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The paramount role of funding constraints becomes particularly salient during liquidity
crises, with the one that started in 2007 being an excellent case in point. Banks unable
to fund their operations closed down, and the funding problems spread to other investors,
such as hedge funds, that relied on bank funding. Therefore, traditional liquidity providers
became forced sellers, interest-rate spreads increased dramatically, Treasury rates dropped
sharply, and central banks stretched their balance sheets to facilitate funding. These funding
problems had significant asset-pricing effects, the most extreme example being the failure of
the Law of One Price: securities with (nearly) identical cash flows traded at different prices,
giving rise to so-called “bases” (i.e., price gaps).

We attempt to explain these effects using a dynamic general-equilibrium model with re-
alistic margin constraints, and to empirically test the model’s time-series and cross-sectional
predictions of how funding problems affect risk and return:

Our model shows that 1) the consumption CAPM is augmented by a security’s margin
times the general funding cost; 2) a basis between a security and a derivative with identical
cash flows arises as the difference in their margin requirements times the funding cost, plus
their endogenous difference in beta; 3) securities with higher margins have larger betas and
volatilities during crises since they have larger funding liquidity risk; 4) the funding cost can
be captured by the interest-rate differential between collateralized and uncollateralized bor-
rowing; 5) the margin effect strengthens non-linearly in “bad times” as margin requirements
are hit, leading to sharp drops in the risk-free collateralized and Treasury rates, to a rise
in the spread between collateralized and uncollateralized interest rates, and to a rise in risk
premia and especially margin premia; and 6) we calculate the equilibrium and calibrate the
magnitude and dynamics of the bases using macro parameters.

In our applications, we 7) find statistically significant empirical evidence consistent with
the model’s predictions for the time-series of the CDS-bond basis, the cross-sectional differ-
ence between investment-grade and high-yield bases, and the risks of CDS vs. bonds and
the time-variation of these risks; 8) find consistent evidence from the failure of the covered
interest rate parity; 9) compute the asset-pricing effect of the Fed’s lending facilities; and 10)
quantify a bank’s incentive to perform regulatory arbitrage to loosen capital requirements.

Our model considers a group of (relatively) risk-averse agents and a group of (relatively)
risk-tolerant agents. Each risk-tolerant investor uses leverage, but is subject to margin re-
quirements. He must fund all the margins on his positions with his equity capital and,
possibly, uncollateralized loans. One can think of these leveraged investors as banks or
the financial sector more broadly, including hedge funds. The risk-averse investors may be
constrained in their trading of derivatives and cannot lend uncollateralized, so the uncollat-
eralized loan market is a pure “inter-bank market” for the risk-tolerant investors.

We first show how margin requirements affect the required returns for both underlying
assets and derivatives.1 For a typical asset in which the risk-tolerant agents hold long

1If there were no redundant securities and margins were constant over time, the result for the underlying
assets would specialize a result in Cuoco (1997) for general convex portfolio constraints, and it is also closely
related to results in Aiyagari and Gertler (1999) and Hindy and Huang (1995).
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positions in equilibrium, the required excess return E(ri) is

E(ri) = rrisk-free + βi × covariance risk premium + mi ×margin premium , (1)

where mi is the margin requirement (and all quantities may be time varying). The first
two terms in this “margin CAPM” are the same as the standard (consumption) CAPM,
namely the risk-free interest rate and the covariance risk premium. Hence, if the margin
requirements are zero, our model naturally nests the standard model. With positive margin
requirements — as in the real world — a security’s required returns is higher, the higher
its margin requirement. The margin premium is the shadow cost of funding for the risk-
tolerant agents multiplied by the relative importance of these agents. Consequently, it is
positive when margin constraints are binding, and zero otherwise. For instance, supposing
that in a crisis the risk-tolerant investors have a shadow cost of capital of 10% (consistent
with our estimates during the height of the Global Financial Crisis and with our calibration)
and the risk-tolerant investors account for 40% of the aggregate risk tolerance, the margin
premium is 4%. Therefore, if a security has a margin requirement of 50%, then its required
return is 4% × 50% = 2% higher than the level predicted by the standard consumption
CAPM, a significant effect.

Our model suggests that constrained investors would evaluate securities based on a ratio
that we call alpha per margin (AM):

AM i =
E(ri)− rrisk-free − βi × covariance risk premium

mi
. (2)

This is the abnormal return (in excess of the risk-free rate and the standard risk adjustment)
on a strategy of investing a maximally leveraged dollar in the asset. Hence, the margin
CAPM in (1) can be stated equivalently by saying that, in equilibrium, all assets have the
same alpha-per-margin, AM i = margin premium. While in the classical CAPM alpha is
zero for all assets, in our model alphas can be non-zero when capital constraints bind, and
AM ratios are equalized as investors seek to maximize their leveraged return.

We show that “bad times” with binding margin constraints naturally occur after negative
shocks to fundamentals. This phenomenon leads to several intriguing effects. First, risk-free
interest rates for collateralized loans and Treasuries spike down. This happens because the
risk-tolerant agents cannot borrow as much as they would like due to margin constraints and,
therefore, in equilibrium the risk-averse agents must lend less than they otherwise would. In
order to induce the risk-averse agents not to lend, the interest rate must drop.

Further, in bad times the spread between the inter-bank uncollateralized loans and the
collateralized loans (or Treasuries) increases, even abstracting from credit risk. This liquidity-
driven interest-rate premium arises from the fact that the risk-averse investors do not partici-
pate in the uncollateralized inter-bank market. Since the risk-tolerant banks are constrained,
the inter-bank interest rate must be greater than the Treasury rate to reflect the banks’ pos-
itive shadow cost of capital. While this pure liquidity-driven interest-rate spread is zero in
“normal” times when margin requirements do not bind, it increases non-linearly following
negative shocks as when the crisis hit in 2007, as well as in previous liquidity crisis.
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Hence, the deviation from the standard CAPM is most apparent in “bad times,” when
the funding-liquidity effects are the strongest. A stark illustration of this margin-based asset-
pricing effect is the price difference between securities with the same cash flows but different
margin requirements. We show that the required return on a high-margin security — e.g., a
corporate bond — is greater than that of a low-margin security with the same cash flows —
e.g., proxied by a CDS. This is because of the high shadow cost of capital of the risk tolerant
investor. When the risk tolerant investor’s margin constraint binds, he is willing to accept a
lower yield spread on a CDS since it uses less margin capital.

As empirical evidence of this prediction, we find that the time-series variation of the CDS-
bond basis has a statistically significant co-movement with the LIBOR-GC repo interest-rate
spread (i.e., the spread between uncollateralized and collateralized loans), as well as the
tightness of credit standards as estimated by the Federal Reserve Board’s “Senior Loan
Officer Opinion Survey on Bank Lending Practices.”

The model predicts that the magnitude of the basis is the shadow cost of capital times
the margin difference plus the difference in betas. To understand this predicted magnitude,
consider the CDS-bond basis, that is, the yield difference between a corporate bond and a
comparable derivative. With a shadow cost of capital of 10% during the crisis, a margin
on investment grade bonds of 25%, and a margin on the corresponding CDS of 5%, the
direct effect of the margin difference on the basis is 10%× (25%− 5%) = 2%, close to what
was observed empirically. Additionally, the model predicts that the corporate bond’s higher
margin makes it riskier since it is more sensitive to further funding crisis, leading to an
additional, albeit smaller, effect on the basis.

When there are several pairs of underlying/derivative securities, each of which having an
associated basis, our model predicts that these bases are correlated in the time series due
to their common dependence on the shadow cost of capital, and, cross-sectionally, the bases
should be proportional to each pair’s difference in margin requirements.

To test these cross-sectional predictions empirically, we compare the basis of investment-
grade (IG) bonds with the basis for high-yield (HY) bonds and find that they move closely
together and that the difference in their magnitudes corresponds to the difference in their
margins, consistent with our model’s prediction. Indeed, the margin difference between HY
bonds and CDS is about twice that of IG bonds/CDS, so the model predicts a HY basis
effect that is about twice the IG basis, consistent with the data.

Interestingly, the model also implies that securities with identical cash flows but different
margins have different risk characteristics due to their different exposures to funding-liquidity
risk. The low-margin CDS has less systematic risk since its price drops less in liquidity
crisis, and, therefore, its required return is lower even before the margin constraint binds.
Consistent with the model, we find empirically that bonds and CDS have similar betas and
volatilities during “normal” times when constraints are not near being binding, but that
betas and volatilities of high-margin bonds rise above those of CDSs during the 2007-2009
liquidity crisis.

Further consistent evidence arises from the related time-series variation of the interest-
rate spread and that of the deviation from the covered interest parity (CIP). Indeed, during
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the funding crises of 1998 and 2007-2009, when margins are likely to have been binding,
interest-rate spreads were wide and the CIP deviation was substantial since agents did not
have enough capital to eliminate it.

As another application of the model, we show how the Fed’s lending facilities affect asset
prices, providing new insights on the monetary transmission mechanism during liquidity.
We discuss how the lending facilities lower margin requirements, and show that the model-
implied increase in asset prices is of the same order of magnitude as the increase attributable
to lowered margins in the banks’ bid prices, according to surveys conducted by the Federal
Reserve Bank of New York.

Further, we derive the shadow cost of banks’ regulatory-capital requirements, which gives
an estimate of their incentive to perform regulatory arbitrage by placing assets off the balance
sheet or tilting towards AAA securities with low capital requirements.

The paper is related to a number of strands of literature. Borrowing constraints con-
fer assets a collateral value (Bernanke and Gertler (1989), Hindy (1995), Detemple and
Murthy (1997), Geanakoplos (1997), Kiyotaki and Moore (1997), Caballero and Krishna-
murthy (2001), Lustig and Van Nieuwerburgh (2005), Coen-Pirani (2005), and Fostel and
Geanakoplos (2008)) and constraints open the possibility of arbitrage in equilibrium (Basak
and Croitoru (2000, 2006) and Geanakoplos (2003)). We focus on margin requirements,
which are linked to market liquidity and volatility (Gromb and Vayanos (2002), Brunner-
meier and Pedersen (2009), Adrian and Shin (2009), Danielsson, Shin, and Zigrand (2009),
and Rytchkov (2009)), and provide analytic asset-pricing effects. Asset prices also depend
on market liquidity (Amihud and Mendelson (1986), Longstaff (2004), Duffie, Gârleanu,
and Pedersen (2007), and Gârleanu, Pedersen, and Poteshman (2009)), market liquidity risk
(Acharya and Pedersen (2005), Mitchell, Pedersen, and Pulvino (2007), and He and Krishna-
murthy (2008)), limits to arbitrage (Shleifer and Vishny (1997)), banking frictions (Allen and
Gale (1998, 2004, 2005), Acharya and Viswanathan (2010)), and related corporate-finance
issues (Holmström and Tirole (1998, 2001)). We use the methods for analyzing equilibria
in continuous-time models with constraints of Cuoco (1997); other related applications are
provided by Li (2008), Rytchkov (2009), Chabakauri (2010), and Prieto (2010).2

The specification of the margin requirement is key to our results. First, we make the
realistic assumption that both long and short positions use capital; in contrast, a linear
constraint, as often assumed in the literature, implies that shorting frees up capital. While
bases with natural properties arise in our model, we show that no basis can obtain in a world
in which all agents face only the same linear constraint. Second, we consider assets with
identical cash flows and different margin requirements, while margins for such assets would be
the same if margins arose solely from limited commitment (Geanakoplos (1997)). In the real
world, securities with (almost) identical cash flows can have substantially different margins,
since margins depend on the market liquidity of the securities (Brunnermeier and Pedersen
(2009)) and because of various institutional frictions. For instance, corporate bonds have low

2Numerous papers study frictionless heterogeneous-agent economies, e.g., Dumas (1989), Wang (1996),
Chan and Kogan (2002), Bhamra and Uppal (2007), Weinbaum (2009), Gârleanu and Panageas (2008), and
Longstaff and Wang (2009).
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market liquidity in over-the-counter search markets (Duffie, Gârleanu, and Pedersen (2005,
2007), Vayanos and Weill (2008)) and this makes them less attractive as collateral since they
can be difficult to sell. Further, to get credit exposure through a corporate bond, one must
actually buy the bond for cash and try to fund it using a repo, which uses a broker’s balance
sheet, while a CDS is an “unfunded” derivative with zero net present value, so the margin is
only necessary to limit counterparty risk; the CDS does not inherently use cash. Our model
further allows for time-varying margins, given that margins tend to increase during crises
due to a margin spiral as explained by Brunnermeier and Pedersen (2009) and documented
empirically by Gorton and Metrick (2009a, 2009b).

We complement the literature by providing a tractable model with explicit pricing equa-
tions that provide testable time-series and cross-sectional implications, deriving the basis
(i.e., price gap) between securities with identical cashflows depending on their different mar-
gins, showing how the shadow cost of funding can be captured using interest-rate spreads,
calibrating the magnitude and dynamics of the predicted deviations from the Law of One
Price using realistic parameters, testing the theory empirically using the CDS-bond basis
and the failure of the CIP, and applying the theory to the Federal Reserve’s lending facilities
and the incentive to perform regulatory arbitrage.

The rest of the paper is organized as follows. Section 1 lays out the model, Section 2
derives our main theoretical results and calibrates the model, and Section 3 applies the model
empirically to the CDS-bond basis, the failure of the covered interest rate parity, and the
pricing of the Fed’s lending facilities, and quantifies the cost of banks’ regulatory capital
requirements. Section 4 concludes.

1 Model

We consider a continuous-time economy in which several risky assets are traded. Each asset
i pays a dividend δit at time t and is available in a supply normalized to 1. The dividend of
each security i is a continuous Itô process driven by a multi-dimensional standard Brownian
motion w:3

dδit = δit

(
µδ

i

t dt+ σδ
i

t dwt

)
, (3)

where µδ
i

t is the dividend growth and the dividend volatility is given by the vector σδ
i

t of
loadings on the Brownian motion.

Each security is further characterized by its margin (also called a haircut) mi
t ∈ [0, 1], an

Itô process, measured as a fraction of the investment that must be financed by an agent’s
own capital as discussed below. For instance, the margin on a corporate bond could be
mbond
t = 50%, meaning that an agent can borrow half of the value and must pay the other

half using his own capital.

3All random variables are defined on a probability space (Ω,F) and all processes are measurable with
respect to the augmented filtration Fw

t generated by w.
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In addition to these “underlying assets” in positive supply, the economy has a number
of “derivatives” in zero net supply. Each derivative i′ has the same cash flows δit as some
underlying security i, but with a lower margin requirement: mi′

t < mi
t.

We assume that the prices of underlying assets and derivatives are Itô processes with
expected return (including dividends) denoted µit and volatility vectors σit, which are linearly
independent across the underlying assets:

dP i
t = (µitP

i
t − δit)dt+ P i

tσ
i
tdwt. (4)

Finally, the set of securities includes two riskless money-market assets, one for collater-
alized loans and one for uncollateralized loans as explained further below. The equilibrium
interest rate for collateralized loans is rct and for uncollateralized loans is rut .

The economy is populated by two agents: agent a is averse to risk, whereas b is braver.
Specifically, agent g ∈ {a, b} maximizes his utility for consumption given by

Et

∫ ∞
0

e−ρsug(Cs) ds, (5)

where ua(C) = 1
1−γaC

1−γa with relative risk aversion γa > 1, and ub(C) = log(C) with

relative risk aversion γb = 1. We can think of agent a as a representative pension fund or
risk-averse private (retail) investor, and of agent b as representing more risk-tolerant investors
using leverage such as banks or hedge funds.

At any time t, each agent g ∈ {a, b} must choose his consumption, Cg
t — we omit the

superscript g when there is little risk of confusion — the proportion θit of his wealth Wt that
he invests in risky asset i, and the proportion ηut invested in the uncollateralized loans; the
rest is invested in collateralized loans. The agent must keep his wealth positive, Wt ≥ 0, and
the wealth evolves according to

dWt =

(
Wt

(
rct + ηut (rut − rct ) +

∑
i

θit(µ
i
t − rct )

)
− Ct

)
dt+Wt

∑
i

θitσ
i
tdwt, (6)

where the summation is done over all risky underlying and derivative securities.
Each agent faces a margin constraint that depends on the securities’ margins mi

t:∑
i

mi
t|θi|+ ηu ≤ 1. (7)

In words, an agent can tie up his capital in margin for long or short positions in risky assets
and invest in uncollateralized loans (or borrow uncollateralized if ηu < 0), and these capital
uses, measured in proportion of wealth, must be less than 100% of the wealth. The rest of
the wealth, as well as the money in margin accounts, earn the collateralized interest rate.4

4Alternatively, the constraint can be written as∑
i

|θi|+ ηu ≤ 1 +
∑
i

|θi|li.
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This key constraint is a main driver of our results. The literature often assumes a linear
margin constraint (i.e., without the absolute-value operator), but Appendix A shows that
deviations from the Law of One Price cannot arise in this case. Our constraint captures
well the problem facing any real-world investor (e.g., real-world investors cannot finance
unlimited long positions by short ones as is implied by the linear constraint) and it gives rise
to deviations from the Law of One Price that match those observed empirically.

In addition, the risk-averse agent a does not participate in the markets for uncollateralized
loans and may be allowed only limited positions in derivatives. That is, he must choose
ηu = 0 and θi

′ ∈ Ai′ for every derivative i′, where the admissible set Ai′ can, for instance, be
specified as Ai′ = {0}, meaning that he cannot trade derivatives, or as Ai′ = [A,A], meaning
that he can only trade a limited amount. This captures the fact that certain agents are often
limited both by risk aversion and a lack of willingness to participate in some transactions,
e.g., those with apparent operational risk — i.e., the risk that something unspecified can go
wrong — and by a lack of expertise. Also, this means that the uncollateralized market may
capture an inter-bank loan market.

Our notion of equilibrium is standard. It is a collection of prices, consumption plans,
and positions, such that (i) each agent maximizes his utility given the prices and subject to
his investment constraints; (ii) the markets for risky and risk-free assets clear.

2 Margin-Based Asset Prices

We are interested in the properties of the equilibrium and consider first the optimization
problem of the brave agent b using dynamic programming. The logarithmic utility for con-
sumption implies that the Hamilton-Jacobi-Bellman equation reduces to the myopic mean-
variance maximization

max
θit,η

u
t

{
rct + ηut (rut − rct ) +

∑
i

θit(µ
i
t − rct )−

1

2

∑
i,j

θitθ
j
tσ

i
t(σ

j
t )
>
}

(8)

subject to the margin constraints
∑

im
i
t|θit|+ ηut ≤ 1.

Attaching a Lagrange multiplier ψ to the margin constraint, the first-order condition
with respect to the uncollateralized investment or loan ηu yields the following result:

Proposition 1 (Interest-Rate Spread) The interest-rate differential between uncollater-
alized and collateralized loans captures the risk tolerant agent’s shadow cost of an extra dollar
of funding, rut − rct = ψt.

For a long position, li is the proportion of the security value that can be borrowed in the collateralized
lending market (e.g., the repo market). Hence, the left-hand-side of the equation is the fraction of wealth
θi used to buy the security, and the right-hand-side is the total wealth 1 plus the borrowed amount θili.
Naturally, the margin mi = 1− li is the fraction of the security value that cannot be borrowed against.

For a short position, one must first borrow the security and post cash collateral of (1 + mi)θi and, since
the short sale raises θi, the net capital use is miθi. Derivatives with zero net present value have margin
requirements too. See Brunnermeier and Pedersen (2009) for details.
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The proposition identifies the shadow cost of capital, central to our asset-pricing analysis, as
the interest-rate differential between uncollateralized loans, which do not use up a borrower’s
potentially scarce collateral, and collateralized loans, which do. In addition to having intu-
itive appeal, this relationship is valuable for linking the unobserved shadow cost of capital
ψ to quantities in principle observable; we use it in our empirical analysis.

Agent b’s first-order condition with respect to the risky-asset position θi is

µit − rct = βC
b,i

t + ψtm
i
t if θi > 0

µit − rct = βC
b,i

t − ψtmi
t if θi < 0

µit − rct = βC
b,i

t + yitψtm
i
t with yit ∈ [−1, 1] if θi = 0,

(9)

where we simplify notation by letting

βC
b,i

t = covt

(
dCb

Cb
,
dP i

P i

)
(10)

denote the conditional covariance between agent b’s consumption growth and the return on
security i. These first-order conditions mean that a security’s expected excess return µit− rct
depends on its margin mi

t, the risk tolerant agent’s shadow cost of funding ψt, and the
security’s covariance with the risk tolerant agent’s consumption growth.

To characterize the way in which returns depend on aggregate consumption (which is
easier to observe empirically), we also need to consider agent a’s optimal policy and aggregate
across agents.5 If a’s margin requirement does not bind, standard arguments show that the
underlying securities are priced by his consumption, µi − rc = γaβC

a,i, but the general
problem with margin constraints and spanned securities is more complex. In the general
case, we derive a consumption CAPM (CCAPM) depending on aggregate consumption in
the appendix. For this, we first introduce some notation: βC,it is the covariance of the growth
in the aggregate consumption C = Ca + Cb and the return of security i,

βC,it = covt

(
dC

C
,
dP i

P i

)
, (11)

and γt is the “representative” agent’s risk aversion, i.e.,

1

γt
=

1

γa
Ca
t

Ca
t + Cb

t

+
1

γb
Cb
t

Ca
t + Cb

t

. (12)

The fraction xt of the economy’s risk-bearing capacity due to agent b is

xt =

Cbt
γb

Cat
γa

+
Cbt
γb

. (13)

5See Proposition 3 in Cuoco (1997) for a CAPM relation for general time-invariant convex portfolio
constraints in the absence of redundant securities.
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We recall that ψ is agent b’s shadow cost of funding. With these definitions, we are ready to
state the margin-adjusted CCAPM and CAPM. For simplicity, we do it under the natural
assumption that the margin constraint of the risk-averse agent a does not bind.6

Proposition 2 (Margin CCAPM) The expected excess return µit − rct on an underlying
asset that agent b is long is given by the standard consumption CAPM adjusted for funding
costs:

µit − rct = γtβ
C,i
t + xtψtm

i
t (14)

If agent b is short the asset, then the funding-liquidity term is negative, i.e., µit − rct =
γtβ

C,i
t −xtψtmi

t, while if b has a zero position the required return lies between the two values.

This proposition relates excess returns to the covariance between aggregate consumption
growth and a security’s returns, as well as to the funding constraints. The covariance term
is the same as in the classic CCAPM model of Breeden (1979). The difference is the funding
term, which is the product of the security-specific margin mi

t and the general coefficients ψt
and xt that measure the tightness of the margin constraints. Naturally, the tightness of the
margin constraint depends on the leveraged risk-tolerant agent’s shadow cost of funding, ψ,
and the relative importance of this agent, x.

The margin-CCAPM’s economic foundation dictates the magnitude of the coefficients.
Since γb = 1 and γa is a number between 1 and 10, say, the aggregate risk aversion γt is
somewhere between 1 and 10, and varies over time depending on the agents’ relative wealths.
The relative importance x of agent b is a number between 0 and 1. While this risk-tolerant
agent might be a small part of the economy in terms of total consumption or wealth, his
risk tolerance is larger, which raises his importance. For instance, even if we think that
he accounts only for as little as 2% of the aggregate consumption, and if agent a has a
risk aversion of 10, then x is around 17%, close to 10 times the consumption share. The
shadow cost ψ can be as much as 10% in our calibration and empirical analysis. Hence,
for a security with a 50% margin, the funding term would raise the required return by
17%× 10%× 50% ≈ 1% in this case.

For a different way to interpret relationship (14), consider the “alpha” of asset i, that is,
the expected excess return adjusted for risk, αit = µit−rct −γtβ

C,i
t . The Margin CCAPM says

that alphas are proportional to margin requirements, ψxtm
i
t, or, if we introduce the ratio

alpha per margin (AM), it says that AM i is constant across securities i,

AM i
t = xtψt.

For instance, if a security has a margin requirement of 10%, it can be leveraged 10-to-1. In
this case, AM i = 10 × α must equal the aggregate shadow cost of capital xtψt to make it
worthwhile for the agents to use margin equity to hold this security.

6We state and prove the propositions without this assumption in the appendix, but focus on this case
because it is natural, simpler to state, and obtains in our calibrated equilibrium in Section 2.1. In the general
case, (B.1) contains the additional term that captures a’s margin constraint, +(1 − xt)ψ̄t, where ψ̄t is a’s
shadow cost of capital, and similarly for (16).
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The CAPM can also be written in terms of a mimicking portfolio in place of the aggre-
gate consumption. Specifically, let q be the portfolio whose return has the highest possible
(instantaneous) correlation with aggregate consumption growth and qit be the weight of asset
i in this portfolio. Further, any asset i’s return beta to portfolio q is denoted by βit , i.e.,

βit =
covt

(
dP q

P q
, dP

i

P i

)
vart

(
dP q

P q

) . (15)

Proposition 3 (Margin CAPM) Suppose that the margin constraint of agent a does not
bind. The expected excess return µit − rct on an underlying asset that b is long is

µit − rct = λβt β
i
t + xtψtm

i
t, (16)

where λt is a covariance risk premium. If b is short, then the margin term is negative, i.e.,
µit − rct = λβt β

i
t − xtψtmi

t, and otherwise the required return lies between the two values.

We next turn to the basis between underlying securities and derivatives. The optimization
problem of the brave agent b implies the following relation for the basis.

Proposition 4 (Basis) A basis arises when b’s margin constraint binds and a’s derivative-
trading constraint or margin constraint binds. Depending on the constraints, the basis is
influenced by the difference or sum of margins:
(A. Levered Investor Causing Basis) Suppose that agent b is long security i and long
derivative i′. Then the required return spread µit − µi

′
t between security i and derivative i′

(the “basis”) depends on the shadow cost of capital ψ, the securities’ difference in margins,
mi
t −mi′

t , and the difference in their covariance with the consumption of the brave agent b
through

µit − µi
′

t = ψt

(
mi
t −mi′

t

)
+
(
βC

b,i
t − βC

b,i′

t

)
. (17)

(B. Levered Investor Reducing Basis) If agent b is long i and short derivative i′, then
the basis equals

µit − µi
′

t = ψt

(
mi
t +mi′

t

)
+
(
βC

b,i
t − βC

b,i′

t

)
. (18)

This proposition provides useful intuition about the drivers of a basis. Since a non-zero
basis constitutes a failure of the Law of One Price, all agents must be constrained for this to
happen in equilibrium. Such a situation obtains when the risk-tolerant agent b is constrained
by his leverage and agent a is constrained by his limited ability to hold derivatives.

If the risk-averse investor can short only a limited amount of derivatives, then case A in
the proposition arises. In this case, the risk-tolerant investor b wants to go long both the
underlying and the derivative to earn the associated risk premium. He can get exposure
to the derivative with less use of margin, and, therefore, he is willing to accept a smaller
return premium on the derivative. In fact, the basis as measured by the return spread is
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the difference in margins multiplied by the shadow cost of capital, adjusted for the beta
difference.

The second case obtains, for instance, if agent a has a structural need — for some
institutional reason — to hold a long position in the derivative, i.e., Ai′ = {Ai′}, where
Ai
′
> 0. This creates a demand pressure on the derivative, and, in equilibrium, agent b will

do a basis trade, that is, shortsell the derivative and go long the underlying. The basis trade
uses margin on both the long and the short side, and therefore the basis depends on the sum
of the margins mi

t +mi′
t times the shadow cost of capital.

Proposition 4 provides natural empirical predictions that we consider in Section 3: First,
the basis varies in the time series with the scarcity of funding ψ, which is related to the
interest-rate spread (Proposition 1). Second, the basis varies with margins in the cross-
section of bases for the various security/derivative pairs.

It is interesting that the returns of the underlying security and its derivative may have
different sensitivities to underlying shocks and, therefore, can have different covariances with
the brave agent’s consumption. The different sensitivities to funding shocks are due to their
different margin requirements. In particular, if a security has a lower margin requirement,
then it is less sensitive to a funding crisis where margin constraints become binding, and it
therefore has a lower βC

b,i′ , as our calibrated example in Section 2.2 illustrates.
Since margins do affect betas in general, however, it is not immediate from Proposition 4

that higher margins increase the required return and, hence, lower prices. It is nevertheless
the case that higher margin requirements translate into lower prices under certain conditions,
as we show next.

Proposition 5 If assets i and j have identical cashflows, i always has a higher margin
requirement mi

t > mj
t , and agent b is long both assets a.e., then i has a lower price P i

t ≤ P j
t .

The inequality is strict if the margin constraint binds with positive probability after time t.

This result follows from the fact that the price of a security can be expressed as the sum
of its cashflows discounted using an agent’s marginal utility, and its collateral value, which
depends monotonically on m. Another way to see this result is to express the price as the
discounted sum of all future cashflows, where the discount factor depends both on the
marginal utility and on margins (times the shadow cost of capital), so that higher margins
imply a larger discount rate.

2.1 Calculating the Equilibrium with Many Assets

We next consider a simplified economy in which we can compute the equilibrium directly.
This provides further intuition and allows us to calibrate the economy using realistic macroe-
conomic parameters. The economy has a continuum of assets, each available in an infinites-
imal net supply of 1. The dividend paid by asset i is given by a share si of the aggregate
dividend, δi = siC, with

dCt = µCCt dt+ σCCt dwt

dsit = σs
i

sit dw
i
t ,
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where the standard Brownian motions w and wi are independent. The dividend share is
initiated at si0 = 1 and it is a martingale since its drift is zero. We appeal informally to the
Law of Large Numbers (LLN) to state Et[s

i
v | i ∈ I] = 1, ∀v ≥ t ≥ 0 and for any interval

I ⊆ [0, 1]. In particular, the aggregate dividend naturally equals E[δit|Ct] = Ct. All the
underlying assets have the same margin requirement mi = m, and there are derivatives in
zero net supply with different margins mi′ ≤ m as before. The averse agent a’s derivative-
trading constraint is simple: he cannot participate in any derivative market.

The LLN implies that the idiosyncratic factors si are not priced and, therefore, the price
of any underlying security i is P i = siP , where P is the price of the market, which is the
same as in an economy with a single asset paying dividend C and having margin m. We
therefore concentrate on pricing this market asset.

To calculate an equilibrium, we use the fact that agent b’s consumption is his discount
rate ρ times his wealth, Cb = ρW b (as is well-known for log-utility agents). This means
that agent b’s consumption as a fraction of the total consumption, cb = Cb/C, characterizes
the wealth distribution and becomes a convenient state variable to keep track of. Further,
“level” variables are linear in the aggregate consumption C since it is a geometric Brownian
motion and utilities are isoelastic. Hence, we are looking for an equilibrium in which the
state is summarized by (C, cb), where stock prices and wealths scale linearly with C for
fixed cb, while interest rates, Sharpe ratios, and volatilities depend only on cb, and assume
throughout that such an equilibrium exists.

The market price is of the form Pt = ζ(cbt)Ct, where the price-dividend ratio ζ( · ) is a
function that we need to determine as the solution to a differential equation. We provide
the details of the analysis in the appendix, and collect the main results in the following
proposition, including the differential equation for ζ. To state the proposition, we use the
representative agent’s risk aversion γt and agent b’s relative importance xt given above in
(12)–(13), as well as the additional definitions

κ̄ = γσC (19)

σ̄ = σC +
ζ ′cb

ζ
(κ̄− σC). (20)

As is clear from the proposition, κ̄ is the market Sharpe ratio without margin constraints
and σ̄ is the return volatility without margin constraints for the same values of cb and ζ(·).7

Proposition 6 (Calculating Equilibrium) The margin constraint binds if and only if
κ̄
σ̄
> 1

m
or, equivalently, if and only if κ

σ
> 1

m
. The market Sharpe ratio, κ ≡ µ−rc

σ
, and the

return volatility, σ, are given by

κ = κ̄+
x

1− x
σ̄

1− ζ′cb

mζ

(
κ̄

σ̄
− 1

m

)+

(21)

σ = σ̄ − ζ ′cb

ζ

σ̄

1− ζ′cb

mζ

(
κ̄

σ̄
− 1

m

)+

. (22)

7Note, however, that in an economy without margins cbt has a different distribution for given time-0
endowments and the function ζ is different.
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The optimal risky-asset allocation of the risk-tolerant agent b is

θb =
κ̄

σ̄
−
(
κ̄

σ̄
− 1

m

)+

(23)

and his shadow cost of capital, ψ, is

ψ =
σ2

m

(
κ

σ
− 1

m

)+

. (24)

Finally, the price-to-dividend ratio ζ(cb) solves the ordinary differential equation

0 = 1 + ζ
(
µC − rc − γaσC(1− cb)−1(σC − cbσθb)

)
+

ζ ′cb
(
rc − ρ+ σθbκ− µC − γa(σθb − σC)(1− cb)−1(σC − cbσθb)

)
+ (25)

1

2
ζ ′′(cb)2(σθb − σC)2.

This proposition offers a number of interesting insights in addition to illustrating the
derivation of equilibrium. First, to understand when the margin constraint binds, consider
the brave agent’s optimal position without margin constraints: he wants to invest µ−rc

σ2 = κ
σ

in the risky asset, but, since he faces a margin of m, he can at most lever up to 1
m

. Hence,
he is constrained if κ

σ
> 1

m
. The margin constraint changes the equilibrium Sharpe ratio

κ and volatility σ, but, nevertheless, the states of nature with binding margin constraints
can be determined simply by looking at whether the agent would be constrained when the
Sharpe ratio κ̄ and volatility σ̄ are computed without margins (given the actual state cb and
equilibrium valuation ratio ζ), i.e., κ̄

σ̄
> 1

m
.

Importantly, Equation (21) shows that, for a given value cb, the market Sharpe ratio κ
is higher when the constraint binds. This is intuitive because the constraint prevents the
optimal sharing of risk, meaning that the risk-averse agent a has to be induced, via a higher
reward for risk, to take on more risk than he would absent constraints.

Equation (22), on the other hand, suggests that the volatility decreases with the intro-
duction of constraints, as long as the price-to-dividend ratio increases with the importance
of agent b.8 The explanation of the result lies in the fact that, when the constraint binds,
agent b takes less risk than he would otherwise, which makes cb, and consequently the P/D
ratio ζ, less volatile.

Finally, (24) gives the shadow cost of capital, ψ. On one hand, this shadow cost depends

on the distance
(
κ
σ
− 1

m

)+
between the unconstrained and the constrained optima, which

increases with the severity m of the margin constraint. On the other hand, a higher m
means that each dollar can be leveraged less, reducing the shadow cost of capital. The
overall effect of m on ψ is non-monotonic.

In our calibration, we solve for the function ζ numerically, using as boundary conditions
the price-to-dividend ratios that obtain in one-agent models with cb = 0 and cb = 1. Once the

8Since agent b is the less risk averse, this property is intuitively appealing, but does not obtain generally
because of the non-monotonic effect of aggregate risk aversion (in a CRRA world) on the interest rate.
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equilibrium price dynamics for the market and the collateralized-loan rate are thus computed,
we calculate the value of the Lagrange multiplier ψ from (24) and the uncollateralized interest
rate ru then follows immediately from Proposition 1, ru = rc + ψ. The price of a derivative
i′, P i′

t = ζ i
′
(cbt)Ct, is calculated by solving a linear ODE for its price-dividend ratio ζ i

′
:

Proposition 7 The price-to-dividend ratio ζ i
′
(cb) for derivative i′ solves the differential

equation

0 = 1 + ζ i
′
(
µC − rc − σθbσC − mi′

m
(µ− rc − σθbσ)

)
(26)

+ζ i
′ ′
cb
(
rc − ρ+ σθbκ− µC − σθb(σθb − σC)

)
+

1

2
ζ i
′ ′′ (

cb
)2 (

σθb − σC
)2
.

While the general case can only be solved numerically, explicit expressions for the prices
of the underlying assets and agent b’s shadow cost of capital ψ are available in a particular
limit case.

Proposition 8 (Limit Prices and Shadow Cost of Capital) In the limit as the rela-
tive wealth of agent b approaches 0, the price of underlying asset i approaches

P i =
Ct

ρ+ (γa − 1)µC − 1
2
γa(γa − 1) (σC)2 . (27)

and agent b’s shadow cost of capital approaches

ψ =

(
σC
)2

m

(
γa − 1

m

)+

. (28)

We can further characterize the basis in the limit:

Proposition 9 (Limit Basis) In the limit as the relative wealth of agent b approaches 0,
the required return spread between the underlying security i and a derivative i′ approaches

µi − µi′ = ψ(mi −mi′) (29)

if agent b is long both securities, and

|µi − µi′ | = ψ(mi +mi′) (30)

if he is long/short the underlying and the derivative.

This proposition provides a natural benchmark for the basis, namely a product of the shadow
cost of capital — which is common for all basis trades — and the margin use, which is either
the difference or the sum of margins. In the real world, pairs of underlying and derivative
securities with large margins mi + mi′ also tend to have large margin spreads mi −mi′ , so
testing the proposition does not rely heavily on knowing whether (29) or (30) applies. In
the empirical section, we compare the basis per margin use for investment grade CDS-bond
basis with the high-yield CDS-bond basis, relying on the prediction

µi − µi′

mi −mi′
=

µj − µj′

mj −mj′
. (31)
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µC σC γa ρ m mmedium mlow

0.03 0.08 8 0.02 0.4 0.3 0.1

Table 1: Parameters used in calibration

2.2 Calibration

We present here a set of quantitative results based on the solution of the model described
above and the parameters in Table 1. An advantage of our model is that all the parameters
are easy to relate to real-world quantities so the interpretation of our assumptions and results
is clear.

The aggregate-consumption mean growth µC and its volatility σC are chosen between
those of actual consumption growth and those of actual dividend growth, since the literature
uses these benchmarks. The risk aversion γa = 8 of agent a is chosen at the high end of
what the literature typically views as the “reasonable” range between 1 and 10, since agent
a is the more risk averse agent, and the discount rate ρ is also at a conventional level. The
margin of each underlying asset m is 40%, and we consider a low-margin derivative with
margin mlow = 10%, a medium-margin derivative with mmedium = 30%, and a derivative
with a margin that varies randomly between 10% and 30% depending on the state of the
economy as described below.

Figures 1–4 show different key properties of the model as functions of the economy’s
state variable, namely the proportion of consumption accruing to agent b. Since agent b
is less risk averse, he is more heavily invested in the risky asset and therefore loses more
following a series of bad shocks. Thus, the states in which cb is small are states with “bad”
fundamentals.

It is apparent in all three figures that the margin constraint binds if and only if cb is low
enough, more precisely when cb is lower than 0.22. The property is natural: when agent b
is poor his margin constraint is more binding and his shadow cost of capital is larger. This
is because agent a becomes a larger part of the market, which increases the market price of
risk, and therefore increases the desired leverage of agent b.

Figure 1 shows three interest rates: the interest rate obtaining in the absence of con-
straints, and the collateralized and uncollateralized rates obtaining with constraints. As is
seen in the figure, the collateralized interest rate (solid line) can be substantially lower than
the complete-market rate in the bad states, while the uncollateralized rate can be extremely
high, indicating the high value of capital to agent b. The difference between these rates is
the shadow cost of capital, which can get close to 10% as in the data that we present in the
next section.

Figure 2 plots the return spreads between the underlying security and two derivatives.
The derivatives are distinguished by their different margin requirements: one has an inter-
mediate margin requirement mmedium = 30% — lower than the margin requirement of the
underlying asset, m = 40%, but not as low as the margin requirement on the other deriva-
tive, which is mlow = 10%. We see that the required return spread (or basis) can be up
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to 1% and 3%, respectively, for the two derivatives, a similar magnitude to the empirically
observed bases, and vary depending on the severity of the crisis as captured by a low cb.

As predicted by the limit result (29), which can be viewed as an approximation, the return
spread is roughly three times higher for the low-margin derivative than for the intermediate-
margin derivative due to its three times larger margin spread, (m−mlow)/(m−mmedium) = 3.

Another interesting feature of this figure is that the return spread is significantly above
zero even in states where the constraint does not bind (cb > 0.22). The explanation for
this outcome lies with the securities’ different betas. Indeed, low-margin securities have
a lower loading on the aggregate risk, βC

b,low < βC
b,medium < βC

b,high. This is because
negative fundamental shocks lead to tightening of margin requirements, thus increasing the
margin-based return premium, which leads to larger price drops for high-margin securities.
It is noteworthy that this phenomenon amplifies the return spread and kicks in even before
margin constraints bind.

Similarly, lower-margin securities have lower volatilities9 because they are less exposed to
changes in the shadow cost of capital, i.e., they have less liquidity risk. The ratio of the risk
(beta or volatility) of low-margin securities to high-margin securities is U-shaped. When
constraints are far from binding (large cb), margins have little effect on returns, and the
risks of high- and low-margin securities are similar. For lower values of cb where constraints
become binding, the risk difference becomes significant, but it eventually goes down as b-
agents are wiped out (cb close to zero).

In addition, the dependence of the sensitivity to aggregate risk on the margin size also
implies that, once the idiosyncratic components si are taken into account, the returns on
low-margin securities are less highly correlated than those on high-margin securities, all else
equal. Furthermore, the bases between underlying-derivative pairs, driven largely by the
common shadow cost of capital, are more correlated with each other than the underlying
securities are.

Figure 3 plots the Sharpe Ratios (SR) of the underlying in an alternative economy with
no margin constraints, the underlying when there exist margin constraints, and of the two
derivatives. We see that the Sharpe ratio of the underlying is higher with the constraint
than without it to compensate for the cost of margin use. The SR of the derivatives is lower
than that of the underlying due to their lower margins.

Finally, Figure 4 shows the price premium of derivatives above the price of the underly-
ing, P derivative/P high − 1. We consider this quantity both for the low- and medium-margin
derivatives, as well as for a varying-margin derivative. The margin of the latter is 10% in
“good states,” where cb ≥ 0.15, and increases to 30% in “bad states”, where cb < 0.15.
The price premia can be very large, especially for low-margin securities in bad states of the
economy. Interestingly, the price premia are significant even when the margin constraints are
not binding or even close to being binding. This is because the price reflects the possibility
of future binding margin constraints, and puts a premium on securities with low margins

9In various calibrations, we found that higher-margin securities have larger betas and volatilities. We can
show this result in general using Malliavin-calculus techniques, provided that the ratio ψ/cb decreases with
cb. While this ratio clearly decreases at both cb = 0 and cb = sup{c

∣∣ ψ(c) > 0}, i.e., where the constraint
just binds, we could not prove that it does everywhere.
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in such states of nature. Since the random-margin security has a high margin in the worst
states, it is priced similarly to the high-margin security even when its margin is low.

Another way of looking at the price level is to consider how the price-dividend ratio
depends on the state of the economy cb. Our calibration yields the natural outcome, also
discussed above in footnote 8, that the price-dividend ratio ζ is increasing in cb, i.e., higher
valuation ratios obtain in good times. (We omit the graph for brevity.) Conversely, the
dividend yield (the reciprocal of the price-dividend ratio) is lower in good times. In the
empirical Section 3.1 below we show that the dividend yield in the stock market is linked to
the CDS-bond basis, consistent with both depending on how constrained the economy is.

3 Empirical Applications

This section applies our model to the CDS-bond basis, the failure of the covered-interest
rate parity, the pricing of the Fed’s lending facilities, and to quantify the cost of capital
requirements.

3.1 The CDS-Bond Basis

The CDS-bond basis is a measure of the price discrepancy between securities with nearly
identical economic exposures, namely corporate bonds and credit default swaps (CDS). Said
simply, the CDS-bond basis is what one can earn by buying a corporate bond and a CDS
that protects against default on the bond.10 Since this package in principle has no risk if
one can hold to maturity (though there are certain risks in the real world), the basis reflects
a deviation from the Law of One Price. However, to earn an arbitrage profit one must use
capital, and during a funding crisis capital is required to earn excess returns for constrained
investors, so this is consistent with our margin-based asset pricing.

Another way of stating the apparent puzzle is to note that the yield spread on a corporate
bond is higher than the CDS spread. According to our model, this is because agents can
get credit exposure with less use of margin capital through CDS and, therefore, they are
willing to earn a smaller expected return per notional, but a similar return per use of margin
capital.

To understand the difference in margin requirements of corporate bonds and CDS, con-
sider a hedge fund that buys a corporate bond. It must naturally use capital to pay the
bond’s price. The hedge fund can borrow using the bond as collateral, but this uses the
hedge fund’s broker’s balance sheet. In light of our model, all capital use by risk-tolerant
agents is costly, so the question is whether the broker can in turn borrow against the bond
from an unconstrained agent such a cash-rich commercial bank. This can be done only to
a limited extent if the commercial bank does not have experience trading such bonds, since
corporate bonds are illiquid, making the evaluation of their value and risk potentially dif-

10Sometimes the CDS-bond basis is reported with the opposite sign. For simplicity, we use a convention
that implies a positive basis during the crisis that started in 2007.
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ficult. Importantly, the bond’s market illiquidity also means that it can be difficult, time
consuming, and costly to sell the bond during times of stress.

A CDS, on the other hand, is a derivative with zero present value so it does not inherently
use capital. A hedge fund entering into a CDS must nevertheless post margin to limit
the counterparty risk of the contract. Since the CDS margin mostly reflects the economic
counterparty risk, whereas the corporate-bond margin additionally reflects its inherent cash
usage and market illiquidity, the corporate-bond margin is larger than the CDS margin. In
short, margins on “funded” underlying assets such as corporate bonds are larger than those
of “unfunded” derivatives.

We test the model’s predictions for (i) the time-series of the deviation from the Law
of One Price (LoOP); (ii) the cross-section of the LoOP deviations for different pairs of
CDS/bond; and (iii) the time-series and cross-section of the risk (measured as volatility and
beta) of the CDS’s and bonds. We first describe the data.

Data

We use data on the returns of the CDX index and S&P500 from Bloomberg, the Merrill
Lynch intermediate corporate return indices in excess of the same-maturity swaps from
Merrill Lynch, the CDS-bond basis from a major broker-dealer, LIBOR and GC-repo rates
from Bloomberg, and the average dividend yield of U.S. stocks from MSCI. Further, we use
the Federal Reserve Board’s survey, “Senior Loan Officer Opinion Survey on Bank Lending
Practices,” focusing on the net percent of respondents tightening their credit standards.

Testing the Model’s Time-Series LoOP Predictions

To consider our model’s time-series predictions, Figure 5 shows the average CDS-bond
basis for high-grade bonds, the spread between the 3-month uncollateralized LIBOR loans
and 3-month general collateral (GC) repo rate, and the Fed’s survey measure of tightening
credit standards.

We see that tighter credit standards (possibly reflecting more binding margin constraints)
are associated with higher interest-rate spreads and a widening of the basis, consistent with
our model’s predictions. The link between the interest-rate spread and the basis, in particu-
lar, is related to Propositions 4 and 9 that describe the dependence of the basis on the shadow
cost of capital and Proposition 1 linking the cost of capital to the interest-rate spread.

We test these predictions more formally in Table 2. In particular, Panel A reports
time-series regressions of the CDS-bond basis on, respectively, the TED spread, the credit
standards, and the average dividend yield of U.S. stocks. The dividend yield is the dividend
of stocks, divided by their price, and it can be viewed as a measure of required returns.
Specifically, in our calibration in Section 2.2, a high dividend is associated with a poor state
of the economy where constraints are binding and deviations of the LoOP occur. We include
the dividend yield to address an additional prediction of the model, namely that the funding
frictions affect required returns broadly, including in the stock markets.
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We run these univariate regression both for the average basis among investment-grade
(IG) securities and among high-yield (HY) securities. We see that both the IG and HY bases
load significantly on the first two measures of funding illiquidity as well as on the dividend
yield, as predicted by the model. The credit standard has an R2 as high as 75% for IG and
67% for HY, and the dividend yield has the highest R2, in excess of 80% for both IG and
HY. While consistent with the model, it is surprising that the deviations from the Law of
One Price in the credit markets appear so closely linked not only to the funding markets,
but even to the stock market.

While these results formalize the connection between the bases and the funding measures
that is visually clear in Figure 5, there can be severe biases in connection with regressions
of persistence variables such as these. Running the regression in changes has better small-
sample properties as changes are more stationary and, effectively, the sample has more
independent observations. Panel B of Table 2 reports the regressions in changes. To account
for the potential bias due to non-synchronous trading (i.e., stale prices) in the monthly
regression of changes,11 we include a lagged value of the explanatory variable (following
Dimson (1979) and many others),

basist = α + β1xt + β2xt−1 + εt.

We then report the biased-adjusted slope coefficient β1 + β2 and its t-statistic, estimated
using the asymptotic variance-covariance matrix of (β1, β2). We see that the coefficients
remain highly significant for all the explanatory variables and for both the IG and HY bases.
The changes of the explanatory variables continue to have a high degree of explanatory power
with R2’s ranging from 23% to 47%.

The model’s prediction regarding the relation between the magnitude of the interest-
rate spread and the magnitude of the basis is rejected in the data, if LIBOR is the true
uncollateralized interest rate. Proposition 9 predicts that the basis is the shadow cost of
capital multiplied by a number less than 1, and Proposition 1 that the shadow cost of capital
is equal to the interest-rate spread. However, the basis is in fact higher than the interest-rate
spread at the end of the sample. This happens, most likely, because the financial institutions’
shadow cost of capital is larger than the LIBOR spread, for a couple of reasons: the Fed
keeps the LIBOR down (see next section), many arbitrageurs (e.g., hedge funds) cannot
borrow at LIBOR, and even those that can borrow at LIBOR cannot use a LIBOR loan to
increase their trading, as they must limit their leverage.

Testing the Model’s Cross-Sectional LoOP Predictions

We next test the model’s cross-sectional predictions for the deviation from the LoOP.
For this, we compare the basis of investment-grade (IG) bonds with that of high-yield (HY)
bonds as seen in Figure 6. To facilitate the comparison in light of our model, we adjust
the bases for their relative margin spreads. Since IG corporate bonds have a margin around

11As is standard, we do not add a lagged variable in regressions in levels since this introduces co-linearity
problems and non-synchronous trading has little effect on the regression in levels.
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25% and IG CDS have margins around 5%, the IG margin differential is 20%. Hence, the
adjusted IG basis is basis/0.20. Similarly, we estimate that the HY margin differential is
around 50% so the HY adjusted basis is basis/0.50. These margin rates are based on a
broker’s estimates and the estimate is subject to a substantial amount of uncertainty since
margins are opaque and vary between brokers and clients and over time. Propositions 4 and
9 predict that the bases adjusted for margin in this way should line up in the cross section
so that the expected profit per margin use is constant in the cross section. Figure 6 shows
that the adjusted bases track each other quite closely.

We test the statistical significance of this cross-sectional relation in Table 3. Panel A
shows the regression of the HY basis on the IG basis, both in levels and changes. For the
change regression, we adjust for non-synchronous prices as described above, and have the
IG basis on the right-hand side as it is based on the more liquid instruments. We see that
the close connection between IG and HY bases is highly statistically significant.

To further test the model’s cross-sectional predictions, Panel B reports the following.
First, we estimate the slope of the cross-sectional required return-margin curve at each point
in time. Specifically, each month, we regress the two bases on the IG and HY margin
differences (0.2, 0.5):

basisi = slope× (mi,bond −mi,CDS) + εi. (32)

This produces an estimate of the slope at each time, that is, the return compensation per
unit of margin capital. (We get similar results if we include a constant term.) According to
the model, this margin-return slope captures the shadow cost of capital ψ (Propositions 4
and 9). Since the model also links ψ to interest-rate spreads, credit tightness, and risk
premia, we regress the estimated return-margin slope on such measures in Panel B. We see
that all the variables are statistically significant in both levels and changes, and that their
explanatory power is large.

Testing the Model’s Predictions for Liquidity Risk

The model predicts that when margin constraints are not binding, securities with the
similar fundamental risk should have similar volatilities and market betas, even if their
margin requirements are different. In times of (near-)binding constraints, however, securities
with high margin should have larger volatilities and betas as seen in Section 2.2. Indeed,
high-margin securities have more funding-liquidity risk because their large use of capital
makes them sensitive to changes in the tightness of capital constraints.

To test these model predictions on how margin requirements affect liquidity risk, Tables 4
and 5 consider the volatilities and market betas of CDSs and corporate bonds, both in the
early sample before the crisis (9/2005-6/2007), the crisis sample (7/2007-12/2009), and the
full sample. We estimate betas relative to the U.S. stock market as proxied by the S&P500
index, and we use the returns of CDX index and the Merrill Lynch intermediate corporate
return index in excess of the same-maturity swaps.

The model’s predictions are born out in the data. Tables 4 and 5 show that CDS and
bonds indeed have similar volatilities and betas in the pre-crisis sample. If anything, corpo-
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rate bonds have slightly lower volatilities and betas. During the crisis sample, however, the
high-margin corporate bonds have much larger volatilities and betas than the low-margin
CDS. We see that this pattern is consistent across investment-grade and high-yield securities.
The volatilities are estimated with precision (the standard errors of these numbers are a few
percentage points) and the difference between bonds and CDS is significant (not reported
for brevity). The difference between the bond and CDS betas is tested in Panel B of Table 5,
and we see that the difference is significant for IG securities.

3.2 Effects of Monetary Policy and Lending Facilities

The Federal Reserve has tried to alleviate the financial sector’s funding crisis by instituting
various lending facilities. These programs include the Term Auction Facility (TAF), the Term
Securities Lending Facility (TSLF), the Term Asset-Backed Securities Loan Facility (TALF),
and several other programs.12 The TAF was instituted in December 2007 in response to
address the “pressures in short-term funding markets”. With the TAF, the Fed auctions
collateralized loans to depository institutions at favorable margin requirements with 28-day
or 84-day maturity.

As the crisis escalated, the Fed announced on March 11, 2008 the TSLF, which offers
Treasury collateral to primary dealers in exchange for other program-eligible collateral such
as mortgage bonds and other investment grade securities for 28 days. Since this is an ex-
change of low-margin securities for higher-margin securities, it also improves the participating
financial institutions’ funding condition. By exchanging a mortgage bond for a Treasury and
then borrowing against the Treasury, the dealer effectively has its margin on mortgage bonds
reduced.

The Federal Reserve announced the additional creation of the TALF on November 25,
2008. The TALF issues non-recourse loans with term up to three years of eligible asset-backed
securities (ABS) backed by such things as student loans, auto loans, credit card loans, and
loans relating to business equipment. The TALF is offered to a wide set of borrowers, not just
banks (but the borrowers must sign up with a primary dealer, which creates an additional
layer of frictions).

These programs share the feature that the Fed offers lower margins than what is otherwise
available in order to improve the funding of owners or buyers of various securities. This
improves the funding condition of the financial sector and, importantly, makes the affected
securities more attractive than they would be otherwise. Indeed, the goal of the TALF is
to “help market participants meet the credit needs of households and small businesses by
supporting the issuance of asset-backed securities.”13

In terms of our model, this can be understood as follows. The Fed offers a margin
mi,Fed for security i, say a student-loan ABS, which is lower than the prevailing margin,

12We thank Adam Ashcraft, Tobias Adrian, and participants in the Liquidity Working Group at the NY
Fed for helpful discussions on these programs.

13See http://www.newyorkfed.org/markets/talf operations.html.
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mFed,i < mi. This lowers the required return of a derivative security:

E(ri,Fed)− E(ri,no Fed) = (mFed,i −mi)ψ < 0. (33)

Said differently, the Fed program increases the affected security’s price (Proposition 5).
Hence, this ABS can be issued at an increased price, which makes the market more viable
since students can only pay a certain interest rate.

Ashcraft, Gârleanu, and Pedersen (2010) provide survey evidence from financial institu-
tions to see how their bid prices for various securities depend on the financing that the Fed
would offer. The surveyed bid price increases as the Fed reduces its offered margin, consistent
with our model. For instance, the surveyed bid price of a super senior CMBS tranche with
an expected life of 7 years with no Fed financing is $57, but increases to $92.5 with maturity
matched financing with a low margin, a very large asset pricing effect. Similarly, the bid
price of a tranche with 2.5 years of expected life increases from $84 with no financing to $92
with financing with a low margin. This corresponds roughly to an annualized decrease in
expected return of 3.5%.

Let us consider this number in the context of our model. If the shadow cost of capital is
around 10% as implied by the IG and HY CDS-bond basis at the height of the liquidity crisis,
and CMBS tranches are derivatives only held by the risk-tolerant investor, then Equation (33)
implies an effect of 3.5% if the Fed improves the margin terms by 35 percentage points, so
the model-implied effect is in the right neighborhood.

Ashcraft, Gârleanu, and Pedersen (2010) also provide evidence that the TALF lending
facility had an impact on the market prices of CMBS bonds in a way that is consistent with
our model.

3.3 Failure of the Covered Interest-Rate Parity (CIP) and the
Fed’s Liquidity Swap Lines

While textbooks on international finance acknowledge the failure of the uncovered interest-
rate parity, the so-called covered interest-rate parity (CIP) is often taken to hold by definition
since arbitrage should enforce the Law of One Price. The covered interest rate parity says
that if the local interest rate is r, the foreign interest rate is r∗, the spot exchange rate is e,
and the forward exchange rate that can be locked in now is f , then 1+r = f/e(1+r∗). That
is, putting the money in the local bank earns 1+r which should be the same as exchanging a
dollar for 1/e units of foreign currency, earning 1 + r∗ abroad, and guaranteeing to exchange
the money back at the exchange rate of f to get f/e(1 + r∗).

This parity has nevertheless failed due to supply and demand imbalances in the forward
market and because it requires capital (margin) to trade to profit from deviations from
parity. To understand the background of this surprising effect, recall first that the funding
problems of financial institutions in the crisis of 2007-2009 quickly spread globally. Banks in
many countries had funding problems both in their local currency and in US dollars, perhaps
because many transactions are done in dollars.

To facilitate dollar funding for foreign banks, the Fed authorized temporary reciprocal
currency arrangements called “central bank liquidity swap lines” on December 12, 2007
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(Coffey, Hrung, Nguyen, and Sarkar (2009)). Through these swap lines, the Fed lent dollars
to foreign central banks who in turn lent these dollars to their local banks.

Despite this effort, parity has been violated as a clear sign that the currency arbitrageurs’
margin requirements are binding as seen in Figure 7. The figure further shows that the time
series pattern of the deviation tracks the TED spread (i.e., the spread between LIBOR and
Treasury bills) in the 2007-2009 crisis and in liquidity crisis of 1998 (involving LTCM among
other events). This co-movement is highly statistically significant both in levels and monthly
changes (regressions are not shown for brevity).

3.4 Quantifying the Cost of Capital Requirements: Incentives for
Regulatory Arbitrage

We can also use our model to quantify the shadow cost of Basel capital requirements in
order to help understand the banks’ incentives to perform “regulatory arbitrage” by moving
assets off their balance sheet and tilting their portfolios towards AAA securities with low
regulatory capital requirements.

For this, we note that the Basel requirement has a similar form to the margin requirement.
It can loosely be captured by a similar equation to our model’s margin requirement (see
Brunnermeier and Pedersen (2009)):∑

i

mReg,i|θi| ≤ 1, (34)

where θi is the fraction of wealth in security i as before and mReg,i is the regulatory capital
requirement (8% times a risk weight under some rules).

When the prevailing margins are low, the regulatory requirement may be more binding
than the funding-based margin requirement. In this case, the margin mi in our pricing
formula is replaced by the regulatory requirement (34). Hence, a bank’s required return
increases in the regulatory capital requirement multiplied by the shadow cost of capital,
ψmReg,i. If the shadow cost of regulatory capital is 1% and a bank can move off balance
sheet an asset with risk weight of 100%, then its required return for that asset is reduced by
1%× 8%× 100% = 80 basis points.

4 Conclusion

We derive a tractable general-equilibrium asset-pricing model that accounts explicitly for the
pricing of margins. The model captures several of the salient features of the recent and past
liquidity crises: a negative fundamental shock leads to losses for leveraged agents, including
the financial sector; these agents face funding problems as they hit margin constraints; the
binding constraints lead to drops in Treasury rates and general-collateral interest rates, to
spikes in interest-rate spreads, risk premia, and the pricing of margins, and to bases (or price
gaps) between securities with identical cash flows but different margins.
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We illustrate the model through a calibration, test it empirically using the CDS-bond
basis and the failure of the covered interest-rate parity, and show how the model-implied
cost of capital requirements quantifies the banks’ incentives to use off-balance sheet vehicles.
Finally, we estimate the effect of the Fed’s lending facilities, which is helpful in evaluating
the unconventional monetary policy tools used during liquidity crises.
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Appendix

A Linear and Non-Linear Margin Constraints

We consider a non-linear margin requirement (7) that depends on the absolute value of the
position |θi|. Hence, both long (θi > 0) and short (θi < 0) positions make the constraint
tighter, i.e., both long and short positions use capital. It is interesting to compare this to a
linear constraint sometimes assumed in the literature:∑

i

mi
tθ
i + ηu ≤ 1. (A.1)

While such a linear constraint is simpler to handle mathematically, it precludes the bases
that are central to our study:

Proposition 10 If agents face only linear margin requirements (A.1) and at least one
derivative exists with mi′ < mi, then any equilibrium is as if there were no margin con-
straints at all and there can be no deviations from the Law of One Price in equilibrium, that
is, the basis is always zero.

Proof of Proposition 10. For any asset allocations of the two agents, the linear margin
constraint is slack “in the aggregate”:

W a
t

∑
j

mj
tθ
j,a
t +W b

t

∑
j

mj
tθ
j,b
t < W a

t +W b
t . (A.2)

This means that the linear margin constraint must be slack for at least one of the agents,
who is therefore not constrained at time t.

Suppose now that on a non-zero-measure set there fails to exist a market-price-of-risk
process, i.e., a process κ taking values in RN such that σjtκt = µjt−rct for all securities j. Then
one of the two agents can trade on a non-zero-measure set to make risk-less strictly positive
(although bounded) profits — i.e., a zero-value portfolio η exists whose volatility is zero and
that has strictly positive drift. This contradicts the notion of equilibrium. Consequently, a
market-price-of-risk process exists. It follows, under technical integrability conditions, that
an equivalent martingale measure, defined by the stochastic exponential of this process, also
exists, so that assets with identical cashflows have identical payoffs. (See Duffie (2001),
Chapter 6, Section G.)

Finally, consider two securities, i and j, with identical cashflows and prices but different
margin constraints: mi

t > mj
t on some set. If any agent is constrained when mi

t > mj
t , then

she can relax her constraint by going long n shares of asset j and short n shares of asset i:
the trade has no cash-flows implications and makes the constraint slack. For n low enough,
the other agent’s margin constraints remains slack due to (A.2), and therefore both agents
are unconstrained while their consumption processes remain the same. (Alternatively, we
can note that the CAPM relationship µit − rct = βg,j + ψgtm

i
t implies that ψgt = 0 for both

agents g ∈ {a, b}.)
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B Proofs

Proof of Propositions 1 and 4. These proofs are in the body of the paper.

Rather than offering a proof to the special Proposition 2, we state and prove its general
version. To this end, we define the risk-tolerance fraction due to agent a by x̄t = 1− xt. We
recall that ψ is agent b’s shadow cost of funding, and we denote a’s shadow cost of funding
by ψ̄. Finally, yi indicates whether b is long (yit = 1), short (yit = −1), or has no position
(yit ∈ [−1, 1]) in an asset, and similarly ȳi indicates the sign of a’s position.

Proposition 2′ (Margin CCAPM) The expected excess return µit − rct on an underly-
ing asset is given by the standard consumption CAPM adjusted for funding costs:

µit − rct = γtβ
C,i
t + λm,it mi

t, (B.1)

where the funding cost is the product of the margin requirement and the margin premium:

λm,it = x̄tψ̄tȳ
i
t + xtψty

i
t. (B.2)

Proof of Proposition 2′. To understand the idea of the proof, suppose first that agent a’s
margin constraint never binds, so that he is (locally) unconstrained in his investment in the
underlying assets. Consequently, deflating the gains process of any of these securities using
his marginal utility process yields a local martingale. Specifically, agent a’s marginal utility,
which we denote by ξt, is given by

ξt = e−ρt(Ca)−γ
a

. (B.3)

Further, we denote its drift and volatility by µξt and σξt :

dξt = ξt

(
µξtdt+ σξt dwt

)
(B.4)

and Ito’s Lemma shows that

σξ = −γaσCa . (B.5)

The discounted value of the price and accumulated dividends,

Ptξt +

∫ t

0

Csξs ds, (B.6)

is a local martingale, so it has zero drift:

0 = δit + P i
tµ

ξ
t + P i

tµ
i
t − δit + P i

tσ
i
t

(
σξt

)>
. (B.7)

Since ξ prices the risk-free collateralized lending, it holds that

µξt = −rct . (B.8)
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Combining (B.5), (B.7), and (B.8) gives agent a’s key pricing equation:

µi − rc = γaβC
a,i. (B.9)

Recall also agent b’s pricing equation:

µi − rc = βC
b,i + yiψmi. (B.10)

Multiplying Equations (B.9) and (B.10) by (γa)−1Ca, respectively Cb, and adding the results
gives

(µi − rc)
(
Ca

γa
+ Cb

)
= CβC,i + Cbyiψmi,

which is equivalent to (14).
The general proof of this proposition involves characterizing the optimal portfolio choice

of an arbitrary agent with utility function u who faces convex portfolio constraints and
redundant assets. The steps are the following:

Step 1. Construct a family of fictitious economies in which there are no redundant
securities (derivatives) and where the drifts of asset prices and the (collateralized) interest
rate are given, for ν ∈ RN , by

µi,ν = µi + νi + h(ν)

rc,ν = rc + h(ν),

which are to be explained shortly. For ease of exposition, define also κν = σ−1(µ + ν − rc)
to be the market price of risk for the underlying securities in the fictitious market and let

νi
′,ν = σi

′
κν + rc − µi′

for all derivatives i′. Defining µi
′,ν analogously to µi,ν would mean that there would be no

arbitrage opportunity in the fictitious market even if the redundant securities were traded.
For any ν ∈ RN , the function h is defined as

h(ν) = sup

{
−

(∑
i

θiνi +
∑
i′

θi
′
νi
′,ν

) ∣∣ θ ∈ K}

= sup

{
−

(∑
i

θiνi +
∑
i′

θi
′
σi
′
σ−1ν

)
+

∑
i′

θi
′
(

(µi
′ − rc)− σi′κ0

) ∣∣ θ ∈ K} .
The function h(ν) captures both the shadow value of capital and the increase to the interest
rate that an agent would have to be offered in a world without redundant securities in order
to achieve the same utility as when arbitrage opportunities are available to him. The first
term in the last expression above represents the total additional return due to the higher
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drifts in the fictitious economy, while the second represents the arbitrage gains. Note that,
since K is bounded, h takes finite values on RN .

The fictitious economies are constructed so that any consumption feasible in the original,
constrained economy starting with a certain wealth is also feasible in each of these economies
— because available returns are at least as high. By including all such economies, it also
follows that there is one among them in which the optimal portfolio and consumption choices
satisfy the original constraints.

Step 2. For any consumption plan, the trading strategy {φi}i that attains it at the highest
cost (initial wealth) among the optimal strategies in all fictitious economies is equivalent,
in terms of risk exposure, to a strategy

(
{θi}i, {θi′}i′

)
that finances the consumption plan

at the same cost and satisfies the constraints in the original economy. This is the new step
relative to the literature.

To prove this statement, follow Cvitanić and Karatzas (1993) to define the maximum
cost of (super-)replicating the consumption plan among all fictitious economies, from any
time τ onwards:

Vτ ≡ sup
ν
Eν

[∫ T

τ

e−
∫ T
t rc,νs dsct dt

]
,

where Eν is the equivalent martingale measure in the market defined by ν, given by the
state-price deflator ξν , which is defined by ξν(0) = 1 and

dξνt = −ξνt
(
rc,νdt+ (κν)> dBt

)
.

It follows that

M ν
t ≡ Vte

∫ t
0 r

c,ν
s ds

is a supermartingale, so that it can be decomposed as

Mν
t = V0 +

∫ t

0

φνs dw
ν
s −Bν

t (B.11)

with Bν
t an increasing process and wν a Brownian motion. Comparing Mν with M0 identifies

φν as being independent of ν — let’s denote it by φ — and it also implies∫ t

0

e
∫ s
0 r

c,ν
v dvdBν

s −
∫ t

0

e
∫ s
0 r

c,ν
v dvVs

(
h(νs) + ν>s φ

)
ds =

∫ t

0

e
∫ s
0 r

c
v dvdB0

s . (B.12)

We claim that, since the right-hand side of (B.12) is increasing, φ is equivalent to a strategy
θ ∈ K. Indeed, suppose that this is not the case. The strategies in the original market that
are risk-equivalent to φ are θ = (θ̂, θ̃) such that

φ = θ̂ +
(
σ−1
)>
σ̃>θ̃,
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where σ̃ is the matrix of volatility vectors of the redundant securities. If the affine space Θφ

consisting of all such θ does not intersect the compact convex set K, then it is separated
from it by a hyperplane, i.e., there exist a vector v and ε > 0 such that

v>θ − v>θK ≥ ε

for all θ ∈ Θφ and θK ∈ K. Note that v is orthogonal to Θφ, i.e., v>(θ1 − θ2) = 0 for all
θ1, θ2 ∈ Θφ. In fact, v>θ = v>(φ, 0) on Θφ, and v> is a linear combination of the rows of

(IN , (σ
−1)
>
σ̃>):

v> = v̂>(IN ,
(
σ−1
)>
σ̃>)

for some v̂ ∈ RN .
Note now that

h(ν) = sup

{
−ν>

(
θ̂ +

(
σ−1
)>
σ̃>θ̃

)
+
∑
i′

θi
′
((

σi
′
)>

κ0 − (µi
′ − rc)

) ∣∣ (θ̂, θ̃) ∈ K} .
Let ν = Rv̂ for some (large) scalar R and note also that

h(ν) + ν>φ ≥ sup
{
−ν>

(
θ̂ +

(
σ−1
)>
σ̃>θ̃

) ∣∣ (θ̂, θ̃) ∈ K}+ ν>φ+

sup

{∑
i′

θi
′
(

(µi
′ − rc)− σi′κ0

) ∣∣ (θ̂, θ̃) ∈ K}
≥ sup

{
−Rv̂>

(
I,
(
σ−1
)>
σ̃>
)
θ
∣∣ θ ∈ K}+Rv>(φ, 0) +D

≥ Rε+D,

where |D| <∞ because K is bounded.
Thus, if Θφ ∩ K = ∅, h(ν) + ν>φ can be made arbitrarily large, and consequently, the

left-, and therefore right-hand, side of (B.12) can be made decreasing, which would be a
contradiction.

Step 3. The optimal consumption in the original economy is therefore optimal in one of
the fictitious, unconstrained economies. Consequently, the marginal utility of the agent is
proportional to ξν , giving

u′′(Cg)

u′(Cg)
CgσC

g

= σ−1(µ− rc + ν),

or

µi − rc = γβC
g ,i − νi. (B.13)

Step 4. For ν that defines the constrained optimum, the optimal θ attains the supremum
in the definition of h(ν). The characterization of ν then comes down to a simple linear
optimization over a convex set.
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Suppose, for instance, that θ1 > 0, which implies ν1 ≤ 0, and let ψ = − ν1

m1 .14 If θ2 > 0

and, say, ν2

m2 > −ψ, decreasing θ2 by m1ε and increasing θ1 by m2ε preserves the constraints

but increases the objective by
(
ν2

m2 + ψ
)
m1ε > 0. Thus νi

mi
= −ψ whenever θi > 0, so that

(B.13) becomes

µi − rc = γβC
g ,i + ψmi. (B.14)

All other cases are treated similarly. Note also that h(ν) = ψ.
As for the derivatives, from the definition of νi

′
we have the relationship

µi
′ − rc = σi

′
σ−1(µ+ ν − rc)− νi′

= γβC
g ,i′ − νi′ .

Therefore the treatment of the derivative is the same as that of any underlying asset as long
as the derivative position is not bound by a different constraint, which is entirely natural. If
the derivative positions are constrained by other constraints, then the form of the ‘shadow
returns’ νi

′
is different. �

The next result is the general form of Proposition 3.

Proposition 3′ [Margin CAPM]The expected excess return µit − rct on an underlying
asset is given by the standard CAPM adjusted for funding costs based on the margins mi

t:

µit − rct = λβt β
i
t + λm,it mi

t, (B.15)

where λβt = µqt − rct −
∑

j q
j
tλ

m,j
t mj

t is a covariance risk premium and the margin premium

λm,i is defined in Proposition 2′.

Proof of Proposition 3′ The definition of the portfolio q implies that

dCt
Ct

= Qt
dP q

t

P q
t

+ dzt

for some process Q and Brownian motion z with covt(dP
i, dz) = 0 for all i. Proposition 2

therefore implies that

µit − rct − λ
m,i
t mi

t = Qt covt

(
dP q

t

P q
t

,
dP i

t

P i
t

)
. (B.16)

Multiplying this equation by qit and summing over all i yields

µqt − rct −
∑
i

qitλ
m,i
t mi

t = Qt vart

(
dP q

t

P q
t

)
. (B.17)

14Remember K = {θ |
∑

i |θi|mi ≤ 1}.
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Equations (B.16) and (B.17) immediately give the proposition. �

Proof of Proposition 5. Write the agent’s objective as

E

∫ ∞
t

e−ρs

(
u(Cg

s )− λs

(∑
j

|Wsθ
j
s|mj

s +Wsη
u
s −Ws

))
ds,

where λ is a Lagrange multiplier. (In the case of agent b, the HJB equation shows λ to equal
(ρW )−1ψ.) The agent acts as if unconstrained, provided that λ is chosen appropriately.

Suppose that the agent invests in ε more shares of asset i, borrowing at the collateralized
rate to do so. The agent adjusts consumption to absorb both the dividends and interest
expense. Note that the only terms entering the constraint affected by this deviation are
|Wsθ

i
s| and Ws. Letting ε tend to zero, the gain in utility is proportional to

sign(ε) Et

∫ ∞
t

e−ρs
(
u
′
(Cg

s )(δis − rcsP i
t )− λs

(
ỹsP

i
sm

i
s − (P i

s − P i
t )
))
ds

= sign(ε) Et

∫ ∞
t

e−ρs
(
u
′
(Cg

s )(δis − rcsP i
t )− λsP i

t + P i
sλs
(
1− ỹsmi

s

))
ds,

where ỹs = 1 if θis > 0, ỹs = −1 if θis < 0, and ỹs = sign(ε) if θi = 0. Since the deviation
must (weakly) reduce utility regardless of the sign of ε, it follows that

P i
tEt

∫ ∞
t

e−ρs
(
u
′
(Cg

s )rcs + λs

)
ds = Et

∫ ∞
t

e−ρs
(
u
′
(Cg

s )δis + P i
sλs
(
1− ysmi

s

))
ds, (B.18)

where ys = 1 if θis > 0, ys = −1 if θis < 0, and ys ∈ [−1, 1] if θis = 0. Equation (B.18) implies

P i
tEt

∫ ∞
t

e−ρ(s−t)
(
u
′
(Cg

s )rcs + λs

)
ds = Et

∫ ∞
t

e−ρ(s−t)+
∫ s
t e
−ρvλv(1−yvmiv) dvu

′
(Cg

s )δis ds. (B.19)

Alternatively, u
′
(Cg

s )rcs+λs in the previous two equations can be replaced with u
′
(Cg

s )rus . Fur-
ther, under mild regularity conditions, the left-hand sides of these equations equal P i

tu
′
(Cg

t ).
The proposition follows from the fact that the right-hand side of the Equation (B.19) is

a monotonic function of yvm
i
v for all v ≥ t.

Proof of Proposition 6. We first derive the dynamics of the state variable cb and the
consumption dynamics more generally. Then, we derive the dependence of the endogenous
variables on the state variables and the exogenous variables.

The dynamics of agent b’s consumption Cb follows from Cb = ρW b and the dynamics for
W b given in (6):

dCb = Cb((rc − ρ+ φκ) dt+ φ dwt) (B.20)

where φ ≡ σθb is notation for the equilibrium volatility of agent b’s wealth. Using this, the
dynamics of the consumption ratio cb = Cb/C are seen to be

dcb = cb((rc − ρ+ φκ− µC − σCφ+ (σC)2) dt+ (φ− σC) dwt), (B.21)
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while agent a’s consumption dynamics Ca = C − Cb are

dCa = (CµC − Cb(rc − ρ+ φκ)) dt+ (CσC − Cbφ) dwt (B.22)

= C(µC − cb(rc − ρ+ φκ)) dt+ C(σC − cbφ) dwt. (B.23)

The interest rate is rct = −µξt (as seen in (B.8) above) and thus applying Ito’s Lemma to
the marginal utility ξ from (B.3) implies

rc = ρ+

(
γa
µC − cbφκ

1− cb
− 1

2
γa(γa + 1)

(
σC − cbφ

1− cb

)2
)

1− cb

1 + (γa − 1)cb
.

The ordinary differential equation (ODE) that characterizes the price-dividend ratio ζ(cb)
follows from the fact that (B.6) is a local martingale with zero drift:

0 = 1 + ζ
(
µC − rc − γaσC(1− cb)−1(σC − cbφ)

)
+ (B.24)

ζ ′
(
rc − ρ+ φκ− µC − γa(φ− σC)(1− cb)−1(σC − cbφ)

)
+

1

2
ζ ′′(cb)2(φ− σC)2.

It remains to determine the values of κ, σ, and φ as functions of ζ and its derivatives. For
this, we identify three equations for these three unknowns. First, the log-utility investor’s
optimal position θb maximizes

(µ− r)θb − 1

2
σ2(θb)2

subject to θb < m−1. Or, expressed in terms of volatility φ = σθb, he maximizes

κφ− 1

2
φ2,

so that the optimal position is

φ = min(κ,m−1σ) = κ− (κ−m−1σ)+. (B.25)

Next, since agent a is unconstrained with respect to the market asset and general-
collateral lending and borrowing, (B.9) gives

κ = γaσC
a

= γa
σC − cbφ

ca

= γa
σC − cbκ+ cb(κ−m−1σ)+

1− cb
,

where the second equality is due to the expression for the volatility of Ca in (B.23) and the
third to (B.25). It follows that

κ =
γa

1 + (γa − 1)cb
(
σC + cb(κ−m−1σ)+

)
= κ̄+ γcb

(
κ− σ

m

)+

, (B.26)
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with γ−1 = ca (γa)−1 + cb as per (12) and κ̄ = γσC . Equation (B.26) provides a second
restriction on the three parameters that need to be calculated. The third restriction comes
from the fact that the volatility σ of the price Pt = Ctζ(cbt) is given by Ito’s lemma and the
dynamics of cbt in (B.21):

σ = σC +
ζ ′cb

ζ
(φ− σC). (B.27)

To solve the system of three equations (B.25)–(B.27), φ can be eliminated right away to give

κ−m−1σ = (κ̄−m−1σ) + γcb(κ−m−1σ)+

σ = σC +
ζ ′cb

ζ
(κ− σC)− ζ ′cb

ζ
(κ−m−1σ)+

and note that the solution (κ, σ) given in the proposition is trivially true if κ ≤ m−1σ,
which requires κ̄ ≤ m−1σ̄. Suppose therefore that κ−m−1σ > 0, leaving a linear system of
equations. This system can be written as

κ− κ̄ =
1

1− γcb
(κ̄−m−1σ) +m−1σ − κ̄

=
γcb

1− γcb
(κ̄−m−1σ)

σ − σ̄ = −ζ
′cb

ζ
(κ̄−m−1σ),

which gives (21) and (22) easily.
The boundary values for ζ(cb) are its values at cb = 0 and cb = 1. These are the price-

dividend ratios in the single-agent economies in which either agent a or agent b has all the
wealth. The explicit expressions are well known:

ζ(0) =

(
ρ+ (γa − 1)µC − 1

2
γa(γa − 1)

(
σC
)2
)−1

(B.28)

ζ(1) = ρ−1. (B.29)

Finally, the value of the Lagrange multiplier ψ follows from the first-order condition (9),
given the optimal choice σC

b
= φ:

ψ =
1

m
(µ− rc − βCb) =

1

m
(µ− rc − σCbσ)

=
σ

m
(κ− σCb) =

σ

m
(κ− φ)

=
σ

m

(
κ− σ

m

)+

. (B.30)

Proof of Proposition 7. From Proposition 4,

µi
′

= µ+ σC(σi
′ − σ) + ψ(mi′ −m),

34



and applying Ito’s lemma to P i′ = Cζ i
′
(cb) gives

µi
′

=
ζ i
′ ′
cb

ζ i′
(
rc − ρ+ φκ− µC

)
+ µC +

1

2

ζ i
′ ′′

(cb)2

ζ i′
(φ− σC)2 +

1

ζ i′

σi
′

=
ζ i
′ ′
cb

ζ i′
(φ− σC) + σC .

Together, these three equations and (B.30) yield the ODE (26). The boundary conditions
are

ζ i
′
(0) =

(
yi
′
)−1

ζ i
′
(1) = ρ−1,

where the dividend yield yi
′

= y + µi
′ − µ = y + ψ(mi′ −m) and y is the market dividend

yield at cb = 0, i.e., y = ζ(0)−1 from Equation (B.28).

Proof of Proposition 8. The limit price follows directly from Equation (B.28). The
limit value of ψ follows from (24), given that σ = σC (because the market price is C times a
constant price-dividend ratio in the limit) and κ = γaσC , which is seen from (21) with x = 0
and γ = γa.

Proof of Proposition 9. Only the risk in C is priced. In the limit as cb → 0, all
valuation ratios are constant, and therefore all covariances with the market equal (σC)2, so
the result follows from Proposition 4 with equal betas.
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Figure 1: Collateralized and Uncollateralized Interest rates. This figures shows
how interest rates depend on the state of the economy as measured by cb the fraction of
consumption accruing to the risk tolerant investor. Low values of cb correspond to bad
states of the economy, and margin requirements bind for cb ≤ 0.22. The solid line represents
the collateralized interest rate rc (or Treasury rate), which drops sharply in bad times.
The dashed line represents the uncollateralized inter-bank interest rate ru. As a frictionless
benchmark, the dash-dot line represents the interest rate obtaining in an economy without
any constraints.
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Figure 2: Deviations from the Law of One Price (Basis). This figure shows the
difference between the expected return of an underlying security and a derivative with the
same cash flows and a lower margin. This return spread is depicted as a function of the
state of the economy as measured by cb (where a low cb is a bad state of the economy). The
dotted line represents the return spread for a low-margin derivative mlow with a high margin
spread munderlying−mlow = 30%, and the dashed line represents a medium-margin derivative
with a smaller margin spread of munderlying −mmedium = 10%.
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Figure 3: Sharpe Ratios (SR). The figure shows how the required SR depends on the
state of the economy as measured by cb (where a low cb is a bad state of the economy).
The solid line represents the SR of the underlying asset with a high margin, the dashed line
represents the SR of a derivative with identical cash flows and a medium margin, and the
dotted line that of a derivative with a low margin. As a frictionless benchmark, the dash-dot
line represents the SR obtaining in an economy without any constraints.

42



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

cb

E
xc

es
s 

pr
ic

e

 

 
Low constant margin, m=10%
Time−varying margin, m∈ [10%,30%]
High constant margin, m=30%

Figure 4: Price Premium. The figure shows how the price premium above the price of the
underlying depends on the state of the economy as measured by cb (where a low cb is a bad
state of the economy). Each derivative has the same cash flows as the underlying, but a lower
margin requirement and, therefore, a larger price. The price premium, P derivative/P underlying−
1, is illustrated for a derivative with a low constant margin of 10%, one with a margin of 30%,
and one that has a margin that increases from 10% to 30% in a bad state of the economy
with cb < 0.15. The price premium is especially large for low margin securities during bad
economic times, but is non-trivial even before margin requirements bind (cb > 0.22) due to
the risk of future binding constraints.
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Figure 5: The CDS-Bond basis, the LIBOR-GC repo Spread, and Credit Stan-
dards. This figure shows the CDS-bond basis, computed as the yield spread for corporate
bonds minus the CDS spread (adjusted to account for certain differences between CDS and
bonds), averaged across high grade bonds, as well as the spread between the 3-month uncol-
lateralized LIBOR loans and 3-month general collateral (GC) repo rate, and the net percent
of respondents tightening their credit standards in the Federal Reserve Board’s “Senior Loan
Officer Opinion Survey on Bank Lending Practices”. Consistent with our model’s predic-
tions, tighter credit is associated with higher interest-rate spreads and a widening of the
basis.
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Figure 6: Investment Grade (IG) and High Yield (HY) CDS-Bond Bases, Ad-
justed for Their Margins. This figure shows the CDS-bond basis, computed as the yield
spread for corporate bonds minus the CDS spread (adjusted to account for certain differ-
ences between CDS and bonds), averaged across IG and HY bonds, respectively. Our model
predicts that the basis should line up in the cross section according to the margin differences.
Since IG corporate bonds have a margin around 25% and IG CDS have margins around 5%,
the IG margin differential is 20%. Hence, the adjusted IG basis is basis/0.20. Similarly,
we estimate that the HY margin differential is around 50% so the HY adjusted basis is ba-
sis/0.50. We adjust the level of each series by subtracting the average during the first two
years 2005-2006 when credit was easy so margin effects played a small role. Consistent with
the idea that the expected profit per margin use is constant in the cross section, we see that
the adjusted basis track each other.
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Figure 7: Average Deviation from Covered-Interest Parity and the TED Spread.
This figure shows the average absolute deviation from the covered interest rate parity for the
Euro, Yen, and British Pound, as well as the TED spread, which is the 3-month uncollater-
alized LIBOR rate minus the 3-month T-bill rate. The magnitude of the deviation from the
CIP tracks the TED spread in the time series consistent with the model’s prediction that
the shadow cost of funding liquidity due to binding margins drive both effects.
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Table 2: Time-Series Relation Between CDS-Bond Basis and Measures on Liq-
uidity and Risk Premia. The table reports univariate regressions of the CDS-bond basis
on, respectively, the TED-spread (proxying for funding illiquidity) and the dividend yield of
U.S. stocks as reported by MSCI (proxying for risk premia), monthly from 2005 to 2009, and
the tightening credit standards from Federal Reserve Board’s survey, which is available quar-
ter. We run these regressions separately for the average basis among investment-grade and
high-yield bonds, and separately for the levels of these variables (Panel A) and the monthly
changes of the variables (Panel B), except the credit standards which is run quarterly. To ac-
count for the potential bias due to stale prices in the monthly regression of changes, we include
a lagged value of the explanatory variable (Dimson (1979)), basist = α+ β1xt + β2xt−1 + εt.
We report the bias-corrected estimate, β1+β2. The coefficient of the intercept is not reported.

Panel A: Regressions in Levels. Dependent Variable: CDS-Bond Basis. 

coefficient t-statistic R2 coefficient t-statistic R2

TED spread 0.54 4.62 26% 0.86 3.78 19%

Credit standards 0.02 13.60 75% 0.03 11.11 67%

Dividend yield 1.62 21.03 88% 2.95 17.34 83%

Investment Grade High Yield

Panel B: Regressions in Changes. Dependent Variable: CDS-Bond Basis. 

coefficient t-statistic R2 coefficient t-statistic R2

TED spread 0.42 4.35 42% 0.72 4.32 33%

Credit standards 0.02 4.12 47% 0.03 3.17 35%

Dividend yield 1.06 3.83 23% 2.37 5.99 39%

Investment Grade High Yield
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Table 3: Cross-Sectional Relation Between IG and HY Bases. Panel A reports the
regression of the high-yield (HY) CDS-bond basis on the investment-grade (IG) CDS-bond
basis. We note that the IG securities is more liquid, and, to account for the potential effect
of stale prices in the regression of changes, we include a lagged value of the explanatory
variable (Dimson (1979)), basisHYt = α + β1basis

IG
t + β2basis

IG
t−1 + εt. We report the bias-

corrected estimate, . In Panel B, we first estimate the slope of the cross-sectional required
return-margin relation at any time. We do this by regressing the two bases on the two
corresponding margin differences (0.20, 0.50). We then regress this slope (which measures
funding illiquidity according to the model) on the three explanatory variables described in
Table 2.

Panel A: Regressing the high-yield basis on the investment-grade basis. 

coefficient t-statistic R2

Levels

IG basis, levels 1.79 25.53 91%

Changes

IG basis, changes 1.42 8.27 64%

Panel B: Regressing the slope of the margin-return curve on explanatory variables. 

coefficient t-statistic R2

Levels

TED spread 1.86 3.95 20%

Credit standards 0.07 11.71 69%

Dividend yield 6.19 18.61 85%

Changes

TED spread 1.53 4.54 37%

Credit standards 0.07 3.39 38%

Dividend yield 4.81 5.78 38%
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Table 4: Volatility of CDS vs. Bonds. The table shows the annualized return volatility
of CDS and bonds estimated over, respectively, the early pre-crisis sample (9/2005-6/2007),
the crisis sample (7/2007-12/2009), and the full sample. The table reports this separately for
investment-grade and high-yield securities. In both cases, CDS and bonds are about equally
volatile in the early sample, but bonds are more volatile during the crisis, consistent with
the model’s predictions that high-margin bonds have more funding liquidity risk.

CDS Bonds CDS Bonds

Early sample 0.57% 0.51% 3.73% 2.76%

Crisis 3.92% 10.26% 17.19% 20.87%

Full sample 3.02% 7.83% 13.31% 16.01%

Investment Grade High Yield
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Table 5: Betas of CDS vs. Bonds. Panel A shows the market betas of CDS and
bond returns estimated over, respectively, the early pre-crisis sample (9/2005-6/2007), the
crisis sample (7/2007-12/2009), and the full sample. The table reports this separately for
investment-grade and high-yield securities. In both cases, bonds have slightly lower betas in
the early sample, but bonds have larger betas during the crisis, consistent with the model’s
predictions that high-margin bonds have more funding liquidity risk. Panel B shows the
statistical significance of the difference between CDS and bonds using a panel regression.

Panel A: Betas estimated separately for CDS on Bonds 

CDS Bonds CDS Bonds

Early sample 0.05 -0.01 0.35 0.22

    (stand. err.) (0.01) (0.02) (0.09) (0.08)

Crisis 0.13 0.29 0.56 0.73

    (stand. err.) (0.02) (0.07) (0.10) (0.12)

Full sample 0.12 0.26 0.54 0.69

    (stand. err.) (0.02) (0.05) (0.08) (0.09)

Investment Grade High Yield

Panel B: Panel regression with CDS and bonds 
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Investment Grade High Yield
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