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1 Introduction

This paper proposes a tractable model of some dimensions of bounded rationality (BR). It

is designed to be easy to apply in concrete economic situations, and to inject a modicum

of bounded rationality into existing models. It allows to study how and when bounded

rationality makes an important difference for economic outcomes.

Its principles are the following. First, the decision maker in the model is not the tra-

ditional rational agent, but is best thought of as an economist building a simplified model

of the world (a model-in-model). He builds a representation of the world that is simple

enough, and thinks about the world through his partial model. Second, and most crucially,

this representation is “sparse,” i.e., uses few parameters that are non-zero or differ from

the usual state of affairs.1 I draw from the fairly recent literature on statistics and image

processing to use a notion of “sparsity”that still leads to well-behaved, convex maximization

problems. Third, the maximization can itself be imperfect, with a penalty that rises as the

action taken becomes increasingly different from the default action, and it relies on the same

sparsity criterion.

The decision maker simplifies his model of the world. For instance, he builds a model

where some parameters are irrelevant (while they actually do matter to some degree), where

some future cash flows do not occur, and where some variables are deterministic rather

than random. He assumes convenient probability distributions rather than the complexity

of reality: e.g., he might assume a distribution with two outcomes rather than a continuum

of outcomes. These choices are controlled by an optimization of his representation of the

world.

To motivate the model, I first consider a simple situation in which the decision maker

wishes to make a decision that should be the weighted sum of many factors, such as his

own income but also GDP growth in his country, the interest rate, recent progress in the

construction of plastics, interest rates in Hungary, the state of the Amazonian forest, etc.

Since it would be too burdensome to take all of these variables into account, he is going to

discard most of them.2 I study how to specify the cost of enriching the decision maker’s

1The meaning of “sparse”is that of a sparse vector or matrix. For instance, a vector in θ ∈ R100,000 with
only a few non-zero elements is sparse.

2Ignoring variables altogether and assuming that they do not differ from their usual values are the same
thing in the model. For instance, in most decisions we do not pay attention to the quantity of oxygen that is
available to us because there is plenty of it. In the model, ignoring the oxygen factor is modeled as assuming
that the quantity of oxygen available is the normal quantity. Indeed, the two are arguably the same thing.
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representation of the world. Following antecedents in statistics and applied mathematics

(Tibshirani 1996, Candès and Tao 2006, Donoho 2006), I show that one is particularly

appealing: the `1 norm, i.e., the sum of absolute values of the non-zero updates in the

variables. The reasons are as follows. First, a quadratic cost would not generate sparsity:

small updates would have a miniscule penalty, hence under that model the decision maker

would have non-sparse representations. Second, a fixed cost per variable would give sparsity

but lose tractability; fixed costs lead to non-convex problems that make the solution very

complicated in general. Instead, the `1 penalty both gives sparsity and maintains tractability.

The model generates full or partial inattention to many variables.

The unweighted `1 criterion, used in the basic quadratic target problem, may not work in

general: for instance, dimensions might not be comparable —e.g., the units could be different.

I study how to generalize it. It turns out that, under some reasonable conditions, there is

only one unique algorithm that (i) penalizes the sum of absolute values in the symmetric

quadratic target problem, and (ii) is invariant to changes in units and various rotations of

the problem. This is the algorithm I state as the “Sparse BR” algorithm. Hence, basic

invariance considerations lead to an algorithm that is fairly tightly constrained. In addition,

the algorithm involves just a simple optimization problem, so it is easy to apply.

I apply the model to a few of the main building blocks of economics, so that a modicum

of bounded rationality can be injected into them and we can see when and how bounded

rationality makes a difference for economic outcomes.

I first study intertemporal consumption. In this model, the agent may not think about

all sources of income variables. Namely, he anticipates more about the usually important

one, and less or nothing at all about the small ones. As a result, the marginal propensity to

consume is different across income streams, whereas it would be the same in the traditional

model. This is much like Thaler’s (1985) “mental accounts.”Also, this generates system-

atic deviations from Euler equations: they point towards inertia as agents will react in a

dampened way to many future variables.

The next basic machinery of economics I apply BR to is a decision maker buying a vector

of n goods. He is the traditional agent, except that he wishes to economize on thinking about

all prices. The model generates a zone of insensitivity to prices: when prices are close to

the average price, the decision maker does not pay attention to them. I then study how a

firm will optimally price goods sold to such BR consumers. It is clear that the firm will not

just choose any price strictly inside the zone of consumer inattention: it will rather select a

price at its upper bound. Hence, a whole zone of prices will not be picked by firms. Even

as the marginal cost of goods changes, there will be a zone of complete price rigidity. In

addition, there is an asymmetry: there will sometimes be discrete downward jumps of the
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price (“sales”) but no corresponding upward jumps from the normal price (the asymmetry

is due to the fact that the firm wants to keep a price as high as possible). Hence, we yield

a tractable mechanism for price rigidity based on consumer bounded rationality rather than

firms’menu costs.

Then, I also consider a few more psychological phenomena. One is that of cognitive

overload: when the agent is confronted with too many decisions to make, the “cognitive

budget constraint”becomes saturated and the quality of his decision making decreases. I

also consider the endowment effect. In the model, the agent wishes to stay close to the

default or status quo, which naturally generates an endowment effect. The value added by

the model is that it yields a prediction of the size of the effect. As the Sparse-BR agent

wishes to remain with the status quo when there is more model uncertainty, we obtain a

higher endowment effect when the value of the good is more uncertain. This is different from

prospect theory where the size of the effect depends only on the hedonic value of the good.

Hence, the model explains why more experienced traders (List 2003) exhibit a much weaker

endowment effect.

This paper tries to strike a balance between psychological realism and model tractability.

The goal for the model is to be applicable without extensive complexity, and at the same time

to capture some dimensions of bounded rationality. The central elements of this paper —the

use of the `1 norm to model bounded rationality (rather than physical transaction costs), the

accent on sparsity, and the Sparse BR algorithm —are, to the best of my knowledge, novel.

I defer the discussion of the relationship between this paper and the rest of the literature to

later in the paper when the reader is familiar with the key elements of the model.

The plan of the paper is as follows. Section 2 motivates the model in the context of a

stylized model where the goal is to hit a target. Section 3 states the basic model. Section

4 applies the latter to a few basic economic problems. One is how a BR consumer selects

a bundle of n goods while not completely processing the vector of prices. I also work out

how a monopolist optimally sets prices given such a consumer: we will yield a novel source

of real price rigidity, alongside occasional “sales”with large temporary changes in prices.

Section 5 applies the idea of different representations to the simplification of random vari-

ables and categorization, using the language of “dictionaries”from the applied mathematics

literature. Section 6 presents various enrichments of the model, for instance to discrete ac-

tions and models with constraints. It also discusses links with existing themes in behavioral

economics. Section 7 discusses the limitations of this approach, and concludes. Many proofs

are delegated to the appendix or the online appendix.
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2 A Motivation: Sparsity and `1 Norm

We are developing a model where agents have sparse representations of the world, i.e., many

parameters are set to “0,” the default values. To fix ideas, consider the following decision

problem.

Problem 1 (Choice Problem with Quadratic Loss) The random variables xi and weights µi
are freely available to the decision maker, though perhaps hard to process. The problem is:

pick a to maximize V (a, x, µ) = −1
2

(a−
n∑
i=1

µixi)
2.

If the xi’s are taken into account, the optimal action is

a (µ) =
n∑
i=1

µixi.

For instance, to choose consumption a (normalized from some baseline), the decision maker

should consider not only his wealth, x1, and the deviation of GDP from its trend, x2, but

also the interest rate, x10, demographic trends in China, x100, recent discoveries in the supply

of copper, x200, etc. There are n > 10, 000 (say) factors x1, ..., xn that should in principle be

taken into account. However, most of them have a small impact on his decision, i.e., their

impact µi is small in absolute value.

Hence, we want to model an agent that does not wish to bear the costs of analyzing all

these dimensions. He will just analyze “the most important ones.”Hence, he will calculate

a (m) =
n∑
i=1

mixi

for some vector m that endogenously has lots of zeros, i.e., m is “sparse.”For instance, if

the agent only pays attention to his wage and the state of the economy, m1 and m2 will be

non-zero, and the other mi’s will be zero.

Consider the expected loss from taking the imperfect (but parsimonious) policy a (m)

rather than the fully inclusive (but very expensive) policy a (µ): L = E [V (a (µ) , x, µ)− V (a (m) , x, µ)].

We have L = E[0 − −1
2

(
∑
i

mixi −
∑
i

µixi)
2], and assuming for simplicity that the xi’s are

i.i.d. with mean 0 and variance 1,

L =
1

2

∑
i

(mi − µi)2 .

We desire a systematic procedure to predict how an agent will pick the “important

dimensions”that will receive non-zero weights mi. We will formulate the choice of m as an
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optimization problem:

min
m∈Rn

1

2

∑
i

(mi − µi)2 + κ
∑
i

|mi|α (1)

with κ > 0 and α ≥ 0. The first term is the utility loss from an imperfect representation of

the world, mi. The second term, κ
∑

i |mi|α, represents a penalty for lack of sparsity: when
the decision maker has a non-zero or large |mi|, he pays a cost κ |mi|α where κ is a cost
parameter.

Let us analyze what α would be appealing given that we want to capture that the decision

maker has a sparse vector m. One natural choice would be α = 2, which leads to a quadratic

cost function. Then, we obtain − (mi − µi) − 2κmi = 0, i.e., mi = µi/ (1 + 2κ). This does

not yield any sparsity: all features matter, regardless of whether µi is small or large. We

just get some uniform dampening. Hence, we seek something else.

Another natural modeling choice would be α = 0 (with the convention |m|α = 1m6=0),

which leads to a fixed cost function: the decision maker pays a cost κ for each non-zero

element. Then, the solution is: mi = µi if |µi| ≥
√

2κ, and mi = 0 otherwise. Now we

do obtain sparsity. However, there is a large cost in terms of tractability. Problem 1 is

no longer convex when α = 0 (it is convex if and only if α ≥ 1). Its general formulation

(minm∈Rn F (m) + κ
∑

i 1mi 6= 0, for a convex F ) is very hard to solve, and indeed generally

untractable in a precise sense.3

Now consider the problem with α = 1, i.e., a linear cost (with absolute values), as argued

in the recent statistics and applied mathematics literature (Tibshirani 1996, Candès and Tao

2006, Donoho 2006). Then, problem (1) is convex. Let us solve it. Differentiating (1), we

have:

− (mi − µi)− κ · sign (m) = 0 (2)

where sign (m) is the sign of m (sign (0) is the shorthand for some number between −1 and

1). Let us solve (2) when µi > 0. When the solution is mi > 0, we obtain mi = µi − κ,
which requires µi > κ. When 0 ≤ µi ≤ κ, mi = 0. In general, we have:

mi = τ (µi, κ) (3)

for the function τ which is plotted in Figure 1 and defined as follows.

Definition 1 The “anchoring and adjustment” function τ is

τ (µ, κ) = (|µ| − |κ|)+ sign (µ) , (4)

3It is “NP-complete”(Mallat 2009, chapter 12) in the terminology of complexity theory (if vector µ has
1,000 components, the brute-force solution would be to study the 21000 ' 10300 subsets of fixed costs).
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Figure 1: The anchoring and adjustment function τ

i.e., for κ ≥ 0,

τ (µ, κ) =


µ+ κ if µ ≤ −κ
0 if |µ| < κ

µ− κ if µ ≥ κ

. (5)

The salient features of (3) are, first, that when |µi| < κ, mi = 0: all the small components

are replaced by 0. This confers sparsity on the model. Second, for µi > κ, mi = µi − κ.

This corresponds to a partial adjustment towards the correct value µi. This motivates the

term “anchoring and adjustment,”a phenomenon demonstrated by Tversky and Kahneman

(1974). In their experimental evidence there is anchoring on a default value and partial

adjustment towards the truth (e.g., people pay only partial attention to the base rate when

forming probability inferences).

Formulation (3) yields sparsity: all terms that have |µi| < κ are replaced by mi = 0. For

µi > κ, we get mi = µi − κ, so there is a certain degree of dampening.4

The conclusion is that we can use the `1 norm, i.e., the one that corresponds to α = 1 in

(1), to generate sparsity and tractability at the same time. It is easy to check that sparsity

is obtained if and only if α ∈ [0, 1], and tractability (a convex maximization problem) is

obtained if and only if α ∈ [1,∞). Hence, α = 1 (the `1 norm) is the only parametrization

that yields both sparsity and tractability.

We record the following lemma. Note that, in the notation md, d indicates a default

value, not a power.

4Also, it is easy to see that m has at most min
(
‖µ/κ‖1 , ‖µ/κ‖

2
2

)
non-zero components (because mi 6= 0

implies |µi/κ| ≥ 1). Hence, even with infinite-dimensional µ and m, provided the norm of µ is bounded, m
has a finite number of non-zero components, and is therefore sparse.
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Lemma 1 For A > 0, K ≥ 0, and a real number md, the solution of

min
m

A

2
(m− µ)2 +K

∣∣m−md
∣∣

is

m = md + τ

(
µ−md,

K

A

)
where τ is the anchoring and adjustment function given in (4).

Proof. By shifting m→ m−md, µ→ µ−md, it is enough to consider the case md = 0.

The f.o.c. is

A (m− µ) +Ksign (m) = 0.

That is, m = τ (µ,K/A).

Let me discuss the interpretation of the model. In this model, the decision maker is

aware of dimension i, and even xi: still, if its importance |µi| is less than κ, he discards that
dimension. In that sense, he behaves like an economic modeler (or a physics modeler for

that matter): an economic modeler is aware that there are many things outside his model,

and he often knows how to model them; still, he wishes to discard those dimensions to keep

the model simple. The decision maker does the same here.

Hence, the interpretation suggests some change of focus compared to the more conven-

tional economic approach, which is that of “optimization under informational constraints”

(see Veldkamp 2011 for an excellent survey of this literature). In the present model, the

decision maker knows a lot, but prefers to discard a lot of minor information to keep his

model sparse. The differences with existing approaches will be discussed in greater depth

later.5

The τ function generates underreaction. It is worth seeing that this is a robust feature

of models of noisy cognition. Take the canonical model where the agent receives a signal

s = µ+ε, with a non-degenerate noise ε uncorrelated with µ whose variance diminishes with

cognitive effort. Then, to minimize a quadratic loss function (m− µ)2, it is well known that

for (µ, ε) Gaussian with mean 0, the optimal signal extraction is m (s) := E [µ | s] = λs with

λ = var (µ) /var (s) < 1. This implies that E [m (s) | µ] = λµ, which generates dampening

as λ < 1. This can increase our confidence that it is sensible for our model to generate

dampening.

5In the Sims (2003) entropy framework with Gaussian xi’s, one may check that the DM’s action (and
signal) is a = c

∑
i qixi + η for a positive constant c and an independent Gaussian noise η; c and η are

parametrized by the DM’s information capacity. Hence, the DM pays attention to all xi’s. The decision is
noisy but not sparse.
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A tempting other formulation, ultimately not adopted here, is the following: use (1)

to find which dimensions to eliminate, but for those that survive, use mi = µi, i.e., pay

full attention (like in the fixed cost model). In other terms, use the “hard thresholding”

function τH (µ, κ) = µ · 1|µ|≥|κ|, rather than the “soft thresholding” function τ . Indeed,

this τH function has been used in statistics (Belloni and Chernozhukov 2010). For some

applications, this may be a useful model. However, it has several disadvantages. First,

underreaction may actually be desirable, as argued above. Second, as it also seems to hold

empirically, response functions are likely to be continuous, at least in the aggregate —and a

goal of this paper is to find a tractable representation of a boundedly rational representative

agent. Indeed, the soft thresholding function τ (µ, κ) with `1 penalty and parameter κ can

be seen as the representative agent aggregation of many heterogenous agents using the `0

penalty with different fixed costs k.6 Third, and more technically, the fact that the hard

thresholding function yields discontinuous response functions makes the model harder to

handle. In contrast, the `1 formulation yields a convex decision problem, hence actions

depend continuously on the environment.

Accordingly, I proceed with the `1 model and the soft thresholding, anchoring and ad-

justment function τ . I next generalize this idea to more general problems than the quadratic

model.

3 The Basic Model

3.1 Model Statement

The decision maker has a value function V (a, x,m), and wishes to select an action maxi-

mizing:

max
a
V (a, x, µ) . (6)

The action a ∈ Rna is potentially multi-dimensional, i.e., maximization implies several ac-
tions: it could be the consumption of a good, the chosen allocation for a stock, etc.

The notationm ∈ Rnm indicates the “representation of the world”(or “model-in-model”)
chosen by the agent, while the true (but potentially very complex) model is represented by

a vector µ. In the previous examples, mi is the importance on a dimension of the world:

when mi = 0, the agent does not think about dimension i, while when mi = µi, the agent

fully pays attention to it. The value function is V (a, x,m), and ideally the agent would like

to maximize V (a, x, µ), i.e., the value function evaluated at the true model µ. However, his

6Indeed, if the distribution of k’s is f (k, κ) = 1k>κκ/k
2, aggregation is exact: τ (µ, κ) =∫∞

0
τH (µ, k) f (k, κ) dk.
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concern for sparsity will make him choose a simpler (actually sparser) model m rather than

the true model of the world µ. Vector x ∈ Rnx is a series of quantitative features the decision
maker might pay attention to (in a way modulated by m). When there is no such x (see

Example 2 below), the value function is simply V (a,m).

Finally, the decision maker has a representation md ∈ Rnm and a default action ad ∈ Rna .
A default representation could bemd

i = 0, i.e., “do not think about dimension i.”Typically, a

good value for ad is the best response given by the default model, ad = arg maxa V
(
a, x,md

)
.

That will often imply ad = 0, “do nothing,”or more precisely “do not deviate from the usual

action.”Arguably, such “do nothing”heuristics are among the most common decisions we

make. It is directly at the core of the model as a default action.

It is useful to keep some examples in mind. The first one is the one we started with.

Example 1 (Quadratic Target) We have V (a, x,m) = −1
2
(a−

∑
imixi)

2, with true weights

µ and sparser weights m.

The next example shows how the model can capture “narrow framing.”

Example 2 (Narrow Framing): Let a be the optimal stock holding. Call w the baseline

income wealth, r̃ the excess stock return, and ε̃ the labor income shock of the agent, so that

time-1 consumption is c (m) = w + ar̃ +mε̃, with the true weight µ = 1, and

V (a,m) = Eu(w + ar̃ +mε̃).

In this example, µ = 1 means that when picking equities, the decision maker explicitly takes

into account the other gambles in his life, such as labor income shocks. However, when

m = 0, the decision maker uses “narrow framing”or “narrow bracketing” (e.g., Rabin and

Weizsäcker 2009). The agent thinks about his optimal allocation in equities while forgetting

about the other gambles in his life, such as future income shocks. Hence, the model can offer

predictions about when the agent deviates from a narrow bracket.

The third example demonstrates how the decision maker may not pay full attention to a

variable of interest, such as the interest rate.

Example 3 (Neglected Interest Rate) The decision maker starts with wealth w, consumes a

at time 1, invests at a gross interest rate R, and consumes at time 2. His utility function is:

V (a,Rt,m) = u (a) + v (R (m) (w − a)) , R (m) = Rd +m
(
Rt −Rd

)
.

When m = µ ≡ 1, the decision maker consciously uses the true interest rate Rt. However,

when m = md ≡ 0, the decision maker does not pay attention to the interest rate; instead, he
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uses a default interest rate Rd. This interest rate might be the average historical real gross

interest rate. Note also that the Euler equation fails.

To state the model, we assume a prior knowledge of the normal range of variation in the

action, reflected by a variable ηa, and in the representation, indicated by ηm. I discuss them

below. For X a random variable, I define: ‖X‖α = E [|X|α]
1/α for α ≥ 0. Unless specified

otherwise, I take α = 2.

I assume that the derivatives Vaa and Vam (i.e., the second derivatives with respect to a

and m) are defined at
(
ad, x,md

)
, and that Vaa is negative definite (which is the case if the

function is locally strictly concave in a).

This paper proposes the following algorithm as a useful model of agents’behavior. It

may be called the “Sparse Boundedly Rational” algorithm, or “Sparse BR”algorithm for

short.

Algorithm 1 (Sparse BR Algorithm) To solve the problem maxa V (a, x, µ), the sparsity-

seeking decision maker uses the following two steps:

Step 1. Choose an optimally sparse representation of the world. Using the

realism loss matrix Λ,

Λ = −E
[
VamV

−1
aa Vam

]
, (7)

the agent chooses his optimally sparse representation of the world as the solution of:

min
m

1

2
(m− µ)′ Λ (m− µ) + κ [m] . (8)

The first part is a measure of expected loss from an imperfect model m, while the second part

is a psychic cost that is a penalty for the lack of sparsity in the model:

κ [m] = κm
∑
i

∣∣mi −md
i

∣∣ ‖Vmiaηa‖ . (9)

Step 2. Choose an optimal action. The agent maximizes over the action a:

max
a
V (a, x,m)− κ [a] (10)

where the psychic cost of deviations from the default κ [a] is

κ [a] = κa
∑
i

∣∣ai − adi ∣∣ ‖Vaimηm‖ . (11)

In (7), (9), and (11), all derivatives of V are evaluated at the default
(
ad,md

)
. The
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unitless parameters κm and κa indicate the cost of deviations from the default. When κa =

κm = 0, the decision maker is simply the traditional frictionless agent.

Let me comment on the parts of the model.

First-pass intuition for the model When κm = 0, the decision maker’s model of

the world is the correct one: m = µ. When κa = 0, the maximization is perfect, conditional

on the model-in-model. Hence, the model continuously includes the traditional model with

no cognitive friction. When cognition costs κm are non-zero, the model exhibits inertia and

conservatism: the model-in-model is equal to the default, and so is the action.

For many applications, it might be enough to just turn on either Step 1 or Step 2 of

the model. In most of this paper, only Step 1 will be turned on, i.e., I will assume perfect

maximization given the representation of the world (κa = 0).

When selecting m, the decision maker uses a quadratic approximation of the

objective function The expression Lquad (m) = 1
2

(m− µ)′ Λ (m− µ) is the quadratic

approximation of the expected loss from an imperfect model m. More specifically, consider

a function V with no x, and a (m) = arg maxa V (a,m), the best action under model m. The

utility loss from using the approximate model m rather than the true model µ is L (m) =

V (a (µ) , µ) − V (a (m) , µ). A Taylor expansion shows that for m close to µ, L (m) =

Lquad (m) to the leading order.7 This motivates the use of the first term in (8): it is a

representation of the utility loss from an imperfect representation.

One modeling decision in writing the Sparse BR algorithm is to use Lquad (m) rather than

the exact loss L (m), which would be very complex to use for both the decision maker and the

economist. The decision maker uses a simplified representation of the loss from inattention.

This is one way to escape Simon’s “infinite regress problem”—that optimizing the allocation

of thinking cost can be even more complex than the original problem. I cut that Gordian

knot by assuming a simpler representation of it, namely a quadratic loss around the default.

Finally, in evaluating (7), it is sometimes useful to take the expectation E over the

distribution of x’s (as in the quadratic model in Section 2), or to just take the realized values

of x (then, E is simply conditional on x, i.e., it could be suppressed).

7As a solves Va (a,m) = 0, the implicit function theorem gives Vaaδa+Vamδm = 0, i.e., δa = −V −1aa Vamδm
with δm = m− µ. Hence, the loss is:

L = −Vaδa −
1

2
δaVaaδa = 0 +

1

2
(m− µ)

′
Λ (m− µ) .
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Defaults The model requires a default action ad and a default representationmd. In the

applications below, the default action will be “do nothing”or “do as usual”while the default

representation is “do not think about dimension i,”md
i = 0. This said, richer defaults could

be considered: the literatures on learning and in behavioral economics contain insightful

theorizations of such defaults (Koszegi and Rabin 2006). Social and other processes might

affect defaults in interesting ways.

Units and scaling Sparsity penalties κm and κa are unitless numbers. The model has

the correct units: equations (8)-(11) all have the dimensions of V . Also, the equations are

independent of the units in which the components of m and a are measured. For instance,

if |mi| does depend on the units of mi, |mi| ‖Vmia‖ does not. More generally, the model is
invariant (for small changes) to reparametrizations of the action: for instance, if the agent

picks consumption or log consumption, the representation chosen by the decision maker is

the same. This adds some robustness and ease of use to the model.

The term Vmia denotes by how much a change in the dimension mi affects marginal

utility Va (i.e., ∂Va∂mi
). Hence, it is a measure of how important dimension i is. However, the

concept of marginal utility Va is not unit-independent: it has the units of utils divided by

actions. As we do need a unit-independent concept, (9) writes the penalty as Vmiaηa, where

ηa represents the demeaned range of the action a. For instance, if a ∈ [0, 100], then we could

have ηa a random variable uniform on [−50, 50]. Written this way, the term Vmiaηa becomes

unit-independent. Variables ηa and ηm largely ensure that the model has the right units and

scaling properties. They are typically not crucial in applications. To fully close the model,

the following choices prove sensible: when they are one-dimensional, we can have ηa = σa,

the standard deviation of a. One can typically say that ηm simply follows the distribution

of µ, and a follows the distribution of ad (µ, x), for instance.

However, the model is not invariant to the representations of the world m: some will

be better for the agent than others. That is arguably a desirable feature of the model, and

offers a simple way to model framing. For instance, suppose that w is real wage growth, π

inflation, wnom = w + π is nominal wage growth, and that the agent has to guess real wage

growth w. If the agent has access to w (say x1 = w), he will use it, and his problem is simple.

However, if the agent (which is more realistic in many contexts) has only direct access to

nominal wage growth x1 = wnom and inflation x2 = π, with say md
1 = 1 and md

2 = 0, then

his task will be harder, and will typically feature an incomplete adjustment for inflation.

Isn’t the algorithm complex? The algorithm has been designed to be easy to use

in economic applications. Also, it is not hard to use for the agent. For instance, Step 1

13



involves the maximization of a linear-quadratic problem (with an absolute value), and uses

only the properties of the value function around the default. It is still not a completely trivial

task, but it is simpler than the task of the traditional agent. In many cases, it is simply a

collection of nm independent maximization problems, for which the solution can be readily

written down using the τ function (as we shall see below).

Step 2 is indeed rather complex, but not really more so than the traditional agent’s

problem. In some cases, it is simplified by the term κ [a], which anchors many actions at

their default and thus reduces the effective dimension of the action set to optimize on.

Why is the model set this way? The algorithm is written, first of all, to have some

descriptive realism. That will be argued in the rest of the paper. Also, it is designed to

have the following properties (for notational simplicity I drop the dependence on x in the

remainder of this section):

(i) It generalizes the loss function of the quadratic problem in Section 2, as we shall soon

see.

(ii) It gives the same answer irrespective of whether the decision maker maximizes

V (a,m) or V (a,m) + B (m) for an arbitrary function B: it should do so because adding

such a number B (m) does not change the problem.

(iii) The model does not depend on third- and higher-order derivatives. This is to keep

the model simple, and in some sense independent (at least locally) of various details like the

third derivatives.

(iv) The model is invariant to the units of the components m and a.

The following proposition, proven in the appendix, says that there is a unique algorithm,

namely the Sparse BR algorithm, that satisfies the above four criteria. In that sense, the

model is tightly constrained, and equation (9) is rather necessary.

Proposition 1 Normalize md = 0. Suppose that the determination of m is

min
m

1

2
(m− µ)′ Λ (m− µ) +K ((mi)i=1...n , ηa, V, Vm, (Vami)i=1...n , Vaa) (12)

for a penalty function K evaluated at V and its derivatives at point
(
ad,md

)
. Suppose also

that K satisfies:

(i) (Invariance with the units of m and a, and invariance by rotations of a) The value

of K is unchanged under linear reparametrizations of mi (for i = 1...nm) and of a: for all

λi ∈ R and A ∈ Rna×na,

K (λimi, A
′ηa, V, Vm, Vami , Vaa) = K (mi, ηa, V, λiVmi , λiAVami , AVaaA

′) (13)
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(ii) (Degree-1 scaling by affi ne transformations of V ) Given a real s > 0 and a function

b (m) differentiable at md, a change V (a,m)→ sV (a,m) + b (m) multiplies K by s.

(iii) (`1 norm in the basic quadratic problem) When the cost function K is evaluated for

V = −1
2

(a1 −m · x)2 with ‖xi‖ = 1 for all i and ‖ηa1‖ = 1, we have

K = κm
∑
i

|mi| . (14)

Then, the penalty of m must be the one in Step 1 of Algorithm 1, i.e.,

K (mi,ma, V, Vami , Vaa) = κm
∑
i

|mi| ‖Vmiaηa‖ .

Proposition 1 justifies in some sense Step 1 of the algorithm. We match the basic

quadratic targeting of the earlier section, and the model satisfies scale invariance. That

leads to the formulation of κ [m] in Step 1 of the algorithm.8

Step 2 is justified, heuristically, by using the idea that penalties for changing one’s rep-

resentation and penalties for changing one’s action are treated symmetrically. This is why

(11) is simply the rewriting of (9) by changing the roles of actions and representations.

The above might be a formal convenience, or perhaps it might reflect something slightly

deeper in people’s decision making: the “basic” algorithm would be given by the penalty

(14), and then the mind would simply use the core algorithm after rescaling for the particular

units of a situation. That leads the mind to the algorithm in (9).

Welfare In behavioral models, the welfare is often hard to assess, e.g., because of the

existence of multiple selves in one agent (Bernheim and Rangel 2009). In the present model,

this is relatively simpler as one might say that “fundamental”utility remains V (a, µ, x), not

V (a,m, x) under the chosen model. Put differently, if a benevolent advisor were to suggest

perfect default models and actions, the DM would be better off, and would just follow the

advisor.

Potential variants The online appendix discusses some variants that can be useful in

some contexts but that I did not choose for the core model. For instance, rather than to

have (9) satisfy unit-invariance, one could think of modeling the penalty κ [m] as:

κ [m] =
∑
i

κi
∣∣mi −md

i

∣∣ (15)

8Note that the K function cannot depend on Va as this value is generally 0 in the default policy.
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where κi would be in utils over the units of mi. This proposal may appear simpler than (9),

but it turns out to be much more problematic to apply in practice: to use (15), at each stage

one needs to take a stance on the value of κi for each i. Also, in a dynamic problem involving

growth (say with a utility
∑
ρtc1−γ

t / (1− γ)), we should require κit to be proportional to

c1−γ
t in order to make the model scale-invariant on the balanced growth path. This requires

to set κit ∝ c1−γ
t more or less manually. On the other hand, the adoption of κi = κm ‖Vmiaηa‖

automatically provides the problem with a sensible scaling. Hence, it confers some parsimony

on the model as there is no decision to make dimension-by-dimension (there is just one key

parameter, κm, or, if one wishes, κmηa, which is the same across dimensions mi). At the

same time, we shall see from the consequences of the model that it leads to sensible economic

and psychological results.

This said, it is clear that some tasks (e.g., computing the 100th decimal of
√

2) are much

harder than others; in some economic situations this is an important force, which could be

formulated with a higher κi. However, dispensing with that additional degree of freedom

does not significantly impact the model’s economic realism.

Let us now apply the model to a concrete problem, so we can better see how it works.

3.2 Application: Quadratic Target Problem

We detail the application of the model to the quadratic target problem, Example 1. The

online appendix develops Examples 2 and 3. The problem is:

max
a
V (a, x, µ) , V (a, x,m) =

−s
2

(a−m · x)2

where s > 0 indicates the size of stakes and the xi’s are uncorrelated with mean 0 and

variances σ2
i . The agent has access to a vector of information x. Vector m represents the

weights to put on x, whose true value is µ. Instead, the agent will use V (a, x,m), with

m possibly sparse: mi = 0 corresponds to not thinking about dimension i. The decision

maker’s response is as follows (the proof is in the appendix).

Proposition 2 (Quadratic Loss Problem) In the quadratic optimization problem, the repre-

sentation is

m∗i = md
i + τ

(
µi −md

i , κ
mσa
σi

)
, (16)

and the action taken is

a = ad + τ

∑
i

m∗ixi − ad, κa
√∑

i

σ2
mi
σ2
i

 . (17)
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When κm = 0, m = µ, and when κa = 0,

a =
∑
i

m∗ixi.

Equation (16) features anchoring on the default valuemd
i and partial adjustment towards

the true value µi: mi ∈
[
md
i , µi

]
. For most applications where dimension i is non-salient,

md
i = 0 is probably the right benchmark.

The decision maker does not deviate from the default iff
∣∣µi −md

i

∣∣σi < κmσa, i.e., when

dimension i cannot explain more than a fraction (κm)2 of the variance of action a. It is the

relative importance of attribute i in decision a that matters for whether or not the decision

maker will pay attention to attribute i, not its absolute importance in terms of, say, a dollar

payoff.

The model is scale-invariant in V (e.g., equation 8 is homogenous of degree 1 in V ). As a

result, the total amount of attention concerning decision a is the same whatever the stakes

s. People will pay attention to say 80% of attributes, whether it is for a small decision (e.g.,

buying at the supermarket) or a big decision (e.g., buying a car). I conjecture that this feature

is a good benchmark which would be interesting to evaluate empirically (I do not claim it

will work perfectly, but I conjecture that it will hold more likely than the polar opposite

prediction that people would be 1 million times more precise for a good that costs 1 million

times more). Some evidence consistent with that is presented by Samuelson and Zeckhauser

(1988), who show similar percentage price dispersion between cheap and expensive goods,

and by Tversky and Kahneman (1981): people consider a $5 discount more worthy of an

extra shopping trip if it is for a $15 calculator than for a $125 jacket. Finally, there is casual

evidence that many people do not spend more than 1 hour on retirement planning. Still, in

some cases the scale-independence feature of the model may not be appropriate, and Section

6.1.3 endogenizes κ and renders attention more important for more expensive goods.

Equation (17) indicates that when there is more uncertainty about the environment, the

action is more conservative and closer to the default : when
√∑

i σ
2
mi
σ2
i is higher, a is closer

to ad. In the model, for a given amount of information (m · x), the power of default is
higher when there is more residual uncertainty in the environment. This implication might

be testable in the rich literature on defaults (Madrian and Shea 2001). In general, σm is the

amount of model uncertainty for the decision maker, in a way that will be more specific in

examples that are described below.

Calibration We can venture a word about calibration. As a rough baseline, we can

imagine that people will search for information that accounts for at least ξ2 = 10% of the
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variance of the decision, i.e., if |µi|σi < ξσa. Then, using (16), we find κm ' ξ. That

leads to the baseline of κm ' 0.3. The reader may find that, rather than 10%, ξ2 = 1% is

better (though this may be very optimistic about people’s attention), which corresponds to

κm =
√

1% = 0.1 —a number still in the same order of magnitude as κm ' 0.3. By the same

heuristic reasoning, we can have as a baseline κa ' 0.3. As it turns out, in subsequent work

(Gabaix 2011), the a-priori calibration κm ' 0.3 works quite well in predicting subject’s

behavior in experimental games.

To conclude, the model generates inattention and inertia that respond to the local (i.e.,

for the decision at hand) costs and benefits. We now explore the model’s consequences in a

few applications.

4 Some Applications of the Model

4.1 Myopia in an Intertemporal Consumption Choice Problem

The agent has initial wealth w and future income x, he can consume c1 at time 1, and invest

the savings at a gross interest rate R. Hence, the problem is as follows.

Example 4 (2-Period Consumption Problem). Given initial wealth w, solve

max
c1

u (c1) + v (x+R (w − c1))

where income is x = x∗ +
∑I

i=1 xi: there are I sources of income xi, and we normalize

E [xi] = 0.

Let us study the solution of this problem with the Sparse BR algorithm. The decision

maker observes the income sources sparsely: he uses the model x (m) = x∗+
∑K

i=1 mixi with

mi to be determined. The action is the date-1 consumption c1. We assume u (c) = −e−γc

and v (c) = −e−ρe−γc where γ is the coeffi cient of absolute risk aversion and ρ the rate of
time preference. The value function is:

V (c1, x,m) = u (c1) + v

(
x∗ +

K∑
i=1

mixi +R (w − c1)

)
.

We apply the basic Sparse BR algorithm for the case κa = 0 (frictional understanding of

the world, frictionless maximization given that understanding). Calculations in the appendix

show the following proposition.
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Proposition 3 (2-Period Consumption Model) With full maximization of consumption, the

time-1 consumption is:

c1 =
1

1 +R

(
D + x∗ +

I∑
i=1

mixi

)
(18)

mi = τ

(
1, (1 +R)

κmσc1
σxi

)
with the constant D = Rw + ρ−lnR

γ
. The marginal propensity to consume (MPC) at time 1

out of income source i, ∂c1/∂xi, is:(
∂c1

∂xi

)BR
=

(
∂c1

∂x∗

)ZC
·mi (19)

where
(
∂c1
∂xi

)BR
is the MPC under the BR model and

(
∂c1
∂xi

)ZC
is the MPC under the zero

cognition cost model (i.e., the traditional model). Hence, in the BR model, unlike in the

traditional model, the marginal propensity to consume is source-dependent.

Different income sources have different marginal propensities to consume —this is remi-

niscent of Thaler’s (1985) mental accounts. Equation (19) makes another prediction, namely

that consumers pay more attention to sources of income that usually have large conse-

quences, i.e., have a high σxi. Slightly extending the model, it is plausible that a shock to

the stock market does not affect the agent’s disposable income much —hence, there will be

little sensitivity to it.9

There is a similarity of this model with models of inattention based on a fixed cost

of observing information (Duffi e and Sun 1990), in particular with the optimal rules of

the allocation of attention developed by Abel, Eberly, and Panageas (2010), Gabaix and

Laibson (2002), and Reis (2006). Because of the fixed cost, in those models the rules are of

the type “look up the information every D periods.”Those models are relatively complex

(they necessitate many periods and either many agents or complex non-linear boundaries

for the multidimensional s, S rules) whereas the present model is simpler and can be applied

with one or several periods. As a result, the present model, with an equation like (19),

lends itself more directly to empirical testing. The presence of different models of boundedly

rational behavior may be helpful for empirical research in that area.

The Euler equation will only hold with the “modified” parameters. Hence, we have

Em [Rv′ (c2) /u′ (c1)] = 1, but only using the expectation under model m. Note that it

9In other cases, the default policy might be to consume what is in one’s wallet, up to keeping some
minimum amount. Then, the MPC of a dollar bill found on the sidewalk would be 1.
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features underreaction to future news, especially small future news.

4.2 Choosing n Consumption Goods

We next study a basic static consumption problem with n goods.

Example 5 Suppose that the vector of prices is p ∈ Rn++, and the budget is y. The fric-

tionless decision problem is to choose the optimal consumption bundle c ∈ Rn: maxc∈Rn u (c)

subject to the budget constraint p · c ≤ y.

The price of good i is pdi + µi, where pdi is the usual price and µi is some price change.

The decision maker may pay only partial attention to the price change, and consider the

price of good i to be pdi + mi. If mi = 0, he proceeds as if the true price were the default

price pdi , rather than the actual price p
d
i + µi. For instance, in the experimental setup of

Chetty, Looney, and Kroft (2009), µi could be a tax added to the price.

In this subsection, we study the case where the utility function is quasi-linear in money:

there is a good n (“money”) with constant marginal utility λ and price pdi = 1. This

assumption will be relaxed in Section 6.1.2. We apply the model of Section 3.1, with an

action a = c and value function V (c,m) = u (c)− λ
∑n−1

i=1

(
pdi +mi

)
ci.

Proposition 4 In the decision maker’s model, the deviation from the normal price is:

mi = τ

(
µi, κ

mpiσln ci

ψi

)
. (20)

If demand depends only on prices,

mi = τ (µi, κ
mσpi) . (21)

Equation (20) says that controlling for the volatility of consumption, inattention is greater

for less elastic goods. The intuition is that for such goods the price is a small component of

the overall purchasing decision (whose range is measured by σln ci). Equation (21) indicates

that in order to be remarked, a given price change has to be large as a fraction of the normal

price volatility. It would be insightful to test those predictions. Chetty, Looney, and Kroft

(2009) present evidence for inattention, but do not investigate empirically a relation like (20)

and (21).
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4.3 Optimal Monopoly Pricing and BR-Induced Price Stickiness

and Sales

I next study the behavior of a monopolist facing a BR consumer who has the utility function

u (Q, y) = y + Q1−1/ψ/ (1− 1/ψ) when he consumes a quantity Q of the good and has a

residual budget y. So, if the price is p, the demand is D (p) = p−ψ where ψ > 1 is the

demand elasticity.10 The consumer uses the Sparse BR algorithm; by the previous analysis,

his demand is:

DBR (p) = D
(
pd + τ

(
p− pd, κ

))
(22)

where, by (20), κ = κmpdσlnQ/ψ. Hence, the consumer is insensitive to price changes when

p ∈ (pd− κ, pd + κ).11 The default price pd will be endogenized later to be the average price.

The monopolist picks p to maximize profits: maxp (p− c)DBR (p) where c is the marginal

cost (in this section, to conform to the notations of the optimal pricing literature, c denotes

a marginal cost rather than consumption). The following proposition describes the optimal

pricing policy.

Proposition 5 With a BR consumer, the monopolist’s optimal price is:

p (c) =


ψc+κ
ψ−1

if c ≤ c1

pd + κ if c1 < c ≤ c2

ψc−κ
ψ−1

if c > c2

(23)

where c1 = cd−2
√
cdκ/ψ+O (κ) solves equation (43), and c2 = cd+κ with cd := (1−1/ψ)pd

is the marginal cost that would correspond to the price pd in the model without cognitive

frictions. The pricing function is discontinuous at c1 and continuous elsewhere.

Let us interpret Proposition 5. When p ∈
(
pd − κ, pd + κ

)
, the demand DBR (p) is insen-

sitive to price changes. Therefore, the monopolist will not charge a price p ∈
(
pd − κ, pd + κ

)
:

he will rather charge a price p = pd + κ. We yield a whole interval of prices that are not

used in equilibrium, and significant bunching at p = pd + κ. There, the price is independent

10Previous work on rational firms and inattentive consumers includes Heidhues and Koszegi (2010) with
loss-averse consumers, L’Huillier (2010) with differently-informed consumers, and Matejka (2010) with a
Sims (2003)-type entropy penalty. Their models are quite different from the one presented here in specific
assumptions and results. Still, there is a common spirit that behavioral consumers can lead to interesting
behavioral by rational firms. A minimo, the present paper offers a particularly transparent and tractable
version of this theme. Chevalier and Kashyap (2011) offer a theory of price stickiness and sales based on
agents with heterogeneous search costs.
11This is a testable implication: the price elasticity of demand is the smaller the closer the price is to its

default.
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Figure 2: Optimal price p set by the monopolist facing boundedly rational consumers, as a
function of the marginal cost c.

of the marginal cost. This is a real “stickiness.”12 This effect is illustrated in Figure 2.13 We

see that a whole zone of prices is not used in equilibrium: there is a gap distribution of price

deviations from the norm.

For low enough marginal cost c, the price falls discretely, like a “sale.” There is a discrete

jump below the modal price but not above it: the asymmetry is due to the fact that in the

inattention region (pd − κ, pd + κ] the firm wishes to set a high price pd + κ rather than a

low price. Hence, when we leave the inattention region, the price can rise a bit over pd + κ,

or otherwise has to jump discretely below pd − κ.
The cutoff c1 is much more below cd than c2 is above it. It deviates from the baseline cd

proportionally to
√
κ whereas c2 = cd + κ.14

This simple model seems to account for a few key stylized facts. Prices are “sticky,”with

a wide range being insensitive to marginal cost. This paper predicts “sales:”a temporary

large fall in the price after which the price reverts to exactly where it was (if c goes back to

(c1, c2)). This type of behavior is documented empirically by Eichenbaum, Jaimovich, and

Rebelo (forth.), Kehoe and Midrigan (2010), Klenow and Malin (forth.), and by Goldberg

and Hellerstein (2010), which demonstrates the existence of local-currency price stickiness

and sales in the domestic market of an exporter, consistent with this paper’s view of cognitive

frictions coming from the consumer side. In addition, the model says that the typical size of

12If the consumer’s default is in nominal terms and mentally adjusting for inflation is costly, this model
can easily yield nominal stickiness.
13The assumed values are ψ = 6, pd = 8.7, and κ = 0.025pd. They imply κ = 0.22, cd = 7.25, c1 = 6.16,

c2 = 7.46, p (c1) = 7.43, and p (c2) = 8.92.
14There is also a more minor effect. For very low marginal cost, consumers do not see that the price is

actually too low: they replace p by p + κ. Hence, they react less to prices than usually (demand is less
elastic), which leads the monopolist to raise prices. For high marginal cost, consumers replace the price by
p− κ, so their demand is more elastic, and the price is less than the monopoly price.
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a sales will be p (c2)− p (c1), i.e., to the leading order

p (c2)− p (c1) = 2

√
κpd

ψ − 1
(24)

where κ = κmpdσlnQ/ψ. Hence, the model makes the testable prediction that the gap in the

distribution of price changes, and the size of sales, is higher for goods with high consumption

volatility and for goods that are less price elastic. The intuition is that for those goods price

is a less important factor in the overall purchasing decision.

To close the model, one needs a theory of the default price. In a stationary environment,

the simplest is to specify pd to be the average empirical price

pd = E
[
p
(
c̃, pd

)]
(25)

given the distribution over the marginal costs c̃. By the implicit function theorem, for

suffi ciently small κ and a smooth non-degenerate distribution of costs, there is a fixed point

pd. In the small κ limit one can show that pd = ψ
ψ−1

c+ 2cf(c)+2F (c)−1
ψ−1

κ+ o (κ) with c := E [c]

(the derivations are in the online appendix). Hence, the default price is higher than it would

be in the absence of bounded rationality.

The model is robust to some form of consumer heterogeneity. The key is that the aggre-

gate demand function D (p) has kinks. Hence, if there are, for example, two types of agents

—two pdi + κi with i ∈ {1, 2} —then we might also expect two reference prices.
This example illustrates that it is useful to have a tractable model, such as the Sparse

BR algorithm, to think about the consequences of bounded rationality in market settings.15

Also, the Sparse BR model is designed to generate inattention in the first place, not price

stickiness and sales. Rather, it generates a potential new approach to price stickiness as an

unexpected by-product.

4.4 Trading Inertia and Freezes

Step 2 of the Sparse BR algorithm indicates that the decision maker sticks with the default

action when there is more model uncertainty (a higher |ηm|). Let us illustrate that effect in
the context of trading freezes —the stylized fact that in moments of higher uncertainty many

15For instance, much of the analysis will carry over to a closely related setup where consumers are inat-
tentive to the decimal digits of the price, i.e., DBR (n+ x) = DBR (n) for n a positive integer and x ∈ [0, 1).
There will be bunching at a price like $2.99. Likewise, the online appendix solves the model with a fixed
cost of thinking. It still yields price rigidity but loses the “sales”effect: there are two discontinuities in the
optimal price function, rather than one.
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agents simply withdraw from trading.

To be definite, take an agent with logarithmic preferences, selecting his equity share a

(i.e., action a) when the risk premium is π and stock volatility is σ:

V (a, π,m) = π (m) a− 1

2
σ2a2.

The decision maker is uncertain about the value of π (m). Assume that Step 1 is done

with κm = 0 (no friction), but that the decision maker remembers the model uncertainty

‖ηπ‖ = σπ > 0. Then, Step 2 of the Sparse BR algorithm is:

max
a
πa− 1

2
σ2a2 − κa

∣∣a− ad∣∣σπ.
Differentiating in a, π − σ2a− κasign

(
a− ad

)
σπ = 0, and

a = ad +
τ
(
π − πd, κaσπ

)
σ2

, πd = adσ2. (26)

We see that, indeed, the portfolio is “frozen”at a = ad whenever
∣∣π − πd∣∣ < κaσπ. The

“freeze”range is higher when there is more uncertainty σπ about fundamentals.

Trading freezes are often attributed to asymmetric information (lemons style) or Knight-

ian uncertainty (as in Caballero and Krishnamurthy 2008), but here trading freezes come

from bounded rationality.

4.5 Endowment Effect

The model generates an endowment effect alongside some additional predictions. Call a ∈
[0, 1] the quantity of mugs owned (the prototypical good used by Kahneman, Knetsch and

Thaler 1990), x ≥ 0 the (random) utility for having a costless mug, and p the mug price.

Net utility is V (a, x) = a (x− p), and the decision problem is maxa∈[0,1] V (a, x) = a (x− p).
Using Step 2 of the Sparse BR algorithm (equation 11), the problem is:

max
a∈[0,1]

a(E [x]− p)− κaσx
∣∣a− ad∣∣

where σx = ‖ηx‖ is the uncertainty about x.
The solution is simple and yields the willingness to pay (WTP) as well as the willingness

to accept (WTA) for the mug. If ad = 0 (i.e., the agent does not already own the mug), the

solution is to buy iff p ≤ WTP = E [x] − κaσx. If ad = 1 (i.e., the agent already owns the

mug), the solution is to sell iff E [x] ≤ WTA = E [x] + κaσx. The discrepancy between the
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two,

WTA−WTP = 2κaσx, (27)

is the endowment effect. In contrast, with loss aversion, the discrepancy is

WTA−WTP = (λ− 1)E [x] (28)

where λ ' 2 is the coeffi cient of loss aversion. (With loss aversion λ, selling the good creates

a loss of λE [x] whereas getting it creates a gain of only E [x].)

Hence, this paper’s approach predicts that the endowment effect is increasing in the

uncertain subjective utility (σx) of a good.

There is some consistent evidence: for instance, there is no endowment effect for, say,

dollar bills which have a known hedonic value. Liersch et al. (2011) find a large endowment

effect when extra noise (corresponding to a higher σx in the model) is added. Cao et al. (2011)

obtain a related prediction in a Gilboa and Schmeidler (1989) type of setting, and propose

that it helps understand a variety of behavioral finance phenomena. Finally, professional

traders (List 2003) do not exhibit an endowment effect —according to this theory, that is

because the value of the good is known.

To conclude, we have seen that the same model can shed light on a variety of situations

and propose comparative statics for them: the determinants of inattention to prices, price

rigidity, trading inertia and freezes, and the endowment effect. We can now turn to two

other rather different uses of the model.

5 Other Consequences of Sparsity-seeking Simplifica-

tion

I now show two fairly different instances of the theme that the decision maker simplifies

reality to make decisions.

5.1 Dictionaries and Stereotypical Thinking

One particular interpretation of m is potentially interesting. Following the image processing

literature (Mallat 2009), we could have a “dictionary” of prototypes: (xi (mi))i∈I . The

resulting representation is:

X (m) =
∑
i∈I

xi (mi) .

Note that the dictionary might be “redundant,”i.e., xi (mi) need not form a basis. For
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instance, take a geometrical example and the plane R2. We could have: x1 (α, β,R) a circle

with center (α, β) and radius R (the index is in R3); x2 (α, β, α′, β′) a square starting with

two “top”edges (α, β) and (α′, β′) (the index is then in R4). The total figure is the sum of

all those primitive figures. We describe a picture from the basic constituents.

In a more social setting, we could denote by x an n-dimensional vector of attributes such

as profession, nationality, income, social background, ethnicity, gender, height, etc. Then,

the primitive words in the dictionary could be xEng for a stereotypical engineer, xAsian for an

Asian person, etc.

The key is that it is simple (sparse) to think in terms of “ready-made”categories, but

harder (less sparse) to think in terms of a mix of categories. For instance, suppose that

attributes are x = (y1, y2), where y1 is how good the person is at mathematics and y2 is

how good she is at dancing. Say that there exists a “type” engineer with characteristics

xEng = (8,−3), i.e., engineers are quite good at math, but are rather bad dancers (on

average). Take a person called Johanna. First, we are told she is an engineer, and the first

representation is xJ = xEng. Next, we are told she is actually a good dancer, with level +4

in dancing. Her characteristics are xJ = (8, 4). How will she be remembered? We could say

x (m) = xEng + mxDancer where xDancer = (0, 1), but full updating to m = µ = 7 is costly.

Hence, the information “good dancer”may be discarded, and only xEng will be remembered.

The “stereotype”of the engineer eliminates the information that she is a good dancer.

More precisely, suppose that one wishes to maximize V = − (a1 − x1)2 − γ (a2 − x2)2,

i.e., have a good model of the person with a weight γ on the dancing ability. We start

from xd = xEng = (8,−3), and plan to move to
(
xd1, x2

)
(it is clear that the first dimension

need not change). Applying the algorithm, we have maxm−1
2
γ (a2 −m2)2−κσa2γ

∣∣m2 − xd2
∣∣.

Hence, using Lemma 1, x2 = xd2 + τ
(
xµ2 − xd2, κσa2

)
, i.e.,

x2 = −3 + τ (7, κσa2) .

Thus, we get partial adjustment, with x2 between the stereotypical level of dancing (−3)

and Johanna’s true level (4).

Hence, a model of sparsity-seeking thinking with a dictionary would be the following.

Given a situation x ∈ Rnx, find a sparse representation that approximates x well, e.g., find
the solution to:

min
m
||x (m)− x||2 +

∑
i

κi
∣∣mi −md

i

∣∣ .
Then, people will remember x (m) =

∑
i∈I xi (mi) rather than the true x. This generates a

simplification of the picture, using simple traits. The above may be a useful mathematical
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model of categorization. For instance, we might arrive at a model of “first impressions

matter.”The first impression determines the initial category. Then, by the normal inertia

in this model, opinions are adjusted only partially. I note that some of these effects can be

obtained in other models of categorization (Mullainathan 2001, Fryer and Jackson 2008).

An advantage here is that categorization comes naturally from a general model of sparsity.

It is also clear that it is useful to have a dictionary of such stereotypes: they make thinking

or, at the very least, remembering sparser. One may also speculate that education and life

events provide decision makers with new elements in their dictionaries, and that as some

dictionaries are more helpful to face new situations than others, “habits of thoughts”and

“cultural references”might be usefully modeled by dictionaries.

5.2 Simplification of Random Variables

5.2.1 Formalism

Consider a random variable Y with values in Rn. In his model-in-model, the decision maker
might replace it with a random variable X that is “simpler”in some sense.

(i) X might have a different, arguably simpler distribution: for instance, we could replace

a continuous distribution with a one-point distribution (e.g., X = E [Y ] with probability 1)

or with a two-point distribution X = E [Y ] ±m. We could even have X to be a certainty

equivalent of Y .

(ii) X might have independent components. For example, we could have Xi
d
= Yi, but

the components (Xi)i=1...n are independent while the components (Yi)i=1...n are not.

To formalize (i), call F and G the CDFs of X and Y , respectively. Then, U = G (Y ) has

a uniform [0, 1] distribution, and we can define X = F−1 (U) with the same U , so that X

and Y are maximally affi liated.16

The choice of the model is subject to the same cost-benefit principles as in the rest of

the model, e.g., one can use the same criterion to pick a simplified X (m):17

min
m

1

2
ΛE
[
(Y −X (m))2]+ κm

∑
i

∣∣mi −md
i

∣∣ ‖Vmiaηa‖ . (29)

16To formalize (ii), it is useful to use the machinery of copulas. For an n-dimensional vector Y , let
us write Y =

(
G−11 (U1) , ..., G

−1
n (Un)

)
with Ui having the copula C (u1, ..., un), so that E [φ (Y )] =∫

φ
(
G−11 (u1) , ..., G

−1
n (un)

)
dC (u1, ..., un). In the simplified distribution, the marginals G−1i and the copula

could be changed. To express X, we could have X =
(
G−11 (U ′1) , ..., G

−1
n (U ′n)

)
, where the U ′i’s have the

copula of independent variables, Cθ (u1, . . . , un) = u1 · · ·un. If we wish to have Xi’s marginals to be simpler
than Yi’s, like in (i), we can set X =

(
F−11 (U ′1) , ..., F

−1
n (U ′n)

)
for some Fi.

17This way, E
[
(Y −X (m))

2
]
is the (squared) Wasserstein distance between the distributions of Y and

X (m), which has many good properties.

27



Eyster and Weizsäcker (2010) present experimental evidence for correlation neglect, i.e.,

the use of simplification (ii). The next example illustrates the possible relevance of simplifi-

cation (i).

5.2.2 Application: Acquiring-a-company Game

Samuelson and Bazerman (1985) propose the following ingenious problem.

Example 6 (Acquiring-a-company) The company is worth Y (uniformly distributed on [0, 100])

to Ann, and worth 1.5Y to you (you are a better manager than Ann). You can make a take-

it-or-leave-it offer a to Ann, who knows Y . What offer do you make?

In addition, the experimental setup makes sure that “Ann” is a computer, so that its

answer can be assumed to be rational. Before reading the next paragraph, interested readers

are encouraged to solve (without paper and pencil) Example 6 for themselves.

Experimentally, subjects respond with a mode around 60 and a mean around 40 (Charness

and Levin 2009). However, the rational solution is a = 0. This is an extreme case of

asymmetric information (related to the winner’s curse).

Let us generalize the problem and state the BR solution to it. Assume that the company

is worth Y ∼ U
[
Y , Y

]
, with Y < Y , and define the mean payoff E [Y ] =

(
Y + Y

)
/2. The

company is worth (λ − 1)Y > 0 more to the decision maker than to Ann. Hence, in the

original problem Y = 0, Y = 100, and λ = 1.5.

Let us see how to state the model-in-model. We will see how, if the agent uses a simpler

representation of probabilities, we account for the non-zero experimental value. This is

a different explanation from existing ones (Eyster and Rabin 2005, Crawford and Iriberri

2007) which emphasize the assumption that the other player is irrational whereas the decision

maker is rational. However, there is no “other player”in this game, as it is just a computer,

and then those models predict a bid of 0 (Charness and Levin 2009).

The agent uses a representation of the dispersion in values, X (m), simpler than the true

distribution, Y . For instance, the agent might form a model of the situation by simplifying

the distribution and replacing it by a distribution with point mass X (0) = E [Y ]. Then,

the best response is a = E [Y ], which is 50 in the basic game. This is not too far from the

empirical evidence.

In a richer model-in-model, let us replace the distribution Y ∼ U
[
Y , Y

]
by a distribution

X (m) = E [Y ] ± m with equal probability, for some m ∈ [0,∆] with ∆ ≡ E [Y ]−Y =

Y − E [Y ] (we leave it to be an empirical matter to see what m is — the same way it is

an empirical matter to see what the local risk aversion is). Given this model, the agent
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maximizes V (a,m) = E
[
(λX (m)− a) 1X(m)≤a

]
. The resulting action is stated here and

derived in the appendix.

Proposition 6 In the acquiring-a-company problem, the Sparse BR bid by the decision

maker is:

a∗ =

{
E [Y ] +m if m ∈

[
0, λ−1

3−λE [Y ]
]

E [Y ]−m if m ∈
(
λ−1
3−λE [Y ] ,∆

]
as long as λ < 3, and a∗ = E [Y ] + m otherwise. In particular, in the basic problem with

support in [0, 100] and λ = 1.5,

a∗ =

{
50 +m if m ∈ [0, 16.66 . . .]

50−m if m ∈ (16.66 . . . , 50]
.

On the other hand, the model does not explain parts of the results in the Charness and

Levin (2009) experiments. In a design where the true distribution of X is 0 or 1 with equal

probability, the rational choice is a = 0. However, subjects’choices exhibit two modes: one

very close to a = 0 and another around a = 1. The model explains the first mode but not

the second one. It could be enriched to account for that additional randomness, but that

would take us too far afield. One useful model is the contingency-matching variant in the

online appendix: with equal probability, the decision maker predicts that the outcome will

be 0 or 1, and best-responds to each event by playing 0 and 1 with equal probability. Hence,

reality seems to be reasonably well accounted for by a mixture of the basic model and its

contingencies-matching actions. All in all, the model is useful to describe behavior in the

basic acquiring-a-company game even though it does not account for all the patterns in the

other variants.

6 Complements and Discussion

6.1 Some Extensions of the Model

This subsection presents extensions of the Sparse BR algorithm that may be useful in some

situations.

6.1.1 Discrete Actions

The model is formulated with a Euclidean action space, which is the substrate in many

economic problems and confers a nice structure (e.g., a metric) on them. It extends to a

discrete action space, as I illustrate here; the online appendix provides further details.
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Action a ∈ {1, ...., A} generates utility V (a, x, µ) of which the agent may use an imperfect

V (a, x,m). To formulate the model, some notations are useful: for a function f (a), define

‖∆ηaf (a)‖ :=
(

1
A

∑A
a=1 E

[(
f (a)− f

(
ad
))2
])1/2

to be the dispersion of f across actions.

Then, define σmi =
∥∥∆ηa

Vmi
(
a, x,md

)∥∥, so that σmi is analogous to ‖Vmiaηa‖ in Algorithm
1: it is the typical size of the marginal enrichment mi. Define σV =

∥∥∆ηa
V (a, x, µ)

∥∥, a
scale for the dispersion in values across actions, which is analogous to ‖ηaVaaηa‖ in the main
algorithm. A natural analogue of Step 1 is:

Step 1’: max
m

∑
i

1

2

(σmi )2

σV
(mi − µi)2 + κm

∑
i

∣∣mi −md
i

∣∣σmi .
Applying Lemma 1, it yields:

m∗i = md
i + τ

(
µi −md

i ,
κmσV
σmi

)
. (30)

Step 2 is simply maxa V (a,m∗, x) in the baseline case with κa = 0, and we can have a soft

maximum otherwise, e.g., the probability pa of picking a could be pa = eβV (a,m∗,x)/
∑

a′ e
βV (a,m∗,x)

with β > 0 (this is further discussed in Gabaix 2011).

To illustrate this formalism, consider the choice between A goods: good a ∈ {1...A} has
a value:

V (a,m, x) =
n∑
i=1

mixia

with the xia’s i.i.d. across goods a, normalized to have mean 0 and standard deviations

σi. The dimensions i ∈ {1, ..., n} are (normalized) hedonic dimensions, e.g., price, weight,
usefulness, esthetical appeal of each good. The default is md = 0. Applying the above Step

1’, we obtain σmi = σi and finally:

Proposition 7 Suppose that the agent chooses among A goods where good a ∈ {1...A} has
value V (a, µ, x) =

∑n
i=1 µixia. Then, the boundedly rational perception of a good a is

V (a,m∗, x) =
n∑
i=1

τ

(
µi,

κmσV
σi

)
xia (31)

with σV = (
∑n

i=1 µ
2
iσ

2
i )

1/2.

Hence, we obtain a dimension-by-dimension dampening, with small dimensions (small σi)

dampened more or fully, very much in the spirit of the initial example we started from, but

for discrete actions. Compared to process models of discrete choice with partial attention

(e.g., Payne, Bettman and Johnson 1993, Gabaix, Laibson, Moloche and Weinberg 2006),
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this model eschews sequential search (which typically does not lead to a closed form for the

perceived value) and is thus much more tractable. Indeed, an equation such as (31) could

be fairly directly estimated: when κm = 0, it is the rational actor model, while for κm →∞
the agent is fully inattentive. Empirical agents are likely to be in between.

6.1.2 Model with Constraints

We extend the model, so that it handles maximization under constraints. The decision maker

wishes to solve:

max
a
V (a, x, µ) subject to Bk (a, x, µ) ≥ 0 for k = 1...K. (32)

For instance, B1 could be a budget constraint, B1 = y − p (µ) · c where p (µ) is a vector of

prices under the true model µ. As usual, we assume that V and −Bk are concave in a.

We use Lagrange multipliers to formulate the extension of the model to constraints.

Algorithm 2 (Sparse BR Algorithm with Constraints) To solve the problem in (32), the

agent uses the following three steps.

1. Transformation into an unconstrained problem. Select the Lagrange multiplier λ∗ ∈ RK

associated with the problem at the default model md:

max
a
V
(
a, x,md

)
+ λ∗ ·B

(
a, x,md

)
.

2. BR-solve the new, unconstrained problem. Use the Sparse BR algorithm 1 for the value

function V ∗ defined as:

V ∗ (a, x,m) := V (a, x,m) + λ∗ ·B (a, x,m)

without constraints. That returns a representation m and an action a.

3. Adjustment to take the constraints fully into account. Call b = (V ∗aa)
−1 Ba the na ×K

adjustment matrix and, for a vector of weights ξ ∈ RK, a (ξ) = a + bξ. Pick a ξ that

ensures that the K budget constraints are satisfied (typically, there is just one such ξ,

but otherwise take the utility-maximizing one).

Step 1 of Algorithm 2 picks a Lagrange multiplier λ∗, using the default representationmd.

This way, in Step 2 we can define a surrogate value function V ∗ that encodes the importance

of the constraints by their Lagrange multipliers: V ∗ can be maximized without constraints,

so that the basic Sparse BR algorithm can be applied.
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The resulting recommended action may not respect the budget constraint. Hence, Step 3

adjusts the recommended action, so that all budget constraints are satisfied. The form a (ξ)

chosen is the linear form that returns the right answer to the benchmark case where κ = 0,

as developed in Lemma 3 of the online appendix. Again, the model is in that sense quite

constrained. The interpretation of action b is easiest to see in the case of just one budget

constraint: suppose that there is a small income shock δy, so that the budget constraint

becomes B (a) + δy ≥ 0. Then, to the first order, the optimal action is δa = bξ for some

ξ that ensures that the budget constraint is binding (Baδa + δy = 0, so ξ = − (B′ab)
−1 δy):

action b is proportional to ∂a/∂y, the marginal response of the action to a change in income.

As an illustration, let us revisit the basic problem of maximizing a utility function subject

to a budget set, which was developed in Section 4.2 by assuming a linear utility for residual

money but which we can now solve with a budget constraint. Recall that the true vector of

prices is p = pd+µ and the problem is maxc∈Rn u (c) subject to y−p ·c ≥ 0. So, V (c) = u (c),

and there is one constraint, B (c,m) = y −
(
pd +m

)
· c.

In Step 1, we pick the Lagrange multiplier λ∗ that corresponds to the problem: maxc u (c)+

λ
(
y − pd · c

)
under the default price vector pd. Then, we define:

V ∗ (c,m) = u (c) + λ∗

(
y −

∑
i

(
pdi +mi

)
ci

)
. (33)

This gives us a quasi-linear utility function, with linear utility for residual money.

Step 2 is as in Section 4.2, and yields a representation m (given by (20)) and as action

the consumption vector c
(
pd +m

)
. In Step 3 (applied with cd = 0), the decision maker picks

consumption c = c
(
pd +m

)
+ ξb with b = ∂c

(
pd, y

)
/∂y, and the scale factor ξ ∈ R ensures

that the budget constraint holds: ξ = (y − p · c) / (p · b). Psychologically, the decision maker
thinks “I missed my budget by δy dollars, so I am going to make the regular adjustment

δc = bδy to that change in income in order to match by budget constraint.”In that sense,

the algorithm has a commonsensical psychological interpretation.

6.1.3 Cognitive Overload and Decisions under Stress

I present a way to model “cognitive overload”and the impact of decisions under stress.18 This

may be useful for analyzing bad decisions of people under stress, e.g., very poor individuals

with diffi cult accidents in their lives or financiers in hectic markets (Hirshleifer, Lim, and

Teoh 2009).

A slight and natural generalization of the Sparse BR model is required. Step 1 of the

18I thank Abhijit Banerjee for suggesting this application.
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Sparse BR model becomes, using the notation κi = κm ‖Vmiaηa‖:

max
Θ≥0, m

−1

2
(m− µ)′ Λ (m− µ) + κ0Θ (34)

subject to Θ +
∑
i

κi
κ0

∣∣mi −md
i

∣∣ ≤ C (35)

where Θ ≥ 0 is a measure of “cognitive leisure”(e.g., how much time is left to enjoy oneself

rather than to think about decisions), κ0 is the value of leisure in utils, and C is the decision
maker’s cognitive capacity.

In (34), the first term is the loss due to an imperfect model m while the second term κ0Θ

is the enjoyment of cognitive leisure.19 The budget constraint (35) reflects that the cognitive

capacity C is allocated between cognitive leisure Θ and the cost of processing mi.

Let us solve the problem in the separable case, with Λ a diagonal matrix Λ = diag (Λi)i=1...n:

max
m,Θ

−1

2

∑
i

Λi (mi − µi)2 + κ0Θ− λ
(

Θ +
∑
i

κi
κ0

∣∣mi −md
i

∣∣− C)+ πΘ

where λ and π are the Lagrange multipliers associated with (35) and Θ ≥ 0, respectively.

Maximizing over Θ, we have κ0 − λ + π = 0, i.e., if Θ > 0, λ = κ0, and λ > κ0 otherwise.

Next, maximizing over mi and using Lemma 1, we have:

mi = md
i + τ

(
µi −md

i ,
λκi
Λiκ0

)
. (36)

When the cost of cognition λ increases, the quality of decisions falls. To see this more

analytically, consider the case where the decision maker has to make n decisions with the

same κi = κ, Λi = Λ, µi = µ > 0 for all i, md
i = 0, and the decisions are important enough,

so that Λµ > κ. Let us vary the number of decisions to be made (which is a way to model

periods of stress) while keeping the cognitive capacity constant.

Proposition 8 (Cognitive Overload) The attention paid to the problems i = 1...n is:

mi = min

(
µ− κ

Λ
,
Cκ0

κn

)
.

In particular, when n ≥ n∗ = Cκ0/
(
κ
(
µ− κ

Λ

))
, the quality of decision making for each

problem declines with the total number of problems n.

19The units of κ0 and κi are in utils, so we might have κ0 = ‖ηaWaaηa‖ to get a definite value for κ0.
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Hence, in situations of extreme stress (n > n∗), the performance of all decisions declines

because the decision maker hits his cognitive capacity.

Note that the formulation (34)-(35) may be useful in other domains. In particular,

relaxing κi = κm ‖Vmiaηa‖ may be useful when some dimensions are significantly harder to
think about than others. For instance, a “salient”dimension could be modeled as having

a lower κi. When the decision maker thinks about a dimension, the fact that λ and κi

enter multiplicatively in (36) implies that the impact of salience is greater under a higher

cognitive load. Finally, if the poor lead more stressful lives and therefore have a depleted

amount of cognition C, then the quality of their decision making is hampered and they are
likely poorer as a result. Hence, we may have multiple equilibria, like in the poverty traps

discussed in development economics. Currie (2009) reviews evidence that poor health leads

to lower human capital (corresponding to a proxy for a higher κ in the model). Banerjee and

Mullainathan (2010) document the hypothesis that the poor are more subject to behavioral

biases, and derive some of its implications.

6.1.4 Diagonal Simplification for Λ

The following simplification is sometimes useful. Rather than Λ defined in (7), use a diagonal

matrix with diagonal elements Λi instead:

Λdiag = diag (Λ1, . . . ,Λn) , Λi = max
k

−V 2
miak

Vakak
. (37)

Then, Step 1 of the Sparse BR algorithm becomes:

min
m

1

2

∑
i

Λi (mi − µi)2 + κm
∑
i

∣∣mi −md
i

∣∣ ‖Vmiaηa‖ (38)

whose solution is:

mi = md
i + τ

(
µi −md

i , κ
m
‖Vmiaηa‖Vakiaki

V 2
miaki

)
where ki is the maximand in (37). When a is unidimensional,

mi = md
i + τ

(
µi −md

i , κ
m‖ηa‖Vaa

Vmia

)
. (39)

The intuition is as follows. For each dimension mi, select the “key action”that is related

to it. That is the one with the maximum
−V 2miak
Vakak

, in virtue of Footnote 7. The term Λdiag is

simple to calculate, and does not involve the matrix inversion of the general Λ in (7).

For instance, take the consumption example of Section 4.2. We have
−V 2mick
Vckck

= − λ2

Vckck
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if i = k, and 0 otherwise. Hence, the key action corresponding to the price mi is the

consumption of the good ci. Therefore, Λdiag = λ2diag (−1/ucici), which is simple to use.

Without the key action, the cross partials ucicj matter` and things are more complex to

derive for the paper-and-pencil economist, and also perhaps for the decision maker.

6.2 Links with Themes of the Literature

6.2.1 Links with Themes in Behavioral Economics

In this section, I discuss the ways in which the Sparse BR approach meshes with themes in

behavioral economics: it draws from them, and is a framework to think about them.

Anchoring and adjustment The model exactly features anchoring and adjustment

for expectations and decisions: the anchor is the default model-in-model md and action ad,

the adjustment is dictated by the circumstances. In this way, the model is a complement to

other models; for instance, Gennaioli and Shleifer (2010) model what “comes to mind”to

the decision maker, so that their work is a model of md, while the present model is about

how the decision maker deviates from that simplified model md.

Power of defaults Closely related to anchoring and adjustment, it has now been well

established that default actions are very often followed even in the field (Madrian and Shea

2001, Carroll et al. 2009). This model prominently features that stylized fact.

Rules of thumb Rules of thumb are rough guides to behavior, such as “invest 50/50

in stocks and bonds,” “save 15% of your income,” or “consume the dividend but not the

principal”(Baker, Nagel, and Wurgler 2007). They are easily modeled as default actions ad.

The advantage is that the Sparse BR model generates deviations from the rule (the default

action) when the circumstances call for it with enough force: for instance, if income is very

low, the agent will see that the current marginal utility is very high, and he should save less.

Temptation vs BR The present model is about bounded rationality, rather than

“emotions”such as hyperbolic discounting (Laibson 1997) or temptation. Following various

authors (e.g., Fudenberg and Levine 2006, Brocas and Carillo 2008), we can imagine an

interesting connection, though, operationalized via defaults. Suppose that System 1 (Kah-

neman 2003), the emotional and automatic system, wants to consume now. This could be

modeled as saying that System 1 resets the default action to high consumption now (it will

likely also shift the default representation). System 2, the cold analytical system, operates

like the Sparse BR model. It partially overrides the default when cognition costs are low,
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but will tend to follow it otherwise. While many papers have focused on modeling System

1, this paper attempts to model System 2.

Mental accounts Some of the above has a flavor of “mental accounts”(Thaler 1985).

For instance, in Section 4.1, the marginal propensity to consume out of income is source-

dependent.

Availability The theory is silent about the cost κmi of each dimension, which is constant

at κm in the benchmark model. It is, however, plausible that more “available”dimensions

will have a lower κmi . For instance, availability is greater when a variable is large, familiar,

and frequently used.

Endowment effect The model generates an endowment effect (cf. Section 4.5), with

the additional feature (compared to the common explanation based on prospect theory) that

the better understood the good the lower the endowment effect.

1/n heuristics This heuristic (Bernatzi and Thaler 2001, Huberman and Jian 2006) is

to allocate an amount 1/n when choosing over n plans, irrespective of the plans’correlation:

for instance, the agent allocates 1/3, 1/3, 1/3, no matter whether the offering is one bond

fund and two stock funds or one stock fund and two bond funds. The model can generate

this by using the “simplification of variables”(cf. Section 5.2). Here, the simplification would

be that the variables are treated as independent (or i.i.d.) rather than correlated.

6.2.2 Links with Other Approaches to Bounded Rationality and Inattention

This paper is another line of attack on the polymorphous problem of bounded rationality

(see surveys in Conslik 1996 and Rubinstein 1998). The present paper is best viewed as

a complement rather than a substitute for existing models. For instance, there is a vast

literature on learning (Sargent 1993, Fudenberg and Levine 2009) that sometimes generates

a host of stylized facts because agents may not set up their models optimally (Fuster, Laibson,

andMendel 2010). One could imagine joining those literatures in a model of “sparse learning”

where the agent pays attention only to a subset of the world and thus perhaps learns only

partially about the world.

This said, some of the most active themes are the following.20

20I omit many models here, in particular “process” models, e.g., Bolton and Faure-Grimaud (2009),
Compte and Postlewaite (2011), Gabaix, Laibson, Moloche, and Weinberg (2006), and MacLeod (2002).
They are instructive conceptually and descriptively, but yield somewhat complex mappings between situa-
tions and outcomes.
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Limited understanding of strategic interactions. In several types of models, the BR comes

from the interactions between the decision maker and other players, see Eyster and Rabin’s

(2005) cursed equilibrium, Jéhiel’s (2005) analogy-based equilibrium, k-level of thinking

models surveyed in Crawford, Costa-Gomes, and Iriberri (2010), and the related work of

Camerer, Ho, and Chong (2004).21 These models prove very useful for capturing naiveté

about strategic interactions, e.g., the winner’s curse in auctions or beauty contests. However,

they can only be one part (albeit an important one) of the problem of BR: indeed, in a single-

person context, they model the decision maker as fully rational. In contrast, in the present

paper the decision maker is boundedly rational even in isolation.

Decisions within ε of the maximal utility. The near-rational approach of Akerlof and

Yellen (1985) is based on the premise that agents will tolerate decisions that make them lose

some ε utility, and still proves useful for empirical work (e.g., Chetty 2009). However, it

implies that the decision maker’s action will fall in a band (that gives him close to maximal

utility), but it does not yield definite predictions about what actions the decision maker will

take. This is in contrast to this paper.

Inattention and information acquisition. This paper is also related to the literature on

modeling inattention (see Veldkamp 2011 for a comprehensive survey). There are several

ways to model inattention. One strand of that literature uses fixed costs (Duffi e and Sun

1990, Gabaix and Laibson 2002, Mankiw and Reis 2002, Reis 2006). I have argued that

a key benefit of this paper’s approach, with the `1 penalty, is the tractability it confers.

Another influential proposal made by Sims (e.g., in 2003) is to use an entropy-based penalty.

This has the advantage of a nice foundation; however, it leads to non-deterministic models

(agents take stochastic decisions), and the modeling is very complex when it goes beyond

the linear-Gaussian case. The Sparse BR model presents some important differences. One

is that the model generates sparsity. Another is that the model is deterministic: in a given

situation, ex-ante identical agents remain identical ex post. This makes the analysis much

simpler.

Uncertainty aversion and concern for robustness. Hansen and Sargent (2007) have shown

that many consequences (e.g., prudent allocation to stocks) stem from the assumption that

the agents understand that they do not know the right model and have concerns for “ro-

bustness,”which they model as optimization under the worse potential model. In contrast,

the decision maker is biased towards simplicity, not pessimism, in the present model.

It may be interesting to note that while all those frameworks are inspired by psychology,

21See also models of naive hyperbolic discounting (O’Donoghue and Rabin 1999, DellaVigna and Mal-
mendier 2004). Relatedly, an interesting literature studies BR in organizations (e.g., Radner and Van Zandt
2001), and aims at predictions on the level of large organizations rather than individual decision making.
See also Madarász and Prat (2010) for a recent interesting advance in BR in a strategic context.
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some are also inspired by modeling advances in applied mathematics. The Sims framework

is based on Shannon’s information theory of the 1940s. The Hansen-Sargent framework is

influenced by the engineering literature of the 1970s. The present framework is inspired

by the sparsity-based literature of the 1990s-2000s (Tibshirani 1996, Candès and Tao 2006,

Donoho 2006, Mallat 2009), which shows that sparsity has many properties of tractability

and near-optimality.22 The present paper is the first paper in economic theory to use the

recent sparsity-based literature from statistics.

7 Conclusion

This paper proposes a tractable model with some boundedly rational features. Its key con-

tribution is to formulate a tractable version of the costs and benefits of thinking (captured

as an enrichment of the agent’s mental model). On the benefit side, the decision maker

uses a quadratic approximation of his utility function, which circumvents Simon’s infinite-

regress problem. On the cost side, the decision maker uses an `1 norm to obtain sparsity and

tractability (drawn from a recent literature in applied mathematics), with feature-specific

weights that make the model largely invariant to many changes in scales, units, and repara-

metrization. This formulation leads to linear-quadratic problems (with a sparsity-inducing

absolute value) which are easy to solve in many cases of interest. At the same time, it ar-

guably features some psychological realism: we all simplify reality when thinking about it,

and this model represents one way to do that —indeed, it is the simplest tractable way that

I could devise.

The simplicity of the core model allows for the formulation of a BR version of a few

important building blocks of economics. For instance, we can study BR-optimal choice of

consumption bundles (the agent has an imperfect understanding of prices); and BR asset

allocation (with inertia and trading freezes). The model leads to a theory of price rigidity

based on stickiness in the consumer’s mind, rather than stickiness in the price-setting tech-

nology of firms. In ongoing work, I formulate a way to do BR dynamic programming, where

the agent builds on a simplified model with few state variables.

No doubt, the model could and should be greatly enriched. In the present work, there is

simply a lone agent. In work in progress, I extend the model to include multi-agent models

and the limited understanding of general equilibrium effects by agents. In addition, the

model is silent about some diffi cult operations such as Bayesian (or non-Bayesian) updating

22For instance, somewhat miraculously, one can do a regression with fewer observations than regressors (like
in genetics, or perhaps growth empirics) by assuming that the number of non-zero regressors is sparse and
using an `1 penalty for sparsity (see Belloni and Chernozhukov 2010), as inminβ

1
n

∑n
i=1 (yi − β′xi)2+λ ‖β‖1.
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and learning (see Gennaioli and Shleifer 2010 for recent progress in that direction), and

memory management (Mullainathan 2002).

Indeed, the model is a complement rather than a substitute for other models: one could as

well devise a model of BR learning or robustness with a sparsity constraint. Those extensions

are left to future research (e.g., Gabaix 2011). However, despite these current limitations,

given its tractability and fairly good generality, the Sparse BR model might be a useful tool

for thinking about the impact of bounded rationality in economic situations.

8 Proof Appendix

Proof of Proposition 1. We need the following lemmas. Here, n and p are positive

integers, and S is a set.

Lemma 2 (a) Consider a function f : Rn × Rn×p → S such that for all x ∈ Rn, y ∈ Rn×p,
and A ∈ Rn×n, f (Ax, y) = f (x,A′y). Then, there exists a function g : Rp → S such that

f (x, y) = g (x′y). (b) Consider a function f : Rn × Rn×p × Rn×n → S such that for all

x ∈ Rn, y ∈ Rn×p, z ∈ Rn×n, and A ∈ Rn×n, f (Ax, y, z) = f (x,A′y, x, A′zA). Then, there

exists a function g : Rp × R→ S such that f (x, y, z) = g (x′y, x′zx).

Proof . Let us prove (b), which is more general than (a). Define e1 = (1, 0n−1)′ and, for

a row vector Y ∈ Rp and a scalar Z ∈ R, g (Y, Z) := f (e1, e1Y, e1Ze
′
1). We have:

f (x, y, z) = f (xe′1e1, y, z) as e′1e1 = 1

= f (e1, e1x
′y, e1x

′zxe′1) using the assumption with A = xe′1

= g (x′y, x′zx) .

�
Hypothesis (ii) implies that K is independent of the values V and Vm evaluated at the

default. Hence, one can write K ((mi)i=1...n , ηa, (Vami)i=1...n , Vaa) for some function K (by a

minor abuse of notation).

We use the invariance to reparametrization λ1 in hypothesis (i), and apply Lemma 2(a)

to K (m1, Vam1 , Z1) where Z1 represents the other arguments. This implies that we can write

K (m1, Vam1 , Z1) = K (m1Vam1 , Z1) for a new function K. Proceeding the same way for

(mi, Vami) for i = 2...n, we see that we can write K = K (ηa, (miVami)i=1...n , Vaa). We next

apply Lemma 2(b) to x = ηa and y = (miVami)i=1...nm
, z = Vaa. It implies that we can write:

K = k
(
(ηa · Vamimi)i=1...nm

, η′aVaaηa
)

(40)
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for some function k : Rnm × R→ R.
Let us next use assumption (iii). When ‖xi‖ and ‖ηa1‖ are non-zero, define x̂i = xi/ ‖xi‖,

â1 = a1/ ‖ηa1‖, η̂a1 = ηa1/ ‖ηa1‖, and m̂i = mi ‖xi‖ ‖ηa1‖. Then, the problem associ-

ated with (â1, ηâ1 , x̂i, m̂i) has ‖x̂i‖ = 1 and ‖ηâ1‖ = 1. Hypothesis (iii) indicates that

k ((η̂a1x̂im̂i)i=1...n) = κm
∑

i |m̂i|. Hence:

k ((ηa1ximi)i=1...n , 1) = k ((η̂a1x̂im̂i)i=1...n) = κm
∑
i

|m̂i| = κm
∑
i

‖ηaximi‖ .

This implies that k ((y)i=1...n , 1) = κm
∑

i ‖yi‖. Using the homogeneity of degree 1 part of

(ii), we have that

k ((y)i=1...n , z) = κm
∑
i

‖yi‖ .

Using (40), we have:

K = κm
∑
i

‖ηaximi‖ =
∑
i

∥∥(mi −md
i

)
Vmia · ηa

∥∥ =
∑
i

|mi| ‖Vmia · ηa‖ . �

Proof of Proposition 2 By homogeneity, it is enough to consider the case s = 1.

Step 1: Representation. We calculate

Va = −a+m · x, Vm = x (a−m · x)

Vaa = −1, Vam = x, Vami = xi

so when x is one-dimensional, Λ = −E [VamV
−1
aa Vam] = E [x2]. With n dimensions for m,

drawn independently, we have by the same calculation that Λ = Diag (σ2
i ).

Thus,

κ [m] = κm
∑
i

∣∣mi −md
i

∣∣ ‖Vmiaηa‖ = κm
∑
i

∣∣mi −md
i

∣∣ ‖xi‖ ‖ηa‖ =
∑
i

Ki

∣∣mi −md
i

∣∣
with Ki ≡ κmσaσi.

So, the maximization (8) is

max
m
−
∑
i

1

2
σ2
i (mi − µi)2 −

∑
i

Ki

∣∣mi −md
i

∣∣ .
We use Lemma 1, which gives (16).
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Step 2: Approximate maximization. We calculate κ [a] from equation (11):

κ [a] = κa
∣∣a− ad∣∣ ‖Vamηm‖ = κa

∣∣a− ad∣∣ ‖x · ηm‖ = κa
∣∣a− ad∣∣√∑

i

σ2
mi
σ2
i ≡ Q

∣∣a− ad∣∣ .
Step 2 gives: maxa−1

2
(a−m · x)2 − Q

∣∣a− ad∣∣. This yields a = ad + τ
(
m · x− ad, Q

)
.

�

Proof of Proposition 3. We calculate:

Vc1 = u′ (c1)− v′ (c2)R, Vc1c1 = u′′ (c1) + v′′ (c2)R2, Vc1mi = −v′′ (c2)Rxi.

Let us proceed with the part related to future income. The program (8) is:

min
mi

∑
i

v′′
(
cd2
)2
R2

−2V d
c1c1

σ2
xi

(mi − 1)2 + κm
∑
i

|mi|
∣∣v′′ (cd2)Rσc1∣∣σxi

where V d
c1c1

is a shorthand for Vc1c2
(
cd1, c

d
2

)
. Hence, the solution is:

mi = τ (1, κi) κi = κm
V d
c1c1

v′′
(
cd2
)
R

σc1
σxi

. (41)

We now use the functional form u (c) = −e−γc and v (c) = −e−ρe−γc. Because under the
default u′

(
cd1
)
− v′

(
cd2
)
R = 0, the exponential specification gives u′′

(
cd1
)

= v′′
(
cd2
)
R, and

we have V d
c1c1

= u′′
(
cd1
)

(1 +R), so (41) gives:

κi =
κm (1 +R)σc1

σxi
.

In Step 2, the agent solves

max
c1
−e−γc1 − e−ρe−γ(x(m)+R(w−c1))

which gives e−γc1 − e−ρe−γ(x(m)+R(w−c1))R = 0 and

c1 = x (m) +R (w − c1) +
ρ− lnR

γ

= x (m)−Rc1 +D with D = Rw +
ρ− lnR

γ
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as well as

c1 =
1

1 +R
(D + x (m))

=
1

1 +R

(
D + x∗ +

∑
i

τ

(
1, κm (1 +R)

σc1
σxi

)
xi

)
.

Proof of Proposition 4 We calculate:

Vci = ui − λ
(
pdi +mi

)
, Vcicj = uij, Vcimj = −λ1i=j.

Hence, the components of the loss matrix are Λii = λ2

−uii in two cases: namely, if the utility

function is separable in the goods (u (c) =
∑

i u
i (ci)) or, for a non-separable utility function,

if we apply the “key action” enrichment developed below in Section 6.1.4 (the key action

corresponding to pi is ci).

Calling σci = ‖ηci‖, the allocation of attention is:

min
m

∑
i

[
λ2 (mi − µi)2

2 |uii|
+ κmλ |mi|σci

]
,

so we have

mi = τ

(
µi,

κm |uii|σci
λ

)
= τ

µi, κmui
∣∣∣ ciuiiui

∣∣∣ σcici
λ

 .

Using ui = λpi and calling ψi = ui/ (−ciuii) the price elasticity of demand of good i, we
obtain (20).

To proceed further, we examine the case where preferences are separable, so the f.o.c.

ui (ci) = λpi implies that a change in price dpi implies uiidci = λdpi, and thus |uii|σci = λσpi .

Equation (21) follows.

Proof of Proposition 5. The monopolist solves

max
p
π (p) , π (p) = (p− c)

(
pd + τ

(
p− pd, κ

))−ψ
.

Consider first the interior solutions with p /∈
(
pd − κ, pd + κ

)
. Call ε = sign (p− pd).

Then, pd + τ
(
p− pd, κ

)
= p− εκ (equation 5). Therefore, ∂pτ

(
p− pd, κ

)
= 1, and the f.o.c.

is p− εκ− ψ (p− c) = 0, i.e.,

p = pint ≡ ψc− εκ
ψ − 1

. (42)
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The profit is

π
(
pint
)

=

(
ψc− εκ
ψ − 1

− c
)(

ψc− εκ
ψ − 1

− εκ
)−ψ

= ψ−ψ
(

(c− εκ)

ψ − 1

)1−ψ

.

Next, it is not optimal for the monopolist to have p ∈
(
pd − κ, pd + κ

)
as p = pd + κ

yields the same demand and strictly higher profits. The profit is

π
(
pd + κ

)
=
(
pd + κ− c

) (
pd
)−ψ

.

It is optimal to choose pint rather than pd + κ iffR ≥ 1 where

R
(
c, cd, κ

)
=

π (pint)

π (pd + κ)
=

ψ−ψ
(

(c−εκ)
ψ−1

)1−ψ

(
ψ
ψ−1

cd + κ− c
)(

ψ
ψ−1

cd
)−ψ

=
(c− εκ)1−ψ

[ψcd + (ψ − 1) (κ− c)] (cd)−ψ
.

The cutoffs c1 and c2 are the solution to R
(
ci, c

d, κ
)

= 1. The c2 bound is easy to find

because it is clear (as the profit function is increasing for p < pint) that c2 must be such that

pint (c2) = pd + κ, i.e., ψc2−κ
ψ−1

= ψcd

ψ−1
+ κ, so c2 = cd + κ. The more involved case is the one

where c < cd as then there can be two local maxima (this is possible as the demand function

is not log-concave). Hence, the cutoff c1 satisfies, with ε = −1,

R
(
c1, c

d, κ
)

= 1 (43)

and c1 < cd. To obtain an approximate value of c1, note that R (c, c, 0) = 1: when κ = 0,

the cutoff corresponds to c = cd. Also, calculations show R1 (c, c, 0) = 0 and R11 (c, c, 0) 6= 0.

Hence, a small κ implies a change δc1 such that, to the leading order, 1
2
R11 ·(δc)2 +R3 ·κ = 0,

i.e., c1 = cd −
√
−2R3κ
R11

+ +O (κ). Calculations yield c1 = cd − 2
√
cdκ/ψ +O (κ). �

Proof of Proposition 6 It is clear that the optimal solution a belongs to {E [Y ]−m,E [Y ] +m}.
If the offer is a = E [Y ] −m, the offer is accepted only if X = E [Y ] −m (in the model-in-

model), so:

V M2 (E [Y ]−m) =
1

2
(λ (E [Y ]−m)− (E [Y ]−m)) =

λ− 1

2
(E [Y ]−m) .
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If the offer is a = E [Y ] + m, the buyer gets the firm for sure, which has a value to him of

λE [Y ] in expectation, so:

V M2 (E [Y ] +m) = λE [Y ]− (E [Y ] +m) = (λ− 1)E [Y ]−m.

Note that V M2 (E [Y ] +m) > V M2 (E [Y ]−m) if λ ≥ 3. Once we have λ < 3, the

two profits V M2 (E [Y ]−m) and V M2 (E [Y ] +m) are the same if and only if m = λ−1
3−λE [Y ].

Thus, the optimal decision is as announced in the proposition. The maximum paid is E [Y ]+
λ−1
3−λE [Y ] = 2

3−λE [Y ].
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This appendix presents additional derivations and some reasonable variants of the model.

9 Additional Derivations

9.1 Derivation of the Fixed Point pd in the Monopoly Pricing

Model of Section 4.3

In the small κ limit, I solve for the default price pd, which is the fixed point pd = E
[
p
(
c̃, pd

)]
.

The p (·) function is given by Proposition 5. Call F and f = F ′ the CDF and PDF of c, and

c = E [c]. Also, define A = 2
√
cd/ψ, so that c1 = cd −A

√
κ+O (κ). When κ = 0, cd = c, so

for small κ we look for a solution cd close to c. We have:

G ≡ (ψ − 1)E
[
p
(
c, pd

)]
= E [ψc] + κE [1c<c1 ]− κE [1c>c2 ] + E

[(
(ψ − 1)

(
pd + κ

)
− ψc

)
1c∈[c1,c2]

]
= ψc+ κ (F (c1)− (1− F (c2))) + E

[(
ψcd + (ψ − 1)κ− ψc

)
1c∈[c1,c2]

]
= ψc+ κ (2F (c)− 1) + o (κ) + ψE

[
(c2 − c) 1c∈[c1,c2]

]
− κE

[
1c∈[c1,c2]

]
.

We calculate:

E
[
(c2 − c) 1c∈[c1,c2]

]
=

∫ c2

c1

f (c) (c2 − c) dc =
1

2

(
f (c) +O

(√
κ
))

(c2 − c1)2

=
1

2

(
f (c) +O

(√
κ
)) (

κ+ A
√
κ+O (κ)

)2
=

1

2
A2κf (c) + o (κ)

=
1

2

4cd

ψ
f (c)κ+ o (κ) =

2cf (c)

ψ
κ+ o (κ) .

Given κE
[
1c∈[c1,c2]

]
= O

(
κ3/2

)
, we have:

G = ψc+ (2cf (c) + 2F (c)− 1)κ+ o (κ) .

Finally,

pd =
G

ψ − 1
=

ψ

ψ − 1
c+

1

ψ − 1
(2cf (c) + 2F (c)− 1)κ+ o (κ) . (44)
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Monopoly pricing model of Section 4.3 with a fixed cost It may be interesting

to compare the paper’s model to a variant with a fixed cost of cognition. We will see that we

maintain the stickiness, but we lose the “sales”effect: the pricing function stops exhibiting

the “cliff”at c1. Instead, it exhibits two symmetrical jumps at c1 and c2.

The agent sees the price p. If he pays a fixed cost K, he uses the price p in his decision.

If he does not, he simply uses the default price pd. With a fixed cost, the perceived price is

pBR (p) =

{
pd if

∣∣p− pd∣∣ ≤ κ

p if
∣∣p− pd∣∣ > κ

for a constant κ related to K.23 The monopolist’s problem is maxp (p− c)D
(
pBR (p)

)
, with

D (p) = p−ψ. Its solution is as follows.

Proposition 9 When the BR consumer has a fixed cost of cognition, the monopolist’s opti-

mal price is

p (c) =

{
pd + κ if c1 ≤ c ≤ c2

ψc
ψ−1

if c /∈ (c1, c2)
(45)

where c1 < c2 solve equation (46), and are equal to ci = cd±
√

2cdκ
ψ

+O (κ) for small κ. The

pricing function is discontinuous at c1 and c2, and continuous elsewhere.

Proof. (Sketch) The proof is as above. When the consumer is inattentive, p = pd + κ,

and the profit is π
(
pd + κ

)
=
(
pd + κ− c

) (
pd
)−ψ

. When the consumer is attentive (and

pays the fixed cost), π = ψ−ψ
(

c
ψ−1

)1−ψ
as above. So, the ci’s solve:

f (ci, κ) = 0 (46)

f (c, κ) :=
(ψ − 1)ψ−1

ψψ
c1−ψ −

(
pd + κ− c

) (
pd
)−ψ

.

For the Taylor expansion, observe that f
(
cd, 0

)
= 0 for cd = pd (ψ − 1) /ψ and, by the

envelope theorem, f1

(
cd, 0

)
= 0. So a small κ implies a change δc1 such that, to the leading

order, 1
2
f11 · (δc)2 + f3 · κ = 0, i.e., ci = cd± δc with δc =

√
−2f3κ
f11

+O (κ). Calculations then

yield δc =
√

2cdκ
ψ

+O (κ).

23The derivation is: the DM picks minpBR
(pBR−p)

2

−2uQQ +K1pBR 6=p, so we obtain the expression for pBR, with

κ =
√

2Kp1+ψd /ψ. Chetty, Looney, and Kroft (2009) have similar analytics for the DM’s decision, but do

derive the monopolist’s response.
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9.2 Derivations of Additional Examples

This section presents the solutions to some of the early examples in the paper.

Example 2. Consider the case u (c) = −e−γc, r ∼ N (π, σ2), ε ∼ N (0, σ2
ε), and r, ε

jointly Gaussian with covariance σrε. Then, we have:

V (a,m) = Eu(w + ar̃ +mε̃)

= u

(
w + aπ − γ

(
a2σ2 +m2σ2

ε

2
+ amσrε

))
Va (a,m) = −γu

(
w + aπ − γ

(
a2σ2 +m2σ2

ε

2
+ amσrε

))(
π − γmσrε − γaσ2

)
. (47)

The default model is md = 0 (the decision maker does not take into account the back-

ground risk). Hence, the default action, which is the optimal action under the default model,

satisfies Va
(
ad, 0

)
= 0, i.e.,

ad =
π

γσ2
. (48)

Simple calculations yield:

Vaa
(
ad, 0

)
= V

(
ad, 0

)
γ2σ2

Vam
(
ad, 0

)
= V

(
ad, 0

)
γ2σrε.

Step 1 gives:

m∗ = τ

(
µ, κm

Vaa
(
ad, 0

)
Vam (ad, 0)

σa

)
= τ

(
1, κm

σ2

σrε
σa

)
where σa is the normal variation in allocation, e.g., coming from an underlying dynamic

problem (for instance, it might depend on variations in the estimated equity premium π).

Finally, using κa = 0, Step 2 gives that the optimal allocation a∗ satisfies Va (a∗,m∗) = 0,

i.e.,

a∗ =
π − γm∗σrε

γσ2

a∗ =
π

γσ2
− τ

(σrε
σ2
, κmσa

)
. (49)

As expected, if background risk covaries positively with stocks (σrε is higher), then the

allocation in stocks (a∗) weakly falls. However, this effect is truncated: if
∣∣σrε
σ2

∣∣ ≤ κmσa

then τ
(
σrε
σ2
, κmσa

)
= 0, and there is no effect. Hence, the agent reacts only to large enough

background risk.
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Example 3. To reduce notational clutter, I solve this example with u (c) = v (c) =

c1−γ/ (1− γ), Rd = 1. The net interest rate is rt = Rt − 1. We have:

V (a,Rt,m) = u (a) + u (R (m) (w − a)) =
a1−γ

1− γ +
R (m)1−γ (w − a)1−γ

1− γ
Va (a,Rt,m) = a−γ −R (m)1−γ (w − a)−γ .

So at md = 0, Va
(
ad, Rt,m

d
)

= 0 gives ad = w/2. Next,

Vaa
(
ad, Rt,m

d
)

= u′′
(
ad
)

+ u′′
(
ad
)
R
(
md
)1−γ

= −2u′
(
ad
) γ
ad

Vam
(
ad, Rt,m

d
)

= ∂m

[
−R (m)1−γ (w − ad)−γ]

= (γ − 1)R′
(
md
)
u′
(
ad
)

= (γ − 1) rtu
′ (ad) . (50)

Finally, Step 1 gives:

m∗ = τ

(
1, κm

Vaa
(
ad, Rt,m

d
)

Vam (ad, Rt,md)
σa

)

= τ

(
1, κm

2 γ
αd

(γ − 1) rt
σa

)
.

Hence, the interest rate perceived by the decision maker is R (m∗) = 1 +m∗rt, i.e.,

R (m∗) = 1 + τ

(
rt, κ

m 2

1− 1/γ

σa
ad

)
.

The agent’s attention to the interest rate is lower when the net interest rate rt is small

and when the agent’s intertemporal elasticity of substitution, 1/γ, is close to 1. Indeed,

when
∣∣∣κm 2

1−1/γ
σa
ad

∣∣∣ ≥ |rt| the decision maker does not pay attention to the interest rate at
all.

The agent’s optimal consumption at time 1 satisfies u′ (a)−u′ (R (m) (w − a))R (m) = 0,

i.e.,

a−γ = R (m∗)1−γ (w − a)−γ ,

hence

a∗ =
w

1 +R (m∗)1/γ−1
. (51)
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9.3 Change in Lagrange Multiplier after a Shift

Consider the problem:

max
a
u (a, s) s.t. B (a, s) ≥ 0

where a is the action and s is a “shift”parameter (which is general and could represent a

shift in income, price, taste, etc.), and the objection function u and the budget constraint

−B are concave in a. We will derive the change in action δa when there is an infinitesimal

parameter shift δs. Define the Lagrangian:

L (a, s, λ) = u (a, s) + λB (a, s) . (52)

We suppose that the constraint binds, λ > 0.

Lemma 3 (Change in Action and Lagrange Multiplier after a Shift) After a change δλ, we

have:

δλ =
(
B′aL

−1
aaBa

)−1 (
B′sδs−B′aL−1

aaLasδs
)

(53)

and

δa = −L−1
aa (Lasδs+Baδλ) (54)

= −
(
L−1
aaBa

) (
B′aL

−1
aaBa

)−1
B′sδs− L−1

aa

[
1−Ba

(
B′aL

−1
aaBa

)−1
B′aL

−1
aa

]
Lasδs. (55)

With other notations, p = −Ba, δy = B′sδs (the notations are inspired by the example

B (a, s) = y (s)− p · a), b = L−1
aaBa, we have:

δa = −L−1
aaLasδs− bδλ

where δλ adjusts to satisfy the budget constraint:

−p′δa+ δy = 0. (56)

The interpretation is that b is the vector of the basis axis of adjustment when the dollar

budget changes. Call δc = −L−1
aaLasδs the “myopic” change without thinking about the

budget constraint. Then,

δa = δc− bδλ
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where δλ solves (56):

δy = p′ (δc− bδλ)

⇒ δλ = (p′b)
−1

(p′δc− δy) ,

so

δa = δc− b (p′b)
−1

(p′δc− δy)

= b (p′b)
−1
δy + δc− b (p′b)

−1
p′δc. (57)

The interpretation of (54) is as follows. The first term, −L−1
aaLasδs, is the “myopic”change

in action, using the same prices (Lagrange multiplier) as before the shift and forgetting about

the budget constraint. The term is the change in action to satisfy the budget constraint.

This interpretation motivates Step 3 in the Sparse BR algorithm with constraints (Algorithm

2).

In equation (55), the first term is a direct change of income, and the second is the change

in the price, La, that is orthogonal to the price vector Ba.

Proof of Lemma : Differentiating La (a, s, λ) = 0,

0 = Laaδa+ Lasδs+ Laλδλ,

so as Laλ = Ba,

δa = −L−1
aa (Lasδs+Baδλ) . (58)

The budget constraint B (a, s) gives:

0 = B′aδa+B′sδs

= −B′aL−1
aa (Lasδs+Baδλ) +B′sδs,

so

δλ =
(
B′aL

−1
aaBa

)−1 (
B′sδs−B′aL−1

aaLasδs
)
.

Note that when there are K budget constraints, then B′aL
−1
aaBa ∈ RK×K , and B′sδs and

B′aL
−1
aaLasδs ∈ RK .
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Finally, we have:

δa = −L−1
aa (Lasδs+Baδλ)

= −L−1
aa

(
Lasδs+Ba

(
B′aL

−1
aaBa

)−1 (
B′sδs−B′aL−1

aaLasδs
))

= −L−1
aaBa

(
B′aL

−1
aaBa

)−1
B′sδs− L−1

aa

(
1−Ba

(
B′aL

−1
aaBa

)−1
B′aL

−1
aa

)
Lasδs.

10 Some Enrichments of the Model

10.1 Enrichments of the Basic Sparse BR Model

Operator language To express variants of the model, it is useful to use the following

operators on a function f (a,m):

(∆mif) (m) =
(
mi −md

i

)
∂mif (m) , (∆aif) (m) =

(
ai − adi

)
∂aif (m) ,

(∆ηmf) (a) = ηm · ∂mf (m) , (∆ηaf) (a) = ηa · ∂af (a) .
(59)

The notation ∂af (a) is the differential of f at point a, and the dot · is the vector product;
for instance, ηa · ∂af (a) =

∑
i ηai

∂f
∂ai

(a). With that notation, in the Sparse BR model, the

penalties (9) and (11) are equivalently expressed:

κ [m] = κm
∑
i

‖∆mi∆ηaV (a, x,m)‖ , κ [a] = κa
∑
i

‖∆ai∆ηmV (a, x,m)‖ .

However, the operator notation generalizes more easily.

Discrete sets, non-differential operators Sometimes (e.g., when the space under-

lying a is not continuous) it is useful to replace the differential operators used in Algorithm

1 by their non-differential counterparts (the superscript F is a shorthand for “finite”):(
∆F
mi
f
)

(m) = f (mi,m−i)− f
(
md
i ,m−i

)
,
(
∆F
ai
f
)

(m) = f (ai, a−i)− f
(
adi , a−i

)
,(

∆F
ηmf
)

(m) = f (m+ ηm)− f (m) ,
(
∆F
ηaf
)

(a) = f (a+ ηa)− f (a) .

How to define “a + ηa”when the action space A is finite? Assume that space A comes

equipped with a distance d (a, a′): for instance, if A = {1, ..., n} ordered in N, d (a, a′) =

|a− a′|, and if A is just a set of options with no clear metric (e.g., 4 options with no particular

spatial ordering), we can have d (a, a′) = 1a6=a′ . Then, “a+ ηa”stands for a random variable

variable ã with P (ã = a′) = Ke−βd(a,a′) for some β > 0 and a constant K: it has a mode at

a, and decreases away from a.
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Likewise, sometimes (e.g., when dealing with functions with discrete support) it might

be useful to have a non-differential version of the Λ matrix. A simple device is to consider

values a∗ (m) and set:

Λii =
1

(mi − µi)2E [u (a∗ (µ) , µ)− u (a∗ (mi, µ−i) , µ)] (60)

where a∗ (m) is the optimum under the model parametrized by m.

Averaging In the baseline model, Λ is evaluated at the default action and repre-

sentation. We could extend that by averaging around the baseline. For instance, define

Λ (a,m, x) = −VamV −1
aa Vam and

Λ = E
[
Λ
(
ad + ηa,m

d + ηd, x
)]

(61)

where the expectation is over ηa, ηd, and x. So, we add noise around ad and md.

For instance, if we use the default action (no saving), there is no impact of the interest

rate, the simple Λ is 0. But with averaging, the agent will see that for some other policies

(non-zero saving) the interest rate does matter.

Enrichment via loss aversion One interesting enrichment is to use a loss-aversion-

based penalty for negative outcomes but not positive ones. Denote x− = max (−x, 0), i.e.,

x− = −x for x < 0 and 0 for x ≥ 0. Call ∆− the “loss aversion”operator, (∆−f) (x) =

(f (x))−. Instead of the original formulation (11), κ [a] = κa
∑

i ‖∆ai∆ηmV ‖, we could have
for a complexity parameter κa,−:

κ [a] = κa,−
∑
i

‖∆−∆aiV ‖ .

This operator ∆− may be useful, first, because loss aversion seems important in many

parts of economic psychology. Also, it is serviceable in the (relatively rare) cases where a

gamble is offered with no downside. To see this, take the problem where the agent can pick

a quantity a ∈ [0, 1] of a gamble g with non-negative support, i.e., the agent obtains utility

u (ag). It is clear that, whatever the complexity of g, by domination, picking a = 1 is the

right thing to do. This is missed by the basic algorithm, but is detected with the loss aversion

operator: normalizing u (0) = 0,

κ [a] = κa,− ‖∆−∆aV ‖ = κa,−E
[
(u (ag)− u (0))−

]
= 0
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because u (ag) − u (0) ≥ 0 almost surely. Then, it is clear that there is no penalty for

complexity.

We can also mix and match, and replace (11) by

κ [a] = κa
∑
i

‖∆−∆ai∆ηmV ‖+ κa,−
∑
i

‖∆−∆aiV ‖ .

This is adding a “loss aversion” operator to the previous operators. It seems that in

many situations it is not worth bothering about the loss aversion operator ∆− , which adds

some algebraic complexity, but it is good to have it available when “domination”patterns

are important.

Finally, the decision maker might restrict himself to a parametrization of the actions. For

instance, if the underlying action is A = (A1, ..., AT ) where At is the savings rate at time t,

we can have At (a) = a0 + a1t, a savings rate that depends in an affi ne way on age, where

(a0, a1) is a 2-dimensional parametrization of the agent’s savings rate.

Contingencies-matching Suppose there is a random variable ε in the value function,

V (a, x,m, ε). Then, the following variant of Step 2 of Algorithm 1 may be useful.

Step 2’: For each realization of the noise ε, pick the best action:

a (x, ε) ∈ max
a
V (a, x,m, ε)− κ [a] (62)

and then play a (ε) according to the probability of ε.

This variant accounts for “probability matching.”In the paradigmatic game, a biased coin

will be tossed and come out as heads with probability 0.7, say, and heads with probability

0.3. Subjects have to predict which side will be drawn. They tend to predict heads with

probability 0.7. This is a deviation from rationality which implies betting on heads at all

times. Step 2’above generates that behavior even when κa is set to 0: with probability 0.7

(resp. 0.3), the agent draws heads (resp. tails), and best-responds to it.

A Sparse BR model with fixed cost For some purposes, it may be useful to have a

model with a fixed cost of thinking, rather than the `1 cost of thinking worked out in the

paper. To this end, I propose the following model. It pays keen attention to the scaling of

the various costs and benefits.

Algorithm 3 (Sparse BR Algorithm with Fixed Costs) To solve the problemmaxa V (a, x, µ),

the agent uses the following two steps:
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1. Optimize on the representation of the world. Using the realism loss matrix Λ

given in (7), determine m by solving for

min
m

1

2
(m− µ)′ Λ (m− µ) + κ [m] . (63)

The first part is a measure of expected loss from a poor simulation while the second

part is the complexity cost of the representation with a fixed cost:

κ [m] = κm
∑
i

‖ηmiηaVmia‖ 1mi 6=mdi . (64)

2. Optimize on the action. Maximize over the action a:

max
a
V (a, x,m)− κ [a]

where the expectation is over the realizations of ε and where the complexity cost of the

action, κ [a], is:

κ [a] = κa
∑
i

‖ηaiηmVmai‖ 1ai 6=adi . (65)

In the formulation of Algorithm 3, the costs κ [m] and κ [a] are fixed costs. The agent

pays the cost only if mi 6= md
i . The model includes some scaling of the fixed cost: that is to

satisfy the invariance properties listed in Proposition 1. Here, ηm represents some variability

of m.

Problem (63)-(64) is non-convex, so in general it is very diffi cult to solve. However, when

Λ is a diagonal matrix, it allows a simple solution:

m∗i =

{
md
i if

∣∣md
i − µi

∣∣ ≤ κi

µi if
∣∣md

i − µi
∣∣ > κi

(66)

where

κi :=

√
2κm ‖ηmiηaVmia‖

Λii

=

√
κm ‖ηmi‖ ‖Vaaηa‖

‖Vmia‖
when a is one-dimensional.

The idea is that agents pay the fixed cost only if the difference between the default and

the optimal representation is large enough (
∣∣md

i − µi
∣∣ > κi), and if the action is important

enough (high Λii).
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