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Since the classic work of Breeden and Litzenberger (1978) it has been clear that option prices con-

tain valuable information on investors’ forward looking state price density function. It has been less

clear, however, if this information is any way linked to macroeconomic fundamentals that should affect

agents’ state prices. While it is intuitive that corporate stock and options prices react to corporate news,

there is also substantive evidence that they react to monetary policy shocks. For example, Bernanke and

Kuttner (2005) report that monetary policy surprises affect the stock market, while Rigobon and Sack

(2003) show that the monetary policy responds to stock returns with a greater reaction during times of

higher volatility, and more recently Bekaert, Hoerova, and Duca (2010) find a significant reaction of

options prices to lead and lag measures of monetary policy. This compelling empirical evidence though

spurs a fundamental question: What is the relation between option prices, corporate fundamentals, and

the action of the central bank? In this paper we provide a simple equilibrium model that links options

prices to fundamentals and monetary policy and provide a dynamic and time consistent methodology

to extract investors’ beliefs on the regime of the macroeconomy and central bank policy.

Before describing the model and its implications, it is useful to begin by presenting some empirical

relations between option prices and monetary policy. Our analysis focuses on two popularly quoted

market wide ‘fear’ indices constructed from options prices. The first is the implied volatility of at-

the-money (ATMIV) options, which was originally created by Whaley (1993), and it has been trading

on the Chicago Board Options Exchange under the ticker VIX since 1993.1 The CBOE describes this

index eloquently as:

One of the most interesting features of VIX, and the reason it has been called the “investor

fear gauge,” is that, historically, VIX hits its highest levels during times of financial turmoil

and investor fear. [CBOE Bulletin on VIX, 2003].

The second index is the ratio of implied volatilities of out-of-the-money put to call options (P/C), which

is a direct market assessment of downside relative to upside risk. This measure has also been studied

extensively since the work of Bates (1991) to gauge, in particular, investors’ fears about a market crash.

Quarterly time series plots of these variables for options with three months to maturity are shown in

Figure 1 for the 23-year period 1986 - 2008. Comparing the two panels in Figure 1, we see that

surprisingly the two fear measures ATMIV and the P/C are negatively related, with the ATMIV (P/C)
1In September 2003, the CBOE changed the computation method for the VIX index using a new methodology that does
not involve the Black and Scholes formula. The two measures are highly correlated.
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being generally counter (pro) cyclical. While it is intuitive that a fear index such as ATMIV is high

during downturns, it is less obvious why the downside-risk fear index P/C is high during booms and

low during recessions. Our model explains why by tying this variation to monetary policy dynamics.

Indeed, how does monetary policy relate to such “fear indices”? By way of motivation, we estimate

pairwise Vector Auto Regressions (VAR) with the fear indices and monetary policy variables. The

left panels of Figure 2 report resulting impulse responses for the historical series over the options

subsample of 1986:Q2 – 2008. The results are striking and all in one direction: fear measures lead

to sustained impacts on future monetary policy, while we do not find that monetary policy measures

have any sustained impacts on the fear measures (not shown). Indeed, the first panel shows that 3-

month Treasury rate decreases for up to eight quarters in response to a shock to ATMIV.2 Even more

interestingly, a shock to the P/C downside-risk fear measure induces the 3-month Treasury rate to

increase for up to eight quarters in the future. The latter result implies that when investors have a

higher fear of a stock market decline, future short-term rates increase. To link this discussion to a

policy-relevant fundamental variable, the bottom two panels show that indeed we obtain the same

sign impulses for fear measure shocks on capacity utilization (CU), an important determinant in the

Federal Reserve monetary policy rule. The impulse responses of CU on the fear indices are statistically

insignificant, and are not shown. Taken together, these results suggest that the central bank responds to

market fears, but actions of the central bank do not cause future fears.

This paper provides a dynamic equilibrium model of learning that links options to investors’ and

central banks’ uncertainty about fundamentals, and provides an economic explanation for these re-

lations. More specifically, our model builds on the recent literature that extracts macroeconomic in-

formation from the term structure of interest rates [see, e.g. Estrella and Mishkin (1998), Ang and

Piazzesi (2003) and Ang, Piazzesi, and Wei (2006)]. The actions of the central bank are parsimo-

niously specified by a generalized Taylor-rule, which directly links macroeconomic variables to target

interest rates set by the Federal Reserve.3 We generalize the Taylor rule by introducing three key fea-

tures, which we provide evidence for: First, we specify an unobserved regime switching model with
2In our empirical analysis, we use the 3-month T-bill rate as our short-term rate, rather than the Federal Funds rate, as the
latter is affected by banks’ default premium, which is absent in our model. The 3-month T-bill rate and the Fed Funds
rate are very highly correlated.

3The New Keynesian Economics approach shows the optimality of such rules in settings where price stickiness implies
deviations from short run full employment and capacity utilization [see, e.g. Woodford (2003)]. Gallmeyer, Hollifield,
and Zin (2005) and Bekaert, Cho, and Moreno (2010) build term-structure models using policy variables.
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composite regimes of macroeconomic and policy fundamental variables. The composite regime for-

mulation explicitly recognizes that the econometrician observes fundamental transitions only in the

presence of policy intervention. Second, we specify a learning-based Taylor rule, in which neither the

central bank nor investors observe the true trend growths of nominal as well as real variables. Agents

in the economy (investors and the central bank) are econometricians in the sense of Hansen (2007),

that is, they attempt to learn about the drift regimes of fundamentals from the fundamental realizations.

Their Bayesian learning dynamics about the regime of the economy are the key driver of our results,

as explained below. The interest rate rule is then directly built into investors’ pricing kernel to provide

joint pricing implications for the stock index, Treasury bonds, and stock index options as functions of

investors beliefs. Finally, to extend the current understanding of the effects of monetary policy on the

stock market we follow the suggestions in Lucas (2007) to allow money growth to affects transitions

between fundamental drift regimes.4 The observations of money growth affect investors’ beliefs about

future fundamental regimes, which the econometrician can extract from fundamentals and price data.

Our model sheds light on the compelling dynamic one-way relation between the fear indices and

monetary policy, discussed earlier in Figure 2. The strong evidence that the fear measures lead the

policy variables, but not the reverse, is not driven by differences in information between investors and

the central bank, as our model assumes they observe the same data and have the same information.

Instead, our analysis points to a compelling real effect of uncertainty. In fact, our model shows that a

higher ATMIV occurs when uncertainty about the current regime is high, because from Bayes formula

high uncertainty leads to faster revision of beliefs to news and thus higher return volatility. Consistent

with the real options literature, high uncertainty predicts declines in future capacity utilization as firms
4Lucas (2007) complains about the lack of use of monetary aggregates in recent models of monetary policy and recom-
mends their use in information extraction:

One source of this concern is the increasing reliance of central bank research on New-Keynesian modeling.
New-Keynesian models define monetary policy in terms of a choice of money market rate and so make
direct contact with central banking practice. Money supply measures play no role in their estimation,
testing or policy simulation. A role for money in the long run is sometimes verbally acknowledged, but
the models themselves are formulated in terms of deviation from trends that are themselves somewhere
off stage. It seems likely that these models could be reformulated to give a unified account of trends,
including trends in monetary aggregates, and deviations about trend but so far they have not been. This
remains an unresolved issue on the frontier of monetary theory. Until it is resolved, monetary information
should continue to be used as a kind of add-on or cross-check, just as it is in the ECB policy formulation
today.

Coenen, Levin, and Wieland (2005) and Beck and Wieland (2008) show that money growth can help predict real activity
when the real output and real money are economically linked but the central bank, which partially controls money growth,
receives noisy information on the former.
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delay the costly abandonment of plants and factories but instead operate below full capacity. Facing

the same fundamental uncertainty and hence predicting lower CU, the central bank reacts by lowering

the cost of capital.

Similarly, our model shows why increases in the P/C ratio predict future increases in short rates. A

direct implication of Bayesian learning is that investors downwardly revise their beliefs in response to

bad news by a larger amount in good times than in bad times. Therefore, investors’ perceive greater

downside risk in stocks in good times, or a conditionally strongly negatively skewed return distribu-

tion. The negatively skewed distribution raises the price of put options relative to call options (P/C).

However, the strong fundamental growth in good times also encourages firms to run their production

processes at full capacity, raising inflation fears. Once again, the central bank with the same informa-

tion of investors, responds to forecasts of tightening CU by raising rates. These effects also explain

why ATMIV and the P/C are negatively correlated (see Figure 1) since in periods of strong growth with

stable policy variables, investors’ overall belief volatility is low, so that the ATMIV is low.

Our model is based around the role of inflation in signaling future real activity. Essentially, corporate

earnings growth is stable at moderate levels of inflation but becomes unstable when inflation is either

too high or too low. This “Goldilocks” relationship between inflation and growth implies that the sign

of the conditional reaction of the stock market to CPI fluctuations can vary over time and is a key

mechanism for understanding several of the time-varying phenomenon we see in the options market,

and their relation to monetary policy. Indeed, we show that the central bank’s efforts to stabilize

growth and inflation implies that the key policy variables, industrial capacity utilization and money

growth, exhibit a V-shape relation with the fear measures. In particular, high ATMIV occurs both

when capacity utilization is very low or very high. For instance, high ATMIV correlates with lower

capacity utilization as firms slow down their activity in the face of high uncertainty, which lowers

inflationary pressures in the economy below regular levels. Similarly, high ATMIV also occurs when

capacity utilization is very high, as investors now fear a future slowdown of the economy. Similarly,

the growth of money supply and the ATMIV also have a V-shape relation with the fear measures, as

high money growth can result from either efforts by the central bank to stimulate the economy, or from

high money demand in times of rising inflationary expectations. Because P/C is negatively related to

ATMIV, it follows that the relations between the P/C and the policy variables are inverse V-shaped.

We find support for these nonmonotonic relations between policy variables and the fear measures in
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the data, although it is useful to note that for the post-1986 subsample of our data for which options

prices are available, there were few periods of very high capacity utilization. These nonlinearities are

central to our analysis because as we report, most macro fundamental variables explain low amounts of

variation in the fear indices in linear regressions. Instead, our model which builds on this nominal-real

interaction explains about 50 percent of the variation in the two fear indices and explains their negative

relation.

We fit the parameters of our structural model with an overidentified Simulated Method of Moments

(SMM) procedure, which uses the likelihood of observing the fundamentals as well as stock, Treasury

bond, and options prices to extract investor’s beliefs. It is important to note that when analyzing pricing

relationships we consider a single process of uncertainty over time to gauge the success of our model

in explaining the time-series variation in fundamentals and asset prices so that investors’ beliefs are

extracted from asset prices in a dynamic and time consistent way. This distinguishes our work from

related work on options with learning that resets the model uncertainty in each period to some proxy of

uncertainty in the data and focuses on conditional reactions in options prices.5

While our estimation method explicitly uses the two fear indices as overidentifying moments, the

uncertainty process of the model has additional implications for the volatility of stock market volatility,

which we discuss next. The first, as noted by Jones (2003), is that during periods of high ATMIV,

ATMIV also fluctuated rapidly, that is, there is a positive relationship between volatility and absolute

changes in volatility. Jones (2003) points out that this stylized fact is incompatible with the Heston

(1993) stochastic volatility model, and instead requires an explosive volatility process (one which vio-

lates certain regularity conditions). We show that our model volatility process instead is nonexplosive,

but still displays the correlation of similar magnitude to that in the historical series. We further explic-

itly show that the absolute changes in ATMIV are driven by the models’ volatility of volatility process.

The intuition on why the model provides the correct correlation rests on the in-built dynamics under-

lying Bayes’ law. In periods of greater uncertainty (and hence volatility), investors also update their

beliefs faster, creating the positive relation between volatility and its absolute changes.
5 For example Guidolin and Timmermann (2000) and Buraschi and Jiltsov (2006) study option prices and volume in models

with learning about fundamentals. Dubinsky and Johannes (2006) study the reaction of options prices on individual stocks
to news about earnings. Benzoni, Collin-Dufresne, and Goldstein (2005) show that the increase in investors’ perception
about the average jump size of stock prices led to a steepening of the implied volatility smirk after the stock market crash
of 1987, but do not study its time variation in subsequent years. In a paper related to ours, Shaliastovich (2008) models
investors’ non-Bayesian (behavioral) learning about the long run drift of consumption to generate the smile, but does not
study its time series fit to data series.
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The second statistic that we take our model implications to is the implied volatility premium, which

is the difference between implied volatility and the expectation of volatility under the objective mea-

sure. The volatility premium is currently one of the most actively researched statistics in empirical op-

tion pricing, and we show that our model volatility premium explains economically significant amounts

of variation in two estimates of the historical volatility premium. We break up the implied volatility

premium in the model into its components arising from a risk premium for bearing volatility risk and

from the fact that the return distribution in our model is non-Gaussian. Each of these components

implies that implied volatility is higher than the volatility forecast. We show that the risk premium

component, is very highly correlated with the volatility of volatility, which is consistent with volatility

being a systematic factor with a negative beta as has been noted in previous research [see e.g. Buraschi

and Jackweerth (2001) and Bakshi and Kapadia (2003)]. The non-Gaussian component has a smaller

correlation, which results mainly due to the fatness in tails of the return distribution created by the

continuous variation in investors’ beliefs.

Related Literature
Besides the literature on option prices with learning in footnote 5, this paper contributes to a small

set of papers that provides economic explanations of the implied volatility curve for options.6 Bollen

and Whaley (2004) and Garleanu, Pederson, and Poteshman (2008) find that net buying pressure affects

the prices of options for several days as market makers fail to provide options at no-arbitrage prices, but

charge for the residual risk due to the limits to arbitrage. In addition to focus on lower frequency data

and explaining the entire time series of options prices, we do not depart from the no-arbitrage frame-

work. Among theoretical explanations for smirks, Liu, Pan, and Wang (2005) study the implications

for ambiguity about rare event risk that raise the prices of puts relative to calls. Drechsler (2008) and

Du (2010) provide calibrated models with time-varying ambiguity and with jumps with habit formation
6 There is also a large literature that explains the volatility smile by assuming exogenous processes for stock prices, volatil-

ities, and jumps. Indeed, since the classic work of Black and Scholes (1977) the major innovations have been the addition
of stochastic volatility [see, e.g., Hull and White (1987) and Heston (1993)], jumps in prices [see e.g. Bates (1996) and
Bates (2000), and Pan (2002)], and jumps in volatility [see, e.g. Eraker, Johannes, and Polson (2003)]. A tremendous
amount of empirical work has been done on these extensions of the BS formula that has enriched our understanding of
stock price dynamics, and of options returns. Bakshi, Cao, and Chen (1997) provides a specification analysis of some of
these models. Among more recent innovations, Christoffersen, Jacobs, Ornthanalai, and Wang (2008) build multi-factor
stochastic volatility models, and somewhat related to our paper, Polson, Johannes, and Stroud (2008) price options when
exogenously specified volatility follows an unobserved process that investors learn about. Constantinides, Jackwerth, and
Perrakis (2008) find that several exogenously specified volatility models, such as GARCH, can be rejected as possible
data generating processes for S&P 500 index options.
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preferences, respectively, to generate the left skewed implied volatility smile, but neither paper studies

the time series properties of the smile, nor their interaction with monetary policy.

Our work also complements the papers constructing structural models of options prices to under-

stand the volatility premium. Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2010) and

Eraker (2008) construct equilibrium models with ‘long term risks’ in the consumption process to un-

derstand the size of the IVP and some of its unconditional moments. In work related to ours, Baekert

and Engstrom (2010) model the time variation in higher order moments of fundamentals to generate a

volatility premium. This paper uses habit preferences to generate time variations in the price of risk.

Unlike these papers, we shut off both the fundamental heteroskedasticity and time varying risk aversion

channels in generating the volatility risk premium. As we will show, most of the time variation in the

volatility premium in our model arises from variations in two fundamental uncertainties, which affect

the speed of revision of beliefs and the volatility of stock market volatility. In particular, the volatil-

ity premium and hence the richness of option prices, is driven most strongly by investors’ uncertainty

about firms’ earnings, and the uncertainty about money growth, which is an important signal for the

stability of economic growth.

The layout of the paper is as follows. In section 1, we provide the structure of the model and derive

some key pricing results. In section 2 we estimate the parameters of our model using an overidentified

simulated method of moments procedure. In section 3, we study the ability of our model to explain

the two fear indices, and in section 4, we study its ability to understand the volatility of stock market

volatility and the volatility premium. Section 5 concludes. Two technical appendices provides proofs

of technical results and the estimation methodology, respectively.

1. Structure of the Model

Our main assumption throughout the paper is the drift rates of the fundamental processes are driven by

an N−regime, continuous time, hidden Markov chain process. It is useful to describe this process first.

We denote by st the regime at time t, where st ∈ {s1, .., sN}, and we let Λ denote the Markov chain

infinitesimal generator matrix. That is, over the infinitesimal time interval of length dt

λijdt = prob
(
st+dt = sj|st = si

)
, for i 6= j, λii = −

∑

j 6=i

λij.
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We assume that all agents in our economy, both investors and the central bank, do not observe

the realizations of st but learn about it from the observation of numerous signals, including realized

fundamental variables. Given an information filtration {Ft} generated by such signals, we denote the

agents’ common beliefs at time t about regime si as

πit = prob(st = si|Ft), i = 1, ..., N (1)

Lemma 1 below characterizes the dynamics of the vector πt = {π1t, ..., πNt}, but before we introduce

the learning result, we need to introduce the rest of the model.

There is a single homogeneous good in the economy whose price, Qt, follows:

dQt

Qt
= β(st) dt + σQ dWt, (2)

where Wt = (W1t,W2t,W3t,W4t,W5t)
′ is a 5-dimensional vector of independent Weiner processes,

inflation volatilities are summarized in 1 × 5 constant vector σQ = (σQ,1, 0, 0, 0, 0), and the drift rate

β(st) depends on the realization of the (hidden) regime st.

The main real corporate fundamental in the economy is the process of real earnings, Et, which

follows the jump-diffusion process

dEt

Et
= (θ(st) − κ ξ1) dt + σE dWt, +(eY1t − 1) dLt (3)

where fundamental volatilities, σE = (0, σE,2, 0, 0, 0), are constant over time, the drift rate θ(st)

depends on the realization of the regime st,Lt is the counter of a Poisson process with constant intensity

κ, i.e. Prob(dLt = 1) = κ dt, earnings growth conditional on a jump has a distribution Y1t which

is i.i.d. normal with mean µ1 and volatility σ1, and ξ1 = eµ1+0.5σ2
1 − 1. The regime process, st,

the Brownian Motions, Wt, and the jump process Lt are all independent of each other. Under the

assumption of continuous observation of fundamentals, and hence their quadratic variation processes,

investors can perfectly observe jumps. In our model, jumps to earnings play three important roles:

First, their inclusion permits a better estimation of the earnings process, which we will see has some

large negative outcomes in our sample. Second, negative mean jumps will be shown to increase the

average put-call implied volatility ratio (P/C), and, third, they increase the average volatility premium
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priced in options in our sample. It is important to note however that we model i.i.d. jump sizes and

constant jump intensity so that the modeled jumps in themselves are unable to explain the time series

variation in either the P/C or the volatility premium, which is instead the subject of our paper.

The next important fundamental in the economy is de-meaned industrial capacity utilization (CU),

Kt which follows the process

dKt = ρ(st) dt + σK dWt, (4)

where σK = (σK,1, 0, 0, σK,4, 0), is assumed known by investors and the drift ρ(st) depends on the

realization of of the regime st. Note that unlike the other state variables, CU is stated in levels, and

hence can become negative. The use of CU improves the term structure fit of our model. We will

comment on the nonzero instantaneous correlation between CU and inflation in Section 2.

The final state variable in our model is aggregate real money in the economy, Ht, which follows

dHt

Ht
= ω(st) dt + σH dWt, (5)

where σH = (0, 0, 0, 0, σH,5) and the drift ω(st) depends on the regime st. We emphasize that Ht

is the equilibrium quantity of real money in the economy determined both by its demand and supply.

It is also useful to note that while ours is not a full structural model in which the quantity of money

is endogenously determined, the statistical properties of dHt/Ht affect agents’ beliefs’ dynamics, and

thus equilibrium prices.

1.1 The Central Bank Policy Rule

We assume that all agents, investors and central bank, observe the same data and thus have the same

information about the regime of the economy. Thus, the regime probabilities πit defined in (1) are

common across all agents. We assume that the central bank sets the real rate of the economy φ̄t by

using a forward looking Taylor rule, namely

φ̄t = α0 + αβ

�
[
dQt

Qt
|Ft

]
+ αρ

�
[dKt|Ft] . (6)
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where the expectations are taken with respect to all of the information available at time t, Ft.7 The

second and third terms of the real rate capture the essential elements of the Taylor rule, which posits

that the central bank increases rates in response to increases in expected inflation and the expected real

slack in the economy [see Taylor (1993)]. Our policy rule is hence ‘forward-looking’ in the sense of

Clarida, Gali, and Gertler (2000), who suggested replacing current and/or lagged values of inflation

and the output gap by their forward-looking conditional expectations. A significant contribution of

our analysis is to jointly estimate the expectations from corporate earnings as well as regular macroe-

conomic variables, so that there is interaction between uncertainty in the corporate sector and central

bank policy. In addition, following the assumption in Rudebusch and Wu (2008) we use the industrial

capacity utilization series obtained from the Federal Reserve Board rather than the output gap, in the

original Taylor rule.

We finally note that in standard Taylor rules, the central bank sets the nominal interest rate.8 In our

model, we will show that the inflation risk premium is constant, so the policy rule can equivalently be

written as setting of the nominal rate by adding expected inflation and the inflation risk premium on

both sides of equation (6).

1.2 No Arbitrage Pricing

To build the policy rule of the central bank into a no-arbitrage framework, we follow Ang and Piazzesi

(2003) and Piazzesi (2005) in specifying a state price density to price all cash flows in our model. Let

Mt be the state price density at date t. As in the modern classic asset pricing theory (see, e.g. Cochrane

(2001)), a generic random real cash flow {Dt} is priced as

MtPt =
�
[∫ ∞

t

MsDs ds|Ft

]
. (7)

7We allowed for a generalization the Taylor rule to let interest rates directly be impacted by money growth but did not
estimate a significant effect.

8The original Taylor rule [see Taylor (1993)] is it = πt + r∗t + aπ(πt −π∗

t ) + ay(yt − ȳt), where it is the target nominal
rate, πt is the realized rate of inflation, r∗

t is the assumed equilibrium real rate of interest, π∗

t is the desired inflation rate,
yt is the log of GDP, and ȳt is the log of potential GDP.
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It is convenient to first write the process of the state price density in terms of the original hidden

Markov process st and Brownian motions Wt. We specify Mt taking the form

dMt

Mt
= (−φ(st) − κ ξ2)dt − σM dWt + (eY2t − 1) dLt, (8)

where φ(st) denotes the real rate conditional on observing the regime (see discussion below), σM =

(σM,1, σM,2, σM,3, σM,4, σM,5) is a 1 × 5 constant vector of the market prices of risk, Lt is the same

Poisson counter as in the earnings process in (3), Y2t has an i.i.d. normal distribution with mean µ2 and

volatility σ2 and perfectly correlated with Y2t, and ξ2 = eµ2+0.5σ2
2 − 1. Note that the jumps in earnings

are systematic since they are correlated with the marginal utility of the representative investor in the

economy. We note that constant prices of risk also arise in a simple Lucas (1978) economy with no gov-

ernment where the representative agent has constant relative risk aversion, and where the fundamental

volatility of consumption (dividends) is constant. This assumption along with the homoskedasticity of

fundamentals ensure that all fluctuations in volatilities and premiums in our model arise endogenously

due to learning and not from either time variation in risk aversion or built-in fundamental heteroskedas-

ticity.

To ensure no-arbitrage, the expected drift rate of the state price density must equal the real rate φ̄t

in (6), so that we impose
�
[
dMt

Mt
|Ft

]
= −φ̄tdt

Since investors and the central bank have the same information, this no arbitrage restriction is naturally

obtained by requiring that regime by regime:9

φ(st) = α0 + αβ β(st) + αρ ρ(st).

1.3 Learning Dynamics

For notational convenience, we stack the fundamental processes (2), (3), (4), and (5) that are observed

by the econometrician as signals in a vector dYt =
(

dQt

Qt
, dEt

Et
, dKt,

dHt

Ht

)′
, so that

dYt = %(st) dt + Σ4 dWt + J4t dLt, (9)

9Indeed, from (8): − �
h

dMt

Mt
|Ft

i

= � [φ(st)|Ft] = α0 + αβ � [β(st)|Ft] + αρ � [ρ(st)|Ft], which yields (6).
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where the drift vector process is %(st) = (β(st), θ(st) − κξ1, ρ(st), ω(st))
′, the volatility matrix is

Σ4 = (σ′Q, σ
′
E , σ

′
K , σ

′
H)′, and the vector of jump sizes is J4t = (0, eY1t − 1, 0, 0, ). In particular,

note that we assume the econometrician does not observe investors’ state price density Mt. Agents

in the economy, instead, observe both signals dYt and dMt and we denote the full set of signals as

dZt =
(
dY ′

t ,
dMt

Mt

)′
, which has the drift vector ν(st) = (%(st)

′,−φ(st) − κ ξ2)
′, volatility matrix

Σ = (Σ′
4, σ

′
M )′, and jump size of Jt = (J ′

4t, e
Y2t − 1)′.

The following Lemma characterizes the dynamics of beliefs πit = prob(st = si|Ft). For notational

convenience, we denote the drift of the signal vector dZt in regime i by νi = ν(si).

Lemma 1. Given an initial condition π0 = π̂ with
∑N

i=1
π̂i = 1 and 0 ≤ π̂i ≤ 1 for all i, the

probabilities πit satisfy the N-dimensional system of stochastic differential equations:

dπit = µi(πt)dt+ σi(πt)dW̃t, (10)

in which µi(πt) = [πtΛ]i, σi(πt) = πit [ νi − ν(πt)]
′ Σ′−1

, (11)

ν(πt) =

N∑

i=1

πit ν
i =

�
t (dZt|Ft) , and

dW̃t = Σ−1[dZt − JtdLt − ν(πt)] = Σ−1 (νt − ν(πt))dt + dWt. (12)

Moreover, for every t > 0,
∑N

i=1
πt = 1.

This filtering result is a straightforward extension of the Wonham filter (see Wonham (1964)), which

characterizes the Bayesian learning about the hidden drift with Brownian noise. In the setup here, the

observed fundamental vector process has observable jumps in some elements, which do not affect

investors’ beliefs about the hidden drift. In particular, the high frequency variation in investors’ beliefs

is driven by investors’ inferred shocks, dW̃ , in equation (12) as opposed to the true shocks, dW, which

affect fundamentals. It is also possible to write the fundamental process vector dZt = νtdt+ ΣdW +

JtdLt = νtdt + Σ[dW̃ − Σ−1 (νt − ν(πt))dt] + JtdLt = ν̄(πt)dt + ΣdW̃ + JtdLt. The right hand

side of (12) also reveals that the inferred shocks process dW̃ , does not depend on the jump parameters,

since investors are able to observe jumps which thus do not affect their inference about st.

The first application of the Wonham filter in financial economics, as well as several properties of the

filtering process, are derived in David (1997). We find it useful to recall that a main advantage of this
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modeling strategy as opposed to the more commonly used Kalman filter is that investors uncertainty

(conditional variance of expectations about the drift terms) fluctuates forever, while in the Kalman

filter, this uncertainty converges to a constant. The fluctuating confidence (inverse of the conditional

variance) is the driver of the fear indices that we seek to explain in this paper.

1.4. Stock Prices and the Term Structure of Interest Rates

The following proposition provides expressions for the price-earnings (henceforth P/E) ratio and the

nominal bond price:

Proposition 1.

(a) The P/E ratio at time t is

Pt

Et
(πt) =

N∑

j=1

Cj πjt ≡ C · πt, (13)

where the vector C = (C1, .., CN ) satisfies C = A−1 · 1N ,

A = Diag(φ1 − θ1 +σM σ′E −κ(ξ3 − ξ1 − ξ2), · · · , φN − θN +σM σ′E −κ(ξ3 − ξ1 − ξ2)) − Λ. (14)

(b) The price of a nominal zero-coupon bond at time t with maturity τ is

Bt(πt, τ) =

N∑

i=1

πitBi(τ), (15)

where the N ×1 vector valued function B(τ) with element Bi(τ) = E
(

Mt+τ

Mt
· Qt

Qt+τ
|νt = νi

)
is given

by

B(τ) = Ω eω τ Ω−1 1N . (16)

In (16), Ω and ω denote the matrix of eigenvectors and the vector of eigenvalues, respectively, of the

matrix Λ̂ = Λ − Diag(r1, r2, · · · , rn), where each ri = ki + βi − σMσ
′
Q − σQσ

′
Q, is the nominal rate

that would obtain in the ith regime, were the regimes observable. In addition, eωτ denotes the diagonal

matrix with eωiτ in its (i, i) position.
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The proof for stocks is in the appendix. The proof for bonds follows from a simple extension of the

proof in a similar setting in David and Veronesi (2009). The stock price formula has a similar form

to that developed in the pure diffusion setup of David and Veronesi (2009) and further intuition on the

formula is provided there. The major difference here is the jump risk in earnings and kernel, which

is priced, and adds to the equity risk premium. The constant Ci is the P/E as in the Gordon growth

model. In contrast to stocks, bond prices do not jump since the belief processes are continuous and the

main bond fundamental, inflation, is continuous. It is useful to note that the actual dynamics of stock

and bond prices here are quite different from those in David and Veronesi (2009) since they are in part

determined by policy variables, not in their paper, and in addition, stock prices can jump.

Let P n
t = Pt ·Qt be the nominal value of stock, where Pt is the real value of stocks in Proposition

1. Using the dynamics of the inflation and earnings processes under the observed filtration, we now

formulate the nominal return processes for stocks and bonds.

Proposition 2.

(a) The nominal stock return process under the investor’s filtration is given by

dP n
t

P n
t

(πt) = (µn(πt) − δ(πt)) dt + σn(πt) dW̃t + (eY1t − 1) dLt,

where δ(π) = 1/(C · πt) is the earnings yield, and the nominal stock price volatility is

σn(πt) = σE + σQ +

∑N
i=1

Ci πit (νi − ν(πt))
′(Σ′)−1

∑N
i=1

Ci πit

. (17)

The proof follows from a simple adaptation of the proof in Veronesi (2000) and an application of

Ito’s formula for jump-diffusions. Asset volatilities have exogenous as well as learning-based compo-

nents, which depends on the volatility of each regime probability πi. We will discuss these further in

the empirical sections of this paper.
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1.5 Return Volatility and its Dynamic Properties

A key variable for understanding a number of features of options prices is the volatility of stock vari-

ance. We develop its properties here. We start by introducing the following notation. Let

π◦i =
πiCi

ΣN
j=1

πj Cj

(18)

As in Veronesi (2000), we call π◦ = (π◦1 , ..., π
◦
n) the value-weighted probabilities (notice that π◦

i ≥ 0

for each i and
∑N

i=1
π◦i = 1,). From now on, a “◦” denotes a quantity computed with respect to the

distribution π◦. For example, θ◦ denotes the mean of the drift vector θ computed using the distribution

π◦ (whereas e.g. θ̄ denotes the mean drift vector computed using the original distribution πt), and

σθβ =

N∑

i=1

πi(θi − θ)(βi − β); and σ◦θβ =

N∑

i=1

π◦i (θi − θ
◦
)(βi − β

◦
) (19)

are the covariances of the drift vectors θ and β computed using π and π◦, respectively. In addition we

denote σθν and σ◦θν to be the vectors of covariances of θ with each element of the vector ν using the

two sets of probabilities respectively. We then have:

Proposition 3 (a) Stock return variance is given by

V = σn(πt)σ
n′

(πt) = (σE+σQ)(σE+σQ)′+(ν̄◦−ν̄)′(ΣΣ′)−1(ν̄◦−ν̄)+2 [(θ
◦−θ)+(β

◦−β)] (20)

(b) Return variance V follows the process dV = µV dt + σV dW̃ , where σV =

2

[∑

i

(
[π◦i (νi − ν◦) − πiνi]

′(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′
)

+ (σ◦θν
− σθν

)′ + (σ◦βν
− σβν

)′

]
Σ

′−1

(21)

(c) The volatility of stock volatility is

σσ = 0.5
σV√
V

(22)
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The proposition implies that return variance is stochastic and so is the covariance between return

and variance, given by

Cov
(
dV,

dS

S

)
≡ σV σ

′
S, (23)

where stock volatility is in (17) and and the volatility of variance in (22). We will see below in Section

3 that for our calibrated model this covariance can change sign and magnitude leading to changes in

the slope of the implied volatility curve for options prices.

We finally show that the stock price process in our model satisfies important regularity conditions,

which guarantee the solutions to the to the option pricing partial differential equation as well as estima-

tion of the likelihood function. These conditions will be useful to compare the properties of our model

with standard option pricing models in Section 4.

Proposition 4 The stock price process, P n
t , in Proposition 2 satisfies global Lipschitz and growth

conditions.

1.6 Option Prices

To formulate options prices we need to provide the process for the stock index under the risk-neutral

measure, which we provide below:

Proposition 5 The stock price under the risk-neutral measure follows:

dP n∗
t

P n∗
t

(π∗t ) = (µn(π∗t ) − δ(π∗t )) dt + σn(π∗t ) dW̃
∗
t + (eY

∗

1t − 1) dL∗
t ,

dπ∗t = (µ(π∗t ) − ϑ(π∗t )) dt+ σ(π∗t ) dW̃
∗
t ,

where dW̃ ∗
t = dW̃t + (σM + σQ)dt, L∗

t is the counter of a Poisson process with intensity κ∗ =

κ · eµ2+.5σ2
2 , and Y ∗

1t is distributed N(µ1 + σ1σ2, σ
2
1). Finally the market price of risk of the belief of

regime i, which is the covariance of πi with the nominal pricing kernel is given by

ϑi(π
∗
t ) = π∗it

(
(βi − β̄(π∗t )) − (φi − φ̄(π∗t )

)
. (24)

The proof is in Appendix 1.
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We appeal to the Feynman-Kac formula to use Monte-Carlo simulations to evaluate the expectation

f(t, πt, P
n
t ) =

� Q

[
exp

(
−
∫ T

s=t

r(πs)ds

)
g(P n

T , πT )

]
. (25)

We use some variance reduction techniques for efficiency. The advantage of the simulation method is

that it does not suffer from the curse of dimensionality, which would be the case if we directly attempted

to solve the fundamental PDE for derivatives prices. Details of the simulation procedure are provided

in Appendix 2.

2. Estimation

Ours is a regime switching model in which the regime st affects the drift rates of four different fun-

damental series. This feature of our model is important as it introduces an important low-frequency

comovement of fundamental variables in addition to the high frequency Brownian shocks. For exam-

ple, we will see that earnings growth is more stable in period of moderately low inflation and is unstable

when the inflation drift is either too high or too low. In addition, the persistence and transition between

regimes is partly determined by the central bank’s efforts to stabilize the economy, a feature captured

in our model by the joint specification of macroeconomic and policy variables regimes. An important

feature of our methodology is that asset prices in the model are functions of both macro and policy

variables and are are used by the econometrician to back out investors’ beliefs about these regimes.

2.1 Estimation Methodology

It is important for the goal of this paper to extract investors’ beliefs in a dynamic, forward-looking,

and time-consistent manner. This is accomplished by using an overidentified Simulated Method of

Moments (SMM) of the learning model, in which the structural parameters are constant over time, but

the arrival of new information leads to investors updating their beliefs about the composite regimes

of macro and policy variables. We (the econometricians) estimate the model by using information in

fundamentals (macro and policy), and market prices (stock, bond, and options). Fundamentals are

included since investors’ information sets clearly contain the history of all fundamental data. However,

since investors’ information sets are likely to be considerably richer than the history of fundamentals,

we attempt to extract their forward-looking beliefs embedded in asset prices at discrete (quarterly)
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points of time. It is important to note that the SMM likelihood function of observing the fundamentals

is exactly identified by all the structural parameters. It follows that all asset prices used in the procedure

are overidentifying restrictions on the model, and lead to an omnibus test of the model. In fact, we

use the objective function to guide us on the number and specification of the composite regimes of

fundamentals and essentially use a stopping rule when the model is no longer rejected. Details of the

SMM procedure are available in Appendix 2.

2.2 Data Description

Our data sample runs from 1967 to 2008. The definitions of the fundamental series are as follows.

Aggregate quarterly earnings for the economy are approximated as the operating earnings of S&P 500

firms, and these data are obtained from Standard and Poor’s. Dividends for these firms, also obtained

from Standard and Poor’s, are used with the prices to compute returns. The other three fundamentals,

the Consumer Price Index (CPI), Industrial CU and money (M1) are obtained from the Federal Reserve

Board.

Stock prices are obtained from S&P and P/E ratio is estimated as the equity value of these firms

divided by their operating earnings. The time series of zero-coupon yields and returns on Treasury

bonds of different maturities are obtained from the Fama-Bliss data set available at the University of

Chicago. Options data are obtained from two sources. We obtain transactions data on S&P 500 index

options from 1986:Q2 to 1996:Q1 from the CBOE. These data are no longer available from 1996:Q1,

and therefore, we use data on these same options from Option Metrics from 1996:Q2 to 2008:Q3. It

is important to note that Option Metrics provide the average of bid and ask prices at the end of each

trading day, and not prices based on actual transactions. Prices at the beginning of each quarter are

fitted with fundamental data available at the end of the previous quarter. Since the well known VIX

index hit its record in the fourth quarter of 2008, while Options Metrics stopped supplying its data in

the third quarter, we approximated the 2008:Q4 ATMIV by using the VIX for this quarter. For our

sample the VIX and our ATMIV measure had a correlation of over 90 percent, so the approximation

error here should be small.
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2.3 Estimation Results for the Regime Switching Model

In this subsection, we briefly describe the results of the estimation of our model The procedure in the

Appendix 2 finally settles on N = 8 regimes. Although eight regimes seems like a large number, we

should recall that we have four fundamental variables (inflation, real earnings, capacity utilization, and

money growth): Note that if each variable were to have two regimes, and the regimes were indepen-

dent across variables, we would end up with 24 = 16 regimes overall. Our eight composite regimes

accomplish our goal of inducing important low-frequency comovement across these four variables.

The fundamental composite regimes that we estimate are provided below, and investors’ conditional

probabilities of these regimes are in Figure 3.

Regime s1: (β = 1.5%, θ = 6.1%, ρ = 1%, ω = 1.2%). This is the “regular boom” regime of the economy.

Inflation is low, earnings growth is strong, and the policy variables are just above their average

levels, which are all conditions for stability in future fundamentals. Investors believed on average

that this regime is the most likely to be in the sample period, and in particular during non-

recessionary periods as classified by the NBER.

Regime s2: (β = 6.5%, θ = −5.2%, ρ = 1%, ω = 5.3%). This is “regular recession” regime. Inflation is at

a medium level, earnings are shrinking, CU is above average, but money growth is very strong.

The strong money growth is consistent with stimulative efforts by the central bank, but also with

high demand for money that is pushing up goods prices. The filtered probability of this regime

was at its maximum in the 1982 recession, at about 50 percent. In the past three recessions, the

probability of this regime has been small.

Regime s3: (β = 6.5%, θ = 6.1%, ρ = 8.7%, ω = 1.2%). This is the “over-heating” regime. In this regime,

earnings growth is still strong, while the other fundamentals warn of impending trouble. Inflation

hits a medium level, CU is unusually tight, although money growth remains mild, likely as the

central bank has not decided to intervene yet. The filtered probabilities suggest that this has been

the second most likely regime in the sample, and fears of it have it have sporadically increased

in most boom periods in the sample.

Regime s4: (β = 9.1%, θ = −5.2%, ρ = −2.5%, ω = −5.7%). This is the “stagflation” regime. In this

regime, fundamentals are at about their worst shape, with high inflation, low profit growth, low
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CU and very low money growth. The low money growth is consistent with attempts by the central

bank to rein in inflation. Investors’ filtered probability of this regime peaked around the 1981

recession, and did not fully subside until the end of the following recession in 1983. Notably, the

belief of this regime increased to nearly 10 percent, before deflation expectations set in the 2008

financial crisis.

Regime s5: (β = 1.5%, θ = 7.7%, ρ = 1%, ω = −3.1%). This is the “new economy” regime. Earnings

growth is at its most rapid, inflation and capacity utilization are low, but money has tightened

likely a reflection of the central bank’s efforts to moderate growth. Investors’ probability of

this regime peaked at about 50% in the late 1990s, but crashed during the 2001 recession as

investors’ hopes of the new economy tanked. There was a mild increase of this probability in the

boom period in the 2000s, which again tanked in the 2008 recession.

Regime s6: (β = −0.2%, θ = −5.7%, ρ = −6.6%, ω = 5.3%). This is the “deflation” regime of the econ-

omy, in which earnings shrink at their most rapid rate in the cycle. CU is 6.6% below its historical

average, and money growth is very rapid as the central bank attempts to stimulate growth. In-

vestors’ deflation expectations have spiked in the recessions of the current millennium, but were

also high after the 1982 recession after the Fed’s efforts to tame strong inflation expectations.

Regime s7: (β = 6.5%, θ = −5.2%, ρ = −6.6%, ω = −3.1%). This is a “deep recession” regime, in which

inflation and earnings growth are similar to those in the mild recession (regime 2), but CU is

very low and money shrinks, which likely results as monetary policy is no longer effective in

stimulating the economy. Investors’ filtered probability of this regime was at its highest after the

oil price induced recession in 1973, but has also been as high as 30% in the current recession.

Combined with their high deflation probability in this period, investors’ inflation uncertainty has

been very in this recession.

Regime s8: (β = 1.5%, θ = 6.1%, ρ = −6.6%, ω = 5.3%). We call this the “low capacity boom” regime of

the economy in which inflation and earnings growth are as in the regular boom regime (regime

1), however, the growth seems shaky since CU is very low and money growth is very strong

likely as a result of very proactive stimulative efforts by the central bank. Investors’ probability

of this regime hit close to 30 percent in the recovery periods following recessions in the early

1970s and mid 1980s, and was even higher in 2000s prior to the most recent recession. The high
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money growth in this period is consistent with the easy credit regime that is oft cited as the cause

of the increase in stock and house prices in this decade.

The uncertainty of investors is generated in large part by their estimations of transitions between

regimes, which we show in the top and middle panels of Table 2. In the top panels we see how inflation

interacts with earnings stability. In the boom regimes with low inflation (regimes 1,5 and 8), investors’

estimate only a 1.2 percent chance of a recession in the next year, while in regime 3, when earnings

are still booming, but inflation heats up to a medium level, the transition to a recession regime in the

following quarter rises to about 8.5 percent. The role of low CU in affecting transitions can be seen by

comparing the annual transitions in the regular (regime 2) and deep (regime 7) recession regimes to the

deflation regime. Indeed, the risk of entering deflation rises from about 0.5 from the regular recession,

to about 7.7 percent from a deep recession, when CU is extremely weak, which explains the spike in

deflation fears in the two recessions of the current millennium. The middle panel of the table, shows

the 5-year transitions between regimes, which show the medium-term risks to fundamentals. Notable

among these transitions, is the large persistence of the new-economy growth regime, which suggests

that even after five years, investors expect to remain in that regime with a probability exceeding 92

percent. It is also relevant to point out that the estimated persistence of the deflation regime is the

lowest among all regimes. This estimate likely arises from the fairly rapid recovery of industrial CU

from its troughs, which we have seen in our sample that began in 1967.

2.4 Estimation Results for the Taylor Rule and State Price Density

We next turn to the parameter estimates determining the pricing kernel. As shown in Table 1, the

interest rate rule parameters suggest that the real rate in the economy depends positively on both the

hidden regime of inflation αβ = 0.362 and αρ = 0.257. We note that these estimates are similar to

estimates of the Taylor rule in many other papers and indeed Taylor’s own work suggested values of

each parameter of 0.5. It is useful to remember that in our model we use industrial CU rather than the

output gap used by Taylor, and the rates depend on the expected drifts of the variables rather than the

variable realizations themselves.

The next line in Table 1 shows the prices of risk. Most notably, the prices or risk of the earnings

shock, the CU shock, and kernel shock itself are all positive and large (around 0.3), however, the

prices of risk of the inflation and money growth shocks are small. The inflation shock has a positive
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price of risk, while the money growth shock has a negative price of risk. As we see in our plot of the

fundamental series, money growth is strongly countercyclical, and investors estimate that their marginal

utility increases in periods with high money growth.

2.5 Model Fit to the Data

Using the time series of investors’ regime probabilities in Figure 3 and the estimated parameters, we

generate time series of model-implied expected fundamental growth and stock and Treasury bond prices

in Figure 4. We start by making a few comments about the trends in fundamentals. As noted by

several authors, inflation has largely trended downwards since the early 1980s, even though it picked

up before the 1991 and 2008 recessions. Very notably, the CPI fell by nearly 2 percent in the recent

recession, fanning deflation fears. Earnings is the most volatile of the fundamental series, and has

witnessed massive drops of 15 and 25 percent in the past two recessions, and has generally fallen by

smaller amounts in all past recessions in the sample. The other real fundamental, de-meaned industrial

CU, is also highly procyclical. It is smoother than the other series, and our model fits it very closely

throughout the sample, except perhaps at the end of the 1982 recession, when it fell far more than

predicted by the model. As is perhaps evident from comparing the first and third panels, CU and

inflation are positively correlated (correlation of nearly 35 percent). Indeed for much of the 1970s,

there was high CU accompanied by high inflation. The demise of inflation in the 1980s resulting

from high interest rates also choked off CU. More recently in the 2000s, deflation fears resulting from

low or falling CPI also accompanied very low CU. The final fundamental in the bottom panel, real

money growth shows some interesting comovements with the business cycle, which our model captures

correctly. In the 1970s, money growth was tightened during recessions, while in the recessions of the

2000s, money growth grew very rapidly. The different policy response in these recessions is likely

in part determined by the different trends in CU in these recessions noted above and highlights the

interdependence between the different fundamentals.

As noted, the model expected growth rate of the fundamentals seem to track the major trends in

realized fundamentals quite closely. The fits of the model are reported in Table 3. The model expected

growth rate explains 62, 16, 75, and 37 percent of the variation in the realized fundamental for infla-

tion, earnings growth, capacity utilization, and real money growth, respectively. We note that our SMM

procedure, which maximizes the likelihood of investors observing the historical fundamental processes,
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does not have an explicit prediction on the fitted actual fundamentals in each period, but instead charac-

terizes expected fundamental growth. Therefore, these fits reflect not simply the accuracy of our model,

but in addition, investors’ estimates on the fraction of variation in fundamental growth that is related

to shifts in trend growth rates as opposed to purely idiosyncratic variation. So, e.g., earnings growth is

the most volatile fundamental, and the model explains the lowest amount of its variation, while CU is

the smoothest, and the model explains most of its variation. Also note that the regression coefficients

in the expectations regressions are between 1.3 and 2.2 so that actual fundamentals are more volatile

than their expectations.

The ability of the model to replicate the fluctuations in stock and Treasury bond prices is displayed

in Figure 5 and the fit statistics are reported in Table 3. The model explains most fluctuations in the

S&P500 P/E ratio, in particular the single digit P/Es in the late 1970s and early 1980s, the return to

high teens levels in the 1980s, the rapid rise to over 25 in the late 1990s. and the decline in the 2000s

again, overall explaining about 60 percent of the historical variation. The middle and bottom panel

shows that the model is also quite successful in explaining most of the variation in the short rate and

the slope of the term structure of Treasuries. The use of a Taylor-type rule is mostly instrumental in

explaining the sharp dips in short rates following most of the recessions, although notably, the model

short rate recovered more rapidly than the historical series in the early 1990s and the 2000s. In addition,

the historical slope was higher in these two episodes than our model can explain. Overall, or model

explains more than 50 percent of the variation in the short rate and slope. It is worth noting that our

model does not rely on ‘unobservable’ factors that are used in the exponential affine term structure

literature [see e.g. Dai and Singleton (2002)] to explain the fluctuations in these variables, but only on

beliefs πit which are tied down by the dynamics of fundamentals.

The final components of our SMM error term are the moments based on option prices that we

discuss separately in Section 3. Using the scores of the likelihood function and the errors of the price

and volatility variables, we evaluate the SMM objective function, which serves as an omnibus test

statistic. The overall SMM objective function value, which has a chi-squared distribution with five

degrees of freedom, is 10.47, implying a p-value larger than 5%, so we fail to reject our model.
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3 Option Implied Fear Indices and Monetary Policy

This section contains our main results: Before discussing the relation between options and monetary

policy, we first show that the model fits well the fear indices ATMIV and P/C, and elaborate on their

relation with several macro-economic control variables that have been used in the literature. We then

turn to the model implications for options and monetary variables.

3.1 Explaining Time-Variation in ATM Implied Volatility

To gauge the impact of fundamentals on ATMIV, the bottom panel of Table 2 computes the model’s

implied ATMIV when investors are 80 percent sure of being in each of the eight regimes respectively.10

It is immediately evident from the table that the model implies that implied volatility is generally coun-

tercyclical, being higher in regimes with negative earnings growth (regimes 2,4, 6, and 7). Its highest

levels occur during stagflation periods (regime 4) when investors’ beliefs are the most reactive to in-

flation news. However, implied volatility can be high in strong regimes of the economy as well. In

particular in the new economy regime (regime 5), ATMIV is close to that in some recession regimes. In

this regime, strong economic growth raises investors’ future earnings uncertainty causing high volatil-

ity. This observation is made in David and Veronesi (2009) for explaining the conditional positive

relation between P/E ratios and realized volatility in the late 1990s.

The historical and model-fitted ATMIV series are shown in the top panel of Figure 1 and some

regressions examining the fits are in Table 4. Our historical time series spans a long period of nearly

23 years that covers the recessions of 1991, 2001, and 2008, as well unusual events such as the stock

market crash of 1987, the collapse of LTCM in 1998, and the bursting of the technology bubble in

2000. As seen in the figure, during each of these events implied volatility increased above 30 percent,

while its average over the sample is 18.5 percent. Our model implied volatility, which only builds in the

impact of macroeconomic uncertainty, follows closely the increase in data implied volatility during the

three recessions, and remains high in the post technology bubble period. Although the model is unable
10An important caveat to note is that the model ATMIV is not a linear function of beliefs but instead is more directly

associated with the uncertainty about the regimes. Therefore, the implications for intermediate beliefs should not be
approximated by interpolating the ATMIV at the regime beliefs in the table.
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to explain the surge in volatility during the 1987 crash or the LTCM episode, media commentary at or

around these episodes confirms that macro events were not the cause of these crises.11

It is also noteworthy that the model captures well the post-recession decline in implied volatility

from 1991 to 1996 and from 2001 to 2006 despite the fairly different macroeconomic conditions in

these recessions. While earnings growth rebounded after each recession, the 1991 recession had tight

CU and weak money growth, while the opposite conditions prevailed in the 2001 recession. In the

former recession, rising inflation was a concern, while in the latter, investors were concerned about

deflation. The unwinding of these conditions was therefore quite different in the two periods, but at

the end of these cathartic periods, investors beliefs of regime 1 (the regular boom) increased to over 60

percent (Figure 3) and implied volatility hit lows in the 10-13 percent range. The model is also quite

successful in explaining the spike in implied volatility in the current recession, which started with the

fear of an increase in inflation to a medium level and an increase investors’ probability of the economy

overheating (regime 3) and deep recession (regime 7), followed by the collapse of inflation and increase

in the fear of deflation in the second half of 2008. The model ATMIV hit about 50 percent at the end

of 2008, its highest level in the 23 year sample, although it was lower than the nearly 70 percent in the

data.12

Table 4 contains formal statistics of the fit of our model for the data ATMIV series. Line 1 shows

that the R̄2 of the simple regression of the data ATMIV on the model ATMIV for the full sample is 53

percent, and the beta coefficient is 0.91, which is very close to 1. Excluding the fourth quarter of 1987

from the regression increases the R̄2 by another 5 percentage points (not reported). As well known in

the GARCH literature, most measures of volatility are persistent. Line 2 shows that the regression R̄2

of 32 percent of the data ATMIV series on its own lag. In line 3, we include both the model and the

lag, and find an R̄2 of 58 percent, or an increase of about 5 percentage points over our model.

We next provide regression results for the five macroeconomic variables that we found significant

individually in lines 4 through 8. These results show that ATMIV is a procyclical variable but none of

them is able to explain much of the variation of ATMIV. Indeed, line 9 shows that together all these
11Microstructure issues have been attributed to each of these two crises. Trading problems arose due to the breakdown in

market mechanisms by the large trades of portfolio insurers in 1987, while the shutdown of several markets simultane-
ously led to the severe liquidity problems in 1998.

12Undoubtedly, the selling pressure from the collapse of Lehman Brothers and troubles at other financial institutions world-
wide had an impact of volatility in this period more than can be accounted for by our model. However, these failures
were endogenous, and our model does suggest that there were greater fundamental stresses in this period than any other
period in our sample.
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controls explain 36 percent of the variation in the ATMIV, significantly below that of our model. How-

ever, our model suggests, that while these variables are important determinants of implied volatility,

they affect it jointly and in a nonlinear way, which our model captures through the combination of the

expected discounted value of cash flows in our asset pricing formulae and the use of Bayes’rule. In

addition, some variables, like inflation and money growth, are not significant in a linear regression,

but their effect is embedded in our model ATMIV, through the joint regime specification with real

fundamentals.

We finally consider the effects of combining the lags and the controls with our model ATMIV (line

10) and add the lagged data ATMIV (line 11). The R̄2 increase to 61% and 66% in the two cases,

respectively. The 8% increase in explanatory power in line 10 over line 1 (model only) is likely the

result of the highly parsimonious nature of our model, which nonetheless does explain most of the

variation in the joint specification. The further 5 percentage point increase over line 10 in line 11 tells

us that there are persistent economic forces that explain incremental amounts of variation in ATMIV,

which are not in our model or controls. The information in the lag likely includes trading disruptions,

which as mentioned above were particularly important at the time of the stock market crash and the

LTCM failure. It remains a challenge to include such information into a model that already builds in

the macroeconomic effects as in our model specification, which as noted explain about 80% of the

predictable variation.

3.2 Explaining Time-Variation in the Put-Call Ratio

In this section we study the model’s ability to explain the put-call ratio (P/C), which we defined to be the

ratio of implied volatilities of 5 percent out-of-the money put and call options.13 To understand what

forces affect the P/C ratio, it is useful to first look at Figure 6 that shows the densities of stock returns

when investors are 80 percent certain of being in each of the eight regimes (the remaining regimes each

have equal probability). The top (bottom) panel shows the densities for the boom (recession) regimes,

which are regimes with expected positive (negative) earnings growth. As seen, the densities are nega-

tively (positively) skewed for the boom (recession) regimes. These shapes naturally imply that the P/C
13To ensure intertemporal consistency of put-call ratios we follow Bates (1991) and set Kput = Ste

(r−δ)τ/1.05 and
Kcall = Ste

(r−δ)τ × 1.05.
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is greater (smaller) than one for the boom (recession) regimes.14 The conditional values of the put call

ratio and higher moments of the stock return distribution under the risk-neutral measure are given in

the bottom panel of Table 2. The table also shows that the densities at these eight beliefs are all highly

non-Gaussian with skewness coefficients of between -3.3 and 1.4, and kurtosis coefficient of between

4.3 and 21.5. The non-Gaussianity partly stems from the jumps in returns due to jumps in earnings,

and partly from the continuous shifting of the instantaneous moments of the return distribution. Indeed,

we note that the jump intensity in earnings is constant, so all the time variation in the densities arises

from the shifting moments. Its is also interesting to note that the sign of the skewness in each of the

regimes can be calculated quite easily by looking at the sign of covariance between stock returns and

stock variance in each regime from its closed-form expression in (23). As seen in Table 2, the sign

of the conditional correlation mostly matches the sign of conditional skewness in each regime. The

intuition for the sign is as follows: By Bayes’ Law, in the boom regimes, investors revise their be-

liefs more rapidly when they receive negative shocks to earnings than positive shocks, leading to more

volatility with negative outcomes, which is a negative correlation between returns and variance. The

higher volatility in down regimes give a negative sloped implied volatility curve or a positive put call

ratio The opposite holds true for the low earnings growth rate regimes.

The bottom panel of Figure 1 shows the data and model P/Cs. As can be seen, both series are almost

always greater than one (each is less than one only once in the sample) and the model P/C tracks the

data P/C quite closely. Somewhat surprisingly, the figure shows that the P/C is procyclical, falling in

each NBER-dated recession. Comparing to the top panel, gives the surprising stylized fact that the

ATMIV and the P/C are negatively related. In particular, in 1995 when the ATMIV hovered around

lows of near 10 percent, the P/C hovered above 1.6. Similarly, around 2006, when the ATMIV was

again around 10 percent, the P/C ratio was again above 1.4. In and after the three recessions in the

sample, when the ATMIV rose above 30 percent, the P/C fell below 1.2. We return to the issue of

negative correlation between the two fear indices below.

Line 1 of Table 5 provides the simple regressions of the data P/C on the model P/C. As seen, the fit

is very solid with a statistically insignificant alpha coefficient, a beta of 0.72 (not different statistically
14Notice from the filtered probabilities, that investors were never 80 percent certain of any of the regimes in our sample, so

that the model P/Cs were never as extreme as reported for these regimes. In particular the model P/C was almost always
positive in our sample. It is also important to note, that the P/C is not linear in the beliefs, and values for intermediate
beliefs will not be well approximated by interpolation. In particular we find that that the P/C at intermediate regimes is
outside of the range in Table 2.
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from 1) and R̄2 of 45.4 percent. Line 2 reports that the lagged P/C explains a similar R̄2 of 45.8 percent,

but of course does not provide us intuition on the underlying economic forces driving the P/C. When

both model and lag are included, each of the variables is statistically significant, and the explanatory

power increases by 8 percentage points, implying that the lag has some information over and above that

of our model.

Line 4 to 8 provide regression results for the five the five macroeconomic variables that we found

significant for the ATMIV, and are inputs to our model. In addition, we also report in Line 9 and 10

results for two market sentiment measures advanced by Han (2008): The first, a“trader sentiment,”

is the net long position of large speculators on S&P 500 index futures obtained from the Commodity

Futures Trading Commission’s Commitment of Traders Report. The second, an “investor sentiment”

is the bull-bear spread (proportion of traders bullish less bearish) in Investor’s Intelligence’s survey of

investment newsletter writers.15

Line 10 include all the macroeconomic controls and the sentiment variables in a joint regression in

line 11, and find an adjusted R2 of only about 21.9 percent, far below our model. This reinforces the

view that the macroeconomic variables affect the P/C nonlinearly. Finally, using all the variables along

with the model and lagged P/C, leads to a very small increase in explanatory power over using just the

model and lag.

3.3 Monetary Policy and Market Fears Measures

As noted in the introduction, and shown in the left panels of Figure 2, shocks to fear measures lead to

a sustained impact on future monetary policy, while monetary policy measures do not impact on the

fear measures. More specifically, a shock to ATMIV leads to a decrease in future interest rates while a

shock to the P/C leads to an increase in future interest rates. Is the model able to replicate such results?

The right panels of Figure 2 show the analogous impulse responses when the same vector autore-

gression is computed on the model fitted fear measures and policy variables. Comparing to the panels

on the left, we find that our fitted model has exactly the same relationships as in the data: Fear mea-

sures lead to sustained effects for up to eight quarters on policy variables, while the reverse impulses
15Both variables are measured within a week prior to the options trades. These measures are alternative measures of fear

in the market and are thus compelling control variables for our measures of downside risk obtained from asset prices. While
Han (2008) suggests that the significance of these measures supports a behavioral view of asset prices, we note that they could
be consistent with a rational model of heterogeneous learning about the regimes of fundamentals such as in David (2008a).
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are statistically insignificant. Having a fully dynamic model that can replicate the historical impulses is

useful since it can rule out certain channels for the effects. In particular, in our model the central bank

and investors have exactly the same information. So, the reason why policy follows market fears is not

due to differences in information of the two groups of agents.

What economic channel then explains the one-directional impulses? The bottom panels of Figure

2 suggest that market fears have a sustained effect on industrial CU. In particular, in our model an

increase in ATMIV occurs because of increases in the uncertainty about the current economic regime.

The impact of higher uncertainty on future industrial CU then easily follows from the real options

literature, whereby firms delay the abandonment of plants and factories in the face of higher uncertainty,

instead choosing to operate them at less than full capacity [see e.g. Bloom (2009)]. Because the central

bank has the same information as the investors, the learning-based Taylor rule then implies that shocks

to uncertainty (ATMIV) have a sustained future impact on interest rates.

Our model also uncovers another basic economic mechanism that explains why a shock to the

downside fear measure P/C is correlated with a future increase in CU. The reason is that in our model,

a positive shock to P/C occurs when investors increase their beliefs to be an expansionary phase of the

economy (see Figure 6). Because of symmetric information, such beliefs also affect the central bank’s

learning-based Taylor rule. Thus, the increase in P/C is correlated with an increase in expected future

CU, which then leads to a tightening of monetary policy through higher interest rates.

In Figure 2 we only report impulse responses from fear measures to interest rates and capacity

utilization. What about the relation between fear measures and money growth? We did compute the

impulse responses for the effects of fears on money growth and did not find significant responses in

either direction. This (negative) result is interesting as well. The next subsection further develops the

relation between fear measures and monetary policy variables, and explains these findings.

Before concluding this section we add two caveats to these results. First, the impulse response func-

tions are estimated for the options subsample, when the relationship between CU and the fear measures

happen to be monotonic. As we show next in Section 3.4, over the full sample, the relationship is

nonlinear and impulse responses may well have the opposite signs for the first part of our sample, when

tight CU lead to monetary policy tightening. Second, the impulses studied here are at a quarterly fre-

quency, and we do not rule out that the central bank can have significant impulses at shorter horizons

in higher frequency data.
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3.4 Nonlinear Relations Between Fear Indices and Macro-Policy Variables

The results in Section 3.3 calls for further investigation of the relation between option prices and pol-

icy variables. In this subsection, we document strong nonlinear relationships between macro-policy

variables and option prices. In addition, we show that the money growth affect the fear indices more

noticeably in periods that the policy makers stimulate the economy.

The top panels of Figure 7 show the relationship between the fear measures and expected real money

growth. The x-axis in these plots has the expected money growth of investors which we have shown

in Figure 4.16 As can be seen, the ATMIV has an V-shape, with its minimum at close to one percent

real money growth. The fitted curve shows a higher ATMIV when money growth is tight (around 26

percent) as opposed to when its accommodative (around 21 percent), and dips to around 17, when

money growth is neutral. By comparing the estimated fear variable values in the different regimes in

Table 2 we can see how our model generates the V-shape. Consider regimes 2 and 4 for example, which

have the highest ATMIV. Real money growth is strongly positive in the former regime, and is strongly

negative in regime 4. In regime 2, money growth is rapid as the central bank attempts to stimulate the

economy in the regular recession, and the conditional relationship between money growth and ATMIV

is negative. In regime 4, volatility is high even as the central bank attempts to rein in high inflation even

though real growth is weak and the conditional relationship is positive. Similarly, in the new economy

growth rate regime, the ATMIV is high as discussed, and money growth is tight, as the central bank

attempts to rein in lofty expectations of real growth. On the low end, in the stable regime 1 with low

inflation and high real growth, real money growth is one percent and the ATMIV is the lowest.

The bottom panels of Figure 7 show the relationship between the fear measures calculated from

our model using the filtered beliefs in Figure 3 and realized CU (which is a fairly smooth series). As

seen, the ATMIV again has a V-shape relationship, while the P/C has an inverse V-shape. We plot the

relationship for the full sample for our model since de-meaned CU never rose above 3 percent in the

1986-2008 period, when we have options data. In this period, the relationship between the data ATMIV

and CU is negative, while that with the P/C is positive. In the period of the options data, higher CU was

taken as good news for fundamentals, which lowered uncertainty and the ATMIV and raised the P/C.

For the full sample, which includes periods with very high CU, the relationships are non-monotonic
16We plot this relationship rather than the one between the ATMIV and realized money growth, since the latter is fairly

noisy and provides a less precise relationship with a similar shape.
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as described above, since during periods of high CU, an increase in CU increased uncertainty about

future fundamentals and had the opposite effects on the fear variables. The implied fear measures in

the alternative regimes in Table 2 also show this relationship, as high ATMIV can result in recessions

with high CU (regime 3) or low CU (regime 7). Once again, fundamentals’ uncertainty is negatively

related to P/C so that it has an inverse V-shape relation with CU (bottom right panel of Figure 7).

We end this discussion on the nonlinear relation between macro-finance variables and fear measures

by studying their conditional relation during stimulative periods. We define stimulative periods as those

where the 3-month Treasury Bill Yield is below the annualized inflation (CPI) rate. In the sub-sample

of our date where we have options data (1986:2 – 2008) there are 20 quarters that we characterize

as stimulative. These are periods of extreme stress in the market and it is of interest to study the

response of the stock markets to money growth in these times. The left panel of Figure 8 shows

that in this period ATMIV and money growth were negatively correlated. In the right panel we plot

our model ATMIV and expected money growth and find a negative correlation which is somewhat

stronger. The negative relation tell us that the actions of the central bank to boost money growth in

such periods lowered the uncertainty and volatility in stock market, and our regime-switching model

captures well this conditional relation. This role of monetary policy in reducing market uncertainty in

stressful times is obviously not evident in simple linear regressions and could be the responsible for

the general disillusionment with monetary aggregates in the literature (see e.g. Volcker (1977)). Our

results also provide direct evidence from the options markets on the effectiveness of monetary policy

during “stimulative” periods.

4 Additional Properties of Option Prices

In this section we discuss features of observed option prices that are not directly fitted by our empirical

methodology. The ability of our model to replicate these additional features provides further support for

the economic mechanism that determines option prices in our model. As we will see the key variable

in the model that enables it to explain these additional facts is the volatility of stock volatility, and we

will end the section by providing its determinants.
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4.1 The Volatility of ATM Volatility

In the previous section we saw that our model ATMIV was able to explain about 53 percent of the

variation in the data ATMIV. In the model, the implied volatility is to a large part determined by the

endogenous volatility of stock prices, which increases during periods of greater investor and central

bank uncertainty. In addition, looking again at the top panel of Figure 1, we see that during episodes

of high volatility around the three NBER dated recessions in the options subsample, ATMIV also

fluctuated by large amounts. The positive relation between volatility and the volatility of volatility is

noted in Jones (2003) who further notes that it cannot arise in the Heston (1993) stochastic volatility

model, which has been the workhorse of the option pricing literature. To obtain the level dependence of

volatility, Jones (2003) proposes a generalization of the Constant Elasticity of Variance (CEV) model

of Chan, Karolyi, Longstaff, and Sanders (1992). One drawback of the volatility processes in such

models as is that they do not satisfy global growth and Lipschitz conditions, which are commonly used

sufficient statistics for a number of important results. In this subsection we investigate if our model

is able to shed light on the positive association between volatility and changes in volatility. Indeed as

can be seen in (10), the Bayesian learning mechanism that drives volatility in our model implies that

investors revise their beliefs faster during periods of high uncertainty as they have low confidence in

their estimates of the current regime of the fundamentals. We already established in Proposition 4 that

our model stock price satisfies the regularity conditions.

The top panels of Figure 9 show the scatter plots of implied volatility and absolute changes in im-

plied volatility for the data and model series. Both show a positive association of similar magnitude

between these variables with correlations of 41 percent and 49 percent, respectively, and these correla-

tions are statistically significant. We next check if the absolute changes in implied volatility are related

to the volatility of stock volatility in our model. To do this we construct a time series of the model’s

volatility of volatility using (22) and evaluate it at each date using the filtered beliefs in Figure 3. The

scatter plot of absolute changes in implied volatility (data and model) with this series are shown in

the bottom panels. As seen, the model volatility of volatility is highly correlated with both the data

and model absolute changes in implied volatility with correlations of 34 and 61 percent respectively.

Note that the model series measures the ex-ante volatility of volatility at each date and is compared to

the ex-post realized absolute changes in ATMIV and our model predicts a positive but not one-to-one

32



association between these variables. This is highlighted by the fact that the correlation between these

variables is only about 61 percent correlation even when both variables are generated by our model.

4.2 The Implied Volatility Premium

The volatility premium is an ex-ante measure of the stock market volatility forecast of investors’ priced

into options relative to a volatility forecast under the objective (P ) measure, and is currently one of the

most actively researched statistics in empirical option pricing. If volatility is systematically positively

related to investors’ pricing kernel (marginal utility of consumption), then as a priced factor it carries

a negative risk premium, which leads to a higher forecast of volatility under the Q measure, or a

positive volatility premium. The strong evidence that volatility is countercyclical, which we have

already discussed in Section 3, suggests that the volatility premium should be positive.

The empirical finance literature now has more than one operational definition of this quantity. The

first, which we call the implied volatility premium (IVP) is defined as the difference between at-the-

money implied volatility and a forecast of future volatility to the maturity of the option under the

objective (P ) measure. The forecast under the P measure is constructed for specific volatility models.

It must be noted that the implied volatility is a measure of the overall value of the option, which includes

jumps as well as other non-Gaussian aspects of the stock return distribution, and these components also

impact the IVP. A second definition, which we call the forecast volatility risk premium (FVRP), simply

takes the difference in forecasts of future volatility under the two measures. The two different forecasts

are formed with the same structural model and differ only by the difference in volatility drift, which is

determined by the specification of the pricing kernel process.17

In this subsection we evaluate the ability of our model to shed light on the time variation of the

IVP process. Thus our focus is different from the early papers on this topic that were focused around

forecasting volatility using implied volatility and the implied volatility premium. Notable among these

papers are Canina and Figlewski (1993) and Christensen and Prabhala (1998) who find that implied

volatility is a useful albeit biased forecaster of future realized volatility. More recent work cited in the

introduction has provided equilibrium models to understand the size of the equity premium, but not its

time variation, which is our focus in this paper.
17In addition, Bollerslev, Tauchen, and Zhou (2009) use a measure of an ex-post volatility premium that takes the difference

between implied volatility and realized volatility to predict future stock returns.
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To construct a data based ex-ante IVP series we need forecasts of realized volatility, which we

discuss first. We construct two forecasts using well established results in the volatility forecasting

literature, which we discussed in Section 3.1. The specifications we use are similar to those in Drechsler

and Yaron (2010). The first specification for our sample from 1986:Q2 to 2008:Q4 is a regression of

realized volatility on its one-quarter lag, the lagged P/E ratio, and lagged returns on the S&P 500 index

in periods when they are negative, which we call Projection 1. The results of this regression are:

Vol(t+ 1) = 3.291 + 0.548 Vol(t) + 0.212 P/E(t) − 0.470 Ret−(t); R̄2 = 0.238 (26)

[1.170] [2.122]∗ [1.237] [−2.004]∗

where Vol(t+1) is the volatility realized in quarter t+1, which we define as the square root of the sum

of squared S&P 500 index returns in the quarter, P/E(t) is the S&P 500 price-to-operating earnings

ratio, and Ret−(t) is the return on the S&P 500 index in periods when it is negative. T-Statistics are

in parenthesis and are adjusted for heteroskedasticity and autocorrelation using the Newey and West

(1987) method. The regression R̄2 improves to 47 percent for the post-crash subsample starting in

1988:Q2.18 The second forecast is similar to that constructed in Drechsler and Yaron (2010), which

used the lagged implied volatility to forecast realized volatility and adjusts for the forecast bias, which

we call Projection 2. The results of this regression are:

Vol(t+ 1) = 2.334 + 0.019 Vol(t) + 0.709 I. Vol(t); R̄2 = 0.393 (27)

[1.659]∗ [0.165] [4.986]

The R̄2 of this regression improves to over 63 percent if the stock market crash is excluded. It is

important to note that for each projection we use non-overlapping data by constructing one-quarter

ahead volatility forecasts at the quarterly frequency so that the t-statistics are more reliable.

Using the difference between the implied volatility at the beginning of the quarter t and the expec-

tation of quarter t realized volatility based on data available at the end of quarter t − 1, we form the

ex-ante volatility premium series. Using the two alternative forecasts of realized volatility, we have two

measures of the ex-ante volatility premium, which we display in the top and middle panels of Figure
18Most papers on volatility premium studies exclude the stock market crash from their samples. We find that the ability of

our model in explaining the time variation in the volatility premium is not sensitive to the exclusion of the crash.
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10. The two series have a correlation of 88 percent, and their means are very similar at 2.7 and 2.9

percent respectively. We similarly construct a model based IVP series by taking the difference between

the model implied volatility analyzed in Section 3.1 and the model forecast of volatility under the P-

measure using simulation methods as described in equation (50) in Appendix 2. The model IVP, IVPM ,

is also displayed in these panels. The mean of the IVPM is 4.4 percent, which is higher than the data

premium means. However, it is important to note that we did not use the data IVP in our estimation

procedure to match the same sample average as in the data. It is also relevant to note that our main goal

is to understand the time-variation in the volatility premium, which we discuss next.

By regressing the volatility premium from projections 1 and 2, we get the following fits:

IVP1(t) = −1.258 + 0.634 IVPM (t); R̄2 = 0.168. (28)

[−0.910] [2.293]∗

IVP2(t) = 0.014 + 0.539 IVPM (t); R̄2 = 0.122. (29)

[0.015] [2.673]∗

As can be seen, the intercept terms are small and statistically insignificant, and the betas of the regres-

sion are instead strongly significant, and the model explains nearly 17 percent of the variation in the

data IVP from Projection 1, which is economically significant. As seen in the plot, both data and model

volatility premiums are countercyclical, are higher higher in periods of higher volatility. Once again,

our model is not able to fit the fluctuation in the volatility premium in during the stock market crash

or the collapse of LTCM, which were events not likely related to macroeconomic fundamentals. The

model does capture the higher premiums during the recessions in the sample, and the decline in pre-

mium in good times. The fit for the IVP from Projection 2 is similar, although the explanatory power

is lower and 12 percent. Looking at the middle panel, the qualitative feature of the model fit is very

similar though.

We next examine if the IVP of our model is related to its FVRP. The two series are plotted in the

third panel of Figure 10. The Q forecast of our model is constructed using the same methodology as the

P forecast and is shown in (49) in Appendix 2. The FVRP is simply the difference in the two forecasts.

Constructing the series conditional on beliefs for our full sample we find an average FVRP of 1.75

percent. As suggested at the beginning of this subsection, the IVP has two components, the FVRP, and
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the non-Gaussian components of the density. Our estimated time series of the two premiums suggest

that the FVRP comprises about 40 percent of the total IVP. The figure also shows that the two series

are highly correlated (correlation coefficient of 93.8 percent).

What explains the model’s IVP? To understand the driving determinants, we investigate further

some model generated time series. A natural candidate to consider is the volatility of volatility (VV).

IVPM (t) = 5.216 + 1.663 log(VVM )(t); R̄2 = 0.401. (30)

[11.194]∗ [4.208]∗

In Figure 9 we showed that volatility fluctuations are higher in periods when the VV is higher. Equation

(30) tells us that the options are priced more dearly when there is greater volatility in stock volatility,

suggesting that volatility is itself a priced risk factor. We study this further by regressing the two

components of the volatility premium on the VV:

FVRPM (t) = 0.761 + 1.289 log(VVM )(t); R̄2 = 0.530. (31)

[3.145]∗ [5.243]∗

IVPM (t) − FVRPM (t) = 4.462 + 0.387 log(VVM )(t); R̄2 = 0.103. (32)

[16.084]∗ [1.991]∗

Equation (31) tells us that a large part of the fluctuation in the model IVP from the VV is captured by

the fluctuation in the FVRP portion of the IVP. In fact the explanatory power of the VV for the FVRP

is well over 50 percent. In contrast, the explanatory power for the the residual portion, IVP-FVRP, on

the VV is only 11 percent. Therefore, only a small part of the residual premium, which essentially

captures the non-Gaussian aspect of the return distribution under the risk-neutral measure is related to

the VV, which directly impacts the fourth moment of returns. Finally, we note that returns in our model

are non-normal also because of the jumps in the earnings and kernel processes. However, the jump

parameters are all constant, so that any time-variation in higher moments in the model arises from the

variation in beliefs about macroeconomic regimes, which affects the VV and as well as other higher

order moments.
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4.3 What Drives the Volatility of Stock Volatility?

As seen above, VV explains the positive comovement of ATMIV and its absolute changes as well as

the dynamics of the implied volatility premium. The VV is endogenously generated by the learning

process in our model and is a result of the the nonlinear updating inherent in Bayes’ law. In periods

where investors are more uncertain about fundamentals, they put less weight on their current beliefs

and more weight on incoming news so that revisions to beliefs and hence stock market volatility are

higher. This implies that the VV should be directly related to measures of investors’ uncertainty.

To see the relationship explicitly, we define earnings uncertainty (and analogous definitions for the

other fundamentals) as

EU (t) =

√√√√
N∑

i=1

πi (t)
(
θi − θ (t)

)2
. (33)

We plot the time series of VV and the four fundamental uncertainties in Figure 11, and Table 6 provides

results on the simple OLS regressions of the VV on these variables for options subsample (1986:Q2

– 2008). While all four uncertainties are strongly countercyclical, we find that earnings uncertainty

has been the single most important driver of the VV explaining more than 70 percent of its variation.

Money growth uncertainty also explains a significant amount of variation in the VV, while the other

two uncertainties have been of minor importance. As noted in Section 3.4, CU itself has an impact on

the fear indices, but as seen here, uncertainty about CU is not a significant driver of VV. This result

arises because CU is a fairly smooth process so that uncertainty about it does not drive major changes in

investors uncertainty. Money growth uncertainty turns out to be an important driver as investors likely

perceive changes in money as an important signal of the view of the central bank about the regime of

the economy.

Taken together the four fundamental uncertainties explain more than 80 percent of the variation in

VV. Relatedly, Beber and Brandt (2008) show that volatility in stock and bond markets declines faster

following periods of high macroeconomic uncertainty extracted from the economic derivative markets

over a shorter sample from 2002-2005.
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5 Conclusion

Option prices provide key forward looking information on investors’ expectations, and market attention

is often focused on two key fear indices, the ATMIV and the P/C. The former is measure of market tur-

bulence, while the latter is a measure of downside risk. Standard option pricing models use exogenous

stock prices and their volatilities that are unrelated to fundamentals, and are hence unable to identify

specific economic factors that can explain these fears. We provide a model in which stock, bond, and

option prices, are functions of investors’ beliefs of the joint states of macroeconomic and policy fun-

damentals. The model is able to shed light on the counter (pro) cyclicality of the ATMIV (P/C), is able

to explain about half their time series variation, and their compelling nonlinear relations with policy

variables. In particular, the ATMIV (P/C) has a (inverse) V-shape with expected money growth and

capacity utilization. The model’s ability to explain the time-series properties of these fear indices is

based on its inherent Bayesian learning framework in which volatility is high during periods of greater

uncertainty, and bad news leads to sharper downward revisions of beliefs in good times.

Our analysis also shows that investors’ uncertainty in the options market has real economic conse-

quences, which is tempered by the efforts of the central bank to smooth fluctuations. In particular, the

fear measures are able to predict future movements in interest rates. The model also explains that the

relationship between the fear indices and money growth is specially strong in periods of extreme stress

when the central bank follows a stimulative policy by keeping the short rate below the inflation rate.

While investors’ uncertainty is explicitly extracted from the fear indices, the dynamic updating of

investors’ beliefs have implications for the volatility of stock market variance and additional properties

of options prices. In particular, we show our model is able to explain the positive correlation between

ATMIV and absolute changes in ATMIV (a feature that is not consistent with standard option pricing

models) and additionally is able to explain an economically significant amount of variation in the

implied volatility premium. The model’s implied volatility premium is driven to a large extent by the

risk premium for volatility shocks and to a lesser extent by the fatness of tails created by the continuous

shifting of moments of the return distribution from the Bayesian updating.

An important caveat is that the model, which structurally estimates the impact of investors uncer-

tainty about the macroeconomy on the fear indices, is unable to explain some important surges in these

indices at times when microstructure liquidity issues have roiled markets, such as the crash of 1987

and the collapse of LTCM in 1998. It is relevant to note that our empirical methodology, which uses
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information in fundamentals as well as prices, does not provide false alarms about macroeconomic

problems in these episodes that were clearly not macro related. Still, it remains a challenge to include

microstructure information into a model that already builds in the macroeconomic effects as in our

model specification.
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Appendix 1

For proving Proposition 1 we will need the following lemma.

Lemma 2 Given the process of earnings in (3) and the SPD in (8), over a small interval of time ∆ we have

�
[
Mt+∆Et+∆

MtXt

|νt = νi

]
= e[θi−φi−σM σ′

E+κ(ξ3−ξ1−ξ2)]∆ + o(∆),

where ξ3 = eµ1+µ2+0.5 (σ1+σ2)2 − 1.

Proof. From (3) and (8) we have

Es

Et

= exp



∫ s

t

θs − κξ1 − 0.5σEσ
′
Edu+ σE(Ws −Wt) +

Ls∑

j=Lt+1

Y1j




Ms

Mt

= exp



∫ s

t

−φs − κξ2 − 0.5σMσ′
Mdu− σM (Ws −Wt) +

Ls∑

j=Lt+1

Y2j


 .
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Multiplying the two equations we have

EsMs

EtMt

= exp

(∫ s

t

[θs − φs − σEσ
′
M − κ(ξ1 + ξ2) − 0.5 (σEσ

′
E + σMσ′

M )]du+ (σE − σM )(Ws −Wt)

)

× exp




Ls∑

j=Lt+1

Y1j + Y2j


 .

Now for a small interval of time ∆ and the fact that jumps in the drift processes and Lt are independent of each
other and each occurs with probability of order O(∆), we have

�
[
Et+∆Mt+∆

EtMt

|νt = νi] = e[θi−φi−σEσ′

M−κ(ξ1+ξ2)]∆ · �
[
e

PLt+∆

j=Lt+1
Y1j+Y2j

]

= [1 + (θi − φi − σEσ
′
M − κ(ξ1 + ξ2))∆][1 − κ∆ + κ∆(1 + ξ3)] + o(∆)

= 1 + [θi − φi − σEσ
′
M + κ(ξ3 − (ξ1 + ξ2))]∆ + o(∆)

= e[θi−φi−σM σ′

E+κ(ξ3−ξ1−ξ2)]∆ + o(∆),

as claimed. Note in the first equality above we have used the independence property of the drift process and the
jump process, while in the second we have used the definition of ex = 1 + x+ x2/2! · · ·. �

Proof of Proposition 1: The P/E ratio at time t satisfies

Pt

Et

=
�
[∫ ∞

t

MsEs

MtEt

ds|Ft

]

=

N∑

i=1

πit

�
[∫ ∞

t

MsEs

MtEt

ds|νt = νi

]
≡

N∑

i=1

πitVit.

Let θ̂i = θi − φi − σMσ′
E + κ(ξ3 − ξ1 − ξ2). Using Lemma 2 to evaluate the expectations over a time interval

∆, we have

Vi,t =
�
[∫ t+∆

t

MsEs

MtEt

ds|νt = νi

]
+

�
[
Mt+∆Et+∆

MtEt

∫ ∞

t+∆

MsEs

Mt+∆Et+∆
ds|νt = νi

]

=

∫ t+∆

t

eθ̂ids + eθ̂i∆
�
[∫ ∞

t+∆

MsEs

Mt+∆Et+∆
ds|νt = νi

]

=
eθ̂i∆ − 1

θ̂i

+ eθ̂i∆


(1 + λii∆)Vi,t+∆ +

∑

j 6=i

λij∆Vj,t+∆


 .

Since Vi,t is time homogeneous, we have Vi,t = Vi,t+∆ = Ci. Now collecting terms and taking the limit as
∆ → 0, we get

Ci

1 − eθ̂i∆

∆
=

eθ̂i∆−1

θ̂i∆
+ eθ̂i∆


λiiCi +

∑

j 6=i

λijCj




−θ̂iCi = 1 +


λiiCi +

∑

j 6=i

λijCj


 .
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In vector form we can write this equality as
(

Diag(−θ̂) − Λ
)
C = 1N ,

whose solution is C = A−1 · 1N , as in the statement of the proposition. �

For proving Proposition 3 we will use the algebraic result stated in the following lemma.

Lemma 3
∂θ

◦

∂πi

=
Ci

(
θi − θ

◦
)

(∑
j πjCj

) .

Proof of Lemma 3:

∂θ
◦

∂πi

=
∂
(P

j
πjCjθj

P

j πjCj

)

∂πi

=
Ciθi

(∑
j πjCj

)
− Ci

(∑
j πjCjθj

)

(∑
j πjCj

)2

=
Ciθi(∑
j πjCj

) −
Ci

(∑
j πjCjθj

)

(∑
j πjCj

)2 =
Ciθi(∑
j πjCj

) − Ciθ
◦

(∑
j πjCj

)

=
Ci

(
θi − θ

◦
)

(∑
j πjCj

) ,

which completes the proof. �

Proof of Proposition 3: Let the second term in the variance equation be V2 = (ν̄◦− ν̄)′(ΣΣ′)−1(ν̄◦− ν̄). Then,
using Lemma 3 on each element of the drift vector ν we have

∂V2

∂πi

= 2

[
Ci(νi − ν◦)∑

j πjCj

− νi

]′
(ΣΣ′)−1(ν̄◦ − ν̄).

Then, using the volatilities of the beliefs process in equation (11), we have dV2 = µV,2dt+ σV,2, where

σV,2 =
∑

i

∂V2

∂πi

σi

= 2
∑

i

πi

[
Ci(νi − ν◦)∑

j πj Cj

− νi

]′
(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′ Σ

′−1

= 2
∑

i

[π◦
i (νi − ν◦) − πiνi]

′(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′ Σ
′−1

.

Similarly, let the third term in the variance equation be V3 = 2 [(θ
◦ − θ) + (β

◦ − β)]. Then we have dV3 =
µV,3dt+ σV,3, where

σV,3 =
∑

i

∂V3

∂πi

σi = 2
∑

i

∂[(θ
◦ − θ) + (β

◦ − β)]

∂πi

σi
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= 2
∑

i

πi

([
Ci(θi − θ

◦
)∑

j πjCj

− θi

]
+

[
Ci(βi − β

◦
)∑

j πjCj

− βi

])
(νi − ν̄)′Σ

′−1

= 2
[
(σ◦

θν
− σθν

)′ + (σ◦
βν

− σβν
)′
]

Σ
′−1

,

where the second equality follows from Lemma 3, the third the definition of π◦
i , and the fourth from the fact that

∑

j

π◦
j (θj − θ

◦
)(βj − β) =

∑

j

π◦
j θjβj − θ

◦
β
◦

= σ◦
θβ,

and analogous terms for the other elements of ν. Now summing σV,2 and σV,3 provides the statement of (b).

Proof of Proposition 4 Since ||σn(π)|| in (17) is a continuous function of π on the N dimensional simplex,
which is a compact set, it has a maximum and minimum, which we denote by ||σ̄n|| and ||σn||. Therefore,
||S1σ

n(π1) − S2σ
n(π2)|| ≤ (||σ̄n|| − ||σn||) · |S1 − S2| so that the Lipschitz condition is satisfied for the stock

price. Similarly, ||S σn(π)||2 ≤ ||σ̄n||2 S2 < (1 + ||σ̄n||2 S2), so that the growth condition holds as well.
Similarly the norm of the volatility of beliefs in (11) is bounded by ||σ̄i|| and ||σi|| and both conditions hold for
the beliefs processes, which completes the proof. �

Proof of Proposition 5: The change of measure with respect to the Brownian motions in the context of the
filtering setup has been derived in David (2008b). For brevity, we only provide the proof of the change of
measure for the jump component.

Lets show the change of measure for the jump.

κ
�

[
M+ −M

M

S+ − S

S
|Ft] = κ

∫ ∞

−∞

∫ ∞

−∞

eY1eY2f(Y1, Y2)dY2dY1

= κ

∫ ∞

−∞

eY1f(Y1)

∫ ∞

−∞

eY2f(Y2|Y1)dY2dY1

= κ

∫ ∞

−∞

eY1e
µ2+

σ2
σ1

(Y1−µ1)
f(Y1)dY1

= κeµ2−
σ2
σ1

µ1eµ1(1+
σ2
σ1

)+0.5(1+
σ2
σ1

)2σ2
1

= κeµ2+.5σ2
2eµ1+σ1σ2+0.5σ2

1

= κ∗
� ∗[eY1 ].

In the above, the second equality arises from the definition of a conditional expectation, the third because the
two jump processes are perfectly correlated, and the fourth from the moment generating function of a normal
distribution.

Appendix 2
1. SMM Estimation of the Regime Switching Jump-Diffusion Model

We start by providing here the details of the SMM estimation procedure, which is used to estimate the model.
The procedure uses the SML methodology of Brandt and Santa-Clara (2002), which has already been extended
to to learning framework in the pure diffusion setting in David (2008b). We provide here the extension to the
case of observable jumps in the fundamental processes. Piazzesi (2005) has extended the procedure to a setting
with jump-diffusions.

Using the definition of the inferred shocks (12) we can write the variables observed by the econometrician in
(9) as perceived by the investors as dYt

Yt
= %(πt)dt + Σ4 dWt +J4tdLt. Similarly the pricing kernel in (8) under

investors’ filtration can be written as dMt/Mt = (−φ̄(πt)−κξ2)dt−σM dW̃t−(eY2t−1)dLt,where the real rate
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in the economy, φ̄(πt), is the expected value of φt in (6) conditional on investors’ filtration. Since fundamentals
are stationary in growth rates, we start by defining logs of variables: yt = log(Yt), and mt = log(Mt). Using
these characterizations we can write

dyt = (%̄(πt) −
1

2
diag(Σ4Σ

′
4))dt+ Σ4 dW̃t + J4tdLt, (34)

dmt = (−φ̄(πt) − κξ2 −
1

2
σMσ′

M )dt − σM dW̃t − (eY2t − 1)dLt, (35)

where diag(x) is a column vector composed of the diagonal elements of a square matrix x. It is immediate that
investors’ beliefs πt completely capture the state of the system (yt,mt) for forecasting future growth rates. The
specification of the system is completed with the belief dynamics in (10).

The econometrician has data series {yt1 , yt2 , · · · , ytK
}. Let Ψ be the set of parameters of the model. Let

L(Ψ) ≡ p(yt1 , · · · , ytK
; Ψ) = p(πt0 ; Ψ)

K∏

k=1

p(ytk+1
− ytk

, tk+1|πtk
, tk; Ψ),

where p(ytk+1
− ytk

, tk+1|πtk
, tk; Ψ) is the marginal density of fundamentals at time tk+1 conditional on in-

vestors’ beliefs at time tk. Since {πtk
} for k = 1, · · · ,K is not observed by the econometrician, we maximize

E[L(Ψ)] =

∫
· · ·
∫

L(Ψ)f(πt1 , πt2 , · · · , πtK
)dπt1 , dπt2 , · · · , dπtK

, (36)

where the expectation is over all sample paths for the fundamentals, ỹt, such that ỹtk
= ytk

, k = 1, · · · ,K. In
general, along each path, the sequence of beliefs {πtk

} will be different.
As a first step, we need to calculate p(ytk+1

−ytk
, tk+1|πtk

, tk; Ψ). Following Brandt and Santa-Clara (2002),
we simulate paths of the state variables over smaller discrete units of time using the Euler discretization scheme
(see also Kloeden and Platen 1992):

ỹt+h − ỹt = (%̄(πt) −
1

2
(σQσ

′
Q, σEσ

′
E)′)h+ Σ2

√
hε̃2t + 1ũt<κhε̃2t, (37)

mt+h −mt = (−φ̄(πt) − κζ2 −
1

2
σM σ′

M )h− σM

√
hε̃1t + 1ũ<κhε̃2t, (38)

πt+h − πt = µ(πt)h+ σ(πt)
√
hε̃1t, (39)

where ε̃1t and ε̃2t are 5- and 1- dimensional standard normal variables, respectively, ũt is uniformly distributed,
and h = 1/M is the discretization interval. The Euler scheme implies that the marginal conditional density of
the 4 × 1 fundamental growth vector yt over h is 4-dimensional normal.

We approximate p(·|·) with the density pM (·|·), which obtains when the state variables are discretized over
M subintervals. Since the drift and volatility coefficients of the state variables in (10), and (34) to (35) are
infinitely differentiable, and ΣΣ′ is positive definite, Lemma 1 in Brandt and Santa-Clara (2002) implies that
pM (·|·) → p(·|·) as M → ∞. The Chapman-Kolmogorov equation implies that the density over the interval
(tk, tk+1) with M subintervals satisfies pM (ytk+1

− ytk
, tk+1|πtk

, tk; Ψ) =

∫ ∫
φ
(
ytk+1

− y; ; Ψ
)
× pM (y − ytk

, π,m, tk + (M − 1)h|πtk
, tk) dπ dy, (40)

where φ(y;ψ), denotes the mixture-of-normals density given as:

φ(y;ψ) = N(%(πt)h,Σ4Σ
′
4h) with probability κh, (41)

= N(%(πt)h+ (0, 1, 0, 0)′µ1,Σ4Σ
′
4h+ i2σ

2
1) with probability 1 − κh, (42)
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where i2 is the 4 × 4 square matrix with zero in all elements except the (2, 2) element, which is 1. Now pM (·|·)
can be approximated by simulatingL paths of the state variables in the interval (tk, tk+(M−1)h) and computing
the average

p̂M

(
ytk+1

− ytk
, tk+1|πtk

, tk; Ψ
)

=
1

L

L∑

l=1

φ
(
ytk+1

− y(l); Ψ
)
. (43)

The Strong Law of Large Numbers (SLLN) implies that p̂M → pM as L→ ∞.
To compute the expectation in (36), we simulate S paths of the system (37) to (39) “through” the full time

series of fundamentals. Each path is started with an initial belief, πt0 = π∗, the stationary beliefs implied by
the generator matrix Λ. In each time interval (tk, tk+1) we simulate (M-1) successive values of ỹ(s)

t using the
discrete scheme in (37), and set ỹ(s)

tk
= ytk

. The results in the paper use M = 90 for quarterly data, so that
shocks are approximated at roughly a daily frequency. The pricing kernel and beliefs along the entire path of the
sth simulation are obtained by iterating on (38) and (39). We approximate the expected likelihood as

L̂(S)(Ψ) =
1

S

S∑

s=1

K−1∏

k=0

p̂M (y
(s)
tk+1

− y
(s)
tk
, tk+1|π(s)

tk
, tk; Ψ), (44)

where p̂M (·|·) is the density approximated in (43). The SLLN implies that L̂(S)(Ψ) → E[L(Ψ)] as S → ∞. We
often report π̄tk

= 1/S
∑S

s=1 π
(s)
tk
, which is the econometrician’s expectation of investors’ belief at tk.

To extract investors’ beliefs from data on price levels and volatilities in addition to fundamentals we add
overidentifying moments to the SML method above. From Proposition 1, we can compute the time series of
model-implied price-earning ratios and bond yields at the discrete data points tk, k = 1, · · · ,K as

P̂/Etk
= C · π̄tk

, îtk
(τ) = −1

τ
log (B (τ) · π̄tk

) .

We note that the constants Cs and the functions B (τ) both depend on the parameters of the fundamental pro-
cesses, Ψ. Hence, we let the pricing errors be denoted

eP
tk

=
(

P̂/Etk
− P/Etk

, îtk
(0.25)− itk

(0.25) , (̂itk
(5) − îtk

(1)) − (itk
(5) − itk

(1))
)
.

We similarly formulate the errors from options prices as

eO
tk

=
(
V̂tk

− Vtk
, (̂P/C)tk

− (P/C)tk

)
,

where V is the ATMIV, and P/C is the put-call ratio as discussed. The model-implied options prices are calcu-
lated using Monte-Carlo simulations as described below.

To estimate Ψ from data on fundamentals as well as financial variables, we form the overidentified SMM
objective function

c =

(
1

T

T∑

t=1

εt

)′

· Ω−1 ·
(

1

T

T∑

t=1

εt

)
. (45)

The moments used are the scores of the log likelihood function from fundamentals, and the pricing errors from
stock, Treasury bond, and options prices. Since the number of scores in ∂ log(L̂)

∂Ψ (tk) equals the number of
parameters driving the fundamental processes in Ψ, and the number of pricing errors is five, the statistic c in
(45) has a chi-squared distribution with five degrees of freedom. We correct the variance covariance matrix
for autocorrelation and heteroskedasticity using the Newey-West method [see, for example, Hamilton (1994)
equation 14.1.19] using a lag length of q = 12. A long lag length is chosen since interest rates and P/E ratios
used in the error terms are highly persistent processes.
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We end the description of our estimation methodology with two important details. First, for determining the
number of specified regimes we do not use likelihood ratio tests, which are computationally extremely demanding
and beyond the scope of this paper (see Garcia (1998)). Instead, we follow the simpler and more practical
methodology of using the overidentified SMM objective to determine a stopping rule on the number of regimes
used in a number of papers modeling regimes shifts (e.g. Gray (1996), Bansal and Zhou (2002)). Second, to
reduce the number of parameters, we follow a two-step procedure. First we estimate an unrestricted generator
matrix and rank all its elements into 7 bins. All elements in the smallest bin (whose values we estimated to be
below 0.001) were set to zero. Elements in each of the remaining bins were constrained to be equal in our second
step estimation.

2. Options Prices

As for the likelihood function we formulate options prices as expected discounted values of their terminal
payoffs under the risk-neutral measure. Expectations are approximated using Monte Carlo simulation while
discretizing the dynamics of the state variables of our system along the sth sample path under the risk-neutral
measure as:

π
∗(s)
t+h − π

∗(s)
t =

(
µ(π

∗(s)
t ) − ρ(π

∗(s)
t )

)
h+ σ(π

∗(s)
t )

√
hε̃

∗(s)
t , (46)

P
n∗(s)
t+h = P

n∗(s)
t exp[

(
r(π

∗(s)
t ) − δ(π

∗(s)
t )

)
h+ σn(π

∗(s)
t )

√
hε̃

(s)∗
1t + 1ũt<κ∗hε̃

(s)∗
2t ], (47)

B
∗(s)
t+h = B

∗(s)
t exp[ −r(π∗(s)

t )h], (48)

where ε̃∗1t and ε̃∗2t are 5- and 1- dimensional standard normal variables, respectively, ũt is uniformly distributed,
and h = 1/M is the discretization interval. On each sample the process for the state variables is simulated
starting with π∗(s)

t = πt, the assumed beliefs of investors at time t. Then the value of a European call option at
time t when investors have beliefs πt that matures at t+ T is given by

CM ∗(t, T, πt) =
1

S

S∑

s=1

B
∗(s)
t+T max

[
P

n∗(s)
t+T −K, 0

]
.

We report option prices for M = 90. To reduce the time of computations we use three variance reduction
techniques: the first two, antithetic and control variate (with Black-Scholes prices), are well known. In addition,
we use the expected martingale simulation technique of Duan et. al. The volatility forecast under the Q-measure
is approximated from the path of forecasted beliefs under this measure as

σM∗(t, T, πt) =

√√√√ 1

S

(T−t) M∑

j=1

σn(π
∗(s)
t+j h)σn(π

∗(s)
t+j h)

′
h. (49)

Similarly, using the discretized beliefs processes as in (39), volatility forecasts under the objective measure
are analogously constructed as

σn(t, T, πt) =

√√√√ 1

S

(T−t) M∑

j=1

σn(π
∗(s)
t+j h)σn(π

∗(s)
t+j h)

′
h. (50)



Table 1: Parameter Estimates of Regime Switching Model From SMM Procedure

Fundamental Drifts β1 β2 β3 β4 θ1 θ2 θ3 θ4

-0.002 0.015 0.065 0.091 -0.057 -0.052 0.061 0.077
(0.003) (0.008) (0.021) (.005) (0.002) (0.007) (.007) (0.012)

ρ1 ρ2 ρ3 ρ4 ω1 ω2 ω3 ω4

- 0.066 -0.025 0.01 0.086 -0.057 -0.031 0.012 0.052
(0.010) (0.008) (0.002) (0.007) (0.001) (0.015) (0.007) (.005)

Fundamental Volatilities: σQ,1 σE,2 σK,1 σK,4 σH,5

0.025 0.084 0.047 0.056 0.049
(0.012) (0.036) ( 0.017) (0.016) (0.021)

Interest Rate Rule: α0 αβ αρ

0.017 0.362 0.257
(0.008) (0.017) (0.003)

Prices of Risk: σM,1 σM,2 σM,3 σM,4 σM,5

0.045 0.421 0.300 0.3381 -0.045
(0.129) (0.201) (0.111) (0.149) (0.078)

Jump Parameters: κ µ1 σ1 µ2 σ2

0.432 -0.052 0.036 0.293 -0.790
(0.195) (0.027) (0.016) (0.133) (0.364)

Generator Elements: λ1 λ2 λ3 λ4 λ5 λ6

0.005 0.018 0.043 0.051 0.097 0.199
(0.002) (0.011) (0.007) (0.003) (0.023) (0.007)

SMM Error Value (χ2(7)): 10.470 P-Value: 0.063

The table reports SMM estimates of the following model for CPI, Qt, real earnings, Et, the real pricing kernel, Mt, de-meaned
capacity utilization, and real money growth:

dQt

Qt

= βt dt + σQ dWt,

dEt

Et

= (θt − κ ξ1) dt + σE dWt, + (eY1t − 1) dLt,

dMt

Mt

= (−φt − κ ξ2)dt − σM dWt + (eY2t − 1) dLt,

dKt = ρt dt + σK dWt,

dHt

Ht

= ωt dt + σH dWt.

Wt is a 5 × 1 vector of Standard Brownian Motions, Lt is the counter of a Poisson process with constant intensity κ, and Yit

i.i.d. N(µi, σi), i = 1, 2. The drift of the stacked state vector νt = (βt, θt − κ ξ1,−φt − κ ξ2, ρt, ωt)
′ , follows an eight-state

unobserved regime switching model over the composite states listed in the bottom panel of Table 2 with the following generator
matrix:

Λ =

0

B

B

B

B

B

B

B

B

B

B

B

@

−
P

j λ1j 0 λ6 0 λ2 λ1 0 0

0 −
P

j λ2j λ5 λ6 0 λ1 λ4 0

0 λ3 −
P

j λ3j 0 00 λ1 λ4 λ5

0 λ6 0 −
P

j λ4j 0 0 λ4 0

λ1 0 λ1 0 −
P

j λ5j λ1 0 0

λ5 λ3 0 λ3 0 −
P

j λ6j 0 λ5

λ5 0 0 0 0 λ5 −
P

j λ7j 0

λ3 0 λ5 0 0 0 0 −
P

j λ8j

1

C

C

C

C

C

C

C

C

C

C

C

A

.

The pricing kernel, Mt is observed by investors but not by the econometrician. Investors beliefs about the underlying drift states
follow the filtering equation in (10). Estimates are obtained from data on the fundamentals as well five price series listed in Table 3
using the SMM methodology described in Appendix 2. Standard errors are in parentheses.



Table 2: Model Implied Transition Probabilities, Stationary Probabilities, Stock and Bond Price Valu-
ations, Fear Indices, and Higher Moments in the Eight States

Implied Annual Quarterly Transition Probability (Percent) Matrix
1 2 3 4 5 6 7 8

1 80.1 0.3 16.2 0.0 1.6 0.5 0.4 0.8
2 0.2 71.9 7.5 14.9 0.0 0.6 4.5 0.4
3 0.4 3.3 82.8 0.3 0.0 0.6 4.3 8.2
4 0.2 14.9 0.8 79.4 0.0 0.3 4.5 0.0
5 0.5 0.0 0.5 0.0 98.4 0.4 0.0 0.0
6 7.7 3.5 1.3 3.6 0.0 75.7 0.2 7.9
7 8.2 0.2 0.8 0.2 0.1 7.7 82.4 0.4
8 3.6 0.2 8.6 0.0 0.0 0.0 0.2 87.4

Implied 5-Year Transition Probability (Percent) Matrix
1 2 3 4 5 6 7 8

1 34.7 3.6 37.8 1.3 5.2 2.0 5.1 10.3
2 3.7 30.1 16.8 27.0 0.1 3.5 13.6 5.0
3 5.2 7.3 46.1 3.5 0.2 3.3 11.4 23.0
4 3.4 27.0 8.3 42.2 0.1 3.1 14.0 1.9
5 2.0 0.33 2.6 0.22 92.3 1.5 0.3 0.9
6 16.4 8.9 14.9 9.6 1.0 25.6 3.5 20.0
7 21.4 2.6 11.4 2.3 1.2 15.5 39.3 6.2
8 9.7 2.2 26.7 0.7 0.6 0.8 3.2 56.1

Implied Stationary Probabilities, P/E Ratios, the Term Structure,
Option Prices, and Higher Order Moments

# β(%) θ (%) ρ(%) ω(%) π̄(%) P/E i0.25(%) S(%) ATM(%) P/C Skw Kur ρSV (%)
1 1.5 6.1 1.0 1.2 11.0 17.3 4.3 1.5 15.2 1.29 −1.9 9.4 −71.1
2 6.5 −5.2 1.0 5.3 7.6 8.9 10.9 −0.1 33.0 0.90 1.0 4.7 96.4
3 6.5 6.1 8.7 1.2 25.8 14.5 12.6 −1.9 16.3 1.21 −1.1 6.6 −78.3
4 9.1 −5.2 −2.5 −5.7 6.9 7.9 13.4 −1.1 41.6 0.76 1.4 5.1 99.1
5 1.5 7.7 1.0 −3.1 12.1 32.0 4.1 0.1 22.8 1.31 −2.3 10.8 −88.0
6 −0.2 −5.7 −6.6 5.3 4.8 12.9 0.1 2.3 21.5 0.98 −0.3 5.9 83.5
7 6.5 −5.2 −6.6 −3.1 10.5 11.4 8.7 −1.3 24.2 0.93 0.8 4.3 95.7
8 1.5 6.1 −6.6 5.3 21.2 19.7 2.3 1.3 17.5 1.34 −3.3 21.5 −92.2

The top and middle panels report the quarterly and 5-year implied transition probability matrix between the eight states implied
from the generator matrix elements displayed in Table 1. Rows may not sum to one due to rounding. The bottom panel report
the implied stationary probabilities and implied prices of the variables used in the SMM estimation procedure in the eight states.
π̄ is the stationary probability of each state; P/E the price-earnings ratio, and, i0.25, the 3-month Treasury yield, and S the 5-year
less 1-year Treasury yield; ATM is the at-the-money implied volatility (ATMIV); P/C is the ratio of 5% OTM put-to-call implied
volatilities; Skw and Kur are the skewness and kurtosis of the 3-month risk-neutral return distribution, respectively; ρSV is the
correlation between stock returns and stock variance calculated using (23). The P/E ratio and bond yields are computed as shown
in Proposition 1. Implied Volatility, Put-Call Ratio and the higher order moments are for options with three months to maturity as
calculated using Monte Carlo simulations as shown in Appendix 2.



Table 3: Model Fits for Expected Fundamentals, Stocks, Bonds, and Options Prices from SMM Proce-
dure

Variable α β R2

Inflation -0.009 1.638 0.623
[-1.538] [8.071]∗

Real Earnings Growth -0.045 2.099 0.159
[ -1.501] [3.617]∗

De-Meaned Capacity Utilization 0.002 1.353 0.751
[0.068] [13.540]∗

Real Money Growth -0.005 2.15 0.365
[-1.785] [5.957]∗

P/E Ratio -3.028 1.249 0.606
[ -1.915] [19.976]∗

3-Month Yield -0.002 0.970 0.535
[-0.246] [5.991]∗

5-Year Minus 1-Year Treasury Yield 0.003 0.857 0.502
[2.456]∗ [8.071]∗

ATM 0.004 0.913 0.502
[1.522] [5.539]∗

P/C 0.19 0.710 0.451
[1.645]∗ [8.212]∗

We display the fits of the variables used in our SMM procedure: the fundamentals, and the
five pricing variables, which are used to overidentify the model. For the four fundamentals
we provide the regression results for the equation x(t) = α + β � [x|Ft−1] + ε(t), where
x(t) is the realized growth and � [x|Ft] is investors’ conditional expected growth of the
fundamental under consideration. The conditional expected growth is obtained from the
filtered probabilities π(t) displayed in Figure 3, and for earnings, for example, is given
by

PN

i θi πi(t). For the price series, we present the regression results for the equation
p(t) = α + β p(π(t)) + ε(t), where p(t) and p(π(t)) are the realized and model price
conditional on investors’ beliefs at t, respectively. T-statistics are in parenthesis and are
adjusted for heteroskedasticity and autocorrelation.



Table 4: Explaining At-The-Money Implied Volatility of 3-Month S&P 500 Options (1986:Q2 – 2008)

No. Constant ATMIVM Lag P/E CU Earn NBER R−

t−1 R̄2

1 1.769 0.91 0.528
[0.454] [3.977]∗

2 10.211 0.415 0.323
[4.336]∗ [3.346]∗

3 −1.847 0.374 0.742 0.576
[−0.526] [3.444]∗ [2.781]∗

4 10.776 0.405 0.041
[3.308]∗ [2.989]∗

5 18.107 −0.655 0.045
[15.277]∗ [−1.719]

6 18.888 −0.616 0.114
[17.108]∗ [−2.552]∗

7 27.409 −0.102 0.168
[7.198]∗ [−2.547]∗

8 16.593 −2.562 0.269
[17.312]∗ [−4.462]∗

9 13.781 0.343 −0.035 −0.275 −0.035 −2.128 0.361
[2.618]∗ [2.159]∗ [−0.151] [−1.486] [−0.882] [−7.376]∗

10 −2.002 0.990 0.089 0.760 0.098 0.000 −1.238 0.609
[−0.518] [3.276]∗ [0.508] [2.754]∗ [0.4972] [0.020] [−3.065]∗

11 4.921 0.88 0.381 −0.058 0.742 0.1 0.01 −1.206 0.663
[1.458] [4.285]∗ [2.660]∗ [−0.373] [2.755]∗ [0.580] [0.550] [−3.169]∗

The table reports the quarterly time series regressions

ATMIV(t) = β0 + β1 ATMIVM (t − 1) + β2 ATMIV(t − 1) + +β3 P/E(t − 1) + β4 C.U.(t − 1)

+ β5 Earn(t − 1) + β6 NBER(t − 1) + β7 R−

t−1 + ε(t).

In different lines some of the βi are set to zero. ATM(t) is the at-the-money Black-Scholes implied volatility on S&P 500 index options
traded on the CBOE with approximately three months to maturity and trading at the beginning of the quarter. ATMM is the at-the-money
implied volatility implied by our model and calculated as shown in Appendix 2. The historical and model implied series are shown in the
top panel of Figure 1. The latter are calculated conditional on investors’ beliefs of fundamental drift states that are extracted and displayed
in Figure 3. P/E is the price to operating income ratio of S&P 500 firms, CU is the demeaned industrial capacity utilization in the United
States obtained from the Federal Reserve Board, Earn stands for the real operating earnings growth of S&P 500 firms, NBER is 100 times
the quarterly expansion indicator created by the NBER, and R− is percentage one quarter lagged returns in periods when it is negative on
the S&P 500 index. Besides options prices, all other variables are measured at the end of the previous quarter. T-Statistics are in parenthesis
and are adjusted for heteroskedasticity and autocorrelation using the Newey and West (1987) method. The symbol * indicates statistical
significance at the 5% level.



Table 5: Explaining the Ratio of Implied Volatilities of 5% Out-of-the-Money Puts to Calls for 3-Month S&P 500 Options (1986:Q2 – 2008)

No. Constant P/CM Lag P/E CU Earn NBER R−

t−1 COT II R̄2

1 0.385 0.717 0.454
[3.603]∗ [8.338]∗

2 0.394 0.693 0.458
[4.886]∗ [10.912]∗

3 0.237 0.42 0.406 0.538
[2.918]∗ [3.454]∗ [3.570]∗

4 1.466 −0.01 0.041
[9.536]∗ [−1.344]

5 1.297 0.015 0.048
[37.324]∗ [1.780]

6 1.279 0.013 0.092
[41.974]∗ [2.521]∗

7 1.176 0.001 0.039
[60.65]∗ [3.170]∗

8 1.31 0.029 0.057
[36.721]∗ [4.050]∗

9 1.267 −0.901 0.008
[27.522]∗ [−0.760]

10 53.99 −2.262 0.044
[30.724]∗ [−1.488]

11 1.499 −0.006 −0.004 0.01 0 0.041 0.357 −0.004 0.219
[10.53] [−1.145] [−0.453] [1.315] [0.047] [4.846]∗ [0.399] [−2.530]∗

12 0.441 0.682 −0.001 −0.014 0.002 0.001 0.022 0.654 −0.003 0.470
[2.128]∗ [6.086]∗ [−0.129] [−2.383]∗ [0.539] [1.089] [2.311]∗ [0.897] [−1.973]∗

13 0.264 0.412 0.392 −0.001 −0.012 0.005 0.001 0.014 0.681 −0.002 0.551
[1.783] [3.468]∗ [3.288]∗ [−0.351] [−2.420]∗ [0.126] [1.447] [1.952] [1.325] [−2.031]∗

The table reports the quarterly time series regressions

P/C(t) = β0 + β1 P/CM (t − 1) + β2 P/C(t − 1) + β3 P/E(t − 1) + β4 C.U.(t − 1)

+ β5 Earn(t − 1) + β6 NBER(t − 1) + β7 R−

t−1 + β8 COT(t) + +β8 II(t)ε(t).

In different lines some of the βi are set to zero. P/C(t) is the ratio of Black-Scholes implied volatilities of 5% out-of-the-money puts to calls for S&P 500 options with
about three months to maturity measured at the beginning of the quarter. P/EM is the analogous put-call ratio implied by our model and calculated as shown in Appendix
2. The historical and model implied series are shown in the top panel of Figure 1. The latter are calculated conditional on investors’ beliefs of fundamental drift states that
are extracted and displayed in Figure 3. P/E is the price to operating income ratio of S&P 500 500 firms; CU is the demeaned industrial capacity utilization in the United
States obtained from the Federal Reserve Board; Earn stands for the real operating earnings growth of S&P firms; NBER is 100 times the quarterly expansion indicator
created by the NBER; R−

t−1 is the one quarter lagged returns in periods when it is negative on the S&P 500 index; COT stands for the sentiment of traders measured as the
net long position of large speculators on S&P 500 index futures obtained from the Commodity Futures Trading Commission’s Commitment of Traders Report; II stands
for investor sentiment (bullish less bearish proportion) measured in Investor’s Intelligence’s survey of investment newsletter writers. Besides options prices and sentiment
variables, all other variables are measured at the end of the previous quarter. COT is measured on the day of the options trade, and the II on the Wednesday before the
options trade. T-Statistics are in parenthesis and are adjusted for heteroskedasticity and autocorrelation using the Newey and West (1987) method. The symbol * indicates
statistical significance at the 5% level.



Table 6: Model Volatility of Stock Volatility and Fundamental Uncertainties (1986:Q2 – 2008)

No. Constant Inf Unc Earn Unc CU Unc MG Unc R̄2

1. 2.046 0.646 0.054
(1.535) (1.817)

2. 0.933 0.346 0.725
(1.554) (8.347)∗

3. 1.767 0.677 0.037
(1.023) (1.729)

4. -0.226 1.952 0.234
(-0.143) (2.553)∗

5. 0.989 0.0313 0.353 -1.116 1.751 0.891
(1.032) (0.182) (14.295)∗ (-3.444)∗ (5.910)∗

The table reports the quarterly time series regressions

VV(t) = β0 + β1 IU(t) + β2 EU(t) + β3 CU(t) + β4 MG(t) + ε(t). (51)

In different lines some of the βi are set to zero. Inf Unc stands for inflation uncertainty, Earn Unc for
earnings uncertainty, CU Unc for Capacity Utilization uncertainty, and MG Unc for money growth
uncertainty. Uncertainty for each fundamental variable is measured using equation (33) and the mod-
els volatility of stock volatility is computed using (22). Time series of all variables are evaluated at the
filtered belief series in Figure 3. T-Statistics are in parenthesis and are adjusted for heteroskedasticity
and autocorrelation using the Newey and West (1987) method. The symbol * indicates statistical
significance at the 5% level.



Figure 1: Data and Model Fitted At-the-Money Implied Volatility (ATMIV) and 5% Out-of-the-Money
Put-Call Implied Volatility Ratio (P/C) from (1986:Q2-2008)
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The at-the-money implied volatility (ATMIV) and ratio of 5% OTM put-to-call implied volatilities (P/C) at about three
months to maturity are constructed at a quarterly frequency from S&P 500 index options prices as discussed in Section 2.2.
The legend “D” denotes the historical data series, while “M” denotes those from our model. The model series are calculated
using Monte Carlo simulations as shown in Appendix 2. The filtered beliefs series of investors used to generate the fitted
values are shown in Figure 3. Shaded areas represent NBER-dated recessions.



Figure 2: Impulse Responses of Short Rates and Industrial Capacity Utilization to Shocks to Fear
Measures (1986:Q2-2008)
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We report the generalized impulse response function (IRF) of Pesaran and Shin (1998) for the 1st order VAR system with the
two variables in each panel. The IRF using this definition is independent of the order of variables in the VAR. Two standard
error bands using bootstrap with 5000 repetitions are also displayed.



Figure 3: Conditional Probabilities of Eight Regimes (1967-2008)
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The regime definitions are in Table 2. β, θ, ρ, and ω are the drifts of inflation, earnings growth, de-meaned capacity
utilization, and real money growth, respectively. The filtered beliefs are obtained from the SMM procedure in Appendix 2.
The calibrated values of the parameters are shown in Table 1. Shaded areas represent NBER-dated recessions.



Figure 4: Fundamentals: Empirical and Model Fitted (1960-2008)
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Historical values of financial and fundamental variables series (D) are in solid lines and their fitted values (M) from the SMM
estimation procedure in Appendix B are in dashed lines. The calibrated values of the parameters are shown in Table 1. The
filtered beliefs series of investors used to generate the fitted values are shown in Figure 3. Shaded areas represent NBER-dated
recessions.



Figure 5: Stock and Bond Prices: Empirical and Model Fitted (1960-2008)
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Historical values of financial and fundamental variables series (D) are in solid lines and their fitted values (M) from the SMM
estimation procedure in the Appendix are in dashed lines. The estimated values of the parameters are shown in Table 1 and
the implied asset price valuations are in Table 2 The filtered beliefs series of investors used to generate the fitted values are
shown in Figure 3. Shaded areas represent NBER-dated recessions.



Figure 6: Strike-Adjusted 3-Month Densities of Stock Returns Under the Risk-Neutral Measures in the
Eight Regimes
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Stock return risk-neutral densities conditional on investors having 80 percent probability of each of the eight regimes (and
equal probabilities for the other regimes) are calculated using our estimated model parameters in Table 1 using Monte Carlo
simulations as shown in Appendix 2.



Figure 7: Relationship Between Fear Indices and Policy Variables From Kernel Regressions
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Data and model expected fundamentals are shown in Figure 4. The at-the-money implied volatility (ATMIV) and the ratio of
5% OTM put-to-call implied volatilities (P/C) at about three months to maturity is constructed at a quarterly frequency from
S&P 500 index options prices as discussed in Section 2.2. The model option price series are calculated using Monte Carlo
simulations as shown in Appendix 2. The filtered beliefs series of investors used to generate the fitted values are shown in
Figure 3. The fitted lines from the nonparametric regressions are estimated with a Gaussian kernel [see e.g. Campbell, Lo,
and MacKinlay (1997)].



Figure 8: Relationship Between ATMIV and Money Growth During Stimulative Periods
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We define “Stimulative” periods as those where the 3-month Treasury Bill Yield is below the annualized inflation (CPI) rate.
In the sub-sample of our date where we have options data (1986:2 – 2008) there are 20 quarters that we characterize as
stimulative. The panels report the sample correlation and its t.statistic in parenthesis. The at-the-money implied volatility
(ATMIV) at about three months to maturity is constructed at a quarterly frequency from S&P 500 index options prices as
discussed in Section 2.2. The model series are calculated using Monte Carlo simulations as shown in Appendix 2. The filtered
beliefs series of investors used to generate the fitted values are shown in Figure 3.



Figure 9: Relationship Between ATM Implied Volatility and Absolute Changes in ATM Implied Volatil-
ity, (1986:Q2-2008)
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Data and model ATM implied volatility are shown in the top panel of Figure 1. The model volatility of volatility is computed
using (22) and the filtered belief series in Figure 3.



Figure 10: Volatility Premium (1986:Q2-2008)
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The first and second panels show the data implied volatility premiums (IVP), which are the difference between the ATMIV
in Figure 1 and the P-measure forecast of realized volatility from from Projection 1 (equation (26)) and Projection 2 (equation
(27)), respectively. The panels also show the analogous implied volatility premium from our model which is the difference
between the model implied volatility in Figure 1 and the model forecast of volatility under the P-measure using simulation
methods as described in equation (50) in Appendix 2. The third panel shows the IVP and the Forward Volatility Risk Premium
(FVRP) from our model. The FVRP is the difference in volatility forecasts under the Q- and P-measures respectively. The
fourth panel shows the model’s IVP and volatility of volatility series as computed using (22). All model variables are
computed using the filtered belief series in Figure 3.



Figure 11: Volatility of Stock Market Volatility and Fundamental Uncertainties (1986:Q2-2008)
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The model volatility of volatility is computed using (22) and fundamental RMSE uncertainties are computed using (33). All
variables are computed using the filtered belief series in Figure 3.


