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Standard approaches to the estimation and evaluation of linear stochastic discount factor

(SDF) models rely on the identifying assumption that the covariance matrix (or the raw cross-

moment matrix) of a vector of asset returns with a vector of risk factors has full column rank.

Using asymptotic theory, as well as small sample simulation-based evidence, I show that

standard Generalized Method of Moments (GMM) estimates have non-standard properties

when the rank conditions fail and the underlying model is nonetheless valid. When the rank

conditions fail, and the underlying model is false, GMM can have very low power to reject

the model; in fact, in some cases, a false model can appear to be remarkably successful in

terms of �t and in terms of the statistical signi�cance of parameter estimates.

I propose a simple diagnostic to test for identi�cation, based on Cragg and Donald (1997)

and Wright (2003). If there are k risk factors, and n > k returns, the covariance matrix (or

raw cross-moment matrix) must have rank k for the model to be identi�ed. A simple test

of the null hypothesis that the rank of the matrix is some r < k can be implemented after

estimating the elements of the matrix by GMM. In Monte Carlo experiments using calibrated

models, I �nd that the null hypothesis of reduced rank is always rejected when the matrix

whose rank is being tested corresponds to the true model and has full rank. The diagnostic

test is also quite successful in identifying cases of reduced rank, although the size of the test

exceeds its asymptotic size in repeated samples. My �ndings can be viewed as a formalization

of the notion that researchers should test for signi�cant spread among the factor betas (the

slope coe¢ cients in time series regressions of the returns on the risk factors).1 In fact, a

similar rank test can be based on the matrix of factor betas. For calibrated examples, I �nd

that tests based on the covariance matrix have better size properties than tests based on the

betas in small samples.

The issue of identi�cation is not simply a theoretical curiosity, it is a practical reality.

To see this, consider panel (A) of Table 1, which shows results of the rank tests for several

conventional models in the literature. In all but the last two examples, I use the quarterly

returns of the Fama-French 25 portfolios sorted on the basis of size and value to estimate and

test the model. In the last two cases, sets of currency portfolios are used. When traditional

�nancial factors are used (the CAPM and Fama-French models), the null of reduced rank

is strongly rejected. Therefore, these models appear to be identi�ed. On the other hand,

the null of reduced rank is not rejected for most (though not all) of the models based on

1Kan and Zhang (1999b) make the same suggestion and point out that while Chen, Roll, and Ross (1986)
and Ferson and Harvey (1993) performed such tests, relatively few researchers do so.

1



macroeconomic factors. This suggests that these models are poorly identi�ed.

I consider the conventional case where the model SDF is estimated using excess returns.

In this case, the mean of the SDF is unidenti�ed but a subset of the model parameters

can still be identi�ed by adopting a normalization. Two candidate normalizations are de-

scribed by Cochrane (2005). One uses raw risk factors, the other uses demeaned risk factors.

The identi�cation condition for the �rst normalization is that the cross-moment matrix of

the returns and factors has full column rank. The identi�cation condition for the second

normalization is that the covariance matrix of the returns and factors has full column rank.

The two normalizations are theoretically equivalent when the model is true in the sense

that the two representations of the SDF are proportional to one another. At �rst glance, this

suggests that it does not matter which normalization is adopted by an applied researcher. In

contrast, I show that empirical results are dramatically di¤erent for the two normalizations

when conventional consumption-based models are estimated. In particular, the normaliza-

tion that expresses the SDF in terms of raw risk factors tends to cast the models in more

favorable light. Measures of �t are close to 1, and the estimated parameters of the SDF

are highly statistically signi�cant. For the normalization that uses demeaned risk factors,

the models appear to �t the data very poorly, and estimated parameters have a much lower

degree of statistical signi�cance.

A combination of misspeci�cation and lack of identi�cation of the demeaned normaliza-

tion can explain this non-robustness across the estimates. Why misspeci�cation? For the

consumption based models I consider, the rank tests suggest that the cross moment matrix

has greater rank than the covariance matrix. As I show below, this is inconsistent with the

model being true. How does lack of identi�cation play a role? Using asymptotic theory I

demonstrate that the normalization that uses raw risk factors has the following properties

when its rank condition is satis�ed, but the rank condition for the demeaned normalization

is not: (i) the estimated parameters of the SDF converge in probability to a non-zero limit,

(ii) an R2 measure of model �t converges in probability to 1, (iii) the t-statistic associated

with any parameter of the SDF that converges to a non-zero limit (of which there is at least

one) will diverge in probability to �1 leading to the conclusion that the associated risk

factor helps to price the assets, (iv) under some additional regularity assumptions the test

of the over-identifying restrictions rejects the model with the same probability as the size of

the test, that is, as if the model were true, yet (v) the estimated SDF is uncorrelated with
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the returns. My simulation-based evidence indicates that these properties are borne out in

�nite samples.

The normalization that uses demeaned risk factors does not share these properties. When

the rank condition fails the parameters of this normalization of the SDF are asymptotically

unidenti�ed. Under additional assumptions about the data generating processes, I show that

the parameter estimates and test statistics have asymptotic distributions, but these results

do not lead to general statements about the statistical signi�cance of the parameter esti-

mates and the likelihood of rejecting the model in large samples. Simulation-based evidence

suggests that in �nite samples a researcher is more likely to conclude that the model has

poor �t, reject it based on the test of the pricing errors, and conclude that the spurious

factor does not price the assets, when the SDF is expressed in terms of demeaned factors.

Nonetheless, even with the demeaned normalization the power to reject the model can be

low.

Although my results are speci�cally relevant for empirical work that uses GMM and one

of the two normalizations, they have broader relevance, because the �rst stage of GMM with

the demeaned normalization is equivalent to the two-pass regression method pioneered by

Black, Jensen and Scholes (1972) and Fama and MacBeth (1973), and widely used in the

consumption-based asset pricing literature.

There is an extensive literature relating to this paper which examines the properties

of asset pricing tests in the presence of spurious risk factors, that is risk factors that are

uncorrelated with the returns. Kan and Zhang (1999a) examine the behavior of GMM

estimators in the presence of spurious risk factors. In their setup, the estimated SDF nests

the true model but includes an additional factor that is uncorrelated with the returns. Their

results relate to mine for the demeaned speci�cation, although they study risk factors that

are mean zero by construction, and I consider cases where the estimated SDF may or may

not nest the true model. Kan and Zhang (1999b) study similar issues in the context of the

two-pass approach to model evaluation. A more closely related paper to this one is Kan

and Robotti (2008). They examine the behavior of the Hansen and Jagannathan (1997)

distance measure under the two model normalizations discussed here. They show that results

can depend dramatically on the normalization chosen. Another related literature does not

focus on issues of identi�cation, but examines the e¤ects of factor model misspeci�cation on

estimation and inference [for example, Hou and Kimmel (2006), Shanken and Zhou (2007),

3



Kan and Robotti (2009), and Kan, Robotti, and Jay Shanken (2009)]. Some of this literature

proposes using misspeci�cation-robust standard errors. These standard errors, however, still

assume that the model is properly identi�ed.

I consider a further case, that a risk factor, or linear combination of risk factors, has the

same covariance with every asset return being explained. This situation arises, in practice,

when factor betas are statistically signi�cant, but have very little spread, as is the case for

the quarterly Fama-French portfolios and US consumption growth.2 A risk factor of this

type may be relevant, but it clearly cannot explain any spread in the cross-sectional distri-

bution of the expected returns being studied. I show that in su¢ ciently large samples both

normalizations will lead to rejection of the over-identifying restrictions. However, in �nite

samples, if the covariance between the returns and the factor is small, the performance of the

raw-factor normalization mimics the case where the factor is entirely spurious. Additionally,

when there is no spread in the covariances associated with a factor, the identi�cation con-

dition for the two-pass regression method with a constant common pricing error fails, and

thereby a¤ects the reliability of inference for that procedure.

One way of dealing with the issue of model normalization would be to work with gross

returns rather than excess returns. Alternatively one could include a moment condition

associating the mean of the SDF with the mean of the price of a risk free asset. In either

case there would be no need to choose a normalization of the SDF. This would not, however,

deal with the problem of identi�cation. If the covariance matrix of excess returns with the

risk factors lacks full column rank, the rank condition for identi�cation of the factor loadings

still fails.

What should an applied researcher conclude from this paper? First, given that it is

straightforward to do so, test for spread among the factor betas for each factor. Second,

given that the issue of identi�cation goes beyond a factor-by-factor look at the betas, test

the rank conditions, and do so using the covariances, not the betas, since the covariance-based

test seems to perform better in small samples. Looking at the rank condition directly helps to

identify situations where each factor, by itself, is relevant, but some linear combination of the

2In related work, Lewellen and Nagel (2006) and Lewellen, Nagel and Shanken (2010) criticize empirical
estimates of the conditional CAPM (and CCAPM) arguing that the spread in the betas in these models is
too small for inference to be reliable. Daniel and Titman (2006) discuss the properties of the cross-sectional
regressions when the test assets lie in a low-dimensional subspace of the full payo¤ space. Their analysis
undoubtedly has bearing on GMM-based procedures as well, and one of the sets of data I examine in this
paper (the Fama-French 25 returns, described below) is central to their discussion.
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factors is redundant. Third, in situations where the identi�cation appears to be weak, avoid

the raw factor normalization. Fourth, even when adopting the demeaned normalization, be

aware that weak identi�cation a¤ects inference about parameters and weakens tests of the

pricing errors.

The paper is organized as follows. Section 1 lays out a standard linear factor model.

Section 2 discusses the two normalizations of the SDF. Section 3 discusses the approach to

be used in estimating the two model normalizations and testing for identi�cation. Section

4 discusses empirical �ndings for simple consumption based models, using the Fama and

French (1993) returns on 25 portfolios sorted by market capitalization and book-to-market

value as test assets. It lays the foundation for the rest of the paper by showing that infer-

ence regarding consumption-based models is sharply dependent on the chosen normalization.

Section 5 discusses the asymptotic properties of the estimates and diagnostic tests under the

maintained assumption that the model is valid, and under the alternative assumption that it

is misspeci�ed. Section 6 performs a series of small-sample Monte Carlo simulation exercises

that demonstrate the consequences of failure of the rank conditions in samples similar in size

to those being studied in the literature. Section 7 discusses some alternative approaches to

addressing the identi�cation problem. Section 8 concludes.

1 Model Setup and Moment Conditions

I consider the estimation of a class of linear factor pricing models where the SDF takes the

form

mt = a� f 0tb: (1)

Here ft is a k � 1 vector of risk factors, a is a scalar constant and b is a k � 1 vector of
parameters. If mt is the true SDF, then standard arguments imply that the price of any

asset at time t� 1 whose payo¤ at time t is xt is pt�1 = Et�1(mtxt). Therefore the expected

price of the asset is E(pt�1) = E(mtxt). It follows that the return to the asset, Rt = xt=pt�1,

satis�es Et�1(mtRt) = 1 and E(mtRt) = 1. Consequently, the di¤erence between the returns

on two assets R1t �R2t satis�es E[mt(R1t �R2t)] = 0.
Now consider a particular n� 1 vector, Ret , whose ith element, Reit, is the excess return

at time t to asset i de�ned as the di¤erence between the return on asset i and the risk free
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rate. We will assume, throughout, that n � k. If mt given by (1) is the true SDF, then

E (Retmt) = 0: (2)

Restriction (2) implies that

E(Ret ) = �
cov(Ret ;mt)

E(mt)
: (3)

Equation (3) means that variation in E(Reit) across i implies variation in cov(R
e
it;mt) across

i.

A beta representation of the model is obtained by substituting (1) into the numerator of

(3):

E(Ret ) =
cov(Ret ; f

0
t)b

E(mt)
= cov(Ret ; f

0
t) var(ft)

�1| {z }
�

var(ft)b

E(mt)| {z }
�

: (4)

The term � is an n� k matrix of factor betas, while � is a k� 1 vector of factor risk premia.
Row i in the matrix � is the vector of slope coe¢ cients in a time series regression of Reit on

ft.

2 Normalizations of the SDF

The moment restriction (2) does not separately identify the parameters a and b. This is

because the GMM errors, Retmt, for the parameter pair (a; b) are proportional to the GMM

errors for the parameter pair (�a; �b), for any scalar �. I primarily consider two approaches

to achieving identi�cation, both of which involve picking a particular normalization of the

SDF.

The �rst normalization rewrites (1) as

mt = am
�
t = a(1� f 0tb�) (5)

where b� = b=a. Equation (2) implies:

E(Retm
�
t ) = 0: (6)

I refer to this as the A-normalization since it factors the parameter a out of the SDF.

Alternatively (1) can be rewritten as

mt = �m
�
t = �[1� (ft � �)

0 b�], (7)
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where � is the unconditional mean of ft, � is a scalar, � = a � �0b and b� = b=(a � �0b).
Equation (2) implies:

E (ft) = � E(Retm
�
t ) = 0: (8)

I refer to this as the M-normalization since it factors the mean of mt out of the SDF.

Although b� and b� are di¤erent parameters (except when � = 0) the two normalizations

are equivalent in the sense that the GMM errors 1�f 0tb� and 1� (ft � �)
0 b� are proportional

to one another when evaluated at the true parameter values. Also, b� can be obtained from

b� and �: b� = b�=(1� �0b�).
I also consider a variant of the M-normalization which introduces a common pricing error,

denoted �, that appears in every pricing equation. Under the null that the model is valid,

� = 0. The parameters, �, b� and � are estimated by exploiting the moment restrictions:

E (ft) = � E(Retm
�
t � �) = 0: (9)

I refer to this variant as the TP-normalization. This normalization has been used in a

GMM context by Parker and Julliard (2005) and is closely related to the two-pass regression

method for estimating the beta-representation of the model. The latter approach, which is

related to the methods introduced by Fama and MacBeth (1973), usually includes a constant

equivalent to � in the second-pass regression.

3 Estimation and Inference using GMM

3.1 The A-Normalization

Using the n moment restrictions given by (6), b� is estimated using GMM. De�ne u�t (b
�) =

Retm
�
t = R

e
t (1� f 0tb�) and let g�T (b�) = 1

T

PT
t=1 u

�
t =

�Re �DT b
� be an n� 1 vector of pricing

errors, where �Re = 1
T

PT
t=1R

e
t , DT =

1
T

PT
t=1R

e
tf
0
t and T is the sample size. I consider GMM

estimators that set a�Tg
�
T = 0, where a

�
T is a k � n matrix and takes the form a�T = D

0
TW

�
T ,

where W �
T is an n�n positive de�nite weighting matrix. It follows that the GMM estimator

of b� is

b̂� = (D0
TW

�
TDT )

�1
D0
TW

�
T
�Re: (10)

I consider multi-stage GMM estimators. In the �rst stage W �
T = In. In the jth subsequent

stage, W �
T = (S�T )

�1 where S�T =
1
T

PT
t=1 û

�
t û
�0
t , û

�
t = Ret (1 � f 0t b̂�j�1) and b̂�j represents the

jth-stage estimator of b�.
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Let ��T = �DT . A test of the pricing errors is based on the statistic

J� = Tg�T (b̂
�)0(V̂ �g )

+g�T (b̂
�); (11)

where

V̂ �g = A
�
TS

�
TA

�
T
0 with A�T = In � ��T (a�T ��T )�1a�T ; (12)

and X+ indicates the generalized inverse of the matrix X.

Equations (5) and (6) imply that

E(Ret ) = E (R
e
tf
0
t) b

�: (13)

In a �nite sample, corresponding to the left-hand side of (13) is the vector of realized expected

returns, �Re. Corresponding to the right-hand side of (13) is a vector of predicted expected

returns given by DT b̂
�. The model�s �t is evaluated using the cross-sectional R2:

R2� = 1�
( �Re �DT b̂

�)0( �Re �DT b̂
�)

( �Re � �Re)0( �Re � �Re)
; (14)

where �Re = 1
n

Pn
i=1

�Rei is the cross-sectional average of the realized expected returns.

3.2 The M-Normalization

Using the n+k moment restrictions given by (8), b� and � are estimated using GMM. De�ne

u�1t(b
�; �) = Retm

�
t = R

e
t [1�(ft��)0b�] and let g�1T (b�; �) = 1

T

PT
t=1 u

�
1t =

�Re�
�
DT � �Re�0

�
b�.

De�ne u�2t(�) = ft � � and let g�2T (�) = 1
T

PT
t=1 u

�
2t =

�f � �, where �f = 1
T

PT
t=1 ft. De�ne

u�t = ( u�01t u�02t )
0 and g�T = ( g�01T g�02T )

0. I consider GMM estimators that set a�Tg
�
T = 0,

where a�T is a 2k � (n+ k) matrix and takes the form

a�T =

�
d0TW

�
T 0

0 Ik

�
; (15)

where dT = DT � �Re �f 0 andW �
T is an n�n positive de�nite weighting matrix. It follows that

the GMM estimators of b� and � are

b̂� = (d0TW
�
TdT )

�1
d0TW

�
T
�Re (16)

�̂ = �f: (17)

I consider multi-stage GMM estimators. In the �rst stage W �
T = In. In the jth subsequent

stage,W �
T = (PTS

�
TP

0
T )
�1 where PT = ( In �Re(b̂�j�1)

0 ), b̂�j represents the jth-stage estimator
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of b� and S�T is a consistent estimator of S
�
0 =

P+1
j=�1E(u

�
tu
�0
t�j).

3 Because u�2t may be serially

correlated I use a VARHAC estimator, described in more detail in Appendix A, to compute

S�T .

Let

��T =

�
�dT �Reb̂�0

0 �Ik

�
: (18)

A test of the pricing errors is based on

J� = TgT (b̂
�; �̂)0(V̂ �g )

+gT (b̂
�; �̂); (19)

where

V̂ �g = A
�
TS

�
TA

�
T
0 with A�T = In+k � ��T (a�T ��T )

�1 a�T : (20)

Equations (7) and (8) imply that

E(Ret ) = E
�
Ret (ft � �)

0� b�: (21)

Corresponding to the right-hand side of (21) is a vector of predicted expected returns, dT b̂�.

The cross-sectional R2 measure is:

R2� = 1�
( �Re � dT b̂�)0( �Re � dT b̂�)
( �Re � �Re)0( �Re � �Re)

: (22)

Yogo (2006) suggests using a di¤erent GMM procedure in conjunction with the M-

normalization. Noting that the derivative of g�1T with respect to � is non-zero, he suggests

using a variant of a�T that is not block diagonal because this will improve asymptotic e¢ -

ciency. In his case �̂ does not, in general, equal �f . As it turns out, in �nite samples, the

properties of Yogo�s procedure are quite di¤erent than the properties of the procedure I have

outlined here. I discuss his procedure in more detail in Appendix C.

3.3 The TP-Normalization

When estimating the TP-normalization, I set up the �rst stage of GMM so that the point

estimates are consistent with the two-pass regression method in the following sense: if the

factor risk premia are evaluated as �̂
�
f = Sf b̂

�, then �̂ and �̂
�
f are numerically identical to

3The �rst stage of the GMM procedure is numerically equivalent (in terms of pricing errors) to using the
two-pass regression method and running the cross-sectional regression with no constant. In the later GMM
stages, Cochrane (2005) suggests using the matrix ( In 0n�k ) in place of PT in the expression for W �

T .
This is less e¢ cient in terms of the covariance matrix of b̂�, but is asymptotically equivalent in terms of the
test of the overidentifying restrictions.
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the coe¢ cients obtained in the second-pass regression. To avoid repetitive descriptions in

the main text, I relegate the formulaic details of the estimation of the TP-normalization to

Appendix A.

3.4 Testing Identi�cation

3.4.1 Rank Conditions for Identi�cation

Each normalization is associated with a rank condition that must hold for the model to be

identi�ed. I defer asymptotic theory to Section 5, but it is useful, at this stage, to outline

these conditions. They are:

� A-normalization: For the parameter b� to be identi�ed it is necessary that the n � k
matrix D0 � E(Retf 0t) have rank k.

� M-normalization: For the parameter b� to be identi�ed it is necessary that the n � k
matrix d0 � cov(Ret ; ft) have rank k.

� TP-normalization: For the parameters � and b� to be identi�ed it is necessary that the
n� (k + 1) matrix d+0 = ( � d0 ), where � is an n� 1 vector of ones, have rank k + 1.

3.4.2 The Distinction Between Model Validity and Identi�cation

Failure of one or more of the rank conditions does not necessarily imply that the model of

the SDF is false. Consider the following examples.

Imagine a single factor model. Suppose that rank(d0) = 0, so that the rank condition for

the M-normalization fails. This implies that d0 = 0. The asset pricing model may still be

valid, but only if E(Ret ) = d0b
� = 0 for the particular assets being studied. This, in turn,

implies that D0 = 0, and that d+0 = ( � 0 ), so that the rank conditions for the A and

TP-normalizations also fail.

To take another single factor example, suppose that d0 = �c for some scalar c 6= 0. This
implies that rank(d0) = 1, so that the rank condition of the M-normalization is satis�ed.

The TP-normalization, however, is unidenti�ed because the matrix d+0 = ( � �c ) has rank

1. The asset pricing model is still valid as long as every element in the vector E(Ret ) is equal

to cb�.

Now imagine a model with k > 1 factors, for which rank(d0) = r < k. So the rank

condition for the M-normalization fails. This implies that a lower dimensional model can

10



correctly price the returns. To see this let X = ( X1 X2 ) where X1 is a k�r matrix whose
columns span the rowspace of d0, denotedR(d0), andX2 is a k�(k�r)matrix whose columns
span the nullspace of d0, denoted N (d0). The columns of X span Rk, by construction. Let

the r � 1 vector ~b� be the vector containing the �rst r elements of X�1b�, and de�ne the

n� r matrix ~d0 = d0X1. Because d0X2 = 0 we can write E(Ret ) = d0b
� = d0XX

�1b� = ~d0~b
�.

The original model may well be valid, but only the lower dimensional model is identi�ed for

the particular assets whose excess returns are included in the vector Ret .

The model being true does, however, imply an important restriction across the rank

conditions for the A and M-normalizations. When the model is true, �R = d0b
�
0 and, there-

fore, D0 = d0(Ik + b
�
0�
0
0). Hence rank(D0) � rank(d0) when the model is true. A natural

speci�cation test for any model is to check whether this inequality holds in the data.

3.4.3 Testing the Rank Conditions

To test whether the rank conditions hold I borrow directly from Cragg and Donald (1997)

and Wright (2003). Let B be an n � k matrix. Let B̂ be a consistent estimator for B and

assume that
p
T vec(B̂ � B0)

d! N(0; VB), where B0 is the true value of B. Let V̂B be a

consistent estimator for VB. To test the null hypothesis that rank(B) = r < k I form the

statistic

L(r) = min
P2
r

T vec(B̂ � P )0V (B̂)�1 vec(B̂ � P )

where 
r is the set of all n � k matrices with rank r. If the true rank of B0 is r, L(r)
d!

�2(n�r)(k�r). I construct tests of the rank conditions for the A and M-normalizations by letting

B be d0 or D0 and estimating the elements of these matrices by GMM. When r = 0 the test

associated with d0 is analogous to an F-test for cov(Reit; fjt) = 0 for all i, j.

Analogous tests can be constructed for the rank condition of the TP-normalization. To

test the null hypothesis that rank( � B ) = r I form the statistic

L+(r) = min
P2
r

T vec[( � B̂ )� P ]0
�
0 0

0 V (B̂)

�+
vec[( � B̂ )� P ]:

If the true rank of ( � B0 ) is r, L+(r)
d! �2(n�r)(k+1�r). When r = 1 the test associated

with d+0 is analogous to an F-test for cov(R
e
it; fjt) = cov(R

e
`t; fjt) for all i, ` and every j.

One aspect of these tests that may seem disadvantageous is that the asymptotic distrib-

ution of L(r) is derived under the null that B has reduced rank (r < k). This may trouble

researchers who would prefer to have full rank as the null hypothesis. Two considerations
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are important. First, the null hypothesis of reduced rank is not equivalent to the asset

pricing model being false. Second, the rank tests are very powerful, asymptotically, against

the alternative hypothesis that the matrix B has full rank; the test rejects the null with

probability one in this case. I investigate the �nite sample size and power of the L(r) and

L+(r) tests in Section 6.

4 Empirical Findings

I consider a set of data widely used in the asset pricing literature: the 25 portfolios of

US stocks sorted on size and the book-to-market value ratio introduced by Fama and

French (1993) and henceforth referred to as the FF25.4 Using the real excess returns to

the these portfolios at the quarterly frequency over the period 1949Q1�2008Q4, I estimate

two consumption-based factor models.

� The CCAPM, which uses a single factor: the log-growth rate of real per capita
consumption of nondurables and services (referred to from now on as �consumption

growth�).

� ADurables CCAPM, which uses two factors: consumption growth and durables growth
(de�ned as the log-growth rate of the real stock of consumer durables).5

I present empirical results from the �rst, second and �fth stages of GMM. In practice, I

found that for most of the GMM procedures and models I considered further iterations of

the weighting matrix produced only minor changes in the results.

4.1 The CCAPM

The �rst row of Table 2 presents results for the CCAPM using the A-normalization. The

GMM estimates of b� are statistically signi�cant at all GMM stages. The �t of the model is

quite good at the �rst stage of GMM as measured by the cross-sectional R2, but deteriorates

with further GMM iterations. The model is not rejected at conventional signi�cance levels

according to the J-statistic.

4The data are described in more detail in Appendix B.
5Yogo (2006) estimates an extension of the durables C-CAPM that adopts recursive preferences. He

estimates a linear approximation of the model that adds a third factor: the market return, de�ned as the
return of a value-weighted portfolio of all US stocks.
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These �ndings are not robust when we turn to the M-normalization in the second row

of Table 2. While the GMM estimates of b� are statistically signi�cant at all GMM stages,

the �t of the model is very poor as measured by the cross-sectional R2. The model is also

rejected on the basis of the J-statistic.

Results for the TP-normalization are shown in the last row of Table 2. The estimates of b̂�

remain positive but are no longer statistically signi�cant. Compared to the M-normalization

the �t of the model improves a little due to the inclusion of the constant. But the model is

still rejected on the basis of the J-statistic.

Is the CCAPM identi�ed? The L statistic for rank(D0) = 0 has a tiny p-value (see Ta-

ble 1, panel B) suggesting that D0 has full rank and that the A-normalization is identi�ed.

The results are slightly less clear when we turn to the M-normalization: the L statistic

for rank(d0) = 0 has a p-value of 0:036. For the TP-normalization, the L+ statistic for

rank(d+0 ) = 1 has a p-value of 0:24, suggesting that even if d0 has full rank (1), one cannot

reject that d+0 has less than full rank. This circumstance would arise if d0 was a constant vec-

tor. The evidence about identi�cation is mixed. Below I ask whether identi�cation problems

explain the di¤ering performance of the CCAPM across the A, M and TP-normalizations.

4.2 The Durables CCAPM

Next, consider the model that uses consumption growth and durables growth as risk factors.

The �rst row of Table 3 presents results using the A-normalization. The estimates of b� for

both factors are positive and signi�cant (except for consumption growth in the �rst stage

of GMM). The R2 measures suggest that the model can explain about 98 percent of the

cross-sectional variation in expected returns. The model also easily passes the test of the

pricing errors.

With the M-normalization (second row of Table 3) the results are dramatically di¤er-

ent. The estimates of b� for durables growth remain positive but are no longer statistically

signi�cant. Strikingly, the �t of the model is very poor, the R2 being uniformly negative.

The model is not rejected at the second stage of GMM, but is after a few iterations on the

weighting matrix.

Finally, the TP-normalization (third row of Table 3) also casts doubt on the model. None

of the estimates of b� are statistically signi�cant, the estimate of � is always large and at least

marginally statistically signi�cant, the R2 of the model hovers around zero, and with enough
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iterations on the weighting matrix the model is rejected on the basis of the J-statistic.

Tests of the rank conditions are provided in Table 1. The L statistic for rank(D0) = 1

has a p-value of 0:014, suggesting that D0 has full rank (2) and that the A-normalization is

identi�ed. The L statistic for rank(d0) = 1, on the other hand, has a p-value of 0:977. This

indicates that we cannot reject that d0 has reduced rank, and that the M-normalization is

not identi�ed. The L+ statistic for rank(d+0 ) = 2 has a p-value of 0:968, so we cannot reject

that d+0 has reduced rank, and that the TP-normalization is not identi�ed.

In summary, the Durables CCAPM seems to be poorly identi�ed. This poor identi�cation

stems from the weak correlation between the consumption factors and the asset returns. Let

f1t denote consumption growth and f2t denote durables growth. Recall that the rank test

on d0 for the CCAPM is equivalent to an F -test for cov(Ret ; f1t) = 0. This test had a p-

value of 0:036. Similarly, the rank test on d+0 for the CCAPM is equivalent to an F -test for

cov(Ret ; f1t) = c�. This test had a p-value of 0:24. This suggests that, at best, consumption

growth has a common covariance with all of the returns. A test for cov(Ret ; f2t) = 0 has a

p-value of 0:974. This suggest that durables growth is uncorrelated with the returns. Indeed,

if it were the case that cov(Ret ; f1t) = c� and cov(R
e
t ; f2t) = 0 then d0 would have rank 1 and

d+0 would have rank 1, consistent with the �ndings of the rank tests.

The fact thatD0 appears to have rank 2, while d0 has rank 1, also suggests that the model

is misspeci�ed. As mentioned above, the model cannot be true when rank (D0) > rank(d0).

Poor identi�cation in combination with model misspeci�cation is a plausible explanation

of the lack of robustness we observe across normalizations for consumption-based models.

As we will see in the next section, when the model is false, D0 has full column rank and d0

has less than full rank, asymptotic theory predicts exactly the lack of robustness exhibited

by estimates of these models for the di¤erent normalizations.

In Burnside (2007) I present results for a wider set of the factor models, and an even larger

set of results, for additional models, is available upon request. These results con�rm that

lack of robustness across normalizations is a common occurrence when the rank conditions

fail for the M and TP-normalizations, especially if rank (D0) > rank(d0).

5 Large Sample Properties of the GMM Estimators

In this section I explore the asymptotic properties of the GMM procedures described in

Section 3.
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Assumption 1 Let the true SDF be given by (1), the true values of the parameters a

and b be denoted a0 and b0, and the true values of b� and b� be denoted b�0 = b0=a0, and

b�0 = b0=(a0 � �00b0).

Assumption 2 Let D0 and d0 have full column rank.

Assumption 3 Assume that DT
a:s:! D0, dT

a:s:! d0, W �
T
a:s:! W �

0 and W
�
T
a:s:! W �

0 , with W
�
0

and W �
0 positive de�nite.

For compactness of notation let �� = (b�; �) and ��0 = (b
�
0; �0). De�ne

��0 = E

�
@u�t (b

�
0)

@b�

�
= �D0

and

��0 = E

�
@u�t (�

�
0)

@��

�
=

�
�d0 E(Ret )b

�0
0

0 �Ik

�
Let S�0 = E

hP+1
j=�1 u

�
t (b

�
0)u

�
t�j(b

�
0)
0
i
and S�0 = E

hP+1
j=�1 u

�
t (�

�
0)u

�
t�j(�

�
0)
0
i
. De�ne a�0 =

D0
0W

�
0 and

a�0 =

�
d00W

�
0 0

0 Ik

�
:

Theorem 1 Suppose assumptions 1� 3 are satis�ed. Under additional regularity condi-

tions provided in Hansen (1982) b̂� a:s:! b�0, �̂
�
0
a:s:! �̂

�
0,
p
T (b̂� � b�0)

d! N(0; V �b ) and
p
T (�̂

� �
��0)

d! N(0; V �� ) with V
�
b = (a�0�

�
0)
�1a�0S

�
0a
�0
0 (�

�0
0 a

�
0)
�1 and V �� = (a�0�

�
0)
�1a�0S

�
0a
�0
0 (�

�0
0 a

�
0)
�1.

Also, R2�
a:s:! 1 and R2�

a:s:! 1. The statistics J� and J� both converge in distribution to �2

random variables with n� k degrees of freedom.

The proof of Theorem 1 is provided in Appendix A. The interpretation of Theorem 1 is that

when the model is true (Assumption 1, model validity), and when the moment conditions

are informative about the risk factors (Assumption 2, identi�cation), both approaches to

estimation work well.

Next I turn to a situation where the model remains true, but the returns in the data

being studied do not fully shed light on the relevance of the risk factors.

Assumption 2a Let rank(d0) = r < k.

If we maintain Assumption 1, that the model is true, then, as shown above, under Assumption

2a D0 has rank less than or equal to r.
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Theorem 2 Suppose assumptions 1, 2a and 3 are satis�ed. It follows that neither b� nor

b� is asymptotically identi�ed. Nonetheless, R2�
a:s:! 1 and R2�

a:s:! 1.

The proof of Theorem 2 is provided in Appendix A. The interpretation of Theorem 2 is

that even though the model is true (Assumption 1), the moment conditions are insu¢ ciently

informative about the risk factors (Assumption 2a), and neither approach to estimation will

work well in large samples. The lack of asymptotic identi�cation might be manifested in

large standard errors for b̂� and b̂� in �nite samples. While the parameters of the SDF are

not identi�ed, this is because there are multiple values of b� and b� that satisfy the moment

conditions asymptotically. As a result the measures of �t limit to 1. This suggests that the

models being true, but lack of identi�cation being pervasive, is not responsible for the lack

of robustness we saw in Section 4. There, we found that for some normalizations R2 was

very close to 1, whereas, for other R2 was very far from 1.

Next I turn to a situation where the model is false.

Assumption 1b Assume that the true SDF is not given by (1) so that, in general, �R 6=
d0b

� for the particular vector ft being studied.

Assumption 2b Let rank(D0) = k but rank(d0) = k � 1.

We can make Assumption 2b because we are no longer maintaining Assumption 1.

Theorem 3 Suppose assumptions 1b, 2b and 3 are satis�ed. Under additional regularity

conditions provided in Hansen (1982) b̂� a:s:! b�s = x=(x
0�0), where x is the unique element of

the nullspace of d0 whose elements sum to 1, and R2�
a:s:! 1. At least one element of b�s is

non-zero. In contrast b� is not asymptotically identi�ed.

The proof of Theorem 3 is provided in Appendix A. Since the model is not true, the parameter

vector b�s has no interpretation as the �true�value of b
�. Rather b�s is a degenerate value of

b� for which the moment condition (5) holds, even though (1) is not the true SDF. The sum

of the elements of b�s is 1=(x
0�0) which is the inverse of a weighted average of the means of

the risk factors.

Before turning to the asymptotic distributions of b̂� and J� it is helpful to de�ne the

following notation. Let S�s = E
P+1

j=�1 u
�
t (b

�
s)u

�
t�j(b

�
s)
0 and V �s = E[u

�
t (b

�
s)u

�
t (b

�
s)
0]. In general
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S�s 6= V �s under Assumption 1b. Let A�0 = In � ��0(a�0��0)�1a�0 and de�ne V �g = A�0V �s A�00 and
V �0 = A�0S

�
sA

�
0
0. Finally, diagonalize V �0 as V

�
0 = P0�0P

0
0 where the columns of P0 are the

orthonormal eigenvectors of V �0 and �0 is a diagonal matrix with the eigenvalues of V
�
0 on

the diagonal. Let ~V �0 = P0�
1=2
0 so that ~V �0 ~V

�0
0 = V �0 .

Theorem 4 Under the assumptions of Theorem 3,
p
T (b̂� � b�s)

d! N(0; V �b ) with V
�
b =

(a�0�
�
0)
�1a�0S

�
sa
�0
0 (�

�0
0 a

�
0)
�1. If S�s = V

�
s , J

� d! �2n�k. When S
�
s 6= V �s , J�

d!
Pn�k

i=1 �iz
2
i where

z1, z2, : : : , zn�k are mutually independent standard normal random variables and �1, �2,

: : : , �n�k are the non-zero eigenvalues of the matrix ~V �00 (V
�
g )
+ ~V �0 .

The proof of Theorem 4 is provided in Appendix A. Some examples are helpful in interpreting

Theorems 3 and 4.

5.1 Single Factor Model With a Spurious Factor

For a single factor model, the assumptions of Theorem 3 imply that d0 = 0 and, since D0

has rank 1, that D0 = �R�0 6= 0. It follows that b�s = 1=�0. A researcher testing the model
under the null would compute an inconsistent estimate of V �b that would converge, instead,

to (a�0�
�
0)
�1a�0V

�
s a

�0
0 (�

�0
0 a

�
0)
�1. Nonetheless, because this matrix is �nite, the t-statistic for b̂�

would diverge to +1 if �0 > 0 or �1 if �0 < 0. The predicted expected returns, DT b̂
�,

would converge almost surely to D0b
�
s = �R. Therefore R

2
�
a:s:! 1.

Thus, in large samples, a researcher testing the model using the A-normalization would

conclude that the factor ft prices the returns (due to the statistical signi�cance of b̂�) and

that the model�s �t is perfect. A researcher testing the over-identifying restrictions using,

say, a 5 percent critical value from the �2n�1 distribution would only reject the model about

5 percent of the time in repeated large samples if S�s = V
�
s . It is unclear what would happen

in the more general case when S�s 6= V �s .
For the M-normalization, Hansen�s identi�cation condition requires that there should be

a unique b� that solves (d00W
�
0 d0) b

� = d00W
�
0 �R. The reason b

� is unidenti�ed is that when

d0 = 0 any value of b� is a solution.

5.2 Multi-factor Model with a Single Spurious Factor

Without loss of generality, let the kth factor be spurious: cov(Ret ; fkt) = 0 and let the rank

of d0 be k � 1 as in the assumptions of Theorem 3. In this case, the vector x referred to in
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the statement of Theorem 3 has a 1 as its kth element and zeros elsewhere. So b�s = x=(x
0�0)

has 1=E(fkt) as its kth element and zeros elsewhere. This means, oddly enough, that a

researcher testing the model using the A-normalization and a large sample of data would

conclude that the factor fkt prices the returns and that the other factors are irrelevant, even

though they are the only ones correlated with Ret . As in the previous example, R
2
�
a:s:! 1. A

researcher testing the over-identifying restrictions using a 5 percent critical value from the

�2n�k distribution would only reject the model about 5 percent of the time in repeated large

samples if S�s = V
�
s .

As in the previous example, for the M-normalization, the identi�cation condition is not

satis�ed because there is no unique b� that solves (d00W
�
0 d0) b

� = d00W
�
0 �R. When the last

column is d0 is zero, but the rest of the matrix has full column rank, it is b�k that is unidenti�ed

asymptotically. The rest of the parameter vector b� is identi�ed.

To some extent, this case resembles the Durables CCAPM model in that durables growth

appears to be spurious, while consumption does not. A test of cov(Ret ; ft) = 0 for consump-

tion growth alone has a p-value of 0:036, whereas a test of cov(Ret ; ft) = 0 for durables

growth alone has a p-value of 0:974. Consistent with what the theoretical results predict, as

Table 3 shows, the A-normalization delivers a highly signi�cant estimate of b̂� for durables

growth (the t-statistic is about 8 in the second and later stages of GMM). The R2 for the

Durables CCAPM is 0:98 at every GMM stage, and the model is far from being rejected on

the basis of the over-identifying restrictions.

In contrast, for the M-normalization, at most stages of GMM, the estimate of b� is

signi�cant for consumption growth, and not for durables growth. It is important to note,

however, that lack of identi�cation of the M-normalization means that we cannot trust

conventional inference. This is discussed more below.

5.3 Multi-factor Model with Colinear Covariances

Now consider the more general case where k > 1, where d0 has no zero columns, but d0 has

rank k � 1. In this case, no one factor is spurious, but there is an identi�cation problem
for the M-normalization due to multicollinearity. Using the A-normalization, however, b̂� a:s:!
b�s = x=(x0�0) and R

2
�
a:s:! 1. Remarkably, the estimated model puts all its weight on an

irrelevant linear combination of the risk factors because

cov(Ret ;m
�
t ) = � cov(Ret ; f 0tb�s) = �

d0x

x0�0
= 0:
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5.4 Greater Numbers of Spurious Factors

Theorems 3 and 4 rely on the assumption that only one linear combination of the risk

factors is spurious, in the sense that rank(d0) = k � 1. If rank(d0) = r < k � 1, then b�

is asymptotically unidenti�ed because there will be many b� such that a�0(�R � D0b
�) = 0.

All these b�, however, share the property that �00b
� = 1 and �R = D0b

�. So, although the

individual elements of b̂� are unidenti�ed, the particular linear combination �00b
� is identi�ed.

Presumably, then �̂0b̂� would be centered around 1 and the measure of �t, R2�, would be

roughly 1.

5.5 Asymptotic Properties of the M-Normalization

To this point we have only been able to show lack of asymptotic identi�cation of the M-

normalization when the rank condition on d0 fails. Although b� is unidenti�ed asymptotically,

and does not have a well de�ned probability limit, it is still possible, under additional

regularity conditions, to derive its asymptotic distribution, the distribution of the associated

t-statistic, the model�s R2 and the J-statistic used to test the over-identifying restrictions.

Here I consider only the case of a single factor model with the returns and factors being iid

and independent of each other. The more general case of a multifactor model with persistent

returns or factors can be worked out, but at the cost of algebraic complexity.

Theorem 5 Make the assumptions of Theorem 3. Let Ret and ft be iid over time and

mutually independent, and let k = 1. Let �R = var(Ret ), and �
2
f = var(ft). De�ne the

random variables X � N(0; �2f�R), Z = (X 0�R)=(X
0X) and ~Z = (X 0��1R �R)=(X

0��1R X).

Then T 1=2dT
d! X. It follows that at the �rst stage of GMM T�1=2b̂�

d! Z, t(b̂�) d!
(X 0�R)=[�

2
fZ

2(X 0�RX)]
1=2 and R2�

d! 1�(�0RM�R)=(�0RM��R), whereM = In�X(X 0X)�1X 0,

M� = In� ��0=n and � is an n� 1 vector of ones. At the second stage of GMM T�1=2b̂�
d! ~Z,

t(b̂�)
d! (X 0��1R �R)=[�

2
fZ

2(X 0��1R X)]
1=2 and R2�

d! 1 � (�0R
~M 0 ~M�R)=(�

0
RM��R), where

~M = In �X(X 0��1R X)
�1X 0��1R , and J

d! (�0R
~M 0��1R

~M�0R)=(�
2
fZ

2).

The proof of Theorem 5 is provided in Appendix A.6 Interpreting Theorem 5 in general terms

is di¢ cult because of the dependence of the asymptotic distributions on �R and �R. The

distribution of b̂� will spread out as the sample size increases at a rate of T 1=2. The t-statistic

6Similar asymptotic properties are derived in Kan and Zhang (1999a, 1999b) for the case where ft is zero
mean or, equivalently, has a known mean.
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for b̂� has a well-de�ned asymptotic distribution at both stages of GMM, so the probability

of �nding b̂� to be signi�cantly di¤erent from zero will converge to a number generally not

equal to zero. Similarly, the J statistic used to test the over-identifying restrictions has a

well-de�ned asymptotic distribution, so the probability of rejecting the model will converge

to a number generally not equal to zero nor one.

5.6 Approximate Failure of the Rank Condition

The assumption that the rank condition literally does not hold may seem extreme. In

single factor models it requires that d0 is exactly zero. A standard device in the theory of

weak instruments and unit root testing is also useful when it is preferable to assume that

d0 is small and asymptotically vanishing but not literally zero. Mimicking Hall�s (2005)

discussion of Staiger and Stock (1997), in the single factor case we might suppose that

Ret = �R + cT (ft � �) + ut where ut is an n � 1 vector that is uncorrelated with ft and
cT = T

�1=2c where c is an n�1 vector of constants. Working with this alternative assumption,
however, does not change the result stated in Theorem 5 that T 1=2dT

d! N(0; �2f�R) nor does

it change the fact that �Re
p! �R. As a consequence, the results in Theorem 5 go through

unchanged.

5.7 Insu¢ cient Spread in the Covariances

The rank condition for the TP-normalization is that d+0 should have full column rank. We

have already studied the case where this rank condition fails if d0 has less than full column

rank. Another possibility is that there is a unique k � 1 vector x, whose elements sum to

1 such that cov(Ret ; f
0
tx) = �c, where � is an n � 1 vector of ones, and c 6= 0 is some scalar

constant.

Theorem 6 Suppose assumptions 1 (or 1b), 2 and 3 are satis�ed. Under additional reg-

ularity conditions provided in Hansen (1982) b̂� a:s:! b�s = (x � ��Dc)=(�0x), where ��D =

(D0
0W

�
0D0)

�1 (D0
0W

�
0 �) and the predicted expected returns of the A-normalization converge

almost surely to

D0b
�
s = D0b

�
s = �R + (��D0��D) c=(�

0x):

If � is in the space spanned by the columns of D0 the model is is true since this would imply

that � = D0��D. Otherwise the model is false. Given assumption 2, b̂
� also has a well de�ned

20



probability limit, whether or not the model is true.

The proof of Theorem 6 is provided in Appendix A. It is clear that in a su¢ ciently large

sample the model will be rejected if it is false.

6 Small Sample Properties of the GMM Estimators

To further demonstrate the sensitivity of empirical results to the choice of normalization in

the presence of weak identi�cation, I conduct Monte Carlo experiments. In each experiment

I generate data from an arti�cial asset pricing model in which, by construction, three factors

price 25 asset returns. I calibrate the model to resemble the Fama and French (1993) three

factor model and the asset returns to resemble the FF25 portfolios.

I �rst study the properties of the A, M, and TP-normalizations when they are used

to estimate the true model. I then study the properties of the three normalizations when

the data are confronted with misspeci�ed and, in some cases, under-identi�ed models. The

�rst of these models, which is calibrated to resembled the CAPM, is misspeci�ed, in that

it uses only the �rst of the three factors, but it is well identi�ed. The second model uses a

purely spurious factor, and is therefore misspeci�ed. The third model, which is calibrated to

resemble the consumption-based CCAPM, is misspeci�ed. By construction, the factor has

a common covariance with all of the returns, so the A and M-normalizations are identi�ed,

but the TP-normalization is not. The fourth model, which is calibrated to resemble the

durables-based CCAPM, is misspeci�ed. This model uses the consumption factor from the

second model, as well as a purely spurious factor, which is calibrated to resemble durables

growth in US data. The A-normalization is identi�ed, but the M and TP-normalizations are

not.

6.1 The Data Generating Process

I generate arti�cial data from a three factor model. The true SDF is given by mt = a� f 0tb
where a is a scalar, ft and b are k � 1 vectors, and ft follows the law of motion ft �
Niid(�;�f ). The model of the true SDF is calibrated to mimic �rst stage GMM estimates

for the Fama-French 3-factor model over the sample period 1949:Q1�2008:Q4.7 I set k = 3,

a = 1:1404 and b = ( 3:85 0:06 6:46 )0. I set � and �f equal to the sample mean and

7Details of the data and the Fama and French (1993) model are provided in Appendix B.
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covariance matrix of the Rm-Rf, SMB and HML factors from the Fama-French database. It

follows that b� = ( 3:38 0:06 5:67 )0, b� = ( 3:86 0:06 6:48 )0 and � = 0:9975.

I generate an n�1 (with n = 25) vector of arti�cial excess returnsRet = �R+�(ft��)+	�t
where �R is an n� 1 vector, � is an n�k matrix, 	 is an n�n lower triangular matrix, and
�t � Niid(0; In) and is independent of ft. Given this de�nition for Ret , it follows that the

covariance matrix of Ret is �R = ��f�
0+		0. So that the model shares some characteristics

with actual data, I set �R equal to its sample equivalent in the FF25 data. I set � equal

to the matrix of factor betas for the FF25 returns regressed on Rm-Rf, SMB and HML, the

three Fama-French factors. I set 	 equal to the Cholesky decomposition of the covariance

matrix of the residuals from those regressions.

Given the assumptions above we have

E(Retmt) = E f[�R + �(ft � �) + 	�t] (a� f 0tb)g

= (a� �0b) [�R � ��fb=(a� �0b)] : (23)

To ensure that the right hand side of (23) is zero, I set �R = ��fb=(a � �0b). This means
that the model expected returns correspond to the model-predicted expected returns for

the �rst stage GMM estimates for the Fama-French 3-factor model over the sample period

1949:Q1�2008:Q4.

Before proceeding to the results, it is important to note that in US data the b coe¢ cient

corresponding to the SMB factor is statistically insigni�cant, so it does not have an important

role to play in pricing the FF25 portfolios. This does not mean, however, that it is a spurious

factor. The SMB factor covaries with the portfolio returns, but not in a way that helps to

explain the cross-sectional distribution of the expected returns. So there is no identi�cation

problem. In the simulated model, the simulated SMB factor does help to price the assets, but

only marginally so, because the b coe¢ cient corresponding to the SMB factor is numerically

small.

6.2 Estimating the True Model

In these experiments the true SDF,mt, prices the returns. In large samples GMM estimators

based on the two normalizations deliver consistent parameter estimates and lead to correct

inference about the model. To check small sample performance I simulate 10000 samples of

240 observations (the size of quarterly US data sample) each from the model.
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Table 4 shows the results. For all three normalizations, the parameter estimates are

centered near the true values of the parameters. For the factors that play the biggest role

in pricing the returns in the model (the pseudo Rm-Rf and HML factors) the parameters

are statistically signi�cant in almost all samples. They b parameter associated with the

pseudo-SMB factor is usually not signi�cant, consistent with it playing a very small role in

pricing the returns. The R2 associated with the model is usually large, and the test of the

overidentifying restrictions usually does not reject the model.

Some di¤erences across normalizations emerge. For example, after the initial GMM stage,

the distribution of b̂� (the A-normalization), drifts slightly away from the true values in that

the median estimates of the coe¢ cients on Rm-Rf and HML are closer to the true values of

b� than they are to the true values of b�. Also, the R2 associated with the A-normalization

tends to be lower than for the other cases. Also, the slope coe¢ cients associated with

Rm-Rf are less often statistically signi�cant for the TP-normalization than for the other

cases. The test of the overidentifying restrictions has slightly excessive size with the M and

TP-normalizations, with the opposite being true for the A-normalization. I �nd that these

features of the simulations are much harder to discern if the sample size is increased to 1000.

6.3 Estimating a Pseudo-CAPM

Table 5 shows results for a second set of experiments in which I use the same data generating

process, but the model being estimated uses only the �rst factor, the pseudo-Rm-Rf or

CAPM factor. Since the model is misspeci�ed, and since the pseudo-HML factor plays an

important role in pricing the assets, we expect the estimated model �t to be less that perfect,

and that the model should be rejected in large samples. As Table 5 indicates, even in samples

as small as 240, the model is usually rejected at conventional signi�cance levels, and the R2

measure of �t is usually negative, regardless of the normalization.

One di¤erence across normalizations emerges. For the A and M-normalizations the slope

coe¢ cient associated with the CAPM factor is usually positive and statistically signi�cant,

whereas for the TP-normalization this is not the case. This di¤erence, while narrowing (in

terms of percentages), persists in larger samples of 1000 observations. What explains this

�nding? GMM with the A and M-normalizations is akin to running a regression with factor

betas on the right-hand side and average returns on the left-hand side, but no constant

included in the regression. Given that the betas are all positive and the average returns are
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all positive, the estimated regression line will tend to have a positive slope given that it has

to go through the origin. However, when the regression line is �tted with a constant (as is

the case with the TP-normalization) the signi�cance of the slope coe¢ cient now relies on

whether the betas actually line up with the average returns. There is only a weak tendency

of the betas with respect to the pseudo-CAPM factor to line up in the right way, so including

a constant pricing error in the model tends to weaken the signi�cance of the slope coe¢ cient

in the TP-normalization.

6.4 Estimating a Model with a Single, Spurious Factor

Table 6 shows results for a third set of experiments in which I use the same data generating

process, but the model being estimated uses a single, completely spurious factor. I generate

the proposed risk factor x2t = �x2 + u2t, where �x2 is equal to the sample mean of quarterly

US consumption growth in the period 1949Q1�2008Q4, and u2t � Niid(0; �2u2) with �
2
u2

equal to the sample variance of US consumption growth over the same period. Unlike

actual consumption growth and the FF25 portfolio returns, this series is uncorrelated, by

construction, with the simulated returns.

In this case, the three normalizations behave very di¤erently. For the A-normalization

the distribution of the estimates of b� lies completely to the right of zero, b̂� is almost always

statistically signi�cant, the model�s R2 is often very high (especially at the �rst GMM stage),

and the model is rarely rejected (especially at the second GMM stage).

In contrast, for the M and TP-normalizations, the distribution of the estimates of b�

are centered roughly at zero, and are statistically signi�cant much less often than for the

A-normalization. The model�s R2 is usually negative. Interestingly, the test of the over-

identifying restrictions is quite weak at the second GMM stage, but is quite successful in

rejecting the model at later GMM stages. The contrast between the raw and demeaned

normalizations becomes sharper if the sample size is increased to 1000.

6.5 Estimating a Pseudo�CCAPM

Table 7 shows results for a fourth set of experiments in which I use the same data generating

process, but I estimated a model based on a pseudo-CCAPM factor. I generate the proposed

risk factor, denoted x3t, as follows:

x3t = �x3 + c�
0��1R (Ret � �R) + u3t;
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where c is a scalar, � is an n � 1 vector of ones, and u3t � Niid(0; �2u3) is independent of

Ret and u1t. I set �x3 equal to the sample mean of quarterly US consumption growth in the

period 1949Q1�2008Q4. I set c equal to the cross-sectional average of the sample covariance

between US consumption growth and the FF25 returns over the same period. I set �2u3 so

that the variance of x3t equals the sample variance of US consumption growth over the same

period.

As Table 7 indicates, in samples of 240 observations, the A-normalization provides mis-

leading inference about the model. The estimates of b� are positive and statistically signi�-

cant in nearly every sample. This is not unexpected. After all, x2t is a relevant factor in that

it is correlated with Ret . But the model also has good �t in many samples, with the median

R2 being 0:74 and 0:55 and 0:51 at the �rst, second and �fth stages of GMM. Additionally,

the test of the pricing errors leads to rejection at the 5 percent level in only about 20 percent

of the samples.

A very di¤erent picture emerges when the model is estimated using the M-normalization.

Here b̂� is usually positive and statistically signi�cant, re�ecting the fact that the pseudo-

CAPM factor is correlated with the returns. The �t of the model, on the other hand is quite

poor with the R2 being very low. Interestingly, the model is not rejected that often at the

second GMM stage, but the test of the pricing errors becomes more powerful with further

iterations on the GMM weighting matrix.

The TP-normalization presents yet another view of the model. Here the distribution

of b̂� is centered roughly at zero, and b̂� is rarely statistically signi�cant. This re�ects the

inclusion of the constant pricing error in the TP-normalization. With this constant included

in the model, the fact that there is no spread among the factor covariances means that there

is nothing left for the factor to price. The �t of the model is generally poor, but as was

the case with the M-normalization, the model is not rejected that often at the second GMM

stage, but the test of the pricing errors becomes more powerful with further iterations on

the GMM weighting matrix. I �nd that the performance of the pricing error test improves

dramatically in large samples. When the sample size in the simulations increases to 1000,

the model is rejected in nearly every case, regardless of which normalization is adopted.
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6.6 Estimating a Pseudo�Durables-CCAPM

Table 8 shows results for a �fth set of experiments in which I use the same data generating

process, but estimate a two-factor pseudo-Durables-CCAPM model. The �rst factor is x3t,

de�ned above. The second factor is x4t = �x4 + u4t where u4t � Niid(0; �2u4) is independent
of Ret , u1t and u3t. I set �x4 and �

2
u4, respectively, equal to the sample mean and variance of

US durables growth over the period 1949Q1�2008Q4.

The results for the A-normalization follow the predictions of Theorem 4. The estimates of

b�2, the coe¢ cient on the spurious factor, are nearly always found to be statistically signi�cant.

In contrast, the estimates of b�1, the coe¢ cient on the more relevant factor, is less often found

to be signi�cant. The cross-sectional R2 measures tend to be very high and the test of the

over-identifying restrictions rarely leads to the model being rejected. These features of the

A-normalization sharpen in larger samples.

The M and TP-normalizations paint a very di¤erent picture. For these normalizations,

estimates of the slope coe¢ cient on the durables factor are centered around zero, and are

rarely statistically signi�cant. The model�s R2 is usually quite low. But at the second stage

of GMM, for both of these normalizations, the model is usually not rejected. It is only

with further iterations of the weighting matrix that the model is rejected with reasonable

frequency. These features of the M and TP-normalizations persist in larger samples because

b�2 is not identi�ed asymptotically.

6.7 Tests for Identi�cation

The results presented above show that the three normalizations lead to similar conclusions

when the model being tested is the true model and all three of the normalizations are identi-

�ed. But very di¤erent results emerge across normalizations when the model is misspeci�ed,

and one or more of the normalizations is not identi�ed. Some normalizations tend to shed

positive light on misspeci�ed model when they are under-identi�ed. This suggests that tests

for lack of identi�cation might be useful in guiding inference. A natural question is whether

the tests I proposed above perform well in repeated samples.

The L(r) statistic is used to test the null hypothesis that the rank of a matrix is r, with

r being less than the number of columns in the matrix. If the L(r) statistic does not exceed

its 5 or 10 percent critical value, I state that �lack of identi�cation was detected�. If the

opposite is true, I state that �lack of identi�cation was not detected�. The strength of the
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test obviously depends on which critical value is used. Given the data generating processes

used in the simulations, Table 9 summarizes the identi�cation of each normalization in each

of the 5 cases that were analyzed above. It also indicates the frequency with which, across

simulations, the rank tests correctly assess the identi�cation of the model.

In samples of 240 observations the tests perform quite well, with one exception. When

the true model is estimated, all three of the normalizations are asymptotically identi�ed, and

the tests always conclude that the model is identi�ed. The next model is the pseudo-CAPM,

where only the �rst factor from the true model is included in the estimated SDF. In this

case, even though the model is misspeci�ed, it is identi�ed for all normalizations because the

covariances between the pseudo-CAPM factor and the returns are non-zero, and vary across

assets. Once again, the rank tests always lead to the conclusion that the model is identi�ed.

When the estimated model consists of a single spurious factor, only the A-normalization

is identi�ed. When 5 percent critical values are used, the testing procedure I described above

correctly assesses the identi�cation of the A-normalization in 72:2 percent of the samples,

and the non-identi�cation of the M and TP-normalizations in roughly 88 percent of the

samples.

When the estimated model is the pseudo-CCAPM, the A and M-normalizations are

identi�ed, but the TP-normalization is not. The testing procedure correctly assesses the

identi�cation of the A and M-normalizations in 99:4 and 81:3 percent of the samples, and

the non-identi�cation of the TP-normalization in 88:5 percent of the samples.

When the estimated model is the pseudo-Durables CCAPM, the A-normalization is iden-

ti�ed, but the M and TP-normalizations are not. This is the one case where the rank tests

does not work as well. It only concludes that the A-normalization is identi�ed in 26:2 percent

of the samples. It correctly assesses the non-identi�cation of the M and TP-normalizations

in 94:1 and 99:3 percent of the samples.

The performance of the tests is as expected if the 10 percent critical value is adopted.

This makes it more likely that the null hypothesis of non-identi�cation will be rejected. As

Table 9 also indicates, the tests become more accurate in larger samples. The size of the

tests approaches asymptotic size.

Tests based on covariances appear, in general, to be more powerful than tests based on

betas, in that across simulations beta-based tests are more likely to conclude in favor of

identi�cation.
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While tests of the rank conditions are not entirely reliable (given the one example of

the A-normalization in samples of 240 observations), tests of the rank condition for the TP-

normalization seem to work very well, and are conservative, in that size tends to exceed

asymptotic size in small samples. So reduced rank is rejected less often than it should be

in �nite samples. Failure of the rank condition for the TP-normalization is indicative of

a problem with the proposed SDF, because it suggests the presence of a factor, or linear

combination of factors, for which there is no spread in the covariances. At a minimum, in

this case, a lower-dimensional model should be adopted.

7 Alternative Approaches to Addressing Lack of Iden-
ti�cation

7.1 Working with Gross Returns

At �rst glance, it might seem that the solution to the identi�cation problems highlighted

here would be to work with gross returns. While excess returns are often used in practice,

working with gross returns is equally feasible, and certainly dispenses with the need to adopt

a normalization. The moment conditions used to estimate the model become

E [Rt(a� f 0tb)] = �; (24)

where Rt = Ret +R
f
t �, where R

f
t is the gross risk free rate between periods t� 1 and t.

Working with gross returns does not make the problem of identi�cation go away. To see

this, consider the gradient of (24) with respect to a and b, which is the n� (k + 1) matrix

G =
�
E(Rt) �E(Rtf 0t)

�
:

This matrix must have rank k+1 for a and b to both be identi�ed. This can only be true if

cov(Rt; ft) has full column rank. To see this, notice that G is

G =
�
E(Rt) �E(Rt)E(ft)0 � cov(Rt; ft)

�
:

Let x+ =
�
x0 x0

�0
, where x0 is a scalar and x is a k � 1 vector. Then

Gx+ = E(Rt) [x0 � E(ft)0x]� cov(Rt; ft)x:

If cov(Rt; ft) has less than full column rank, then there exists a non-zero x such that

cov(Rt; ft)x = 0. It follows that by setting x0 = E(ft)
0x there is a non-zero x+ such that
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Gx+ = 0, in which case a and b are not identi�ed. A researcher working with gross returns

cannot be unconcerned with identi�cation. The only di¤erence is that the rank condition

associated with the gross returns case is di¤erent from the one associated with excess returns,

since the former requires that cov(Rt; ft) has full column rank, while the latter requires that

cov(Ret ; ft) has full column rank.
8

Alternatively, a researcher might de�ne mt = a � f 0tb, and use the moment conditions
E(Retmt) = 0 and E(qt�1) = E(mt) to estimate a and b. Here qt is the price of a risk free

asset at time t. For this case, the gradient of the moment conditions with respect to a and

b is

G =

�
E(Ret ) �E(Retf 0t)
1 �E(ft)0

�
:

Let x+ =
�
x0 x0

�0
, where x0 is a scalar and x is a k � 1 vector. Then

Gx+ =

�
E(Ret ) [x0 � E(ft)0x]� cov(Ret ; ft)x

x0 � E(ft)0x

�
:

If cov(Ret ; ft) has less than full column rank, then there exists a non-zero x such that

cov(Ret ; ft)x = 0. It follows that by setting x0 = E(ft)
0x there is a non-zero x+ such

that Gx+ = 0, in which case a and b are not identi�ed. Here, identi�cation fails under the

same circumstances that it fails for the M-normalization.

7.2 Examining Betas over Subsamples

A less formal procedure than a rank test is sometimes used by researchers concerned about

spurious factors. This involves examining factor betas over subsamples, looking for changes

of sign. There are at least three problems with this procedure. First, it cannot address the

possibility that identi�cation fails due to colinearity among the betas across factors. Second,

it does not address the issue of lack of spread among the betas. Third, while it is a reasonable

procedure for detecting a purely spurious factor, which leads to non-identi�cation, it is not

obvious that it will work under weak identi�cation [see Section 5.6]. In the latter case,

estimated betas may converge to zero asymptotically with few or no sign switches.

8Of course, cov(Rt; ft) = cov(Ret ; ft) + � cov(R
f
t ; ft). This means that if cov(R

e
t ; ft) has rank k � 1,

cov(Rt; ft) has full column rank as long as cov(R
f
t ; ft)x 6= 0 for the x such that cov(Ret ; ft)x = 0. If

cov(Ret ; ft) has rank k � 2 or less, then cov(Rt; ft) is also of reduced rank.
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8 Conclusion

When excess returns are used to estimate linear SDFs, GMM estimation requires that a

normalization of the SDF should be adopted. Three standard normalizations of the SDF,

one using raw factors, one using demeaned factors, and one using demeaned factors with the

addition of a common pricing error parameter, are equivalent when they are used to repre-

sent the true SDF. The conditions under which the parameters of these normalizations are

identi�ed are, however, di¤erent. As we have seen, the conditions for identi�cation amount

to rank conditions on covariance or raw cross-moment matrices. These rank conditions can

fail for one or more of the normalizations but not for others.

In practice, the di¤erent normalizations can lead to very di¤erent qualitative inferences

about the model. Estimates of the slope coe¢ cients of the SDF can di¤er wildly in terms of

statistical signi�cance, measures of �t can di¤er dramatically, and tests of over-identifying

restrictions can di¤er sharply in outcome. Here this has been demonstrated for simple

consumption-based models. Using asymptotic theory and Monte Carlo simulations, I have

presented evidence that the lack of robustness in qualitative inference across normalizations

can be attributed to model misspeci�cation along with identi�cation problems for some, and

in some cases all, of the normalizations.

The concrete message of this paper is that researchers can easily check their models for

identi�cation using tests of rank conditions. Monte Carlo evidence suggests that these tests

are powerful in detecting failure of the rank conditions. When identi�cation problems seem

to be present, researchers should be cautious in conducting inference.
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TABLE 1: Tests for Failure of Rank Conditions (p-values)

Test of . . .

Number of A) B) C)

factors rank[cov(Re, f)] = k − 1 rank[E(Ref ′)] rank[ι cov(Re, f)] = k

Model (k) Covariance test Beta test = k − 1 Covariance test Beta tests

CAPM 1 0.000 0.000 0.000 0.000 0.000
Fama-French 3 factors 3 0.000 0.000 0.000 0.001 0.000

CCAPM 1 0.036 0.002 0.000 0.241 0.018
Durables-CCAPM 2 0.977 0.518 0.014 0.968 0.509
Yogo (2006) 3 0.852 0.995 0.558 0.819 0.993
Lettau and Ludvigson (2001) 3 0.675 0.000 0.376 0.686 0.001
Jagannathan and Wang (2007) 1 0.000 0.000 0.000 0.000 0.000

Lustig and Verdelhan (2007) 3 0.732 0.657 0.790 0.783 0.699
Currency portfolios, CCAPM 1 0.869 0.876 0.000 0.871 0.773

Note: The table presents results from testing the rank conditions associated with each of the normalizations. The p-value associated with the null
hypothesis of reduced rank (non-identification) is shown. The tests in panel A are relevant for the M-normalization, for which factors are demeaned.
Tests based on the covariance matrix, cov(Re, f), and the matrix of factor betas are shown. The tests in panel B are relevant for the A-normalization,
for which raw risk factor are used. The tests in panel C are relevant for the TP-normalization, which uses demeaned risk factors and a common pricing
error across moment conditions. Results are presented for nine models. For the first seven cases, the asset returns studied are the real quarterly excess
returns to the Fama and French (1993) 25 portfolios sorted on the basis of size and book-to-market value (FF25 portfolios). The CAPM case uses
these returns and the market excess return (CAPM) as a risk factor. The Fama-French 3 factor case uses the FF25 returns, and the three Fama and
French (1993) risk factors: the market excess return, the SMB factor and the HML factor. The CCAPM case uses the FF25 returns and consumption
growth as a risk factor. The Durables-CCAPM case uses the FF25 returns and consumption and durables growth as risk factors. The Yogo (2006)
case uses the FF25 returns, and consumption growth, diurables growth, and the market returns as risk factors. The Lettau and Ludvigson (2001)
case uses the FF25 returns, consumption growth, cay, and the product of consumption growth and cay as risk factors. The Jagannathan and Wang
(2007) case uses the FF25 returns on an annual basis and Q4-Q4 consumption growth as the risk factor. The Lustig and Verdelhan (2007) case uses
eight currency portfolios sorted by interest rate differential versus the US, and the risk factors from Yogo (2006), all at the annual frequency. The
currency portfolios CCAPM case uses five currency portfolios sorted by interest rate differential versus the US, at the quarterly frequency, and uses
consumption growth as the risk factor. Details of all data sets are provided in Appendix C.
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TABLE 2: GMM Estimates of the CCAPM Model

First Stage Second Stage Fifth Stage

Factor b R2 b R2 J b R2 J

A-Normalization (b∗)

Consumption growth 114.0
(23.2)

0.75 137.1
(10.1)

0.14 31.0
(0.153)

140.7
(11.1)

−0.07 28.1
(0.254)

M-Normalization (b�)

Consumption growth 245.9
(111.3)

−0.25 131.7
(54..6)

−3.24 44.2
(0.007)

100.1
(37.5)

−5.12 67.7
(0.000)

TP-Normalization (α and b�)

Pricing error (α) 1.67
(0.63)

0.06 2.16
(0.42)

−0.23 52.8
(0.000)

2.25
(0.41)

−0.29 54.2
(0.000)

Consumption growth 76.1
(79.0)

59.0
(36.6)

53.1
(35.5)

Note: Quarterly data, 1949—2008. The table reports first, second and fifth stage GMM estimates, obtained using the moment restriction E(Retmt) = 0,
where Ret is a 25 × 1 vector of excess returns of the Fama-French 25 portfolios of US stocks sorted on size and the book-to-market value ratio, and
mt is the SDF. For the A-normalization the SDF is mt = 1 − ftb

∗, where ft is real per capita consumption (nondurables & services) growth. For
the M-normalization the SDF is mt = 1 − (ft − µ)b�. For the TP-normalization the SDF is mt = 1 − (ft − µ)b� and the moment condition used is
E(Retmt − α) = 0. GMM-VARHAC standard errors are reported in parentheses for b̂∗, b̂� and α̂. The table reports the R2 measure of cross-sectional
fit between the sample mean of Ret and the model predicted mean returns defined in the text. Tests of the overidentifying restrictions are also reported.
The test statistic, J , is presented along with the associated p-value in parentheses.
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TABLE 3: GMM Estimates of the Durables-CCAPM Model

First Stage Second Stage Fifth Stage

Factor b R2 b R2 J b R2 J

A-Normalization (b∗)

Consumption growth 42.2
(30.3)

0.98 46.7
(13.7)

0.98 17.5
(0.782)

50.5
(13.3)

0.98 18.4
(0.735)

Durables growth 71.1
(19.7)

66.2
(8.6)

63.7
(8.2)

M-Normalization (b�)

Consumption growth 299.2
(149.2)

−0.16 73.1
(78.1)

−7.56 16.9
(0.815)

90.4
(39.8)

−6.89 57.1
(0.000)

Durables growth 149.7
(164.3)

16.7
(68.5)

43.1
(37.1)

TP-Normalization (α and b�)

Pricing error (α) 1.70
(0.98)

0.16 1.17
(0.67)

−3.16 15.8
(0.826)

1.95
(0.43)

0.07 45.5
(0.002)

Consumption growth 129.7
(103.3)

24.0
(59.2)

51.3
(38.3)

Durables growth 160.3
(129.9)

46.3
(48.6)

41.9
(34.9)

Note: Quarterly data, 1949—2008. The table reports first, second and fifth stage GMM estimates, obtained using the moment restriction E(Retmt) = 0,
where Ret is a 25 × 1 vector of excess returns of the Fama-French 25 portfolios of US stocks sorted on size and the book-to-market value ratio, and
mt is the SDF. For the A-normalization the SDF is mt = 1− f ′tb∗, where ft is a 2× 1 vector containing real per capita consumption (nondurables &
services) growth, and durable consumption growth. For the M-normalization the SDF is mt = 1− (ft − µ)′b�. For the TP-normalization the SDF is
mt = 1− (ft − µ)′b� and the moment condition used is E(Retmt −α) = 0. GMM-VARHAC standard errors are reported in parentheses for b̂∗, b̂� and
α̂. The table reports the R2 measure of cross-sectional fit between the sample mean of Ret and the model predicted mean returns defined in the text.
Tests of the overidentifying restrictions are also reported. The test statistic, J , is presented along with the associated p-value in parentheses.
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TABLE 4: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the True Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at
5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

b∗1 2.02 3.39 4.72 99.0 97.9 2.27 3.80 5.25 99.6 99.2 2.31 3.87 5.38 99.7 99.3
b∗2 -2.14 0.07 2.24 11.2 5.8 -2.33 0.11 2.51 17.6 10.7 -2.40 0.13 2.61 19.2 12.0
b∗3 3.86 5.68 7.42 99.9 99.8 4.36 6.35 8.26 100 99.9 4.45 6.47 8.44 100 99.9
R2 0.84 0.94 0.98 -0.35 0.69 0.94 -1.07 0.60 0.93
J 13.1 21.8 33.2 9.3 3.9 13.1 21.7 33.0 8.7 3.7

M-Normalization

b�1 2.26 3.90 5.75 98.9 97.6 2.24 3.90 5.78 99.3 98.0 2.25 3.91 5.83 99.3 98.1
b�2 -2.45 0.09 2.61 10.1 5.0 -2.47 0.08 2.59 12.4 6.4 -2.49 0.09 2.63 12.9 6.7
b�3 4.22 6.53 9.11 99.9 99.8 4.21 6.53 9.17 99.9 99.8 4.22 6.56 9.24 99.9 99.8
R2 0.81 0.92 0.97 0.53 0.86 0.95 0.42 0.85 0.95
J 13.4 22.8 35.6 13.8 7.4 13.4 22.7 35.6 13.8 7.3

FM-Normalization

b�1 0.23 3.34 6.93 50.0 35.8 0.55 3.20 6.23 62.9 50.7 0.50 3.20 6.27 63.4 51.4
b�2 -2.65 0.37 3.27 10.3 5.2 -2.37 0.48 3.25 13.1 7.2 -2.38 0.50 3.27 13.6 7.5
b�3 3.81 6.27 9.13 99.4 98.7 3.81 6.22 9.04 99.7 99.2 3.82 6.25 9.11 99.7 99.2
R2 0.82 0.93 0.97 0.56 0.87 0.95 0.50 0.86 0.95
J 12.4 21.5 34.2 13.0 7.0 12.4 21.6 34.3 13.5 7.5

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 240. The true risk factors, ft ∼ Niid(µ,Σf ) with µ and Σf
equal to the sample mean and covariance matrix of the Fama-French factors (1949Q1—2008Q4). The SDF is given by mt = a− f ′tb, with a = 1.1404
b = ( 3.85 0.06 6.46 )′. I generate Ret = µR + β(ft − µ) + Ψξt, where µR is a 25× 1 vector, β is an 25× 3 matrix, Ψ is a 25× 25 lower triangular
matrix, and ξt ∼ Niid(0, In) and is independent of ft. The elements of β and Ψ are set so that the model-implied var(Ret ) and cov(Ret , ft) are equal
to their sample equivalents for the FF25 portfolios and Fama-French factors (1949Q1—2008Q4). The vector µR is set to ensure that E(Retmt) = 0.
The model is estimated by GMM using the A, M and TP-normalizations.
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TABLE 5: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the Pseudo-CAPM Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at
5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

b∗ 1.76 3.02 4.28 98.3 96.7 1.90 3.42 4.90 98.8 97.9 1.93 3.61 5.20 98.8 97.8
R2 -0.94 -0.35 0.13 -2.55 -0.61 0.02 -4.63 -0.85 -0.02
J 28.9 42.8 58.8 86.8 76.5 28.8 42.5 58.0 86.6 75.9

M-Normalization

b� 1.78 3.17 4.76 98.2 96.2 1.36 2.66 4.21 95.6 90.9 1.26 2.57 4.13 94.3 89.2
R2 -1.21 -0.49 0.00 -1.89 -0.90 -0.35 -2.15 -1.06 -0.44
J 29.3 43.9 60.9 88.1 79.1 29.6 44.4 61.5 88.9 80.4

FM-Normalization

b� -3.32 -0.66 1.94 13.5 7.1 -1.34 0.64 2.63 17.2 10.2 -1.04 0.92 2.96 22.7 14.6
R2 0.00 0.05 0.34 -1.20 -0.67 -0.07 -1.78 -0.98 -0.25
J 27.1 40.8 57.5 84.1 73.7 27.0 40.9 57.7 84.2 73.8

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 240. The returns and true risk factors are the same as in
Table 4. The estimated model uses the pseudo-CAPM factor as a single factor. It is defined as the first of the three true risk factors. The model is
estimated by GMM using the A, M and TP-normalizations.
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TABLE 6: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of a Spurious Factor Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at
5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

b∗ 135 200 326 98.2 96.3 114 142 175 99.6 99.3 109 137 169 100 100
R2 -0.67 0.78 0.94 —6.99 -0.45 0.83 -7.61 -0.67 0.81
J 6.9 16.4 29.7 2.3 0.9 16.6 27.6 41.0 23.2 12.8

M-Normalization

b� -1135 4.6 1170 11.5 4.1 -129 0.6 131 4.5 2.5 -115 -0.1 117 32.5 23.1
R2 -21.4 -3.65 0.04 -35.0 -13.2 -3.26 -35.7 -13.6 -3.6
J 1.7 6.7 32.5 4.7 3.8 31.4 48.1 66.4 92.5 87.1

FM-Normalization

b� -346 5.0 351 31.7 14.9 -114 0.0 116 17.0 9.2 -104 0.0 107 26.3 17.4
R2 0.00 0.13 0.61 -6.79 -1.71 0.02 -8.38 -2.25 -0.02
J 10.3 27.1 49.0 36.6 28.5 24.3 38.9 56.2 77.5 65.2

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 240. The returns and true risk factors are the same as
in Table 4. The estimated model uses a single spurious factor. I generate the factor as x2t = µx2 + u2t, where µx2 is equal to the sample mean of
quarterly US consumption growth in the period 1949Q1—2008Q4, and u2t ∼ Niid(0, σ2u2) with σ

2
u2 equal to the sample variance of US consumption

growth over the same period. The model is estimated by GMM using the A, M and TP-normalizations.
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TABLE 7: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the Pseudo-CCAPM Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at
5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

b∗ 80.6 115 156 99.8 99.6 91.0 112 135 100 100 90.4 112 135 100 100
R2 0.42 0.74 0.91 -0.91 0.55 0.85 -1.24 0.51 0.85
J 18.9 29.9 42.6 32.7 18.9 19.9 31.0 43.6 37.6 23.0

M-Normalization

b� 123 249 526 87.6 70.9 23.2 89.3 162 58.6 45.0 9.04 74.4 149 73.6 64.9
R2 -3.22 -0.28 0.43 -20.8 -6.10 -0.49 -22.3 —7.3 -0.70
J 8.9 22.8 41.4 16.7 10.5 26.7 43.5 62.4 84.2 75.4

FM-Normalization

b� -349 3.7 352 31.8 14.2 -112 -0.50 116 16.0 8.9 -102 -0.78 105 25.4 16.8
R2 0.00 0.13 0.61 -6.94 -1.70 0.02 -8.48 -2.23 -0.01
J 10.3 27.0 49.5 36.7 28.8 24.2 39.1 56.1 77.4 65.9

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 240. The returns and true risk factors are the same as
in Table 4. The estimated model uses the pseudo-CCAPM factor as a single factor. It is defined as x3t = µx3 + cι′Σ−1R (Ret − µR) + u3t, where c is
a scalar, ι is an n × 1 vector of ones, and u3t ∼ Niid(0, σ2u3) is independent of R

e
t and u1t, where µx3 is set equal to the sample mean of quarterly

US consumption growth in the period 1949Q1—2008Q4, c is set equal to the cross-sectional average of the sample covariance between US consumption
growth and the FF25 returns over the same period, and σ2u3 is set so that the variance of x3t equals the sample variance of US consumption growth
over the same period. The model is estimated by GMM using the A, M and TP-normalizations.
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TABLE 8: Monte Carlo Experiments with Artificial Quarterly Data; Estimation of the Pseudo-Durables-CCAPM Model

GMM Stage 1 GMM Stage 2 GMM Stage 5

Percentiles Percent Significant at Percentiles Percent Significant at Percentiles Percent Significant at
5 50 95 10% level 5% level 5 50 95 10% level 5% level 5 50 95 10% level 5% level

A-Normalization

b∗1 -28.1 20.7 68.3 21.9 14.3 5.5 29.5 53.1 69.0 60.0 6.7 30.6 54.3 77.7 70.0
b∗2 47.4 80.8 114 96.7 95.0 55.1 71.4 87.9 100 100 53.8 70.3 86.6 100 100
R2 0.87 0.97 0.99 0.41 0.90 0.98 0.25 0.88 0.98
J 11.0 19.7 30.9 3.6 1.5 14.3 23.3 34.8 10.0 4.6

M-Normalization

b�1 64.7 222 457 64.9 49.5 10.1 83.9 160 42.6 30.0 4.7 74.5 152 70.3 60.8
b�2 -423 -7.2 409 17.4 7.1 -114 -0.6 111 8.4 4.2 -107 -1.1 102 27.1 18.6
R2 -1.76 0.02 0.63 -20.0 -5.77 -0.33 -21.3 -6.6 -0.5
J 5.8 15.9 32.7 5.7 3.3 23.0 39.6 58.8 76.3 66.0

FM-Normalization

b�1 -344 2.8 345 25.1 10.8 -113 0.9 117 9.7 4.7 -107 -0.3 109 24.3 15.8
b�2 -323 -4.9 314 25.5 11.5 -108 -0.9 106 9.8 4.8 -101 -1.0 98.5 24.4 16.2
R2 0.04 0.36 0.74 -7.18 -1.61 0.15 -8.23 -1.97 0.09
J 7.4 16.8 37.2 11.7 8.0 20.8 35.5 52.8 68.8 56.5

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 240. The returns and true risk factors are the same as in
Table 4. The estimated model uses x3t and x4t as risk factors, where x3t is the pseudo-CCAPM factor defined in Table 7 and x4t = µx4 + u4t, where
u4t ∼ Niid(0, σ2u4) is independent of R

e
t and u1t and u3t, µx4 is set equal to the sample mean of quarterly US durable consumption growth in the

period 1949Q1—2008Q4, and σ2u4 is set equal to the sample variance of US durables growth over the same period. The model is estimated by GMM
using the A, M and TP-normalizations.
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TABLE 9: Performance of the Rank Tests in the Monte Carlo Experiments (percentage of samples in which the rank test correctly
determines matrix rank)

A-normalization M-normalization TP-normalization

Identified? D0-test Identified? d0-test β-test Identified? [ι d0]-test [ι β]-test

Using 5% Critical Values in Samples of 240 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100
Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100
Spurious factor model Yes 72.2 No 87.7 64.6 No 88.6 64.6
Pseudo C-CAPM model Yes 99.4 Yes 81.3 95.3 No 88.5 95.3
Pseudo Durables C-CAPM model Yes 26.2 No 94.1 76.0 No 99.3 76.0

Using 10% Critical Values in Samples of 240 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100
Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100
Spurious factor model Yes 81.6 No 79.5 54.8 No 80.4 54.8
Pseudo C-CAPM model Yes 99.8 Yes 88.5 97.2 No 80.6 97.2
Pseudo Durables C-CAPM model Yes 38.6 No 88.0 65.2 No 98.4 65.2

Using 5% Critical Values in Samples of 1000 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100
Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100
Spurious factor model Yes 100 No 93.0 89.0 No 93.0 89.0
Pseudo C-CAPM model Yes 100 Yes 100 100 No 93.0 100.0
Pseudo Durables C-CAPM model Yes 90.0 No 96.0 96.0 No 100 96.0

Using 10% Critical Values in Samples of 1000 Observations

True DGP Yes 100 Yes 100 100 Yes 100 100.0
Pseudo CAPM Yes 100 Yes 100 100 Yes 100 100.0
Spurious factor model Yes 100 No 84.0 81.0 No 85.0 81.0
Pseudo C-CAPM model Yes 100 Yes 100 100 No 91.0 100.0
Pseudo Durables C-CAPM model Yes 95.0 No 95.0 90.0 No 100 90.0

Note: The table summarizes the performance of the rank testing procedure across repeated samples. The model is declared "not-identified”k if the
null ypothsis of reduced rank is not rejected at the 5 or 10 percent critical values of the chi-squared distribution associated with the rank test statistics.
Otherwise the model is declared “identified”. The table reports whether each normalization is identified in population for the various factor models
studied in the Monte Carlo experiments. The table reports the percentage of samples in which the “identified”or “not-identified”declaration based
on the test statistic matches the limiting identification of the normalization.
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A Proofs and Other Details

A.1 Estimation of the TP Normalization

Using the n + k moment restrictions given by (9), b�, � and � are estimated using GMM.

De�ne u�1t(�; b
�; �) = Retm

�
t �� = Ret [1� (ft��)0b�]�� and let g�1T (�; b�; �) = 1

T

PT
t=1 u

�
1t =

�Re���
�
DT � �Re�0

�
b�. De�ne u�2t(�) = ft�� and let g�2T (�) = 1

T

PT
t=1 u

�
2t =

�f��. De�ne
u�t = ( u

�0
1t u�02t )

0 and g�T = ( g
�0
1T g�02T )

0. Let ~dT =
�
� dT

�
, where � is an n� 1 vector of

ones.

I consider GMM estimators that set ~a�Tg
�
T = 0, where ~a

�
T is a (2k + 1) � (n + k) matrix

and takes the form

~a�T =

�
~d0TW

�
T 0

0 Ik

�
; (A1)

and W �
T is an n� n positive de�nite weighting matrix. It follows that the GMM estimators

are �
�̂

b̂�

�
=

�
~d0TW

�
T
~dT

��1
~d0TW

�
T
�Re (A2)

�̂ = �f: (A3)

I consider multi-stage GMM estimators. In the �rst stage W �
T = In. In the jth subsequent

stage,W �
T = (PTS

�
TP

0
T )
�1 where PT = ( In �Re(b̂�j�1)

0 ), b̂�j represents the jth-stage estimator

of b� and S�T is a consistent estimator of S
�
0 =

P+1
j=�1E(u

�
tu
�0
t�j).

Let
~�
�
T =

�
� ~dT �Reb̂�0

0 �Ik

�
: (A4)

A test of the pricing errors is based on

~J� = TgT (�̂; b̂
�; �̂)0( ~V �g )

+gT (�̂; b̂
�; �̂); (A5)

where
~V �g =

~A�TS
�
T
~A�T

0 with ~A�T = In+k � ~�
�
T

�
~a�T
~�
�
T

��1
~a�T : (A6)

The cross-sectional R2 measure is

~R2� = 1�
( �Re � �̂� dT b̂�)0( �Re � �̂� dT b̂�)

( �Re � �Re)0( �Re � �Re)
: (A7)
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A.2 Proof of Theorem 1

The additional regularity conditions required for consistency are stated in Hansen�s Theorem

2.1. It follows from assumption 3 that a�T
a:s:! a�0 = D

0
0W

�
0 . De�ne h

�
0(b

�) = a�0[E(R
e)�D0b

�].

Given that D0 has full column rank and W �
0 is positive de�nite, the function h

�
0(b

�) has

a unique zero, b�z = (D0
0W

�
0D0)

�1D0
0W

�
0E(R

e). Since the model is true E(Re) = D0b
�
0.

Substituting this into the expression for b�z we have b
�
z = b

�
0. From Hansen�s (1982) Theorem

2.1, b̂� a:s:! b�0.

Similarly, it follows from assumption 3 that a�T
a:s:! a�0 with

a�0 =

�
d00W

�
0 0

0 Ik

�
:

De�ne

h�0(b
�; �) = a�0

�
E(Re)� d0b�
�0 � �

�
:

Given that d0 has full column rank and W �
0 is positive de�nite, the function h

�
0(b

�; �) has a

unique zero, b�z = (d
0
0W

�
0 d0)

�1 d00W
�
0E(R

e), �z = �0. Since the model is true E(R
e) = d0b

�
0.

Substituting this into the expression for b�z we have b
�
z = b

�
0. From Hansen�s (1982) Theorem

2.1, b̂� a:s:! b�0.

The matrices ��0 and �
�
0 have full column rank due to the properties of D0 and d0. It

follows from Hansen�s Theorem 3.1 that b̂� and �̂
�
have the asymptotic distributions stated

in the theorem.

The model-predicted expected returns are DT b̂
� and dT b̂�, respectively, for the two nor-

malizations. Given that results above these both converge almost surely to �R and, therefore,

we get the result that R2�
a:s:! 1 and R2�

a:s:! 1.

From the results above it follows that ��T
a:s:! ��0, �

�
T
a:s:! ��0, S

�
T
a:s:! S�0 and S

�
T
a:s:! S�0 . Also

A�T
a:s:! A�0 = In � ��0(a�0��0)�1a�0 and A�T

a:s:! A�0 = In+k � ��0(a�0��0)�1a�0. The results concerning
the asymptotic distributions of J� and J� follow from Hansen�s Lemma 4.1.�

A.3 Proof of Theorem 2

Since D0 has rank less than k, the function h�0(b
�) = a�0[E(R

e)�D0b
�], de�ned in the proof of

Theorem 1, does not have a unique zero. Instead any b� such that (D0
0W

�
0D0) b

� = D0
0W

�
0D0b

�
0

is a zero of h�0(b
�). This means that b�0 + x is a zero for any x in the nullspace of D

0
0W

�
0D0�

denotedN (D0
0W

�
0D0)� which is a non-empty set when rank(D0) < k. So b� is asymptotically

unidenti�ed.
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As in the proof of Theorem 1, the last k rows of the function h�0(b
�; �) have a unique

zero, �z = �0. However, because d0 has rank less than k, the �rst n rows of the function

h�0(b
�; �), which are d00W

�
0 [E(R

e)� d0b�], do not have a unique zero. Instead any b� such that
(d00W

�
0 d0) b

� = d00W
�
0 d0b

�
0 is a zero. This means that b

�
0+ x is a zero for any x 2 N (d00W �

0 d0),

which is a non-empty set when rank(d0) < k. So b� is asymptotically unidenti�ed.

The predicted expected returns from the A-normalization are DT b̂
�. Although b̂� is not

uniquely identi�ed asymptotically, it lies almost surely in the set B�0 = fbjb � b�0 = x; x 2
N (D0

0W
�
0D0)g. Since W �

0 is positive de�nite, any x 2 N (D0
0W

�
0D0) is in N (D0). Therefore

DT b̂
� a:s:! D0b

�
0 = �R. Therefore R

2
�
a:s:! 1. A similar result holds for R2�.�

A.4 Proof of Theorem 3

As in the proof to Theorem 1, a�T
a:s:! a�0 = D

0
0W

�
0 . Because D0 has full column rank and W �

0

is positive de�nite, the function h�0(b
�) has a unique zero, b�s = (D0

0W
�
0D0)

�1D0
0W

�
0E(R

e).

From Hansen�s (1982) Theorem 2.1, b̂� a:s:! b�s. Of course, since the model is false, b
�
s does not

have an interpretation as a �true�parameter value.

To get the expression for b�s in the statement of the theorem proceed as follows. Let x

be the unique element of N (d0) whose elements sum to 1 (all other elements of N (d0) are
proportional to x because d0 has rank k � 1). Let X = ( X1 x ) where X1 is a k � (k � 1)
matrix whose columns span the rowspace of d0, denoted R(d0) = N (d0)?. The columns of
X span Rk, by construction. De�ne ~b�s = X

�1b�s and let ~b
�
s1 denote the �rst k � 1 elements

of ~b�s and ~b
�
sk denote the kth element of ~b

�
s. It follows that

E(Re)�D0b
�
s = E(Re)�D0XX

�1b�s

= E(Re)�D0X~b
�
s

= E(Re)�D0X1
~b�s1 �D0x~b

�
sk

= E(Re)�D0X1
~b�s1 � [d0 + E(Re)E(f 0)]x~b�sk:

Since x 2 N (d0), d0x = 0, so we can write

E(Re)�D0b
�
s = E(R

e)
h
1� E(f 0)x~b�sk

i
�D0X1

~b�s1:

This means we can set E(Re) �D0b
�
s = 0 by choosing ~b

�
s1 = 0 and ~b

�
sk = 1=[E(f)

0x]. Since

b�s = X~b�s it follows that b
�
s = x=[x0�0]. By assumption x

0�0 cannot be zero, otherwise

rank[D0] < k and we also know that at least one element of x is non-zero, so this means at

least one element of b�s is non-zero. Since E(R
e) = D0b

�
s we also have R

2
�
a:s:! 1.
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As in the proof of Theorem 1, the last k rows of the function h�0(b
�; �) have a unique

zero, �z = �0. However, because d0 has rank less than k, the �rst n rows of the function

h�0(b
�; �), which are d00W

�
0 [E(R

e)� d0b�], do not have a unique zero. Instead any b� such
that (d00W

�
0 d0) b

� = d00W
�
0E(R

e) is a zero. Let b�z be a zero. This means that b
�
z + x is a

zero for any x in the nullspace of d00W
�
0 d0, which is a non-empty set because rank(d0) <

k. So b� is asymptotically unidenti�ed. Although there are arbitrarily many solutions to

d00W
�
0 [E(R

e)� d0b�] = 0, in general, there is no solution to E(Re)� d0b� = 0.�

A.5 Proof of Theorem 4

The matrix ��0 = D0 has full column rank. It follows from Hansen�s Theorem 3.1 that b̂� has

the asymptotic distribution stated in the theorem.

From the results above it follows that ��T
a:s:! ��0 and A

�
T

a:s:! A�0 = In � ��0(a�0��0)�1a�0,
however, the matrix S�T will not generally be a consistent estimator for S

�
s because it imposes

the restriction that E(u�tu
�0
t�j) = 0 for j 6= 0. This restriction only holds when the model is

true. Instead S�T
a:s:! V �s = E[u

�
t (b

�
s)u

�
t (b

�
s)
0].

This means that V̂ �g
a:s:! V �g = A�0V

�
s A

�0
0 . We also know

p
Tg�T (b̂

�)
d! N(0; V �g0) where

V �g0 = A
�
0S

�
sA

�0
0 . Diagonalize V

�
g as V

�
g = Pg�gP

0
g where the columns of Pg are the orthonormal

eigenvectors of V �g and �g is a diagonal matrix with the eigenvalues of V
�
g on the diagonal.

Diagonalize V �g0 as V
�
g0 = P0�0P

0
0. Let ~�g = �

+
g and ~�0 = �

+
0 . These are diagonal matrices

with zeros where �g and �0 have zeros, and whose non-zero elements are the inverses of the

non-zero elements of �g and �0.

From these results it follows that J� d! Z 0
Z, with Z =
p
T ~�

1=2
0 P 00g

�
T (b̂

�) and


 = �
1=2
0 P 00Pg

~�gP
0
gP0�

1=2
0 :

The vector Z converges in distribution to a vector of independent normal random variables,

the �rst n� k of which have unit variance and the last k of which have zero variance. The
matrix 
 can be diagonalized as 
 = P
�
P 0
. When V

�
s = S

�
s the �rst n � k eigenvalues

on the diagonal of �
 are ones while the rest are zeros. In this case J
d! �2n�k. In general,

however, V �s 6= S�s and these eigenvalues will not be 1, so that J�
d!
Pn�k

i=1 �
iz
2
i where �
1,

�
2, : : : , �
n�k are the nonzero eigenvalues of 
 and z1, z2, : : : , zn�k are mutually inde-

pendent standard normal random variables. Given the form of 
,
Qn�k
i=1 �
i =

Qn�k
i=1 �0i=�gi,

however, in general, �
i 6= �0i=�gi.�
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A.6 Proof of Theorem 5

Let Ret = �R + ut with E(utu
0
t) = �R, and ft = � + �t with E(�2t ) = �2f . The asymptotic

distribution of b̂� depends on the asymptotic distribution of dT = 1
T

PT
t=1R

e
t

�
ft � �f

�
. Scaling

dT by a factor of T
1
2 we have

T
1
2dT = T

� 1
2

TX
t=1

ut�t �
TX
t=1

�tT
� 1
2

TX
t=1

ut: (A8)

The �rst expression on the right hand side of (A8) converges in distribution to X �
N(0; �2f�u). The second expression converges in probability to 0. So T

1
2dT

d! X. Also,
�Re

p! �R.

At the �rst stage of GMM the weighting matrix is W �
T = In so we have T�

1
2 b̂� =

T
1
2d0T

�Re=(T
1
2d0TT

1
2dT ). It follows that T�

1
2 b̂�

d! Z = (X 0�R)=(X
0X). The t-statistic for

b̂� is t = b̂�=
p
V �b where V

�
b is the �rst element on the diagonal of

V �� = (a
�
T �

�
T )
�1a�TS

�
Ta

�0
T (�

�0
T a

�
T )
�1=T; (A9)

where a�T and �
�
T are de�ned in section 3.2 and S

�
T is a conventional estimate of the long-run

covariance of the GMM errors in the �rst stage, which are

û1t = Ret [1� (ft � �f)b̂�]

û2t = ft � �f:

Considerable algebra shows that at the �rst stage of GMM T�1V �b
d! �2fZ

2(X 0�RX)=(X
0X)2.

Hence t d! Z=
q
�2fZ

2(X 0�RX)=(X 0X)2 or (X 0�R)=[�
2
fZ

2(X 0�RX)]
1
2 . We also have

R2� = 1�
( �Re � dT b̂�)0( �Re � dT b̂�)�

�Re � ��0 �Re=n
�0 � �Re � ��0 �Re=n� = 1� �Re0Md

�Re

�Re0M�
�Re

where Md = I � dT (d0TdT )�1d0T and M� = In � ��0=n. So the R2 is

R2�
d! 1� �0RM�R

�0RM��R

where M = In �X(X 0X)�1X 0.

At the second stage of GMM the weighting matrix is W �
T = (PTS

�
TP

0
T )
�1 where PT =

( In �Re(b̂�)0 ). Considerable algebra shows that TW �
T

d! W = ��1R =(�
2
fZ

2). We have

T�
1
2 b̂� = T

1
2d0T (TWT ) �R

e=(T
1
2d0T (TWT )T

1
2dT ). It follows that T�

1
2 b̂�

d! ~Z = (X 0W�R)=(X
0WX) =
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(X 0��1R �R)=(X
0��1R X). The t-statistic for b̂

� is t = b̂�=
p
V �b where V

�
b is again the �rst ele-

ment on the diagonal of V �� , and V
�
� is given by (A9). In this case, however, the matrix a

�
T de-

pends on the weighting matrix and takes a form such that T�1V �b
d! �2fZ

2(X 0W�RWX)=(X
0WX)2

or �2fZ
2=(X 0��1R X). Hence t

d! ~Z=[�2fZ
2=(X 0��1R X)]

1
2 or (X 0��1R �R)=[�

2
fZ

2(X 0��1R X)]
1
2 .

We also have

R2� = 1�
�Re0 ~M 0

d
~Md
�Re

�Re0M�
�Re

where ~Md = I � dT (d0TWTdT )
�1d0TWT . So the R2 is

R2�
d! 1� �

0
R
~M 0 ~M�R

�0RM��R

where ~M = In �X(X 0WX)�1X 0W = In �X(X 0��1R X)
�1X 0��1R . The test statistic for the

over-identifying restrictions is J = T ( �Re � dT b̂)0WT ( �R
e � dT b̂) = T �Re0 ~M 0

dWT
~Md
�Re. Hence

J
d! �0R

~M 0W ~M�R = �
0
R
~M 0��1u

~M�R=(�
2
fZ

2).�

A.7 Proof of Theorem 6

As in the proof to Theorem 3, b̂� a:s:! b�s = (D
0
0W

�
0D0)

�1D0
0W

�
0E(R

e). Given the assumption

that there exists a unique k�1 vector x whose elements sum to 1, such that cov(Ret ; f 0tx) = �c
it follows that D0x = �c+ E(R

e)�0x. Hence

E(Re) =
D0x� �c
�0x

:

and

b�s =
1

�0x
(x� ��Dc):

and

��D = (D
0
0W

�
0D0)

�1
(D0

0W
�
0 �) :

The predicted expected returns are DT b̂
� a:s:! D0b

�
s and

D0b
�
s = E(R

e) + (��D0��D)
c

�0x

Notice that limc!0 b
�
s = x=(�

0x) and limc!0D0b
�
s = E(R

e).�

A.8 Estimating Long-Run Covariance Matrices

A.8.1 The A-Normalization

As stated in section 4, I de�ne S�T =
1
T

PT
t=1 û

�
t û
�0
t when estimating the standard errors of

b̂� and testing the over-identifying restrictions of the model. This is a consistent estimate of

S�0 when the model is true because E[u
�
t (b

�
0)u

�
t�j(b

�
0)
0] = 0 for j 6= 0.
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When conducting inference about the price of risk we need an estimate of ~S�0 . Since

û�t (�0; &f0) is not necessarily orthogonal to lagged information the simple covariance matrix
1
T

PT
t=1 ~u

�
t (
~�
�
T )~u

�
t (
~�
�
T )
0 will, in general, be an inconsistent estimator of ~S�0 . For this reason

I use den Haan and Levin�s (2000) VARHAC procedure for estimating ~S�0 . In doing so I

impose the restriction that lagged variables do not appear in the equations for u�t but allow

for lags in the equations for û�t .

A.8.2 The M-Normalization

As stated in section 3, to compute S�T I use the same VARHAC procedure described above.

In doing so I impose the restriction that lagged variables do not appear in the equations

for u�1t (the errors corresponding to the asset pricing conditions) but allow for lags in the

equations for u��2t (the errors corresponding to ft � �).

B Appendix B: Data Construction

B.1 FF25 Portfolios

Each Fama and French (1993) portfolio represents the intersection of one of 5 groups of stocks

sorted according to their market capitalization with one of 5 groups of stocks sorted according

to their book equity to market capitalization ratio. The returns are equally weighted. I ob-

tained raw monthly returns from Kenneth French�s website http://mba.tuck.dartmouth.edu/

pages/ faculty/ ken.french/ data_library.html. To obtain quarterly returns I compounded

monthly returns within each quarter. To obtain quarterly excess returns I subtract the

quarterly risk free rate de�ned as the compounded monthly risk free rate from Fama/French

Research Data Factor �le. Real excess returns are de�ned by dividing the nominal excess

return by one plus the in�ation rate, which I de�ne below.

B.2 Consumption Data

To compute real consumption of nondurables and services I proceed as follows. Let CNt be

the consumption of nondurables and CSt be the consumption of services in nominal dollars,

and let cNt and c
S
t be the corresponding series in constant chained dollars, as published by the

Bureau of Economic Analysis. To obtain nominal consumption of nondurables and services I

simply set Ct = CNt +C
S
t . However, because real chained series are not summable, I proceed

as follows to create real consumption of nondurables and services, which I denote ct. First
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de�ne st = (CNt =Ct + C
N
t�1=Ct�1), g

N
t = cNt =c

N
t�1 � 1 and gSt = cSt =c

S
t�1 � 1. Then de�ne

the growth rate of ct as gt = stgNt + (1 � st)gSt . Notice that a real levels series can then be
generated by forward and backward induction relative to a base period. I convert the real

levels series into per capita terms by dividing by the quarterly population series published in

the National Income and Product Accounts by the BEA.9 I construct an in�ation series using

a similar method. Letting �Nt and �
S
t be the in�ation rates for nondurables and services, I

let the combined in�ation rate be �t = st�Nt + (1� st)�St .
I assume that households derive utility in quarter t + 1 from the stock of durables at

the end of quarter t. To compute the real quarterly stock of durable goods I proceeded

as follows. The Bureau of Economic Analysis publishes end-of-year real stocks of durables

goods. Let kt denote the real stock of durables at the end of some year, and let kt+4 be the

same stock a year (four quarters) later. We observe quarterly real purchases of consumer

durables, which I denote cDt . I assume that within each year the model

kt+1 = c
D
t+1 + (1� �)kt (A10)

holds, with � allowed to vary by year. I solve for the value of � such that the beginning and

end-of-year stocks are rationalized by purchases series. This is the � such that

kt+4 = c
D
t+4 + (1� �)cDt+3 + (1� �)2cDt+2 + (1� �)3cDt+1 + (1� �)4kt: (A11)

Once I identify the value of � that applies within a year using (A11), I use (A10) to calculates

the within year stocks. I convert the real stocks to per capita terms by dividing by the same

population series used for the consumption series.

B.3 Fama and French Factors

These series are taken from the Fama/French Research Data Factor �le. I de�ne the monthly

market return as the sum of the market premium series (RM-Rf ) and the risk free rate series

(Rf ). I convert this to a quarterly return by compounding the monthly series geometrically

within each quarter. Denoting the resulting series, RMt , I convert it to a real return as

follows: rMt = (RMt � �t)=(1 + �t).
To create real quarterly versions of the Fama-French factors (RM-Rf, SMB and HML) I

proceed as follows. To get quarterly excess returns I compound the monthly series geomet-

9I pass the NIPA population series through the Census X11 seasonal adjustment procedure because the
NIPA series displays noticeable seasonal �uctuations.
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rically within each quarter. I convert them to real excess returns by dividing the resulting

series by 1 + �t.

B.4 Yogo Factors

Yogo (2006) proposes a three factor model that uses the two factors from the Durables

CCAPM as well as the market return, RM, as factors. I use the data for the series as

constructed above, to study the rank condition for Yogo�s model using his sample period

(1951:Q1�2001Q4), while also using Campbell�s (2003) timing for consumption growth (that

is, assuming that quarter q returns and quarter q + 1 consumption are determined simulta-

neously).

B.5 Lettau and Ludvigson Factors

Lettau and Ludvigson (2001) propose a scaled CCAPM model, which uses three factors:

consumption growth, the CAY factor (a cointegrating residual between the logarithms of

consumption, asset wealth and labor income), and the product of consumption growth and

CAY. I take the factor data directly from the authors over the sample period 1963Q3�1998Q3.

B.6 Jagannathan and Wang Factors

Jagannathan andWang (2007) propose a Q4�Q4 CCAPMmodel. This is simply the CCAPM

estimated using annual, rather than quarterly, equity returns, and using annual consumption

growth measured from the fourth quarter of one year to the fourth quarter of the year in

which the returns are realized. I construct the relevant series from the quarterly data set

described above, while constructing annual real excess returns for the FF25 portfolios in

similar fashion as to what was described above for quarterly data. I examine the rank

condition over the period 1954�2003 as in Jagannathan and Wang (2007).

B.7 Lustig and Verdelhan Portfolios and Factors

Lustig and Verdelhan (2007) consider the annual real US dollar excess returns to portfolios

of short-term foreign government securities denominated in foreign currency. The sample

period is 1953�2002. They form these portfolios on the basis of the interest rates on the

underlying securities. In particular the real excess returns on a large number of countries�

treasury securities are sorted into eight bins in each period according to the nominal interest
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rates on the securities, from lowest to highest. The returns to holding equally-weighted

portfolios of each bin are then calculated.

Lustig and Verdelhan use three risk factors to explain these returns: consumption growth,

durables growth and the market return [their model is equivalent to Yogo�s (2006) model].

I take the data for the returns and factors directly from their paper.

B.8 Sorted Currency Portfolios

I construct a set of currency portfolios over the period 1976�2008. I compute the monthly

payo¤ to taking a long position in foreign currency as

xt+1 =
St+1 � Ft

Ft

where St is the spot exchange rate measured as USD per foreign currency unit (FCU) and

Ft is the one month forward exchange rate in the same units. I compute these payo¤s for

up to 19 currencies on a monthly basis: Australia, Austria, Belgium, Canada, Denmark,

France, Germany, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal,

Spain, Sweden, Switzerland, the UK, and the U.S. The data source is Datastream, and I

used Reuters/WMR quotes when they are available. I also use BBI quotes for Australia and

New Zealand in the 1984�1996 period.

In each month I sort the available currencies into �ve portfolios based on the size of

the forward discount (St � Ft)=Ft. Countries with large values of the forward discount are
countries with high interest rates. I study the rank conditions for quarterly averages of the

payo¤s.

C Appendix C: Using All Information to Estimate �

Each of the variants of the M-normalization that I have described above sets the GMM

estimator up in such a way that �̂ = �f . Consider the benchmark case where the GMM

estimator sets a�Tg
�
T = 0 where g

�
T = ( g

�0
1T g�02T )

0, g�1T = �Re �
�
DT � �Re�0

�
b�, g�2T = �f � �

and a�T is given by (15). A more traditional approach to GMM might, instead, de�ne

a�T =

�
(DT � �R�0) � �Reb�0

0 Ik

�
W �
T (A12)

where W �
T would now be an (n + k) � (n + k) weighting matrix. With the a�T given by

(A12), the equation a�Tg
�
T = 0 is the �rst order condition corresponding to minb�;� g

�0
TW

�
Tg

�
T .
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It is clear that in this setup, � is free to help match not only E(ft � �) = 0 but also the

asset pricing equations. Under the null, this is asymptotically more e¢ cient than the other

approaches because it uses information about � that lies in the asset pricing restrictions.

Yogo (2006) uses this approach. In the �rst stage of GMM he sets

W �
T =

�
�In 0
0 S�1f

�
and � = det(SRe)�1=n. Here SRe = 1

T

PT
t=1(R

e
t � �Re)(Ret � �Re)0. As �! 0, �̂! �f , whereas,

as � ! 1, �̂ is determined solely by the asset pricing conditions. In the second stage of
GMM, the inverse of a consistent estimate of S�0 is used as the weighting matrix.

As the sample size grows, a�T converges to

a�0 =

�
d0 + �R(�0 � �)0 ��Rb�0

0 Ik

��
�0In 0
0 ��1f

�
(A13)

where �0 = det(�Re)�1=n. When the rank condition for the M-normalization fails, (rank[d0] <

k), this means identi�cation fails here at � = �0.

The objective function, g�0TW
�
Tg

�
T , is ill-conditioned asymptotically. This can most easily

be demonstrated for the �rst stage of GMM and a single factor model. In this case d0 = 0

and the objective function limits to the function

Q0(b
�; �) = � [1 + (�� �0)b�]

2 + (�� �0)2=�2f ;

where � = ��0R�R. This function has no well-de�ned minimum. However, along the locus

b� = �1=(� � �0) the limit of Q0(b�; �) as � ! �0 is 0. However, the function does not

achieve the in�mum for any value of (b�; �). At � = �0, for example, the function equals �.

A11


