul-| > k;), and if the action is important

enough (high A;).
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