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1. Introduction

A large literature has recently focussed on studying how rational expectations equilibria

(REE) can be attained in an economy where agents use adaptive learning mechanisms. In

their seminal works Evans and Honkapohja1 replace expectations with regressions to study

in detail how ‘learning’leads to convergence to REE in dynamic stochastic macroeconomic

models. Such ‘adaptive learning’algorithms assume that agents form expectations by con-

ducting regressions on data available to them (within the model), with the most commonly

used regressions being of the recursive least squares variety. Sargent (1999) and Cho et al.

(2002) delve deeper into the notion of recursive least squares learning and consider envi-

ronments in which agents place heavier emphasis on recent observations to draw inferences

about model parameters, using ‘constant gain’learning algorithms. Under such least squares

constant gain learning algorithms, uncertainty about estimated parameters persists, and can

fuel ‘escape’dynamics in which a sequence of rare and unusual shocks propel agents away

from the REE.2 Characterizing the limiting probabilities of such escape dynamics and large

deviations from REE is the subject of our paper.

Our context is a simple but widely employed univariate linear expectational difference

equation that characterizes equilibrium dynamics for a number of models, for example, asset

pricing or overlapping generations models and others.3 We demonstrate that the constant

gain learning algorithm, specialized for expository clarity to its stochastic gradient version

1See in particular Evans and Honkapohja (2001), and also Marcet and Sargent (1989) and Woodford
(1990).

2See for example Williams (2009) and Evans, Honkapohja and Williams (2010) for an excellent discussion
of constant gain-stochastic learning gradient algorithms. Such algorithms are special versions of the early
Robbins and Munro (1951) learning algorithms and simplifications of the Kalman filter.

3See Evans and Honkapohja (1999, 2001) and Carceles-Poveda and Giannitsarou (2007) for an overview.

1



(see Evans, Honkapohja and Williams (2010)), yields a recursion where occasional large

deviations or ‘rare events’can induce a limiting ‘fat tailed’power law distribution for the

estimated coeffi cients, and therefore for the endogenous variables that they affect.4 In the

asset price model interpretation of the reduced form , the REE relates dividends to asset

prices. Under adaptive learning, our results show that the ratios of asset prices to dividends

can significantly deviate from their REE values.

The remainder of the paper is structured as follows. Section 2 specifies the model while

Section 3 demonstrates the use of large deviation theory with random linear recursions char-

acterizations of learning algorithms. Section 3 discusses some relevant comparative statics

with the parameter governing the power law as a function of changes in model parameter

values. Section 4 concludes.

2. The Model

Our focus is on univariate models whose reduced form is given by

pt = δEt(pt+1) + γdt, δ ∈ (0, 1). (1)

Here dt denotes an exogenous Markov chain on (R,R) where R is the real line and R its

Borel subsets:

dt = ρdt−1 + εt, |ρ| < 1, t = 1, 2... (2)

4By fat-tailed distributions, we mean distributions for which some higher order moments do not exist.
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in which εt is an i.i.d. random variable with compact support [−a, a], a > 0, and a non-

singular distribution function F .5 The linear expectational difference equation in (1) is a

widely studied reduced form related to several linearized rational expectations models in

economics, such as a linearized approximation to the Euler equation of an asset pricing

model with a single asset and CRRA preferences.6

A widely held assumption is that agents form expectations as7

Et(pt+1) = φt−1dt. (3)

When inserted into (1), this assumption yields what is known as the actual law of motion

(ALM)

pt = (δφt−1 + γ)ρ︸ ︷︷ ︸
=T (φt−1)

dt−1 + (δφt−1 + γ)︸ ︷︷ ︸
=V (φt−1)=

T (φt−1)
ρ

εt, (4)

that drives the dynamics of the endogenous variable (here, pt) as a function of the exogenous

process. The perceived law of motion (PLM) corresponding to the above ALM is

pt = φt−1dt−1 + ξt (5)

where ξt is a regression error the agent employs to estimate the φt−1 parameter of the

5F is non-singular with respect to the Lebesque measure if there exists a function f ∈ R+,
∫
R
f(t)dt >

0, such that F (dt) ≥ f(t)dt.
6For a model with a single asset and CRRA preferences parameterized by θ the Euler equation

Pt = Et

{
δ

(
Dt+1

Dt

)−θ
(Pt+1 +Dt+1)

}

can be linearized around its’non-stochastic steady state to yield the reduced form (1) provided that the
lower case variables in (1) are interpreted as logarithmic deviations from steady state and γ ≡ (1−δ−θ)ρ+θ.

7See footnote 8.
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PLM via recursive least squares (RLS) or any other adaptive learning algorithm.8 Equating

coeffi cients of (4) and (5), the rational expectations equilibrium (REE) value for φ is a

constant,

φREE =
γρ

1− δρ (6)

for all δρ 6= 1, a condition that we maintain. The focus in the adaptive learning literature is

on the ability of agents to learn φREE using the data available to them.9

We focus on the case in which agents employ a constant gain stochastic gradient learning

algorithm to update φt as

φt = φt−1 + gdt−1(pt − dt−1φt−1), g ∈ (0, 1) (7)

where the parameter g is referred to as the gain parameter.10

8It is standard in the adaptive learning literature to assume that, since pt+1 and and the forecast φt are
simultaneous, that agents do not know φt in forming E (pt+1) and use φt−1 instead, as in (3).

9The T (φt−1) in (4) is the T -map associated with the ALM. Evans and Honkapohja (2001) use this map
to show the expectational stability of the φREE , the fixed point of the T -map.
10A typical setting is g = 1

T where the fixed T is the horizon of time that the agent considers for updating
φt. Constant gain algorithms are particularly useful for examining issues related to structural change. An
optimal Bayesian derivation of the constant gain stochastic gradient algorithm under parameter drift, that
is when agents also expect φt to drift according to a random walk, is given by Sargent and Williams (2005),
and by Evans, Honkapohja and Williams (2010) in section 2 of their paper. The residual uncertainty in φt
in each period prevents the weight given to recent observations and the optimal gain parameter from going
to zero. In our model this yields a particular interpretation of the gain parameter g without altering the
derivations and analysis.
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3. Characterizing Large Deviations

The SGCG algorithm (7) can be re-written as

φt = φt−1 + gdt−1(pt − dt−1φt−1) = (1− gd2t−1)φt−1 + gdt−1pt. (8)

Inserting the ALM in place of pt yields an equation whose asymptotics are often analyzed in

order to determine the stability of φREE (Carceles-Poveda and Giannitsarou (2007)). The

substitution yields

φt = (1− gd2t−1)φt−1 + gdt−1[(δφt−1 + γ)ρdt−1 + (δφt−1 + γ)εt]

= [1− (1− ρδ)gd2t−1 + δgdt−1εt]φt−1 + γρgd2t−1 + γgdt−1εt. (9)

Give our interest in applying the results from the theory of large deviations and rare events,

we re-write the above as

φt+1 = λt+1φt + ψt+1 (10)

λt+1 = 1− (1− ρδ)gd2t + δgdtεt+1 = 1− gd2t + gδdt+1dt (11)

ψt+1 = γρgd2t + γgdtεt+1 = γgdt+1dt. (12)

We note that λt+1 is a random variable, generating multiplicative noise, and can be the

source of large deviations and fat tails for the stationary distribution of φt+1. In the rest of

the paper we follow the work of Saporta (2005), Roitershtein (2007), Collamore (2009) to
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characterize the tail of the distribution of φt+1.
11

Let N = 0, 1, 2... We first note that the stationary AR(1) Markov chain {dt}t∈Z given by

(2) is uniformly recurrent, and has compact support
[
−a
1−ρ ,

a
1−ρ

]
(see Nummelin (1984), p.

93). We denote the stationary distribution of {dt}t∈N by π. Since {dt}t∈N and εt for t = 1, 2...

are bounded, so are {λt}t∈N and {ψt}t∈N. In fact, following the first definition of Roitershtein

(2007), {λt, ψt}t∈N constitutes a Markov Modulated Process (MMP): conditional on dt, the

evolution of the random variables λt+1 (dt, dt−1) and ψt+1 (dt, dt−1) are given by

P (dt ∈ A, (λt, ψt) ∈ B) =

∫
A

K (d, dy)G (d, y, B) |d=dt−1 , (13)

G (d, y, ·) = P ((λt, ψt) ∈ ·) | dt−1 = d, dt = y) , (14)

where K (d, dy) is the transition kernel of the Markov chain {dt}t∈N.

Next we seek restrictions on the support of the i.i.d. noise εt ∈ [−a, a] to assure that

{λt}t∈N remains positive. We assume12:

a <
(1− ρ)

(g (1 + δ (1− 2ρ)))0.5
(15)

11For an application of these techniques to the distribution of wealth see Benhabib et al. (2011) and to
regime switching, Benhabib (2010).
12Since at it’s stationary distribution dt ∈

(
−a
1−ρ ,

a
1−ρ

)
, εt ∈ (−a, a),

λt+1 = 1− (1− ρδ)gd2t + δgdtεt+1

> 1− g(1− ρδ)
(

a

1− ρ

)2
− gδ a2

1− ρ

= 1− g
(

a

1− ρ

)2
(1− ρδ + (1− ρ) δ)

= 1− g
(

a

1− ρ

)2
(1 + δ (1− 2ρ))

So λt > 0 if a <
1−ρ

(g(1+δ(1−2ρ)))0.5 .
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From (12) it is easy to show that λt > 0 if (15) holds.

Let Sn =
∑n

t=1 log λt. Following Roitershtein (2007) and Collamore (2009)13 the tail of

the stationary distribution of {φt}t depends on the limit14

Λ(β) = lim
n→∞

sup
1

n
logE

n∏
t=1

(λt)
β = lim

n→∞
sup

1

n
logE[exp(βSn)] ∀ β ∈ R. (16)

Using results in Roitershtein (2007), we can now prove the following about the tails of the

stationary distribution of {φt}t∈N:

Proposition 1 For π-almost every d0 ∈ [−a, a], there is a unique positive β <∞ that solves

Λ(β) = 0, and the following limits exist and are positive:

K1 (d0) = lim
τ→∞

τβP (φ > τ |d0) and K−1 (d0) = lim
τ→∞

τβP (φ < −τ |d0). (17)

Proof. The results follow directly from Roitershtein (2007), Theorem 1.6 if we show the

following:

(i) There exists a β0 such that Λ(β0) < 0. First we note that Λ(0) = 0 for all n. Note

13For results on processes driven by finite state Markov Chains see Saporta (2005).
14 lim
n→∞

sup 1
n logE[exp(βSn)] is the Gartner Ellis limit that also appears in Large Deviation theory. For

an exposition see Hollander (2000).
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also that

Λ′(0) = lim
n→∞

sup
1

n

d logE
n∏
t=1

(λt)
β

dβ
|β=0

= lim
n→∞

sup
1

n

(
E

n∏
t=1

(λt)
β

)−1
E

(
n∏
t=1

(λt)
β

n∏
t=1

log (λt)

)
|β=0

= lim
n→∞

sup
1

n
E

n∏
t=1

log λt

For large n, as {λt}t converges to its stationary distribution ω, we have

Λ′(0) = lim
n→∞

sup
1

n
E

n∏
t=1

λt = Eω (log λt)

Note however that

Eω(λt) = 1 + gδEπ(dtdt−1)− gEπ(d2t−1) (18)

= 1 + gδρ
σ2

1− ρ2 − g
σ2

1− ρ2 (19)

= 1− g σ2

1− ρ2 (1− δρ) < 1 (20)

Therefore Λ′(0) = Eω log (λt) < 0, and there exists β0 > 0 such that Λ(β0) < 0.

(ii) There exists a β1 such that Λ(β1) > 0. As in (i) above, we can evaluate, using

Jensen’s inequality,

Λ(β) = lim
n→∞

sup
1

n
logE

n∏
t=1

(λt)
β = lim

n→∞
sup

1

n
logE[exp(βSn)] (21)

= lim
n→∞

sup log (E[exp(βSn)])
1
n ≥ lim

n→∞
sup log

(
E[exp(β

Sn
n

)]

)
(22)
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so that at the stationary distribution of {λt}t∈N

Λ(β) ≥ logEω[exp(β log λt)] = log

∫
λ

[exp(β log λt)]dω (λ) . (23)

As β → ∞ for log λ < 0 we have [exp(β log λt)] → 0, but if Pω (log λ > 0) > 0 at the

stationary distribution of {λt}t, then as limβ→∞ Λ(β) = log
∫
λ
[exp(β log λt)] dω (λ) → ∞.

Therefore if we can show that Pω (log λt > 0) > 0, it follows that there exists a β1 for which

Λ(β1) > 0. Since Λ(β) is convex15, it follows that there exists a unique κ for which Λ(κ) = 0.

To show that Pω (λ > 1) > 0, define A =
{
d ∈

(
0, µaδ

1−ρδ

)}
, µ ∈ (0, 1) so that µaδ

1−ρδ <
a
1−ρ .

At its stationary distribution {dt}t∈N is uniformly recurrent over
[
−a
1−ρ ,

a
1−ρ

]
which implies

that Pπ (dt−1 ∈ A) > 0. We have λt = 1− δgdt−1
(
δ−1(1− ρδ)dt−1 − εt

)
, so for dt−1 ∈ A and

εt ∈ (µa, a], it follows that λt > 1. Thus Pω (λt > 1) = Pπ (dt−1 ∈ At)P (εt ∈ (µa, a]) > 0.

(iii) The non-arithmeticity assumption required by Roitershtein (2007) (p. 574, (A7))

holds16: There does not exist an α > 0 and a function G : R× {−1, 1} → R such that

P (log |λt| ∈ G (dt−1, η)−G (dt, η · sign (λt)) + αN) = 1 (24)

and since λt > 0,

P (log λt ∈ G (dt−1, η)−G (dt, η) + αN) = 1. (25)

15This follows since the moments of nonnegative random variables are log convex (in β); see Loeve (1977,
p. 158).
16See also Alsmeyer (1997). In other settings {λt}t may contain additional i.i.d. noise independent of the

Markov Process {dt}t, in which case the non-aritmeticity is much more easily satisfied.
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We have

log λt = log(1− gd2t−1 + gδdtdt−1) = 1− (1− ρδ)gd2t−1 + δgdt−1εt = F (dt−1, εt) (26)

which contains the cross-partial term dtdt−1. Therefore in general F (dt−1, εt) cannot be

represented in separable form as R (dt−1, η)−R (dt, η) + αN ∀ (dt−1, dt) where dt = ρdt−1 +

εt. Suppose to the contrary that there is a small rectangle [D,D∗] × [E,E∗] in the space

of (d, ε), such that F (d, ε) = R(d) − R(ρd + ε), d is in the interior of [D,D∗], and ε is in

the interior of [E,E∗], up to a constant from the discrete set αN, which we can ignore for

variations if [D,D∗] × [E,E∗] that are small enough. Now fix d, d′ close to one another in

the interior of [D,D∗]. We must have, for ε ∈ [E + ρ|d− d′|, E∗ − ρ|d− d′|], that

F (d, ε)−R(d) = −R(ρd+ ε) = −R(ρd′ + ε+ ρ(d− d′)) (27)

= F (d′, ε+ ρ(d− d′))−R(d′), (28)

or F (d, ε) − F (d′, ε + ρ(d − d′)) = R(d) − R(d′). However the latter cannot hold since the

cross-partial term dt−1εt in F (dt−1, εt) = 1 − (1 − ρδ)gd2t−1 + δgdt−1εt is non-zero except of

a set of zero measure where d or ε are zero.17 ,18

17We thank Tomasz Sadzik for suggesting this proof for (iii).
18We can also avoid possible degeneracies that may occur if λt and ψt have a specific form of dependence

so that
P (φ|λtφ+ ψt = φ) = 1.

Note

φ =
ψt

1− λt
=

γρgd2t + γgdtεt+1
1− (1− ρδ)gd2t + δgdtεt+1

=
γ

δ

δρgd2t + δgdtεt+1
1− (1− ρδ)gd2t + δgdtεt+1

10



(iv) The positivity of K1 (d0) and K−1 (d0) follows from Condition G required by Roiter-

shtein (2007); see his Definition 1.7 and subsequent discussion. This condition holds because

λt > 0 for all t, and {dt}t∈N is uniformly recurrent and therefore also irreducible.

The Proposition above characterizes the tail of the stationary distribution of φ as a power

tail with exponent κ. It follows that the distribution of φ has moments only up to the highest

integer less than κ, and is a ‘fat tailed’distribution rather than a Normal Distribution. The

results are driven by the fact that the stationary distribution of {λt}t∈N has a mean less than

one but also support above 1 with positive probability. Then large deviations as strings of

realizations of λt above one, even though they may be rare events, can produce fat tails.

In the asset price model φ relates the dividends to assets prices. Under adaptive learning,

the results above show how the probability distribution of large deviations, or "escapes" of

φ from its REE value is characterized by a fat tailed distribution, and will occur with higher

likelihood than under a Normal distribution.19

We now briefly discuss the case where {dt}t is an MA(1) process. Proposition 1 still

applies and we obtain similar results to the AR(1) case. Let

dt = εt + ζεt−1, |ζ| < 1, t = 1, 2... (29)

Differentiating wrt εt, the right side is zero only if δρgd2t = 1− (1− ρδ)gd2t , or δρg = 1− g+ gρδ. This holds
only if g = 1. So in general, for any dt, there exists a constant φ such that P (φ|λtφ+ ψt = φ) = 1 only if
g = 1, which we ruled out by assumption.
19In the model of Cho, Sargent and Williams (2002), the monetary authority has a misspecified Philips

curve and sets inflation policy to optimize a quadratic target. The learning algorithm using a constant gain
however is not linear in the recursively estimated parameters (the natural rate and the slope of the Philips
curve).
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Then at its stationary distribution dt ∈ [−a (1 + ζ) , a (1 + ζ)]. Under the PLM

pt = φ0tεt + φ1tεt−1, (30)

after observing εt at time t but not φ1t+1, the agents expect

Et(pt+1) = φ0tEt(εt+1) + φ1tEt(εt) = φ1tεt (31)

Then the ALM is

pt = δφ1tεt + θ(εt + ζεt−1) = [δφ1t + θ] εt + θζεt−1

and the REE is given by

φ0 = θ(1 + δζ) (32)

φ1 = θζ. (33)

Under the learning algorithm in equation (7) we obtain

φ1t = φ1t−1 + gdt−1(pt − φ1t−1dt−1) (34)

φ1t+1 = λt+1φ1t + ψt+1 (35)

λt+1 = 1− gd2t + gδεt+1dt (36)

ψt+1 = gθεt+1dt + θζgdtεt (37)
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It is straightforward to show that at the stationary distribution of {λt}t, E (λt) < 1, and

that P (λt > 1) > 0. It is also easy to check that λt > 0 if a < ((1 + ζ)(1 + ζ − δ))−0.5. With

the latter restriction, it is easy to check that the other conditions in the proof of Proposition

1 are satisfied.

4. Comparative Statics

To explore how κ is related to the underlying parameters of our model, we can simulate

the learning algorithm that updates φ, and then estimate κ using the Hill (1975) estimator.

We can then explore how our estimate of κ from simulated series varies as we vary parameters.

We simulate 100 series for φt under the AR(1) and MA(1) assumptions for dividends

with each series being of length 10000, and average our κ estimates. In the AR(1) case

we expect lower κ, or fatter tails, as the support of λt that lies above 1 gets larger. Since

λt+1 = 1− (1−ρδ)gd2t +δgdtεt+1, given the stationary distribution of {dt}t and that of {εt}t,

the support of λt above 1 unambiguously increases if δ increases. Increasing ρ however has

an ambiguous effect: while the term (1 − δρ) declines and tends to raise λt, the support of

the stationary distribution of {dt}t gets bigger with higher ρ, so that (1 − ρδ)gd2t can now

reduce λt and it’s support above 1 for large realizations of d2t . Finally in our simulations

decreasing g tends to shrink the support of λt that is above 1 and κ increases with g: as the

gain parameter decreases towards zero, the tails of the stationary distribution of {φt} get

thinner.20

20This of course is in accord with the Theorem 7.9 in Evans and Honkapohja (2001). As the gain g → 0
and tg → ∞, {φgt − κ} /g0.5 converges to a Gaussian variable where κ is the stable point of the associated
ODE describing the mean dynamics.
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We use the baseline parameterization, (ρ, g, δ, θ) = (0.95, 0.01, 0.95, 2.5) and vary each

element of (ρ, g, δ) while keeping the other two at their baseline values. We do not vary θ

since it does not affect λ or κ. We choose the support of {εt} in each case, as defined by the

parameter a, so that the inequality (15) in the AR(1) case is satisfied over the range over

which we vary each parameter. The resulting a values corresponding to varying ρ, g, and δ

are, respectively, (0.24, 0.38, 1.03). We plot the results in Figure 1.

In the MA(1) case we use the same baseline parametrization, except that now the para-

meter ρ is replaced with ζ. The a values chosen to satisfy inequality (15), and corresponding

to varying ζ, g, and δ are now, respectively, (0.69, 0.66, 0.68). We vary ζ between 0.85 and

0.99, g between 0.01 and 0.30 and δ between 0.85 and 0.99, again with 0.01 increments. As

before, θ is not varied since it does not affect κ. We plot the comparative statics for the

estimated average κ from our simulations below:

14
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Figure 1. Average κ as a function of model parameters (AR(1) case).
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Figure 2. Average κ as a function of model parameters (MA(1) case).

If we focus on the asset pricing interpretation of our model, we find that typically dividend

data are exceptionally smooth: publicly traded corporations try to provide a steady stream

of dividends to shareholders. Occasionally however under the stress of a rare financial crisis

like the one of 2008-2009, dividends paid by some companies may collapse and trigger a

large deviation in the forecasts and expectations of adaptive learners. To explore this using

detrended dividend data, we can first estimate ρ (or ζ in the MA(1) case), and then use

dividend series to calculate the series for {λt}t and {φt}t. Using these series based on actual

dividend data, we can then estimate κ. The estimated κ however will be sensitive to the

specification of the stochastic process for dividends.

In the AR(1) case, for Citibank dividend data over 1987-2009 we estimate ρ = 0.8162
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and κ = 20.198 and for Curtiss-Wright ρ = 0.2834 and κ = 10.217. For Bank of America for

data over 1986-2010 we obtain ρ = 0.9819 and κ = 70.63. Conducting the same estimation

for monthly S and P 500 series from 1871 to 2010 we estimate ρ = 0.99664 and κ = 1858.1.

However, under the MA(1) assumption for dividends, for Citibank dividend data we

estimate ζ = 0.5227 and κ = 6.7582, for Curtiss-Wright ζ = 0.2089 and κ = 3.3312. In

the case of Bank of America we estimate ζ = 0.8858 and κ = 16.657. Finally, for the

same linearly detrended monthly S and P 500 dividends data employed in the AR(1) case,

surprisingly, we estimate instead ζ = 0.95892 and κ = 7.499.

5. Conclusion

An important and growing literature replaces expectations in dynamic stochastic models

not with realizations and unforecastable errors, but with regressions where agents ‘learn’the

rational expectations equilibria. When such agents employ constant gain learning algorithms

that put heavier emphasis on recent observations, escape dynamics can propel estimated

coeffi cients away from the REE values. In an asset pricing interpretation of the model,

‘bubbles,’or asset prices that exhibit large deviations from their REE ratios to dividends,

can occur with a frequency associated with a fat tailed power law. The techniques used in

our paper generalize to higher dimensions and to finite state Markov chains under certain

assumptions,21 and can be applied to other more general economic models.

21See for example Saporta (2005) and Gosh et al. (2010).
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