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1. Introduction

Some booms in housing prices are followed by busts. Others are not. In either case it is diffi -

cult to find observable fundamentals that are correlated with price movements. We develop

a model that is consistent with these observations. Agents have heterogeneous expectations

about long-run fundamentals but change their views because of “social dynamics”. Agents

meet randomly and those with tighter priors are more likely to convert other agents to their

beliefs. The model generates a “fad”in the sense that the fraction of the population with a

particular view rises and then falls. Depending on which agent is correct about fundamentals,

these fads generate boom-busts or protracted booms.

Models in which agents have homogeneous expectations can generate large differences in

house prices across steady states with different fundamentals such as borrowing constraints,

income growth, demographics, transactions costs, and zoning (see e.g. Chu (2009)). How-

ever, it is diffi cult to generate protracted price movements in models with homogeneous

expectations because expected changes in future fundamentals are quickly capitalized into

prices. Booms and busts can be generated by assuming that agents first receive increas-

ingly positive signals about future fundamentals and then increasingly negative signals. But

the problem with this approach is that for many episodes it is diffi cult to find observable

fundamentals that are correlated with house price movements.1

The model that we develop has three key features. First, there is uncertainty about the

long-run fundamentals that drive house prices. We assume that in each period, there is a

small probability that housing fundamentals will change permanently to a new value. This

emphasis on long-run fundamentals is related to the literature on long-run risk (Bansal and

Yaron (2004), and Hansen, Heaton, and Li (2008)).

Second, as in Harrison and Kreps (1976), Scheinkman and Xiong (2003), Acemoglu,

Chernozhukov, and Yildiz (2007), and Geanakoplos (2010), agents in our economy have

heterogenous beliefs about fundamentals. Some agents believe that housing fundamentals

will improve while others don’t. Agents can update their priors in a Bayesian fashion. But

the data do not convey useful information about long-run fundamentals, so the priors of

different agents remain constant over time. In other words, agents agree to disagree and this

disagreement persists over time. One set of agents is correct in their views but there is no

1Glaeser and Gyourko (2006) argue that it is diffi cult to explain the large changes in housing prices over
time with changes in incomes, amenities or interest rates.

1



way to know ex-ante which set that is.

The third feature of the model is an element which we refer to as “social dynamics.”

Agents meet randomly with each other and some agents change their priors about long-run

fundamentals as a result of these meetings. We use the entropy of an agent’s probability

distribution of future fundamentals to measure the uncertainty of his views. We assume

that when agent i meets agent j, the probability that agent i adopts the prior of agent j

is decreasing (increasing) in the entropy of agent i’s (agent j’s) priors. Agents with tighter

priors are more likely to convert other agents to their beliefs. Our model generates dynamics

in the fraction of agents who hold different views that are similar to those generated by the

infectious disease models proposed by Bernoulli (1766) and Kermack andMcKendrick (1927).

Taken together, the second and third features of the model generate non-trivial dynamics in

the volume of transactions, with home sales and prices displaying a sharp positive correlation.

We consider two cases. In the first case the agents with the tightest priors are those who

expect fundamentals to remain the same. In the second case, agents with the tightest priors

are those who expect fundamentals to improve. Absent realization of uncertainty about

long-run fundamentals, the model generates fads. In the first case there is a rise and fall in

the number of people who believe that buying a house is a good investment. Here the model

generates a protracted boom-bust cycle. In the second case there is a rise and fall in the

number of people who believe that housing fundamentals will not change. Here, the model

generates a protracted boom in housing prices that is not followed by a bust.

We use the model to compute the price path expected by different agents. These uncon-

ditional expected price paths take into account the probability of uncertainty being realized

at different points in time. Regardless of which agent happens to be correct the model has

the following implications. Agents who think that fundamentals will improve expect prices

to rise and then level off. Agents who think fundamentals will not change expect prices to

rise and then fall. An econometrician taking repeated samples from data generated by the

model would see both boom-busts and booms that are not followed by busts. The boom-bust

episodes occur in economies where agents who don’t expect fundamentals to improve happen

to be correct. The episodes in which booms are not followed by busts occur in economies

where those agents who expect fundamentals to improve happen to be correct. Of course,

in any given economy the econometrician could not predict ex-ante which type of episode

he would see. That is because before uncertainty is realized, the data are not informative
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about which agent is correct.

The paper is organized as follows. In Section 2 we provide some empirical background

about the nature of housing booms and busts. In Section 3 we describe our model of social

dynamics and its implications for the behavior of housing prices. We do so in a frictionless

model of the housing market. While useful for building intuition, the model is too stylized

to account for various features of the data. For this reason we consider in Section 4 a simple

matching model of the housing market and describe its transition dynamics. In Section 5 we

incorporate social dynamics into the matching model and generate our main results. Section

6 concludes.

2. Boom-bust cycles in housing prices: background evidence

In this section we document some key empirical regularities about boom-bust cycles in hous-

ing prices using aggregate time-series data for different countries. Our evidence complements

the already extensive literature that uses microeconomic data to analyze particular boom-

bust episodes (see e.g. Mian and Sufi (2010) and Barlevy and Fisher (2010)).

An operational definition of a boom or a bust requires that we define turning points

where upturns and downturns in housing prices begin. To avoid defining high-frequency

movements in the data as upturns or downturns, we first smooth the data. Let yt denote the

logarithm of an index of real housing prices. Also let xt denote the centered-moving average

of yt, xt =
∑n

j=−n yt+j. We define an upturn as an interval of time in which ∆xt > 0 for all

t and a downturn as an interval of time in which ∆xt < 0. A turning point is the last time

period within an upturn or downturn. A boom is an upturn for which yT − yT−L > z, and a

bust is a downturn for which yT −yT−L < −z. Here T is the date at which the boom or bust
ended, L is the length of the boom or bust and z is a positive scalar. The results discussed

below are generated assuming n = 5 and z = 0.15 but the findings are not sensitive to small

changes in these parameters.

We implement our procedure using quarterly OECD data on real house prices for 18

countries over the period 1970 to 2009.2 These indices have been normalized so they have an

average value of 100 in all countries. Figure 1 displays the data. Three features of these data

2While our data spans the last four decades, boom-bust episodes in housing prices are a much older
phenomenon. Ambrose, Eichholtz, Lindenthal (2010) document the existence of such episodes in Holland
over a period of four centuries. Similarly, Eitrheim and Erlandsen (2004) provide analogous evidence for
Norway over a period of two centuries.
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are worth noting. First, every country in our sample experienced housing price booms and

busts.3 The median sizes of booms and busts are 54 and 29 percent, respectively. Second,

booms and busts occur over protracted periods of time. The median lengths of booms and

busts in our sample are 61
4
years and 5 years, respectively. Third, in many cases booms are

followed by protracted busts. But not always: in 26 out of 49 boom episodes a boom is not

followed by a bust.4 A successful theory should recognize this fact.

3. Social dynamics in a frictionless model

In this section we consider a simple frictionless model of the housing market. We use this

set up to introduce our model of social dynamics and the implied movements in the fraction

of agents with different beliefs about long-run fundamentals.

The model economy The economy is populated by a continuum of agents with measure

one. All agents have linear utility and discount utility at rate β. Agents are either home-

owners or renters. We assume that each agent can only own one house and that there is no

short-selling. The first assumption is made for simplicity. The second assumption is moti-

vated by the fact that in practice it is not possible to short sell houses. This characteristic

of houses distinguishes it from other asset classes, such as stocks, which are easier to short

sell.

For simplicity, we assume that there is a fixed stock of houses, k < 1, in the economy. This

assumption is motivated by the observation that large booms and busts occur in cities where

increases in the supply of houses are limited by zoning laws, land scarcity, or infrastructure

constraints.5 There is a rental market with 1 − k houses. These units are produced by

competitive firms at a cost of w per period, so the rental rate is constant and equal to

w. The momentary utilities associated with owning and renting a house are εh and εr,

respectively. We assume that the utility of owning a home is higher than the net utility of

renting (εh > εr − w) so that home prices are positive.
We first consider the equilibrium of the economy when there is no uncertainty. Agents

decide at time t whether they will be renters or home owners at time t+ 1. The net utility

3Australia and Germany only experienced booms and a bust, respectively.
4This fraction is almost certainly affected by the fact that our sample ends in 2009 and so misses part of

the ongoing declines in home prices.
5See, e.g. Glaeser, Gyourko, and Saks (2005), Quigley and Raphael (2005), Barlevy and Fisher (2010),

and Saiz (2010).
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of being a renter at time t+ 1 is εr − w. If an agent buys a house at time t he pays Pt. He
lives in the home at time t + 1 and receives a utility flow εh. He can then sell the house at

the end of period t + 1 for a price Pt+1. Since all agents are identical, in equilibrium they

must be indifferent between buying and renting a house. So, housing prices must satisfy the

following equation:

−Pt + β
(
Pt+1 + εh

)
= β (εr − w) . (3.1)

The stationary solution to this equation is:6

P = β
ε

1− β , (3.2)

where ε = εh − (εr − w).

We now consider an experiment that captures the effects of infrequent changes in the

value of housing fundamentals. Examples include low-frequency changes in the growth rate

of productivity which affects agents’wealth and changes in financial regulation or innovations

which make it easier for agents to purchase homes. For concreteness we focus on the utility

of owning a home. Suppose that before time zero the economy is in a steady state with no

uncertainty, so Pt = P . At time zero agents learn that in each period, with small probability

φ, the value of ε will change permanently to a new level ε∗. Agents agree about the value of

φ but disagree about the probability distribution for ε∗. Agents do not receive information

that is useful for updating their priors about the distribution of ε∗.7 As soon as uncertainty

is resolved agents become homogeneous in terms of their beliefs.

Prior to the resolution of uncertainty, agents fall into three categories depending on their

priors about ε∗. Borrowing from the terminology used in the epidemiology literature we refer

to these agents as “infected,”“cured,”and “vulnerable.”We denote by it, ct, and vt the time

t fraction of infected, cured and vulnerable agents, respectively. Agent types are indexed

by j = i, c, v and are assumed to be publicly observable. Priors are common knowledge,

so higher-order beliefs play no role in our model. The laws of social dynamics described

below are public information. Agents take into account future changes in the fractions of

the population that hold different views.

6It is well known that there are explosive solutions to equation (3.1) (see, e.g. Diba and Grossman (1988)).
We abstract from these solutions in our analysis.

7If agents disagreed about the value of φ they would update their priors about φ after observing whether
a change in fundamentals occurred. We abstract from uncertainty about the value of φ to focus our analysis
on the importance of social dynamics.
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The new value of the flow utility of owning a home, ε∗, is drawn from the set Φ. For

simplicity we assume that this set contains n elements. An agent of type j attaches the

probability distribution function (pdf) f j(ε∗) to the elements of Φ.

We assume that at time zero there is a very small fraction of cured and infected agents.

Almost all agents are vulnerable, i.e. they have diffuse priors about future fundamentals.

Infected agents expect an improvement in fundamentals:

Ei(ε∗) > ε.

Cured and vulnerable agents do not expect fundamentals to improve:

Ec(ε∗) = Ev(ε∗) = ε.

For now we assume that agents do not take into account that they might change their

type as a result of social interactions. This assumption rules out the possibility that agents

might take actions that are optimal only because they might change their type in the future.

For example, a cured agent might buy a home, even though this action is not optimal given

his current priors, in anticipation of the possibility that he could become infected in the

future. We return to this issue at the end of this section.

We use the entropy of the probability distribution f j(ε∗) to measure the uncertainty of

an agent’s views,

ej = −
n∑
i=1

f j(ε∗i ) ln
[
f j(ε∗i )

]
.

The higher is the value of ej, the greater is an agent’s uncertainty about ε∗. This uncertainty

is maximal when the pdf is uniform, in which case ej = ln(n).

Agents meet randomly at the beginning of the period. When agent l meets agent j, agent

j adopts the priors of agent l with probability γlj. The value of γlj depends on the ratio of

the entropies of the agents’pdfs:

γlj = max(1− el/ej, 0). (3.3)

This equation implies that a low-entropy agent will not adopt the prior of a high-entropy

agent. In addition, it implies that the probability that a high-entropy agent adopts the priors

of the low-entropy agent is decreasing in the ratio of the two entropies (el/ej). We adopt

this formulation for two reasons. First, it strikes us as plausible. Second, it is consistent
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with evidence from the psychology literature that people are more persuaded by those who

are confident (e.g. Price and Stone (2004) and Sniezek and Van Swol (2001)).

Throughout we assume that the entropy of the vulnerable agents exceeds the entropy of

the cured and infected:

ec < ev,

ei < ev.

In addition, we make the natural assumption that most agents are vulnerable at time zero

and that the initial number of infected and cured agents is small but identical: i0 = c0.

The population dynamics in our model are similar to the dynamics in the infectious

disease models of Bernoulli (1766) and Kermack and McKendrick (1927).8 We consider two

cases to analyze the equilibrium in which either the cured or the infected agents have the

lowest entropy. In both cases, if uncertainty is not resolved, the entire population converges

to the view of the agent with the lowest entropy. The model generates a “fad”in the sense

that the fraction of the population with a particular view rises and then falls.

Case 1 Here we assume that the pdf of the cured agents has the lowest entropy:

ec < ei < ev.

The fraction of the population with different views evolves according to:

it+1 = it + γivitvt − γciitct, (3.4)

ct+1 = ct + γcvctvt + γciitct, (3.5)

vt+1 = vt − γivitvt − γcvctvt. (3.6)

To understand equation (3.4) note that there are itvt encounters between infected and

vulnerable agents.9 As a result of these encounters, γivitvt vulnerable agents become infected.

Similarly, there are ctit encounters between cured and infected at time t. As a result of these

encounters, γcictit infected agents become cured. These two sets of encounters, together with

it, ct, and vt determine it+1.

8Bernoulli (1766) used his model of the spread of smallpox to show that vaccination would result in a sig-
nificant increase in life expectancy. When vaccination was introduced, insurance companies used Bernoulli’s
life-expectancy calculations to revise the price of annuity contracts (Dietz and Heesterbeek (2002)).

9See Duffi e and Sun (2007) for a law of large numbers that applies to pairwise random meetings.
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Consider next equation (3.5). There are itct encounters between cured and infected

agents which lead to γciitct infected agents becoming cured. The are also ctvt encounters

between cured and vulnerable agents which lead to γcvctvt vulnerable agents becoming cured.

Finally, equation (3.6) reflects the fact that γivitvt vulnerable agents become infected and

γcvctvt become cured.

In case 1 the model can generate a “fad”in which the number of infected agents rises for

a while before declining towards zero. To see how this pattern emerges, suppose that initially

a large fraction of the population is vulnerable and that γivv0 > γcic0. In conjunction with

equation (3.4) the latter condition implies that initially the fraction of infected agents grows

over time.

Also, consider a path of the economy in which uncertainty is not realized. Along this path

the number of infected agents initially rises over time as the number of vulnerable agents

who become infected is larger than the number of infected agents who become cured (see

equation (3.4)). The number of vulnerable agents falls over time as some of these agents

become infected and others become cured (see equation (3.6)). Eventually, γivvt < γcict. At

this point the fraction of infected agents begins to fall. It follows from equation (3.5) that

all agents become cured as t→∞.

Case 2 Here we assume that the pdf of the infected agents has the lowest entropy:

ei < ec < ev.

The fraction of the population with different views evolves according to:

it+1 = it + γivitvt + γicitct, (3.7)

ct+1 = ct + γcvctvt − γicitct, (3.8)

vt+1 = vt − γivitvt − γcvctvt. (3.9)

To understand equation (3.7) note that the itvt encounters between infected and vulnera-

ble agents lead to γivitvt vulnerable agents becoming infected. There are also itct encounters

between infected and cured which lead to γicitct cured agents becoming infected. In equation

(3.8) the itct encounters between cured and infected agents at time t result in γicitct cured

agents becoming infected. The ctvt encounters between cured and vulnerable agents at time

t result in γcvctvt vulnerable agents become cured. Finally, equation (3.9) reflects the fact

that γivitvt vulnerable agents become infected and γcvctvt become cured.
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This version of the model also generates a “fad”but here it is the number of cured agents

that rises for a while before declining towards zero. A fad arises when initially a large fraction

of the population is vulnerable and γcvvt > γicit. The basic difference between case 1 and

case 2 is that in the latter case cured agents are being converted into infected agents, so that

eventually all agents become infected.

Equilibrium in the frictionless model House prices are determined by the marginal

buyer. To determine the identity of this buyer we sort agents in declining order of how much

they value houses. The marginal buyer is the agent who is at the kth percentile of house

valuations. When the fraction of infected agents is lower than k for all t, the marginal home

buyer is a non-infected agent. Since these agents do not expect changes in the utility of

owning a home, the price is constant over time at the value given by equation (3.2). In order

to generate a boom-bust cycle, at least k percent of the agents must be infected at some

point in time.

It is useful to define the time-t fundamental value of a house before the resolution of

uncertainty for a given agent, assuming that this agent is the marginal buyer until uncertainty

is resolved. We denote these fundamental values for the infected, cured and vulnerable agents

by P i
t , P

v
t , and P

c
t , respectively. The value of P

i
t is given by:

P i
t = β

{
φ

[
Ei(ε∗) + β

Ei(ε∗)

1− β

]
+ (1− φ)(ε+ P i

t+1)

}
. (3.10)

The logic that underlies this equation is as follows. With probability φ uncertainty is resolved.

In this case the expected utility flow and house price at time t+1 are Ei(ε∗) and βEi(ε∗)/(1−
β), respectively. With probability 1 − φ uncertainty is not resolved. In this case the agent
derives a utility flow, ε, and values the house at P i

t+1. Since we are deriving the fundamental

value under the assumption that the infected agent is always the marginal home buyer,

P i
t = P i

t+1 = P i. Solving equation (3.10) for P i
t we obtain:

P i = β
φEi(ε∗)/(1− β) + (1− φ)ε

1− β(1− φ)
. (3.11)

Vulnerable and cured agents expect ε∗ to equal ε, so:

P c = P v = β
ε

1− β . (3.12)

We begin by characterizing the equilibrium of the economy in case 1. Suppose that the

fraction of infected agents rises above k for t ∈ [t1, t2], where t2 < ∞. For t > t2 the cured
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agents are the marginal home buyers. So, the price is given by:

Pt = P c, for t ≥ t2 + 1. (3.13)

Using Pt2+1 as a terminal value we can compute recursively the prices for t ≤ t2 that obtain

if uncertainty is not realized. Since the infected agent is the marginal home buyer between

period t1 and period t2 we have:

Pt = β{φ[Ei(ε∗ + P ∗t+1)] + (1− φ)(ε+ Pt+1)}, for t1 ≤ t ≤ t2.

Here Pt+1 and P ∗t+1 are the t+1 prices when uncertainty is not realized and when uncertainty

is realized, respectively.

Since the vulnerable agents are the marginal home buyers for t < t1, we have:

Pt = β{φ[Ec(ε∗ + P ∗t+1)] + (1− φ)(ε+ Pt+1)}, for t < t1.

Here we use the fact that: Ec(ε∗) = Ev(ε∗).

The following proposition characterizes the equilibrium for this model.

Proposition 3.1. The equilibrium price path in case 1 when uncertainty is not realized is

given by:

Pt =


P c + [β(1− φ)]t1−t (Pt1 − P c), t < t1,
P i − [β(1− φ)]t2+1−t (P i − P c) , t1 ≤ t ≤ t2,
P c, t > t2.

(3.14)

The equilibrium price path when uncertainty is realized is given by:

Pt =
βε∗

1− β . (3.15)

The intuition for this proposition is as follows. Before time t1 the marginal buyer is

a vulnerable agent. If uncertainty is not realized, the marginal buyer at time t1 is an

infected agent. The latter agent is willing to buy the house at a value that exceeds P c.

The price of a house reflects this expected capital gain, Pt1 − P c. This capital gain is

realized with probability (1 − φ)t1−t. So the expected, discounted capital gain is given by:

[β(1− φ)]t1−t (Pt1 − P c). Therefore, the equilibrium price is equal to P c plus this capital

gain (first line of equation (3.14)). Note that the price jumps at time zero from P c to

P c + [β(1− φ)]t1 (Pt1 −P c) because of the expected capital gains associated with the change

in the marginal buyer at time t1. As long as uncertainty is not realized, the price rises before

time t1 reflecting the fact that the expected, discounted capital gain is rising at rate β(1−φ).
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Between time t1 and t2 the marginal buyer is an infected agent. However, if uncertainty

is not realized, the marginal buyer at time t2 is a cured agent who is willing to buy the house

at a price P c < P i. The equilibrium price is equal to P i minus the expected, discounted

capital loss, [β(1− φ)]t2−t (P i− P c) (second line of equation (3.14)). As long as uncertainty

is not realized, the price falls before t2 + 1 reflecting the fact that the expected, discounted

capital loss is rising at rate β(1− φ).

After time t2 + 1 there are no more changes in the identity of the marginal buyer. So,

unless uncertainty is realized, the price remains constant and equal to the fundamental value

of a house to a cured agent, P c.

Finally, once uncertainty is realized, agents have homogeneous expectations so all funda-

mental values coincide and the price of a house is given by equation (3.15).

Proposition 3.1 implies that the model generates a boom-bust cycle in house prices as

long as uncertainty is not realized. Of course, the model can also generate a boom-bust as

well as a boom-no-bust path depending upon when uncertainty is realized and the realization

of ε∗. We view these possibilities as less interesting because of the diffi culty of identifying

observable fundamentals that covary with house prices.

The following proposition characterizes the equilibrium price path in case 2. Recall that,

in this case, the fraction of the population that is infected converges monotonically to one.

We define t1 as the first time period at which it ≥ k. The behavior of prices is summarized

by the following proposition.

Proposition 3.2. The equilibrium price path in case 2 when uncertainty is not realized is

given by:

Pt =

{
P c + [β(1− φ)]t1−t (P i − P c), t < t1,
P i, t ≥ t1.

(3.16)

The equilibrium price path when uncertainty is realized is given by:

Pt =
βε∗

1− β . (3.17)

The intuition for this proposition is as follows. After time t1, until uncertainty is resolved,

the marginal home buyer is an infected agent. So, absent resolution of uncertainty the price

is equal to P i for all t ≥ t1. Before t1 the marginal home buyer is a vulnerable/cured

agent who has a fundamental house value P c. The equilibrium price is equal to P c plus

the discounted expected value of the capital gain that results from selling the house to an

infected agent at time t1, [β(1− φ)]t1−t (P i − P c).
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A simple numerical example We now consider a simple numerical example that il-

lustrates the properties of the model summarized in the previous proposition. In case 1

equations (3.5)-(3.6) imply that the maximum value of it is 50 percent. So, the presence

of infected agents affects prices only if k < 0.5. In the following example we assume that

k = 0.1.

We use the beta distribution to guide our choice of pdfs over ε∗ for the different agents in

the economy. This family of continuous distributions, which depends on two parameters, x

and y, is very flexible and includes the uniform distribution as a particular case. We denote

by xj and yj the parameters of the beta distribution of agent j.10

To simplify our computations we work with a discrete approximation to the beta distri-

butions defined on a symmetric grid with six points. To compute the probability of each of

these points we divide the support of the distribution into six intervals of equal size and com-

pute the integral of the beta distribution over these intervals. The support of the distribution

corresponds to the mid points of the different intervals.11

Our choice of parameters xj and yj are such that the discretized beta distributions imply:

Ev(ε∗) = Ec(ε∗) = 2.9, Ei(ε∗) = 8.5. We think of a time period as one month and choose β

so that the implied annual discount rate is six percent. We assume that there is a very small

number of infected and cured natural renters at time zero: i0 = c0 = 10−5. The remainder

of the population is vulnerable. We choose φ, the probability that uncertainty is realized in

each period, to equal 1/120. Absent resolution of uncertainty this value, together with our

other assumptions, implies that a boom-bust pattern emerges over the course of roughly 20

years. Our value of φ implies that the probability of observing such a boom-bust pattern is

roughly 13 percent.

Case 1 Here our choice of xj and yj imply:

ei = 0.82, ec = 0.81, and ev = 0.93,

γci = 0.010, γiv = 0.116, and γcv = 0.125.

Panel (a) of Figure 2 shows the evolution of the fraction of cured, infected and vulnerable

agents absent resolution of uncertainty about ε∗. The fraction of infected agents in the pop-

ulation initially increases slowly. The infection then gathers momentum until the fraction of
10We assume that the support of the distribution is the interval [0, 10]. The pdf of infected, cured and

vulnerable agents are parameterized by: xi = 2.4, yi = 0.3, xc = 9.35, yc = 22.4, xv = 7.0, and yv = 16.8.
11The support is given by: ε∗ ∈ {0.83, 2.50, 4.17, 5.83, 7.50, 9.17}.
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infected agents peaks at 29 percent in year eight. Thereafter this fraction declines eventually

reaching zero. Between t1, the middle of year eight, and t2, the beginning of year 19, the

infected agents are the marginal buyers since they exceed a fraction k percent of the popu-

lation. The fraction of vulnerable agents falls over time and converges towards zero as these

agents become either cured or infected. The fraction of cured agents rises monotonically

over time until everybody in the economy is cured.

The intuition for these dynamics is as follows. Since the vulnerable agents have the

highest entropy, both infected and cured agents can convert the vulnerable agents to their

views. The entropy of the cured agents is only slightly lower than that of the infected agents.

By assumption there are initially very few infected and cured agents. Since the probability

of these agents meeting is very small, very few infected agents become cured. Initially, both

the fraction of cured and infected agents grows because there is a large pool of vulnerable

agents for them to convert. Eventually, the number of vulnerable agents falls and very few

vulnerable agents became newly infected. Because there is a large pool of cured agents, the

probability that an infected agent meets a cured agents becomes substantial. Consequently,

the number of infected agents that become cured rises. With low inflows and high outflows

the fraction of infected agents asymptotes to zero. So, in this case we observe a ‘fad’in the

sense that the number of infected agents initially rises and then declines.

Consistent with Proposition 3.1, Figure 3 shows that the price jumps at time zero and

then continues to rise slowly until infected agents become the marginal home buyers at time

t1. Thereafter the price drops rapidly, reverting to its initial steady-state value.

Figure 3 also displays the one-period-ahead annualized rate of return that different agents

expect at each point, conditional on uncertainty not being realized at time t:

rjt =
φ [Ej (ε∗) + βEj (ε∗) /(1− β)] + (1− φ)(ε+ Pt+1)

Pt
− 1. (3.18)

The Figure also displays the volume of transactions implied by the model computed under

the assumption that trade only occurs when at least one of the agents has a motive for

transacting.

A key feature of Figure 3 is that agents have heterogeneous beliefs about the expected

rate of return to housing. This basic feature of our model is consistent with the findings

in Piazzesi and Schneider (2009) who document such heterogeneity using data from the

Michigan Survey of Consumers.12

12Vissing-Jørgensen (2003) provides evidence for substantial heterogeneity of beliefs regarding the returns
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The annualized real rate of return to the marginal home owner is constant and equal to

six percent. Before t1 the cured/vulnerable agents are the marginal home owners. Infected

agents expect very high rates of return which reflects a high value of Ei (ε∗). So all newly

infected agents (γivitvt) buy homes.13 During this period prices are rising and all transactions

are initiated by agents who buy homes. Prices and transaction volume simultaneously peak

at time t1.

Between time t1 and t2 the infected agents are the marginal buyers. During this period

of time the cured/vulnerable agents expect negative rates of return because they have a low

expected value of ε∗. So all newly cured agents (γcictit) sell their homes to infected agents

who are indifferent between buying and holding. During this period prices are falling and

all transactions are initiated by agents who sell homes. Figure 3 displays the time series

of transactions volume. Notice that prices and transactions volume simultaneously peak at

time t1. Transaction volume collapses once prices start to fall because at this point infected

agents own all the houses. After time t1 the number of transactions recovers as some infected

agents become cured and sell their homes.

After time t2 the cured/vulnerable agents are once again the marginal home owners and

infected agents expect very high rates of return that are not reflected in market prices. So,

γivitvt agents buy homes. But, because there are so few vulnerable agents the number of

transactions is close to zero.

From Figure 3 we see that, while the identity of the marginal home owner changes over

time, the rate of return to the marginal owner is fixed and constant at six percent. There

is heterogeneity in agents’ expected rate of return to housing. However, since pricing is

determined by the marginal owner, the expectations of inframarginal agents are not reflected

in home prices.

Finally, Figure 3 displays the price paths expected by infected and cured/vulnerable

agents at time zero. These paths are given by:

Ej
0(Pt) = (1− φ)t+1 (ε+ Pt+1) +

[
1− (1− φ)t+1

] [
Ej (ε∗) + βEj (ε∗) /(1− β)

]
, (3.19)

for j = i, c, v.

to other assets such as stocks.
13We assume that the vulnerable agents sell since they are indifferent between holding and selling. The

infected agents could induce them to sell by offerering an arbitrarially small premium. Some infected agents
become cured during this time period. However, for t ≤ t1 infected agents who become cured are indifferent
between holding and selling, so we assume that they do not transact.
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Infected agents expect prices to rise very rapidly until time t1. Thereafter expected

prices continued to rise but at a diminished rate reflecting the fall in actual market prices

if uncertainty is not realized. The fall in market prices is outweighed by the large rise in ε∗

that infected agents expect. Finally, expected prices rise at a slightly higher rate after time

t2, reflecting the fact that the price remains constant if uncertainty is not realized.

Consider next the price path expected by cured and vulnerable agents at time zero.

Equation (3.19) implies that:

Ei
0(Pt)− Ec

0(Pt) =
[
1− (1− φ)t+1

] Ei (ε∗)− Ec (ε∗)

1− β . (3.20)

So, the entire difference between Ei
0(Pt) and Ec

0(Pt) reflects agents’different expectations

about ε∗. This difference implies that cured/vulnerable agents always expect a lower price

than infected agents. The cured/vulnerable agents expect prices to rise between time zero

and time t1 because the price appreciation that occurs as long as uncertainty is not realized

outweighs the fall in price that occurs if uncertainty is realized. Between time t1 and t2

the latter effect outweights the first effect and the cured/vulnerable agents expect prices to

fall. After time t2 the market price corresponds to the cured/vulnerable agent’s fundamental

price so prices are expected to be constant.

Case 2 Here our choice of xj and yj implies:14

ei = 0.81, ec = 0.82, and ev = 0.93,

γic = 0.010, γiv = 0.125, and γcv = 0.116.

Panel (b) of Figure 2 shows the evolution of the fraction of cured, infected, and vulnerable

agents absent resolution of uncertainty about ε∗. The dynamics are the same as in panel

(a) of Figure 2 except that the cured and infected have changed places. Here there is a fad

in the sense that the number of cured agents rises for roughly eight years before falling to

zero. The fraction of infected agents rises monotonically over time until everybody in the

economy is infected.

Consistent with Proposition 3.2, Figure 4 shows that the price jumps at time zero and

then continues to rise until the beginning of year five, when all homes are owned by infected

agents. Thereafter the price is constant and equal to the infected agent’s fundamental value.

14The pdf of infected, cured and vulnerable agents are parameterized by: xc = 2.4, yc = 0.3, xi = 9.35,
yi = 22.4, xv = 7.0, and yv = 16.8.
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Figure 4 also shows the volume of transactions implied by the model. At time zero all

homes are owned by vulnerable agents. Between time zero and time t1 all newly infected

agents (γivitvt) buy homes. At time t1 all of the homes are owned by infected agents and

there are no new transactions because infected agents do not become cured.

Finally, Figure 4 displays the price path expected by infected and cured/vulnerable agents

at time zero. This path is computed using equation (3.19). Infected agents expect prices to

rise very rapidly until t1. From this point on the expected price continues to rise because

the probability that uncertainty is realized and infected agents receive a large capital gain

increases with the time horizon. Figure 4 also displays the price path expected by cured and

vulnerable agents at time zero. As in case 1, the entire difference between Ei
0(Pt) and Ec

0(Pt)

reflects different expectations about ε∗ (see equation (3.20)).

Interpreting cross-sectional data on housing prices A salient feature of the data on

house prices is the presence of both boom-bust episodes and episodes in which booms are

not followed by busts. Our model is consistent with this feature of the data. Regardless

of whether we are in case 1 or case 2, infected agents expect prices to rise and eventually

level off, while cured agents expect prices to rise and then fall. An econometrician taking

repeated samples from our data would see both boom-busts and booms that are not followed

by busts. The boom-bust episodes would occur in economies where the cured agents happen

to be correct. The booms that are not followed by busts would occur in economies where

the infected agents happen to be right. Of course, in any given economy the econometrician

cannot predict ex-ante which type of episode he would see. That is because by construction

the data are not informative about which agent is correct.

An alternative interpretation of social dynamics We conclude this section by describ-

ing an alternative environment which generates social dynamics that are similar to those of

our model. In this example agents have heterogeneous priors and receive private signals.

Suppose that the agents who are initially infected and cured have very sharp priors. Agents

that are initially vulnerable have very diffuse priors. All agents receive uninformative private

signals. Vulnerable agents have sharp priors that the posteriors of infected and cured agents

are the product of initially diffuse priors and very informative signals. So, when a vulnerable

agent meets an infected (cured) agent his posterior becomes arbitrarily close to that of the

infected (cured) agent. We refer to a vulnerable agent who has a posterior that is very close
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to that of an infected (cured) agent as infected (cured).

We reinterpret γlj as the probability that agents of type l meet agents of type j. We

assume that γvc = γvi = γ and that γci = 0, i.e. cured and infected agents have no social

interactions. Under our assumptions the dynamics of the fraction of population with different

views are similar to those generated by our model of social dynamics. Our assumptions

about γlj eliminate the convergence of posteriors that is a generic property of Bayesian

environments. As a result, we preserve the property that different agents agree to disagree.15

To obtain dynamics similar to cases 1 and 2 we need to introduce a slight asymmetry between

cured and infected agents. A simple, albeit mechanical, way to introduce this asymmetry is

to suppose that in case 1 (case 2) a small fraction δ of infected (cured) agents exogenously

change their view to those of cured (infected) agents.

The view of social segmentation embodied in our assumptions about γlj is consistent with

the notion that agents who are strongly committed to a point of view limit their interactions

to sources of information and individuals that are likely to confirm their own views. This

phenomenon is discussed by Sunstein (2001) and Mullainathan and Shleifer (2005). The

latter authors summarize research in psychology, communications and information theory

that is consistent with the social-segmentation hypothesis. More recently, Gentzkow and

Shapiro (2010) find evidence that people tend to have close social interactions with people

who have similar political views. Social segmentation is related to what sociologists call

“homophily”: contact between similar people occurs at a higher rate than contact among

dissimilar people (McPherson, Smith-Lovin, Cook (2001)).

Internalizing changes in agent type So far we have assumed that agents do not take

into account that they may change their type as a result of social interactions. Here we assess

the quantitative impact of this assumption by calculating equilibrium prices when agents do

internalize the possibility that they may change their type.

In case 1, absent resolution of uncertainty, all agents become cured as t goes to infinity

and the terminal price is equal to the fundamental price of a cured agent (P c in equation

(3.12)). In case 2, absent resolution of uncertainty, all agents become infected as t goes to

infinity and the terminal price is equal to the fundamental price of an infected agent (P i in

equation (3.11)). Using these terminal prices we can compute the equilibrium price path in

15Acemoglu et al. (2007) provide an alternative environment in which agents agree to disagree because
they are uncertain about the interpretation of the signals that they receive.
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a recursive fashion.

When i(t) ≥ k infected agents are the marginal home owners. In this case the equilibrium

price is given by:

Pt = (1− γcict)β
[
φEi(ε∗ + P ∗t+1) + (1− φ)(ε+ Pt+1)

]
+

γcictβ
[
φEc(ε∗ + P ∗t+1) + (1− φ)(ε+ Pt+1)

]
.

Recall that Pt+1 and P ∗t+1 are the t + 1 prices when uncertainty is not realized and when

uncertainty is realized, respectively. Here an infected agent takes into into account that with

probability γcict he becomes cured at time t+ 1 and values the house as a cured agent. The

value of γci is positive in case 1 but equal to zero in case 2.

When i(t) < k and i(t) + v(t) ≥ k vulnerable agents are the marginal home owners even

if c(t) ≥ k. Vulnerable agents have higher valuations than cured agents because they have a

higher probability of becoming infected. In this case the equilibrium price is given by:

Pt = (1− γivit − γcvct)β
[
φEv(ε∗ + P ∗t+1) + (1− φ)(ε+ Pt+1)

]
+γivitβ

[
φEi(ε∗ + P ∗t+1) + (1− φ)(ε+ Pt+1)

]
+

+γcvctβ
[
φEc(ε∗ + P ∗t+1) + (1− φ)(ε+ Pt+1)

]
.

Here the vulnerable agent takes into account that with probability γivit he becomes infected

and values the house as an infected agent. Also, with probability γcvct he becomes cured

and values the house as a cured agent.

Finally, when i(t) < k and i(t) + v(t) < k the marginal home owner is a cured agent. In

this case the equilibrium price is given by:

Pt = γicitβ
[
φEi(ε∗ + P ∗t+1) + (1− φ)(ε+ Pt+1)

]
+

(1− γicit)β
[
φEc(ε∗ + P ∗t+1) + (1− φ)(ε+ Pt+1)

]
.

Here the cured agent takes into account that, with probability γicit he becomes infected and

values the house as an infected agent. Recall that γic is zero in case 1 but it is positive in

case 2.

We redo the experiment that underlies Figure 3 using the same parameter values. The

basic finding is that internalizing changes in agent type makes virtually no difference to our

results. The basic reason is that the probability of switching types is small. For instance, in

case 1 the maximum value of γivit and γcict in our numerical example are three and one-third
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of one percent, respectively. In the following sections we abstract from this effect to simplify

our computations.

4. A matching model

The frictionless model shows the potential of social dynamics to account for the house price

dynamics observed in the data. However, it has three unattractive features. First, to generate

a boom-bust cycle in case 1, the fraction of agents that are infected must exceed k for at

least some period of time. According to the Housing Vacancy Survey of the Bureau of the

Census, the average fraction of American households who owned homes during the period

1965-2010 is 65 percent. So, the model requires that a very large fraction of the population

become infected.16 Second, the price rise that occurs at time zero is large relative to the

peak rise in prices. Third, the model is too stylized to account for the fact that the volume

of transactions and time to sell are highly correlated with average housing prices (see Stein

(1995)).

Here we model the housing market using an extended version of the matching model

proposed by Piazzesi and Schneider (2009). In this section we consider a version of the model

in which agents have homogeneous expectations. The basic structure of this model coincides

with that of the frictionless model described in Section 3. The economy is populated by a

continuum of agents with measure one. All agents have linear utility and discount utility at

rate β. There is a fixed stock of houses, k < 1, in the economy and a rental market with

1− k houses. Rental units are produced by competitive firms at a cost w per period, so the
rental rate is constant and equal to w.

There are four types of agents in the economy: homeowners, home sellers, natural home

buyers, and natural renters. We denote the fraction of these agents in the population by

ht, ut, bt, and rt, respectively. Home owners and home sellers own homes at time t. In

equilibrium all homes are occupied so that:

ht + ut = k. (4.1)

16An alternative strategy for remedying this shortcoming is to allow for heterogeneity in the utility of
owning a home. For example, suppose there is a group of agents that would never sell their home because
they derive such a high utility from it. The presence of this group is equivalent to a reduction in k, so that
it is easier to generate a boom in the price of homes that are potentially for sale.
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Both natural buyers and natural renters rent homes at time t so that:

bt + rt = 1− k. (4.2)

We describe the state of the economy by st = {ht, bt}. We now discuss the problems faced
by the different agents in the economy.

Homeowners A homeowner derives momentary utility ε from his home. The agent’s value

function, H(st), is given by:

H(st) = ε+ β [(1− η)H(st+1) + ηU(st+1)] . (4.3)

With probability η a homeowner’s match with his home goes sour and he becomes a home

seller. We denote the value function of a home seller by U(st).

Home sellers A home seller sells his home with probability p(st). Once the sale occurs,

the home seller becomes a natural renter. The home seller’s value function is given by:

U(st) = p(st)[P (st) + βR(st+1)] + [1− p(st)]βU(st+1). (4.4)

Here P (st) is the expected price received by a home seller and R(st) is the value function of

a natural renter.

To simplify, we abstract from the transactions costs of selling a home. In addition, we

assume that the reservation price of a home seller, P̄ u, is an exogenous constant. To ensure

that transactions occur in the steady state we require that P̄ u be lower than the steady state

reservation price of natural buyers.

Natural home buyers A natural buyer is a renter at time t. He has to choose between

renting at t+ 1 or trying to buy a home. His net flow utility from renting is given by εb−w
and his value function is given by B(st). If he decides to continue renting, his value function,

Brent(st), is given by:

Brent(st) = εb − w + βB(st+1). (4.5)

If he tries to buy a house, he succeeds with probability q(st). In this case, he pays a price

P b(st) and his continuation utility is that of a home owner ((1−η)H(st+1)+ηU(st+1)). With
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probability 1− q(st), he does not succeed in buying a house and he remains a renter at time
t+ 1. So the value function of being a potential buyer, Bbuy(st), is given by:

Bbuy(st) = q(st)
{
εb − w − P b(st) + β [(1− η)H(st+1) + ηU(st+1)]

}
+ [1− q(st)]Brent(st). (4.6)

The value function of a natural home buyer is given by:

B(st) = max[Brent(st), B
buy(st)]. (4.7)

The reservation price, P̄ b(st), is the price that makes a natural buyer indifferent between

buying and renting:

P̄ b(st) = β [(1− η)H(st+1) + ηU(st+1)−B(st+1)] . (4.8)

Natural renters A natural renter is a renter at time t. His net flow utility from renting is

given by εr −w and his value function is R(st). The only difference between natural renters

and natural buyers is that the former derive lower utility from owning a home. We model

this difference by assuming that whenever natural renters buy a house they pay a fixed cost,

κε. This fixed cost represents the expected present value of the difference between their

utility from owning a home and the corresponding utility of a natural buyer.17 We choose

the value of κ so that it is not optimal for natural renters to buy a house in the steady state.

In each period a fraction λ of natural renters receive a preference shock and become

natural home buyers. A natural renter can choose whether to continue renting or to try to

buy a house. If he continues renting, his value function, Rrent(st), is given by:

Rrent(st) = εr − w + β [(1− λ)R(st+1) + λB(st+1)] . (4.9)

The continuation utility reflects the fact that a natural renter becomes a natural home buyer

with probability λ.

If the natural renter tries to buy a house, he succeeds with probability q(st). In this

case, he pays a price P r(st) and his continuation utility is the same as that of a home owner

((1 − η)H(st+1) + ηU(st+1)), except that he must pay the fixed cost κε. With probability

17Since the fixed cost is paid upfront all home owners are identical. It does not matter whether they used
to be natural buyers or natural renters. This property simplifies our analysis by reducing the number of
different agents in the economy.
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1 − q(st) the natural renter does not succeed in buying a house. In this case, he continues
to be a renter at time t+ 1. The value function of a potential buyer, Rbuy(st), is given by:

Rbuy(st) = q(st) {εr − w − P r(st)− κε+ β [(1− η)H(st+1) + ηU(st+1)]}

+(1− q(st))Rrent(st). (4.10)

The value function of a natural home buyer is given by:

R(st) = max[Rrent(st), R
buy(st)]. (4.11)

The reservation price, P̄ r(st), is the price that makes natural renters indifferent between

buying and renting:

P̄ r(st) = β [(1− η)H(st+1) + ηU(st+1)]− β [(1− λ)R(st+1) + λB(st+1)]− κε. (4.12)

Timing The timing of events within a period is as follows. Preference shocks occur in

the beginning of the period. With probability η home owners become home sellers. With

probability λ natural renters become natural buyers. Transactions occur at the end of the

period. A fraction p(st) of home sellers sell their home while a fraction q(st) of home buyers

buy a house.

We define the indicator function J b(st) to take the value one if it is optimal for natural

buyers to buy a house when the state of the economy is st and zero otherwise. The indicator

function Jr(st) is equal to one if it is optimal for natural renters to buy a house when the

state of the economy is st and is equal to zero otherwise.

The laws of motion for the fraction of home owners, home sellers, natural home buyers

and natural renters in the population are given by:

ht+1 = (1− η)ht + q(st)
[
(bt + λrt) J

b(st) + rt(1− λ)Jr(st)
]
, (4.13)

ut+1 = (ut + ηht) (1− p(st)) , (4.14)

bt+1 = (bt + λrt) [1− q(st)J b(st)], (4.15)

rt+1 = (1− λ)rt[1− q(st)Jr(st)] + p(st) (ut + ηht) . (4.16)
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The matching technology There is a technology that governs matches between buyers

and sellers. Since agents can only own one home, only natural renters and natural buyers

can potentially buy homes:

Buyers(st) = (bt + λrt) J
b(st) + rt(1− λ)Jr(st). (4.17)

There is no short selling and homeowners only sell when the match with their home goes

sour. It follows that the fraction of the population that are sellers is given by:

Sellers(st) = ut + ηht. (4.18)

When a match occurs, the transactions price is determined by generalized Nash bargain-

ing. The bargaining power of buyers and sellers is θ and 1 − θ, respectively. Matches can
occur between a seller and a natural buyer or a natural renter. In the first case the price

paid by the natural buyer, P b(st), is:

P b(st) = θP̄ b(st) + (1− θ)P̄ u. (4.19)

In the second case, the price paid by the natural renter, P r(st), is:

P r(st) = θP̄ r(st) + (1− θ)P̄ u. (4.20)

The average price received by a home seller, P (st), is given by:

P (st) =
(bt + λrt) J

b(st)P
b(st) + rt(1− λ)Jr(st)P

r(st)

(bt + λrt) J b(st) + rt(1− λ)Jr(st)
. (4.21)

The number of homes sold, m(st), is determined by the matching function:

m(st) = µSellers(st)αBuyers(st)1−α. (4.22)

The probabilities of selling (p(st)) and buying (q(st)) a house are given by:

p(st) = m(st)/Sellers(st), (4.23)

q(st) = m(st)/Buyers(st). (4.24)

4.1. Solution Algorithm

In this subsection we discuss our algorithm for solving the model. We begin with the steady

state and then show how to solve the model given arbitrary initial conditions.
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Steady State It can be shown that the model economy has a unique steady state in which

the fraction of the different types of agents is constant. We now solve for the steady-state

values of the probability of buying and selling a home (p and q) and the fraction of the

different agents in the population (h, u, b, and r).

We choose values for the parameters µ, λ and k. We choose a value for η so that the

probabilities of buying and selling a house coincide in the steady state:

p = q.

Equations (4.23) and (4.22) imply that p = q = µ. This fact, together with equations (4.2)

and (4.15) imply that the steady state number of natural buyers is given by:

b =
(1− µ)λ(1− k)

µ+ λ(1− µ)
.

We then solve for r, u, and h, as functions of µ, λ and k using (4.2), (4.14) and (4.1).

The fact that p = q implies that the number of buyers is equal to the number of sellers

(equations (4.23) and (4.24)). Since there are u + ηr home sellers and b + λr buyers in the

steady state we set η so that:

u+ ηh = b+ λr.

Given the values of p and q we can now solve for the steady-state values of the purchase

price, the reservation price of a buyer, and the value functions of the different agents evaluated

in the steady state: P , P b, H, U , B and R. To do so we use the steady state versions of

equations (4.3), (4.4), (4.5), (4.6), (4.8), (4.9), (4.19), (4.20), and (4.21) and the fact that in

the steady state B = Bbuy and R = Rrent.

Transitional Dynamics We assume that at time T = 2000 the system has converged

to the steady state. Consequently, we obtain an approximate solution because it takes an

infinite number of periods for the model economy to converge to the steady state.

Let the set S denote all the values of the state variable st that occur along the transition

path. First, guess that J b(st) = 1 and Jr(st) = 0 for all st ∈ S. Second, using the

initial conditions s0 = {h0, b0} and equations (4.13) through (4.16), compute the sequence
of values of ht, ut, bt, and rt. Third, use equations (4.17), (4.18), (4.23), (4.22), and (4.24)

to compute the values of p(st) and q(st) for st ∈ S. Fourth, assume that: H(sT ) = H,

U(sT ) = U , B(sT ) = B, and R(sT ) = R. Then use equations (4.3) to (4.12) and (4.21)
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to solve backwards for {H(st), U(st), B(st), R(st), P (st)} for t = 1 to T . Finally, verify

whether the guesses for J b(st) and Jr(st) for st ∈ S describe the optimal behavior of buyers
and sellers along the proposed transition path. If not, revise the guesses for J b(st) and Jr(st)

until a consistent solution is obtained.

4.2. Experiments

We illustrate the properties of the model through a series of experiments.

An expected improvement in fundamentals We first consider the same experiment

that we study in the frictionless model but with homogeneous beliefs. At time zero agents

suddenly anticipate that, with probability φ, the utility of owning a home rises from ε to

ε∗ > ε. It is easy to show that there are no transition dynamics and the economy converges

immediately to a new steady state with a higher price. So, when beliefs are homogeneous, an-

ticipated future changes in fundamentals are immediately reflected in today’s price. Matching

frictions per se do not produce interesting price dynamics, at least in the experiment studied

here.

Transitional dynamics We now study an experiment that highlights the effect of an

exogenous increase in the number of buyers on home prices. The resulting intuition is useful

for understanding the results that we obtain when we incorporate social dynamics into the

model. Suppose that the fraction of natural buyers in the population is initially higher than

its steady state value, b0 > b. Since r0 = 1 − k − b0, the fraction of natural renters in the

population is initially lower than its steady state value. We denote by s the steady state

value of the state variables: s = {b, h} and by s0 = {b0, h} the time-zero value of the state
variables. Equations (4.22), (4.23) and (4.24) imply that the time-zero probability of buying

a house is lower than it is in steady state: q(s0) < q(s). The time-zero probability of selling

is higher than it is in steady state: p(s0) > p(s).

To illustrate the transition dynamics of the model we consider a numerical example based

on parameter values summarized in Table 1. We use the same values for β, w, and ε used

in Section 3. We set the stock of houses, k, equal to 0.65, which coincides with the average

fraction of homeowners in the United States over the period 1965 to 2010. We set εr, εb,

and w to one. We set λ to 0.02. This value of λ, together with the values of µ and k and

the assumption that the probability of buying and selling a home are the same in the steady
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state, implies that η is equal to 0.0102. This value of η implies that home owners sell their

house on average every eight years. We set the matching function parameter µ to 0.13. This

value implies that the average time to sell a house in the steady state is 7.5 months. We

set the matching parameter α and the bargaining parameter θ to 0.5 so as to treat buyers

and sellers symmetrically. We set the reservation price of the seller to P̄ u = 1. This value

is lower than the steady state reservation price of natural buyers, so that it is optimal for

natural buyers to buy in the steady state. Finally, we set κ = 42 , a value which implies that

the steady state utility of a natural renter who buys a home is 20 percent lower than that

of a natural home buyer. Our assumptions imply that it is not optimal for natural renters

to buy homes in the steady state.

We assume that the number of natural buyers at time zero is 50 percent above its steady

state level. Figure 5 depicts the model’s transition dynamics. Home prices are initially

high and converge to the steady state from above. In addition, the paths for prices and the

number of buyers mirror each other closely. To understand these properties notice that the

utility of a home seller converges to the steady state from above (U(st+1) > U(s)), a result

that reflects two forces. First, because the number of buyers is high during the transition,

the probability of selling is higher than in the steady state. Second, the price received by

the seller is higher than in the steady state.

We now discuss the intuition for why P (st) > P (s). Along the transition path only

natural buyers want to buy houses, so the transactions price, P (st) is given by:

P (st) = θP̄ b(st) + (1− θ)P̄ u.

Since P̄ u is exogenous, movements in P (st) are determined by movements in P̄ b(st). Equation

(4.8) implies that P̄ b(st) is an increasing function of H(st+1) and U(st+1) and a decreasing

function of B(st+1). Since U(st+1) is greater than U(s), equation (4.3) implies thatH(st+1) >

H(s). In addition, the value function of a natural buyer approaches the steady state from

below. The basic reason for why B(st+1) < B(s) is that the probability of realizing the

surplus from buying a home is low along the transition to the steady state (q(st) < q(s)).

Since H(st+1) and U(st+1) are above the steady state and B(st+1) is below its steady state

value, it follows from equation (4.8) that the reservation price must be above its steady state

value, P̄ b(st) > P̄ b(s).

In summary, in this experiment an increase in the initial number of buyers reduces the

probability of buying a house and raises the probability of selling a house. In addition, it
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lowers the utility of buyers, raises the utility of sellers, and generates prices that are above

their steady state value.

These results suggest that a boom-bust episode occurs if, for some reason, there is a

persistent increase in the number of buyers followed by a persistent decrease. In the next

section we show that social dynamics can generate the required movements in the number

of buyers without observable movements in fundamentals.

5. A matching model with social dynamics

In this section we consider an economy that incorporates the social dynamics described in

Section 3 into the model with matching frictions described in Section 4. We use this model

to study the same basic experiment considered in Section 3. Suppose that before time zero

the economy is in a steady state with no uncertainty. At time zero agents learn that, with

a small probability φ, the value of ε will change permanently to a new level ε∗. Agents

agree about the value of φ but disagree about the probability distribution for ε∗. Agents

receive no information that is useful for updating their priors about the distribution of ε∗.

Once uncertainty is resolved agents become homogeneous in terms of their beliefs. At that

point the economy coincides with the one studied in the previous section where the utility of

owning a home is ε∗. The economy then converges to a steady state from initial conditions

that are determined by social dynamics and the timing of the resolution of uncertainty.

Agents’expectations about ε∗ depend on whether they are infected, cured or vulnerable.

In addition agents can be home owners, home sellers, natural buyers, or natural renters. So,

all told there are twelve different types of agents in the economy. We use the variables hjt ,

ujt , b
j
t , and r

j
t to denote the fraction of the population of type j agents who are homeowners,

home sellers, natural home buyers, and natural renters, respectively. The index j denotes

whether the agent is infected, cured or vulnerable: j ∈ {i, c, v}.
As in Section 4, agents are subject to preference shocks which can turn natural renters

into natural buyers and home owners into home sellers. The timing of events within a period

is as follows. First, uncertainty about ε∗ is realized or not. Second, preference shocks occur.

With probability η home owners become home sellers. With probability λ natural renters

become natural buyers. Third, social interactions occur and agents potentially change their

views. Fourth, transactions occur.
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Population dynamics To solve the model we must keep track of the fraction of the

different types of agents in the model. To streamline our exposition we focus here on the

law of motion for the fraction of natural renters who are vulnerable. In the appendix we

describe the population dynamics for the other agents in the economy. The mechanics of

these dynamics are similar to those which we now describe.

We denote the fraction of vulnerable natural renters at the beginning of the period, after

preference shocks occur, after social interactions occur, and after purchases and sales occur,

by rvt , (rvt )
′, (rvt )

′′, and rvt+1, respectively. At the beginning of the period, a fraction λ of the

natural renters become natural buyers,

(rvt )
′ = rvt (1− λ).

Next, social interactions occur. A fraction γcvct of the vulnerable natural renters become

cured and a fraction γivit become infected. Consequently, the fraction of vulnerable natural

renters after social interactions is given by:

(rvt )
′′ = (rvt )

′ − γcv (rvt )
′ ct − γiv (rvt )

′ it.

Transactions occur at the end of the period. Let (uvt )
′′ denote the fraction of the vul-

nerable natural sellers that remain after social interactions occur. All of these agents put

their homes up for sale but only a fraction p(st) succeed in actually selling their home. So

the total number of sellers is p(st) (uvt )
′′. These sellers become natural renters. Let Jr,v(st)

denote an indicator function that is equal to one if it is optimal for a vulnerable natural

renter to buy a home when the state of the economy is st and zero otherwise. The number of

vulnerable natural renters who try to purchase a home is equal to: Jr,v(st) (rvt )
′′. A fraction

q(st) of these agents succeed and become natural home owners. So, the number of vulnerable

natural renters at the beginning of time t+ 1 is given by:

rvt+1 = (rvt )
′′ − q(st)Jr,v(st) (rvt )

′′ + p(st) (uvt )
′′ .

We now describe the value functions of the different agents in the economy. We begin by

displaying the value functions that are relevant after uncertainty about ε∗ is realized. We

then discuss the value functions that are relevant before ε∗ is realized.

Value functions after the realization of uncertainty We use upper bars to denote the

value functions that apply after the resolution of uncertainty. These value functions depend
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on the realized value of ε∗ and on the state of the economy, st. Since the number of home

owners adds up to k and the number of renters to 1− k, we can summarize the state of the
economy by using ten of the 12 population fractions:

st = {bvt , bct , bit, rvt , rct , hvt , hct , hit, uvt , uct}.

Let H̄(ε∗, st), Ū(ε∗, st), B̄(ε∗, st), and R̄(ε∗, st) denote the value function of a home

owner, home seller, a natural buyer, and a natural renter, respectively. In addition, P (ε∗, st),

P b(ε∗, st), and P r(ε∗, st) denote the average price received by home sellers, the price paid by

natural home buyers and the price paid by natural renters, respectively.

The value functions of home owners and home sellers are given by:

H̄(ε∗, st) = ε∗ + β
[
(1− η)H̄(ε∗, st+1) + ηŪ(ε∗, st+1)

]
,

Ū(ε∗, st) = p(st)[P (ε∗, st) + βR̄(ε∗, st+1)] + [1− p(st)]βŪ(ε∗, st+1).

We denote by B̄rent(ε∗, st) and B̄buy(ε∗, st) the value function of a natural buyer who rents

and buys, respectively. These functions can be written as:

B̄rent(ε∗, st) = εb − w + βB̄(ε∗, st+1),

B̄buy(ε∗, st) = q(st){εb − w − P b(ε∗, st) + β
[
(1− η)H̄(ε∗, st+1) + ηŪ(ε∗, st+1)

]
}

+[1− q(st)]B̄rent(ε∗, st).

The value function B̄(ε∗, st) is given by:

B̄(ε∗, st) = max[B̄rent(ε∗, st), B̄
buy(ε∗, st)].

We denote by R̄rent(ε∗, st) and R̄buy(ε∗, st) the value function of a natural buyer associated

with renting and buying, respectively. These functions can be written as:

R̄rent(ε∗, st) = εr − w + β[(1− λ)R̄(ε∗, st+1) + λB̄(ε∗, st+1)],

R̄buy(ε∗, st) = q(st){εr − w − P r(ε∗, st)− κε∗ + β
[
(1− η)H̄(ε∗, st+1) + ηŪ(ε∗, st+1)

]
}

+[1− q(st)]R̄rent(ε∗, st).

In the previous equation we assume that the fixed cost (kε∗) paid by the natural renter for

buying a home is proportional to the realized vale of ε∗. This assumption ensures that it is
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optimal for a natural renter to rent a home in the steady state of the economy regardless of

the realized value of ε∗. The value function R̄(ε∗, st) is given by:

R̄(ε∗, st) = max[R̄rent(ε∗, st), R̄
buy(ε∗, st)].

The reservation prices of natural buyers and renters and the average transaction price are

computed as in Section 4 using equations (4.8), (4.12), (4.19), (4.20), and (4.21). However,

these equations must be modified by replacing ε with ε∗.

Value functions before the realization of uncertainty Let Hj(st), U j(st), Bj(st),

and Rj(st) denote the value functions before uncertainty is realized of a type j home owner,

home seller, natural buyer and natural renter, respectively. In addition, P (st), P b,j(st), and

P r,j(st) denote the average price received by home sellers, the average price paid by natural

home buyers and the average price paid by natural renters, respectively.

The expectations operator Ej [V j (st+1)] denotes the expectation of a generic value func-

tion V j(st+1) based on the pdf of a type j agent:

Ej[V j(st+1)] = (1− φ)V j(st+1) + φ
∑
ε∗∈Φ

f j(ε∗)V̄ (ε∗, st+1). (5.1)

Here V̄ (ε∗, st+1) denotes the value function after the realization of uncertainty.

The value functions of a type j home owner and home seller are given by:

Hj(st) = ε+ βEj
[
(1− η)Hj(st+1) + ηU j(st+1)

]
, (5.2)

U j(st) = p(st){P (st) + βEj[Rj(st+1)]}+ [1− p(st)]βEj[U j(st+1)]. (5.3)

We denote by Brent,j(st) and Bbuy,j(st) the value function of a natural buyer of type j

associated with renting and buying, respectively. These functions can be written as:

Brent,j(st) = εb − w + βEj[Bj(st+1)],

Bbuy,j(st) = q(st){εb − w − P b,j(st) + βEj[(1− η)Hj(st+1) + ηU j(st+1)]}

+[1− q(st)]Brent,j(st). (5.4)

The value function of a type j natural buyer, Bj(st), is given by:

Bj(st) = max[Brent,j(st), B
buy,j(st)].
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The reservation price of a natural buyer of type j, P̄ b,j(st), is given by:

P̄ b,j(st) = Ejβ[(1− η)Hj(st+1) + ηU j(st+1)−Bj(st+1)]. (5.5)

Recall that this price makes the agent indifferent between buying and renting.

We denote by Rrent,j(st) and Rbuy,j(st) the value function of a type j natural renter who

rents and buys, respectively. These functions can be written as:

Rrent,j(st) = εr − w + βEj{(1− λ)Rj(st+1) + λBj(st+1)},

Rbuy,j(st) = q(st){εr − w − P r,j(st)− κε+ βEj[(1− η)Hj(st+1) + ηU j(st+1)]}

+[1− q(st)]Brent,j(st). (Rj)

The value function of a type j natural renter, Rj(st), is given by:

Rj(st) = max[Rrent,j(st), R
buy,j(st)].

The reservation price of a natural buyer of type j, P̄ r,j(st), is given by:

P̄ r,j(st) = Ejβ{(1− η)Hj(st+1) + ηU j(st+1)− κε

−(1− λ)Rj(st+1)− λBj(st+1)}. (5.6)

Buyers and sellers The number of buyers and sellers is given by:

Buyers(st) =
∑
j=i,c,v

(bjt)
′′J b,j(st) +

∑
j=i,c,v

(rjt )
′′Jr,j(st), (5.7)

Sellers(st) =
∑
j=i,c,v

(
ujt + ηhjt

)
. (5.8)

The number of homes sold is given by equation (4.22). The probabilities of buying and

selling are given by equations (4.23) and (4.24), respectively.

Transactions prices There are six different possible transaction prices. The first three

prices arise from a match between a home seller and the three different types of natural

buyers:

P b,j(st) = θP̄ b,j(st) + (1− θ)P̄ u. (5.9)

The remaining three prices arise from a match between a home seller and the three different

types of natural renters:

P r,j(st) = θP̄ r,j(st) + (1− θ)P̄ u. (5.10)
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The average price received by a seller, P (st) is given by:

P (st) =

∑
j=i,v,c

(bjt)
′′J b,j(st)P

b,j(st) +
∑
j=i,v,c

(rjt )
′′Jr,j(st)P

r,j(st)∑
j=i,v,c

(bjt)
′′J b,j(st) +

∑
j=i,v,c

(rjt )
′′Jr,j(st)

. (5.11)

Here J b,j(st) is an indicator function that is equal to one if it is optimal for a type

j natural buyer to buy a home when the state of the economy is st and zero otherwise.

Similarly, Jr,j(st) is an indicator function that is equal to one if it is optimal for a type j

natural renter to buy a home when the state of the economy is st and zero otherwise.

5.1. Solving the model

In this subsection we describe a solution algorithm to compute the equilibrium of the economy

along a path in which uncertainty has not been realized.

We begin by considering case 1. In this case, absent resolution of uncertainty, all agents

eventually become cured. Since Ec(ε∗) = ε, if the path under consideration converges then

it converges to the initial steady state of the economy.

We can use the algorithm described in Section 4 to solve for the steady state associated

with all possible realizations of ε∗ and for the values of the value functions along the transition

to the steady state for any initial condition st and realized value of ε∗: H̄(ε∗, st), Ū(ε∗, st),

B̄(ε∗, st), and R̄(ε∗, st). As in Section 4 we denote by S the set of the values of the state

variable st that occur along the equilibrium path.

Our solution algorithm is as follows. First, we specify the initial conditions in the econ-

omy: hj0, u
j
0, b

j
0, and r

j
0 for j = i, c, v. We choose these conditions so that the fractions

of homeowners, home sellers, natural buyers and natural renters are equal to their initial

steady state values. In addition, we assume that all agents are vulnerable except for a small

number, ζ, of infected and cured renters: hv0 = h and bv0 = b, uv0 = u, ri0 = rc0 = ζ, and

rv0 = 1− 2ζ.

Second, we guess values of the indicator functions that summarize the optimal decisions

of natural buyers and natural renters, J b,j(st) and Jr,j(st) for all st ∈ S. For example,

J b,j(st) = 1 for all j, Jr,i(st) = 1, Jr,c(st) = Jr,v(st) = 0 for all st ∈ S.
Third, we use equations (A.1) through (A.20) in the appendix to compute the path for

the fractions of different agents in the population: hvt , h
c
t , h

i
t, u

v
t , u

c
t , u

i
t, b

v
t , b

c
t , b

i
t, r

v
t , r

c
t , and

rit.
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Fourth, we use equations (4.23), (4.24), (5.7), and (5.8), to compute the values of p(st)

and q(st) for st ∈ S.
Fifth, we compute the limiting value of the value function of all agents along the path in

which uncertainty is not realized. The system of equations that defines these limiting values

is given by equation (A.21)-(A.27) in the appendix.

Sixth, we solve backwards for all the value functions using equations (5.2) to (5.6) and

(5.9) to (5.11). As in Section 4 we assume that the economy has reached its steady state at

time T = 2000. Computing Ej[V j(st+1)], defined in equation (5.1), where V j is a generic

value function, requires solving the steady state that obtains when uncertainty is realized for

each possible value of ε∗ and solving backwards from the steady state to obtain V̄ (ε∗, st+1)

for each possible value of ε∗. We then use the pdf of agent j over ε∗ to compute the expected

value of V̄ (ε∗, st+1):
∑
ε∗∈Φ

f j(ε∗)V̄ (ε∗, st+1).

Seventh, we verify that the initial guesses for the indicator functions J b,j(st) and Jr,i(st)

describe the optimal behavior of buyers and sellers along the proposed equilibrium path. If

not, we revise the guesses until we obtain a consistent solution.

With one exception we use the same algorithm to solve for the equilibrium in case 2. The

exception is that in this case, absent resolution of uncertainty, all agents become infected.

Along the path on which uncertainty is not realized the economy converges to a steady state

which is equivalent to an economy in which ε∗ = Ei(ε∗). To compute this steady state we

guess and verify whether it is optimal for infected natural renters and natural buyers to buy

a home. In our particular numerical example, it is optimal for them to do so.

5.2. Quantitative properties of the model

We illustrate the properties of the model using two numerical examples corresponding to

cases 1 and 2 in Section 3. The parameters governing social dynamics are the same as in

Section 3. The parameters of the matching model are the same as in Section 4. Table 1

contains a summary of the parameter values that we use.

Case 1 In this case the pdf of the cured agents has the lowest entropy (ec < ei < ev). The

resulting social dynamics are displayed in panel (a) of Figure 2. Figure 6 describes various

features of the model along a path in which uncertainty is not realized. The key features

of this path can be summarized as follows. First, average home prices rise and then fall
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as the infection waxes and wanes. Strikingly, even though agents have perfect foresight up

to the resolution of long-run uncertainty, the initial rise in price is very small. Second, the

average transaction price is highly correlated with the number of potential buyers. Third,

the number of transactions is positively correlated with the average home price. Fourth, as

prices rise there is a “sellers market”in the sense that the probability of selling is high and

the probability of buying is low.

Consistent with our discussion in Section 4, movements in the number of potential buyers

are the key driver of price dynamics in the model. Over time the number of potential buyers

rises from 4.7 percent to a peak value of 13 percent of the population and then declines.

In the boom phase of the cycle the number of potential buyers rises for two reasons.

First, in contrast to the model without social dynamics, some natural renters, those who

have become infected, want to buy homes. At the peak of the infection roughly 16 percent

of natural renters are infected and account for 37 percent of potential buyers (see Figure 6).

Second, as more buyers enter the market, the average amount of time to purchase a house

rises from 7.5 to 20 months, while the average time to sell a house drops from 7.5 months to

2.8 months. To understand these results, recall that the probabilities of buying and selling a

home depends on the ratio of buyers to sellers (see equations (4.23) and (4.24)). Other things

equal, the inflow of infected natural renters into the housing market increases the number

of buyers, thereby lowering the probability of buying a house and raising the probability of

selling a house. The latter effect reduces the stock of home sellers, thus reinforcing the fall in

the probability of buying and the rise in the probability of selling a house. As the infection

wanes, the number of buyers falls and the number of sellers rises, so the probabilities of

buying and selling a house return to their steady state values.

To understand how changes in the number of buyers and sellers affect prices, we exploit

the intuition about transition dynamics discussed in Section 4. The average purchase price

is a weighted average of the price paid by four types of agents: infected natural renters and

infected, cured and vulnerable natural buyers.

The price paid by each of these agents depends positively on their reservation price (see

equations (5.9) and (5.10)). Each reservation price is the difference between the value to

that agent of being a home owner and a home buyer (see equations (5.5) and (5.6)). When

the probability of buying is low, the value functions of all potential buyers are low because

it is more diffi cult to realize the utility gains from purchasing a home. When the probability
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of selling is high, the value functions of home sellers are high because it takes less time to

sell a home. The value functions of home owners are also high because with probability η

they become home sellers.

As the infection takes hold the probability of buying falls and the probability of selling

rises. As a result, the reservation prices of the different potential buyers rise, leading to a

rise in purchase prices.

From Figure 6 we see that the infected natural buyers pay the highest price. These agents

derive a high utility from owning a home and have a high expectation of ε∗. The next highest

price is paid by cured natural buyers. These agents also derive a high utility from owning a

home but they have a lower expectation of ε∗ than infected natural buyers. Vulnerable and

cured natural buyers have the same expectation of ε∗ so they pay the same price. Infected

natural renters pay the lowest price. On one hand these agents enjoy the house less than

natural buyers. On the other hand, they have a higher expectation of ε∗ than cured and

vulnerable natural buyers. For the case being considered the first effect outweighs the second

effect.

The presence of infected natural renters has two effects. Taking the prices paid by other

agents as given, the presence of infected natural renters reduces the average price. However,

the presence of infected renters increases the number of potential buyers thereby creating a

congestion effect that reduces the probability of buying a home. As discussed above, this

reduction increases the transactions price paid by the other agents in the system. In our

example, the second effect dominates the first effect.

Quantifying the congestion effect One way to quantify the importance of the conges-

tion effect is to redo the experiment but not allow infected renters to purchase homes. By

construction, in this experiment the probability of buying and selling a home is constant,

since the number of potential buyers and sellers is unaffected by the infection. It turns out

that the average sale price is hardly affected by the infection. The only reason for average

prices to go up in this experiment is a rise in the reservation price of infected natural buyers.

This price is the difference between the value of a being a new home owner who is infected

((1 − η)H i(st+1) + ηU i(st+1)) and the value of being an infected natural buyer (Bi(st+1)).

The value of becoming a home owner increases if a vulnerable agent becomes infected. But

the value of being an infected natural buyer also increases because an infected agent has a

high expected value of ε∗. In contrast to the situation where the congestion effect is opera-
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tive, here the probability of buying a home remains constant, so there is no countervailing

effect on the infected natural buyers’value functions. The net result is a small increase in

the reservation price of infected buyers.

What happens when uncertainty is resolved? The two graphs in Figure 7 show the

average behavior of the price if uncertainty is realized in years five and ten, respectively.

The solid line depicts the actual house price up to the period when uncertainty is realized.

When uncertainty is realized there are six possible price paths that can occur, one for each

of the possible realized values of ε∗. The dashed (dotted) line shows the average price path

that infected (vulnerable/cured) agents expect to occur after uncertainty is realized.

On average, infected agents expect prices to rise and cured/vulnerable agents expect

prices to fall. Interestingly, neither agent expects the price to converge immediately to its

steady value after uncertainty is realized. The reason is that, when uncertainty is resolved,

the number of buyers exceeds its steady state value. For every value of ε∗ the transition to

the steady state is governed by the transition dynamics of the homogeneous expectations

model. As emphasized in Section 4, when the number of buyers exceeds its steady state

value the price converges to its steady state value from above.

If uncertainty is realized in year five, the number of infected natural renters is small and

the number of potential buyers is close to its steady state value. As a result, there is only

a modest role for transition dynamics and the expected initial price is close to its expected

steady state value. If uncertainty is realized in year ten, the number of infected natural

renters is large and the number of potential buyers is substantially above its steady state

value. As a result, the expected initial price is substantially above its expected steady-state

value.

The right-hand graph in Figure 7 helps us understand why a cured or vulnerable natural

buyer is willing to buy a house even at the peak of the infection (year ten) when the price

is much higher than the steady state price that these agents expect. Even if uncertainty

is resolved in the following period, agents expect the fall in the price to be relatively small

because the number of potential home buyers is significantly above its steady state value.

Even if a home buyer becomes a home seller, the expected capital loss on the house is expected

to be relatively small. As a consequence, the gains from living in the house outweigh the

expected capital loss.

Infected agents expect a large capital gain when uncertainty is realized. This expected
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gain is so large that it induces not only natural buyers but also natural renters to try to

purchase a home. Under normal circumstances natural renters would not buy a home. They

are willing to do so because the expected gains from speculation outweigh their disposition

to rent rather than buy.

Finally, Figure 7 shows that there is a discontinuous jump up or down in housing prices

when uncertainty is realized. We do not observe these types of jumps in the data. The

discontinuity reflects the stark nature of how information is revealed in the model. This

feature can be eliminated if information about long-run fundamentals gradually percolates

throughout the economy as in Duffi e, Giroux and Manso (2010).

Case 2 In this case the pdf of the infected agents has the lowest entropy (ei < ec <

ev). The same economic forces discussed above are at work here. The key difference is

that, absent resolution of uncertainty, the entire population becomes infected (see panel

(b) of Figure 2). As a consequence, the number of infected renters rises and remains high

until uncertainty is resolved. So, the number of potential buyers remains high and the

congestion effect is operative for a much longer period of time. Not surprisingly, in case 2

the probability of buying (selling) is much lower (higher) for a longer period of time than in

case 1. Consequently, it takes much longer in case 2 for the volume of transactions to return

to its steady state level.

Finally, Figure 8 displays the price path absent resolution of uncertainty. As in case

1, the price rises before year ten, albeit to a higher level, reflecting the larger number of

potential buyers in the system. The price stays high until uncertainty is resolved.

Expected price paths We now discuss the properties of the time-zero expected time-t

price, Ej
0(Pt), for j = i, c. This price is computed as follows:

Ej
0(Pt) = (1− φ)tPt +

t∑
τ=1

φ(1− φ)τ−1Ej [P∗t (ε∗, τ)] , (5.12)

The first term in equation (5.12) reflects the possibility that uncertainty has not yet been

resolved by the end of time t. The probability of this event, (1−φ)t, is multiplied by Pt, the
price at time t in that state of the world. The second term in equation (5.12) reflects the

possibility that uncertainty is resolved at time τ ≤ t, an event that occurs with probability

φ(1− φ)τ−1. This probability is multiplied by Ej [P∗t (ε∗, τ)], the price that agent j expects
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to occur at time t if uncertainty is realized at time τ and the utility of owning a home is ε∗.

The time-t price depends on τ because the time-t state of the economy depends on when

uncertainty is realized as that determines the transition path to the steady state. Finally,

since agents differ in their expectations about ε∗, the expected value of Pt(ε∗, τ) also differs

across agents.

Panel (a) of Figure 9 depicts, for case 1, the price paths expected by different agents.

Infected agents expect prices to rise rapidly until year ten and to remain high. In contrast,

cured agents also expect prices to rise up to year ten, although by less than infected agents.

Thereafter, cured agents expect prices to revert to their old steady state levels.

Panel (b) of Figure 9 depicts, for case 2, the price paths expected by different agents.

The key property to notice is that while there are quantitative differences the patterns are

remarkably similar. Cured agents expect a boom that is followed by a bust while infected

agents expect a boom that is not followed by a bust. Qualitatively this is the same result

we obtained with the frictionless model of Section 3. Once again, an econometrician taking

repeated samples from our data would see both boom-busts and booms that are not followed

by busts. The boom-bust episodes occur in economies where the cured agents happen to

be correct. The booms that are not followed by busts occur in economies in which infected

agents happen to be correct.

6. Conclusion

Boom-bust episodes are pervasive in housing markets. They occur in different countries and

in different time periods. These episodes are hard to understand from the perspective of

conventional models in which agents have homogeneous expectations.

In this paper we propose a model in which agents have different views about long-run

fundamentals. Social interactions can generate temporary increases in the fraction of agents

who hold a particular view about long-run fundamentals. The resulting dynamics can pro-

duce boom-bust cycles as well as booms that are not followed by busts. The pattern observed

in a given episode depends on which set of agents happens to be correct in its views.

At the core of our matching model is the notion that booms are associated with new

entrants into the market who drive up housing prices. In the model these entrants are renters

who would not normally be disposed to buy a house. They do so because they expect a large

capital gain. This core feature of our model is consistent with evidence that housing booms
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are accompanied by an influx of new buyers. Data from the American Housing Survey

compiled by the U.S. Census Bureau shows that the fraction of homes owned by individuals

25 years old and younger increased from 18 percent in 1997 to 25 percent in 2005. This rise

surely reflects an influx of new buyers. Similarly, Ortalo-Magne and Rady (1999) document

that there was an influx of first-time buyers during the 1990 housing boom in the U.K.

Our model abstracts from financial frictions. But it is clear to us that the ability of

many young buyers to buy a home is influenced by downpayment requirements and credit

conditions. An implication of our model is that if young buyers are infected but cannot buy a

house, say because they are credit constrained, boom-bust cycles in housing prices are greatly

muted. Indeed, this situation corresponds to the experiment in our model where we lock

out infected natural renters from the housing market. In this case there are no congestion

effects and there are no pronounced boom-bust cycles. But there is no presumption that a

policy of requiring high downpayments would be welfare improving because this policy would

presumably apply to both natural buyers and natural renters. More generally, policies aimed

at curbing rapid price increases are not obviously welfare improving in our model because,

in the end, we do not know who is right about the future: the vulnerable, the cured, or the

infected.
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A. Appendix

In this appendix we describe the laws of motion for the fraction of the population accounted

for by the twelve types of agents in the model of Section 5. The values of γlj, which depend

on the ratio of the entropies of the pdfs of agents l and j, are defined in equation (3.3).

Recall that γic = 0 in case 1 and γci = 0 in case two.

Homeowners We denote the fraction of home owners of type j (j = c, i, v) in the begin-

ning of the period, after preference shocks occur, after social interactions occur, and after

purchases and sales occur by hjt , (hjt)
′, (hjt)

′′, and hjt+1, respectively. The laws of motion for

these variables are given by:

(hjt)
′ = hjt(1− η), j = i, c, v, (A.1)

(hvt )
′′ = (hvt )

′ − γcv (hvt )
′ ct − γiv(hvt )′it, (A.2)

(hct)
′′ = (hct)

′ + γcv (hvt )
′ ct − γic (hct)

′ it + γci
(
hit
)′
ct, (A.3)

(hit)
′′ = (hit)

′ + γiv (hvt )
′ it − γci

(
hit
)′
ct + γic (hct)

′ it, (A.4)

hjt+1 = (hjt)
′′ + q(st)J

b,j(st)(b
j
t)
′′ + q(st)J

r,j(st)(r
j
t )
′′, j = i, c, v. (A.5)

Home sellers We denote the fraction of home sellers of type j (j = c, i, v) in the begin-

ning of the period, after preference shocks occur, after social interactions occur, and after

purchases and sales occur by ujt , (ujt)
′, (ujt)

′′, and ujt+1, respectively. The laws of motion for

these variables are given by:

(ujt)
′ = ujt + ηhjt , j = i, c, v, (A.6)

(uvt )
′′ = (uvt )

′ − γcv (uvt )
′ ct − γiv(uvt )′it, (A.7)

(uct)
′′ = (uct)

′ + γcv (uvt )
′ ct − γic (uct)

′ it + γci
(
uit
)′
ct, (A.8)
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(uit)
′′ = (uit)

′ + γiv (uvt )
′ it − γci

(
uit
)′
ct + γic (uct)

′ it, (A.9)

ujt+1 = (ujt)
′′ − p(st)(ujt)′′, j = i, c, v. (A.10)

Natural buyers We denote the fraction of natural buyers of type j (j = c, i, v) in the

beginning of the period, after preference shocks occur, after social interactions occur, and

after purchases and sales occur by bjt , (bjt)
′, (bjt)

′′, and bjt+1, respectively. The laws of motion

for these variables are given by:

(bjt)
′ = bjt + λrjt , j = i, c, v, (A.11)

(bvt )
′′ = (bvt )

′ − γcv (bvt )
′ ct − γiv(bvt )′it, (A.12)

(bct)
′′ = (bct)

′ + γcv (bvt )
′ ct − γic (bct)

′ it + γci
(
bit
)′
ct, (A.13)

(bit)
′′ = (bit)

′ + γiv (bvt )
′ it − γci(bit)′ct + γic (bct)

′ it, (A.14)

bjt+1 = (bjt)
′′ − q(st)J b,j(st)(bjt)′′, j = i, c, v. (A.15)

Natural renters We denote the fraction of natural renters of type j (j = c, i, v) in the

beginning of the period, after preference shocks occur, after social interactions occur, and

after purchases and sales occur by rjt , (rjt )
′, (rjt )

′′, and rjt+1, respectively. The laws of motion

for these variables are given by:

(rjt )
′ = rjt (1− λ), j = i, c, v, (A.16)

(rvt )
′′ = (rvt )

′ − γcv (rvt )
′ ct − γiv(rvt )′it, (A.17)

(rct )
′′ = (rct )

′ + γcv (rvt )
′ ct − γic(rct )′it + γci(rit)

′ct, (A.18)

(rit)
′′ = (rit)

′ + γiv (rvt )
′ it − γci(rit)′ct + γic(rct )

′it, (A.19)

rjt+1 = (rjt )
′′ − q(st)Jr,j(st)(rjt )′′ + p(st)(u

j
t)
′′, j = i, c, v. (A.20)
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Limiting steady state when uncertainty is not realized We denote by H̄(ε∗), Ū(ε∗),

B̄(ε∗) and R̄(ε∗) the steady state of the value functions of different agents in the economy

when uncertainty is realized and the realized utility of owning a home is ε∗. These values

are computed by solving the system of equations (4.3), (4.4), (4.5), (4.6), (4.9), (4.8), and

(4.21), setting B = Bbuy and R = Rrent and replacing ε in equation (4.3) with the different

possible values of ε∗.

The limiting value functions of different agents along a path in which uncertainty is not

resolved can be obtained by solving the following system of equations for Hj, U j, Bj, Rj for

j = i, v, c and P̄ b,c and P :

Hj = ε+ β{(1− φ)
[
(1− η)Hj + ηU j

]
) + φEj[(1− η)H̄(ε∗) + ηŪ(ε∗)]}, (A.21)

U j = p{P + β[(1− φ)Rj + φEjR̄(ε∗)]}+ (1− p)β[(1− φ)U j + EjŪ(ε∗)], (A.22)

Bj = q(εb − w − P ) + qβ(1− φ)
[
(1− η)Hj + ηU j

]
(A.23)

+qβφEj
[
(1− η)H̄(ε∗) + ηŪ(ε∗)

]
+ (1− q)Bj,

Rj = εr − ω + β(1− φ)
[
(1− λ)Rj + λBj

]
+ βφEj

[
(1− λ)R̄(ε∗) + λB̄(ε∗)

]
. (A.24)

Recall that in the limit all agents are cured so the price of a home is determined by the

reservation price of the natural buyer:

P̄ b,c = β(1− φ) [(1− η)Hc + ηU c −Bc] + βφEc
[
(1− η)H̄(ε∗) + ηŪ(ε∗)− B̄(ε∗)

]
, (A.25)

P = θP̄ b,c + (1− θ)P̄ u. (A.26)

The probability of buying and selling are given by:

p = q = µ. (A.27)
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FIGURE 1: Real Home Prices in 18 OECD Countries
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Note: Source, OECD. Each series is a nominal housing price index divided by the local CPI.
The resulting series is normalized to have a mean of 100 over the full sample. Data are
shown on a logarithmic scale. Green bars indicate real estate booms, red bars indicate real
estate busts, as defined in the text.
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FIGURE 2: Social Dynamics
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Note: The graphs show the evolution of the populations of each type of agent due to social
dynamics. In Case 1, the priors of cured agents have the lowest entropy, and the priors of
the vulnerable agents have the highest entropy. In Case 2, the priors of infected agents have
the lowest entropy, and the priors of the vulnerable agents have the highest entropy.
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FIGURE 3: Equilibrium of Frictionless Model, Case 1
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Note: The graphs show a variety of paths for the frictionless model with social dynamics in
Case 1, in which the priors of cured agents have the lowest entropy, and the priors of the
vulnerable agents have the highest entropy. The number of infected agents, the price of a
house, the monthly expected rate of return, and transactions volume are all computed under
the assumption that uncertainty is not realized. The expected price paths are the expected
values of the house price at each date, as of time 0, given the priors of the different agents.
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FIGURE 4: Equilibrium of Frictionless Model, Case 2
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Note: The graphs show a variety of paths for the frictionless model with social dynamics in
Case 2, in which the priors of infected agents have the lowest entropy, and the priors of the
vulnerable agents have the highest entropy. The number of infected agents, the price of a
house, the monthly expected rate of return, and transactions volume are all computed under
the assumption that uncertainty is not realized. The expected price paths are the expected
values of the house price at each date, as of time 0, given the priors of the different agents.
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FIGURE 5: Transitional Dynamics in a Matching Model

(a) Prices, Buyers, Sellers and Transaction Probabilities
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Note: The figures illustrate the transition dynamics associated with the matching model,
when there is an initial increase in the number of natural home buyers. Buyers indicates the
number of agents who try to buy a home, while sellers indicates the number of agents who
try to sell a home. Price is the average price at which homes are sold. B’s reservation price
is the reservation price of a natural home buyer. Figure 5 continues on the next page.
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FIGURE 5: Transitional Dynamics in a Matching Model

(b) Utility Levels of the Different Agents
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Note: The figures illustrate the transition dynamics associated with the matching model,
when there is an initial increase in the number of natural home buyers. The utility levels of
the four types of agents are indicated. Figure 5 continues on the next page.
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FIGURE 5: Transitional Dynamics in a Matching Model

(c) Agent Populations, Transactions Volume and Transaction Probabilities
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Note: The figures illustrate the transition dynamics associated with the matching model,
when there is an initial increase in the number of natural home buyers. The four plots on
the left show the number of agents of each type across the transition path. Sales indicates
the number of transactions.
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FIGURE 6: Equilibrium of Matching Model with Social Dynamics, Case 1
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Note: The figures illustrate equilibrium paths when there is no resolution of uncertainty for
the matching model with social dynamics in Case 1, in which the priors of cured agents have
the lowest entropy, and the priors of the vulnerable agents have the highest entropy. The
number of potential buyers is calculated after preferences shocks have been realized. Here,
bc, bv and bi represent the populations of cured, vulnerable and infected natural buyers, while
ri is the population of infected natural renters. When an infected natural buyer matches
with a seller he pays P bi for a house, a cured or infected natural buyer pays P bc, and an
infected natural renter pays P ri.
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FIGURE 7: Expected Prices after the Resolution of Uncertainty, Case 1

0 5 10 15 20 25 30
10

20

30

40

50

60

70
Uncertainty resolved after year 10

years

realized price
to year 10

expected price of
cured/vulnerable

expected price
of infected

0 5 10 15 20 25 30
10

20

30

40

50

60

70
Uncertainty resolved after year 5

years

realized price
to year 5 expected price of

cured/vulnerable

expected price
of infected

Note: The figures illustrate the equilibrium price (blue line) if uncertainty is not realized
until the end of years 5 and 10, respectively. The red lines indicate the prices infected agents
would expect to observe after years 5 and 10, if uncertaimty were resolved at those dates.
The green lines indicate the prices the cured and vulernable agents would expect to observe
after years 5 and 10, if uncertaimty were resolved at those dates. The graphs are drawn for
the matching model with social dynamics in Case 1, in which the priors of cured agents have
the lowest entropy, and the priors of the vulnerable agents have the highest entropy.
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FIGURE 8: Equilibrium of Matching Model with Social Dynamics, Case 2
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Note: The figures illustrate equilibrium paths when there is no resolution of uncertainty for
the matching model with social dynamics in Case 2, in which the priors of infected agents
have the lowest entropy, and the priors of the vulnerable agents have the highest entropy. The
number of potential buyers is calculated after preferences shocks have been realized. Here,
bc, bv and bi represent the populations of cured, vulnerable and infected natural buyers, while
ri is the population of infected natural renters. When an infected natural buyer matches
with a seller he pays P bi for a house, a cured or infected natural buyer pays P bc, and an
infected natural renter pays P ri.
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FIGURE 9: Expected Price Paths, Matching Model with Social Dynamics
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(a) CASE 1
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Note: The graphs show the price paths expected by different types of agents at time 0. In
Case 1, the priors of cured agents have the lowest entropy, and the priors of the vulnerable
agents have the highest entropy. In Case 2, the priors of infected agents have the lowest
entropy, and the priors of the vulnerable agents have the highest entropy.
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TABLE 1: Parameter Values, Matching Model

Parameter Value Description

k 0.65 Fraction of homeowners in population
β 0.995 Discount factor
ε 2.94 Utility of owning a home
εb 1.00 Utility of renting, natural buyer
εr 1.00 Utility of renting, natural renter
w 1.00 Rental rate
φ 0.0083 Monthly probability that uncertainty is realized
α 0.50 Parameter of matching function
µ 0.13 Parameter of matching function
λ 0.02 Preference shock, natural renters
η 0.0103 Preference shock, home owners
P̄ u 1.00 Reservation price, home sellers
κ 42 Fixed cost of buying, natural renters
θ 0.50 Bargaining power of home buyer

56




