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1 Introduction

In this paper, we provide analytical treatment of a class of transforms for processes with tractable

characteristic functions. These transforms bring analytical and computational tractability to a large

class of nonlinear moments, and can be applied in option pricing, structural estimation, or solving

equilibrium asset pricing models.

Consider a state variable Xt that follows an affine jump-diffusion, in the sense that the conditional

characteristic function is affine.1 Duffie, Pan, and Singleton (2000), hereafter DPS, derive closed-form

expression for the following transform:

Et

[
exp

(
−
∫ T

t
R (Xs, s) ds

)
eu·XT (v0 + v1 ·XT ) 1{β·XT<y}

]
, (1)

where R (X) is an affine function of X, which can be interpreted as a stochastic “discount rate,”

and eu·XT (v0 + v1 ·XT ) 1{β·XT<y} is the terminal payoff function at time T .

We generalize the DPS result by deriving closed-form expression (up to an integral) for the

following transform:

Et

[
exp

(
−
∫ T

t
R (Xs, s) ds

)
f (XT ) g (β ·XT )

]
, (2)

where f can be a polynomial, a log-linear function, or the product of the two; g is a piecewise

continuous function with at most polynomial growth or satisfying certain regularity conditions.

Moreover, X can be any stochastic process with tractable conditional characteristic functions. When

X is an affine jump-diffusion, f(X) = eu·X (v0 + v1 ·X) and g(β ·X) = 1{β·X<y}, we recover the

transform of DPS in (1). The flexibility in choosing f and g in (2) as well as the process for Xt

makes the generalized transform useful in dealing with generic nonlinearity problems in asset pricing

(nonlinear stochastic discount factors or payoffs), estimation (nonlinear moments), and other areas.

The primary analytic tool that we use is the Fourier transform. In particular, we utilize

knowledge of the conditional characteristic function of the state variable Xt (under certain forward

measures) jointly with a Fourier decomposition of the nonlinearity in g. This combination brings

1See Duffie, Filipovic, and Schachermayer (2003) for an elaboration on the characterization via the characteristic
function.
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tractability to our generalized transform by avoiding intermediate Fourier inversions. The class

of functions with Fourier transforms is quite large (tempered distributions), and many popular

stochastic processes (such as affine jump-diffusions or Lévy processes) have tractable characteristic

functions, which make our method applicable to a wide range of problems.

In addition to being a computational tool, we can also take advantage of the generalized transform

in economic modeling. Consider the pricing equation for an asset with stochastic payoff yT at time

T :

Pt = Et [m(T,XT )y(XT )] ,

where mt is the stochastic discount factor. In the background, there is a model that determines the

discount factor m and payoff y as functions of the state variables X. To maintain tractability, one

often adopts special utility functions, impose strong restrictions on the processes of the state variables

(e.g., i.i.d. or Gaussian processes), or log-linearize the model to obtain approximate solutions. By

doing so one not only loses certain realistic features of the data, but also can potentially miss

important nonlinear implications of the model.

The new tools provided in this paper help relax some of these modeling constraints. By

using the generalized transform, we can (i) price assets with more complicated payoffs, (ii) relax

certain restrictions (such as restrictions on preferences or production function) for models that

produce nonlinear stochastic discount factors, and (iii) significantly enrich the underlying stochastic

uncertainties without losing tractability. In some cases these extensions are necessary to improve the

quantitative performances of the models (e.g., by relaxing the assumptions of logarithmic preferences).

Other times they provide a systematic and convenient way to introduce new ingredients to the

existing models, such as time-varying growth rates, stochastic volatility, jumps, or cointegration. We

provide several example applications that utilize the generalized transform to deal with nonlinear

payoffs, including pricing defaultable bonds with stochastic recovery risk and options with exotic

payoffs, and several on dealing with nonlinear stochastic discount factors, such as a model of habit

formation and models of heterogeneous agents.

We also apply our method to study a general equilibrium model with time-varying labor income

risk. We build upon the work of Santos and Veronesi (2006), who find that the share of labor income
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to consumption predicts future excess returns of the market portfolio. They explain this result with

the “composition effect”: a higher labor share implies a lower covariance between consumption and

dividends, which lowers the equity premium. Motivated by empirical evidence that volatilities of

labor income and dividends as well as the correlation between the two change over time, we explore

a model with time-varying covariance between labor income and dividends. We obtain analytical

solutions of the model via the generalized transform.

In the calibrated model, we show that the equity premium depends on both the labor income

share and the covariance between labor income and dividends. As in Santos and Veronesi (2006), we

find a negative relationship between labor income share and the equity premium, provided that their

covariance is not too low. However, when the covariance between dividends and labor income is low,

the labor share has almost no relationship with the equity premium. Thus, stochastic covariance

between labor income and dividends can help explain the changing predictive power of labor share

in the data. In addition, the model also has interesting implications for the comovement between

the risk premium on financial wealth and human capital.

Relation to the literature

Thanks to its tractability and flexibility, affine processes have been widely used in term structure

models, reduced-form credit risk models, and option pricing. In particular, the transform analysis

of general affine jump-diffusions in Duffie, Pan, and Singleton (2000) makes it easy to compute the

moments arising from asset pricing, estimation, and forecasting. Examples applications include

Singleton (2001), Pan (2002), Piazzesi (2005), and Joslin (2010), among many others.2

When the moment functions do not conform to the basic DPS transform, one possible solution

is to first recover the conditional density of the state variables through Fourier inversion of the

conditional characteristic function, which in turn can be computed using the transform analysis of

DPS and is available in closed form in some special cases. Then, one can evaluate the nonlinear

moments by directly integrating over the density. Through this method, Duffie, Pan, and Singleton

(2000) obtain the extended transform in (1) for affine jump-diffusions, which they apply to option

2Gabaix (2009) considers a class of linearity generating processes, where particular moments (or accumulated
moments) can have a very simple linear form given minor deviations from the assumption of affine dynamics of the
state variable. This feature makes it very convenient to obtain simple formulas for the prices of stocks, bonds, and
other assets. His work generalizes the model of Menzly, Santos, and Veronesi (2004).
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pricing. Other papers that take this approach include Heston (1993), Chen and Scott (1995), Bates

(1996), Bakshi and Chen (1997), Bakshi, Cao, and Chen (1997), Dumas, Kurshev, and Uppal

(2009), Buraschi, Trojani, and Vedolin (2010), among others.3 In our approach, we consider affine

jump-diffusions and indeed any process with known condition characteristic function. Moreover,

our method allows direct computation of a large class of nonlinear moments without the need to

compute the (forward) density function of the appropriate random variable.

Bakshi and Madan (2000) connect the pricing of a class of derivative securities to the characteristic

functions for a general family of Markov processes. In addition, they propose to approximate a

nonlinear moment function with a polynomial basis, provided the function is entire, which in turn

can be computed via the conditional characteristic function and its derivatives. Our method applies

to more general nonlinear moment functions through the Fourier transform. We also extend the

results to multivariate settings.

A few earlier studies have considered related Fourier methods. Carr and Madan (1999) address

the nonlinearity in a European option payoff by taking the Fourier transform of the payoff function

with respect to the strike price. Martin (2008) takes the Fourier transform of a nonlinear pricing

kernel that arises in the two tree model of Cochrane, Longstaff, and Santa-Clara (2008).4 In both

studies the state variables have i.i.d. increments. To the best our knowledge, this paper is the first

to generalize the above approach both in terms of the moment function (to the class of tempered

distributions) and the process of underlying state variables (including affine processes and Lévy

processes).

2 Illustrative example

Before presenting the main result of the paper, we first illustrate the idea behind the generalized

transform using an example of forecasting the recovery rate of a defaulted corporate bond. The

amount an investor recovers from a corporate bond upon default can depend on many factors,

3Alternative methods to compute nonlinear moments include simulations or solving numerically the partial
differential equations arising from the expectations via the Feynman-Kac methodology. Both methods can be
time-consuming and lacking accuracy, especially in high dimensional cases.

4In the N -tree case, N > 2, Martin (2008) also provides an (N − 2)-dimensional integral to compute the associated
(N − 1)-dimensional transform.
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such as firm specific variables (debt seniority, asset tangibility, accounting information), industry

variables (asset specificity, industry-level distress), and macroeconomic variables (aggregate default

rates, business cycle indicators). In addition, the recovery rate as a fraction of face value should in

principle only take values from [0, 1].

A simple way to capture these features is to model the recovery rate using the logistic model:

ϕ (Xt) =
1

1 + e−β0−β1·Xt
, (3)

where Xt is a vector of the relevant explanatory variables observable at time t. For example, Altman,

Brady, Resti, and Sironi (2005) model the aggregate recovery rate as a logistic function of the

aggregate default rate, total amount of high-yield bonds outstanding, GDP growth, market return,

and other covariates.

Investors may be interested in forecasting the recovery rate if default occurs at some future

time T . That is, we are interested in computing E0[ϕ (XT )].5 To simplify notation, we first define

YT ≡ 1
2(−β0 − β1 ·XT ). We then rewrite

E0[ϕ (XT )] = E0

[
1

1 + e2YT

]
= E0

[
1

2
e−YT

1

cosh(YT )

]
, (4)

where we use the hyperbolic cosine function, cosh(y) = 1
2(ey + e−y).

Although only a single variable YT appears in (4), its conditional distribution may depend on

the current values of each individual covariate, that is, Yt itself may not be Markov. Even if the

covariates Xt follow a simple process, direct evaluation of this expectation requires computing a

multi-dimensional integral, which can be difficult when the number of covariates is large.

Suppose, however, that the conditional characteristic function (CCF) of XT is known:

CCF (T, u;X0) = E[eiu·XT
∣∣X0], (5)

where i =
√
−1. If we could “approximate” the non-linear term 1/ cosh(YT ) inside the expectation

5We suppress the conditioning on the default event occurring at time T and further suppose that default occurring
at time T is independent of the path {Xτ}0≤τ≤T . This is stronger than the standard doubly stochastic assumption;
relaxing this assumption is relatively straightforward but would complicate the example.
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of (4) with exponential linear functions of YT , then we would be able to use the characteristic

function to compute the non-linear expectation. As we elaborate in Section 3, this is achieved using

the Fourier inversion of 1/ cosh(y),

1

cosh(y)
=

1

2π

∫ +∞

−∞
ĝ(s)eisyds, (6)

where ĝ is the Fourier transform of 1/ cosh(y), which is known analytically,6

ĝ(s) =
π

cosh(πs2 )
. (7)

Thus, we can substitute out 1/ cosh(YT ) from (4) and obtain

E0[ϕ (XT )] = E0

[
1

2
e−YT

1

2π

∫ +∞

−∞
ĝ(s)eis·YT ds

]
=

1

4π

∫ +∞

−∞

π

cosh(πs2 )
E
[
e(−1+is)·YT

∣∣∣X0

]
ds

=
1

4

∫ +∞

−∞

1

cosh(πs2 )
e−

1
2

(−1+is)β0CCF

(
T,−1

2
(i+ s)β1;X0

)
ds, (8)

where for the second equality we assume that the order of integrals can be exchanged; the third

equality follows from applying the result in (5). Now all that remains for computing the expected

recovery rate is to evaluate a 1-dimensional integral (regardless of the dimension of Xt), which is a

significant simplification compared to the direct approach.

If Xt follows an affine process, its conditional characteristic function takes a particularly simple

form: it is an exponential affine function of X0. In some cases the exact form is known in closed

form. Even in the general case where no closed form solution is available, the affine coefficients are

simple to compute as the solutions to differential equations. In those cases, our approach again

offers a great deal of simplicity in the face of a possible curse of dimensionality: the linear scaling

involved in solving N ordinary differential equations is dramatically easier than solving a single

N -dimensional partial differential equation.

6See, for example, Abramowitz and Stegun (1964), 6.1.30 and 6.2.1.
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3 Generalized transforms

We now present our theoretical results. As in Duffie, Pan, and Singleton (2000), we begin by fixing

a probability space (Ω,F ,P) and an information filtration {Ft}, satisfying the usual conditions

(see e.g., Protter (2004)), and suppose that X is a Markov process in some state space D ⊂ RN

satisfying the stochastic differential equation

dXt = (K0 +K1Xt)dt+ σtdWt + dZt, (9)

where W is an Ft-standard n-dimensional Brownian motion, Z is a pure jump process with arrival

intensity λt = `0 + `1 ·Xt and fixed D-invariant distribution ν, and (σtσ
′
t)i,j = H0,ij +

∑
kH1,ijkX

k
t

with H0 ∈ RN×N and H1 ∈ RN×N×N . Whenever needed, we also assume that there is an affine

discount rate function R(Xt) = ρ0 + ρ1 ·Xt. For brevity, let Θ denote the parameters of the process

(K0,K1, H0, H1, `0, `1, ν, ρ0, ρ1). Alternatively, we can define the process in terms of the infinitesimal

generator or, as Duffie, Filipovic, and Schachermayer (2003) and Singleton (2001) stress, in terms of

the conditional characteristic function.

We focus on continuous-time affine jump-diffusion (AJD) because its conditional characteristic

function is particularly easy to compute, and because AJDs have been widely used in economics and

finance. However, our results only require that the conditional characteristic functions of Xt are

tractable and apply whether the stochastic process is modeled in discrete-time or continuous-time.

In Section 3.2 we discuss examples of processes that are not affine jump-diffusions. In Appendix C

we present the generalized transform result in discrete time.

In order to establish our main result, let us first review some basic concepts from distribution

theory. A function f : RN → R which is smooth and rapidly decreasing in the sense that for any

multi-index α and any P ∈ N, ‖f‖P,α ≡ supx|∂αf(x)|(1 + ‖x‖)P <∞ is referred to as a Schwartz

function. Here, ∂αf denotes the higher-order mixed partial of f associated with the multi-index α7

and ‖x‖ is the Euclidean norm of the vector x. The collection of all Schwartz functions is denoted

S. S is endowed with the topology generated by the family of semi-norms ‖f‖P,α. The dual of

7Thus for α = (α1, . . . , αN ), ∂αf = ∂α1

∂x
α1
1

· · · ∂
αN

∂x
αN
N

f .
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S, denoted S∗ and also called the set of tempered distributions, is the set of continuous linear

functionals on S. Any continuous function g which has at most polynomial growth in the sense that

|g(x)| < ‖x‖p for some p and x large enough is seen to be a tempered distribution through the map

f 7→ 〈g, f〉, where we use the inner-product notation

〈g, f〉 =

∫
RN

g(x)f(x)dx. (10)

As is standard, we maintain the inner product notation even when a tempered distribution g is

does not correspond to a function as in (10). For example, the δ-function is a tempered distribution

given by 〈δ, f〉 = f(0) which does not arrive from a function.8

For our considerations, the key property is that the set of tempered distributions is suitable

for Fourier analysis. For any Schwartz function f , the Fourier transform of f is another Schwartz

function, denoted f̂ , and is defined by

f̂(s) =

∫
RN

e−is·xf(x)dx. (11)

The Fourier transform can be inverted through the relation

f(x) =
1

(2π)N

∫
RN

eix·sf̂(s)ds, (12)

which holds pointwise for any Schwartz function. The Fourier transform is extended to apply to

tempered distributions through the definition 〈ĝ, f〉 = 〈g, f̂〉. This extension is useful because many

functions define tempered distributions (through (10)), but do not have Fourier transform in the

sense of (11) because the integral in is not well-defined. An example is the Heaviside function:

f(x) = 1{0≤x} ⇒ f̂(s) = πδ(s)− i

s
, (13)

where integrating against 1/s is to be interpreted as the principal value of the integral. Considering

distributions allows us to consider functions which are not integrable and thus in particular may

8Throughout the paper, we use the notation δ(s) to denote the Dirac delta function, with δx(s) = δ(s− x).
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not decay at infinity and may not even be bounded.

We now state our main result:

Theorem 1. Suppose that g ∈ S∗ and (Θ, α, β) satisfies Assumption 1 and Assumption 2 in

Appendix A. Then

H (g, α, β) = E0

[
exp

(
−
∫ T

0
R(Xu)du

)
eα·XT g(β ·XT )

]
=

1

2π
〈ĝ, ψ(α+ ·βi)〉, (14)

where ĝ ∈ S∗ and ψ(α+ ·βi) denotes the function

s 7→ ψ(α+ sβi) = E0

[
e−

∫ T
0 R(Xu)due(α+isβ)·XT

]
. (15)

The function ψ is the transform given in DPS. Recalling their result,

ψ(α+ isβ) = eA(T ;α+isβ,Θ)+B(T ;α+isβ,Θ)·X0 , (16)

where A,B satisfy the ordinary differential equations (ODEs)

Ḃ = K>1 B +
1

2
B>H1B − ρ1 + `1(φ(B)− 1) B(0) = α+ isβ, (17)

Ȧ = K>0 B +
1

2
B>H0B − ρ0 + `0(φ(B)− 1) A(0) = 0, (18)

where φ(c) = Eν [ec·Z ], the moment-generating function of the jump distribution and (B>H1B)k =∑
i,j BiH1,ijkBk. Solving the ODE system (17–18) adds little complication to the transform. The

solution is available in closed form in some cases, and can generally be quickly and accurately

computed using standard numerical methods.

In the special case that ĝ defines a function, we can write the result as

H =
1

2π

∫ ∞
−∞

ĝ(s)ψ(α+ isβ)ds. (19)

Bakshi and Madan (2000) show that option-like payoffs (affine translations of integrable functions)

9



can be spanned by a continuum of characteristic functions. Theorem 1 above shows that the

characteristic functions span a much larger set of functions which includes all tempered distributions.

Equation (19) makes this spanning explicit for the cases where ĝ defines a function.

In some cases of interest, Assumption 2 for Theorem 1 may be violated. It could be that β ·XT

has heavy tails so that, for example, E[(β ·XT )4] =∞. Another example would be in a pure-jump

process where the density may not be continuous. Depending on the case, our result can often be

extended by limiting arguments or by considering different function spaces (such as Sobolev spaces

for non-smooth densities).

There is some flexibility in the choice of α and g in (14). Notice that

eα·XT g(β ·XT ) = e(α−cβ)·XT g̃(β ·XT ), (20)

where g̃(s) = ecsg(s). This property can be useful in the case where g is not integrable but decreases

rapidly as s approaches either positive or negative infinity (e.g., the logit function). In this case,

such a transformation of g makes it possible to apply (19).

3.1 Two Extensions

The result of Theorem 1 can be extended in a number of ways. First, we introduce a class of pl-linear

(polynomial-log-linear) functions:

f (α, γ, p,X) =
∑
i

piX
γieαi·X , (21)

where {pi} are arbitrary constants, {αi} are complex vectors9 and {γi} are arbitrary multi-indices

so that Xγ =
∏
j X

γi
j . For example with N = 3 and γ = (1, 2, 1), Xγ = X1

1X
2
2X

1
3 . The following

proposition extends Theorem 1 to work with any pl-linear functions.

Proposition 1. Suppose that g ∈ S∗, and (Θ, α, β, γ) satisfies Assumption 1’ and Assumption 2’

9Allowing complex eigenvalues allows one to have oscillatory sine and cosine terms.
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in Appendix B. Then

H (g, α, β, γ) = E0

[
exp

(
−
∫ T

0
R(Xu)du

)
Xγ
T e

α·XT g(β ·XT )

]
=

1

2π
〈ĝ, ψ(α+ ·βi; γ)〉, (22)

where ĝ ∈ S∗ and ψ(α+ ·βi; γ) denotes the function

s 7→ ψ(α+ sβi; γ) = E0

[
e−

∫ T
0 R(Xu)duXγ

T e
(α+isβ)·XT

]
. (23)

The function ψ is computed by solving the associated ODE in Appendix B.

It is immediate from Proposition 1 that we can now compute expectations of the form

H (f, g, α, β) = E0

[
exp

(
−
∫ T

0
R(Xu)du

)
f(α, γ, p,XT )g(β ·XT )

]
. (24)

The assumption that the function g in the generalized transform be a tempered distribution

might appear restrictive at first sight, since g cannot have exponential growth (see our earlier

discussions of Schwartz functions). However, as Proposition 1 demonstrates, by specifying f and g

appropriately, we can let f “absorb” any exponential and polynomial growth in a moment function,

rendering g admissible to the transform. We will demonstrate this feature in several examples.

The transform in Theorem 1 assumes that g can only depend on X through the linear combination

β ·X. Thus, the marginal impact of Xi on g will be proportional to βi, which might be too restrictive

in some cases. The following proposition relaxes this restriction by considering g(β1 ·X, · · · , βM ·X)

for M ∈ N.

Proposition 2. Suppose that g ∈ S∗M (an M-dimensional tempered distribution), α ∈ RN , b ∈

RM×N and (Θ, α, b) satisfies Assumption 1 and Assumption 2 in Appendix A. Then

H (g, α, b) = E0

[
exp

(
−
∫ T

0
R(Xs)ds

)
eα·XT g(bXT )

]
=

1

(2π)M
〈ĝ, ψM (α+ ·bi)〉, (25)

11



where ĝ ∈ S∗ and ψM (α+ ·bi) denotes the function

ψM : CM → C , s 7→ ψM (α+ s>bi) = E0

[
e−

∫ T
0 r(Xu)due(α+is>b)·XT

]
. (26)

It is immediate to extend the transform in Proposition 2 by replacing eα·XT with a pl-linear

function as in Proposition 1.

Fourier transforms of many functions are known in closed form (see for example, Folland (1984)).

Additionally, standard rules allow for differentiation, integration, product, convolution and other

operations to be conducted while maintaining closed form expressions. Even if the function ĝ is

not known in closed form, including those cases where g itself is given as an implicit function,

it is straightforward to compute numerically (a 1-dimensional integral in the case of Theorem 1

or Proposition 1, an M-dimensional integral in Proposition 2). Alternatively, one might consider

approximating g with a function g̃ for which the Fourier transform is known in closed form.

Moreover, a convenient feature of the generalized transform is that the Fourier transform of g

and the solutions to the ODEs in (17–18) need only be computed once for a given set of parameters.

Once computed, the Fourier transforms and the differential equation solutions can be used repeatedly

to compute moments with different initial values of the state variable X0 or horizon T . When

the moment function takes the form of f (α, γ, p,X) g(β ·X) as in Proposition 1, the same Fourier

transforms and differential equation solutions can also be used to compute moments with different

pl-linear function f .

3.2 Beyond Affine Jump Diffusions

The key aspects of Theorem 1 and the two extensions are the ability to compute the transform

given in (15), (23), or (26). These transforms are very tractable for affine jump-diffusions. However,

other stochastic processes can also be suitable for the generalized transform, provided that the

appropriate (modified) conditional characteristic function can be computed.

An important example is the class of Lévy processes (see for example, Protter (2004)). Lévy

processes allow for both finite and infinite activity jumps, though in some contexts the assumption
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of independent increments may be restrictive. One example of such a process is the variance gamma

(VG) process studied by Madan, Carr, and Chang (1998). The VG process consists of a time-changed

Brownian motion where the clock follows a gamma process. It is a pure jump process that offers

increased kurtosis for increments relative to a standard Brownian motion, which can be useful in

modeling the fat tails in financial data.

To be concrete, consider for example the process of Carr, Geman, Madan, and Yor (2002). They

specify a pure jump Lévy process with Lévy measure ν given by the density kCGMY , where

kCGMY (x) =


Ce−G|x||x|−1−Y if x > 0

Ce−M |x||x|−1−Y otherwise

where (C,G,M, Y ) are constants. When Y = −1, this reduces to i.i.d. jump arrivals with an

exponential distribution. When Y = 0, we recover the VG process. In general, Y controls the

activity of very small jumps with a lesser effect on the amount of large jumps since these are

dominated by the exponential terms. The parameter G (M) control the tail behavior of large

positive (negative) jumps. The parameter C controls the overall activity of jumps of the process.

The Lévy-Khintchine formula allows us to recover the conditional characteristic function from an

arbitrary Lévy measure. Carr, Geman, Madan, and Yor (2002) show that if Xt is CGMY process,

then the characteristic function is

E0[eiu(Xt−X0)] = exp
(
tCΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ]

)
. (27)

From the characteristic function, we can then immediately apply the results of Theorem 1 and

Proposition 1.

A second example of non-AJD process is the class of Markov-switching affine models. A

potentially restrictive assumption of the AJD class of processes is that parameters of the model are

static. However, discrete changes in the economic environment may result in significant changes

in the underlying parameters of the model. The methods of Dai, Singleton, and Yang (2007) and

Ang, Bekaert, and Wei (2008) (both models are in discrete time) can be extended to our framework
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to incorporate regime shifts for an AJD in the conditional mean, conditional covariance, or the

conditional probability of jumps.

Suppose that there are n possible regimes, denoted by st = 1, · · · , n. The transitions across

different regimes are governed by a continuous-time Markov chain, with the generator matrix

Γ = [γss′ ]. Thus, the probability of the economy moving from regime s to regime s′ over a period ∆t

will be γss′∆t+ o(∆t).10 Now suppose that there is a variable Xt with regime-dependent dynamics:

dXt = (K0(st) +K1Xt)dt+ σtdWt + dZt, (28)

where st is the current regime at time t, W is an Ft-standard n-dimensional Brownian motion, Z is a

pure jump process with arrival intensity λt = `0(st)+`1 ·Xt and fixed D-invariant distribution ν, and

(σtσ
′
t)i,j = H0,ij(st) +

∑
kH1,ijkX

k
t with H0(1), · · · , H0(n) ∈ RN×N and H1 ∈ RN×N×N . Now the

dynamics of the state variable are regime dependent with the constant term in the drift, covariance,

and the jump intensity changing across regimes. The (discounted) conditional characteristic function

is given by (15), which will be regime-dependent as well. It follows from (28) that

ψ(α+ isβ, st) = eA(T,st;α+isβ,Θ)+B(T ;α+isβ,Θ)·X0 , (29)

where B is still the solution to the ODE (17) (with no dependence on the regime), and A(t, j) solves

the following regime-dependent system of ODEs:

Ȧ(j) = K0(j)TB +
1

2
BTH0(j)B − ρ0 + `0(j)(φ(B)− 1) +

∑
k 6=j

γjk(e
A(k)−A(j) − 1) A(0, j) = 0,

(30)

for j = 1, · · · , n. With these modifications, the rest of the generalized transform applies directly.

A third example of processes outside the class of AJDs for which our results apply are the discrete

time autoregressive processes with gamma-distributed shocks. Following the setup of Bekaert and

10We could also assume that the transition probabilities are affine in Xt (which can be easily handled by modifying
(17)). Such features of the transition probabilities would be important in the cases where the likelihood of regime
shifts is time-varying.
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Engstrom (2010) (for simplicity we omit any normally-distributed shocks), suppose Xt follows

Xt+1 = µ+ ΦXt + Σωt+1, (31)

where Σ (n× p) is the conditional volatility matrix for the gamma-distributed shocks, ωt+1 (p× 1),

with ωit+1 ∼ Γ(kit, 1)− kit, and kt = KXt. The conditional characteristic function for Xt+1 is

Et
[
eiu·Xt+1

]
= exp

(
iuT (µ+ ΦXt)−

(
iuTΣ + ln(1− iuTΣ)

)
KXt

)
= exp (A(1, u) +B(1, u) ·Xt) , (32)

with

A(1, u) = iuTµ,

B(1, u)T = iuTΦ−
(
iuTΣ + ln(1− iuTΣ)

)
K.

One can then compute the conditional characteristic function for Xt+n (n > 1) through recursion of

formula (32), which renders a pair of difference equations.

The gamma-distributed shocks in the above process provide a convenient way to generate time-

varying skewness and kurtosis. Bekaert and Engstrom (2010) use this process to model aggregate

consumption growth, which helps explain the equity premium and the variance premium. One can

also generalize this autoregressive process in (31) by replacing ωt+1 with other types of shocks that

have tractable characteristic functions.

4 Applications in Contingent Claim Pricing

Having presented the theory of the generalized transform, we now illustrate how it can be applied

to pricing contingent claims. The examples include defaultable bonds with stochastic recovery and

European options with general payoffs.
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4.1 Recovery risk

Following up on the illustrating example in Section 2, we first discuss the pricing of credit-risky

securities (e.g., defaultable bonds or credit default swaps) with stochastic recovery upon default.

Recovery risk refers to the uncertainty about the recovery rate. In particular, investors will demand

high risk premium if the recovery of these securities are lower in aggregate bad times. For example,

Chen (2010) provides evidence that macro variables such as GDP growth and riskfree rate are

correlated with the aggregate recovery rates and default rates and that such correlations can have

large effects on the pricing of defaultable bonds.

Consider a T year defaultable zero-coupon bond with face value normalized to 1. Following the

literature of reduced-form credit risk models, the default time is assumed to be a stopping time τ

with risk-neutral intensity ht.
11 The recovery value at default ϕ is a bounded predictable process

that is adapted to the filtration {Ft : t ≥ 0}. The instantaneous riskfree rate is rt. Then, the price

of the bond is:

Vt = EQ
t

[
e−

∫ τ
t rudu1{τ≤T}ϕτ

]
+ EQ

t

[
e−

∫ T
t rudu1{τ>T}

]
= EQ

t

[∫ T

t
e−

∫ s
t (ru+hu)duhsϕsds+ e−

∫ T
t (ru+hu)du

]
. (33)

The second equality follows from the doubly-stochastic assumption and regularity conditions.

Duffie and Singleton (1999) show that under the assumption that the recovery value ϕt is a

proportion 1 − Lt of the market value of the security immediately before default (referred to as

“recovery of market value” (RMV)) and a suitable no-jump condition,12 one can price defaultable

claims with the “default-adjusted discount rate,” rt + λtLt. Moreover, if one directly specifies the

mean-loss rate λtLt and rt as jointly affine under the risk-neutral measure, then the standard results

for affine term structure models can be used to price defaultable bonds.

While analytically appealing, the RMV assumption has some limitations. First, since the default

11To be precise, we fix a probability space (Ω,F ,P) and two filtrations {Ft : t ≥ 0}, {Gt : t ≥ 0}. The default time
is a totally inaccessible G-stopping time τ : Ω → (0,+∞]. We assume that under the risk neutral measure Q, τ is
doubly-stochastic driven by the filtration {Ft : t ≥ 0}. See Duffie (2005) for a survey on the reduced form approach
for modeling credit risk and the doubly-stochastic property.

12The no-jump condition is satisfied here by assuming ϕ is adapted to {Ft}. See also Duffie, Schroder, and Skiadas
(1996) and Collin-Dufresne, Goldstein, and Hugonnier (2004) for discussions on the no-jump condition.
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intensity ht and the loss rate Lt enter the default-adjusted discount rate symmetrically, we cannot

separately identify the risk-neutral default intensity and recovery rate using information on prices

alone. Second, when pricing bonds of different seniorities from the same issuer, it is more natural to

separately model default intensity (which is the same across different bonds) and recovery rates

(which depend on seniority). Third, data on recovery rates are usually quoted as fraction of face

value instead of market value. For example, Moody’s database of corporate defaults estimates

defaulted debt recovery rates using the ratio of market bid prices (30 days after the date of default)

to par value. The statistical models of recovery rates commonly used by academics and practitioners

are also generally based on par values.

Let Xt be the vector of state variables that determine the riskfree rate, the default intensity,

and the recovery rate. Assume that r(Xt) = ρ0 + ρ1 ·Xt, and h(Xt) = θ0 + θ1 ·Xt. If we model

the recovery value ϕt = g(β · Xt) with a proper function g, then equation (33) clearly fits into

the transform in Proposition 1. This allows us to substantially relax the RMV restriction. In

Appendix E, we calibrate a recovery model that captures the nonlinear relation between recovery

rate and aggregate default intensity in the data. The model shows that ignoring such a relation can

lead to large pricing errors for defaultable securities.

In addition to the logistic model considered in Section 2, we can also model the stochastic

recovery rate using the probit model, the Cauchy model, or the cumulative distribution functions

associated with any other probability distributions.13 Such flexibility in modeling the recovery

rate makes the above framework well suited to connect models of defaultable bond pricing with

commonly used statistical models of recovery rates.

4.2 Option pricing

When pricing European options, we want to compute expectations of the form

EQ
t

[
e−

∫ T
t rsds+α·XT gy(β ·XT )

]
, (34)

13Bakshi, Madan, and Zhang (2006) study a class of recovery models for which ϕ is exponential affine in the default
intensity as well as the class of completely monotone functions. They solve for bond prices using the DPS transform.
The completely monotone class requires that each order derivative is either always positive or negative.
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where gy(x) = 1{x≤y} is nonlinear and non-integrable. For example, for a European put option with

strike K, β ·Xt will be the log stock price, y = logK, and the option price is

Pt = EQ
t

[
e−

∫ T
t rsds+ygy(β ·XT )

]
− EQ

t

[
e−

∫ T
t rsds+β·XT gy(β ·XT )

]
. (35)

The Fourier transform of gy is defined as a distribution:

ĝy(s) = πδ(s) +
ie−isy

s
, (36)

where the second term is interpreted as a principal value integral. It follows that

EQ
t

[
e−

∫ T
t rsds+α·XT gy(β ·XT )

]
=

∫ ∞
−∞

(
δ(s)

2
− e−isy

2πis

)
ψ(α+ isβ)ds

=
ψ(α)

2
−
∫ ∞

0
Real

(
ψ(α+ isβ)e−isy

πis

)
ds. (37)

In the last equation we use the fact that the real part of the integrand is even and the imaginary

part is odd. This replicates the formula given in DPS obtained by Lévy-inversion.14

Since the generalized transform only requires the state variable to have a tractable conditional

characteristic function, we have a lot of flexibility in modeling the underlying uncertainty. Our

method also applies to exotic options whose payoffs are more complicated functions of the state

variables (such as the terminal value of the stock), as long as the payoff can be written in the form

of a product of a pl-linear function and a tempered distribution.

Bakshi and Madan (2000) (henceforth BM) also provide a more general method than DPS for

pricing options. It allows for payoffs of the form (H(XT )−K)+, where X is a univariate stochastic

process with known conditional characteristic function under the risk-neutral measure, H is a

positive and entire function,15 and K is a fixed strike price. They propose a power series expansion

of H, the expectations of which can then be computed through differentiation of the conditional

14In DPS, they arrive at this equation by effectively computing the forward density by Fourier transform (a
1-dimensional integral) and then integrating over the payoff region (now a 2-dimensional integral). In this case, Fubini
and limiting arguments allow this 2-dimensional integral to be reduced to a 1-dimensional integral as in the standard
Lévy inversion formula (without a forward measure).

15An entire function is one that is analytic at all finite points on the complex plane.
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characteristic functions. Their method applies to non-affine processes as well (see Section 3.2).

Our method differs from BM in several aspects. First, the power series expansion approach in

BM requires that H be infinitely differentiable and that the power series converges to H(X) for all

X. However, there can be cases where the payoff function has many kinks or is not entire (simple

examples include ln(X) and
√
X). Second, in those cases where the Fourier transform ĝ is known,

our method requires only one 1-dimensional integration, whereas the method of BM requires one

1-dimensional integration and one infinite sum. Third, we extend BM’s result on spanning of option

payoff with characteristic functions. In BM, the set of payoff functions H that can be spanned

by characteristic functions is an affine translation of an L1 function (see BM Theorem 1).16 We

relax the growth condition on the underlying payoff; the dual space S∗ is quite large and contains

Lp for any p, as well as functions not in Lp for any p. Finally, our theory extends the analysis to

multivariate settings.

To illustrate some of these differences, consider the payoff of the form H(X) = Xα for a positive

non-integer α. In this case H is not entire (for any choice of X0, the power series converges to H(X)

only for 0 < X < 2X0).17 Nor is it an affine translation of an L1 function. However, we can still

use the fact that H represents a tempered distribution to write

ĝ(s) = (−is)−1−αΓinc(−α− 1,−is), (38)

where Γinc(·, ·) denotes the incomplete Γ function and s−1−α is interpreted in the sense of a

homogeneous tempered distribution.

5 Applications in Economic Modeling

Affine general equilibrium models are attractive due to their tractability. This class of models

starts with state variables Xt that are affine and develop (either exogenously or endogenously) the

16A function H is of class Lp if
(∫
|H(x)|pdx

)1/p
<∞.

17In practice, one may still compute option prices through the Taylor expansion of an non-entire payoff function
with reasonable accuracy for special choices of X0 and the order of Taylor expansion, although it is not obvious what
choices would be optimal ex ante.
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stochastic discount factor Mt as an exponential affine function of Xt:

Mt = m(t,Xt) = exp(−ρt− a ·Xt). (39)

For example, in an endowment economy, the SDF is the marginal utility of the representative agent,

which depends on the log endowment and potentially other state variables that are jointly affine.18

Under these assumptions, it is easy to show that the riskfree rate rt is affine in Xt, and X is still

affine under the risk-neutral probability measure Q. As a result, the value a security with payoff

YT = y(XT ) at time T can be computed as

Pt = EQ
t

[
e−

∫ T
t ruduy(XT )

]
, (40)

which can be solved analytically using the DPS transform provided that y(X) is a pl-linear function

of X, or using the generalized transform if y(X) can be decomposed into the product of a pl-linear

function f(X) and a function with a Fourier transform g(β ·X) as in Proposition 1.

However, the benefit of the generalized transform is not limited to dealing with nonlinear payoffs.

Consider the case where m(t,X) is not exponential affine (but still strictly positive). The value of

the security above can also be computed as

Pt =
1

m(t,Xt)
Et [m(T,XT )y(XT )] . (41)

This expectation can be computed using the generalized transform provided that m(T,X)y(X) =

f(X)g(β ·X) as in Proposition 1. Then, the riskfree rate rt is no longer required to be affine in Xt,

and X is generally no longer an affine process under Q.

To see this, suppose m(t,Xt) = e
∫ t
0 R(Xs)dsg(β ·Xt), where R(Xt) = ρ0 + ρ1 ·Xt, and X follows

an affine diffusion (it is also easy to add jumps). Then, the Ito’s lemma implies that the riskfree

18Examples include Bakshi and Chen (1997), Bekaert and Grenadier (2002), Mamaysky (2002), Longstaff and
Piazzesi (2004), among others.
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rate is

rt = −(ρ0 + ρ1 ·Xt)−
g′(β ·Xt)

g(β ·Xt)
βT (K0 +K1Xt)−

1

2

g′′(β ·Xt)

g(β ·Xt)
tr(ββTσtσ

′
t),

and under the risk-neutral measure X follows

dXt =

(
K0 +K1Xt +

g′(β ·Xt)

g(β ·Xt)
σtσ
′
tβ

)
dt+ σtdW

Q
t .

Both the risk free rate and the conditional mean of Xt under Q are nonlinear, making it unsuitable

to do valuation directly under Q. Instead, valuation under P using (40) can still be very tractable.

Again, as discussed in Section 3.2, X does not need to be an affine jump-diffusion. All that is

required is that its conditional characteristic function is tractable.

Next, we discuss some specific examples where non-exponential affine stochastic discount factors

arise in realistic settings.

5.1 An Affine Model of External Habit

The external habit model of Campbell and Cochrane (1999) is a workhorse in asset pricing that

helps generate a high and time-varying equity premium even though consumption growth is i.i.d.

and has low volatility. Solving this model as well as estimation and forecasting can be challenging

due to the complicated dynamics of the external habit process. In this example, we construct a

habit process based on affine state variables that captures the desired features of the habit model.

Our construction is based on the continuous-time version of the external habit model in Santos

and Veronesi (2010). In an endowment economy, the representative agent’s utility over consumption

stream {Ct} is

E

[∫ ∞
0

e−ρt
(Ct −Ht)

1−γ

1− γ dt

]
, (42)

where Ht is the habit level that is positive and strictly below Ct. The log aggregate endowment
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ct = log(Ct) follows the process

dct = µcdt+ σcdWt, (43)

with constant expected growth rate µc and volatility σc, and we specify the process for Ht later.

The stochastic discount factor is obtained from the marginal utility of consumption for the

representative agent,

mt = e−ρt(Ct −Ht)
−γ = e−ρt−γct

(
Ct −Ht

Ct

)−γ
, (44)

where we rewrite the SDF as the product of the standard SDF for CRRA utility (e−ρt−γct) multiplied

by a function of the surplus-consumption ratio.

Campbell and Cochrane (1999) specify a heteroskedastic AR(1) process for the surplus-consumption

ratio. Santos and Veronesi (2010) directly model Gt ≡
(
Ct−Ht
Ct

)−γ
with a non-affine process that

is mean-reverting with stochastic volatility. Our approach is different. Instead of modeling the

surplus-consumption ratio or Gt directly, we assume that Gt is a function of a variable yt, which is

stationary and jointly affine with ct. An example for the process of yt is:

dyt = κ(ȳ − yt)dt− σydWt, (45)

where yt and ct are instantaneously perfectly negatively correlated, which captures the property

that the habit level is solely driven by consumption shocks. The SDF then becomes

m(t,Xt) = e−ρt−γctg(yt). (46)

One can apply several criteria in choosing the functional form for g, which in turn implies the

dynamics of Gt. First, we need g(y) > 1, because Ht should be between 0 and Ct. Second, we also

need g′(y) ≥ 0, because a negative shock to consumption raises the consumption-surplus ratio and

hence the marginal utility of consumption. Third, a negative shock to consumption ought to reduce

the habit level, that is, Covt(dCt, dHt) > 0. Fourth, to generate counter-cyclical risk premium,
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we would like negative shocks to consumption to raise the conditional Sharpe ratio of the market

portfolio (the price of risk for consumption shocks):

SR(yt) = γσc +
g′(yt)

g(yt)
σy. (47)

Thus, we need d
dySR(y) = d

dy log(g(y)) ≥ 0.

Finding such a function g is straightforward, and it is clear that it cannot be exponential-affine

in y.19 Suppose the desired range of Sharpe ratio is between γσc and γσc +α for some α > 0. Then,

we can assume

g′(y)

g(y)
=

α

σy
F (y), (48)

where F is any monotone non-decreasing function with

lim
y→−∞

F (y) = 0, lim
y→+∞

F (y) = 1.

For example, F can be the cumulative distribution function of any real univariate random variable.

Thus, we have a lot of flexibility in choosing the desired shape of F , which in turn decides the

distribution of the conditional Sharpe ratio.

It follows that

g(y) = exp

(
b+

α

σy

∫ y

−∞
F (t)dt

)
, (49)

which satisfies the criteria we discussed earlier for g provided the constant b is sufficiently large.20

The SDF in (46) fits the moment function in Theorem 1 (with an appropriate choice of factorization

as in (20)). This example highlights the power of the generalized transform: rather than specifying

a complicated process for g directly, we can utilize the flexibility in choosing g(y) for some tractable

process y (such as an affine process).

19In the special case where m(t,Xt) follows the exponential-affine form in (39), one can show that if consumption
shocks are i.i.d. and Xt is affine, the price of consumption shock has to be constant.

20To satisfy the condition Covt(dCt, dHt) > 0, it suffices to have b > γ ln
(

1 + α
γσc

)
.
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5.2 Heterogeneous agents economy

The generalized transform can also be used to solve models with heterogeneous agents. The

heterogeneity could be about preferences or beliefs. Earlier work include Dumas (1989) and Wang

(1996), among others. The stochastic discount factors in the general form of these models will be

implicit functions of stochastic state variables. However, even in these general cases, the generalized

transform can still be applied.

For illustration, we assume that there is a single risky asset in an endowment economy. Two

infinitely-lived agents A and B have time-separable preferences over consumption stream {ct}:

Ui(c) = E0

[∫ ∞
0

ui (ct, t) dt

]
, i = A,B (50)

We model the dividend process D from the risky asset as part of a general affine jump-diffusion.

Specifically, suppose log dividend dt = ι1 ·Xt, where Xt is a vector that follows the process (9). This

model can easily capture features such as predictability in dividend growth, stochastic volatility, or

time-varying probability of jumps. For example, to get predictability of dividend growth, we can

assume

ddt = gtdt+ σddW
d
t (51a)

dgt = κg (g − gt) dt+ σgdW
g
t (51b)

where gt is the expected growth rate of dividends, which follows an Ornstein-Uhlenbeck process

with long run mean g. The state variable is then given by Xt = [dt gt]
′, and it is straightforward to

verify that X is affine with coefficients implied by the dynamics of dt and gt. Finally, as discussed

in Section 3.2, other non-AJD processes with tractable conditional characteristic functions can be

used for Xt as well.

Assuming markets are complete, we can first solve for the optimal allocations through the social

planner’s problem

max
{CA,CB}

E0

[∫ ∞
0
{uA (CA,t, t) + λuB (CB,t, t)} dt

]
, (52)
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which has constant relative Pareto weight λ and is subject to the market clearing condition

CA,t + CB,t = Ct. For concreteness, consider the case where the agents have power utility and

differ only in their relative risk aversion, ui (c, t) = e−ρtc1−γi/(1− γi), with γA 6= γB. The optimal

allocations can be solved through the planner’s first order conditions and the market clearing

condition. Except for a few special cases,21 agent A’s equilibrium consumption is an implicit

function of aggregate endowment

CA,t = f

(
D

1− γB
γA

t

)
Dt. (53)

Then, the unique stochastic discount factor in this economy is given by

ξt = e−ρtf

(
D

1− γB
γA

t

)−γA
D−γAt = e−ρtg(dt)e

−γAdt . (54)

where g is an implicit function that is smooth and bounded. The generalized transform can now be

applied when we use the discount factor to price claims. For example, the price of a zero coupon

bond that pays one unit of consumption at time T is

B(t, T ) = Et

[
ξT
ξt

]
=

e−ρ(T−t)

f̂(dt)e−γAdt
Et
[
e−γAι1·XT g(ι1 ·XT )

]
, (55)

where Theorem 1 can be applied to evaluate the expectation in (55). In case where there is an

explicit formula for g, the transform may be known in closed form. However, even when g does

not have a closed form solution, one will only need to compute ĝ numerically once: this single

calculation can then be used for the valuation of a variety of securities and need not be re-computed

for different horizons.

Besides heterogeneous preferences, the above model framework can also be used to study

heterogeneity in beliefs across agents, provided that the beliefs of the agents satisfy the “affine-

disagreement framework” (Chen, Joslin, and Tran (AER 2010)).22 We can also extend the model to

N > 2 agents, which will only change the functional form of g for the SDF in (54) (the transform

21Wang (1996) shows that the model can be solved in closed form when γA = nγB where n = 2, 3, 4.
22See Appendix D for more discussion on affine differences in beliefs. Bhamra and Uppal (2010) provide a recent

treatment of heterogeneous preferences and beliefs when the underlying uncertainties are i.i.d.
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remains one-dimensional), or to a model of international finance with multiple goods and multiple

countries as in Pavlova and Rigobon (2007).

5.3 Multiple goods economy

Our next example is to solve for the equilibrium in an endowment economy with two assets. Several

recent papers have studied the general equilibrium effects of multiple sources of consumption in an

endowment economy. See Santos and Veronesi (2006) (analytical result for a model with financial

asset and labor income that satisfy special co-integration restrictions), Piazzesi, Schneider, and

Tuzel (2007) (numerical solution for a model with housing and non-housing consumption), Cochrane,

Longstaff, and Santa-Clara (2008) (analytical result for a model with two i.i.d. trees and log utility),

and Martin (2008) (analytical results for N i.i.d. trees and power utility).

There are two assets (or two types of consumption goods) in the economy, both in unit supply,

with dividend streams D1,tdt and D2,tdt. As in the previous section, we assume that the log

dividends d1,t = logD1,t and d2,t = logD2,t are part of a vector Xt (d1,t = ι1 ·Xt, d2,t = ι2 ·Xt),

which follows an affine jump-diffusion (9). Again, this model can allow for time variation in the

expected dividend growth rates, stochastic volatility, and time variation in the probabilities of jumps.

Co-integration restriction can also be imposed.

There is an infinitely-lived representative investor with CRRA utility over aggregate consumption:

U(c) = E0

[∫ ∞
0

e−ρt
C1−γ
t − 1

1− γ dt

]
, (56)

where aggregate consumption is a CES aggregator of the two goods D1,t and D2,t,

Ct =
(
D

(ε−1)/ε
1,t + ωD

(ε−1)/ε
2,t

)ε/(ε−1)
. (57)

The parameter ε is the elasticity of intratemporal substitution between the two goods, and ω

determines the relative importance of the two goods.

We can recover the continuous time version of Piazzesi, Schneider, and Tuzel (2007) when we

interpret D1,t and D2,t as housing and nonhousing consumption, respectively, and assume that
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the growth rate of nonhousing consumption is i.i.d., the log ratio of the two dividends follows a

square-root process. In the case ε→∞ and ω = 1, the two goods become perfect substitutes, so

that Ct = D1,t +D2,t. This is the case considered by Cochrane, Longstaff, and Santa-Clara (2008)

and Martin (2008), both of which assume i.i.d. dividend growth.

In equilibrium, the unique stochastic discount factor ξt = e−ρtC−γt . Under the standard regularity

conditions, the price of asset i (i = 1, 2), Pi,t, is then given by:

Pi,t = Et

[∫ ∞
0

ξt+u
ξt

Di,t+udu

]

=
(
D

(ε−1)/ε
1,t + ωD

(ε−1)/ε
2,t

)γε/(ε−1)
∫ ∞

0
e−ρuEt

 Di,t+u(
D

(ε−1)/ε
1,t+u + ωD

(ε−1)/ε
2,t+u

)γε/(ε−1)

 du. (58)

The main challenge of computing the stock price comes from the stochastic discount factor,

which is non-pl-linear in the state variable Xt. To map the expectation in (58) into the generalized

transform, we rewrite the expectation inside the integral of (58) as:

Et

 D1,s(
D

(ε−1)/ε
1,s + ωD

(ε−1)/ε
2,s

)γε/(ε−1)

 = Et

 e(1−γ/2)d1,s−γ/2d2,s(
2 cosh

(
ε−1
ε

d1,s−d2,s
2

))γ


= Et [f (α ·Xs) g (β ·Xs)] , (59)

where

f (x) = ex

g (x) =
1

(2 cosh(x))γ

and

α =
(

1− γ

2

)
ι1 −

γ

2
ι2, β =

ε− 1

2ε
(ι1 − ι2).

Since X is affine and g ∈ S∗, Theorem 1 readily applies to (59). When the increments of X are

i.i.d., the conditional characteristic function for X is known explicitly, which Martin (2008) uses to

compute (59) following a Fourier transform for g. In this i.i.d. increment case, the process for X
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can be generalized to any Lévy process as in Section 3.2.

Several observations are in order. First, when we introduce additional state variables to X within

the affine framework, due to the time-separable utility function, these additional state variables do

not directly enter into the pricing equation (58). Hence, adding these new state variables do not

increase the dimension of the Fourier transform. Second, we can generalize the utility function, e.g.,

by making aggregate consumption Ct a CES aggregator of D1,t and D2,t, as in Piazzesi, Schneider,

and Tuzel (2007), where the two trees are interpreted as nonhousing consumption and housing

services. It is also convenient to add preference shocks that are pl-linear in the state variables.

Third, the model can allow for multiple trees using the multi-dimensional version of the generalized

transform in Proposition 2. Finally, although our method computes stock values as an average of

exponential affine functions of the state, when pricing options on stocks, the exercise regions will

typically be a non-linear function of all covariates. In this case, we can proceed as in Singleton and

Umantsev (2002) to approximate the option value by linearizing the exercise region and using the

closed form valuation of the payoff.

5.4 A concrete example: time-varying labor income risk

In this section, we study a general equilibrium model with time-varying labor income risk. This

model not only serves a concrete example of applying the generalized transform method for economic

analysis, but also draws a number of new insights on how the time-varying covariance between labor

income and dividends affects asset pricing.

In consumption-based asset pricing models, the covariance between shocks to consumption and

cash flows of an asset is often a key determinant of the risk premium for the asset. As this covariance

fluctuates over time, so will the implied risk premium. Santos and Veronesi (2006) (hereafter SV)

point out a natural source of such time variation in the covariances via a composition effect : as

the share of labor income in total consumption varies over time, so will the covariances between

consumption and dividends, which in turn generates time-varying equity premium. Intuitively,

higher labor income relative to dividends tends to make investors less sensitive to fluctuations in

dividend income. Santos and Veronesi illustrate this point in a model with stationary labor share

28



1945 1950 1955 1960 1965 1970 1975 1980 1985 1990
−0.5

0

0.5

1

1.5

2

r 4
y

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990
0.7

0.75

0.8

0.85

0.9

0.95

L
/C

A. 1947−1990

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
−2

−1

0

1

2

r 4
y

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0.76

0.78

0.8

0.82

0.84

L
/C

B. 1991−2010

Figure 1: Long-term returns and labor share pre and post-1990. Data is quarterly and the

sample period is 1947Q1 to 2010Q2. L/C is the share of labor income to consumption. r4y is the lagged

four-year cumulative returns of the market portfolio. We use per-capita consumption (nondurables and

services) from the BEA and labor income series constructed following Lettau and Ludvigson (2001a).

and multiple financial assets, which provides very convenient closed-form solutions for asset prices.

Following SV, we plot in Figure 1 the share of labor income and lagged four-year cumulative

returns of the CRSP value-weighted market index. The labor share is defined as the ratio of labor

income to consumption. Consistent with the findings of SV, the labor share and lagged market

return in Panel A of Figure 1 are negatively correlated, with an average correlation of −0.35.

However, in the post-1990 period, the two series become positively correlated, which is opposite

of the composition effect.23 These results suggest that other covariates may be playing a role in

determining the relationship between the labor share and the equity premium (see also Duffee (2005)

and Kozhanov (2009) for related findings).

One example of such covariates is consumption volatility. Lettau, Ludvigson, and Wachter

23In fact, to some extent this effect is already documented in Santos and Veronesi (2006) (Table 2), where they
show that the predictive power of the labor share is stronger in the sample 1948-1994 than in 1948-2001.
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(2008) argue that declining macroeconomic volatility since the 1980s has played a key role in the

decline of the equity premium and of dividend yields.24 In Figure 2, we plot the volatility of

consumption growth for non-overlapping 5-year periods using quarterly data from 1952 to 2010.

In addition, we also plot the correlation between labor income and dividends during the same

periods. Interestingly, the correlation between labor income and dividends shows a similar pattern

as volatility. It ranges from the peak of 0.1 in early 1980s to the low of −0.9 in the late 1990s, and it

also tends to rise when consumption volatility rises. Like changes in consumption volatility, changes

in the correlation between labor income and dividends could also affect the equity premium. All else

equal, consumption volatility should indeed rise with the correlation between its two components.

However, consumption volatility could also change independently of the correlation, e.g., through

time-varying share of labor income in consumption, or variations in the volatilities of labor income

and dividends.25

Motivated by these findings, we propose a simple model that captures these interesting dynamics

of the conditional moments of labor income, dividends and consumption. The model is a special

case of the two-asset model discussed in Section 5.3, with dividends from the two assets interpreted

as financial income (dividends) and labor income. We extend the models of Cochrane, Longstaff,

and Santa-Clara (2008) and Martin (2008) in two important dimensions: (1) we add a volatility

factor, which simultaneously drives the conditional volatilities of labor income and dividends, as

well as the correlation between the two; (2) we impose cointegration between labor income and

dividends to ensure the long run stationarity of labor share. Our model also differs from SV in that

labor share and the correlation between labor income and dividends can move independently. The

affine family of processes allow us to achieve all of the objectives as follows.

Let log dividends and log labor income be dt and `t, and let Vt be a volatility factor. Suppose

24They estimate a structural break occurred in consumption volatility in 1991, which motivates our choice of the
two subsamples in Figure 1.

25Different economic mechanisms may have lead to the decline in consumption volatility and the decline in correlation
between labor income and dividends. A number of authors have attributed the great moderation to transparency in
monetary policy. On the other hand, Piketty and Saez (2003) demonstrate that in the mid-1980s, income inequality
began to rise. This “Great Divergence” is consistent with a increasingly negative correlation between labor income
and dividends and may have been linked to structural changes associated with legal changes and the declining role of
labor unions (see, for example, Card (2001)).
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Figure 2: Consumption volatility and correlation between labor income and dividends.
This figure plots the (annualized) standard deviation of aggregate consumption growth and the correlation

between the growth rates of labor income and dividends in 5-year windows. The data are quarterly from

1952Q1 to 2010Q2. At the end of each series we add the estimate for the most recent 5 years.

Xt = (dt, `t, Vt)
′ follows an affine process

dXt = µtdt+ σtdWt. (60)

We assume that the conditional drift µt is given by

µt =


g − a κs(s− (`t − dt))

g + (1− a)κs(s− (`t − dt))

κV (V − Vt)

 . (61)

This formulation gives the same average growth rate of g for dividends and labor income. The

second term in the growth rates of dividends and labor income allows for the shares of labor income

and dividends to be stationary. To see this, consider the dynamics of the log labor income-dividend

ratio st = `t − dt. Equation (61) implies that the drift of st will be κs(s − st), with s being the

long-run average of the log labor income-dividends ratio, and κs ≥ 0 the speed of mean reversion.

Thus, when the share of labor income relative to dividends is high, the expected growth rate of
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dividends will be higher than that of labor income, which causes st to revert to its long-run mean.

The opposite is true when the labor share is low. The parameter a gives us additional flexibility

in specifying the degree of time variation in the growth rates of dividends and labor income. For

example, a = 1 implies that the expected labor income growth is constant over time. Equation (61)

also implies that the volatility factor Vt is stationary, with long-run mean V and speed of mean

reversion κV .

The conditional covariance of the factors is given by

σtσ
′
t = Σ0 + Σ1Vt, (62)

where Σ0 and Σ1 can be any positive semi-definite matrices with the the restriction Σ0,33 = 0 so that

the volatility factor always remains positive. According to the terminology of Dai and Singleton

(2000), this is an A1(3) model of dividends and labor income. As Vt increases, the volatilities of

dividends and labor income will increase. Moreover, the instantaneous correlation between dividends

and labor income, ρt, also varies with the volatility factor Vt:

ρt =
Σ0(1, 2) + Σ1(1, 2)Vt√

Σ0(1, 1) + Σ1(1, 1)Vt
√

Σ0(2, 2) + Σ1(2, 2)Vt
. (63)

The structure of a single volatility factor implies that the correlation and volatilities have to

move in lock steps. While this feature is clearly restrictive, it allows us to capture the comovement

between consumption volatility and correlation demonstrated in Figure 2, and it helps keep the

number of state variables small. It is possible to substantially relax the covariance structure using the

Wishart process, which allows for fully stochastic covariance between labor income and dividends.

Section 5.3 already explains how to price the stock and human capital using the generalized

transform. To compute the expected excess returns and volatilities of the stock and human capital,

we can consider them as portfolios of zero-coupon equities, each of which with one “dividend”

payment Dt or Lt. The risk premium of the stock or human capital is then the value-weighted

average of the risk premium for these zero-coupon equities. In general, the instantaneous expected

excess return for any asset is determined by its exposure to the primitive shocks in the state variable
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Xt and the risk prices associated with these shocks, which in turn are determined by their covariances

with the stochastic discount factor Mt. Thus, by Itô’s Lemma, the expected excess return for any

asset with price Pt = P (Xt, t) is given by

Et[R
e] = (∇X logMt)

′ σtσ
′
t (∇X logPt) , (64)

where σtσ
′
t, the time t covariance of the factors, is given in (62). Here (∇X logMt)

′ σt in (64) gives

the price of risk for all the shocks in Xt, while (∇X logPt)
′ σt gives the exposure that the asset

has to these shocks. With power utility, only those shocks that directly affect consumption will be

priced in the equilibrium. The assumption that the volatility factor Vt is independent of dividends

and labor income then implies that shocks to dividends and labor income are the only ones with

nonzero risk prices in our model. Finally, since the covariance among the factors is time-varying in

our model, both the prices of risk and risk exposures can change over time.

Next, we examine the risk premium on financial wealth and human capital. The risk premium

for financial wealth depends on its exposure to both dividend and labor income shocks. First, the

financial wealth claim is directly exposed to dividend shocks via its cash flows (dividends). Second,

via the discount factor, it is exposed to both dividend and labor income shocks.26 Both mechanisms

will have an effect on the risk premium. For example, positive shocks to labor income will decrease

the premium demanded for dividends, increase the risk-free rate (as a higher share of the less

volatile labor income tends to smooth consumption, reducing the precautionary savings motive),

and increase expected future dividends due to the mean reversion in (61) (with a > 0). The solution

of our model allows us to incorporate all of these mechanisms to determine the risk premium for

the dividend claim.

Figure 3 plots the conditional risk premium on financial wealth and human capital as functions

of the labor share and correlation. We leave the details of model calibration to Appendix F. The

parameters are summarized in Table 2. We focus on the region that is more relevant based on

the stationary distributions of the two variables. Both the labor share and stochastic covariance

are important contributor to the risk premium. When volatilities and correlations are high, the

26The value of the dividends tree will also be sensitive to covariance shocks (Vt). However, these shocks are not
priced in our model by the assumption that they are not correlated with consumption.
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Figure 3: Conditional risk premium on financial wealth and human capital. The left panel

plots the conditional risk premium on the stock (financial wealth), and the right panel plots the conditional

risk premium on human capital as function of labor share Lt/Ct and correlation ρt.

model generates significant composition effect: When the correlation ρt = −0.1, the conditional risk

premium on financial wealth falls from 6.6% to 1.8% as labor share rises from 0.6 to 0.9. However,

when ρt = −0.8, the risk premium essentially remains at 0 for the same rise in labor share. What’s

more, consistent with the prediction on the price of dividend risk, the risk premium on financial

wealth is more sensitive to changes in volatility and correlation when labor share is low.

Why is the risk premium changing so little with the labor share when volatilities are low? First,

as labor share rises, the composition effect tends to drive down the risk premium per unit of dividend

risk, but this effect weakens as the volatility falls. At the same time, the price-dividend ratio (P/D)

is rising (due to both lower risk free rate and higher expected dividend growth) and becoming

more sensitive to changes in labor share, hence also more sensitive to labor income and dividend

shocks (with opposite signs). Since the price of labor income risk is rising with higher labor share

while the price of dividend risk is decreasing, the net effect via the price-dividend ratio tends to be

offsetting the composition effect for sufficiently high labor share. Moreover, when volatility falls,

the rise in the price of labor income risk accelerates, which strengthens the P/D effect. Under our

parameterizations, when volatilities are sufficiently low, the two effects essentially cancel each other.
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As for the risk premium on human capital, the composition effect is stronger when the correlation

is low, which is again consistent with our earlier analysis of the price of labor income risk. For

example, when ρt = −0.8, the premium on human capital rises from 0 to 1.8% as labor share rises

from 0.6 to 0.9. As the correlation rises, the premium flattens and eventually becomes U-shaped in

labor share.

Through the lens of our model, we can also analyze the comovement between the risk premium

on financial wealth and human wealth.27 Cash flows from the claim on financial and human wealth

are negatively correlated most of the time in our model. However, both positive and negative

correlation between the risk premium on financial and human wealth can occur. The risk premium

on financial wealth and human wealth will be negatively correlated when the composition effect is

the main driver of variations in risk premium over time. However, when variations in the volatilities

and correlation become the main driver of variations in risk premium, the two risk premiums will

become positively correlated.

6 Conclusion

We extend the transform analysis in Duffie, Pan, and Singleton (2000) to compute a general class of

nonlinear moments for affine jump-diffusions. Through a Fourier decomposition of the nonlinear

moments, we can directly utilize the properties of the conditional characteristic functions for affine

processes and compute the moments analytically. By not resorting to an intermediate computation

of the (forward) density, this method greatly reduces the dimensionality of such problems, allowing

for tractability in a wide range of economic applications.

We demonstrate the power of this method with examples from several areas, including defaultable

bond pricing, option pricing, and equilibrium asset pricing models with heterogeneous agents or

multiple goods. Underlying all of these examples are the rich dynamics provided by affine processes,

allowing for time-varying conditional means and variances as well as jumps occurring with stochastic

intensity. Finally, we apply the generalized transform method in a general equilibrium model of

27Previous studies have different findings when measuring the sign of this comovement in the data. For example,
see Hansen, Heaton, Lee, and Roussanov (2007) and Lustig and Van Nieuwerburgh (2008).
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time-varying labor income risk. The model not only helps explain the changing predictive power of

labor share with declining volatility, but also shows that the risk premium on financial wealth and

human capital can be positively or negatively correlated, depending on whether variations in labor

share or covariances are the main driver of risk premium.
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Appendix

A Proof of Theorem 1

Throughout, we maintain the following assumptions:

Assumption 1: In the terminology of DPS, (Θ, α, β) is well-behaved at (s, T ) for all s ∈ R.

That is,

(a) E
(∫ T

0 |γt|dt
)
<∞ where γt = Ψt(φ(B(T − t))− 1)(λ0 + λ1(Xt)),

(b) E[(
∫ T

0 ‖ηt‖2dt] <∞ where ‖ηt‖2 = Ψ2
tB(T − t)>(H0 +H1 ·Xt)B(T − t),

(c) E[|ΨT |] <∞,

where Ψt = e−
∫ t
0 rsdseA(T−t)+B(T−t)·Xt and A,B solve the ODE given in (17-18).

Assumption 2: The measure F defined by its Radon-Nikodym derivative,

dF

dP
=

e−
∫ T
0 rτdτeα·XT

E0[e−
∫ T
0 rτdτeα·XT ]

, (65)

is such that the density of β ·XT under F is a Schwartz function. In particular, the density of

β ·XT is smooth and declines faster than any polynomial under F .

Proposition 1 of DPS gives conditions under which Assumption 1 holds. These are integrability

conditions which imply that, for every s, the local martingale

Et

[
e−

∫ T
t rτdτ+α+isβ

]
e−AT−t−BT−t·Xt ,

is in fact a martingale.

Assumption 2 is analogous to (2.11) of DPS. However, we require a somewhat stronger assumption

to directly apply our theory. This assumption can typically be shown to hold by verifying that the

moment generating function (under F ) is finite in a neighborhood of 0. See Duffie, Filipovic, and

Schachermayer (2003).
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We now prove Theorem 1. Suppose now that Assumptions 1 and 2 hold. Then,

H = E0[e−
∫ T
0 rτdτeα·XT g(β ·XT )]

= F0E
F
0 [g(β ·XT )]

= F0

∫
g(b)fFβ·XT (b)db

= F0 〈g, fFβ·XT 〉.

In the last equation, we interpret g ∈ S∗. By Assumption 2, fFβ·XT ∈ S, and so f̂Fβ·XT ∈ S also.

Thus Fourier inversion holds and (f̂Fβ·XT )̌ = fFβ·XT (see Corollary 8.28 in Folland (1984)), where we

denote the inverse fourier transform of a function h by ȟ(s) = 1
2π

∫
eis·xh(x)dx. Applying this,

H = F0 〈g, (f̂Fβ·XT )̌〉

= F0 〈ĝ, f̌Fβ·XT 〉.

This equation holds because of Fourier inversion and the definition of Fourier transform of a tempered

distribution. Notice that when both fβ·XT and g are in S, we can write this last equality as

F0

2π

∫
x
g(x)

∫
s
f̂Fβ·XT e

isxdsdx =
F0

2π

∫
s
f̂Fβ·XT

∫
x
g(x)eisxdxds,

thus we see that the theory from Fourier analysis of tempered distributions justifies the change of

order of integration in a general sense. We can therefore further simply to obtain

H = 〈ĝ, F0f̌
F
β·XT 〉

=
1

2π
〈ĝ, ψ(α+ ·βi)〉.

This last step holds by Assumption 1. This is the desired result.
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B Proof of Proposition 1

In analogy to Duffie, Pan, and Singleton (2000) and Pan (2002), define

G(α0; v, n|x, t) = eAt+Bt·x
∑
|ξ|=n

(
n

ξ

)
L(x)ξ, (66)

where L(x) is the n-dimensional vector whose ith coordinate is (∂iA+∂iB ·x)1/i, ξ is a n-dimensional

multi-index, and (∂iA, ∂iB)i satisfies the ODE

Ḃ = K>1 B +
1

2
B>H1B − ρ1 + λ1(φ(B)− 1), B(0) = α0, (67)

Ȧ = K>0 B +
1

2
B>H0B − ρ0 + λ0(φ(B)− 1), A(0) = 0, (68)

∂1Ḃ = K>1 ∂1B + ∂1B
>H1B + λ1∇φ(B) · ∂1B, ∂1B(0) = v, (69)

∂1Ȧ = K>0 ∂1B + ∂1B
>H0B + λ0∇φ(B) · ∂1B, ∂1A(0) = 0, (70)

and for 2 ≤ m ≤ n, (∂mB, ∂mA) satisfy

∂mḂ = K>1 ∂1B +
1

2

m∑
i=0

(
m

i

)
∂iB

>H1∂m−iB + ∂m−1(λ1∇φ(B) · ∂1B), ∂mB(0) = 0, (71)

∂mȦ = K>0 ∂1B +
1

2

m∑
i=0

(
m

i

)
∂iB

>H1∂m−iB + ∂m−1(λ0∇φ(B) · ∂1B), ∂mA(0) = 0. (72)

We strengthen Assumptions 1 and 2 as follows:

1. Assumption 1’: The moment generating function, φ ∈ CN (D0) where D0 is an open set

containing the image of the solutions to (17) for any initial condition of the form α0 = α+ isβ

for any s ∈ R. Additionally, for any such a initial condition:

(a) E
(∫ T

0 |γt|dt
)
<∞ where

γt = λtEν [Ψn
t (it, Xt + Z)−Ψn

t (it, Xt)],

and Ψn
t (i, x) = e−iG(α, v, n|x, T − t) and it =

∫ t
0 rsds,

(b) E[(
∫ T

0 ‖ηt‖2dt] <∞ where
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‖ηt‖2 = ∇xΨn
t (it, Xt)

>(H0 +H1 ·Xt)∇xΨn
t (it, Xt),

(c) E[|ΨT (iT , XT )|] <∞.

2. Assumption 2’: The measure F defined by its Radon-Nikodym derivative,

dF

dP
=

e−
∫ T
0 rτdτeα·XT (v ·XT )n

E0[e−
∫ T
0 rτdτeα·XT (v ·Xt)n]

, (73)

is such that the density of β ·XT under F is a Schwartz function.

Given Assumption 1’ and Assumption 2’ hold, the proof follows as before.

C Generalized Transform in Discrete Time

In this appendix, we show how our method applies in a discrete time setting. Here, we replace (9)

with

∆Xt = (K0 +K1Xt) + εt+1, (74)

where εt+1 has a conditional distribution which depends on Xt which satisfies

E [eα·εt+1 ] = eÂ(α)+B̂(α)·Xt . (75)

For example, if Â(α) = 1
2α
′Σα and B̂(α) = 0, it follows that εt ∼ N(0,Σ), in which case Xt follows

a simple vector autoregression. In general, the discrete time family of processes given by (74–75) is

quite flexible and allows for jump-type processes and time-varying covariance (see Le, Singleton,

and Dai (2010), for example).

For the discrete time processes, the analogous version of Theorem 1 gives

HD (g, α, β) = E0

[
exp

(
−

T∑
u=0

r(Xu)

)
eα·XT g(β ·XT )

]

=
1

2π
〈ĝ, ψ(α+ ·βi)〉, (76)
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where now (17–18) are replaced by

∆B = K>1 B + B̂(B)− ρ1, B(0) = α+ isβ, (77)

∆A = K>0 B + Â(B)− ρ0, A(0) = 0. (78)

D Affine Differences in Beliefs

Models of heterogeneity of beliefs, or equivalently of preferences, can generate rich implications for

trade and affect asset prices in equilibrium (see Basak (2005) for a recent survey). In studying such

economies, aggregation often leads to difficulty in computing equilibrium outcomes. In this example,

we illustrate the use of our main result in solving economies where there is heterogeneity among

agents regarding beliefs (and higher order beliefs) about fundamentals.

D.1 General Setup

Suppose there are two agents (A, B) who possess heterogeneous beliefs. There is a state variable Xt

which Agent A believes follows an affine jump-diffusion:

dXt = µAt dt+ σAt dW
A
t + dZAt , (79)

where µAt = KA
0 +KA

1 Xt, σ
A
t (σAt )> = HA

0 +HA
1 ·Xt, and jumps are believed to arrive with intensity

λAt = λA0 + λA1 ·Xt and have distribution νA (with moment generating function φA). As elaborated

in the examples below, the variable Xt encompass all uncertainty in the economy, including any

time-variation in the heterogeneity of beliefs. For simplicity, we suppose that Agent A’s beliefs are

correct. The method is easily modified to the case where neither agent is correct.

Agent B has heterogeneous beliefs which we shall suppose are equivalent. A broad class28 of

such equivalent beliefs can be characterized as follows. There exists some vector a such that Agent

B believes X follows an affine jump-diffusion satisfying

dXt = µBt dt+ σBt dW
B
t + dZBt , (80)

28More generally, we could consider beliefs of the form eh(xt)−
∫ t
0 e

−h(xs)D1eh(xs)ds. Provided the integral term
remains tractable, the same analysis applies. Compare also the discussion of essentially affine difference of opinions.
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where

1. µBt = µAt + σAt (σAt )>a

2. σBt = σAt

3. dνB/dνA(Z) = ea·Z/EνA [ea·Z ] or φB(c) = φA(c+ a)/φA(a)

4. λBt = λAt × EνA [ea·Z ]

This difference in beliefs generates a disagreement about not only the drifts of the state variables,

but also the jump frequency and the distribution of jump size.29

This structure implies that the two beliefs define equivalent probability measures which may be

related through the Radon-Nikodym derivative dPB/dPA:

ηt = Et

[
dPB

dPA

]
= exp

(
a ·Xt −

∫ t

0

(
a · µAs +

1

2
‖σAs a‖2 + λAs (φν(a)− 1)

)
ds

)
. (81)

The variable ηt expresses Agents B’s differences in opinion in that when ηt is high, Agent B believes

an event is more likely than Agent A believes. We refer to ηt as the db-density (‘db’ stands for

“difference in beliefs”) process, which differs from the density defining the risk-neutral measure.

While we specify the differences in beliefs exogenously, this does not preclude agents’ beliefs

from arising through Bayesian updating based on different information sets. For example, when

the state variables and signals follow a joint Gaussian process, Bayesian updating can reduce to a

difference of beliefs in the form of (81).

Notice that the integral term in the exponent above follows an affine process. Thus, by redefining

X to include the integral term and augmenting a accordingly, we have

ηt = ea·Xt . (82)

We assume that the agents have time separable preferences:

U i(c) = Ei0

[∫ ∞
0

ui(ct, t)dt

]
, i = A,B. (83)

29To be precise, as a process ZA = ZB (i.e. the functions Zi : Ω× [0,∞)→ R are the same). Agents disagree about
the probability measures on Ω.
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Suppose also that

1. markets are complete;

2. log of aggregate consumption, ct = log(Ct), is linear in Xt (ct = c ·Xt);

3. agents are endowed with some fixed fraction (θA, θB = 1− θA) of aggregate consumption.

Let ξt denote the stochastic discount factor with respect to Agent A’s beliefs. As in Cox and

Huang (1989), we impose the lifetime budget constraint and equate state prices to marginal utilities

to solve

uAc (CAt , t) = ζAξt , (84)

uBc (CBt , t) = ζBη−1
t ξt , (85)

where Cit is Agent i’s equilibrium consumption at time t and ζi is the Lagrange multiplier for Agent

i’s budget constraint.

Market clearing then implies

Ct = (uAc )−1(ζAξt) + (uBc )−1(ζBη−1
t ξt), (86)

which implies ξt = h(ct, ηt) for some h. With the additional assumption that ui(c, t) = e−ρt c
1−γ

1−γ ,

this simplifies to

ξt = e−ρt

[(
1

ζA

)1/γ

+

(
ηt
ζB

)1/γ
]γ
C−γt . (87)

Using g(x) =

[(
1
ζA

)1/γ
+
(
ex

ζB

)1/γ
]γ

and Ct = ec·Xt , we finally have

ξt = e−ρtg(a ·Xt)e
−γc·Xt . (88)

With the stochastic discount factor in this form, we may price any asset with pl-linear payoffs, such

as bonds and dividend claims, using Theorem 1.30 Our method also applies when the two agents

30The function g is not bounded and in fact does not even define a tempered function. Thus, our theory does not
directly apply. One option is to write g(x) = g−(x)e−x + g+(x)e+x where g±(x) = g(x)1{±x<0}e

∓x. Here g± are
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have different risk aversion (γA and γB). In that case, we can still express h(ct, ηt) in the separable

form as in (88), and proceed the same way.

In some cases, the mapping of a difference-of-opinion model to the standard setting (81) is

not immediate, and requires a careful choice of the state variable Xt. For example, consider

the setting where the agents believe that (de-trended) aggregate log consumption, ct, follows an

Ornstein-Uhlenbeck process:

dct = κA(θA − ct)dt+ σdWA
t , (89)

dct = κB(θB − ct)dt+ σdWB
t . (90)

In this case, the difference in beliefs cannot be dexpressed as in (81) directly. However, by considering

an augmented state variable we can return to this form. The state variable 〈ct, c2
t 〉 follows the

process

d

ct
c2
t

 =

 κA(θA − ct)
2ctκA(θA − ct) + 1

2σ
2

 dt+

 σ

2ctσ

 dWA
t . (91)

Since the corresponding 2× 2 conditional covariance matrix, [σ, 2ctσ]>[σ, 2ctσ], is affine in 〈ct, c2
t 〉,

it follows that 〈ct, c2
t 〉 is an affine process. Moreover, we return to our standard case since PB is

given by the change of measure as in (81) with

a = σ−2

κBθB − κAθA
1
2(κA − κB)

 . (92)

More generally, we can have the case where each agent believes that the state of the economy is

summarized by the N -dimensional Gaussian state variables, Xt, and each agent believes that Xt

satisfies the stochastic differential equation dXt = (Ki
0 +Ki

1Xt)dt+
√
H0dW

i
t . Again by considering

an augmented state variable of the form X̂t = 〈Xt, vech(XtX
>
t )〉 we can return to our standard

setting.31 Such techniques are common in the term structure literature with respect to affine and

bounded functions whose Fourier transforms can be computed in terms of incomplete Beta functions. Another option
is to write g(x) = g(x)dγe/γg(x)−dγe/γ+1. In this case, the first functional is pl-linear and the second is bounded with
Fourier transform known in terms of Beta functions.

31For a square matrix M , vech denotes the lower triangular entries written as a vector. Usually, only part of the
elements in the extended state vector is needed to maintain the Markov structure.
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quadratic term structure models. The procedure generalizes to accommodate models with stochastic

volatility (AM (N) in the parlance of Dai and Singleton (2000)). Following Duffee (2002), we refer

to this as essentially affine difference of beliefs.

An alternative characterization is to consider the “market price of belief risk”, λt, in analogy to

the usual market price of risk. By defining

λt =

√
H−1

0 (µBt − µAt ) , (93)

ηt = e−
∫ t
0 λsdW

A
s − 1

2

∫ t
0 ‖λs‖

2ds . (94)

When ηt is exponential affine in Xt, this defines an appropriate Radon-Nikodym derivative for our

setting.

D.2 Special Cases

The framework above can accommodate a wide range of specifications with heterogeneity of beliefs

regarding expected changes in fundamentals, likelihood of jumps, distribution of jumps, and

divergence in higher order beliefs. We now provide some examples.

Disagreement about stochastic growth rates. This is the model studied in Dumas, Kurshev,

and Uppal (2009), hereafter DKU. In their model, there is a single dividend process Ct with

time-varying growth rate, but agents A and B have different beliefs regarding the growth rate of the

tree, f̂At and f̂Bt , and ĝt = f̂Bt − f̂At represents the amount of disagreement between B and A.

This model can be mapped into the essentially affine difference in beliefs specification, and our

results can simplify the calculations for the most general model that they consider. First, under

Agent B’s probability measure,

d


ct

f̂Bt

ĝt

 =


f̂Bt − 1

2σ
2
c

κ(f̄ − f̂Bt )

−ψĝt

 dt+


σc 0

γB
σc

0

σĝ,c σĝ,s

 dWB
t . (95)

Next, in order to map the model to our standard setting, we define the augmented state variable

as Xt = 〈ct, log ηt, f̂
B
t , ĝt, ĝ

2
t 〉, where ηt gives the density process: ηt = Et[dP

A/dPB]. The dynamics
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of Xt are given by the stochastic differential equation:

dXt = (K0 +K1Xt)dt+ ΣtdW
B
t ,

where

K0 =



−1
2σ

2
c

0

κf̄

0

σ2
ĝ,c + σ2

ĝ,s


, K1 =



0 0 1 0 0

0 0 0 0 − 1
2σ2
c

0 0 −κ 0 0

0 0 0 −ψ 0

0 0 0 0 −2ψ


, Σt =



σc 0

−ĝt/σc 0

γB/σc 0

σĝ,c σĝ,s

2σĝ,cĝt 2σĝ,sĝt


.

It is easy to check that the local conditional variance of Xt, ΣtΣ
>
t , is affine in Xt so this represents

an affine process.32 Then, it is immediate that ηt takes the form of (81) with a = 〈0, 1, 0, 0, 0〉.

DKU show that in their setting a number of equity and fixed income security prices take the

form E0[eα·Xtg(β · Xt)] where g(x) = (1 − eax)b for some (α, β, a, b). They use two methods to

compute this moment. First, when b ∈ N, g can be expanded directly and reduced to log-linear

functionals. Then the moments can be computed by well-known methods. For more general cases,

they compute the moment in two steps: first recover the forward density of β ·X through a Fourier

inversion of the conditional characteristic function, and then evaluate the expectation using the

density. The formula (A58-A61) in DKU is essentially

E0[eα·Xtg(β ·Xt)] =
1

2π

∫
b∈R

ĝ(b)

∫
s∈R

eibsE0[e(α−isβ)·Xt ]ds db. (96)

This formula requires a double integral, thus increasing the dimensionality of the problem. As

Theorem 1 shows, our generalized transform method will only require a single integral to compute

this moment. If we consider the generalization g(β1 ·Xt, β2 ·Xt), the trade-off becomes a somewhat

tractable 2-dimensional integral with our method versus a highly intractable 4-dimensional integral

by using an extension of the DPS method.

32DKU exploit the fact that in this particular case the ODE determining the conditional characteristic function for
some variables can be computed in closed form by standard methods. However, in general there is little additional
complication to solve the usual ODE by standard numerical methods.
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Disagreement about volatility. Suppose that dividends have stochastic volatility. Under Agent

A’s beliefs:

d

 ct

Vt

 =

 ḡ

−κV Vt

 dt+

√√√√√
 σd 0

0 0

+

 σcV Vt 0

0 σV V Vt

dWA
t . (97)

Here σd is the lowest conditional variance of log dividends, while Vt represents the degree to which

volatility is above the lowest level.

Agent B disagrees about the dynamics of volatility. According to his beliefs:

d

 ct

Vt

 =

 ḡ

−(κV − b)Vt

 dt+

√√√√√
 σd 0

0 0

+

 σcV Vt 0

0 σV V Vt

dWB
t . (98)

For example, when b > 0, Agent B believe that volatility mean reverts more slowly. Using

a = 〈0, b/σ2
V V 〉 we get the db-density as in (81).

Disagreement about momentum. Consider a model with stochastic growth in consumption.

Let ct be the log consumption, gt be the expected growth rate. Also, let et be an exponential

weighted moving average of past growth rates:

et =

∫ t

−∞
e−b(t−s)gsds. (99)

Agent A correctly believes that the expected growth rate of log consumption is gt. Under her

beliefs:

d


ct

gt

et

 =


gt

κ(ḡ − gt)
gt − bet

 dt+


σc 0

0 σg

0 0

 dWA
t . (100)

Agent B believes that growth is due to two components: (1) a mean-reverting component, gt
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and (2) a counteracting momentum component through et.

d


ct

gt

et

 =


gt + cet

κ(ḡ − gt)
gt − bet

 dt+


σc 0

0 σg

0 0

 dWB
t . (101)

Fixing the past, for large enough deviations from the steady-state, the mean-reverting component

will dominate. However, for small deviation from the steady state, Agent B will believe that past

deviations from the steady state lead to larger future deviations from the state steady. In this way

we can view Agent B as possessing a conservatism or “law of small numbers” bias.

This example represents a special case of the essentially affine difference of beliefs.

Disagreement about higher order beliefs. Heterogeneity in higher order beliefs can affect

asset prices as well. We can inductively proceed in defining beliefs:

ĝit = Agent i’s beliefs about the growth rate of consumption

ĝijt = Agent i’s beliefs about Agent j’s belief about the growth rate of consumption

We can consider the state variable Xt = [ct, ĝ
A
t , ĝ

B
t , ĝ

AB
t , ĝBAt ]. Suppose that Xt follows a

Gaussian process under both agents beliefs. Agent A’s beliefs are such that

d



ct

ĝAt

ĝBt

ĝAB

ĝBA


dt =



ĝAt

κA(θ − ĝA)

κB(θ − ĝB)

κAB(ĝB − ĝAB)

κBA(ĝA − ĝBA)


dt+ ΣdWA

t . (102)

Here, the fourth and fifth components of the drift say that Agent A believes that the higher order

beliefs (both his beliefs about Agent B and Agent B’s beliefs about him) are correct in the long run,

but may have short run deviations.

Again, this model represent a special case of the essentially affine disagreement.
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Disagreement about the likelihood of disasters. Suppose that log consumption, ct, has

constant growth with IID innovations with time-varying probability, λt, of rare disaster. Let

Xt = [ct, λt]. Under Agent A’s beliefs,

dXt =

 gA

−κλλt

 dt+

 σc 0

0 σλ
√
λ

 dWA
t + dZAt , (103)

where ZAt are jumps in ct which occur with intensity λ0 +λt and distribution ν. Suppose that Agent

B’s beliefs are specified by the db-density of form (81) with a = 〈b, 0〉. Then, Agent B’s beliefs will

be

dXt =

 gA + bσ2
c

−κλλt

 dt+

 σc 0

0 σλ
√
λ

 dWB
t + dZBt , (104)

where jumps arrive with intensity λBt = EνA [ea·Z ](λ0 + λt) and have distribution νB with Radon-

Nikodym derivative dνB/dνA(Z) = ea·Z/EνA [ea·Z ].

In this sense, Agent B is more optimistic about the future growth both in terms of (1) higher

expected growth rates, (2) lower likelihood of disasters, (3) less severe losses conditional on there

being a disaster.

E Recovery Risk

In this section, we investigate the quantitative impact of stochastic recovery on the pricing of

defaultable bonds. Following the discussions in Section 4.1, we directly specify the dynamics of

state variables Xt = [λt Yt]
′ under the risk neutral probability measure Q:

dλt = κλ(θλ − λt)dt+ σλ
√
λtdW

λ
t , (105)

dYt = κY (θY − Yt)dt+ σY
√
λtdW

Y
t , (106)

where W λ
t and W Y

t are uncorrelated Brownian motions; λt is the default intensity of a firm, and

the short term interest rate, rt, is given by

rt = Yt − δλt. (107)
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This simple setup (with δ > 0) captures the negative correlation between rt and λt in the data.

The recovery value ϕ of a bond issued by the firm can depend on the default intensity, the

short rate, and other macro and firm-specific variables. Also, in principle it should only take values

from [0, 1]. One specification for ϕ that satisfies this requirement and is compatible with the DPS

formulation is

ϕ (X) = eβ·X1{β·X<0} + 1{β·X>0}.

Bakshi, Madan, and Zhang (2006) study such a setting. More generally, the cumulative distribution

function of any distribution will take values in [0, 1]. Below are some commonly used examples.

• Logit Model:

ϕ (X) =
1

1 + e−β0−β1·X
.

• Probit Model:

ϕ (X) =

∫ β0+β1·X

−∞

1√
2π
e−

s2

2 ds.

• Cauchy Model:

ϕ (X) =

∫ β0+β1·X

−∞

γ

π((s2 − s2
0) + γ2)

ds.

Modeling ϕ with CDFs has the additional benefit that they have nice Fourier transform properties.

For example, the integrands of the Probit and Cauchy model have closed-form Fourier transform.

Since Fourier transform has the property that f̂ ′(t) = tf̂(t), it is very easy to obtain the Fourier

transform of ϕ in those cases.

For simplicity, we assume that ϕ only depends on the default intensity, and we adopt a variation

of the Cauchy model:

ϕ(λ) =
a

1 + b(λ− λ0)2
+ c. (108)

The constant term c sets a lower bound for ϕ. Its Fourier transform (excluding the constant c) is

ϕ̂(t) =
aπ√
b
e
λ0it− 1√

b
|t|
. (109)

We consider two calibrations of ϕ(λ) in (108). First, using data from Altman, Brady, Resti, and

Sironi (2005), we calibrate a = 0.68, b = 2000, c = 0.25, and λ0 = −0.014. The fitted function is

“Model I” in Figure 4. The fitted curve is downward sloping and convex. The recovery rate is close
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Figure 4: A Cauchy Model of Aggregate Recovery Rates. This figure plots the aggregate
recovery rates and default rates from Altman, Brady, Resti, and Sironi (2005). The dash line is a
Cauchy recovery model fitted to the historical data. The solid line is a Cauchy recovery model with
recovery risk premium.

to 70% when the probability of default is very low. When annual default probability rises to 10%,

the recovery rate drops to 30%. The parametrization of Model I is likely too conservative: it treats

the recovery rates in the data the same as the risk-neutral recovery rates, assuming no recovery

risk premium. In the second calibration, we assume a = 0.9, b = 1200, c = 0, and λ0 = −0.014.

The fitted function is “Model II” in Figure 4, which has very similar recovery rates to Model I

when default intensity is low, but has a sharper decline in recovery rates than Model I when default

intensity rises. The widening gap between the two models implies that the recovery risk premium in

Model II is increasing with the aggregate default probabilities.

Several features of the recovery curve will matter for bond pricing: how fast (slope) and how far

(right tail) the recovery rate drops with default rate, and how much curvature the recovery function

has. We will investigate how each of these features affects pricing.

The key step in computing the value of the defaultable zero-coupon bond is to compute the

expectation

EQ0

[
exp

(
−
∫ t

0
(ru + λu)du

)
λtϕ (λt)

]
,
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Table 1: Calibration of the Risk-Neutral dynamics of λ and Y

κλ θλ σλ κY θY σY δ

-0.035 -0.08 0.07 0.02 0.10 0.06 0.1

which is mapped into the generalized transform of Theorem 1 by choosing

f (α ·X) = ι1 ·X,

g (β ·X) =
a

1 + b(ι1 ·X − λ0)2
,

where ι1 = [1 0]′.

It is straightforward to use the recovery model ϕ(X) to price other credit products, such as credit

default swaps or recovery locks. In addition, our model can be generalized to allow for violations of

the no-jump conditions.33 Thus, it can be used in models with flight-to-quality, default contagion,

systematic jump risk, or other features that violate the no-jump condition.

We now use the processes of default intensity λt and riskfree rate rt (105–107) and the recovery

model (108) to price a 5-year defaultable zero-coupon bond of a representative firm, which has the

same default intensity as the aggregate intensity λt. We calibrate the process of λt and Yt under

the risk-neutral measure following Duffee (1999). The parameter values are reported in Table 1.

Notice that κλ < 0, which is consistent with Duffee’s finding that the default intensity of a typical

firm is nonstationary under the risk-neutral measure.

The results are reported in Figure 5. The top panels investigate Stochastic Recovery Model I,

where the recovery function is fitted to the historical recovery rates (no recovery risk premium);

the bottom panels investigate Stochastic Recovery Model II, which assumes that the recovery risk

premium increases with aggregate default intensity (see Figure 4). A popular assumption for default

recovery in both academic analysis and industry practice is to assume 75% constant loss rate (see

e.g., Pan and Singleton (2008)). This value is higher than the historical mean loss rate, which is a

parsimonious way to capture the recovery risk premium. Thus, for comparison, we also report the

results for two alternative models: (1) recovery of market value (RMV), with constant loss rate

33We can either explicitly make the correction for jumps as in Duffie, Schroder, and Skiadas (1996), or use the
change-of-measure method in Collin-Dufresne, Goldstein, and Hugonnier (2004).
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Figure 5: Credit spreads for 5-year bonds with constant recovery and Cauchy recovery.
For different values of conditional default intensity, this figure plots the credit spreads of a 5-year zero-coupon

defaultable bond, and the pricing errors of the RMV and RFV model with constant recovery rates relative to

two versions of the stochastic recovery model. “RMV” stands for “recovery of market value”; “RFV” stands

for “recovery of face value”.

L = 0.75; (2) recovery of face value (RFV), with constant loss rate L = 0.75.

Panel A shows that, without the recovery risk premium, the credit spreads generated by the

stochastic recovery model are lower than the RMV and RFV model with constant recovery rate.

Panel B reports the pricing errors of the RMV and RFV model relative to the stochastic recovery

model (assuming the latter is the true model), computed as

stochastic recovery yield− constant recovery yield

stochastic recovery yield− default-free yield
.

As expected, if there is no recovery risk premium (as in Model I), the main concern of the constant

recovery assumption is underpricing, i.e. they generate credit spreads that are too high. The pricing
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errors are large. For example, the pricing errors of the RMV model are at least 20%, and can be

over 40% when default intensity is low (< 2%).

The results are quite different for Stochastic Recovery Model II. As shown in Panel C, the credit

spreads generated by Model II are visibly more convex than the spreads from the RMV or RFV

model with constant recovery rate. When default intensity is low, credit spreads are lower for the

stochastic recovery model, because the conditional recovery rates are higher than under the constant

recovery assumption. As aggregate default intensity rises, the size of the recovery risk premium

increases, which lowers the risk-neutral recovery rates and explains the rapid rise in the spreads of

Model II.

Panel D gives us a better sense of the size of pricing errors. When the aggregate default intensity

is low, the recovery risk premium is small. Thus, the assumption of a 25% constant recovery rate

during these times would be too “conservative”, which makes the RMV model generate spreads

that are too high. The pricing errors can be well over 20% for low values of λ. On the contrary,

at times when the aggregate default rates are high, the assumption of 25% constant recovery rate

becomes too optimistic. In fact, for λ > 2.5%, the spreads in Model II exceed those in the RMV

model. The pricing errors are over 10% for λ > 4.5%, and can be as high as 20% when the default

intensity reaches 10%.

There is another important message in Figure 5. The curvature in the graphs of the spreads

and pricing errors suggests that simply adjusting the constant recovery rate in the RMV model

does not solve the mispricing problem. Changing the recovery rate amounts to (approximately)

parallel-shifting the spreads or pricing errors, and will either exacerbate the underpricing for low

λ or overpricing for high λ. These results suggest that it is important to dynamically account for

the negative correlation between default intensity and recovery rate when pricing credit-sensitive

securities.

F Labor income risk

This section provides more details on the calibration and analysis of the model with time-varying

labor income risk.

The parameters are summarized in Table 2 and are calibrated as follows. We set the long-run

mean growth rate of labor income and dividends to 1.5%. We specify the long run labor income
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γ 6 ρ̄`,d -30.3%
ρ 1% σ̄` 5.4%
g 1.5% σ̄d 11.1%

S 80% σ∞(ρ`,d) 9.8%
a 1

3 σ∞(σ`) 0.0018%
κs 0.0231 σ∞(σd) 0.017%
κV 0.0693 σSS(V ) 1.07

Table 2: Parameters. This table gives the parameters and moments used to calibrate the model. The left

column gives the preference parameters and conditional mean parameters for the process. The right column

gives the conditional moments used to calibrate the parameters (Σ0,Σ1). The first three calibration moments

refer to the steady state values. The next three refer to the conditional volatility of the conditional moments

evaluated at the long run mean of V . σ(σd) is the steady state volatility of σd. V̄ is normalized to be one.

share, S̄, to be 75%. As the covariance parameters (Σ0 and Σ1) are difficult to directly interpret, we

calibrate them by considering their effect on the volatility of labor income, the volatility of dividends,

and their correlation. We set the parameters so that when Vt is at its long run mean V̄ (which

is normalized to be one), (σ`,t, σd,t, ρ`,d,t) are given by σ̄` = 5.4%, σ̄d = 11.1%, and ρ̄`,d = −30.3%

respectively. Note that due to CRRA utility, our model presents the equity premium-risk free rate

puzzle (Mehra and Prescott (1983)), and we choose our parameterization to generate higher premium

with reasonable risk aversion by slightly overstating the volatility of labor income relative to the

data, with the ratio of dividend to labor income volatility qualitatively similar to Lettau, Ludvigson,

and Wachter (2008). We also calibrate the volatility of (σd, σ`, ρ`,d) when Vt is at its long run mean,

which we denote with by σ∞(σd) = 1.7bp, σ∞(σ`) = 0.18bp, and σ∞(ρ`,d) = 9.8%. Finally, we

calibrate the volatility of V in the steady state distribution, which we denote by σSS(V ), to be 1.07.

Taken together, these 7 moments (along with the simplifying assumption that innovations to V are

uncorrelated with innovations to either ` or d) fix the free parameters in Σ0 (3 parameters) and Σ1

(4 parameters). Under this calibration, when V is at the highest (lowest) decile, the volatility of

labor income is 6% (5%), the volatility of dividends is 16%(6%) and their correlation is -10% (-80%).

The volatility parameters where chosen to qualitatively match the variation found in Figure 2.

Next, we investigate the price of risk for shocks to dividends and labor income, which are

transparent and helpful for our understanding of the risk premiums on financial wealth and human

capital. From the stochastic discount factor, we can compute the price of dividend risk, which is
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Figure 6: Simulated distributions. Panels A and B plot the simulated distributions of the volatility

factor
√
Vt and labor share Lt/Ct.

defined as the risk premium for one unit exposure to dividend shocks:

PRdt =
γcovt(ct, dt)

σd,t
= γ

(
Lt
Ct
ρtσ`,t +

(
1− Lt

Ct

)
σd,t

)
, (110)

where ct is log consumption; σ`,t and σd,t are the conditional volatilities of labor income and

dividends, with their dependence on the volatility factor Vt captured by the time subscripts. On the

one hand, holding Vt constant (so that σ`,t, σd,t, and ρt are all constant), the price of dividend risk

will rise as labor share falls as long as σd,t > ρtσ`,t (for example, when dividends are more volatile

than labor income or when their correlation is negative), which is the composition effect highlighted

in SV. On the other hand, holding labor share fixed, as Vt increases, the volatility of labor income,

dividends, and the correlation between the two will increase. All three factors contribute to raise

the price of dividend risk. Intuitively, investors become more reluctant to hold financial assets either

when there is less labor income to buffer the financial shocks (lower labor share), or when labor

income becomes a worse hedge against the financial shocks (higher correlation or higher volatility of

labor income).

Finally, if the correlation between labor income and dividends is sufficiently negative and the

labor share is sufficiently high, the price of dividend risk can become negative. This is because when

the investor is heavily exposed to labor income risk and ρt is close to −1, bad news for dividends will
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tend to be accompanied by good news to labor income, which causes consumption to rise (opposite

to dividends).

Similarly, the price of labor income risk measures the risk premium for one unit exposure to

labor income shocks:

PR`t =
γcovt(ct, `t)

σ`,t
= γ

(
Lt
Ct
σ`,t +

(
1− Lt

Ct

)
ρtσd,t

)
. (111)

Provided that σ`,t > ρtσd,t (for example, when the correlation is very small or negative), the price

of labor income risk will rise with labor share. Also, holding the labor share constant, the price of

labor income risk unambiguously falls as the correlation and volatilities fall.

Figure 7 shows the quantitative effects of the labor share and correlation (volatility) on the price

of dividend risk and labor income risk. First, we show how the volatilities of labor income, dividends,

and the correlation between the two are tied to the volatility factor Vt. As Panel A shows, both

the volatility of labor income and dividends are monotonically increasing in the volatility factor,

although dividend volatility varies significantly more than does labor income. This property is an

important feature of our model, which is also consistent with the data. In Panel B, the conditional

correlation between labor income and dividends is also monotonically increasing in the volatility

factor. Since the volatilities and correlation are all monotonic functions of the volatility factor Vt,

without loss of generality we use the correlation ρt in place of Vt in the plots for the remainder of

the paper.

As Panels C and D show, holding the correlation constant, the price of dividend risk is decreasing

in labor share, while the price of labor income risk is increasing in the labor share. When holding

the labor share constant, both prices of risk increase with the correlation between labor income and

dividends (the volatility factor). These features are consistent with our analysis above.

Notice also that while the price of dividend risk is always falling as the labor share rises,

the decline is less pronounced when the correlation (volatility) is small. For example, when the

correlation is -0.1, the price of dividend risk falls from 0.36 to 0.06 as labor share rises from 0.6 to

0.9; when the correlation is -0.8, price of dividend risk falls from 0.01 to -0.17 for the same increase

in labor share. The opposite is true for the price of labor income risk. From (110) and (111) we see

that the sensitivity of PRdt to Lt/Ct is σd,t − ρtσ`,t, which is increasing in Vt under our calibration,

whereas the sensitivity PR`t to Lt/Ct is σ`,t − ρtσd,t, which is decreasing in Vt under our calibration.
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Figure 7: Price of dividend risk and labor income risk. Panel A and B plot the conditional

volatility of labor income (σ`,t), dividends (σd,t), and the conditional correlation between the two (ρt), as

functions of
√
Vt. Panels C and D plot the conditional price of dividend and labor income risk PRd

t and PR`
t

as function of labor share Lt/Ct and correlation ρt.

Both results follow from the fact that the volatility of dividend income σd,t rises significantly faster

with Vt than does the volatility of labor income σ`,t, as illustrated in Panel A of Figure 7.

Panels C and D also show that the decline in the prices of dividend risk and labor income risk

with correlation (and volatility) is more pronounced when labor share is lower. Since σd,t rises

significantly faster with Vt than σ`,t and even ρtσ`,t, a lower labor share will make the price of

dividend risk more sensitive to changes in the volatilities and correlation between labor income and

dividends.

Next, we return to assess whether changing covariance can account for the changing relationship

between labor income share and expected excess returns in Figure 1. Specifically, our model predicts
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Table 3: Return Forecasting Regressions. Dependent variable: cumulative excess return on the

market over various horizons (quarters). Predictive variable Lt/Ct: share of labor income to consumption.

The first set of t-stats is the Newey-West adjusted t-statistics, with the number of lags double the forecasting

horizon. The second set of t-stats is the Hansen-Hodrick adjusted t-statistics using the same number of lags

as the Newey-West t-stats.

Panel A: 1947-1990 Panel B: 1991-2010

4 8 12 16 4 8 12 16

Lt/Ct -1.042 -2.440 -4.257 -6.263 3.621 7.233 11.342 15.791
t-stat (NW) -1.890 -3.664 -4.367 -4.396 1.948 2.185 2.569 3.637
t-stat (HH) -1.086 -1.401 -1.900 -2.330 1.295 1.406 1.531 1.724
Adj. R2 0.041 0.125 0.270 0.406 0.101 0.214 0.286 0.363

that the labor income share has little effect on the equity premium when consumption volatility

and the correlation between labor income and dividends are low.

In Table 3, we formally examine the difference of return predictability with labor share in the

two samples using regressions of long-horizon excess returns on lagged labor shares. The specific

form of the regression is

rxt,t+K = β0(K) + β1(K)
Lt
Ct

+ εt+K , (112)

where rxt,t+K is the cumulative excess return on the market over K quarters, and we consider

K = 4, 8, 12, 16. For each regression, we report the point estimates of β1(K), the NeweyWest

corrected t-statistics (with the number of lags equal to 2K, as in SV), the Hansen-Hodrick corrected

t-statistics and the adjusted R2.

The regression results are consistent with what we have inferred from Figure 1. Labor share

significantly predicts long-horizon returns with a negative sign in the period 1947-1990, which

confirms the findings of SV. In the post-1990 period, the regression coefficients on labor share

become positive, although they are statistically non-significant at all horizons when using the

Hansen-Hodrick standard errors. Based on the moving-window estimates of consumption volatility

and correlation between labor income and dividends in Figure 2, volatilities and correlation are both

higher pre-1990, which according to our model implies a stronger composition effect (risk premium

falls as labor share rises) during this period. As both the volatilities and correlation become smaller

in the second sample, the composition effect should indeed become weaker.

On the other hand, in Table 3 the point estimate of the regression coefficients are economically
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large and significantly positive at longer horizons with respect to the Newey-West standard errors.

What could explain such a possible change in the predictive power of labor share? It is possible

that some variable that is driving the risk premium on stocks has become correlated with labor

share (or happens to be correlated in the relatively short sample). For example, observe that over

this period, labor share and covariance are generally positively correlated in Figure 2. In this case,

according to Figure 3, decreasing share may be associated with decreasing risk premium due to

declining correlation, despite the reverse univariate relationship where covariance is held fixed. Put

differently, our covariance variable, Vt, may represent a variable which is correlated with both the

regressor and the residual in (112), resulting in biased estimates. Other risks factors may also be at

play as well. For example, the correlation between labor share and the consumption-wealth measure

CAY (see Lettau and Ludvigson (2001b)) is −0.15 over the period 1952-2010, but jumps to 0.6 in

the period 1990-2010. Thus, the fact that CAY predicts the equity risk premium with a positive

sign can help explain the regression results in the post-1990 period as well. These possibilities could

be explored further by expanding our framework to include the additional covariates.
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