
NBER WORKING PAPER SERIES

IDENTIFICATION AND INFERENCE IN LINEAR STOCHASTIC DISCOUNT FACTOR
MODELS

Craig Burnside

Working Paper 16634
http://www.nber.org/papers/w16634

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2010

This paper is a substantial revision of, and replaces, NBER Working Paper (#13357) "Empirical Asset
Pricing and Statistical Power in the Presence of Weak Risk Factors." I am grateful to the National
Science Foundation for financial support (SES-0516697). The views expressed herein are those of
the author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by Craig Burnside. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Identification and Inference in Linear Stochastic Discount Factor Models
Craig Burnside
NBER Working Paper No. 16634
December 2010, Revised October 2012
JEL No. C3,G12

ABSTRACT

When linear asset pricing models are estimated using excess return data, a normalization of the model
must be selected. Several normalizations are equivalent when the model is correctly specified, but
the identification conditions differ across normalizations. In practice, some or all of these identification
conditions fail statistically when conventional consumption-based models are estimated, and inference
is not robust across normalizations. Using asymptotic theory and Monte Carlo simulations, I present
evidence that the lack of robustness in qualitative inference across normalizations can be attributed
to model misspecification and lack of identification. I propose the use of tests for failure of the rank
conditions. Using a calibrated model, I show that these tests are effective in detecting non-identified
models.

Craig Burnside
Department of Economics
Duke University
213 Social Sciences Building
Durham, NC 27708-0097
and NBER
craig.burnside@duke.edu



Standard approaches to the estimation and evaluation of linear stochastic discount factor

(SDF) models rely on the identifying assumption that the covariance matrix (or the raw cross-

moment matrix) of a vector of asset returns with a vector of risk factors has full column rank.

Using asymptotic theory, as well as small sample simulation-based evidence, I show that

standard Generalized Method of Moments (GMM) estimates have non-standard properties

when the rank conditions fail and the underlying model is nonetheless valid. When the rank

conditions fail, and the underlying model is false, GMM can have very low power to reject

the model; in fact, in some cases, a false model can appear to be remarkably successful in

terms of fit and in terms of the statistical significance of parameter estimates.

I propose a simple diagnostic to test for identification, based on Cragg and Donald (1997)

and Wright (2003). If there are  risk factors, and    returns, the covariance matrix (or

raw cross-moment matrix) must have rank  for the model to be identified. A simple test

of the null hypothesis that the rank of the matrix is some    can be implemented after

estimating the elements of the matrix by GMM. In Monte Carlo experiments using calibrated

models, I find that the null hypothesis of reduced rank is always rejected when the matrix

whose rank is being tested corresponds to the true model and has full rank. The diagnostic

test is also quite successful in identifying cases of reduced rank, although the size of the test

exceeds its asymptotic size in repeated samples. My findings can be viewed as a formalization

of the notion that researchers should test for significant spread among the factor betas (the

slope coefficients in time series regressions of the returns on the risk factors).1 In fact, a

similar rank test can be based on the matrix of factor betas. For calibrated examples, I find

that tests based on the covariance matrix have better size properties than tests based on the

betas in small samples.

The issue of identification is not simply a theoretical curiosity, it is a practical reality.

To see this, consider panel (A) of Table 1, which shows results of the rank tests for several

conventional models in the literature. In all but the last two examples, I use the quarterly

returns of the Fama-French 25 portfolios sorted on the basis of size and value to estimate and

test the model. In the last two cases, sets of currency portfolios are used. When traditional

financial factors are used (the CAPM and Fama-French models), the null of reduced rank

is strongly rejected. Therefore, these models appear to be identified. On the other hand,

the null of reduced rank is not rejected for most (though not all) of the models based on

1Kan and Zhang (1999b) make the same suggestion and point out that while Chen, Roll, and Ross (1986)

and Ferson and Harvey (1993) performed such tests, relatively few researchers do so.
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macroeconomic factors. This suggests that these models are poorly identified.

I consider the conventional case where the model SDF is estimated using excess returns.

In this case, the mean of the SDF is unidentified but a subset of the model parameters

can still be identified by adopting a normalization. Two candidate normalizations are de-

scribed by Cochrane (2005). One uses raw risk factors, the other uses demeaned risk factors.

The identification condition for the first normalization is that the cross-moment matrix of

the returns and factors has full column rank. The identification condition for the second

normalization is that the covariance matrix of the returns and factors has full column rank.

The two normalizations are theoretically equivalent when the model is true in the sense

that the two representations of the SDF are proportional to one another. At first glance, this

suggests that it does not matter which normalization is adopted by an applied researcher. In

contrast, I show that empirical results are dramatically different for the two normalizations

when conventional consumption-based models are estimated. In particular, the normaliza-

tion that expresses the SDF in terms of raw risk factors tends to cast the models in more

favorable light. Measures of fit are close to 1, and the estimated parameters of the SDF

are highly statistically significant. For the normalization that uses demeaned risk factors,

the models appear to fit the data very poorly, and estimated parameters have a much lower

degree of statistical significance.

A combination of misspecification and lack of identification of the demeaned normaliza-

tion can explain this non-robustness across the estimates. Why misspecification? For the

consumption based models I consider, the rank tests suggest that the cross moment matrix

has greater rank than the covariance matrix. As I show below, this is inconsistent with the

model being true. How does lack of identification play a role? Using asymptotic theory I

demonstrate that the normalization that uses raw risk factors has the following properties

when its rank condition is satisfied, but the rank condition for the demeaned normalization

is not: (i) the estimated parameters of the SDF converge in probability to a non-zero limit,

(ii) an 2 measure of model fit converges in probability to 1, (iii) the -statistic associated

with any parameter of the SDF that converges to a non-zero limit (of which there is at least

one) will diverge in probability to ±∞ leading to the conclusion that the associated risk

factor helps to price the assets, (iv) under some additional regularity assumptions the test

of the over-identifying restrictions rejects the model with the same probability as the size of

the test, that is, as if the model were true, yet (v) the estimated SDF is uncorrelated with
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the returns. My simulation-based evidence indicates that these properties are borne out in

finite samples.

The normalization that uses demeaned risk factors does not share these properties. When

the rank condition fails the parameters of this normalization of the SDF are asymptotically

unidentified. Under additional assumptions about the data generating processes, I show that

the parameter estimates and test statistics have asymptotic distributions, but these results

do not lead to general statements about the statistical significance of the parameter esti-

mates and the likelihood of rejecting the model in large samples. Simulation-based evidence

suggests that in finite samples a researcher is more likely to conclude that the model has

poor fit, reject it based on the test of the pricing errors, and conclude that the spurious

factor does not price the assets, when the SDF is expressed in terms of demeaned factors.

Nonetheless, even with the demeaned normalization the power to reject the model can be

low.

Although my results are specifically relevant for empirical work that uses GMM and one

of the two normalizations, they have broader relevance, because the first stage of GMM with

the demeaned normalization is equivalent to the two-pass regression method pioneered by

Black, Jensen and Scholes (1972) and Fama and MacBeth (1973), and widely used in the

consumption-based asset pricing literature.

There is an extensive literature relating to this paper which examines the properties

of asset pricing tests in the presence of spurious risk factors, that is risk factors that are

uncorrelated with the returns. Kan and Zhang (1999a) examine the behavior of GMM

estimators in the presence of spurious risk factors. In their setup, the estimated SDF nests

the true model but includes an additional factor that is uncorrelated with the returns. Their

results relate to mine for the demeaned specification, although they study risk factors that

are mean zero by construction, and I consider cases where the estimated SDF may or may

not nest the true model. Kan and Zhang (1999b) study similar issues in the context of the

two-pass approach to model evaluation. A more closely related paper to this one is Kan

and Robotti (2008). They examine the behavior of the Hansen and Jagannathan (1997)

distance measure under the two model normalizations discussed here. They show that results

can depend dramatically on the normalization chosen. Another related literature does not

focus on issues of identification, but examines the effects of factor model misspecification on

estimation and inference [for example, Hou and Kimmel (2006), Shanken and Zhou (2007),
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Kan and Robotti (2009), and Kan, Robotti, and Jay Shanken (2012)]. Some of this literature

proposes using misspecification-robust standard errors. These standard errors, however, still

assume that the model is properly identified.

I consider a further case, that a risk factor, or linear combination of risk factors, has the

same covariance with every asset return being explained. This situation arises, in practice,

when factor betas are statistically significant, but have very little spread, as is the case for

the quarterly Fama-French portfolios and US consumption growth.2 A risk factor of this

type may be relevant, but it clearly cannot explain any spread in the cross-sectional distri-

bution of the expected returns being studied. I show that in sufficiently large samples both

normalizations will lead to rejection of the over-identifying restrictions. However, in finite

samples, if the covariance between the returns and the factor is small, the performance of the

raw-factor normalization mimics the case where the factor is entirely spurious. Additionally,

when there is no spread in the covariances associated with a factor, the identification con-

dition for the two-pass regression method with a constant common pricing error fails, and

thereby affects the reliability of inference for that procedure.

One way of dealing with the issue of model normalization would be to work with gross

returns rather than excess returns. Alternatively one could include a moment condition

associating the mean of the SDF with the mean of the price of a risk free asset. In either

case there would be no need to choose a normalization of the SDF. This would not, however,

deal with the problem of identification. If the covariance matrix of excess returns with the

risk factors lacks full column rank, the rank condition for identification of the factor loadings

still fails.

What should an applied researcher conclude from this paper? First, given that it is

straightforward to do so, test for spread among the factor betas for each factor. Second,

given that the issue of identification goes beyond a factor-by-factor look at the betas, test

the rank conditions, and do so using the covariances, not the betas, since the covariance-based

test seems to perform better in small samples. Looking at the rank condition directly helps to

identify situations where each factor, by itself, is relevant, but some linear combination of the

2In related work, Lewellen and Nagel (2006) and Lewellen, Nagel and Shanken (2010) criticize empirical

estimates of the conditional CAPM (and CCAPM) arguing that the spread in the betas in these models is

too small for inference to be reliable. Daniel and Titman (2012) discuss the properties of the cross-sectional

regressions when the test assets lie in a low-dimensional subspace of the full payoff space. Their analysis

undoubtedly has bearing on GMM-based procedures as well, and one of the sets of data I examine in this

paper (the Fama-French 25 returns, described below) is central to their discussion.
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factors is redundant. Third, in situations where the identification appears to be weak, avoid

the raw factor normalization. Fourth, even when adopting the demeaned normalization, be

aware that weak identification affects inference about parameters and weakens tests of the

pricing errors.

The paper is organized as follows. Section 1 lays out a standard linear factor model.

Section 2 discusses the two normalizations of the SDF. Section 3 discusses the approach to

be used in estimating the two model normalizations and testing for identification. Section

4 discusses empirical findings for simple consumption based models, using the Fama and

French (1993) returns on 25 portfolios sorted by market capitalization and book-to-market

value as test assets. It lays the foundation for the rest of the paper by showing that infer-

ence regarding consumption-based models is sharply dependent on the chosen normalization.

Section 5 discusses the asymptotic properties of the estimates and diagnostic tests under the

maintained assumption that the model is valid, and under the alternative assumption that it

is misspecified. Section 6 performs a series of small-sample Monte Carlo simulation exercises

that demonstrate the consequences of failure of the rank conditions in samples similar in size

to those being studied in the literature. Section 7 discusses some alternative approaches to

addressing the identification problem. Section 8 concludes.

1 Model Setup and Moment Conditions

I consider the estimation of a class of linear factor pricing models where the SDF takes the

form

 = −  0 (1)

Here  is a  × 1 vector of risk factors,  is a scalar constant and  is a  × 1 vector of
parameters. If  is the true SDF, then standard arguments imply that the price of any

asset at time − 1 whose payoff at time  is  is −1 = −1(). Therefore the expected

price of the asset is (−1) = (). It follows that the return to the asset,  = −1,

satisfies −1() = 1 and () = 1. Consequently, the difference between the returns

on two assets 1 −2 satisfies [(1 −2)] = 0.

Now consider a particular × 1 vector, 
 , whose th element, 


, is the excess return

at time  to asset  defined as the difference between the return on asset  and the risk free
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rate. We will assume, throughout, that  ≥ . If  given by (1) is the true SDF, then

 (
) = 0 (2)

Restriction (2) implies that

(
 ) = −

cov(
 )

()
 (3)

Equation (3) means that variation in (
) across  implies variation in cov(


) across

.

A beta representation of the model is obtained by substituting (1) into the numerator of

(3):

(
 ) =

cov(
  

0
)

()
= cov(

  
0
) var()

−1| {z }


var()

()| {z }


 (4)

The term  is an × matrix of factor betas, while  is a × 1 vector of factor risk premia.
Row  in the matrix  is the vector of slope coefficients in a time series regression of 

 on

.

2 Normalizations of the SDF

The moment restriction (2) does not separately identify the parameters  and . This is

because the GMM errors, 
, for the parameter pair ( ) are proportional to the GMM

errors for the parameter pair ( ), for any scalar . I primarily consider two approaches

to achieving identification, both of which involve picking a particular normalization of the

SDF.

The first normalization rewrites (1) as

 = ∗
 = (1−  0

∗) (5)

where ∗ = . Equation (2) implies:

(


∗
 ) = 0 (6)

I refer to this as the A-normalization since it factors the parameter  out of the SDF.

Alternatively (1) can be rewritten as

 = ¦
 = [1− ( − )

0
¦], (7)

6



where  is the unconditional mean of ,  is a scalar,  =  − 0 and ¦ = ( − 0).

Equation (2) implies:

 () =  (


¦
 ) = 0 (8)

I refer to this as the M-normalization since it factors the mean of  out of the SDF.

Although ∗ and ¦ are different parameters (except when  = 0) the two normalizations

are equivalent in the sense that the GMM errors 1− 0∗ and 1−( − )
0
¦ are proportional

to one another when evaluated at the true parameter values. Also, ¦ can be obtained from

∗ and : ¦ = ∗(1− 0∗).

I also consider a variant of the M-normalization which introduces a common pricing error,

denoted , that appears in every pricing equation. Under the null that the model is valid,

 = 0. The parameters, , ¦ and  are estimated by exploiting the moment restrictions:

 () =  (


¦
 − ) = 0 (9)

I refer to this variant as the TP-normalization. This normalization has been used in a

GMM context by Parker and Julliard (2005) and is closely related to the two-pass regression

method for estimating the beta-representation of the model. The latter approach, which is

related to the methods introduced by Fama and MacBeth (1973), usually includes a constant

equivalent to  in the second-pass regression.

3 Estimation and Inference using GMM

3.1 The A-Normalization

Using the  moment restrictions given by (6), ∗ is estimated using GMM. Define ∗ (
∗) =




∗
 = 

 (1−  0
∗) and let ∗ (

∗) = 1


P

=1 
∗
 = ̄ − 

∗ be an × 1 vector of pricing
errors, where ̄ = 1



P

=1

 ,  =

1


P

=1


0
 and  is the sample size. I consider GMM

estimators that set ∗
∗
 = 0, where 

∗
 is a  ×  matrix and takes the form ∗ = 0


∗
 ,

where ∗
 is an × positive definite weighting matrix. It follows that the GMM estimator

of ∗ is

̂∗ = (0


∗
 )

−1
0


∗
 ̄

 (10)

I consider multi-stage GMM estimators. In the first stage  ∗
 = . In the th subsequent

stage,  ∗
 = (∗ )

−1 where ∗ =
1


P

=1 ̂
∗
 ̂
∗0
 , ̂

∗
 = 

 (1 −  0 ̂
∗
−1) and ̂∗ represents the

th-stage estimator of ∗.
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Let ∗ = − . A test of the pricing errors is based on the statistic

∗ = ∗ (̂
∗)0(̂ ∗ )

+∗ (̂
∗) (11)

where

̂ ∗ = ∗
∗


∗

0 with ∗ =  − ∗ (

∗
 
∗
 )
−1∗  (12)

and + indicates the generalized inverse of the matrix .

Equations (5) and (6) imply that

(
 ) =  (


0
) 

∗ (13)

In a finite sample, corresponding to the left-hand side of (13) is the vector of realized expected

returns, ̄. Corresponding to the right-hand side of (13) is a vector of predicted expected

returns given by  ̂
∗. The model’s fit is evaluated using the cross-sectional 2:

2∗ = 1−
(̄ − ̂

∗)0(̄ − ̂
∗)

(̄ − ̈)0(̄ − ̈)
 (14)

where ̈ = 1


P

=1 ̄

 is the cross-sectional average of the realized expected returns.

3.2 The M-Normalization

Using the + moment restrictions given by (8), ¦ and  are estimated using GMM. Define

¦1(
¦ ) = 


¦
 = 

 [1−(−)0¦] and let ¦1 (¦ ) = 1


P

=1 
¦
1 = ̄−¡ − ̄0

¢
¦.

Define ¦2() =  −  and let ¦2 () =
1


P

=1 
¦
2 = ̄ − , where ̄ = 1



P

=1 . Define

¦ = ( 
¦0
1 ¦02 )

0 and ¦ = ( 
¦0
1 ¦02 )

0. I consider GMM estimators that set ¦
¦
 = 0,

where ¦ is a 2 × (+ ) matrix and takes the form

¦ =

µ
0

¦
 0

0 

¶
 (15)

where  =  − ̄̄ 0 and ¦
 is an × positive definite weighting matrix. It follows that

the GMM estimators of ¦ and  are

̂¦ = (0
¦
 )

−1
0

¦
 ̄

 (16)

̂ = ̄  (17)

I consider multi-stage GMM estimators. In the first stage  ¦
 = . In the th subsequent

stage, ¦
 = (

¦


0
 )
−1
where  = (  ̄(̂¦−1)

0 ), ̂∗ represents the th-stage estimator
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of ¦ and ¦ is a consistent estimator of 
¦
0 =

P+∞
=−∞(¦

¦0
−).

3 Because ¦2 may be serially

correlated I use a VARHAC estimator, described in more detail in Appendix A, to compute

¦ .

Let

¦ =

µ
− ̄̂¦0

0 −

¶
 (18)

A test of the pricing errors is based on

¦ =  (̂
¦ ̂)0(̂ ¦

 )
+ (̂

¦ ̂) (19)

where

̂ ¦
 = ¦

¦


¦

0 with ¦ = + − ¦ (

¦
 

¦
 )
−1

¦  (20)

Equations (7) and (8) imply that

(
 ) = 

£

 ( − )

0¤
¦ (21)

Corresponding to the right-hand side of (21) is a vector of predicted expected returns,  ̂
¦.

The cross-sectional 2 measure is:

2¦ = 1−
(̄ −  ̂

¦)0(̄ −  ̂
¦)

(̄ − ̈)0(̄ − ̈)
 (22)

Yogo (2006) uses a different, optimal, GMM procedure in conjunction with the M-

normalization. Noting that the derivative of ¦1 with respect to  is non-zero, he uses a

variant of ¦ that is not block diagonal because this improves asymptotic efficiency. In his

case ̂ does not, in general, equal ̄ . As it turns out, in finite samples, the properties of

Yogo’s procedure are quite different than the properties of the procedure I have outlined

here. I discuss his procedure in more detail in Appendix C.

3.3 The TP-Normalization

When estimating the TP-normalization, I set up the first stage of GMM so that the point

estimates are consistent with the two-pass regression method in the following sense: if the

factor risk premia are evaluated as ̂
¦
 = S ̂

¦, then ̂ and ̂
¦
 are numerically identical to

3The first stage of the GMM procedure is numerically equivalent (in terms of pricing errors) to using the

two-pass regression method and running the cross-sectional regression with no constant. In the later GMM

stages, Cochrane (2005) suggests using the matrix (  0× ) in place of  in the expression for  ¦
 .

This is less efficient in terms of the covariance matrix of ̂¦, but is asymptotically equivalent in terms of the
test of the overidentifying restrictions.
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the coefficients obtained in the second-pass regression. To avoid repetitive descriptions in

the main text, I relegate the formulaic details of the estimation of the TP-normalization to

Appendix A.

3.4 Testing Identification

3.4.1 Rank Conditions for Identification

Each normalization is associated with a rank condition that must hold for the model to be

identified. I defer asymptotic theory to Section 5, but it is useful, at this stage, to outline

these conditions. They are:

• A-normalization: For the parameter ∗ to be identified it is necessary that the  × 

matrix 0 ≡ (

0
) have rank .

• M-normalization: For the parameter ¦ to be identified it is necessary that the × 

matrix 0 ≡ cov(
  ) have rank .

• TP-normalization: For the parameters  and ¦ to be identified it is necessary that the
× (+ 1) matrix +0 = (  0 ), where  is an × 1 vector of ones, have rank  + 1.

3.4.2 The Distinction Between Model Validity and Identification

Failure of one or more of the rank conditions does not necessarily imply that the model of

the SDF is false. Consider the following examples.

Imagine a single factor model. Suppose that rank(0) = 0, so that the rank condition for

the M-normalization fails. This implies that 0 = 0. The asset pricing model may still be

valid, but only if (
 ) = 0

¦ = 0 for the particular assets being studied. This, in turn,

implies that 0 = 0, and that +0 = (  0 ), so that the rank conditions for the A and

TP-normalizations also fail.

To take another single factor example, suppose that 0 =  for some scalar  6= 0. This
implies that rank(0) = 1, so that the rank condition of the M-normalization is satisfied.

The TP-normalization, however, is unidentified because the matrix +0 = (   ) has rank

1. The asset pricing model is still valid as long as every element in the vector (
 ) is equal

to ¦.

Now imagine a model with   1 factors, for which rank(0) =   . So the rank

condition for the M-normalization fails. This implies that a lower dimensional model can
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correctly price the returns. To see this let  = ( 1 2 ) where 1 is a × matrix whose

columns span the rowspace of 0, denotedR(0), and2 is a ×(−)matrix whose columns
span the nullspace of 0, denoted N (0). The columns of  span , by construction. Let

the  × 1 vector ̃¦ be the vector containing the first  elements of −1¦, and define the

×  matrix ̃0 = 01. Because 02 = 0 we can write (

 ) = 0

¦ = 0−1¦ = ̃0̃
¦.

The original model may well be valid, but only the lower dimensional model is identified for

the particular assets whose excess returns are included in the vector 
 .

The model being true does, however, imply an important restriction across the rank

conditions for the A and M-normalizations. When the model is true,  = 0
¦
0 and, there-

fore, 0 = 0( + ¦0
0
0). Hence rank(0) ≤ rank(0) when the model is true. A natural

specification test for any model is to check whether this inequality holds in the data.

3.4.3 Testing the Rank Conditions

To test whether the rank conditions hold I borrow directly from Cragg and Donald (1997)

and Wright (2003). Let  be an ×  matrix. Let ̂ be a consistent estimator for  and

assume that
√
 vec(̂ − 0)

→ (0 ), where 0 is the true value of . Let ̂ be a

consistent estimator for . To test the null hypothesis that rank() =    I form the

statistic

() = min
∈Ω

 vec(̂ −  )0 (̂)−1 vec(̂ −  )

where Ω is the set of all  ×  matrices with rank . If the true rank of 0 is , ()
→

2(−)(−). I construct tests of the rank conditions for the A and M-normalizations by letting

 be 0 or 0 and estimating the elements of these matrices by GMM. When  = 0 the test

associated with 0 is analogous to an F-test for cov(

 ) = 0 for all , .

Analogous tests can be constructed for the rank condition of the TP-normalization. To

test the null hypothesis that rank(   ) =  I form the statistic

+() = min
∈Ω

 vec[(  ̂ )−  ]0
µ
0 0

0  (̂)

¶+
vec[(  ̂ )−  ]

If the true rank of (  0 ) is , 
+()

→ 2(−)(+1−). When  = 1 the test associated

with +0 is analogous to an F-test for cov(

 ) = cov(


 ) for all ,  and every .

One aspect of these tests that may seem disadvantageous is that the asymptotic distrib-

ution of () is derived under the null that  has reduced rank (  ). This may trouble

researchers who would prefer to have full rank as the null hypothesis. Two considerations
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are important. First, the null hypothesis of reduced rank is not equivalent to the asset

pricing model being false. Second, the rank tests are very powerful, asymptotically, against

the alternative hypothesis that the matrix  has full rank; the test rejects the null with

probability one in this case. I investigate the finite sample size and power of the () and

+() tests in Section 6.

4 Empirical Findings

I consider a set of data widely used in the asset pricing literature: the 25 portfolios of

US stocks sorted on size and the book-to-market value ratio introduced by Fama and

French (1993) and henceforth referred to as the FF25.4 Using the real excess returns to

the these portfolios at the quarterly frequency over the period 1949Q1—2008Q4, I estimate

two consumption-based factor models.

• The CCAPM, which uses a single factor: the log-growth rate of real per capita
consumption of nondurables and services (referred to from now on as “consumption

growth”).

• ADurables CCAPM, which uses two factors: consumption growth and durables growth
(defined as the log-growth rate of the real stock of consumer durables).5

I present empirical results from the first, second and fifth stages of GMM. In practice, I

found that for most of the GMM procedures and models I considered further iterations of

the weighting matrix produced only minor changes in the results.

4.1 The CCAPM

The first row of Table 2 presents results for the CCAPM using the A-normalization. The

GMM estimates of ∗ are statistically significant at all GMM stages. The fit of the model is

quite good at the first stage of GMM as measured by the cross-sectional 2, but deteriorates

with further GMM iterations. The model is not rejected at conventional significance levels

according to the -statistic.

4The data are described in more detail in Appendix B.
5Yogo (2006) estimates an extension of the durables C-CAPM that adopts recursive preferences. He

estimates a linear approximation of the model that adds a third factor: the market return, defined as the

return of a value-weighted portfolio of all US stocks.
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These findings are not robust when we turn to the M-normalization in the second row

of Table 2. While the GMM estimates of ¦ are statistically significant at all GMM stages,

the fit of the model is very poor as measured by the cross-sectional 2. The model is also

rejected on the basis of the -statistic.

Results for the TP-normalization are shown in the last row of Table 2. The estimates of ̂¦

remain positive but are no longer statistically significant. Compared to the M-normalization

the fit of the model improves a little due to the inclusion of the constant. But the model is

still rejected on the basis of the -statistic.

Is the CCAPM identified? The  statistic for rank(0) = 0 has a tiny p-value (see Ta-

ble 1, panel B) suggesting that 0 has full rank and that the A-normalization is identified.

The results are slightly less clear when we turn to the M-normalization: the  statistic

for rank(0) = 0 has a p-value of 0036. For the TP-normalization, the + statistic for

rank(+0 ) = 1 has a p-value of 024, suggesting that even if 0 has full rank (1), one cannot

reject that +0 has less than full rank. This circumstance would arise if 0 was a constant vec-

tor. The evidence about identification is mixed. Below I ask whether identification problems

explain the differing performance of the CCAPM across the A, M and TP-normalizations.

4.2 The Durables CCAPM

Next, consider the model that uses consumption growth and durables growth as risk factors.

The first row of Table 3 presents results using the A-normalization. The estimates of ∗ for

both factors are positive and significant (except for consumption growth in the first stage

of GMM). The 2 measures suggest that the model can explain about 98 percent of the

cross-sectional variation in expected returns. The model also easily passes the test of the

pricing errors.

With the M-normalization (second row of Table 3) the results are dramatically differ-

ent. The estimates of ¦ for durables growth remain positive but are no longer statistically

significant. Strikingly, the fit of the model is very poor, the 2 being uniformly negative.

The model is not rejected at the second stage of GMM, but is after a few iterations on the

weighting matrix.

Finally, the TP-normalization (third row of Table 3) also casts doubt on the model. None

of the estimates of ¦ are statistically significant, the estimate of  is always large and at least

marginally statistically significant, the 2 of the model hovers around zero, and with enough
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iterations on the weighting matrix the model is rejected on the basis of the -statistic.

Tests of the rank conditions are provided in Table 1. The  statistic for rank(0) = 1

has a p-value of 0014, suggesting that 0 has full rank (2) and that the A-normalization is

identified. The  statistic for rank(0) = 1, on the other hand, has a p-value of 0977. This

indicates that we cannot reject that 0 has reduced rank, and that the M-normalization is

not identified. The + statistic for rank(+0 ) = 2 has a p-value of 0968, so we cannot reject

that +0 has reduced rank, and that the TP-normalization is not identified.

In summary, the Durables CCAPM seems to be poorly identified. This poor identification

stems from the weak correlation between the consumption factors and the asset returns. Let

1 denote consumption growth and 2 denote durables growth. Recall that the rank test

on 0 for the CCAPM is equivalent to an  -test for cov(
  1) = 0. This test had a p-

value of 0036. Similarly, the rank test on +0 for the CCAPM is equivalent to an  -test for

cov(
  1) = . This test had a p-value of 024. This suggests that, at best, consumption

growth has a common covariance with all of the returns. A test for cov(
  2) = 0 has a

p-value of 0974. This suggest that durables growth is uncorrelated with the returns. Indeed,

if it were the case that cov(
  1) =  and cov(

  2) = 0 then 0 would have rank 1 and

+0 would have rank 1, consistent with the findings of the rank tests.

The fact that0 appears to have rank 2, while 0 has rank 1, also suggests that the model

is misspecified. As mentioned above, the model cannot be true when rank (0)  rank(0).

Poor identification in combination with model misspecification is a plausible explanation

of the lack of robustness we observe across normalizations for consumption-based models.

As we will see in the next section, when the model is false, 0 has full column rank and 0

has less than full rank, asymptotic theory predicts exactly the lack of robustness exhibited

by estimates of these models for the different normalizations.

In Burnside (2007) I present results for a wider set of the factor models, and an even larger

set of results, for additional models, is available upon request. These results confirm that

lack of robustness across normalizations is a common occurrence when the rank conditions

fail for the M and TP-normalizations, especially if rank (0)  rank(0).

5 Large Sample Properties of the GMM Estimators

In this section I explore the asymptotic properties of the GMM procedures described in

Section 3.
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Assumption 1 Let the true SDF be given by (1), the true values of the parameters 

and  be denoted 0 and 0, and the true values of 
∗ and ¦ be denoted ∗0 = 00, and

¦0 = 0(0 − 000).

Assumption 2 Let 0 and 0 have full column rank.

Assumption 3 Assume that 
→ 0, 

→ 0, 
∗


→  ∗
0 and  ¦



→  ¦
0 , with  ∗

0

and  ¦
0 positive definite.

For compactness of notation let ¦ = (¦ ) and ¦0 = (
¦
0 0). Define

∗0 = 

∙
∗ (

∗
0)

∗

¸
= −0

and

¦0 = 

∙
¦ (

¦
0)

¦

¸
=

µ −0 (
 )

¦0
0

0 −

¶
Let ∗0 = 

hP+∞
=−∞ ∗ (

∗
0)

∗
−(

∗
0)
0
i
and ¦0 = 

hP+∞
=−∞ ¦ (

¦
0)

¦
−(

¦
0)
0
i
. Define ∗0 =

0
0

∗
0 and

¦0 =

µ
00

¦
0 0

0 

¶


Theorem 1 Suppose assumptions 1–3 are satisfied. Under additional regularity condi-

tions provided in Hansen (1982) ̂∗
→ ∗0, ̂

¦
0

→ ̂
¦
0,
√
 (̂∗ − ∗0)

→ (0  ∗ ) and
√
 (̂

¦ −
¦0)

→ (0  ¦
 ) with  ∗ = (∗0

∗
0)
−1∗0

∗
0
∗0
0 (

∗0
0 
∗
0)
−1 and  ¦

 = (¦0
¦
0)
−1¦0

¦
0
¦0
0 (

¦0
0 

¦
0)
−1.

Also, 2∗
→ 1 and 2¦

→ 1. The statistics ∗ and ¦ both converge in distribution to 2

random variables with −  degrees of freedom.

The proof of Theorem 1 is provided in Appendix A. The interpretation of Theorem 1 is that

when the model is true (Assumption 1, model validity), and when the moment conditions

are informative about the risk factors (Assumption 2, identification), both approaches to

estimation work well.

Next I turn to a situation where the model remains true, but the returns in the data

being studied do not fully shed light on the relevance of the risk factors.

Assumption 2a Let rank(0) =   .

If we maintain Assumption 1, that the model is true, then, as shown above, under Assumption

2a 0 has rank less than or equal to .
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Theorem 2 Suppose assumptions 1, 2a and 3 are satisfied. It follows that neither ∗ nor

¦ is asymptotically identified. Nonetheless, 2∗
→ 1 and 2¦

→ 1.

The proof of Theorem 2 is provided in Appendix A. The interpretation of Theorem 2 is

that even though the model is true (Assumption 1), the moment conditions are insufficiently

informative about the risk factors (Assumption 2a), and neither approach to estimation will

work well in large samples. The lack of asymptotic identification might be manifested in

large standard errors for ̂∗ and ̂¦ in finite samples. While the parameters of the SDF are

not identified, this is because there are multiple values of ∗ and ¦ that satisfy the moment

conditions asymptotically. As a result the measures of fit limit to 1. This suggests that the

models being true, but lack of identification being pervasive, is not responsible for the lack

of robustness we saw in Section 4. There, we found that for some normalizations 2 was

very close to 1, whereas, for other 2 was very far from 1.

Next I turn to a situation where the model is false.

Assumption 1b Assume that the true SDF is not given by (1) so that, in general,  6=
0

¦ for the particular vector  being studied.

Assumption 2b Let rank(0) =  but rank(0) =  − 1.

We can make Assumption 2b because we are no longer maintaining Assumption 1.

Theorem 3 Suppose assumptions 1b, 2b and 3 are satisfied. Under additional regularity

conditions provided in Hansen (1982) ̂∗
→ ∗ = (00), where  is the unique element of

the nullspace of 0 whose elements sum to 1, and 2∗
→ 1. At least one element of ∗ is

non-zero. In contrast ¦ is not asymptotically identified.

The proof of Theorem 3 is provided in Appendix A. Since the model is not true, the parameter

vector ∗ has no interpretation as the “true” value of 
∗. Rather ∗ is a degenerate value of

∗ for which the moment condition (5) holds, even though (1) is not the true SDF. The sum

of the elements of ∗ is 1(
00) which is the inverse of a weighted average of the means of

the risk factors.

Before turning to the asymptotic distributions of ̂∗ and ∗ it is helpful to define the

following notation. Let ∗ = 
P+∞

=−∞ ∗ (
∗
)

∗
−(

∗
)
0 and  ∗ = [∗ (

∗
)

∗
 (

∗
)
0]. In general
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∗ 6=  ∗ under Assumption 1b. Let 
∗
0 =  − ∗0(

∗
0
∗
0)
−1∗0 and define 

∗
 = ∗0

∗
 

∗
0
0 and

 ∗0 = ∗0
∗


∗
0
0. Finally, diagonalize  ∗0 as 

∗
0 = 0Λ0

0
0 where the columns of 0 are the

orthonormal eigenvectors of  ∗0 and Λ0 is a diagonal matrix with the eigenvalues of 
∗
0 on

the diagonal. Let ̃ ∗0 = 0Λ
12
0 so that ̃ ∗0 ̃

∗0
0 =  ∗0 .

Theorem 4 Under the assumptions of Theorem 3,
√
 (̂∗ − ∗)

→ (0  ∗ ) with  ∗ =

(∗0
∗
0)
−1∗0

∗

∗0
0 (

∗0
0 
∗
0)
−1. If ∗ =  ∗ , 

∗ → 2−. When ∗ 6=  ∗ , 
∗ → P−

=1 
2
 where

1, 2,    , − are mutually independent standard normal random variables and 1, 2,

   , − are the non-zero eigenvalues of the matrix ̃ ∗00 (
∗
 )
+̃ ∗0 .

The proof of Theorem 4 is provided in Appendix A. Some examples are helpful in interpreting

Theorems 3 and 4.

5.1 Single Factor Model With a Spurious Factor

For a single factor model, the assumptions of Theorem 3 imply that 0 = 0 and, since 0

has rank 1, that 0 = 0 6= 0. It follows that ∗ = 10. A researcher testing the model
under the null would compute an inconsistent estimate of  ∗ that would converge, instead,

to (∗0
∗
0)
−1∗0

∗
 

∗0
0 (

∗0
0 
∗
0)
−1. Nonetheless, because this matrix is finite, the t-statistic for ̂∗

would diverge to +∞ if 0  0 or −∞ if 0  0. The predicted expected returns,  ̂
∗,

would converge almost surely to 0
∗
 = . Therefore 

2
∗
→ 1.

Thus, in large samples, a researcher testing the model using the A-normalization would

conclude that the factor  prices the returns (due to the statistical significance of ̂
∗) and

that the model’s fit is perfect. A researcher testing the over-identifying restrictions using,

say, a 5 percent critical value from the 2−1 distribution would only reject the model about

5 percent of the time in repeated large samples if ∗ =  ∗ . It is unclear what would happen

in the more general case when ∗ 6=  ∗ .

For the M-normalization, Hansen’s identification condition requires that there should be

a unique ¦ that solves (00
¦
0 0) 

¦ = 00
¦
0. The reason ¦ is unidentified is that when

0 = 0 any value of 
¦ is a solution.

5.2 Multi-factor Model with a Single Spurious Factor

Without loss of generality, let the th factor be spurious: cov(
  ) = 0 and let the rank

of 0 be  − 1 as in the assumptions of Theorem 3. In this case, the vector  referred to in

17



the statement of Theorem 3 has a 1 as its th element and zeros elsewhere. So ∗ = (00)

has 1() as its th element and zeros elsewhere. This means, oddly enough, that a

researcher testing the model using the A-normalization and a large sample of data would

conclude that the factor  prices the returns and that the other factors are irrelevant, even

though they are the only ones correlated with 
 . As in the previous example, 

2
∗
→ 1. A

researcher testing the over-identifying restrictions using a 5 percent critical value from the

2− distribution would only reject the model about 5 percent of the time in repeated large

samples if ∗ =  ∗ .

As in the previous example, for the M-normalization, the identification condition is not

satisfied because there is no unique ¦ that solves (00
¦
0 0) 

¦ = 00
¦
0. When the last

column is 0 is zero, but the rest of the matrix has full column rank, it is 
¦
 that is unidentified

asymptotically. The rest of the parameter vector ¦ is identified.

To some extent, this case resembles the Durables CCAPMmodel in that durables growth

appears to be spurious, while consumption does not. A test of cov(
  ) = 0 for consump-

tion growth alone has a p-value of 0036, whereas a test of cov(
  ) = 0 for durables

growth alone has a p-value of 0974. Consistent with what the theoretical results predict, as

Table 3 shows, the A-normalization delivers a highly significant estimate of ̂∗ for durables

growth (the -statistic is about 8 in the second and later stages of GMM). The 2 for the

Durables CCAPM is 098 at every GMM stage, and the model is far from being rejected on

the basis of the over-identifying restrictions.

In contrast, for the M-normalization, at most stages of GMM, the estimate of ¦ is

significant for consumption growth, and not for durables growth. It is important to note,

however, that lack of identification of the M-normalization means that we cannot trust

conventional inference. This is discussed more below.

5.3 Multi-factor Model with Colinear Covariances

Now consider the more general case where   1, where 0 has no zero columns, but 0 has

rank  − 1. In this case, no one factor is spurious, but there is an identification problem
for the M-normalization due to multicollinearity. Using the A-normalization, however, ̂∗

→
∗ = (00) and 2∗

→ 1. Remarkably, the estimated model puts all its weight on an

irrelevant linear combination of the risk factors because

cov(
 

∗
 ) = − cov(

  
0

∗
) = −

0

00
= 0
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5.4 Greater Numbers of Spurious Factors

Theorems 3 and 4 rely on the assumption that only one linear combination of the risk

factors is spurious, in the sense that rank(0) =  − 1. If rank(0) =    − 1, then ∗

is asymptotically unidentified because there will be many ∗ such that ∗0( −0
∗) = 0.

All these ∗, however, share the property that 00
∗ = 1 and  = 0

∗. So, although the

individual elements of ̂∗ are unidentified, the particular linear combination 00
∗ is identified.

Presumably, then ̂0̂∗ would be centered around 1 and the measure of fit, 2∗, would be

roughly 1.

5.5 Asymptotic Properties of the M-Normalization

To this point we have only been able to show lack of asymptotic identification of the M-

normalization when the rank condition on 0 fails. Although 
¦ is unidentified asymptotically,

and does not have a well defined probability limit, it is still possible, under additional

regularity conditions, to derive its asymptotic distribution, the distribution of the associated

-statistic, the model’s 2 and the -statistic used to test the over-identifying restrictions.

Here I consider only the case of a single factor model with the returns and factors being iid

and independent of each other. The more general case of a multifactor model with persistent

returns or factors can be worked out, but at the cost of algebraic complexity.

Theorem 5 Make the assumptions of Theorem 3. Let 
 and  be iid over time and

mutually independent, and let  = 1. Let Σ = var(
 ), and 2 = var(). Define the

random variables  ∼ (0 2Σ),  = ( 0)(
0) and ̃ = ( 0Σ−1 )(

0Σ−1 ).

Then  12
→ . It follows that at the first stage of GMM −12̂¦

→ , (̂¦)
→

( 0)[
2


2( 0Σ)]
12 and 2¦

→ 1−(0)(
0
), where = −( 0)−1 0,

 = − 0 and  is an × 1 vector of ones. At the second stage of GMM −12̂¦
→ ̃,

(̂¦)
→ ( 0Σ−1 )[

2


2( 0Σ−1 )]12 and 2¦
→ 1 − (0̃ 0̃)(

0
), where

̃ =  −( 0Σ−1 )−1 0Σ−1 , and 
→ (0̃

0Σ−1 ̃0)(
2


2).

The proof of Theorem 5 is provided in Appendix A.6 Interpreting Theorem 5 in general terms

is difficult because of the dependence of the asymptotic distributions on  and Σ. The

distribution of ̂¦ will spread out as the sample size increases at a rate of  12. The -statistic

6Similar asymptotic properties are derived in Kan and Zhang (1999a, 1999b) for the case where  is zero

mean or, equivalently, has a known mean.
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for ̂¦ has a well-defined asymptotic distribution at both stages of GMM, so the probability

of finding ̂¦ to be significantly different from zero will converge to a number generally not

equal to zero. Similarly, the  statistic used to test the over-identifying restrictions has a

well-defined asymptotic distribution, so the probability of rejecting the model will converge

to a number generally not equal to zero nor one.

5.6 Approximate Failure of the Rank Condition

The assumption that the rank condition literally does not hold may seem extreme. In

single factor models it requires that 0 is exactly zero. A standard device in the theory of

weak instruments and unit root testing is also useful when it is preferable to assume that

0 is small and asymptotically vanishing but not literally zero. Mimicking Hall’s (2005)

discussion of Staiger and Stock (1997), in the single factor case we might suppose that


 =  +  ( − ) +  where  is an  × 1 vector that is uncorrelated with  and

 = −12where  is an ×1 vector of constants. Working with this alternative assumption,
however, does not change the result stated in Theorem 5 that  12

→ (0 2Σ) nor does

it change the fact that ̄ → . As a consequence, the results in Theorem 5 go through

unchanged.

5.7 Insufficient Spread in the Covariances

The rank condition for the TP-normalization is that +0 should have full column rank. We

have already studied the case where this rank condition fails if 0 has less than full column

rank. Another possibility is that there is a unique  × 1 vector , whose elements sum to

1 such that cov(
  

0
) = , where  is an  × 1 vector of ones, and  6= 0 is some scalar

constant.

Theorem 6 Suppose assumptions 1 (or 1b), 2 and 3 are satisfied. Under additional reg-

ularity conditions provided in Hansen (1982) ̂∗
→ ∗ = ( − )(

0), where  =

(0
0

∗
00)

−1
(0

0
∗
0 ) and the predicted expected returns of the A-normalization converge

almost surely to

0
∗
 = 0

∗
 =  + (−0) (

0)

If  is in the space spanned by the columns of 0 the model is is true since this would imply

that  = 0. Otherwise the model is false. Given assumption 2, ̂
¦ also has a well defined
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probability limit, whether or not the model is true.

The proof of Theorem 6 is provided in Appendix A. It is clear that in a sufficiently large

sample the model will be rejected if it is false.

6 Small Sample Properties of the GMM Estimators

To further demonstrate the sensitivity of empirical results to the choice of normalization in

the presence of weak identification, I conduct Monte Carlo experiments. In each experiment

I generate data from an artificial asset pricing model in which, by construction, three factors

price 25 asset returns. I calibrate the model to resemble the Fama and French (1993) three

factor model and the asset returns to resemble the FF25 portfolios.

I first study the properties of the A, M, and TP-normalizations when they are used

to estimate the true model. I then study the properties of the three normalizations when

the data are confronted with misspecified and, in some cases, under-identified models. The

first of these models, which is calibrated to resembled the CAPM, is misspecified, in that

it uses only the first of the three factors, but it is well identified. The second model uses a

purely spurious factor, and is therefore misspecified. The third model, which is calibrated to

resemble the consumption-based CCAPM, is misspecified. By construction, the factor has

a common covariance with all of the returns, so the A and M-normalizations are identified,

but the TP-normalization is not. The fourth model, which is calibrated to resemble the

durables-based CCAPM, is misspecified. This model uses the consumption factor from the

second model, as well as a purely spurious factor, which is calibrated to resemble durables

growth in US data. The A-normalization is identified, but the M and TP-normalizations are

not.

6.1 The Data Generating Process

I generate artificial data from a three factor model. The true SDF is given by  = −  0

where  is a scalar,  and  are  × 1 vectors, and  follows the law of motion  ∼
(Σ). The model of the true SDF is calibrated to mimic first stage GMM estimates

for the Fama-French 3-factor model over the sample period 1949:Q1—2008:Q4.7 I set  = 3,

 = 11404 and  = ( 385 006 646 )0. I set  and Σ equal to the sample mean and

7Details of the data and the Fama and French (1993) model are provided in Appendix B.
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covariance matrix of the Rm-Rf, SMB and HML factors from the Fama-French database. It

follows that ∗ = ( 338 006 567 )0, ¦ = ( 386 006 648 )0 and  = 09975.

I generate an ×1 (with  = 25) vector of artificial excess returns
 = +(−)+Ψ

where  is an ×1 vector,  is an × matrix, Ψ is an × lower triangular matrix, and

 ∼ (0 ) and is independent of . Given this definition for 

 , it follows that the

covariance matrix of 
 is Σ = Σ

0+ΨΨ0. So that the model shares some characteristics

with actual data, I set Σ equal to its sample equivalent in the FF25 data. I set  equal

to the matrix of factor betas for the FF25 returns regressed on Rm-Rf, SMB and HML, the

three Fama-French factors. I set Ψ equal to the Cholesky decomposition of the covariance

matrix of the residuals from those regressions.

Given the assumptions above we have

(
) =  {[ + ( − ) +Ψ] (−  0)}

= (− 0) [ − Σ(− 0)]  (23)

To ensure that the right hand side of (23) is zero, I set  = Σ( − 0). This means

that the model expected returns correspond to the model-predicted expected returns for

the first stage GMM estimates for the Fama-French 3-factor model over the sample period

1949:Q1—2008:Q4.

Before proceeding to the results, it is important to note that in US data the  coefficient

corresponding to the SMB factor is statistically insignificant, so it does not have an important

role to play in pricing the FF25 portfolios. This does not mean, however, that it is a spurious

factor. The SMB factor covaries with the portfolio returns, but not in a way that helps to

explain the cross-sectional distribution of the expected returns. So there is no identification

problem. In the simulated model, the simulated SMB factor does help to price the assets, but

only marginally so, because the  coefficient corresponding to the SMB factor is numerically

small.

6.2 Estimating the True Model

In these experiments the true SDF,, prices the returns. In large samples GMM estimators

based on the two normalizations deliver consistent parameter estimates and lead to correct

inference about the model. To check small sample performance I simulate 10000 samples of

240 observations (the size of quarterly US data sample) each from the model.
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Table 4 shows the results. For all three normalizations, the parameter estimates are

centered near the true values of the parameters. For the factors that play the biggest role

in pricing the returns in the model (the pseudo Rm-Rf and HML factors) the parameters

are statistically significant in almost all samples. They  parameter associated with the

pseudo-SMB factor is usually not significant, consistent with it playing a very small role in

pricing the returns. The 2 associated with the model is usually large, and the test of the

overidentifying restrictions usually does not reject the model.

Some differences across normalizations emerge. For example, after the initial GMM stage,

the distribution of ̂∗ (the A-normalization), drifts slightly away from the true values in that

the median estimates of the coefficients on Rm-Rf and HML are closer to the true values of

¦ than they are to the true values of ∗. Also, the 2 associated with the A-normalization

tends to be lower than for the other cases. Also, the slope coefficients associated with

Rm-Rf are less often statistically significant for the TP-normalization than for the other

cases. The test of the overidentifying restrictions has slightly excessive size with the M and

TP-normalizations, with the opposite being true for the A-normalization. I find that these

features of the simulations are much harder to discern if the sample size is increased to 1000.

6.3 Estimating a Pseudo-CAPM

Table 5 shows results for a second set of experiments in which I use the same data generating

process, but the model being estimated uses only the first factor, the pseudo-Rm-Rf or

CAPM factor. Since the model is misspecified, and since the pseudo-HML factor plays an

important role in pricing the assets, we expect the estimated model fit to be less that perfect,

and that the model should be rejected in large samples. As Table 5 indicates, even in samples

as small as 240, the model is usually rejected at conventional significance levels, and the 2

measure of fit is usually negative, regardless of the normalization.

One difference across normalizations emerges. For the A and M-normalizations the slope

coefficient associated with the CAPM factor is usually positive and statistically significant,

whereas for the TP-normalization this is not the case. This difference, while narrowing (in

terms of percentages), persists in larger samples of 1000 observations. What explains this

finding? GMM with the A and M-normalizations is akin to running a regression with factor

betas on the right-hand side and average returns on the left-hand side, but no constant

included in the regression. Given that the betas are all positive and the average returns are
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all positive, the estimated regression line will tend to have a positive slope given that it has

to go through the origin. However, when the regression line is fitted with a constant (as is

the case with the TP-normalization) the significance of the slope coefficient now relies on

whether the betas actually line up with the average returns. There is only a weak tendency

of the betas with respect to the pseudo-CAPM factor to line up in the right way, so including

a constant pricing error in the model tends to weaken the significance of the slope coefficient

in the TP-normalization.

6.4 Estimating a Model with a Single, Spurious Factor

Table 6 shows results for a third set of experiments in which I use the same data generating

process, but the model being estimated uses a single, completely spurious factor. I generate

the proposed risk factor 2 = 2 + 2, where 2 is equal to the sample mean of quarterly

US consumption growth in the period 1949Q1—2008Q4, and 2 ∼ (0 22) with 22

equal to the sample variance of US consumption growth over the same period. Unlike

actual consumption growth and the FF25 portfolio returns, this series is uncorrelated, by

construction, with the simulated returns.

In this case, the three normalizations behave very differently. For the A-normalization

the distribution of the estimates of ∗ lies completely to the right of zero, ̂∗ is almost always

statistically significant, the model’s 2 is often very high (especially at the first GMM stage),

and the model is rarely rejected (especially at the second GMM stage).

In contrast, for the M and TP-normalizations, the distribution of the estimates of ¦

are centered roughly at zero, and are statistically significant much less often than for the

A-normalization. The model’s 2 is usually negative. Interestingly, the test of the over-

identifying restrictions is quite weak at the second GMM stage, but is quite successful in

rejecting the model at later GMM stages. The contrast between the raw and demeaned

normalizations becomes sharper if the sample size is increased to 1000.

6.5 Estimating a Pseudo—CCAPM

Table 7 shows results for a fourth set of experiments in which I use the same data generating

process, but I estimated a model based on a pseudo-CCAPM factor. I generate the proposed

risk factor, denoted 3, as follows:

3 = 3 + 0Σ−1 (
 − ) + 3
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where  is a scalar,  is an  × 1 vector of ones, and 3 ∼ (0 23) is independent of


 and 1. I set 3 equal to the sample mean of quarterly US consumption growth in the

period 1949Q1—2008Q4. I set  equal to the cross-sectional average of the sample covariance

between US consumption growth and the FF25 returns over the same period. I set 23 so

that the variance of 3 equals the sample variance of US consumption growth over the same

period.

As Table 7 indicates, in samples of 240 observations, the A-normalization provides mis-

leading inference about the model. The estimates of ∗ are positive and statistically signifi-

cant in nearly every sample. This is not unexpected. After all, 2 is a relevant factor in that

it is correlated with 
 . But the model also has good fit in many samples, with the median

2 being 074 and 055 and 051 at the first, second and fifth stages of GMM. Additionally,

the test of the pricing errors leads to rejection at the 5 percent level in only about 20 percent

of the samples.

A very different picture emerges when the model is estimated using the M-normalization.

Here ̂¦ is usually positive and statistically significant, reflecting the fact that the pseudo-

CAPM factor is correlated with the returns. The fit of the model, on the other hand is quite

poor with the 2 being very low. Interestingly, the model is not rejected that often at the

second GMM stage, but the test of the pricing errors becomes more powerful with further

iterations on the GMM weighting matrix.

The TP-normalization presents yet another view of the model. Here the distribution

of ̂¦ is centered roughly at zero, and ̂¦ is rarely statistically significant. This reflects the

inclusion of the constant pricing error in the TP-normalization. With this constant included

in the model, the fact that there is no spread among the factor covariances means that there

is nothing left for the factor to price. The fit of the model is generally poor, but as was

the case with the M-normalization, the model is not rejected that often at the second GMM

stage, but the test of the pricing errors becomes more powerful with further iterations on

the GMM weighting matrix. I find that the performance of the pricing error test improves

dramatically in large samples. When the sample size in the simulations increases to 1000,

the model is rejected in nearly every case, regardless of which normalization is adopted.
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6.6 Estimating a Pseudo—Durables-CCAPM

Table 8 shows results for a fifth set of experiments in which I use the same data generating

process, but estimate a two-factor pseudo-Durables-CCAPM model. The first factor is 3,

defined above. The second factor is 4 = 4 + 4 where 4 ∼ (0 24) is independent

of 
 , 1 and 3. I set 4 and 

2
4, respectively, equal to the sample mean and variance of

US durables growth over the period 1949Q1—2008Q4.

The results for the A-normalization follow the predictions of Theorem 4. The estimates of

∗2, the coefficient on the spurious factor, are nearly always found to be statistically significant.

In contrast, the estimates of ∗1, the coefficient on the more relevant factor, is less often found

to be significant. The cross-sectional 2 measures tend to be very high and the test of the

over-identifying restrictions rarely leads to the model being rejected. These features of the

A-normalization sharpen in larger samples.

The M and TP-normalizations paint a very different picture. For these normalizations,

estimates of the slope coefficient on the durables factor are centered around zero, and are

rarely statistically significant. The model’s 2 is usually quite low. But at the second stage

of GMM, for both of these normalizations, the model is usually not rejected. It is only

with further iterations of the weighting matrix that the model is rejected with reasonable

frequency. These features of the M and TP-normalizations persist in larger samples because

¦2 is not identified asymptotically.

6.7 Tests for Identification

The results presented above show that the three normalizations lead to similar conclusions

when the model being tested is the true model and all three of the normalizations are identi-

fied. But very different results emerge across normalizations when the model is misspecified,

and one or more of the normalizations is not identified. Some normalizations tend to shed

positive light on misspecified model when they are under-identified. This suggests that tests

for lack of identification might be useful in guiding inference. A natural question is whether

the tests I proposed above perform well in repeated samples.

The () statistic is used to test the null hypothesis that the rank of a matrix is , with

 being less than the number of columns in the matrix. If the () statistic does not exceed

its 5 or 10 percent critical value, I state that “lack of identification was detected”. If the

opposite is true, I state that “lack of identification was not detected”. The strength of the
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test obviously depends on which critical value is used. Given the data generating processes

used in the simulations, Table 9 summarizes the identification of each normalization in each

of the 5 cases that were analyzed above. It also indicates the frequency with which, across

simulations, the rank tests correctly assess the identification of the model.

In samples of 240 observations the tests perform quite well, with one exception. When

the true model is estimated, all three of the normalizations are asymptotically identified, and

the tests always conclude that the model is identified. The next model is the pseudo-CAPM,

where only the first factor from the true model is included in the estimated SDF. In this

case, even though the model is misspecified, it is identified for all normalizations because the

covariances between the pseudo-CAPM factor and the returns are non-zero, and vary across

assets. Once again, the rank tests always lead to the conclusion that the model is identified.

When the estimated model consists of a single spurious factor, only the A-normalization

is identified. When 5 percent critical values are used, the testing procedure I described above

correctly assesses the identification of the A-normalization in 722 percent of the samples,

and the non-identification of the M and TP-normalizations in roughly 88 percent of the

samples.

When the estimated model is the pseudo-CCAPM, the A and M-normalizations are

identified, but the TP-normalization is not. The testing procedure correctly assesses the

identification of the A and M-normalizations in 994 and 813 percent of the samples, and

the non-identification of the TP-normalization in 885 percent of the samples.

When the estimated model is the pseudo-Durables CCAPM, the A-normalization is iden-

tified, but the M and TP-normalizations are not. This is the one case where the rank tests

does not work as well. It only concludes that the A-normalization is identified in 262 percent

of the samples. It correctly assesses the non-identification of the M and TP-normalizations

in 941 and 993 percent of the samples.

The performance of the tests is as expected if the 10 percent critical value is adopted.

This makes it more likely that the null hypothesis of non-identification will be rejected. As

Table 9 also indicates, the tests become more accurate in larger samples. The size of the

tests approaches asymptotic size.

Tests based on covariances appear, in general, to be more powerful than tests based on

betas, in that across simulations beta-based tests are more likely to conclude in favor of

identification.
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While tests of the rank conditions are not entirely reliable (given the one example of

the A-normalization in samples of 240 observations), tests of the rank condition for the TP-

normalization seem to work very well, and are conservative, in that size tends to exceed

asymptotic size in small samples. So reduced rank is rejected less often than it should be

in finite samples. Failure of the rank condition for the TP-normalization is indicative of

a problem with the proposed SDF, because it suggests the presence of a factor, or linear

combination of factors, for which there is no spread in the covariances. At a minimum, in

this case, a lower-dimensional model should be adopted.

7 Addressing Lack of Identification

7.1 Working with Gross Returns

At first glance, it might seem that the solution to the identification problems highlighted

here would be to work with gross returns. While excess returns are often used in practice,

working with gross returns is equally feasible, and certainly dispenses with the need to adopt

a normalization. The moment conditions used to estimate the model become

 [(−  0)] =  (24)

where  = 
 +


 , where 


 is the gross risk free rate between periods − 1 and .

Working with gross returns does not make the problem of identification go away. To see

this, consider the gradient of (24) with respect to  and , which is the × ( + 1) matrix

 =
¡
() −(

0
)
¢


This matrix must have rank +1 for  and  to both be identified. This can only be true if

cov( ) has full column rank. To see this, notice that  is

 =
¡
() −()()

0 − cov( )
¢


Let + =
¡
0 0

¢0
, where 0 is a scalar and  is a  × 1 vector. Then

+ = () [0 −()
0]− cov( )

If cov( ) has less than full column rank, then there exists a non-zero  such that

cov( ) = 0. It follows that by setting 0 = ()
0 there is a non-zero + such that
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+ = 0, in which case  and  are not identified. A researcher working with gross returns

cannot be unconcerned with identification. The only difference is that the rank condition

associated with the gross returns case is different from the one associated with excess returns,

since the former requires that cov( ) has full column rank, while the latter requires that

cov(
  ) has full column rank.

8

Alternatively, a researcher might define  =  −  0, and use the moment conditions

(
) = 0 and (−1) = () to estimate  and . Here  is the price of a risk free

asset at time . For this case, the gradient of the moment conditions with respect to  and

 is

 =

µ
(

 ) −(

0
)

1 −()0
¶


Let + =
¡
0 0

¢0
, where 0 is a scalar and  is a  × 1 vector. Then

+ =

µ
(

 ) [0 −()
0]− cov(

  )

0 −()
0

¶


If cov(
  ) has less than full column rank, then there exists a non-zero  such that

cov(
  ) = 0. It follows that by setting 0 = ()

0 there is a non-zero + such

that + = 0, in which case  and  are not identified. Here, identification fails under the

same circumstances that it fails for the M-normalization.

7.2 Examining Betas over Subsamples

A less formal procedure than a rank test is sometimes used by researchers concerned about

spurious factors. This involves examining factor betas over subsamples, looking for changes

of sign. There are at least three problems with this procedure. First, it cannot address the

possibility that identification fails due to colinearity among the betas across factors. Second,

it does not address the issue of lack of spread among the betas. Third, while it is a reasonable

procedure for detecting a purely spurious factor, which leads to non-identification, it is not

obvious that it will work under weak identification [see Section 5.6]. In the latter case,

estimated betas may converge to zero asymptotically with few or no sign switches.

8Of course, cov( ) = cov(
  ) +  cov(


  ). This means that if cov(


  ) has rank  − 1,

cov( ) has full column rank as long as cov(

  ) 6= 0 for the  such that cov(

  ) = 0. If

cov(
  ) has rank  − 2 or less, then cov( ) is also of reduced rank.
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7.3 Continuously Updated GMM

Hansen, Heaton and Yaron (1996) propose a variant of optimal GMM in which the weight-

ing matrix is continuously updated as a function of the parameter vector (CU-GMM). CU-

GMM estimates of the model under the two normalizations are equivalent in finite samples,

in the sense that the errors 1 −  0 ̂
∗ and 1 − ( − ̂)

0
̂¦ are proportional to one another,

̂¦ = ̂∗(1 − ̂0̂∗), and the test statistic for the overidentifying restrictions is numerically

identical [Penaranda and Santana (2010)]. CU-GMM does not, however, resolve the identi-

fication problem. I demonstrate this in Appendix C for the single factor case. In the case

where the risk factor being used is spurious, but has a non-zero mean, the A-normalization

combined with the CU-GMM estimator leads to positive inference about the model. The M-

normalization, while numerically equivalent to the A-normalization in finite samples, suffers

from an identification problem in the limit.

8 Conclusion

When excess returns are used to estimate linear SDFs, GMM estimation requires that a

normalization of the SDF be adopted. Standard normalizations of the SDF using raw or

demeaned factors are asymptotically equivalent when the model is true and identified. The

conditions under which these normalizations are identified, however, are different.

In practice, different normalizations sometimes lead to very different qualitative infer-

ences about a model. Estimates of the slope coefficients of the SDF can differ wildly in

terms of statistical significance, measures of fit can differ dramatically, and tests of over-

identifying restrictions can differ sharply in outcome. I have demonstrated this, here, for

consumption-based models fit to US data. My Monte Carlo simulations demonstrate that

model misspecification, combined with identification problems, is a plausible explanation of

these empirical findings.

The concrete message of this paper is that researchers can easily check their models for

identification using tests of rank conditions. Monte Carlo evidence suggests that these tests

are powerful in detecting failure of the rank conditions. When identification problems seem

to be present, researchers should be cautious in conducting inference.
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TABLE 1: Tests for Failure of Rank Conditions (p-values)

Test of   

Number of A) B) C)

factors rank[cov( )] =  − 1 rank[( 0)] rank[ cov( )] = 

Model () Covariance test Beta test =  − 1 Covariance test Beta tests

CAPM 1 0000 0000 0000 0000 0000

Fama-French 3 factors 3 0000 0000 0000 0001 0000

CCAPM 1 0036 0002 0000 0241 0018

Durables-CCAPM 2 0977 0518 0014 0968 0509

Yogo (2006) 3 0852 0995 0558 0819 0993

Lettau and Ludvigson (2001) 3 0675 0000 0376 0686 0001

Jagannathan and Wang (2007) 1 0000 0000 0000 0000 0000

Lustig and Verdelhan (2007) 3 0732 0657 0790 0783 0699

Currency portfolios, CCAPM 1 0869 0876 0000 0871 0773

Note: The table presents results from testing the rank conditions associated with each of the normalizations. The p-value associated with the null

hypothesis of reduced rank (non-identification) is shown. The tests in panel A are relevant for the M-normalization, for which factors are demeaned.

Tests based on the covariance matrix, cov( ), and the matrix of factor betas are shown. The tests in panel B are relevant for the A-normalization,

for which raw risk factor are used. The tests in panel C are relevant for the TP-normalization, which uses demeaned risk factors and a common pricing

error across moment conditions. Results are presented for nine models. For the first seven cases, the asset returns studied are the real quarterly excess

returns to the Fama and French (1993) 25 portfolios sorted on the basis of size and book-to-market value (FF25 portfolios). The CAPM case uses

these returns and the market excess return (CAPM) as a risk factor. The Fama-French 3 factor case uses the FF25 returns, and the three Fama and

French (1993) risk factors: the market excess return, the SMB factor and the HML factor. The CCAPM case uses the FF25 returns and consumption

growth as a risk factor. The Durables-CCAPM case uses the FF25 returns and consumption and durables growth as risk factors. The Yogo (2006)

case uses the FF25 returns, and consumption growth, diurables growth, and the market returns as risk factors. The Lettau and Ludvigson (2001)

case uses the FF25 returns, consumption growth, cay, and the product of consumption growth and cay as risk factors. The Jagannathan and Wang

(2007) case uses the FF25 returns on an annual basis and Q4-Q4 consumption growth as the risk factor. The Lustig and Verdelhan (2007) case uses

eight currency portfolios sorted by interest rate differential versus the US, and the risk factors from Yogo (2006), all at the annual frequency. The

currency portfolios CCAPM case uses five currency portfolios sorted by interest rate differential versus the US, at the quarterly frequency, and uses

consumption growth as the risk factor. Details of all data sets are provided in Appendix C.
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TABLE 2: GMM Estimates of the CCAPM Model

First Stage Second Stage Fifth Stage

Factor  2  2   2 

A-Normalization (∗)

Consumption growth 1140
(232)

075 1371
(101)

014 310
(0153)

1407
(111)

−007 281
(0254)

M-Normalization (¦)

Consumption growth 2459
(1113)

−025 1317
(546)

−324 442
(0007)

1001
(375)

−512 677
(0000)

TP-Normalization ( and ¦)

Pricing error () 167
(063)

006 216
(042)

−023 528
(0000)

225
(041)

−029 542
(0000)

Consumption growth 761
(790)

590
(366)

531
(355)

Note: Quarterly data, 1949—2008. The table reports first, second and fifth stage GMM estimates, obtained using the moment restriction (
) = 0,

where 
 is a 25 × 1 vector of excess returns of the Fama-French 25 portfolios of US stocks sorted on size and the book-to-market value ratio, and

 is the SDF. For the A-normalization the SDF is  = 1 − 
∗, where  is real per capita consumption (nondurables & services) growth. For

the M-normalization the SDF is  = 1 − ( − )¦. For the TP-normalization the SDF is  = 1 − ( − )¦ and the moment condition used is
(

 −) = 0. GMM-VARHAC standard errors are reported in parentheses for ̂∗, ̂¦ and ̂. The table reports the 2 measure of cross-sectional

fit between the sample mean of 
 and the model predicted mean returns defined in the text. Tests of the overidentifying restrictions are also reported.

The test statistic,  , is presented along with the associated p-value in parentheses.
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TABLE 3: GMM Estimates of the Durables-CCAPM Model

First Stage Second Stage Fifth Stage

Factor  2  2   2 

A-Normalization (∗)

Consumption growth 422
(303)

098 467
(137)

098 175
(0782)

505
(133)

098 184
(0735)

Durables growth 711
(197)

662
(86)

637
(82)

M-Normalization (¦)

Consumption growth 2992
(1492)

−016 731
(781)

−756 169
(0815)

904
(398)

−689 571
(0000)

Durables growth 1497
(1643)

167
(685)

431
(371)

TP-Normalization ( and ¦)

Pricing error () 170
(098)

016 117
(067)

−316 158
(0826)

195
(043)

007 455
(0002)

Consumption growth 1297
(1033)

240
(592)

513
(383)

Durables growth 1603
(1299)

463
(486)

419
(349)

Note: Quarterly data, 1949—2008. The table reports first, second and fifth stage GMM estimates, obtained using the moment restriction (
) = 0,

where 
 is a 25 × 1 vector of excess returns of the Fama-French 25 portfolios of US stocks sorted on size and the book-to-market value ratio, and

 is the SDF. For the A-normalization the SDF is  = 1−  0
∗, where  is a 2× 1 vector containing real per capita consumption (nondurables &

services) growth, and durable consumption growth. For the M-normalization the SDF is  = 1− ( − )0¦. For the TP-normalization the SDF is
 = 1− (−)0¦ and the moment condition used is (

−) = 0. GMM-VARHAC standard errors are reported in parentheses for ̂∗, ̂¦ and
̂. The table reports the 2 measure of cross-sectional fit between the sample mean of 

 and the model predicted mean returns defined in the text.

Tests of the overidentifying restrictions are also reported. The test statistic,  , is presented along with the associated p-value in parentheses.
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TABLE 4: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the True Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at

5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

∗1 2.02 3.39 4.72 99.0 97.9 2.27 3.80 5.25 99.6 99.2 2.31 3.87 5.38 99.7 99.3

∗2 -2.14 0.07 2.24 11.2 5.8 -2.33 0.11 2.51 17.6 10.7 -2.40 0.13 2.61 19.2 12.0

∗3 3.86 5.68 7.42 99.9 99.8 4.36 6.35 8.26 100 99.9 4.45 6.47 8.44 100 99.9

2 0.84 0.94 0.98 -0.35 0.69 0.94 -1.07 0.60 0.93

 13.1 21.8 33.2 9.3 3.9 13.1 21.7 33.0 8.7 3.7

M-Normalization

¦1 2.26 3.90 5.75 98.9 97.6 2.24 3.90 5.78 99.3 98.0 2.25 3.91 5.83 99.3 98.1

¦2 -2.45 0.09 2.61 10.1 5.0 -2.47 0.08 2.59 12.4 6.4 -2.49 0.09 2.63 12.9 6.7

¦3 4.22 6.53 9.11 99.9 99.8 4.21 6.53 9.17 99.9 99.8 4.22 6.56 9.24 99.9 99.8

2 0.81 0.92 0.97 0.53 0.86 0.95 0.42 0.85 0.95

 13.4 22.8 35.6 13.8 7.4 13.4 22.7 35.6 13.8 7.3

TP-Normalization

¦1 0.23 3.34 6.93 50.0 35.8 0.55 3.20 6.23 62.9 50.7 0.50 3.20 6.27 63.4 51.4

¦2 -2.65 0.37 3.27 10.3 5.2 -2.37 0.48 3.25 13.1 7.2 -2.38 0.50 3.27 13.6 7.5

¦3 3.81 6.27 9.13 99.4 98.7 3.81 6.22 9.04 99.7 99.2 3.82 6.25 9.11 99.7 99.2

2 0.82 0.93 0.97 0.56 0.87 0.95 0.50 0.86 0.95

 12.4 21.5 34.2 13.0 7.0 12.4 21.6 34.3 13.5 7.5

Note: The table reports results from 10000 Monte Carlo experiments with sample size  = 240. The true risk factors,  ∼ (Σ ) with  and Σ
equal to the sample mean and covariance matrix of the Fama-French factors (1949Q1—2008Q4). The SDF is given by  = −  0, with  = 11404

 = ( 385 006 646 )0. I generate 
 =  + ( − ) +Ψ, where  is a 25× 1 vector,  is an 25× 3 matrix, Ψ is a 25× 25 lower triangular

matrix, and  ∼ (0 ) and is independent of . The elements of  and Ψ are set so that the model-implied var(

 ) and cov(


  ) are equal

to their sample equivalents for the FF25 portfolios and Fama-French factors (1949Q1—2008Q4). The vector  is set to ensure that (

) = 0.

The model is estimated by GMM using the A, M and TP-normalizations.
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TABLE 5: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the Pseudo-CAPM Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at

5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

∗ 1.76 3.02 4.28 98.3 96.7 1.90 3.42 4.90 98.8 97.9 1.93 3.61 5.20 98.8 97.8

2 -0.94 -0.35 0.13 -2.55 -0.61 0.02 -4.63 -0.85 -0.02

 28.9 42.8 58.8 86.8 76.5 28.8 42.5 58.0 86.6 75.9

M-Normalization

¦ 1.78 3.17 4.76 98.2 96.2 1.36 2.66 4.21 95.6 90.9 1.26 2.57 4.13 94.3 89.2

2 -1.21 -0.49 0.00 -1.89 -0.90 -0.35 -2.15 -1.06 -0.44

 29.3 43.9 60.9 88.1 79.1 29.6 44.4 61.5 88.9 80.4

TP-Normalization

¦ -3.32 -0.66 1.94 13.5 7.1 -1.34 0.64 2.63 17.2 10.2 -1.04 0.92 2.96 22.7 14.6

2 0.00 0.05 0.34 -1.20 -0.67 -0.07 -1.78 -0.98 -0.25

 27.1 40.8 57.5 84.1 73.7 27.0 40.9 57.7 84.2 73.8

Note: The table reports results from 10000 Monte Carlo experiments with sample size  = 240. The returns and true risk factors are the same as in

Table 4. The estimated model uses the pseudo-CAPM factor as a single factor. It is defined as the first of the three true risk factors. The model is

estimated by GMM using the A, M and TP-normalizations.
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TABLE 6: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of a Spurious Factor Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at

5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

∗ 135 200 326 98.2 96.3 114 142 175 99.6 99.3 109 137 169 100 100

2 -0.67 0.78 0.94 —6.99 -0.45 0.83 -7.61 -0.67 0.81

 6.9 16.4 29.7 2.3 0.9 16.6 27.6 41.0 23.2 12.8

M-Normalization

¦ -1135 4.6 1170 11.5 4.1 -129 0.6 131 4.5 2.5 -115 -0.1 117 32.5 23.1

2 -21.4 -3.65 0.04 -35.0 -13.2 -3.26 -35.7 -13.6 -3.6

 1.7 6.7 32.5 4.7 3.8 31.4 48.1 66.4 92.5 87.1

TP-Normalization

¦ -346 5.0 351 31.7 14.9 -114 0.0 116 17.0 9.2 -104 0.0 107 26.3 17.4

2 0.00 0.13 0.61 -6.79 -1.71 0.02 -8.38 -2.25 -0.02

 10.3 27.1 49.0 36.6 28.5 24.3 38.9 56.2 77.5 65.2

Note: The table reports results from 10000 Monte Carlo experiments with sample size  = 240. The returns and true risk factors are the same as

in Table 4. The estimated model uses a single spurious factor. I generate the factor as 2 = 2 + 2, where 2 is equal to the sample mean of

quarterly US consumption growth in the period 1949Q1—2008Q4, and 2 ∼ (0 22) with 22 equal to the sample variance of US consumption

growth over the same period. The model is estimated by GMM using the A, M and TP-normalizations.
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TABLE 7: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the Pseudo-CCAPM Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at

5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

∗ 80.6 115 156 99.8 99.6 91.0 112 135 100 100 90.4 112 135 100 100

2 0.42 0.74 0.91 -0.91 0.55 0.85 -1.24 0.51 0.85

 18.9 29.9 42.6 32.7 18.9 19.9 31.0 43.6 37.6 23.0

M-Normalization

¦ 123 249 526 87.6 70.9 23.2 89.3 162 58.6 45.0 9.04 74.4 149 73.6 64.9

2 -3.22 -0.28 0.43 -20.8 -6.10 -0.49 -22.3 —7.3 -0.70

 8.9 22.8 41.4 16.7 10.5 26.7 43.5 62.4 84.2 75.4

TP-Normalization

¦ -349 3.7 352 31.8 14.2 -112 -0.50 116 16.0 8.9 -102 -0.78 105 25.4 16.8

2 0.00 0.13 0.61 -6.94 -1.70 0.02 -8.48 -2.23 -0.01

 10.3 27.0 49.5 36.7 28.8 24.2 39.1 56.1 77.4 65.9

Note: The table reports results from 10000 Monte Carlo experiments with sample size  = 240. The returns and true risk factors are the same as

in Table 4. The estimated model uses the pseudo-CCAPM factor as a single factor. It is defined as 3 = 3 + 0Σ−1 (
 − ) + 3, where  is

a scalar,  is an  × 1 vector of ones, and 3 ∼ (0 23) is independent of 

 and 1, where 3 is set equal to the sample mean of quarterly

US consumption growth in the period 1949Q1—2008Q4,  is set equal to the cross-sectional average of the sample covariance between US consumption

growth and the FF25 returns over the same period, and 23 is set so that the variance of 3 equals the sample variance of US consumption growth

over the same period. The model is estimated by GMM using the A, M and TP-normalizations.
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TABLE 8: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the Pseudo-Durables-CCAPM Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at

5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

∗1 -28.1 20.7 68.3 21.9 14.3 5.5 29.5 53.1 69.0 60.0 6.7 30.6 54.3 77.7 70.0

∗2 47.4 80.8 114 96.7 95.0 55.1 71.4 87.9 100 100 53.8 70.3 86.6 100 100

2 0.87 0.97 0.99 0.41 0.90 0.98 0.25 0.88 0.98

 11.0 19.7 30.9 3.6 1.5 14.3 23.3 34.8 10.0 4.6

M-Normalization

¦1 64.7 222 457 64.9 49.5 10.1 83.9 160 42.6 30.0 4.7 74.5 152 70.3 60.8

¦2 -423 -7.2 409 17.4 7.1 -114 -0.6 111 8.4 4.2 -107 -1.1 102 27.1 18.6

2 -1.76 0.02 0.63 -20.0 -5.77 -0.33 -21.3 -6.6 -0.5

 5.8 15.9 32.7 5.7 3.3 23.0 39.6 58.8 76.3 66.0

TP-Normalization

¦1 -344 2.8 345 25.1 10.8 -113 0.9 117 9.7 4.7 -107 -0.3 109 24.3 15.8

¦2 -323 -4.9 314 25.5 11.5 -108 -0.9 106 9.8 4.8 -101 -1.0 98.5 24.4 16.2

2 0.04 0.36 0.74 -7.18 -1.61 0.15 -8.23 -1.97 0.09

 7.4 16.8 37.2 11.7 8.0 20.8 35.5 52.8 68.8 56.5

Note: The table reports results from 10000 Monte Carlo experiments with sample size  = 240. The returns and true risk factors are the same as in

Table 4. The estimated model uses 3 and 4 as risk factors, where 3 is the pseudo-CCAPM factor defined in Table 7 and 4 = 4 + 4, where

4 ∼ (0 24) is independent of 

 and 1 and 3, 4 is set equal to the sample mean of quarterly US durable consumption growth in the

period 1949Q1—2008Q4, and 24 is set equal to the sample variance of US durables growth over the same period. The model is estimated by GMM

using the A, M and TP-normalizations.
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TABLE 9: Performance of the Rank Tests in the Monte Carlo Experiments (percentage of samples in which the rank test correctly

determines matrix rank)

A-normalization M-normalization TP-normalization

Identified? 0-test Identified? 0-test -test Identified? [ 0]-test [ ]-test

Using 5% Critical Values in Samples of 240 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100

Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100

Spurious factor model Yes 72.2 No 87.7 64.6 No 88.6 64.6

Pseudo C-CAPM model Yes 99.4 Yes 81.3 95.3 No 88.5 95.3

Pseudo Durables C-CAPM model Yes 26.2 No 94.1 76.0 No 99.3 76.0

Using 10% Critical Values in Samples of 240 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100

Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100

Spurious factor model Yes 81.6 No 79.5 54.8 No 80.4 54.8

Pseudo C-CAPM model Yes 99.8 Yes 88.5 97.2 No 80.6 97.2

Pseudo Durables C-CAPM model Yes 38.6 No 88.0 65.2 No 98.4 65.2

Using 5% Critical Values in Samples of 1000 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100

Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100

Spurious factor model Yes 100 No 93.0 89.0 No 93.0 89.0

Pseudo C-CAPM model Yes 100 Yes 100 100 No 93.0 100.0

Pseudo Durables C-CAPM model Yes 90.0 No 96.0 96.0 No 100 96.0

Using 10% Critical Values in Samples of 1000 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100.0

Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100.0

Spurious factor model Yes 100 No 84.0 81.0 No 85.0 81.0

Pseudo C-CAPM model Yes 100 Yes 100 100 No 91.0 100.0

Pseudo Durables C-CAPM model Yes 95.0 No 95.0 90.0 No 100 90.0

Note: The table summarizes the performance of the rank testing procedure across repeated samples. The model is declared "not-identified” k if the

null ypothsis of reduced rank is not rejected at the 5 or 10 percent critical values of the chi-squared distribution associated with the rank test statistics.

Otherwise the model is declared “identified”. The table reports whether each normalization is identified in population for the various factor models

studied in the Monte Carlo experiments. The table reports the percentage of samples in which the “identified” or “not-identified” declaration based

on the test statistic matches the limiting identification of the normalization.
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A Proofs and Other Details

A.1 Estimation of the TP Normalization

Using the  +  moment restrictions given by (9), ¦,  and  are estimated using GMM.

Define ¦1( 
¦ ) = 


¦
 − = 

 [1− (−)0¦]− and let ¦1 ( 
¦ ) = 1



P

=1 
¦
1 =

̄−−¡ − ̄0
¢
¦. Define ¦2() = − and let ¦2 () = 1



P

=1 
¦
2 = ̄−. Define

¦ = ( 
¦0
1 ¦02 )

0 and ¦ = ( 
¦0
1 ¦02 )

0. Let ̃ =
¡
 

¢
, where  is an × 1 vector of

ones.

I consider GMM estimators that set ̃¦
¦
 = 0, where ̃

¦
 is a (2 + 1)× (+ ) matrix

and takes the form

̃¦ =

µ
̃0

¦
 0

0 

¶
 (A1)

and  ¦
 is an ×  positive definite weighting matrix. It follows that the GMM estimators

are µ
̂

̂¦

¶
=

³
̃0

¦
 ̃

´−1
̃0

¦
 ̄

 (A2)

̂ = ̄  (A3)

I consider multi-stage GMM estimators. In the first stage  ¦
 = . In the th subsequent

stage, ¦
 = (

¦


0
 )
−1
where  = (  ̄(̂¦−1)

0 ), ̂∗ represents the th-stage estimator

of ¦ and ¦ is a consistent estimator of 
¦
0 =

P+∞
=−∞(¦

¦0
−).

Let

̃
¦
 =

µ
−̃ ̄̂¦0

0 −

¶
 (A4)

A test of the pricing errors is based on

̃¦ =  (̂ ̂
¦ ̂)0(̃ ¦

 )
+ (̂ ̂

¦ ̂) (A5)

where

̃ ¦
 = ̃¦

¦
 ̃

¦

0 with ̃¦ = + − ̃

¦


³
̃¦ ̃

¦


´−1
̃¦  (A6)

The cross-sectional 2 measure is

̃2¦ = 1−
(̄ − ̂−  ̂

¦)0(̄ − ̂−  ̂
¦)

(̄ − ̈)0(̄ − ̈)
 (A7)
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A.2 Proof of Theorem 1

The additional regularity conditions required for consistency are stated in Hansen’s Theorem

2.1. It follows from assumption 3 that ∗
→ ∗0 = 0

0
∗
0 . Define 

∗
0(

∗) = ∗0[(
)−0

∗].

Given that 0 has full column rank and  ∗
0 is positive definite, the function ∗0(

∗) has

a unique zero, ∗ = (0
0

∗
00)

−1
0
0

∗
0(

). Since the model is true () = 0
∗
0.

Substituting this into the expression for ∗ we have 
∗
 = ∗0. From Hansen’s (1982) Theorem

2.1, ̂∗
→ ∗0.

Similarly, it follows from assumption 3 that ¦
→ ¦0 with

¦0 =

µ
00

¦
0 0

0 

¶


Define

¦0(
¦ ) = ¦0

µ
()− 0

¦

0 − 

¶


Given that 0 has full column rank and  ¦
0 is positive definite, the function ¦0(

¦ ) has a

unique zero, ¦ = (
0
0

¦
0 0)

−1
00

¦
0(

),  = 0. Since the model is true (
) = 0

¦
0.

Substituting this into the expression for ¦ we have 
¦
 = ¦0. From Hansen’s (1982) Theorem

2.1, ̂¦
→ ¦0.

The matrices ∗0 and ¦0 have full column rank due to the properties of 0 and 0. It

follows from Hansen’s Theorem 3.1 that ̂∗ and ̂
¦
have the asymptotic distributions stated

in the theorem.

The model-predicted expected returns are  ̂
∗ and  ̂

¦, respectively, for the two nor-

malizations. Given that results above these both converge almost surely to  and, therefore,

we get the result that 2∗
→ 1 and 2¦

→ 1.

From the results above it follows that ∗
→ ∗0, 

¦


→ ¦0, 
∗


→ ∗0 and ¦
→ ¦0 . Also

∗
→ ∗0 =  − ∗0(

∗
0
∗
0)
−1∗0 and ¦

→ ¦0 = + − ¦0(
¦
0
¦
0)
−1¦0. The results concerning

the asymptotic distributions of ∗ and ¦ follow from Hansen’s Lemma 4.1.¥

A.3 Proof of Theorem 2

Since 0 has rank less than , the function 
∗
0(

∗) = ∗0[(
)−0

∗], defined in the proof of

Theorem 1, does not have a unique zero. Instead any ∗ such that (0
0

∗
00) 

∗ = 0
0

∗
00

∗
0

is a zero of ∗0(
∗). This means that ∗0 +  is a zero for any  in the nullspace of 0

0
∗
00—

denotedN (0
0

∗
00)–which is a non-empty set when rank(0)  . So ∗ is asymptotically

unidentified.
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As in the proof of Theorem 1, the last  rows of the function ¦0(
¦ ) have a unique

zero,  = 0. However, because 0 has rank less than , the first  rows of the function

¦0(
¦ ), which are 00

¦
0 [(

)− 0
¦], do not have a unique zero. Instead any ¦ such that

(00
¦
0 0) 

¦ = 00
¦
0 0

¦
0 is a zero. This means that 

¦
0+  is a zero for any  ∈ N (00 ¦

0 0),

which is a non-empty set when rank(0)  . So ¦ is asymptotically unidentified.

The predicted expected returns from the A-normalization are  ̂
∗. Although ̂∗ is not

uniquely identified asymptotically, it lies almost surely in the set ∗0 = {| − ∗0 =   ∈
N (0

0
∗
00)}. Since  ∗

0 is positive definite, any  ∈ N (0
0

∗
00) is in N (0). Therefore

 ̂
∗ → 0

∗
0 = . Therefore 

2
∗
→ 1. A similar result holds for 2¦.¥

A.4 Proof of Theorem 3

As in the proof to Theorem 1, ∗
→ ∗0 = 0

0
∗
0 . Because 0 has full column rank and  ∗

0

is positive definite, the function ∗0(
∗) has a unique zero, ∗ = (0

0
∗
00)

−1
0
0

∗
0(

).

From Hansen’s (1982) Theorem 2.1, ̂∗
→ ∗. Of course, since the model is false, 

∗
 does not

have an interpretation as a “true” parameter value.

To get the expression for ∗ in the statement of the theorem proceed as follows. Let 

be the unique element of N (0) whose elements sum to 1 (all other elements of N (0) are
proportional to  because 0 has rank  − 1). Let  = ( 1  ) where 1 is a  × (− 1)
matrix whose columns span the rowspace of 0, denoted R(0) = N (0)⊥. The columns of
 span , by construction. Define ̃∗ = −1∗ and let ̃

∗
1 denote the first  − 1 elements

of ̃∗ and ̃∗ denote the th element of ̃
∗
. It follows that

()−0
∗
 = ()−0−1∗

= ()−0̃∗

= ()−01̃
∗
1 −0̃

∗


= ()−01̃
∗
1 − [0 +()( 0)]̃∗

Since  ∈ N (0), 0 = 0, so we can write

()−0
∗
 = ()

h
1−( 0)̃∗

i
−01̃

∗
1

This means we can set () −0
∗
 = 0 by choosing ̃

∗
1 = 0 and ̃∗ = 1[()

0]. Since

∗ = ̃∗ it follows that 
∗
 = [00]. By assumption 00 cannot be zero, otherwise

rank[0]   and we also know that at least one element of  is non-zero, so this means at

least one element of ∗ is non-zero. Since (
) = 0

∗
 we also have 

2
∗
→ 1.
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As in the proof of Theorem 1, the last  rows of the function ¦0(
¦ ) have a unique

zero,  = 0. However, because 0 has rank less than , the first  rows of the function

¦0(
¦ ), which are 00

¦
0 [(

)− 0
¦], do not have a unique zero. Instead any ¦ such

that (00
¦
0 0) 

¦ = 00
¦
0(

) is a zero. Let ¦ be a zero. This means that 
¦
 +  is a

zero for any  in the nullspace of 00
¦
0 0, which is a non-empty set because rank(0) 

. So ¦ is asymptotically unidentified. Although there are arbitrarily many solutions to

00
¦
0 [(

)− 0
¦] = 0, in general, there is no solution to ()− 0

¦ = 0.¥

A.5 Proof of Theorem 4

The matrix ∗0 = 0 has full column rank. It follows from Hansen’s Theorem 3.1 that ̂
∗ has

the asymptotic distribution stated in the theorem.

From the results above it follows that ∗
→ ∗0 and ∗

→ ∗0 =  − ∗0(
∗
0
∗
0)
−1∗0,

however, the matrix ∗ will not generally be a consistent estimator for 
∗
 because it imposes

the restriction that (∗
∗0
−) = 0 for  6= 0. This restriction only holds when the model is

true. Instead ∗
→  ∗ = [∗ (

∗
)

∗
 (

∗
)
0].

This means that ̂ ∗
→  ∗ = ∗0

∗
 

∗0
0 . We also know

√
∗ (̂

∗)
→ (0  ∗0) where

 ∗0 = ∗0
∗


∗0
0 . Diagonalize 

∗
 as 

∗
 = Λ

0
 where the columns of  are the orthonormal

eigenvectors of  ∗ and Λ is a diagonal matrix with the eigenvalues of 
∗
 on the diagonal.

Diagonalize  ∗0 as 
∗
0 = 0Λ0

0
0. Let Λ̃ = Λ+ and Λ̃0 = Λ+0 . These are diagonal matrices

with zeros where Λ and Λ0 have zeros, and whose non-zero elements are the inverses of the

non-zero elements of Λ and Λ0.

From these results it follows that ∗
→  0Ω, with  =

√
 Λ̃

12
0  0

0
∗
 (̂

∗) and

Ω = Λ
12
0  0

0Λ̃
0
0Λ

12
0 

The vector  converges in distribution to a vector of independent normal random variables,

the first −  of which have unit variance and the last  of which have zero variance. The

matrix Ω can be diagonalized as Ω = ΩΛΩ
0
Ω. When  ∗ = ∗ the first  −  eigenvalues

on the diagonal of ΛΩ are ones while the rest are zeros. In this case 
→ 2−. In general,

however,  ∗ 6= ∗ and these eigenvalues will not be 1, so that 
∗ →P−

=1 Ω
2
 where Ω1,

Ω2,    , Ω− are the nonzero eigenvalues of Ω and 1, 2,    , − are mutually inde-

pendent standard normal random variables. Given the form of Ω,
Q−

=1 Ω =
Q−

=1 0,

however, in general, Ω 6= 0.¥
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A.6 Proof of Theorem 5

Let 
 =  +  with (

0
) = Σ, and  =  +  with (2 ) = 2 . The asymptotic

distribution of ̂¦ depends on the asymptotic distribution of  = 1


P

=1



¡
 − ̄

¢
. Scaling

 by a factor of 
1
2 we have


1
2 = −

1
2

X
=1

 −
X
=1


− 1
2

X
=1

 (A8)

The first expression on the right hand side of (A8) converges in distribution to  ∼
(0 2Σ). The second expression converges in probability to 0. So 

1
2

→ . Also,

̄ → .

At the first stage of GMM the weighting matrix is  ¦
 =  so we have −

1
2 ̂¦ =


1
20 ̄

(
1
20

1
2 ). It follows that 

−1
2 ̂¦

→  = ( 0)(
0). The -statistic for

̂¦ is  = ̂¦
p
 ¦
 where 

¦
 is the first element on the diagonal of

 ¦
 = (

¦
 

¦
 )
−1¦

¦


¦0
 (

¦0
 

¦
 )
−1 (A9)

where ¦ and 
¦
 are defined in section 3.2 and 

¦
 is a conventional estimate of the long-run

covariance of the GMM errors in the first stage, which are

̂1 = 
 [1− ( − ̄)̂¦]

̂2 =  − ̄ 

Considerable algebra shows that at the first stage of GMM −1 ¦


→ 2
2( 0Σ)(

0)2.

Hence 
→ 

q
2

2( 0Σ)( 0)2 or ( 0)[
2


2( 0Σ)]
1
2 . We also have

2¦ = 1−
(̄ −  ̂

¦)0(̄ −  ̂
¦)¡

̄ − 0̄
¢0 ¡

̄ − 0̄
¢ = 1− ̄0̄



̄0̄

where  =  −  (
0
 )

−10 and  =  − 0. So the 2 is

2¦
→ 1− 0

0

where  =  −( 0)−1 0.

At the second stage of GMM the weighting matrix is  ¦
 = (

¦


0
 )
−1
where  =

(  ̄(̂¦)0 ). Considerable algebra shows that  ¦


→  = Σ−1 (2
2). We have

−
1
2 ̂¦ = 

1
20 ( )̄

(
1
20 ( )

1
2 ). It follows that 

− 1
2 ̂¦

→ ̃ = ( 0)(
0) =
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( 0Σ−1 )(
0Σ−1 ). The -statistic for ̂¦ is  = ̂¦

p
 ¦
 where 

¦
 is again the first ele-

ment on the diagonal of  ¦
 , and 

¦
 is given by (A9). In this case, however, the matrix 

¦
 de-

pends on the weighting matrix and takes a form such that −1 ¦


→ 2
2( 0Σ)( 0)2

or 2
2( 0Σ−1 ). Hence 

→ ̃[2
2( 0Σ−1 )]

1
2 or ( 0Σ−1 )[

2


2( 0Σ−1 )]
1
2 .

We also have

2¦ = 1−
̄0̃ 0

̃̄


̄0̄

where ̃ =  −  (
0
 )

−10 . So the 
2 is

2¦
→ 1− 0̃

0̃
0

where ̃ =  −( 0)−1 0 =  −( 0Σ−1 )−1 0Σ−1 . The test statistic for the

over-identifying restrictions is  =  (̄ −  ̂)
0 (̄

 −  ̂) = ̄0̃ 0
̃̄

. Hence


→ 0̃

0̃ = 0̃
0Σ−1 ̃(

2


2).¥

A.7 Proof of Theorem 6

As in the proof to Theorem 3, ̂∗
→ ∗ = (

0
0

∗
00)

−1
0
0

∗
0(

). Given the assumption

that there exists a unique ×1 vector  whose elements sum to 1, such that cov(
  

0
) = 

it follows that 0 = +()0. Hence

() =
0− 

0


and

∗ =
1

0
(− )

and

 = (
0
0

∗
00)

−1
(0

0
∗
0 ) 

The predicted expected returns are  ̂
∗ → 0

∗
 and

0
∗
 = () + (−0)



0

Notice that lim→0 ∗ = (0) and lim→00
∗
 = ().¥

A.8 Estimating Long-Run Covariance Matrices

A.8.1 The A-Normalization

As stated in section 4, I define ∗ =
1


P

=1 ̂
∗
 ̂
∗0
 when estimating the standard errors of

̂∗ and testing the over-identifying restrictions of the model. This is a consistent estimate of

∗0 when the model is true because [
∗
 (

∗
0)

∗
−(

∗
0)
0] = 0 for  6= 0.
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When conducting inference about the price of risk we need an estimate of ̃∗0 . Since

̂∗ (0 0) is not necessarily orthogonal to lagged information the simple covariance matrix
1


P

=1 ̃
∗
 (̃

¦
 )̃

∗
 (̃

¦
 )
0 will, in general, be an inconsistent estimator of ̃∗0 . For this reason

I use den Haan and Levin’s (2000) VARHAC procedure for estimating ̃∗0 . In doing so I

impose the restriction that lagged variables do not appear in the equations for ∗ but allow

for lags in the equations for ̂∗ .

A.8.2 The M-Normalization

As stated in section 3, to compute ¦ I use the same VARHAC procedure described above.

In doing so I impose the restriction that lagged variables do not appear in the equations

for ¦1 (the errors corresponding to the asset pricing conditions) but allow for lags in the

equations for ¦∗2 (the errors corresponding to  − ).

B Data Construction

B.1 FF25 Portfolios

Each Fama and French (1993) portfolio represents the intersection of one of 5 groups of stocks

sorted according to their market capitalization with one of 5 groups of stocks sorted according

to their book equity to market capitalization ratio. The returns are equally weighted. I ob-

tained rawmonthly returns fromKenneth French’s website http://mba.tuck.dartmouth.edu/

pages/ faculty/ ken.french/ data_library.html. To obtain quarterly returns I compounded

monthly returns within each quarter. To obtain quarterly excess returns I subtract the

quarterly risk free rate defined as the compounded monthly risk free rate from Fama/French

Research Data Factor file. Real excess returns are defined by dividing the nominal excess

return by one plus the inflation rate, which I define below.

B.2 Consumption Data

To compute real consumption of nondurables and services I proceed as follows. Let 
 be

the consumption of nondurables and 
 be the consumption of services in nominal dollars,

and let  and 

 be the corresponding series in constant chained dollars, as published by the

Bureau of Economic Analysis. To obtain nominal consumption of nondurables and services I

simply set  = 
 +

 . However, because real chained series are not summable, I proceed

as follows to create real consumption of nondurables and services, which I denote . First

A7



define  = (
  + 

−1−1),  =  

−1 − 1 and  =  


−1 − 1. Then define

the growth rate of  as  = 

 + (1− )


 . Notice that a real levels series can then be

generated by forward and backward induction relative to a base period. I convert the real

levels series into per capita terms by dividing by the quarterly population series published in

the National Income and Product Accounts by the BEA.9 I construct an inflation series using

a similar method. Letting  and  be the inflation rates for nondurables and services, I

let the combined inflation rate be  = 

 + (1− )


 .

I assume that households derive utility in quarter  + 1 from the stock of durables at

the end of quarter . To compute the real quarterly stock of durable goods I proceeded

as follows. The Bureau of Economic Analysis publishes end-of-year real stocks of durables

goods. Let  denote the real stock of durables at the end of some year, and let +4 be the

same stock a year (four quarters) later. We observe quarterly real purchases of consumer

durables, which I denote  . I assume that within each year the model

+1 = +1 + (1− ) (A10)

holds, with  allowed to vary by year. I solve for the value of  such that the beginning and

end-of-year stocks are rationalized by purchases series. This is the  such that

+4 = +4 + (1− )+3 + (1− )2+2 + (1− )3+1 + (1− )4 (A11)

Once I identify the value of  that applies within a year using (A11), I use (A10) to calculates

the within year stocks. I convert the real stocks to per capita terms by dividing by the same

population series used for the consumption series.

B.3 Fama and French Factors

These series are taken from the Fama/French Research Data Factor file. I define the monthly

market return as the sum of the market premium series (RM-Rf ) and the risk free rate series

(Rf ). I convert this to a quarterly return by compounding the monthly series geometrically

within each quarter. Denoting the resulting series, 
 , I convert it to a real return as

follows:  = (
 − )(1 + ).

To create real quarterly versions of the Fama-French factors (RM-Rf, SMB and HML) I

proceed as follows. To get quarterly excess returns I compound the monthly series geomet-

9I pass the NIPA population series through the Census X11 seasonal adjustment procedure because the

NIPA series displays noticeable seasonal fluctuations.
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rically within each quarter. I convert them to real excess returns by dividing the resulting

series by 1 + .

B.4 Yogo Factors

Yogo (2006) proposes a three factor model that uses the two factors from the Durables

CCAPM as well as the market return, RM, as factors. I use the data for the series as

constructed above, to study the rank condition for Yogo’s model using his sample period

(1951:Q1—2001Q4), while also using Campbell’s (2003) timing for consumption growth (that

is, assuming that quarter  returns and quarter  + 1 consumption are determined simulta-

neously).

B.5 Lettau and Ludvigson Factors

Lettau and Ludvigson (2001) propose a scaled CCAPM model, which uses three factors:

consumption growth, the CAY factor (a cointegrating residual between the logarithms of

consumption, asset wealth and labor income), and the product of consumption growth and

CAY. I take the factor data directly from the authors over the sample period 1963Q3—1998Q3.

B.6 Jagannathan and Wang Factors

Jagannathan andWang (2007) propose a Q4—Q4 CCAPMmodel. This is simply the CCAPM

estimated using annual, rather than quarterly, equity returns, and using annual consumption

growth measured from the fourth quarter of one year to the fourth quarter of the year in

which the returns are realized. I construct the relevant series from the quarterly data set

described above, while constructing annual real excess returns for the FF25 portfolios in

similar fashion as to what was described above for quarterly data. I examine the rank

condition over the period 1954—2003 as in Jagannathan and Wang (2007).

B.7 Lustig and Verdelhan Portfolios and Factors

Lustig and Verdelhan (2007) consider the annual real US dollar excess returns to portfolios

of short-term foreign government securities denominated in foreign currency. The sample

period is 1953—2002. They form these portfolios on the basis of the interest rates on the

underlying securities. In particular the real excess returns on a large number of countries’

treasury securities are sorted into eight bins in each period according to the nominal interest
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rates on the securities, from lowest to highest. The returns to holding equally-weighted

portfolios of each bin are then calculated.

Lustig and Verdelhan use three risk factors to explain these returns: consumption growth,

durables growth and the market return [their model is equivalent to Yogo’s (2006) model].

I take the data for the returns and factors directly from their paper.

B.8 Sorted Currency Portfolios

I construct a set of currency portfolios over the period 1976—2008. I compute the monthly

payoff to taking a long position in foreign currency as

+1 =
+1 − 



where  is the spot exchange rate measured as USD per foreign currency unit (FCU) and

 is the one month forward exchange rate in the same units. I compute these payoffs for

up to 19 currencies on a monthly basis: Australia, Austria, Belgium, Canada, Denmark,

France, Germany, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal,

Spain, Sweden, Switzerland, the UK, and the U.S. The data source is Datastream, and I

used Reuters/WMR quotes when they are available. I also use BBI quotes for Australia and

New Zealand in the 1984—1996 period.

In each month I sort the available currencies into five portfolios based on the size of

the forward discount ( − ). Countries with large values of the forward discount are

countries with high interest rates. I study the rank conditions for quarterly averages of the

payoffs.

C Optimal Iterated GMM and CU-GMM

C.1 Optimal Iterated GMM and the M-normalization

Each of the variants of the M-normalization that I have described above sets the GMM

estimator up in such a way that ̂ = ̄ . Consider the benchmark case where the GMM

estimator sets ¦
¦
 = 0 where 

¦
 = ( 

¦0
1 ¦02 )

0, ¦1 = ̄ − ¡ − ̄0
¢
¦, ¦2 = ̄ − 

and ¦ is given by (15). A more traditional approach to GMM might, instead, define

¦ =

µ
( − ̄0) −̄¦0

0 

¶
 ¦

 (A12)
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where  ¦
 would now be an ( + ) × ( + ) weighting matrix. With the ¦ given by

(A12), the equation ¦
¦
 = 0 is the first order condition corresponding to min¦ 

¦0


¦


¦
 .

It is clear that in this setup,  is free to help match not only ( − ) = 0 but also the

asset pricing equations. Under the null, this is asymptotically more efficient than the other

approaches because it uses information about  that lies in the asset pricing restrictions.

Yogo (2006) uses this approach. In the first stage of GMM he sets

 ¦
 =

µ
 0

0 S−1

¶
and  = det(S)−1. Here S = 1



P

=1(

 − ̄)(

 − ̄)0. As → 0, ̂→ ̄ , whereas,

as  → ∞, ̂ is determined solely by the asset pricing conditions. In the second stage of
GMM, the inverse of a consistent estimate of ¦0 is used as the weighting matrix.

As the sample size grows, ¦ converges to

¦0 =

µ
0 + (0 − )0 −¦0

0 

¶µ
0 0

0 Σ−1

¶
(A13)

where 0 = det(Σ)−1. When the rank condition for theM-normalization fails, (rank[0] 

), this means identification fails here at  = 0.

The objective function, ¦0
¦


¦
 , is ill-conditioned asymptotically. This can most easily

be demonstrated for the first stage of GMM and a single factor model. In this case 0 = 0

and the objective function limits to the function

0(
¦ ) =  [1 + (− 0)

¦]2 + (− 0)
22 

where  = 0. This function has no well-defined minimum. However, along the locus

¦ = 1(0 − 0), which is illustrated in Figure A1, the limit of 0(
¦ ) as  → 0 is 0.

However, the function does not achieve the infimum for any value of (¦ ). At  = 0, for

example, the function equals .

C.2 Continuously Updated GMM and the A-normalization

Here I consider the case of a single factor model, where the proposed factor is spurious. In

this case 0 = 0, but 0 = 0 6= 0. What happens to the CU-GMM estimator in this

circumstance? The estimator solves

min
∗

 (
∗)0Ω (

∗)−1 (
∗)
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where  (
∗) = ̄ −  

∗ and Ω (
∗) is a HAC covariance matrix associated with the

GMM errors  = 
 (1 − 

∗). Asymtotically,  (∗) → 0(
∗) = (

 )(1 − 0
∗). If we

assume that 
 and  are not only uncorrelated, but are independent of each other, and

if we assume that Ω (
∗) is computed as the simple covariance matrix of  (so that the

researcher is implicitly assuming the GMM errors are unpredictable) then,

Ω (
∗)

→ Ω0(
∗) =0(1− 0

∗)2 +0
2
0(

∗)2

where0 = (


0
 ) and 

2
0 = var(). Notice that 0(10) = 0 and Ω0(10) =0

2
0

2
0.

Clearly, then, the CU-GMM estimator ̂∗
→ 10. This indicates that the uncentered

CU-GMM estimator has exactly the same issue as the regular GMM estimator. A naive

researcher will, asymptotically, think that his model holds because the moment conditions

will hold exactly, the 2 will be 1 and the estimate of the factor loading in the SDF will be

non-zero and statistically significant. However, the model is false.

C.3 Continuously Updated GMM and the M-normalization

The CU-GMMobjective function for theM-normalization is(¦ ) =  (
¦ )0Γ (¦ )−1 (¦ )

where

 (
¦ ) =

µ
̄[1 + (̄ − )¦]−  

¦

̄ − 

¶
and Γ (

¦ ) is a HAC covariance matrix associated with the GMM errors

 =

µ

 [1− ( − ) ¦]

 − 

¶


I assume that 
 and  are not only uncorrelated, but are independent of each other, and

I assume that Γ (
¦ ) is computed as the simple covariance matrix of .

As in the case of optimal GMM, consider the locus ¦ = 1(0−), shown in Figure A1.

Along this locus


→ 0 =

µ
0

0 − 

¶
and

Γ
→ Γ0 = 20

Ã
0

(0−)2


0−
0


0− 1

!


Consequently, along this locus the GMM objective function limits to

(0 − )
2

(1− 0
−1
0 )

2
0
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So the CU-GMM objective function limits to zero as  approaches 0 from above or below

along the locus ¦ = 1(0 − ).

If we consider the case where  = 0, then


→ 0 =

µ

0

¶
and

Γ
→ Γ0 =

µ
0[1 + 20(

¦)2] −20¦
−020¦ 20

¶


Consequently, along this locus the GMM objective function limits to

0[0 + Σ
2
0(

¦)2]−1

Clearly there is no finite value of ¦ for which this is zero, so the GMM objective function

does not obtain its infimum (zero) at any point inside the parameter space.

Figure A1, and the above discussion, illustrates that in the limit, the objective function

for the M-normalization is near zero when  ≈ 0 and ¦ ≈ ±∞. In finite samples, this
manifests itself in an identification problem in that the CU-GMM objective function is low

in the neighborhood of  ≈ 0 for very large positive and negative values of 
¦. Thus,

confidence regions for ¦ are typically disjoint subsets of the parameter space.
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FIGURE A1

The M-Normalization and Optimal GMM
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