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If Whitehead’s characterization of modern philosophy as “a series of footnotes to Plato”

is perhaps a slight exaggeration, the claim that contemporary scholarship on the economics

of innovation is largely an extension of themes laid out in the 1962 Rate and Direction volume

is no more of one. The contributors’ prescience about the potential economic importance

of academic science is particularly impressive, since at the time the conference was held

(in 1960) the post-Sputnik transformation of the academic enterprise into the behemoth we

know today had only just begun. The volume laid out a belief that “basic” research was

important for innovation, marshalling theory, case studies, and data to support the assertions

about the economic payoffs from basic research made in Vannevar Bush’s “Science: the

Endless Frontier” just fifteen years before. However, the conference volume was very much

a call for more research, emphasizing the need for more data, and deeper understanding.

In this paper we attempt to rise to this challenge, by examining the diffusion of knowledge

across time and space within the life sciences. This endeavor remains as important at the

beginning of this century as it was in the middle of the last one, given perennial calls for

justification of substantial public funds for biomedical research (especially during periods

of fiscal austerity) and current attempts to ground “science of science policy” on sounder

theoretical and empirical footings (Marburger 2005).

Our analyses share a main motivation with the original conference, to understand how

“nonmarket controls and incentives” at universities operate, and affect innovation. (The

subtitle of the Rate and Direction volume is, after all, “Economic and Social Factors.”)

Over the past five decades, a voluminous literature on the workings of academic science has

emerged in economics, sociology, and other disciplines (Stephan 2010; Dasgupta and David

1994; Merton 1973). Similarly, the rise of endogenous growth theory (Romer 1990; Aghion

and Howitt 1992) and its emphasis on spillovers has focused attention on how knowledge

flows across individuals, locations, and institutional settings. A particular focus has been

on the extent to which knowledge flows are geographically localized (see, inter alia, Jaffe et

al. [1993], Thompson and Fox-Kean [2005], and the response by Henderson et al. [2005]).

Location was not a central concern in the 1962 volume (with the exception of the chapter by

Wilbur Thompson). However, it has become an important policy issue since. The extent to
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which knowledge flows are geographically mediated is relevant to local and national policy-

makers, in deciding whether the benefits of the research they fund will accrue to those that

fund it, or diffuse more generally.

A second theme in the volume is the difficulty in measuring economic activity. Several

chapters explored the utility of patent data as indicators of innovation, and also emphasized

that patent data alone may paint a distorted picture of the rate and direction of innovation

(Kuznets 1962). Measuring knowledge flows is perhaps even more difficult than measur-

ing innovation, since these flows leave few footprints (Krugman 1991). Nonetheless, a long

literature in sociology and bibliometrics has attempted to measure knowledge flows among

academics, using publication-to-publication citations. More recently, economists have em-

ployed patent-to-patent citations to examine knowledge flows from academics to industry

(Jaffe and Trajtenberg 1999). A few papers (Branstetter 2005; Belenzon and Schankerman

2010) also use patent-publication citations.

Our study joins a small but distinguished literature relating patterns of citations to

individual mobility. Almeida and Kogut (1999) use a sample of highly cited semiconductor

patents, and information on citations to these patents (and a control sample of other patents

in the same class as citing patents) to examine the extent and determinants of citation

localization in this industry. They also identify the set of inventors on these patents who

had moved previously, constructing career paths using patent records. The authors use these

data to distinguish between regions with high intra- and inter-regional mobility, and find that

patents from regions with high intra-regional mobility are more likely to have citations that

are local, and patents from regions with high inter-regional mobility are less likely to have

local citations.1

Using a similar research design, but one more closely related to our own, Cockburn et

al. (2006) examine all US patents applied for in 1989 and 1990 by movers, operationalized

as individuals with the same names who had previously patented in the same patent class.

Their analysis shows that the citations to post-move patents emanating from the inventors’

1In some analyses, Almeida and Kogut also explore individual (rather than regional) level mobility, finding
that inventors who move within a region tend to have citations that are geographically local.
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prior location are disproportionately high, estimating that 50 percent more of the citations

to post move patents come from the prior location than would have if the inventor had

not previously lived there. Since this citation premium to post-move patents is unlikely to

reflect low communication costs or direct interaction (variables often invoked in explaining

why geography matters) they interpret these results as evidence of the enduring importance

of social relationships.

Our analysis also departs from these previous analyses in important ways: we identify

movers from scientists’ vitae (rather than patent data); we examine cited and citing knowl-

edge longitudinally, exploiting detailed information on the timing of the move; and we look

at three distinct measures of knowledge flows. The use of multiple indicators allows us to

assess not only whether knowledge flows from academe are geographically mediated, but

also to probe some of the mechanisms that might underlie this relationship — in short, to

deepen our understanding of knowledge diffusion and its implications for the level and rate

of technological innovation within the economy.

We examine these issues using a novel identification strategy that exploits labor mobility

in a sample of 9,483 elite academic life scientists to examine impacts on the citation trajec-

tories associated with individual articles (resp. patents) published (resp. granted) before the

scientist moved to a new institution. This longitudinal contrast purges our estimates of most

sources of omitted variable bias that can plague cross-sectional comparisons. However, the

timing of mobility itself could be endogenous. To address this concern, we pair each moving

scientist/article dyad (resp. scientist/patent dyad) with a carefully chosen control article or

patent associated with a scientist who does not transition to a new position. In addition

to providing a very close match based on time-invariant characteristics, these controls also

share very similar citation trends prior to the mobility event. By analyzing the data at the

matched-pair level of analysis, this simple difference-in-difference framework provides a flex-

ible and non-parametric methodology to evaluate the effects of labor mobility on knowledge

flows. Indeed, conditional on the assumption that the matching algorithm we employ suc-

cessfully pairs articles and patents of comparable quality, we are able to present the findings

in a straightforward, graphical form.
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The results reveal a nuanced story. We find that article-to-article citations from a sci-

entist’s origin location are barely affected by their departure. In contrast, article-to-patent

citations, and especially patent-to-patent citations, decline at the origin location follow-

ing a superstar’s departure, suggesting that spillovers from academia to industry are not

completely disembodied. We also find that article-to-article citations from a scientist’s des-

tination location markedly increase after they move. To the extent that academic scientists

do not internalize the effect of their location decisions on the circulation of ideas, our results

raise the intriguing possibility that barriers to labor mobility in academic science limit the

recombination of individual bits of knowledge, resulting in a suboptimal rate of scientific

exploration

The chapter proceeds as follows. The next section discusses the construction of our

multilevel panel dataset and presents relevant descriptive statistics. Section 2 discusses

our econometric approach and identification strategy. Section 3 reports the results. The

final section includes a discussion of policy implications, caveats, and directions for future

research.

1 Data and Sample Characteristics

The setting for our empirical work is the academic life sciences. This sector is an important

one to study for several reasons. First, there are large public subsidies for biomedical research

in the United States. With an annual budget of $29.5 billion in 2008, support for the NIH

dwarfs that of other national funding agencies in developed countries (Cech 2005). Deepening

our understanding of how the knowledge generated by these expenditures diffuses across

time, space, and institutional settings will allow us to better assess the return to these

public investments.

Second, technological change has been enormously important in the growth of the health

care economy, which accounts for roughly 15 percent of US GDP. Much biomedical innovation

is science-based (Henderson et al. 1999), and interactions between academic researchers and
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their counterparts in industry appear to be an important determinant of research produc-

tivity in the pharmaceutical industry (Cockburn and Henderson 1998; Zucker et al. 1998).

Lastly, the existence of geographic research clusters in the life sciences has been exten-

sively documented, raising the possibility that scientific knowledge diffuses only slowly and

with a lag from areas richly endowed with academic research institutions to others. To the

extent that scientist labor mobility is needed to support the circulation of ideas to the pe-

riphery, a dearth of mobility events might be one of the centripetal forces leading to the

persistence of such clusters.

In the next section, we provide a detailed description of the process through which the

matched scientist/article (resp. scientist/patent) dataset used in the econometric analysis

was assembled. We begin by describing the criteria used to select our sample of superstar life

scientists, along with basic demographic information. Next, we explore the prevalence and

characteristics of mobility events; the set of “products” (i.e., journal articles and patents)

generated by these elite scientists along with the citations they accrue. Finally, we discuss

the matching procedure implemented to identify control articles and patents associated with

scientists who do not change their location.

1.1 Superstar Sample

Our basic approach is to rely on professional transitions in a sample of “superstar” scientists

in the U.S. to estimate the extent to which citation flows to individual pieces of knowledge

are constrained by their producers’ geographic location.

The study’s focus on the scientific elite can be justified both on substantive and pragmatic

grounds. The distribution of publications, funding, and citations at the individual level is

extremely skewed (Lotka 1926; de Solla Price 1963) and only a tiny minority of scientists

contribute through their published research to the advancement of science (Cole and Cole

1972). Furthermore, analyzing the determinants of citations flowing to the ideas of elite

scientists is arguably more interesting than conducting the same exercise for a sample of
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less distinguished scientists, since superstars presumably produce knowledge that is more

important to diffuse.

From a practical standpoint, it is also more feasible to trace back the careers of eminent

scientists than to perform a similar exercise for less eminent ones. We began by delineating

a set of 10,450 “elite” life scientists (roughly 5 percent of the entire relevant labor market)

who are so classified if they satisfy at least one of the following criteria for cumulative

scientific achievement: they are (1) highly funded scientists; (2) highly cited scientists; (3)

top patenters; or (4) members of the National Academy of Sciences.

These four criteria naturally select seasoned scientists, since they correspond to extraor-

dinary achievement over an entire scientific career. We combine these measures with three

others that capture individuals who show great promise at the early and middle stages of

their scientific careers, whether or not these episodes of productivity endure for long periods

of time: scientists who are (5) NIH MERIT awardees; (6) Howard Hughes Medical Investi-

gators; or (7) early career prize winners. Appendix I provides additional details regarding

these seven indices of “superstardom.”

We trace back these scientists’ careers from the time they obtained their first position

as independent investigators (typically after a postdoctoral fellowship) until 2006. We do

so through a combination of curriculum vitæ, NIH biosketches, Who’s Who profiles, acco-

lades/obituaries in medical journals, National Academy of Sciences biographical memoirs,

and Google searches. For each one of these individuals, we record employment history,

degree held, date of degree, gender, and up to three departmental affiliations. We also cross-

reference the list with alternative measures of scientific eminence. For example, the elite

subsample contains every U.S.-based Nobel Prize winner in Medicine and Physiology since

1975, and a plurality of the Nobel Prize winners in Chemistry over the same time period.2

The 9,483 scientists who are the focus of this paper constitute a subset of this larger pool

of 10,450. We impose several additional criteria to derive the final list. First, we eliminate

from the sample scientists who transition from academic positions to jobs in industry; second,

2Though we apply the term of “superstar” to the entire group, there is substantial heterogeneity in
intellectual stature within the elite sample (see Table 1).
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we eliminate scientists who move to foreign institutions, since we have less ability to track

knowledge flows to these locations; third, we eliminate scientists who move twice in quick

succession, since these cases make it difficult to assign to these individuals unique origin and

destination locations. Finally, we eliminate scientists who moved to new institutions prior

to 1975, the beginning of our observation window.

Turning to patterns of labor mobility, we find that 2,894 scientists (30 percent) in the

sample transition between two academic institutions between 1975 and 2004. Our mobility

data is tabulated precisely from biographical records, rather than inferred from affiliation

information in papers or patents (cf., Almeida and Kogut 1989; Fallick et al. 2006; Marx

et al. 2009). In particular, we observe the exact timing of professional transitions even

in the cases in which a scientist has ceased to be active in research, for example because

s/he has moved into an administrative position. Because the overwhelming majority of

mobility events take place in the summer, we adopt the following convention: a scientist

is said to move from institution A to institution B in year t whenever the actual timing of

his or her move coincided with the summer of year t − 1. Incorporating a lag is necessary,

since life scientists need to move entire laboratories rather than simply books and computer

equipment. Anecdotal evidence suggests that mobility disrupts the pace of these scientists’

research activities, if only temporarily.

We focus on transitions between distant institutions, i.e., those separated by at least 50

miles. This limitation can be justified on both substantive and pragmatic grounds. First,

many of the social impediments to labor mobility (such as dual-career concerns or disruption

in the lives of these scientists’ children) are less salient for professional transitions that do not

compel an individual to change his place of residence. Second, our ability to assign precisely

the institutional affiliation of citing authors and inventors is limited. Therefore, we define an

elite scientist’s location by drawing a 25-mile radius circle centered around the middle of the

zip code in which his employer is located. Combined with our emphasis on moves between

institutions separated by at least 50 miles, this ensures that origin and destination locations

never overlap in the subsample of scientists that move.
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Tables 1 and 2 provide descriptive statistics for the superstar sample. The gender com-

position of the sample is heavily skewed, no doubt because our metrics of superstardom

favor more seasoned scientists, who came of age before female scientists had made significant

inroads in the professoriate. The average degree year is 1971, and MDs account for a third

of the sample. On the output side, the stars received an average of roughly 17 million dollars

in NIH grants, published 172 papers that garnered close to 11,000 citations as of early 2008.

The number of patents per scientist is considerably smaller, and close to 40 percent of the

sample scientists have no patent at all. While the work of patenters and non-patenters alike

can appear as prior art cited in subsequent patents, the number of such citations is quite mod-

est compared to the number of article-to-article citations.3 Achievement and demographic

characteristics appear broadly similar between “moving” (i.e., treated) and “staying” (i.e.,

control) stars.

Figure 1 displays the distribution of career age at the time of move in the subsample of

movers. The likelihood of a mobility event peaks at about 12 years (career age is measured

as the number of years that elapsed since the receipt of one’s highest degree). Figure 2

displays the distribution of distance moved, conditional on a move. That the shape of this

distribution is strongly bimodal is not surprising, given the existence of life sciences research

clusters on both coasts of the United States. Finally, Figure 3 examines whether our elite

scientists systematically drift from areas rich in the relevant type of intellectual capital to

areas less well endowed (or vice versa). We compute total NIH funding flowing to scientists’

origin and destination areas (Panel A) and repeat the same exercise with the number of

patents issued to inventors located in these same areas (Panel B). While not symmetric in a

strict statistical sense, these histograms make clear that most of the transitions in the sample

involve relatively little difference in the resource endowments of the relevant locations, while

a few are “big moves” in the sense of taking a scientist away from a less prestigious institution

into a more intellectually vibrant climate (or vice versa).

3Nonetheless, it is striking that the mean number of citations to these scientists’ papers is larger than
those to their patents. This difference (even more pronounced when considering the medians) is consistent
with the results of Cohen et al. (2002), who find that the bulk of knowledge flows from academe to industry
occur via “open science” channels.
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1.2 Matching Scientists with their Output

The second step in the construction of our dataset is to link scientists with the knowledge

they generate in tangible form, namely journal articles and patents. A useful metaphor for

this exercise is that of linking producers with their products. Past scholarship in the field

of the economics of science has generated numerous studies that rely on variation between

individual producers, either cross-sectionally (Zucker et al. 1998), or over time (Azoulay et

al. 2009, 2010a) while paying scant attention to the detailed characteristics of the products

involved. Conversely, a more recent and vibrant strand of the literature has exploited the

availability of citations to individual products over time, for the most part abstracting away

from the characteristics of their producers (Furman and Stern, forthcoming; Aghion et al.,

2010).4

A major innovation in our study is to link detailed producer and product characteristics to

create a multilevel panel dataset.5 Social scientists face difficult practical constraints when

attempting to attribute individual products to particular producers. When the products

involved are journal articles, there are thorny issues of name uniqueness: common names

make it difficult to distinguish between scientists, and scientists with relatively rare names

sometimes are inconsistent in their use of publication names. By adopting the labor-intensive

practice of designing customized search queries for each scientist in the sample, we ensured

the accuracy of their bibliomes. Further details on the linking process are provided in

Appendix II. Linking scientists with their inventions encoded in patents is considerably

easier, since the USPTO data records inventors’ full names (as opposed to first and middle

initials), and we can further make use of assignee information to distinguish between the

patents of inventors with frequent names. Further details on the linking process are provided

in Appendix III.

4In what follows, the use of the word “product” will also be useful whenever we want to refer to the
output of our elite scientists in a generic way so that our statements apply equally well to journal articles
and to patented inventions.

5Recent efforts along the same line include Agarwal and Singh (forthcoming) and Azoulay et al. (2010b).
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We select from these publication and patent data to construct the final sample. For

journal articles, we eliminate from the consideration set letters, comments, and editorials.

Second, we eliminate all articles published 11 or more years prior to the date of the earliest

move in the sample (1976); similarly, we eliminate all articles published in 2004 (the latest

move year we observe) or in subsequent years. Third, we delete from the sample all articles

published by moving scientists after they moved. We proceed similarly for patents. To

account for potential truncation, we assume an average grant lag of three years, and we

ignore all patents applied for after the year 2001.

1.3 Three Measures of Knowledge Flows

As noted by many authors, beginning with the seminal work of Jaffe et al. (1993), knowledge

flows sometimes leave a paper trail, in the form of citations in either patents, or journal

articles. In this paper as in many others, we take advantage of this fundamental feature of

the academic incentive system where, by citing an antecedent piece of knowledge, producers

inscribe into their own products esteem for their peers. The innovation in the present

study is that we present evidence pertaining to three distinct measures of knowledge flows:

citations to articles authored by our elite scientists in the open science literature; citations

to articles authored by our elite scientists listed in the prior art section of patents issued by

the U.S. Patent and Trademark Office (USPTO); and citations to patents granted to our

elite scientists in patents subsequently granted to other inventors by the USPTO. Each of

these measures exhibits a particular set of strengths and weaknesses. We describe them in

turn.

Patent-to-Patent Citations. The bulk of the voluminous research on knowledge spillovers

has relied on patent citations in other patents to infer patterns of knowledge diffusion (cf.,

Jaffe and Trajtenberg 2002). The difficulties involved in interpreting these citations as evi-

dence of knowledge flows — mostly because of the high share of citations added by examiners,

rather than assignees — have been explored in detail (Alcácer and Gittelman 2006; Alcácer

et al. 2009) and need not be repeated here. Despite these acknowledged problems, survey
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results confirm that roughly 50 percent of patent-to-patent citations represent some sort of

knowledge flow (Jaffe et al. 2002). Moreover, the prevalence of examiner-added citations is

much smaller in the life sciences than in other fields (Sampat 2010)

Article-to-Article Citations. Beyond the low “signal-to-noise” ratio associated with

patent citations, a more serious limitation for our purposes is that the bulk of the out-

put of the academics we study is in publications, rather than patents. Fully 60 percent of

the scientists in our superstar sample never apply for a patent, and the great majority of

those who do patent have only one or two inventions to their credit. Therefore, we also

collect the number of citations in subsequent journal articles that flow to each of the papers

generated by our superstars, over time. A great advantage of these citations is that they

are numerous, making it possible to parse these data in ever finer slices to tease out the

underlying mechanisms that support the diffusion of scientific knowledge. Their main draw-

back is that 95 percent of citations flowing to the articles in our sample come from other

academics. These data are therefore less useful to track the slow percolation of ideas across

the boundary between academia and for-profit firms.

Patent-to-Article Citations. These limitations lead us to introduce a novel measure of

knowledge flows, namely, references to the open science literature found in the non-patent

prior art section of patents granted by the USPTO. This is appealing both because pub-

lications rather than patents are the main output of scientific researchers (Agrawal and

Henderson 2001), but also because the vast majority of patent-to-paper citations, over 90

percent, come from applicants rather than examiners, and are thus more plausible indicators

of real knowledge flows than patent-to-patent citations (Lemley and Sampat 2010). Another

advantage of these data comes from the greater diversity of citing institution types, relative

to the patterns exhibited by the more traditional data sources mentioned above. In previous

work, systematic analyses of these non-patent references has been limited, since they are

free-form text and difficult to link to other data. Our work relies on a novel match between

non-patent references and biomedical articles indexed in PubMed, described in detail in Ap-

pendix IV. While programming improvements and computing speed have enabled us to mine
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this source of data, only 12 percent of the published output of the scientists in our sample

is ever cited in patents. For this reason, the bulk of our analyses will focus on citation flows

inferred from article-to-article citations, which are in some sense “internal” to the academy.

After collecting the citation data, we further process it in order to make it amenable to

statistical analysis. First, we eliminate all self-citations since these do not correspond to

knowledge flows in the traditional sense.6 Second, we parse the address fields in both the

citing patents and citing publications to associate each citing product with a set of zip codes

(for US addresses) or country names (for foreign addresses). Third, we parse the citing

assignee names and citing institution names and tag these fields with an indicator variable

denoting an industrial affiliation, making use of suffixes such as Inc., Corp., Ltd. (or their

international variants). In a final step, we aggregate the data from the cited product-citing

product pair level up to the cited product-year level of analysis. In other words, we can track

the flow of citations from birth to 2006 for each producer/product tuple in the sample.7

We can further separate those citations that accrue to a scientist’s origin location, to

his/her destination, or to all other locations. A complication arises because it is not clear

what destination means for the sample of superstars who do not transition to a new location.

Ideally, we would select as a counterfactual location the institution which provides the highest

degree of fit for these scientists outside of their actual home institution. In practice, it is

very difficult to model the determinants of fit, and we select a location at random from the

set of locations that moving scientists transition to, provided they are separated by at least

50 miles from the stayers’ actual locations.

6In the case of patents, we infer self-citation from overlap between the names of inventors in the cited
and citing patents, rather than overlap in assignee names.

7Since the latest year in which a scientist move is 2004, and the latest product vintage we include in the
sample is 2003, the post-move observation period will always extend for a minimum of three years.
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1.4 From Control Producers to Control Products:
A Non-Parametric Matching Procedure

A perennial challenge in the literature on the localization of knowledge flows is whether

citing and cited producers’ locations can be credibly assumed to be exogenous. Jaffe et al.

(2005) decribe this thorny issue best in the following parable:

“Professor Robert Langer of MIT, for example, is one of the world’s leading experts in
tissue engineering, and is the author of over 120 patents in the area. A large fraction
of the citations to these patents are geographically localized. Are they local just because
the authors of the citing patents lived in the same city and hence were more likely
to learn about Langer’s work (i.e., knowledge spillovers)? Or because Boston is one
of the world’s centers for tissue engineering, and so people working in the area are
disproportionately likely to live in Boston (i.e., geographic collocation due to other
common factors)? Or perhaps it is the case that Boston is one of the world’s centers
for tissue engineering precisely because firms locate in the area in order to be able to
take advantage of spillovers from people like Robert Langer?”

Previous scholars faced severe data constraints in their reasoned attempts to divine whether

a particular citation would have taken place, if contrary to the fact, either the citing or the

cited producer had been located elsewhere (Jaffe et al. 1993; Jaffe and Trajtenberg 1999).

In this study, we can relax these constraints and design more credible counterfactuals, since

we can “unbundle” producers from their products, and we are able to observe two different

locations for a significant subset of the producers in the sample.

Yet, relying on labor mobility to generate variation in the geographic distance separating

the source and potential recipients of knowledge is not a panacea for two reasons. First, pro-

ducer mobility might influence the quality of the underlying products, for instance because

the scientist finds him/herself located in an institution for which s/he is a better match.

We deal with the threat of unobserved heterogeneity of this type by narrowing our focus to

products generated by scientists prior to their move. It is difficult to imagine a mechanism

through which the quality of these products could have been affected by the characteristics

of the destination location.

Second, it is possible that job transitions for academic scientists are partly driven by

expectations of interactions with academic peers in their home institution, or with the local
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industrial base. To generate a set of estimates that can be given a causal interpretation, we

create the matched sample of “staying” producers described above, which we link to their

products following the exact same techniques.

Coarse exact matching procedure. We design a procedure to cull from the universe of

products associated with “control” producers (i.e., scientists who do not change locations)

a subset that provide a very close match with the products of “treated” producers (i.e.,

those scientists who do move to another institution at some point during the observation

period). The goal of the construction of this matched sample is to create a counterfactual set

of products that mimic the citation trajectories associated with mover’s papers and patents

had they, contrary to the fact, not experienced a mobility event.

What makes a good control? Control and treated products should be well-matched on

time-invariant characteristics that have an important impact on the magnitude of citation

flows. For journal articles, such characteristics might include the journal in which the article

appeared, the exact time of publication, the number of scientists on the article’s authorship

list, etc. For patents, finding a control such that application year, issue year, number of

inventors, assignee type, and patent classes/subclasses coincide would be valuable. More

importantly, there should be no differential citation trends that affect treated products,

relative to control products, in the period that precedes the move. Finally, in an ideal

world, the match would operate at the producer/product pair level, such that focal producer

characteristics (age, gender, and eminence) would also be comparable between treated and

control observations.

In practice, identifying “close matches” is difficult. Because we are interested in the fate

of individual products, but the shock we observe (mobility) operates at the scientist-level of

analysis, semi-parametric matching techniques (such as the propensity score and its variants)

are of limited use in our context. We propose instead a non-parametric matching approach,

a so-called “Coarse Exact Matching” (CEM) procedure (Blackwell et al. 2009).

The selection of controls proceeds in a series of sequential steps. The first task is to select

a relatively small set of covariates on which we would like to guarantee balance between the
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treatment and control group. The second step is to create a large number of strata to

cover the entire support of the joint distribution of the covariates selected in the previous

step. Next, each observation is allocated to a unique strata; any strata that either has no

product associated with a mover, or that has less than five potential control products, is

then dropped from the data. In a fourth and final step, we select in each strata a unique

control product such that the sum of squared differences in citation flows between the treated

and control product from the year of publication/issue up to the year preceding the move

year is minimized. We break ties at random when there are several candidate products that

minimize this distance metric.

Internal vs. external validity. The procedure is coarse because we do not attempt to

precisely match on covariate values; rather, we coarsen the support of the joint distribution of

the covariates into a finite number of strata, and we match a treated observation if and only

if a control observation can be recruited from this strata. An important advantage of CEM

is that the analyst can guarantee the degree of covariate balance ex ante, but this comes at

a cost: the more fine-grained the partition of the support for the joint distribution (i.e., the

higher the number of strata), the larger the number of unmatched treated observations. In

general, the analyst must trade off the quality of the matches with external validity: the

longer the list of matching covariates, the more difficult it is to identify an “identical twin”

for each article or patent in the treatment group.

We distill the essence of the matching procedure in Figures 4A (for articles) and 4B (for

patents). Implementation details can be found in Appendix V. In the case of article-to-

article citations, we start from a universe of 40,023 papers corresponding to the published

output of movers in the 10 years that precede their change in location. We match 10,249

out of these 40,023 tuples (25.61 percent). This relatively low match rate is not surprising.

Non-parametric matching procedures such as CEM are prone to a version of the “curse of

dimensionality” whereby the proportion of matched units decreases rapidly with the number

of strata. For instance, requiring a match on an additional indicator variable (e.g., matching

on focal scientist gender in addition to the covariates mentioned above) would result in a
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match rate of about 10 percent. Conversely, failing to impose that control and treated articles

are drawn from the same scientific journal would increase the match rate to 70 percent, but

doing so might threaten the internal validity of our empirical exercise. In the case of article-

to-patent citations, we match 2,435 articles out of a potential 6,492 (37.51 percent). In

the case of patent-to-patent citations, the match rate is higher still: 41.36 percent (1,417

matched patents out of a potential 3,426 matches).

Descriptive statistics. We present univariate statistics at baseline — i.e., in the year

preceding the (possibly counterfactual) move year — for the matched product dataset in

Tables 4A, 4B, and 4C. Examining the raw data across these three panel dataset, a number

of stylized facts emerge.

First, in all three cases, the match is “product-centric” rather than “producer-centric.”

That is, product-level attributes exhibit a high level of covariate balance between treated

and control products, whether these characteristics are time-invariant (such as number of

authors or focal scientist position on the authorship roster) or time-varying (such as the stock

of overall citations, whose distributions we display graphically in Figure 5). In contrast,

producer characteristics do not match as well, as can be seen by examining the distribution

of covariates such as degree year or gender.

Second, most citations do not accrue in the areas corresponding to these scientists’ loca-

tion. As an example, only 6.82 percent of citations up to the baseline year have accrued at

the origin location; the figure is 1.77 percent in the destination location.

Third, whereas citations at the origin location are well matched at baseline, this is not

the case for citations at destination. In all cases, movers have accrued many more citations

in the area they will soon transition to, relative to the citations that have accrued to the

products of stayers in a location picked at random. This is consistent with the view that

mobility events are jointly determined with expected spillovers of knowledge, for instance

because scientists who know your work are more likely to win the competition to lure you

away. These baseline differences further justify our emphasis on identifying a closely matched

set of control products.
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Finally, the salience of industrial citers varies greatly across our measures of knowledge

flows, accounting for only 3.61 percent of article-to-article cites, but 80.72 percent of article-

to-patent cites, and 83.04 percent of patent-to-patent citations.

2 Econometric Considerations

A natural starting point for a difference-in-difference (DD) analysis of the causal effect of

labor mobility on knowledge flows is to conduct the statistical analysis using all product-

year observations (treated and control) as the estimation sample. Since the mobility effect

is mechanically correlated with the passage of time, as well as with an article’s age, it

is necessary to include life cycle and period effects, as is the norm in studies of scientific

productivity (Levin and Stephan 1991).

In this framework, the control group that pins down the counterfactual vintage and cal-

endar time effects for the products that were generated by scientists currently transitioning

to new positions contains three categories of products: (1) those generated by movers who

transitioned in earlier periods; (2) those generated by scientists who will move in the future;

and (3) those generated by stayers. This approach is problematic insofar as products that

appeared after a scientist has moved are not appropriate controls if the mobility event nega-

tively affects the trend in their citations. If this is the case, fixed effects may underestimate

the true effect of mobility.

To produce an analysis in which the control group consists solely of products associated

with stayers, we instead perform the statistical analysis at the product-pair level. Specifically,

the outcome variable is the difference between the citations received in a given year by a

treated product and its associated control identified in the matching procedure described

above. Let i denote an article associated with a mover and let i
′

index the corresponding

control product. Then our estimating equation relates ∆CITESii′t = CITESit−CITESi′t

with the timing of mobility in the following way:

E [∆CITESii′t|Xijt] = β0 + β1AFTER MOV Ejt + f(AGEjt) + γii′ (1)
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where AFTER MOV E denotes an indicator variable that switches to one in the year focal

scientist j moves, f(AGE) corresponds to a flexible function of the scientist’s age, and the

γii′ correspond to product-pair fixed effects, consistent with our approach to analyze changes

in the pair’s citation rate following the move of investigator j.8 We also run slight variations

of this specification in which the dependent variable has been parsed so that we can break

down citation flows by location or by citer type (i.e., industrial vs. academic citers).

There is another benefit to conducting the analysis at the product-pair level: since treated

and control products always originate in the same year, experimental time and calendar time

coincide, making it simple to display the results of the analysis graphically. The graphical

approach is advantageous because it makes the essence of the empirical exercise transparent.

The regression analysis, however, will prove useful when exploring interactions between the

treatment effect and various star or product characteristics.

3 Results

3.1 Effect of Mobility on Citation Rates to Articles Published
After the Move

As explained above, the bulk of our analysis focuses on citation flows to articles (resp. to

patents) published (resp. issued) before the move so that we can separately identify the effect

of mobility from that of correlated influences that might have an impact on the quality of

the research itself. For example, mobility events such as those analyzed in this paper might

be driven by the availability of resources in the destination location, including laboratory

equipment, trainees, or potential collaborators. From a descriptive standpoint, it is still

interesting to examine the geographic spread of citations that accrue to products that post-

date the mobility event, and these results are reported in Figure 6. For the sake of brevity,

we examine this for article-to-article citation flows only.9

8We do not need to include product vintage or year effects in the specification, since both products in
the pair appeared in the same year, by construction.

9Our discussant Adam Jaffe uses the metaphor of carefully examining the dirty bath water before throwing
it out to focus on the (hopefully clean) baby.
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We pair articles written by superstar movers with articles written by superstar stayers

who are observationally quite similar at the time of the mobility event, so that the match is

both “article-centric” and “scientist-centric.” The scientist-level covariates used to create the

match are (i) year of highest degree (coarsened in three-year intervals); (ii) gender; (iii) NIH

funding status (funded vs. not funded at the time of the move); and (iv) the total number of

citations having accrued by 2006 to all pre-move publications. This ensures that the scientists

being compared are not only demographically similar, but also of comparable renown at the

time of the (possibly counterfactual) move. In addition, we match on article characteristics,

including the journal, the length of the authorship roster, the focal author’s position, and

the publication year. Descriptive statistics for the resulting sample of 2× 26, 254 = 52, 508

articles are displayed in Table 3.

In the three panels of Figure 6, we display the difference in average citation trends for

the article pairs in the sample (the solid red line), along with a 95th confidence interval (the

dashed blue lines). Panel A focuses on differential citation patterns at the origin location.

Relative to articles by stayers, it appears that post-move research is cited less in the area

the moving scientist departed from; this citation discount is small (less than one citation per

year on average), but it is enduring. Panel B repeats the same analysis for the destination

location; we find the opposite pattern, in that post-move articles benefit from a lasting

citation premium equal to less than one citation per year in the new location, relative to

the number of citations accruing to the matched articles of stayers in a random location.

Finally, Panel C examines citation outcomes in all other locations. Though the articles of

movers appear to benefit from more “buzz” than those of stayers, this effect is both very

small and imprecisely estimated.

From these results, it would appear that scientist mobility shifts slightly the allocation

of citations across scientific areas without much of an impact on the diffusion process in

the aggregate. Of course, because our controls for scientist-level and article-level quality

are imperfect, we should resist the temptation to overinterpret these patterns. For instance,

a citation discount at origin could mean that the superstar’s former colleagues are quick

to forget his/her research after the mobility event. But s/he may have moved to a new
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location precisely because his/her research was delving into areas that appealed less to

his/her old peers. In this case, the causality would flow from (expected) impact to job

mobility, rather than in the direction we hypothesize. Similarly, at destination, the citation

premium might reflect the interest of colleagues who extended an offer to the mover precisely

in the expectation of deeper intellectual connections.

For these reasons, the rest of the paper will focus on changes in citation rates following

mobility events (and their allocation across geographic areas) for articles published before

the move. This research design will enables us to better isolate the effect of mobility per se

from that of correlated and competing influences.

3.2 Effect of Mobility on Citation Rates to Articles and Patents
Published Before the Move

Our primary results are presented in Figures 7 through 12. Table 5 presents estimates

from simple OLS regressions with article-pair fixed effects, corresponding to the estimating

equation above. Robust standard errors, clustered at the scientist level appear below the

coefficient estimates in brackets.

Article-to-Article citation flows. Panel A of Figure 7 display the citation dynamics

corresponding to article-to-article flows, without disaggregating these flows by citer location

or institutional type. It is clear from the picture that our matching procedure succeeded in

identifying good control articles, since there is no evidence of deviation from zero in the years

preceding the move. Moreover, there is a clear uptick in the rate of citations after the move,

though it is modest in magnitude and relatively short-lived, fading out completely seven

years later. Panel B examines whether the same patterns can be observed when restricting

the outcome variable to article citations from industrial firms. The scale of the vertical axis

is different, since these industrial cites account for a relatively tiny fraction of the total. Due

to the paucity of the industrial citations, the results are very imprecise, though there is a

very modest upward deviation from trend one year after the move.
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Figure 8 display the results for citation flows disaggregated by citer location. Perhaps

surprisingly, citations at the origin location do not appear to decline upon a star’s departure

(Panel A). This lack of forgetting on the part of academics points to a capacity to absorb

scientific knowledge which is disembodied from the producer of a particular idea. However,

this view needs to be tempered in light of the results displayed in Panel B, which focuses on

citations accruing at the destination location. Relative to the flows in a random — but distant

— location for the stayer, the level of flows is higher for movers at destination even before the

move, with an upward trend starting two years before the move is effective. This provides

strong evidence that academic superstars are, at least in part, “recruited for ideas” (Agarwal

and Singh, forthcoming). Furthermore, this upward trend becomes more pronounced after

the move, peaking two years later, but fading out only slowly over time. In other words,

there is clear evidence that itinerant scientists circulate their old ideas in their new locations.

The magnitude of this effect is not trivial: by the end of the observation period, movers have

accrued more than twice as many citations to their old ideas at destination than stayers have

in their counterfactual, random location.

Panel C examines citation dynamics in all locations, save for the origin and destination.

One can discern a slight increase in citations after the move, though it is neither large nor

precisely estimated. Yet, this should not be surprising if we think that mobility events give

scientists looking for a new position an opportunity to give their ideas — old and new — a

boost in exposure.

The asymmetry between the citation dynamics at location and origin strikes us as note-

worthy, since it provides clear evidence that labor mobility increases the circulation of sci-

entific ideas. If one espouses the view that knowledge flows are economically and socially

valuable, then our results raise the intriguing possibility that scientists move too little, rela-

tive to what would lead to an optimal rate of scientific exploration. We return to this point

in the discussion.

Table 6A and 6B explore whether the magnitude of the treatment effect is affected by a

number of article and scientist characteristics, at the origin and destination locations respec-
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tively.10 We do not discuss these in detail, since they tend to be quite noisy. Furthermore,

with an unlimited number of potential contingencies, pure luck would dictate that at least

some interaction effects would be statistically significant. In Table 6A, we find almost all

interaction effects to be imprecisely estimated zeros.

New results, some reassuring, other more puzzling, emerge when focusing on citation

flows at destination (Table 6B). We examine whether the mobility premium at destination

varies with authorship credit for the focal scientists. For this purpose, we exploit a robust

social norm in the natural and physical sciences, whereby last authorship is systematically

assigned to the principal investigator of a laboratory, first authorship is generally assigned

to the junior author who was responsible for the actual conduct of the investigation (or,

more rarely, to the PI of a collaborating lab), and the remaining credit is apportioned to

authors in the middle of the authorship list, generally as a decreasing function of the distance

from the extremities (Riesenberg and Lundberg 1990). We split the cited-article sample in

two by consolidating the first and last authorship categories, and contrasting it with those

article-pairs in which the focal scientists appear in the middle of the authorship list. We find

clear evidence of a more pronounced mobility effect for article pairs in which the departing

scientist is either first or last author. The evidence for middle-position authors is much

smaller in magnitude. This is reassuring because the level of contribution of middle authors

is often sufficiently small that one would not expect these old, marginal articles (from the

point of view of the mover’s overall corpus of work) to gain significant exposure at the new

destination.

Second, we fail to detect a mobility premium of larger magnitude for the citations to the

papers of superstars who shine particularly bright, regardless of the ways in which we seek

to distinguish the elite from others who might be less accomplished (Models 7a through 9b

of Table 6B).

The anomalous result that bears mention pertains to the sample split corresponding to

articles of recent versus older vintage. We separate the analysis for papers that appeared

10We do not repeat these analyses for patent-to-patent and patent-to-article citations, since they are sparse
as is, and analyses that separate them into bins would be very noisy.
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prior and after 1995, a date which we pick as a marker for the internet becoming ubiquitous

in academia. We find that the mobility premium is four times higher for papers written

in the internet era than for papers published in the pre-internet times. These results are

inconsistent with the widespread belief that the diffusion of the Internet led to the “death

of distance,” though they should be interpreted cautiously since they may also reflect other

changes over time.

Patent-to-Article citation flows. Figure 9 and 10 present the evidence on the second

measure of knowledge flows, citations made to articles published in the open science literature

in patents granted by the USPTO. In Panel A or Figure 9, we cannot detect any differential

citation trend for the overall citations flowing to treated, rather than control articles. In

fact, there is only the faintest evidence of a decline after the move. Panel B, which focuses

on citations from industrial assignees alone, similarly shows no clear result.

The evidence on localization, presented in Figure 10, is also relatively weak. This time,

we observe a meaningful decline of citations at the origin location following the departure

of a superstar, but this temporary dip is not pinned down precisely. Table 5, column (2a)

presents the same analysis in regression form, but uses a longer post-move observation period,

and constrains the mobility effect to be constant over time. In this case, we can detect a

statistically significant decline equal to a quarter of a citation per year on average. Similarly,

we observe a small increase in citations for treated articles at destination, relative to controls,

but we cannot reject the hypothesis of a mobility premium equal to zero.

Patent-to-Patent citation flows. We employ the more traditional measure of knowledge

flows — patent-to-patent citations — in the next batch of analyses, presented in Figures 11

and 12. Once again, pre-move citation dynamics appear very similar up until the year

of the move, which is expected given the extensive efforts we deployed in our search for

appropriate control patents. There is no evidence that mobility increases citation flows

overall (Figure 11).
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The localization effects presented in Figure 12 are much more dramatic. First, there is

a decline in the rate of citations in the location of origin, which becomes more pronounced

over time and shows no sign of abating even 10 years after the scientist has departed (Panel

A). This may reflect the importance of physical proximity to university laboratories for

helping industrial firms develop the inventions of academic entrepreneurs (Zucker et al.

1994; Audretsch and Stephan 1996; Zucker and Darby 2008). However, this interpretation is

undermined by evidence that the onset of this decline precedes the move by almost 4 years

(though this pre-existing downward trend is small in magnitude and imprecisely estimated).

The upward trend at destination (Panel B) is not quite as dramatic, but clear. Here

again, there is some weak evidence of anticipation, with citations being slightly higher for

movers in the baseline year at destination, relative to stayers. It is therefore difficult to

distinguish between the view that physical proximity to academic entrepreneurs begets ab-

sorptive capacity, from the alternative perspective that a scientist’s assessment that the local

industrial base has grown stale (or at least less receptive to his/her ideas) triggers mobility.

4 Discussion

In this paper, we examine the impact of geography on knowledge transfer by exploiting pro-

fessional transitions within the academic life sciences coupled with publication and patent

citation data over time. The results reveal a rather nuanced story. Consistent with models of

localized knowledge diffusion, we find strong evidence that publication-to-publication cita-

tions (to papers published before the move) rise at destination locations after the move takes

place. We also find, however, persuasive evidence of a legacy effect at the origin institution

— citation rates do not decline after the scientist departs. While the findings on the patent

side are less conclusive than those on publications alone, they reveal a slightly different role

for geography. Here again citations at the destination location rise (or at least remain the

same) after the move, while citations at the origin location appear to fall, particularly for

patent-to-patent citations.
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The normative implications of our findings are not straightforward, especially since there

may be first-order effects of job mobility we do not observed. Nonetheless, we offer some

broader speculations here. Let’s begin with a deeper look at the publication-to-publication

citation results. A surge in citations at the new location with little drop off at the old

location underscores the importance of scientist interactions, but also makes clear that these

interactions are not easily forgotten. Since the sharing and re-combining of existing ideas is

viewed as an essential component in the innovation process (Weitzman, 1998; Burt, 2004;

Simonton, 2004), might our evidence suggest that scientists are moving too little?

The answer to this will, of course, depend upon the degree to which scientists internalize

the impacts of their location decisions, but suboptimal mobility seems likely. Nearly all

of the costs of moving are borne privately, yet much of the credit associated with new

scientific discoveries is apportioned out narrowly to the lead scientists on that project, leaving

researchers with incentives that appear too weak from a societal perspective. While the

best way to address this limited mobility is unclear, it has potentially large and important

implications for the rate, and especially the direction of technological innovation within the

economy, and eventually for economic growth.

The analysis of patent citations — most of which are generated by biomedical firms —

suggests a distinct knowledge production process within industry. The output of local talent

is most influential when it remains local. That ideas are quickly forgotten after a scientist

departs suggests an important role for face-to-face interactions. One possible explanation for

this finding is that the limited absorptive capacity within most firms necessitates a substan-

tive dialogue with academic scientists in order to translate scientific output into something

more useful for organizations concerned with its translation into marketable products. Such

dialogues are clearly less costly with local talent, especially if the fruitful search for ideas

is not one that is narrowly circumscribed around a well-defined issue. The opportunities

that are lost when a scientist departs, however, are not entirely clear. Even if firms are

abandoning science that the academy believes is still useful, what is the proper benchmark

here? The academy and industry may simply value different types of ideas. Even still, some

ideas that firms should value are likely to fall off the radar screen when scientists depart,
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offering at least some temperance to the idea that the innovative costs of scientist mobility

are negligible.

These conjectures assume the construct validity of our measures: that publication-

publication citations actually measure knowledge flows among academics, and that patent-

patent and patent-publication citations actually measure academic industry spillovers. In

the spirit of recognizing measurement difficulties (see e.g., Kuznets and Schmookler in the

1962 volume) we acknowledge these are assumptions. For example, numerous scholars of

bibliometrics have noted the ceremonial function of publication citations (Merton 1968; Mac-

Roberts and MacRoberts 1989). While we have interpreted the finding that there is little

forgetting of superstars research after a move as evidence that face-to-face interaction may

not be so necessary for knowledge flows, it could instead reflect that the scientists continue to

be cited for ceremonial reasons. A related explanation: if citations are less about intellectual

influence than just knowing “about” research (MacRoberts and MacRoberts 1989), we may

not expect any decay after professional transitions.

Similar concerns could be raised about citations in patents. As Jaffe and Trajtenberg

and others have emphasized, the assumption that these citations reflect real knowledge

flows, or spillovers, is only an assumption. Survey work (Jaffe et al. 2002) suggests they

are noisy measures. Recent analyses (Alcácer et al. 2009; Sampat 2010; Hegde and Sampat

2009) on the importance of patent examiners in generating these citations may undermine

the notion that they are true knowledge flows. One of the reasons for using patent-to-

publication citations is that these are less affected by examiner influence (Lemley and Sampat

2010) and potentially better measures of knowledge flows (Roach and Cohen 2010), though

here too there are questions of whether applicants have incentives to disclose all relevant

knowledge, and only relevant knowledge (Cotropia et al. 2010). All this granted, it is difficult

to construct an explanation of our “forgetting” result for patent-to-patent and patent-to-

publication citations that is driven only by incentives to cite (or citation practices).
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Table 1: Superstar Scientists’ Cumulative Output by 2006 or Career End 
 Mean Median Std. Dev. Min. Max.
Stayers (N=6,589) 

NIH Funding $17,491,538 $11,261,535 $25,598,484 $0 $588,753,152 
Publications 171 142 125 2 1,167 
Patents 3.29 0 9.79 0 258 
Paper Cites [to Papers] 10,639 7,332 11,248 15 139,872 
Patent Cites [to Papers] 117 67 166 0 1,728 
Patent Cites [to Patents] 91 19 240 0 5,596 

Movers (N=2,894) 
NIH Funding $16,256,723 $12,373,582 $16,243,082 $0 $195,611,552 
Publications 174 144 121 1 1,631 
Patents 3.15 0 8.30 0 117 
Paper Cites [to Papers] 10,878 7,455 10,533 2 83,301 
Patent Cites [to Papers] 120 69 159 0 1,821 
Patent Cites [to Patents] 67 15 164 0 2,079 

Notes: Sample consists of 9,483 elite academic life scientists. Movement is defined by a change in academic institution with at least 50 
miles separating origin and destination. 

 
 
 
 
 
Table 2: Demographic Characteristics 
  Degree Year Female MD PhD MD/PhD
Stayers  (N=6,589) 1970.3 0.14 0.33 0.58 0.10 
Movers  (N=2,894) 1972.7 0.14 0.30 0.61 0.10 
Total (N=9,483) 1971.0 0.14 0.32 0.59 0.10 
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Table 3:  Article-to-Article Citation Flows: Descriptive Statistics (n=2×26,254) 
  Articles Published After the Move 

 Mean Median Std. Dev. Min Max 

Journal Articles by Stayers  
Number of Authors 4.915 4 4.077 1 255 
Focal Author is Last 0.661 1 0.473 0 1 
Article Stock of Citations up to 2006 273.818 133 542.514 1 22,336 
Article Publication Year 1992.271 1992 6.208 1977 2003 
Move Year 1986.912 1987 6.212 1976 2002 
Focal Author Graduation Year 1970.270 1970 8.198 1931 1996 
Focal Author Gender 0.023 0 0.149 0 1 
Scientist Citations at Baseline 5,283 3,623 5,215 0 60,496 
Scientist NIH Funding at Baseline $3,828,267 $2,412,251 $5,297,164 $0 $101,678,352 

Journal Articles by Movers  
Number of Authors 4.887 4 3.843 1 255 
Focal Author is Last 0.661 1 0.473 0 1 
Article Stock of Citations up to 2006 279.845 134 576.462 0 22,298 
Article Publication Year 1992.271 1992 6.208 1977 2003 
Move Year 1986.912 1987 6.212 1976 2002 
Focal Author Graduation Year 1970.422 1970 7.990 1940 1996 
Focal Author Gender 0.023 0 0.149 0 1 
Scientist Citations at Baseline 5,248 3,584 5,157 0 51,174 
Scientist NIH Funding at Baseline $3,563,252 $2,306,315 $4,381,859 $0 $118,257,904 

Note: The match is both “scientist-centric” and “article-centric.” The control article is always chosen from the same journal in the same publication year. The 
control article is coarsely matched on the number of authors (exact match for one, two, and three authors; four or five authors; between six and nine authors; 
and more than nine authors). We also match on focal scientist’s position in the authorship roster (first author; last author; middle author). In addition, the 
following individual covariates for the noving and staying stars match: gender, year of highest degree (in three year bins), NIH funding status as of the 
moving year (funded vs. not); and total number of citations having accrued by 2006 to all pre-move publications (below the 10th percentile; between the 10th 
and 25th percentile; between the 25th percentile and the median; between the median and the 75th percentile, between the 75th and 95th percentile, between the 
95th and 99th percentile; and above the 99th percentile). 
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Table 4A: Article-to-Article Citation Flows: Descriptive Statistics (n=2×10,249) 
  Articles Published Before the Move 

 Mean Median Std. Dev. Min Max 

Journal Articles by Stayers 
Number of Authors 4.463 4 2.980 1 129 
Focal Author is Last 0.653 1 0.476 0 1 
Article Age at Baseline 2.483 2 2.055 1 10 
Focal Author Gender 0.098 0 0.297 0 1 
Focal Author Graduation Year 1967.491 1968 10.893 1931 2001 
Article Baseline Stock of Article Citations 27.666 3 66.750 0 2399 
Article Baseline Stock of Article Citations from Industry 1.023 0 3.731 0 135 
Article Baseline Stock of Article Citations at Origin 1.952 0 6.550 0 135 
Article Baseline Stock of Article Citations at Destination 0.355 0 2.210 0 80 

Journal Articles by Movers 
Number of Authors 4.489 4 3.238 1 180 
Focal Author is Last 0.653 1 0.476 0 1 
Article Age at Baseline 2.483 2 2.055 1 10 
Focal Author Gender 0.084 0 0.277 0 1 
Focal Author Graduation Year 1972.603 1973 9.289 1940 1997 
Article Baseline Stock of Citations 27.824 3 63.855 0 1226 
Article Baseline Stock of Article Citations from Industry 1.036 0 3.477 0 103 
Article Baseline Stock of Article Citations at Origin 1.834 0 6.284 0 149 
Article Baseline Stock of Article Citations at Destination 0.624 0 3.249 0 131 

Note: The match is “article-centric,” i.e., the control article is always chosen from the same journal in the same publication year. The control article is coarsely 
matched on the number of authors (exact match for one, two, and three authors; four or five authors; between six and nine authors; and more than nine 
authors). We also match on focal scientist’s position in the authorship roster (first author; last author; middle author). For articles published one year before 
appointment, we also match on the month of publication. For articles published two years before appointment, we also match on the quarter of publication. 
In addition, the articles in the control and treatment groups are matched on article citation dynamics up to the year before the (possibly counterfactual) 
transition year. The cost of a very close, non-parametric match on article characteristics is that author characteristics do not match closely. Imposing a close 
match on focal scientist age, gender, and overall productivity at baseline would result in a match rate which is unacceptably low. 
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Table 4B: Patent-to-Article Citation Flows: Descriptive Statistics (n=2×2,435) 
  Articles Published Before the Move 

 Mean Median Std. Dev. Min Max 

Journal Articles by Stayers 
Number of Authors 5.062 5 2.596 1 38 
Focal Author is Last 0.598 1 0.490 0 1 
Article Age at Baseline 3.118 2 2.333 1 10 
Focal Author Gender 0.083 0 0.276 0 1 
Focal Author Graduation Year 1965.539 1967 12.022 1931 1999 
Article Baseline Stock of Patent Citations 0.499 0 1.649 0 29 
Article Baseline Stock of Patent Citations from Industry 0.352 0 1.375 0 24 
Article Baseline Stock of Patent Citations at Origin 0.040 0 0.449 0 16 
Article Baseline Stock of Patent Citations at Destination 0.012 0 0.306 0 14 

Journal Articles by Movers 
Number of Authors 5.049 5 2.433 1 26 
Focal Author is Last 0.598 1 0.490 0 1 
Article Age at Baseline 3.118 2 2.333 1 10 
Focal Author Gender 0.086 0 0.281 0 1 
Focal Author Graduation Year 1974.161 1975 8.709 1940 1995 
Article Baseline Stock of Patent Citations 0.540 0 1.889 0 46 
Article Baseline Stock of Patent Citations from Industry 0.367 0 1.652 0 46 
Article Baseline Stock of Patent Citations at Origin 0.029 0 0.284 0 6 
Article Baseline Stock of Patent Citations at Destination 0.019 0 0.236 0 7 

Note: The match is “article-centric,” i.e., the control article is always chosen from the same journal in the same publication year. The control article is coarsely 
matched on the number of authors (exact match for one, two, and three authors; four or five authors; between six and nine authors; and more than nine 
authors). We also match on focal scientist’s position in the authorship roster (first author; last author; middle author). For articles published one year before 
appointment, we also match on the month of publication. For articles published two years before appointment, we also match on the quarter of publication. 
In addition, the articles in the control and treatment groups are matched on patent citation dynamics up to the year before the (possibly counterfactual) 
transition year. The cost of a very close, non-parametric match on article characteristics is that author characteristics do not match closely. Imposing a close 
match on focal scientist age, gender, and overall productivity at baseline would result in a match rate which is unacceptably low. 
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Table 4C: Patent-to-Patent Citation Flows: Descriptive Statistics (n=2×1,417) 
  Patents Issued Before the Move 

 Mean Median Std. Dev. Min Max 

Patents by Stayers 
Patent Age at Baseline 4.579 4 2.610 1 10 
Focal Author Gender 0.056 0 0.231 0 1 
Focal Author Graduation Year 1969.762 1970 10.806 1932 1996 
Patent Baseline Stock of Patent Citations 7.076 1 14.770 0 135 
Patent Baseline Stock of Patent Citations from Industry 5.880 0 12.830 0 98 
Patent Baseline Stock of Patent Citations at Origin 0.563 0 2.899 0 48 
Patent Baseline Stock of Patent Citations at Destination 0.167 0 1.439 0 37 

Patents by Movers 
Patent Age at Baseline 4.579 4 2.610 1 10 
Focal Author Gender 0.047 0 0.212 0 1 
Focal Author Graduation Year 1976.711 1978 8.678 1950 1996 
Patent Baseline Stock of Patent Citations 7.198 1 15.608 0 148 
Patent Baseline Stock of Patent Citations from Industry 5.787 0 13.239 0 137 
Patent Baseline Stock of Patent Citations at Origin 0.370 0 1.714 0 34 
Patent Baseline Stock of Patent Citations at Destination 0.231 0 1.966 0 53 

Note: The match is “patent-centric,” i.e., the control patent is always chosen from the same application year and the same issue year. In addition, control and 
treatment patents are matched on patent citation dynamics up to the year before the (possibly counterfactual) transition year. The cost of a very close, non-
parametric match on patent characteristics is that author characteristics do not match closely. Imposing a close match on focal scientist age, gender, and 
overall productivity at baseline would result in a match rate which is unacceptably low. 
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Table 5: Effects of Professional Move on Citation Rates, by Location 
 (1a) (1b) (2a) (2b) (3a) (3b) 

 Article-to-Article 
Citations 

Patent-to-Article 
Citations 

Patent-to-Patent 
Citations 

 Origin Destination Origin Destination Origin Destination 

After Appointment 0.026 0.069** -0.026* 0.007 -0.121** 0.041* 
(0.026) (0.015) (0.012) (0.006) (0.036) (0.017) 

Nb. of Observations 175,715 175,715 41,114 41,114 21,221 21,221 
Nb. of Article Pairs 10,249 10,249 2,435 2,435 1,417 1,417 
Nb. of Scientists 2,106 2,106 928 928 426 426 
Adjusted R2 0.295 0.323 0.157 0.125 0.215 0.214 
Standard errors in parentheses, clustered by scientists. All specifications are estimated by OLS; the models include article-pair fixed 
effects. †p <0.10, *p <0.05, **p <0.01 
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Table 6A: Effects of Professional Move on Article-to-Article Citation Rates 
at Origin Location 

 (1a) (1b) (2a) (2b) (3a) (3b) 

 Novel vs. Not Young vs. Old Journal Prestige 

 Novel Not Young Old Low JIF High JIF 

After Appointment -0.054 0.083* -0.000 0.045 0.032 0.022 
(0.039) (0.034) (0.041) (0.033) (0.028) (0.040) 

Nb. of Observations 80,165 95,550 82,580 93,135 84,114 91,601 
Nb. of Article Pairs 3,713 6,536 4,524 5,725 4,884 5,365 
Nb. of Scientists 1,273 1,648 1,192 914 1,698 1,489 
Adjusted R2 0.243 0.320 0.290 0.299 0.269 0.305 
 (4a) (4b) (5a) (5b) (6a) (6b) 

 Pre vs. Post Internet Big vs. Small 
Status Change PI vs. Non-PI Pubs 

 1975-1994 1995-2003 Big Small First or Last 
Position 

Middle 
Position 

After Appointment 0.023 0.038 -0.014 0.037 0.045† -0.026 
(0.028) (0.067) (0.057) (0.029) (0.025) (0.066) 

Nb. of Observations 150,880 24,835 34,414 141,301 130,230 45,485 
Nb. of Article Pairs 7,456 2,793 2,049 8,200 7,315 2,934 
Nb. of Scientists 1,782 564 417 1,689 1,872 1,200 
Adjusted R2 0.251 0.361 0.322 0.289 0.253 0.334 
 (7a) (7b) (8a) (8b) (9a) (9b) 

 Well-Cited 
at Baseline 

Well-Funded 
at Baseline 

Prolific Patenter 
at Baseline 

 No Yes No Yes No Yes 

After Appointment 0.011 0.043 0.021 0.044 0.016 0.054 
(0.032) (0.040) (0.030) (0.052) (0.028) (0.057) 

Nb. of Observations 88,823 86,892 131,548 44,167 135,818 39,897 
Nb. of Article Pairs 5,240 5,009 7,787 2,462 7,477 2,772 
Nb. of Scientists 1,406 700 1,708 398 1,732 374 
Adjusted R2 0.276 0.306 0.285 0.322 0.275 0.328 
Standard errors in parentheses, clustered by scientists. All specifications are estimated by OLS; the models include article-pair fixed 
effects. †p <0.10, *p <0.05, **p <0.01 
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Table 6B: Effects of Professional Move on Article-to-Article Citation Rates 
at Destination Location 

 (1a) (1b) (2a) (2b) (3a) (3b) 

 Novel vs. Not Young vs. Old Journal Prestige 

 Novel Not Young Old Low JIF High JIF 

After Appointment 0.036† 0.093** 0.035 0.094** 0.078** 0.063** 
(0.021) (0.020) (0.025) (0.018) (0.014) (0.024) 

Nb. of Observations 80,165 95,550 82,580 93,135 84,114 91,601 
Nb. of Article Pairs 3,713 6,536 4,524 5,725 4,884 5,365 
Nb. of Scientists 1,273 1,648 1,192 914 1,698 1,489 
Adjusted R2 0.237 0.360 0.343 0.305 0.256 0.345 
 (4a) (4b) (5a) (5b) (6a) (6b) 

 Pre vs. Post Internet Big vs. Small 
Status Change PI vs. Non-PI Pubs 

 1975-1994 1995-2003 Big Small First or Last 
Position 

Middle 
Position 

After Appointment 0.046** 0.164** 0.039 0.077** 0.077** 0.047 
(0.015) (0.043) (0.038) (0.016) (0.016) (0.030) 

Nb. of Observations 150,880 24,835 34,414 141,301 130,230 45,485 
Nb. of Article Pairs 7,456 2,793 2,049 8,200 7,315 2,934 
Nb. of Scientists 1,782 564 417 1,689 1,872 1,200 
Adjusted R2 0.295 0.361 0.355 0.315 0.313 0.342 
 (7a) (7b) (8a) (8b) (9a) (9b) 

 Well-Cited 
at Baseline 

Well-Funded 
at Baseline 

Prolific Patenter 
at Baseline 

 No Yes No Yes No Yes 

After Appointment 0.077** 0.061* 0.078** 0.043† 0.066** 0.078* 
(0.016) (0.025) (0.018) (0.026) (0.016) (0.034) 

Nb. of Observations 88,823 86,892 131,548 44,167 135,818 39,897 
Nb. of Article Pairs 5,240 5,009 7,787 2,462 7,477 2,772 
Nb. of Scientists 1,406 700 1,708 398 1,732 374 
Adjusted R2 0.253 0.350 0.331 0.297 0.309 0.340 
Standard errors in parentheses, clustered by scientists. All specifications are estimated by OLS; the models include article-pair fixed 
effects. †p <0.10, *p <0.05, **p <0.01
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Figure 1: Career Age at Time of Move 

 

 

 

Figure 2: Distance Moved 
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Figure 3 

Similarity between Origin and Destination Locations 

 

A. NIH Funding B. Patents

Note: The above histograms map the extent to which professional transitions in our sample take elite scientists to destinations that differ from, or are similar to, the 
areas from which they originate, along two dimensions: NIH funding accruing to institutions located in 25-miles radius circle centered on the origin and 
destination institution, respectively (Panel A); and the number of patents applied for by inventors located in 25-miles radius circle centered on the origin and 
destination institution, respectively (Panel B). 
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Figure 4A: Article-Level Match 

 
 

Note: The two articles above illustrate the essence of the Coarse Exact Matching procedure. These two articles appeared in the journal Cell in 1981. They received 
a very similar number of citations up to 1985: 73 citations for Mather et al.; 67 citations for Miura et al. Masayasu Nomura, the PI on the article on the 
right-hand side, moved from the University of Wisconsin to UC Irvine in 1986. 
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Figure 4B: Patent-Level Match 
 

  
Note: The two patents above illustrate the essence of the Coarse Exact Matching procedure. These two patents were issued in 1999, and applied for in 1996. They 

both belong to patent class 435 (Molecular Biology & Microbiology). They received a very similar number of citations up to 2003: 27 citations for Fischetti’s 
(Richa et al.); 26 citations for Roninson’s (Mechetner et al.) Igor Roninson—the focal inventor on patent 5,994,088—moved from the University of Illinois at 
Chicago to the Ordway Cancer Center in Albany, NY in 2004.
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Figure 5 
Covariate Balance at Baseline 

 
 

A. Article-to-Article Citations B. Patent-to-Article Citations C. Patent-to-Patent Citations 

 

Note: We compute the cumulative number of citations for treatment and control articles/patents, respectively, up to the year that immediately precedes that of the 
professional transition for the superstar. 

 

  

0

1,000

2,000

3,000

4,000

5,000

6,000

N
um

b
er

 o
f A

rt
ic

le
s

1 2 5 10 25 50 100 250
  

Stock of Article Citations up to the Year of Move

Stayers Movers

0

500

1,000

1,500

2,000

N
um

b
er

 o
f A

rt
ic

le
s

1 2 5 10 25
  

Stock of Patent Citations up to the Year of Move

Stayers Movers

0

100

200

300

400

500

600

700

N
um

b
er

 o
f P

a
te

nt
s

1 2 5 10 25 50
  

Stock of Patent Citations up to the Year of Move

Stayers Movers



43 

Figure 6 
Effect of Professional Transitions 

on Article-to-Article Citation Rates, by Location 
Articles Published After the Move 

 
 
 

A. Citations Accruing 
at Origin Location 

B. Citations Accruing 
at Destination Location 

C. Citations Accruing 
at All Other Locations 

 

Note: Dynamics for the difference in yearly citations between movers and stayers matched articles written in the post-move period. Articles in each pair appeared in 
the same year and journal, and are also matched on focal scientist position on the authorship list, as well as overall number of authors. Further, the superstars 
authors are matched on gender, year of highest degree (in three year bins), NIH funding at the time of the (possibly counterfactual) move, and cumulative 
number of citations for all articles published up until (and including) the year of the move. 
 
In Panel A, only citations accruing at the origin location are tallied. In Panel B, only citations accruing at the destination location are tallied. For stayers, the 
destination location is chosen at random from among the set of locations that movers move to and that are separated by at least 50 miles from the staying 
star’s actual location. In Panel C, only citations accruing at all other locations are tallied.
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Figure 7 
Effect of Professional Transitions 

on Article-to-Article Citation Rates, by Citing Institution Type  
Articles Published Before the Move 

 

A. All Citers B. Industrial Citers Only

Notes: Dynamics for the difference in yearly citations between movers and stayers matched articles written in the pre-move period. Articles in each pair 
appeared in the same year and journal, and are also matched on focal scientist position on the authorship list, as well as overall number of authors. 
Further, control articles are selected such that the sum of squared differences in citations between control and treated article up to year t0-1 is minimized 
— where t0 is the year of (possibly counterfactual) move. In addition, when the year of publication is in the year prior to the move, the articles in each 
pair appeared not only in the same year, but also in the same month. Similarly, when the year of publication is in penultimate year prior to the move, the 
articles in each pair appeared not only in the same year, but also in the same quarter. 
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Figure 8 
Effect of Professional Transitions 

on Article-to-Article Citation Rates, by Location 
Articles Published Before the Move 

 
 
 

A. Citations Accruing 
at Origin Location 

B. Citations Accruing 
at Destination Location 

C. Citations Accruing 
at All Other Locations 

 

Note: Dynamics for the difference in yearly citations between movers and stayers matched articles written in the pre-move period. Articles in each pair appeared in 
the same year and journal, and are also matched on focal scientist position on the authorship list, as well as overall number of authors. Further, control 
articles are selected such that the sum of squared differences in citations between control and treated article up to year t0-1 is minimized — where t0 is the 
year of (possibly counterfactual) move. In addition, when the year of publication is in the year prior to the move, the articles in each pair appeared not only in 
the same year, but also in the same month. Similarly, when the year of publication is in penultimate year prior to the move, the articles in each pair appeared 
not only in the same year, but also in the same quarter. 
 
In Panel A, only citations accruing at the origin location are tallied. In Panel B, only citations accruing at the destination location are tallied. For stayers, the 
destination location is chosen at random from among the set of locations that movers move to and that are separated by at least 50 miles from the staying 
star’s actual location. In Panel C, only citations accruing at all other locations are tallied.
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Figure 9 
Effect of Professional Transitions 

on Patent-to-Article Citation Rates, by Citing Institution Type 
Articles Published Before the Move 

 

A. All Citers B. Industrial Citers Only

Notes: Dynamics for the difference in yearly citations between movers and stayers matched articles written in the pre-move period. Articles in each pair 
appeared in the same year and journal, and are also matched on focal scientist position on the authorship list, as well as overall number of authors. 
Further, control articles are selected such that the sum of squared differences in citations between control and treated article up to year t0-1 is minimized 
— where t0 is the year of (possibly counterfactual) move. In addition, when the year of publication is in the year prior to the move, the articles in each 
pair appeared not only in the same year, but also in the same month. Similarly, when the year of publication is in penultimate year prior to the move, the 
articles in each pair appeared not only in the same year, but also in the same quarter. 
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Figure 10 
Effect of Professional Transitions 

on Patentto-Article Citation Rates, by Location 
Articles Published Before the Move 

 
 
 

A. Citations Accruing 
at Origin Location 

B. Citations Accruing 
at Destination Location 

C. Citations Accruing 
at All Other Locations 

 

Note: Dynamics for the difference in yearly citations between movers and stayers matched articles written in the pre-move period. Articles in each pair appeared in 
the same year and journal, and are also matched on focal scientist position on the authorship list, as well as overall number of authors. Further, control 
articles are selected such that the sum of squared differences in citations between control and treated article up to year t0-1 is minimized — where t0 is the 
year of (possibly counterfactual) move. In addition, when the year of publication is in the year prior to the move, the articles in each pair appeared not only in 
the same year, but also in the same month. Similarly, when the year of publication is in penultimate year prior to the move, the articles in each pair appeared 
not only in the same year, but also in the same quarter. 
 
In Panel A, only citations accruing at the origin location are tallied. In Panel B, only citations accruing at the destination location are tallied. For stayers, the 
destination location is chosen at random from among the set of locations that movers move to and that are separated by at least 50 miles from the staying 
star’s actual location. In Panel C, only citations accruing at all other locations are tallied.
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Figure 11 
Effect of Professional Transitions 

on Patent-to-Patent Citation Rates, by Citing Assignee Type 
Patents Issued Before the Move 

 

A. All Citing Assignees B. Industrial Citing Assignees Only

Notes: Dynamics for the difference in yearly citations between movers and stayers matched patents issued in the pre-move period. Patents in each pair share the 
same application and issue years. Further, control patents are selected such that the sum of squared differences in citations between control and treated 
patents up to year t0-1 is minimized — where t0 is the year of (possibly counterfactual) move. 
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Figure 12 

Effect of Professional Transitions 
on Patent-to-Patent Citation Rates, by Location 

Patents Issued Before the Move 
 
 
 

A. Citations Accruing 
at Origin Location 

B. Citations Accruing 
at Destination Location 

C. Citations Accruing 
at All Other Locations 

  

Note: Dynamics for the difference in yearly citations between movers and stayers matched patents patents in the pre-move period. Patents in each pair share the 
same application and issue years. Further, control patents are selected such that the sum of squared differences in citations between control and treated 
patents up to year t0-1 is minimized — where t0 is the year of (possibly counterfactual) move. 

 
In Panel A, only citations accruing at the origin location are tallied. In Panel B, only citations accruing at the destination location are tallied. For stayers, the 
destination location is chosen at random from among the set of locations that movers move to and that are separated by at least 50 miles from the staying 
star’s actual location. In Panel C, only citations accruing at all other locations are tallied.
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Appendix I:
Criteria for Delineating the Set of 10,450 “Superstars”

We present additional details regarding the criteria used to construct the sample of 10,450 superstars.

Highly Funded Scientists. Our first data source is the Consolidated Grant/Applicant File (CGAF) from
the U.S. National Institutes of Health (NIH). This dataset records information about grants awarded to
extramural researchers funded by the NIH since 1938. Using the CGAF and focusing only on direct costs
associated with research grants, we compute individual cumulative totals for the decades 1977-1986, 1987-
1996, and 1997-2006, deflating the earlier years by the Biomedical Research Producer Price Index.i We also
recompute these totals excluding large center grants that usually fund groups of investigators (M01 and P01
grants). Scientists whose totals lie in the top ventile (i.e., above the 95th percentile) of either distribution
constitute our first group of superstars. In this group, the least well-funded investigator garnered $10.5
million in career NIH funding, and the most well-funded $462.6 million.ii

Highly Cited Scientists. Despite the preeminent role of the NIH in the funding of public biomedical
research, the above indicator of “superstardom” biases the sample towards scientists conducting relatively
expensive research. We complement this first group with a second composed of highly cited scientists
identified by the Institute for Scientific Information. A Highly Cited listing means that an individual was
among the 250 most cited researchers for their published articles between 1981 and 1999, within a broad
scientific field.iii

Top Patenters. We add to these groups academic life scientists who belong in the top percentile of the
patent distribution among academics — those who were granted 17 patents or more between 1976 and 2004.

Members of the National Academy of Sciences. We add to these groups academic life scientists who
were elected to the National Academy of Science between 1975 and 2007.

MERIT Awardees of the NIH. Initiated in the mid-1980s, the MERIT Award program extends fund-
ing for up to 5 years (but typically 3 years) to a select number of NIH-funded investigators “who have
demonstrated superior competence, outstanding productivity during their previous research endeavors and
are leaders in their field with paradigm-shifting ideas.” The specific details governing selection vary across
the component institutes of the NIH, but the essential feature of the program is that only researchers holding
an R01 grant in its second or later cycle are eligible. Further, the application must be scored in the top
percentile in a given funding cycle.

Former and current Howard Hughes Medical Investigators. Every three years, the Howard Hughes
Medical Institute selects a small cohort of mid-career biomedical scientists with the potential to revolutionize
their respective subfields. Once selected, HHMIs continue to be based at their institutions, typically leading
a research group of 10 to 25 students, postdoctoral associates and technicians. Their appointment is reviewed
every five years, based solely on their most important contributions during the cycle.iv

Early career prize winners. We also included winners of the Pew, Searle, Beckman, Rita Allen, and
Packard scholarships for the years 1981 through 2000. Every year, these charitable foundations provide seed
funding to between 20 and 40 young academic life scientists. These scholarships are the most prestigious
accolades that young researchers can receive in the first two years of their careers as independent investigators.

ihttp://officeofbudget.od.nih.gov/UI/GDPFromGenBudget.htm
iiWe perform a similar exercise for scientists employed by the intramural campus of the NIH. These scientists are not eligible

for extramural funding, but the NIH keeps records of the number of “internal projects” each intramural scientist leads. We
include in the elite sample the top ventile of intramural scientists according to this metric.

iiiThe relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology, neuroscience, molec-
ular biology & genetics, immunology, pharmacology, and clinical medicine.

ivSee Azoulay et al. (2009) for more details and an evaluation of this program.
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Appendix II: Linking Scientists with their Journal Articles

The source of our publication data is PubMed, a bibliographic database maintained by the U.S. National
Library of Medicine that is searchable on the web at no cost.v PubMed contains over 14 million citations
from 4,800 journals published in the United States and more than 70 other countries from 1950 to the present.
The subject scope of this database is biomedicine and health, broadly defined to encompass those areas of
the life sciences, behavioral sciences, chemical sciences, and bioengineering that inform research in health-
related fields. In order to effectively mine this publicly-available data source, we designed PubHarvester,
an open-source software tool that automates the process of gathering publication information for individual
life scientists (see Azoulay et al. 2006 for a complete description of the software). PubHarvester is fast,
simple to use, and reliable. Its output consists of a series of reports that can be easily imported by statistical
software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting to link
accurately individual scientists with their published output. The first relates to what one might term “Type
I Error,” whereby we mistakenly attribute to a scientist a journal article actually authored by a namesake;
The second relates to “Type II error,” whereby we conservatively exclude from a scientist’s publication roster
legitimate articles:

Namesakes and popular names. PubMed does not assign unique identifiers to the authors of the
publications they index. They identify authors simply by their last name, up to two initials, and an optional
suffix. This makes it difficult to unambiguously assign publication output to individual scientists, especially
when their last name is relatively common.

Inconsistent publication names. The opposite danger, that of recording too few publications, also looms
large, since scientists are often inconsistent in the choice of names they choose to publish under. By far the
most common source of error is the haphazard use of a middle initial. Other errors stem from inconsistent
use of suffixes (Jr., Sr., 2nd, etc.), or from multiple patronyms due to changes in spousal status.

To deal with these serious measurement problems, we opted for a labor-intensive approach: the design of
individual search queries that relies on relevant scientific keywords, the names of frequent collaborators,
journal names, as well as institutional affiliations. We are aided in the time-consuming process of query
design by the availability of a reliable archival data source, namely, these scientists’ CVs and biosketches.
PubHarvester provides the option to use such custom queries in lieu of a completely generic query (e.g,
"azoulay p"[au] or "sampat bn"[au]). As an example, one can examine the publications of Scott A.
Waldman, an eminent pharmacologist located in Philadelphia, PA at Thomas Jefferson University. Waldman
is a relatively frequent name in the United States (with 208 researchers with an identical patronym in the
AAMC faculty roster); the combination "waldman s" is common to 3 researchers in the same database.
A simple search query for "waldman sa"[au] OR "waldman s"[au] returns 302 publications at the time
of this writing. However, a more refined query, based on Professor Waldman’s biosketch returns only 210
publications.vi

The above example also makes clear how we deal with the issue of inconsistent publication names. Pub-
Harvester gives the end-user the option to choose up to four PubMed-formatted names under which
publications can be found for a given researcher. For example, Louis J. Tobian, Jr. publishes under "tobian
l", "tobian l jr", and "tobian lj", and all three names need to be provided as inputs to generate a
complete publication listing. Furthermore, even though Tobian is a relatively rare name, the search query
needs to be modified to account for these name variations, as in ("tobian l"[au] OR "tobian lj"[au])

We are confident that this labor-intensive customization ensures the accuracy of our superstar scientists’
bibliomes.

vhttp://www.pubmed.gov/
vi(((("waldman sa"[au] NOT (ether OR anesthesia)) OR ("waldman s"[au] AND (murad OR philadelphia[ad] OR west

point[ad] OR wong p[au] OR lasseter kc[au] OR colorectal))) AND 1980:2010[dp])
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Appendix III: Linking Scientists with their Patents

A number of recent efforts have been devoted to assigning unique identifiers to inventors in the US Patent
Data (Trajtenberg et al. 2006; Marx et al. 2009). Rather than relying on recursive algorithms that help
group together patents issued to the same inventors, we make use of the richness of our data to improve the
quality of the matched inventor/invention links.

In a first step, we eliminate from the set of potential patents all patents issued in classes that appear unrelated
to the life sciences, writ large. Second, we focus on the set of superstars with relatively rare names, and
automate the match with the patent data by declaring as valid any link in which (i) the inventor’s full name
matches, and (ii) at least one patent assignee matches with one of the scientist’s employer, past or present.
We then relax these constraints one at a time, examining potential matches by hand. Using knowledge
about the research of these scientists stemming from their biographical records, we then pass judgement
on the validity of these more uncertain matches. The same procedure is repeated for the set of inventors
with common names, though these records often require the inspection of each potential patent to ascertain
whether they correspond to legitimate or spurious matches.

Following Thursby et al. (2009), we find that many patents associated with the elite scientists in our sample
are not assigned to their employer, but rather unassigned, or assigned solely to an industrial firm. As a
result, we are very careful to inspect manually records for which the inventor name matches that of one of
our superstars, but there is no assignee information to match with the available biographical record for this
individual.

One objection to this linking procedure is that it is ad hoc, and difficult to replicate across different empirical
contexts. Moreover, it is very labor-intensive, and therefore would not scale up to a much larger sample of
inventors. Yet, we suspect that using prior knowledge about the direction of an inventor’s research to link
them precisely with their patented inventions results in higher-quality matches.
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Appendix IV: Linking PubMed References to USPTO Patents

Determining whether patents cite publications is more difficult than tracing patent citations: while the
cited patents are unique seven-digit numbers, cited publications are free-form text (Callaert et al. 2006).
Moreover, the USPTO does not require that applicants submit references to literature in a standard format.
For example, Harold Varmus’s 1988 Science article “Retroviruses” is cited in 29 distinct patents, but in
numerous different formats, including Varmus. “Retroviruses” Science 240:1427-1435 (1988) (in patent
6794141) and Varmus et al., 1988, Science 240:1427-1439 (in patent 6805882). As this example illustrates,
there can be errors in author lists and page numbers. Even more problematic, in some cases certain fields
(e.g. author name) are included, in others they are not. Journal names may be abbreviated in some patents,
but not in others.

To address these difficulties, we developed a matching algorithm that compared each of several PubMed fields
— first author, page numbers, volume, and the beginning of the title, publication year, or journal name —
to all references in all biomedical and chemical patents issued by the USPTO since 1976. Biomedical patents
are identified by technology class, using the patent class-field concordance developed by the National Bureau
of Economic Research (Jaffe and Trajtenberg 2002). We considered a dyad to be a match if four of the fields
from PubMed were listed in a USPTO reference.

Overall, the algorithm returned 558,982 distinct PMIDs cited in distinct 172, 815 patents. Since it necessarily
relied on probabilistic rather than exact matches, we also tested it across a sample of references where we
were confident the match to the PubMed data was accurate. Specifically, we sampled 200 references from
the biomedical/chemical patents, and two research assistants and one of the authors (Sampat) manually
investigated whether the references had associated PMIDs. Sampat carefully reviewed and adjudicated any
cases where there was disagreement among the three coders.

Manual matching, while cumbersome, provides an extremely reliable match, a “gold-standard” against which
we can gauge the algorithm. The algorithm returned the correct PMID information for 86 percent of the
references. There were no false positives: if our manual match returned no PMID, neither did our algorithm.
And in almost all cases, if the algorithm generated a PMID, it was the correct one. But for 14 percent of
the references there were false negatives, i.e., a PMID was found via the manual match, but none was found
via the algorithm. While these errors are unlikely to be related to any variables of interest, we can also
test robustness of any results obtained using these data using matches from a more liberal implementation
of the algorithm (based on matching three rather than four elements of the PubMed record to the patent
references), which returns fewer false negatives but more false positives.

Choosing between the loose and strict algorithms involves making tradeoffs between the Type I and Type II
errors. In the analyses below, we rely primarily on the strict algorithm, erring on the side of understating
the extent to which patents cite the biomedical literature.
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Appendix V: Construction of the Product Control Group

We detail the “Coarse Exact Matching” (CEM) procedure implemented to identify the sample of control
products from among the universe of products associated with stayers. As opposed to methods that rely on
the estimation of a propensity score, CEM is a non-parametric procedure.vii

In its basic outline, the matching procedure is very similar across the three measures of knowledge flows;
Whether we are focused on journal articles or patents, the sample of control products is constructed such
that the following two conditions are met:

1. treated products exhibit no differential citation trends relative to control products up to the time of
appointment;

2. treated and control products match on a number of time-invariant article characteristics;

However, implementation details vary with cited and citing product type, as explained below.

Journal Articles. We identify controls based on the following set of covariates: (1) year of publication; (2)
specific journal (e.g. Cell or the New England Journal of Medicine); (3) number of authors (the distribution
is coarsened into six bins: one, two, three, four or five, between six and nine, and ten or more authors); (4)
focal-scientist position on the authorship list (first author, middle author, or last author). In the case of
articles published in the year immediately preceding appointment, the list of matching covariates is expanded
to also include the month of publication. In the case of articles published two years before appointment, the
list of matching covariates is expanded to also include the quarter of publication. To ensure that pre-move
citation trends are similar, we proceed in two steps. First, we also match on cumulative number of citations
at baseline, coarsened into 7 strata (0 to 10th; 10th to 25th; 25th to 50th; 50th to 75th; 75th to 95th; 95th to
99th; and above the 99th percentile). However, we have found that this is not enough to eliminate pre-move
citation trends. As a result, we select all control articles that match according to the covariates above, and
pick among those potential matches a single article that further minimizes the sum of squared differences in
the number of citations up until the year before the year of move.

Patents. We identify controls based on the following set of time-invariant covariates: (1) year of issue; (2)
year of application; (3) main patent class. To ensure that pre-move citation trends are similar, we match
on cumulative number of citations at baseline, coarsened into 4 strata (0 to 50th; 50th to 95th; 95th to 99th;
and above the 99th percentile).

Coarse Exact Matching. We create a large number of strata to cover the entire support of the joint
distribution of the covariates mentioned above. Each observation is allocated to a unique strata. We then
drop from the data all observations corresponding to strata in which there is no treated article and all
observations corresponding to strata in which there are less than 5 potential controls.

The procedure is coarse because we do not attempt to precisely match on covariate values; rather, we coarsen
the support of the joint distribution of the covariates into a finite number of strata, and we match a treated
observation if and only if a control observation can be recruited from this strata. An important advantage
of CEM is that the analyst can guarantee the degree of covariate balance ex ante, but this comes at a cost:
the more fine-grained the partition of the support for the joint distribution (i.e., the higher the number of
strata), the larger the number of unmatched treated observations.

We implement the CEM procedure year by year, without replacement. Specifically, in move year t, 1976 ≤
t ≤ 2004, we:

viiA propensity score approach would entail estimating the probability that the scientists in the data move in a given year,
and then using the inverse of this estimated probability to weight the data in a second stage analysis of the effect of mobility
on subsequent citation rates. However, because citations occur at the product level, achieving covariate balance by weighting
the data by the producer-level likelihood of moving, even if the determinants of mobility were observable, would not resolve the
problem of controlling for product-level quality.
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1. eliminate from the set of potential controls all products published by stayers who have collaborated
with movers prior to year t;

2. for each year of publication/issue t− k, 1 ≤ k ≤ 10;

(a) create the strata;

(b) identify within strata a control for each treated unit; break ties at random;

(c) repeat these steps for year of publication/issue t− (k + 1).

3. repeat these steps for year of appointment t + 1.

Sensitivity Analyses. The analyst’s judgement matters for the outcome of the CEM procedure insofar as
he must draw a list of “reasonable” covariates to match on, as well as decide on the degree of coarsening to
impose. Therefore, it is reasonable to ask whether seemingly small changes in the details have consequences
for how one should interpret our results.

Non-parametric matching procedures such as CEM are prone to a version of the “curse of dimensionality”
whereby the proportion of matched units decreases rapidly with the number of strata. For instance, requiring
producer-level characteristics to match in addition to product-level characteristics would result in a match
rate below 10 percent, which seems to us unacceptably low.

However, we have verified that slight variations in the details of the implementation (e.g., varying slightly
the number of cutoff points for the stock of citations) have little impact on the basic results we present. To
conclude, we feel that CEM enables us to identify a population of control products appropriate to guard
against the specific threats to identification mentioned in section 1.4.
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