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ABSTRACT

A general equilibrium model of an economy is presented where people
hold money rather than bonds in order to economize on transaction costs. In
any such model it is not optimal for individuals to instantaneously adjust
their money holdings when new information arrives. The (endogenous) delayed
response to new information generates a response to a new monetary policy
which is quite different from that of standard flexible price models of

monetary equilibrium. Though all goods markets instantaneously clear, the
monetary transaction cost causes delayed responses in nominal variables to
a change in monetary policy. This in turn causes real variables to respond
to the new monetary policy.

The two classes of monetary policies analyzed here are price level
policies and interest rate policies. Price level policies are monetary
policies which in general equilibrium keep the nominal rate constant, but
change the long run price level . We show that the money supply must rise
gradually to its new steady level if the price level is to be raised without
causing nominal interest rates to fall

When interest rate policies are analyzed, it becomes clear that aggregate
money demand at time t depends on the path of interest rates, not just the
instantaneous interest rate at time t. This is because the aggregate money
holding at time t is composed of the money holdings of various consumers,
each of whom has a different but overlapping holding period. The
staggering of money holding periods is a necessary condition for general
equilibrium; general equilibrium requires that some consumers must be incre-
menting their cash when other consumers are decrementing their cash via
spending. Some results of our analysis include the fact that high frequency
movements of the interest rate cause a much smaller change in money demand
than low frequency movements, since it is the integral of the interest rate
over a holding period which determines money demand. Further, at high fre-
quencies, the rate of inflation is not the difference between the nominal
interest rate and the rate of time preference.
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1. INTRODUCTION

A general equilibrium model of an economy is presented where people

hold money rather than bonds in order to economize on transaction costs. In

any such model it is not optimal for individuals to instantaneously adjust

their money holdings when new information arrives. This (endogenous)

delayed response to new information generates a response to a new monetary

policy which is quite different from that of standard flexible price models

of monetary equilibrium. Though all goods markets instantaneously clear,

the monetary transaction cost causes delayed responses in nominal variables

to a change in monetary policy. This in turn causes real variables to

respond to the new monetary policy.

Earlier work by Grossman and Weiss (1983), Grossman (1982), and

Rotemberg (1984), have considered models of the above type where individuals

hold money for an exogenously fixed amount of time - their "payment period".

As in the model to be developed here, these models assume that goods can be

bought only with cash. However, unlike what we will assume here,

individuals can exchange bonds for cash only on the exogenously fixed

"paydates" which occur at the beginning and end of their payment periods.

Thus an individual's money holding period is exogenously given and

insensitive to the nominal interest rate. In such models when there is an

unanticipated increase in the money supply, people can be induced to hold



the new money only Dy a large fall in the real rate of interest. The fall

in the real rate of interest induces people to increase their real spending

in the current payment period relative to future payment periods. They thus

hold more cash in order to be able to purchase the goods. A crucial point

is that the money holding period has a zero interest rate elasticity, and

thus money demand does riot increase for the reason it would in the Baumol-

Tobin model. In the Baurnol—Tobin model people are induced to hold more

money because even with a fixed rate of real spending people want to exhaust

their money earlier when the nominal interest rate rises.

Another aspect of the exogenously fixed money holding period is that

(with a zero interest rate elasticity of money demand) expected inflation

has almost no effect on the demand for money and hence on the current price

level. In the model to be developed here the money holding period falls

when there is expected inflation, so that the price level is sensitive to

announcements of monetary policy.

The model to be developed here drops the assumption of an exogenously

fixed money holding period, but retains the assumption of an exogenously

fixed pay period. Though current work is underway on a model with

endogenous pay—periods, the model is far simpler when there is only an

endogenous money holding period. Section 2 develops a particularly simple

model of the money holding period by assuming that there is a proportional

transactions cost of converting bonds into money at all dates except on a

paydate.1" On a paydate a consumer can freely transfer between bonds and

money. It is shown that an optimal policy for a consumer is to withdraw an

amount of cash on his paydate which is designed to finance his spending for

a period of time t which depends on the path of nominal interest rates. The



sensitivity of t to interest rates yields qualitatively and quantitatively

different dynamic responses to the unanticipated monetary policy

announcements, than occurs in the previously mentioned work where t is

exogenously fixed.

Section 3 develops the general equilibrium for the steady state cross

sectional distribution of cash. It re—emphasizes the need for a cross

sectional distribution of cash with the property that the money flowing out

of consumer's hands from their spending must equal the rate at which other

consumers desire to increment their cash balances.

Section II considers the effects of unanticipated monetary policies as a

perturbation of the steady state in a perfect foresight model. It is shown

how the perfect foresight model can be thought of as an approximation to a

rational expectations model. This Section studies unanticipated monetary

policies called "price level policies", which have the effect of keeping

nominal interest rates unchanged but change the path of money and the price

level. For example, it is shown that there is a unique path of money which

raises the price level in the long run by cz% without changing the nominal

interest rate. This money supply path involves a gradual rise in money over

a pay period until the money supply rises by a%. This should be contrasted

with the standard flexible price LM model where the initial money supply can

simply be chosen to be a% higher, and this will immediately raise prices by

x%. In our model if the money supply grows too rapidly, then the nominal

rate is driven down, because of a "liquidity effect" associated with it

being costly for consumers to increment their cash balances. In the

standard LM model (say derived from Sidrauski's (1967) equilibrium model),
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it is as if all consumers can, without paying a transactions cost, increment

their cash balances at any instant of their choosing.

Section 5 considers a class of monetary policies, called "interest rate

policies" where the money supply is chosen to cause a particular path of

interest rates to be the market clearing rates. The first interest rate

paths to be considered involve a permanent rise in the nominal interest

rate. Because of the liquidity effect mentioned earlier, this is associated

with an initial contraction in the money supply followed by a rise in the

money supply to its new steady state growth rate. Again, this differs from

what would occur in the standard LM model where a rise in the nominal rate

ofaay 1% is implemented by a new monetary growth rate of 1% (with a degree

of freedom involving the level of the money supply). We go on to consider

temporary interest rate changes, as well as analyzing the response of the

economy to various frequencies of interest rate movements. Section 6

contains conclusions.

2. The Consumer's Optimization Problem

A consumer at time 0 chooses a path of consumption, money and bond

holdings. At that time he has perfect foresight about the path of prices

and interest rates at all times t>O. Bonds pay an endogenously determined

rate of interest, while money earns no nominal interest. The consumer holds

money because goods can Only be purchased with money. The consumer can

transfer between bonds and money according to the following transactions

technology : At the end of each interval of length h (which represents the

exogenously given "pay period"), a consumer has a "pay date." At that date

he can freely convert his assets between bonds and cash. At dates other
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than "pay dates" the consumer bears a transactions cost which is

proportional to the amount of bonds converted to cash. He has a continuous

time optimization problem which involves the choice of a time path of

consumption, bonds and money to maximize lifetime discounted utility,

subject to a wealth constraint and the above transactions technology.

It will be shown that the above assumptions imply that a consumer will

withdraw a stock of cash M on his pay date z, and will spend only out of

cash for an amount of time t(z) which depends on the path of interest rates

between z and (his next pay date) z + h. In the time remaining between t(z)

and z + h, the consumer will convert his bonds to money continuously to

finance his consumption. That is, the consumer holds no (stock of) money

for times t satisfying t c [t(z), z + h).

The above transactions cost assumptions generate a demand for money in

which the velocity of money is a function of the path of interest rates.

The model will be useful for analyzing the dynamics associated with a change

In monetary policy because all consumers will not find it optimal to change

their cash holdings in the same proportion. Consumers who, at a given

moment of time have more money, will react somewhat less than consumers who

have no money at the time of the unanticipated change in policy.

Assume that at each date there is a single consumption good. Let P(t)

be the money price of' the good at date t. Let 1(t) be the value at date t

of 1 dollar invested at time 0. Thus 1(t) = r(t) is the interest rate at
1(t)

time t. Let M, and denote the money holding and nominal wealth of the

consumer at time 0. Let m(t) denote the flow value of bonds sold at time t,

and let (k—i) > 0 denote the transactions cost per dollar of bonds converted
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into cash. Finally let M(t) be the stock of money held at t. Throughout

the paper we will use the notation x = Max(o,x). Consider a consumer

whose last paydate was at time z c (—h,o). His optimization problem

involves maximizing

z(n+1 )h

(2.1)
n=O f

u(c(t))etdt
(znh)

subject to:

z+(n+1 )h

(2.2a) dt + krn(t) dt + M(z+nh)
z +nh

— D
< +

M (z + h) +— o 1(z + h) k

(2.2b) M(t) 0;

(2.2c) m(t) 0;

(2.2d) M(t) = m(t) — P(t)c(t) t z+h,z+2h,...;

(2..2e) M(o) = M D
0 0

.4.where Bc(O,1 ) is his rate of time preference, and a superscript like M (t)

indicates urn M(x) and M (t) = lim M(x).
x+t

— xt
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The (LHS) left hand side of (2.2a) is the present value of the

consumer's spending out of bonds and money. There is a stock withdrawal of

M(z + nh) at the
th

paydate which bears no transactions cost, and flow

withdrawals m(t) at t, which cost km(t) due to the transactions cost of

converting bonds to money. The (RHS) right hand side of (2.2a) involves the

term M (zh) because the consumer may decide not to exhaust his initial

stock of money (M(o)) by the time of his first paydate zh. We permit the

consumer to make a stock deposit in his bank account of D0 0 at time 0 Out

of his initial cash holding M0, as indicated in (2.2e). The transactions

cost of D is such that wealth increments by only D0/k in (2.2a).

The wealth constraint assumes that any money withdrawn on a paydate z +

nh > 0 will be totally spent by the next paydate. There is no loss of

generality in this assumption because if r(t) > 0, as we shall assume

throughout, it is obviously never optimal for a consumer to withdraw more

money than he will spend before his next paydate. However, since the

economy faces a monetary policy which at time 0 is different than was

anticipated at the last paydate z < 0, M may not be the money which would

have been desired at t0 under the new policy. Therefore M (z+h) need not

be zero and D may be non—zero.
0

Inequality (2.2b) is the condition that consumers cannot create cash.

Inequality (2.2c) requires that the consumer cannot make flow deposits into

his bank account. This constraint is here for notational simplicity only.

The transaction cost of depositing a dollar at a date which is not a paydate

is such that the bank account only increase by 1/k dollars, If r(t) > 0, as

we shall assume throughout, the consumer will only want to make a deposit,

at most in the interval t€[0,z + hi, since at all future dates he can choose



8

his money stock withdrawn so that a deposit is never necessary. Similarly

for the given stock M at t=o, a consumer who desired to make a deposit

during tc(0,zh), will always find it optimal to make the deposit at t=0

instead, and this is captured by D.

Equation (2.2d) is the accounting identity that the consumers stock of

cash falls at the rate of his spending when m(t) 0, and otherwise is

incremented by his bond withdrawals.

The maximization of (2.1) is accomplished by the controls c(t), m(t)

and 0 subject to (2.2) with W and M given. We assume that u(s) is

concave, and it is easy to verify that this optimization problem involves a

concave objective and a convex constraint set. Further, it is easy to

verify that

(2.3) M(t) > 0 implies m(t) = 0.

Fact (2.3) holds because with r(t) > 0, if both M(t) > 0 and m(t) >0,

then the consumer can keep c(t) unchanged, set m(t) = 0 until M reaches zero

and then finance consumption out of in. This increases wealth because

interest is earned over the period in which the withdrawal is delayed.

Since the consumer does not make withdrawals until his moeny is

exhausted, it is possible to simplify the problem by defining the controls

t which specify the time in the th pay period when the consumer decides to

exhaust his money. holdings. Hence (2.1) and (2.2) are equivalent to

maximizing
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t z+(n+1)h

(2.) u(c)etdt + J u(c)etdt]nO znh) t+ n

subject to

z+(n+1)h t

(2.5a)

Cf

k P(t)c(t)dt + 1

f

P(t)c(t)dtj
n0 t

z+(n+1)h

Wo + Y(zh) CM— D - f (t)c(t)dt]4+ ._

t
(2.5b)

JP(t)c(t)dt M0
D

where the maximization is with respect to the controls tt} 0 and the

path of c(t) with the obvious nonnegativity constraints: c(t) 0 and

t 0, t [(z÷nh), z+(n+1)hJ.

Appendix A gives necessary and sufficient conditions for the

maximization of (2.4). One important condition is that if 1(x) denote the

solution to

(2 6)
1(T)

k
1(x)

for T as a function of x, then

(2.7) t min[z+(n÷1)h,T(z+nh)J for ri 1.



10

This follows from the observation that if a consumer is exhausting his

money holdings at t < z+(n+1)h, then if he withdraws 1$ more at time znh,

this costs 1/Y(znh), while the benefit is that he can save the conversion

of bonds into money to finance his consumption, i.e., save k/Y(t) per

dollar of consumption. Thus ignoring the boundary possibility, if the

Interest rate is r, the money holding period T—x implied by (2.6) is

(2.8) T — x —

So a transaction cost of 1% and an interest rate of 10% per year would imply

an exhaustion interval of 1/10 of a year.

The optimal consumption path for y to must satisfy

(2.9) e'u'(c(y)) -k for t y < z(n÷1)h n0,1,2,3,...;

(2.10) e'u'(c(y)) -
nh)

for z+nh y < t n1,2,3...;

where q is the Lagrange multiplier for (2.Sa), the interpretation of (2.9)

is that the cost of c(y) when it is financed out of bonds is kP(y), while

the RHS of (2.10) gives the cost of c(t) Out of money during the th pay

period as P(y)/Y(z+nh).

The choice of' to is much more complicated because the initial money
M0

Is based upon a withdrawal at time z < 0 before the monetary policy is

announced. The optimal choice is characterized in the Appendix, but for the

moment we will be concerned with the special case where D - 0 and the
0
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consumer always chooses to exhaust his money before zth. This will indeed

be the case if the monetary policy is inflationary relative to what was

expected. The numerical simulations for deflationary policies use the

appropriate formulae from the Appendix.

It is useful to define c(t,y) as the solution to

(2.11) u'(c)e
8t = yP(t)

for c as a function of t and y. Under the assumption of exhaustion by zh:

(2.12) M
J

P(t)c(t)dt.0

Using (A5) in the Appendix, there exists A 0 which is the Lagrange

Multiplier for (2.12)) such that

t
ro

(2.13) H
J

P(t)c(t,A)dt0

(2.11) 'r(t)A qk

Given the marginal utility of wealth q, (2.13) and (2.14) jointly determine

to and A. The interpretation of (2.1k) is straightforward: A is the

marginal utility of cash at time 0, so a reduction in the exhaust time to

generates cash worth A at time 0 in utility, but costs qk/Y(t0) in the
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utility of wealth foregone from the transactions cost of maintaining

consumption when money runs out.

The Logarithmic Utility Case

In the case of logarithmic utility, i.e., where u(c) = log c, the

optimal c(t) and M(t) can be computec. Let M(t,z) denote the money holdings

at t of someone whose last paydate before time o was at z, henceforth called

Mr. z. Similarly, let S(t,z) represent consumer z's gross spending; given

by P(t)c(t) when he spends out of money, and kP(t)c(t) when he spends

out of bonds. Further let t(z) represent the t in (2.7) and t0(z)

represent the solution to (2.13) and (2.1i4) for Mr. z. Then using (2.6),

(2.7) and the fact that all money withdrawn at z+nh is spent by t:

1(t(z)) et_ etn for (znh)÷ t t(z)
(2.15) M(t,z) = kq B

0 for t(z) t < z(n1)h

Y(t)e for t(z) t < z(n1)h
(2.16) S(t,z) = q

—BtY(t(z))e
for (znh) t < t(z)

kq

Eq. (2.13) can be used to show that

t (z)
1—e 0

(2.17) A(z) = M(z)

where M(z) = M(o,z), and A(z) is the multiplier for a person with paydate

z. Substituting (2.17) into (2.H) yields



i_eto(2.18) k
qBM(z)

Substituting (2.15) and (2.16) into (2.5a), and maintaining the assumption

that D 0 and t < zh, we get
0 0

t (z)
(2.19) q

e 0

Note that given interest rates I (.), and and Mc) for Mr. z, (2. 1 8) and

(2.19) can be used to solve for t0(z); (2.7) gives t(z) for n 1; and

(2.15) and (2.16) are then used to solve for M(t,z) and S(t,z).

3. General Equilibrium and the Steady State

In the previous section we took as given consumer z's paydates, his
time zero wealth W(z) and his time zero money stock M0(z). In order to

describe the general equilibrium more fully it is necessary to specify the

cross sectional distribution of these characteristics at time zero. First

note that by "general equilibrium" we mean a path of prices P(t), money

supply M8(t), and interest factors 1(t) such that the goods, money, and bond

markets clear. By a "steady state," we mean a time independent cross

sectional distribution of real balances such that r(t) and P(t)/P(t) are

independent of time. It is shown in Appendix B that the only cross

sectional distribution of paydates consistent with such a steady state

equilibrium is a uniform distribution.
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We will take the consumer's paydates as exogenously given and thus

unchanged when the economy is surprised at time 0 by the new monetary

policy. Clearly, if there is a fixed transactions cost of adjusting the

paydates, then there will be a range of shocks for which this will be a

reasonable approximation. However, this is not studied here.

We shall assume throughout that monetary policy is conducted by open

market operations and not by direct transfers to consumers. This is a

crucial assumption; if newly issued money is hand delivered to all consumers

then the liquidity effects and monetary non—neutralities which we will

analyze will not appear. We shall assume that aggregate real wealth

involves a claim to the exogenously given output of "stores" which produce a

flow of real output Y(t). As in Grossman—Weiss [19833 we will assume that

there are no non—neutralities associated with the tax burden of the

government debt retired when an open market operation occurs, i.e., the

interest on the debt is paid by lump sum taxes levied on all (infinitely

long lived) consumers. This implies that when a monetary injection occurs

via an open market operation at time t , then aggregate consumer nominal

wealth is perceived to rise by M5(t) (since taxes will not have to be paid

to finance interest on the debt and an open market operation reimburses

directly holders of the debt for the capital value of the bond which they

sell). Hence aggregate nominal wealth at time 0 is

(3.1) W = : [P(t)Y(t) M5(t)3 dt
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We assume that each consumer z owns part of given by W0(z) , which

satisfies:

(3.2) W
J

11 (z)dz.

where the first paydates z are assumed to be uniformly distributed on H

h,o], where h is the exogenously given time between paydates.

In Grossman and Weiss [1983] we considered an economy where the only

assets held by individuals were bonds, money, and claims to profit flows

from the stores. Consumers also faced tax liabilities associated with the

levies needed for interest payments on government bonds. Steady states were

considered in which consumers had assets and tax liabilites in such a way

that they would all choose identical consumption profiles irrespective of

what date they have a paydate, i.e., a person's consumption depended only on

how much time has elapsed since his last paydate. Here we will consider a

generalization of this hypothesis. We shall assume that the cross sectional

distribution of initial wealth (i.e., assets net of liabilities) is such

that all consumers have the same marginal utility of wealth, denoted by q in

the last Section. This assumption, which is discussed further in Section I,

is made to avoid having to analyze the effects of an open market operation

on the cross sectional distribution of wealth, and any consequential effects

on prices and interest rates. It can be imagined that before consumers know

the paydate they will be assigned, they are ex-ante identical and are

capable of trading securities which are equivalent to state—contingent

claims which pay, say $1, into the bank account of the consumer, as a
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function of the paydate which he will ex—post be assigned. The effect of

this insurance will be to equalize all the consumers' marginal utility of

wealth.

With the above remarks in mind, we can define a general equilibrium as

a marginal utility of wealth q , path of prices P(t), interest factors

1(t), and money supply M5(t) such that

f:hM(tZ)dZ

M5(t)

(0

(3..)4) S(t,z)dz P(t)Y(t)

—h

where the initial cross sectional distribution of money and the path of

output are taken as given. Note that we do not specify the initial cross

sectional distribution of wealth, W(z). Given a marginal utility of

wealth q , equalized across agents, and the cross sectional distribution of

money M(z) , the demand functions for money and spending M(t,z;q),

S(t,z;q) are well defined. A variant of Walras Law can be used to show

that if (3.3) and (3.LI) are satisfied for these functions then the present

value of spending (i.e., the LHS of (2,2a)), when integrated over all

consumers equals I.1. Thus for every q , there exists a cross sectional

distribution of wealth W(z) such that the posited prices clear markets

for that wealth distribution.

In the steady state with r(t) : r, the holding period for money is

given by (2.6) and (2.7) as
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(3.5) t = t - [z+nh] Mm [Lo(k)]

In order to compute the cross sectional distribution of money we can

use the equations derived for optimal consumption and money holdings in

Section 2. In particular, consider calendar time t > t, the only people

holding money are those who have had a paydate in (t—t,t). Hence if we

define the inverse of u(.) by

(3.6) V(y) [u'J1(y),

and use (2.10), then if Mr. x's paydate satisifies x(t-t,t)

rx+t
(3.7) M(t,x)

J

P(y)V(eP(y)eq)dy.
t

Therefore by (3.3) aggregate money at t must satisfy

(3.8) M5(t) = M(t,x)dx,

t —t

when it is recalled that by time t, the people with paydates in [th,t—tJ

have already exhausted their money and are financing their consumption out

of bonds. Similarly aggregate consumption at t must satisfy
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t—t
t

k Bt 'rt 1 1 t —rx
(3.9) Y(t) = V(e P(t)e qk)dx + V(e P(t)e q)dx

t-h t—t

where the first term on the RHS uses (2.10) and gives the total spending at

t (inclusive of transactions services) by consumers who have exhausted their

money balances, while the second term is the real spending of those

consumers who have not exhausted their money at time t. Note that we are

computing the symmetric steady state and thus q is independent of a person's

paydate.

In what follows we will assume Y(t) = Y, and then (3.9) can easily be

shown to imply that

(3.10) B + it • r

since P(t) P(o)eitt. This fact can then be used in (3.7) and (3.8) to show

that M8(t) must be growing at rate it. Thus in a steady state we can write

(3.7)—(3.8) as

(3.11)
M8(o)

= f 1
e V(eP(o)q)dJ dw

(3.12) Y (h-t)V(P(o)qk) +
1

f vceP(o)q)dy

Thus in the steady state, with real output constant, a given money growth

rate it, or equivalently an interest rate policy r, determines ii and r from
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(3.10) and an individual's exhaustion time t by (3.5); Eq. (3.12) determines

the marginal utility of real wealth P(o)q, and (3,11) determines the

equilibrium level of real balances M5(o)/P(o).

In the case of logarithmic utility, (3.11) and (3.12) become

respectively:

s —rt 't rt
(3 13)

M i—e e — e 1

P r it P(o)qhB

rtht 1—e
(3.114) Y

hP(o)q
+

hP(o)qr

If (3.114) is substituted into (3.13) to eliminate P(o)q , and if' the

interior portion of (3.5) is used to solve for t as a function of k

(i.e., rt Log k), then a second order Taylor expansion of (3.13) about k

= I yields

15) !t. : (k—i)2 (3r÷2) Y
p 2 2 h

2r

Referring to (3.5) we see that if' the transactions cost k — 1 is .25%, then

t is one month when r = 3% per year. Under these parameters if h

is about 1.67 months, then M5/PY is about 3/14 of a month. That is, if each

consumer chooses to hold one month's worth of his spending in money, and

there is 1.67 months between paydates, then the economy will have about 3/14

worth of a month's income in real balances. Note that M5/PY will always be

lower than t because (a) consumers have spent all of their money by the
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end of t (their average cash holding is approximately PYt/2 dollars) and

(b) a fraction of consumers hold no cash. Clearly to get an aggregate money

holding period of 5—8 weeks of income, as is observed in the US, each

individual in our model must have a long exhaust time. This result is an

artifact of the fact that each dollar that a consumer spends at t goes

immediately to the bond market and is immediately withdrawn by someone with

a paydate at t. In our economy a consumer may pay a firm or another

consumer, who after some delay may pay another firm or another consumer,

etc. That is, it takes some time before a dollar spent by a consumer is

used to purchase bonds (i.e., returns to the bank). Thus each "consumer" in

our model should be interpreted as representing all the consumers and firms

who hold a given dollar between the time it is withdrawn from a bank and the

time it returns to the banking system.

Eq. (3.15) can be used to compute the interest elasticity of' money

demand:

(3 16) SLog M8/P (3r8)— 3Log r 3r2B

If 8 = r the elasticity is —7/5 , while at r 58 (e.g., B = 3% and r

= 15%) the elasticity is =1.1. These interest rate elasticities are

substantially higher than is predicted by the fixed—cost Baumol—Tobin model.

However, it must be recalled that (3.13) is computed under the assumption

that the proportional transactions cost k is sufficiently low relative to

the interest rate that all consumers withdraw an amount of cash on their

paydate which is insufficient to cover all their expenditures up to the next
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paydate. If instead k was sufficiently large relative to the interest

rate, so that all consumers set t h , i.e., they strictly prefer to

withdraw cash only on paydates, then (3.13) will yield an interest

elasticity which is essentially zero. A second order expansion of (3.13)

with t h will convince the reader that M/P depends on r through
terms like h h2r/2 , which is suggestive of a very low interest rate

elasticity. Indeed numerical evaluation of the interest rate elasticity for

(3.13) yields numbers like .001 for values of h equal to around one

month, and values of' and r ranging from 3% to 15%.

It seems reasonable that in our economy there are some agents facing a

high k and some facing a low k. In particular it may well be a good

approximation to assume that some agents (e.g., poor people) face a k

sufficiently large so that they never make a withdrawal between paydates,

while other agents (e.g., rich people) have a small k and hence make a

withdrawal between paydates. Depending upon the proportions of each type

the interest rate elasticity of money demand can be anywhere between zero

and r in (3.16). It is easy to extend the general equilibrium analysis

presented here to the case where there is a fixed proportion of each type.
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14, Liquidity Effects and Monetary Policies

If the cross sectional distribution of money and wealth at time 0 is

given by M0(z) and W0(z), then we could attempt to answer the following

question: Given any new money supply path M5(t), for t 0, what will be

the path of prices and interest rates such that all markets clear when

consumers have perfect foresight for t > 0? We will instead answer this

question for a particular set of money supply paths to be described below.

Further, for th class of functions M5(t) to be analyzed, we will make a

simplifying assumption regarding wealth effects. In particular, as noted

earlier, the wealth effects of a shock at time 0 on the cross sectional

distribution of wealth will be very sensitive to the types of assets people

hold prior to time 0. Further, for the shocks of a magnitude in which it is

reasonable to keep the time between pay dates a constant, the shock's effect

on the cross sectional distribution of wealth is likely to be very small.

(Recall from the discussion in Grossman and Weiss [1953] that the cross

sectional distribution of wealth is affected because (i) at the time of the

shock some consumers are holding more of their wealth in bonds rather than

money, and (ii) the tax liabilities associated with the interest payments on

the bonds can be rionneutral,) For these reasons we will assume that the

postshock cross sectional distribution of wealth always has the property

that all consumers' have the same marginal utility of wealth at time zero,

equal to say, q.

It may help the reader to understand the above assumption if the

perfect foresight economy is imbedded in a rational expectations economy as

follows. Imagine that monetary policy can take on two values: (a) a steady

state value or (b) the path M3(t) which we previously called the post-shock

path. Let the economy begin with the steady state money path and let the
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arrival of the postshock policy be a Poisson event with probability of

occurence pdt. Further, once the new policy occurs, it is the permanent

state of the economy. Let there be a complete set of state contingent bond

markets in the economy. That is, a consumer can buy a promise to have l

delivered to his bank account at any time under any contingency. He cannot

contract for the delivery of state contingent cash without paying the

transactions cost described in Section 2. If all consumers are ex'-ante

identical, then they will trade state contingent securities to equalize

their ex—post. marginal utility of wealth. Ex—ante the shock, there will be

a cross sectional distribution of cash which will not be identical to the

one described in Section 3 because consumers will have to take account of

the possibility of a change in prices and interest rates associated with the

new money supply M5(t). However if p is close to zero then the steady state

cross sectional distribution of money derived in the last section will

closely approximate the pre—shock cross sectional distribution which arises

when consumers take account of the possibility of the shock. In any case,

the qualitative results to be derived will not rely on the exact form of the

pre-shock cross sectional distribution of cash.

One method of studying the dynamics associated with a new monetary

policy is to posit a particular new money supply path MS(t), e.g., a g

percent increase in money growth, and then to find the P(t), r(t) which

clear all markets. However a simpler approach will be taken here. The

policies will be characterized by their effects on the path of market

clearing interest rates. The first type of policy will be a money supply

path M5(t) which keeps the nominal interest rate unchanged, i.e., at its

original steady state value. Tne second type of policy to be considered is

one where the monetary authority picks a new interest rate path r(t), and
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chooses M5(t) so that r(t), and some P(t), will clear markets. For reasons

which will become clear below, we call the first type of' policy a price

level policy and the second type of policy an interest rate policy.

Price Level Policies

In the standard LM model of money demand, where for example, all

consumers get utility out of holding real balances (as in the Sidrauski

[1967] model), the only monetary policy which will keep the nominal rate

constant is a once and for all change in the stock of money. That is,

taking real output as fixed and the real interest rate as fixed at B, such

models imply:

(4.1) = L(r) L(8 + P/P)

If the nominal rate is unchanged by the shock, then P/P and MI!' must

unchanged by the shock. Hence, the rate of growth in money must be

unchanged. Hence if' a new monetary policy is announced at time 0, and the

new policy does not change the nominal interest rate, then it can only

involve a once and for all jump in the level of money and the price level at

time 0.

In contrast to the above scenario in the standard LM model, our model

does not have equilibria which involve a jump in the money supply in the

presence of an unchanged, positive, nominal interest rate. For example, if

r = then a monetary policy designed to raise the price level by 5% must,

at first, involve a gradual growth in the level of the money supply until

the stock of money is 5% higher than its initial value. We will be able to
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prove these results because, in the model considered here, the money supply

can only be incremented via an open market operation, and not by the direct

delivery of cash into the hands of consumers. Therefore, if the government

wants to get the stock of cash up by 5%, it must induce people to hold 5%

more cash than they otherwise would. However, a consumer who holds a stock

of cash at time 0 will not find it optimal to make a withdrawal at time 0

which increments his cash—he would do better to wait until his cash is

exhausted. Further, consumers who hold no cash at time 0, do not find it

optimal to withdraw a stock of cash when there is a proportional

transactions cost. Hence the only type of person who will increment his

cash to a higher level than it would have been at is a person who has a

paydate at time 0. However, this consumer only holds an infinitesimal

proportion of the economy's money stock.

In summary, we will show that the liquidity effect associated with

staggered paydates implies that the only way the price level can be raised

without changing (i.e., lowering) interest rates is by a gradual increase in

the money supply. To see this it is useful to define

* *t = Max t (z) , t Max (t,to 0 0 0z

where t is the preshock money holding period (t is also the new steady

state holding period if interest rates are unchanged), and t0 gives the

longest time it takes for any consumer to exhaust the cash he held at time

0. Thus for t > t any cash held in the economy will have been withdrawn

after time 0. Note further that the exhaustion time chosen by a person at

any paydate after time 0 (i.e., t for n 1) will be t if interest rates
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are unchanged; see eq (2.6). Next, note that when t > t, the fraction of

people spending out of cash stocks is equal to its steady state value of

t/h. Therefore we may use (3.8) and (3.9) for the money and goods market

clearing conditions when t > to. It is clear from (3.9) that since V' < 0,

there is a unique number P(t)q which satisfies (3.9) for each t. Hence with

r fixed the only degree of' freedom which the monetary authority has is to

choose different values of q, and this changes P(t) so as to keep P(t)q

constant. That is, the feasible changes in money supply which keep r

constant will be equivalent to changes in q. More precisely, examining

(3.7) and (3.8), if P(t)q is unchanged for t > t0, then M3(t)q must also be

constant. We can therefore think of the monetary authority as choosing q,

and thus choosing the level of P(t) and MS(t) for t
to.

Consider the standard LM model in which a monetary policy is chosen

which keeps interest rates unchanged and causes the level of money at each

time t to be cL% higher than it otherwise would have been. Thus for t to

the equilibrium caused by a price level policy in our model is identical to

the equilibrium in the standard LM model. The distinction between the two

models arises for tc(O,t). During that time money will not be a% higher in

this model, since those people who are not having a paydate will not find it

optimal to increment their stock of cash. Instead M(t) will gradually rise

at a rate just designed to prevent the interest rate from falling. This is

readily proved in this case of logarithmic utility. A useful preliminary

result is to show that for a given steady state interest rate r, and a given

q, there is a unique M5(t) and P(t) such that all markets clear, and

conversely for a given r and M5(t) there is a unique P(t) and q such that

all markets clear. That is, as long as the monetary authority chooses a
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policy of' keeping interest rates unchanged, we may discuss the policy as if'

it were a choice of q rather than MS(t).

Theorem 4.1 Assume that u(c) = log c. Let the economy be in a steady state

with an interest rate r at time 0, when a new monetary policy is announced.

If a new monetary policy keeps the interest rate at r, then the policy,

generated by a particular M5(t), implies a unique P(t) and q such that all

markets clear. Conversely for each choice of q, there is a unique MS(t) and

P(t) such that all markets clear when the interest rate is r.

Proof We have already shown that for t > t, P(t) and M5(t) must each grow

at the (old) steady state value of r—$ = w, with the level of each having

the property that M8(t)q and P(t)q are unchanged when q changes. Therefore

determines a unique q. We now study the market clearing conditions

at time t < to, i.e., before everyone has exhausted their pre—shock money

holdings. It is useful to define z(t) as the inverse function of t0(z),

i.e. z(t) is the paydate of the person who decides to exhaust his initial

money at time t. Let z(t) = 0 if t > t and L Max (o,t-t). We can

use (2.9), (2.11)—(2.114) to write (3.14), for t < to, as
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(.2) P(t)Y(t)
JP(t)V(e

BtP(t)q +

o z (t)

+

f

P(t)V((tt)dx +

f

kP()V(e P(t)k))

z0(t)

where the first term on the RHS of (14.2) gives the spending of those who

have had a paydate in [L,tl i.e., those whose last paydate previous to o was

in [L-h,t-h]; the second term gives the spending (out of bonds) of those

pebple who have had a paydate in (o,t) and have exhausted their cash by time

t; the third term gives the spending of those who have not yet exhausted

their initial cash; the fourth term is the spending of those who have

exhausted their initial cash but have not yet had a paydate. Further,

(2.11)(2.14) can be used to find t(x) as the solution to:

(.3) M(x) = c:° P(Y)V(e1Y k)

A very useful aspect of logarithmic utility is that the solution to (14.3),

t(x) does not depend on the price path P(.), only on q and Y(•). This is

because V(x) = '/x. Similarly, P(t) drops out of the RHS of (14.2), for a

given t(x) function. Therefore the right hand side of (14.2) is independent

of P(.) such that the goods market clears, for a given r.

The money market clearing condition, (3.3) may be writen for t < to,

as
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t t Cx) $y
(14.14) M8(t) =

J: f1 P(Y)V(e ] dx

1t (x) By
+

J

[ °
P(Y)V(.(t (x))

z(t) t °

where the first term on the RHS is the money holdings of those people who

have had a paydate between o and t, and the term in brackets is the money

holdings at t of someone who had a paydate at x, M(t,x), i.e., someone whose

paydate previous to t=O was at x—h. Again in the case of logarithmic

utility PC.) cancels out of the right hand side of (14.14), since t1(x) given

by (2.6) and (2.7) depends only on 1(.). Therefore q on the RHS of (14.4)

determines a unique M5(t) consistent with money market clearing and 1(t)

r. QED

The fact that the money supply rule which implements a new price level

without changing interest rates must involve a gradual change in M8(t) is

seen immediately from (14.14)• When t is close to zero, only the second term

on the RHS of (14.14) is large. But the second term, evaluated at t=O is just

the aggregate money holdings of those who have money at time o; a number

which is unchanged by the new monetary policy.

In the case of logarithmic utility a more precise statement can be

made:

Theorem 14.2 Assume u(c) = log c. If a monetary policy is chosen which

keeps the nominal rate constant, and which raises the long run price level

by % then the money supply will increase by less than cz% for t > t, and

then be a% higher for t t. i.e. if M5(t) was the preshock anticipated
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path of the money supply, then an price level policy will make M5(t) <

(l+a)M5(t) for t < and M5(t) = (1+)M 5(t) for t

Proof In the case of logarithmic utility (L.4) may be written for t < to as

t
—t —t1(x)

(4.5) M5(t) 1 1(x) e — e
dx

h q

+
1

J0

1t) et eto
dx

z0(t)

If the monetary policy is designed to raise the price level by a% and we

denote the preshock q by q0, then

(4.6) 1/q

Recalling that t1(x) is unchanged when q changes, the first term on the RHS

of ('4.5) increases by cz% when q changes. If we let B(t) represent the

preshock value of the first term on the RHS of (4.5) we can write (24.5) as

(21.7) M5(t) = (1+a) (B(t) + g(ct,t)J, where

0

I(t(x)) et eto
(21.8) g(cz,t)

kq
dx

z0(t)
°

Note that (2.18) can be used to show that for each x, t(x) is an increasing

function of q and hence a decreasing function of a, by (4.6). Therefore
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when a rises the integrand on the RHS of (14.8) falls. Further, since z(t)

is the inverse function of t(x), z(t) will rise when a rises. Hence

g(c&,t) is a decreasing function of a. Recall that B(t) + g(o,t) gives the

preshock anticipated money supply at t. Hence from (14.7) the post shock

money supply will rise by less than a% for tc[o,t) when a new monetary

policy is chosen at time 0 as given by ('L6). We have already shown that

for t to M5(t) rises by a%. QED

Theorem 14.2 is illustrated by Figure 14.1. Figure 14.1 is derived from

a discretizatiori of' the continuous time mode, where 1 period is equal to a

day. It is assumed that 3 3% per year, and k is chosen so that there is a

steady state holding period of 30 days, i.e. exp((30/365)3) = k. The pay

period h, is chosen to be 50 days. In the steady state the economy holds

approximately 30/2 days worth of' spending in the form of money. The only

role of h in these simulations is that a Oonsumer's exhaustion interval must

be less than h. If h is made smaller than Max t0(z) then it will affect the
z

Figure by making the movement to the new steady state occur sooner. The

first graph (on the top) of Figure 14.1 shows the paths of money, for which

it is a general equilibrium for the interest rate to be unchanged (i.e., r

B — 3% per year) corresponding to various price level policies." It can be

seen that when a rises, money gradually rises to its new level of 1 + a.

When a falls it takes somewhat longer for money to reach the new steady

state because t(z) rises and the persistence of the non steady state

behavior is determined by how long it takes those people with money at time

zero to exhaust that money. Another nonlinearity between positive and

negative shocks is that the money stock actually jumps down at time 0 when a
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= —.5, as people find it optimal to bear the transactions cost of making a

deposit at a date which is not a pay date.

The effect of an price level policy on the price level in the short

run is similar to the effect on the money supply. This is because those

people who have money at the time of the shock will not want to increase

their spending by cz% since this will require too rapid exhaustion of cash

and thus incur an excess of transactions costs. It can be shown that prices

at first rise by less than cz%.

Theorem 14.3 Assume that u(c) = log c. If the money supply path at time 0

is chosen to keep interest rates unchanged and to lead to an a% rise in the

+
price level (i.e., (I.6) is satisfied), then P(o ) will rise by less than

a%.

Proof In the case of logarithmic utility, (4.2) becomes, for t 0

o z(o)

1
1(t (x))

1 1
P(o)1(o) q dx + dx

z(o)

Using (14.6) this may be written as

o z (o)
Y(t(x)) o

1
(14.9) hY(o)P(r) (1ci) [

kq0
dx

j

dx]
z(o)
0

Recall that from (2.18) a rise in , (equivalent to q K q) implies that

t(x) falls for each x. Note that z(o) is unchanged by the policy
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announcement. Therefore, as cx rises the term in brackets in (14.9) will

fall. The proof is completed by noting that the term in brackets gives the

value of hY(o)P(o) when there is no shock, i.e, when a = 0. (The assumption

that 1(t) and h are exogenous should be recalled.) QED

The second graph on Figure 14.1 shows the path of prices for various

values of . Recall that consumers own the "stores" which sell the output

I. The present value of the nominal output of stores rises after the future

price level rises. Hence consumers feel nominally wealthier. It can be

seen that the price level response is almost immediate. This is because it

is feasible for all consumers, even those who have not made a withdrawal, to

plan to increase their nominal spending when they feel nominally wealthier.

For those people who have not made a withdrawal, this is accomplished by

planning to exhaust their money holdings sooner than they would have had

their wealth not increased.

The third graph on Figure 14.1 shows the path of real balances for

various a shocks. Recall that in the standard LM model the only monetary

policy consistent with constant nominal interest rates are those for which

real balances are unchanged by the price level policy announcement. In our

model a rise in the price level (a > 0) causes an initial fall in real

balances and then a gradual rise in real balances to return it to the old

steady state level. This is a reflection of the fact that spending (and

thus prices) respond faster to the increase in nominal wealth than does the

aggregate stock of money.

Figure 14.2 plots the path of money prices and real balances for a = 1%

for various values or' g = k-1. As k varies the pre—shock money supply is

always normalized to $1, so each curve shows the time it takes t'or money to
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rise by ci% for a given k. A very large value of k, say 5% induces people to

spend only out of cash, and the money holding Period S the period between

paydates. This generates an equilibrium path identical to the model in

Grossman—Weiss [1983] where the money holding period was exogenously fixed.

As we noted earlier, an unanticipated c&% price level policy generates a path

of money which gradually rises to a level a% higher than the previous steady

state. If k is so large (5% in Figure 14.2) that people prefer cash to bonds

as a transactions medium, then a small drop in k will not change the path of

money (for a given ci). As k falls sufficiently below 5%, it will take

longer for money to rise say half way to the new steady state because the

exhaustion time of those people who have not had a paydate in the interval

(O,t) falls, but in the above range of k, the exhaustion time of those

people who have had a paydate z in (O,t) will still be z+h (this occurs in

the Figure as k falls from 5% to .5%). Thus the first group will be holding

relatively less money and the second group will be holding the same amount

of money than would occur at a higher k. As k falls further it will

eventually be the case that those people with a paydate in (O,t) find it

optimal to set an exhaustion time before their next paydate. This means that

at the old steady state, each person was planning to exhaust before his next

paydate. Hence the unanticipated (ci>O) price policy surely causes all

people to exhaust before their next paydate. This means that a fall in 1<

lowers the fraction of the total money supply which is held by those people

who have not had a withdrawal before time t. Since the group who have had a

withdrawal before t are holding their new steady state level of money, the

aggregate money supply is closer to its new steady state value by t, than

occurs at a slightly higher k (this occurs as k falls from .24 to .05% in

the Figure).
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The second graph in Figure 4.2 gives the price path for various values

of k. It can be seen that as k gets smaller the spending of consumers gets

closer to the steady state level sooner. The non—monotonicity apparent in

the first graph does not appear, because the fall in exhaustion times of

those people who have not had a paydate before t increases their spending

and this reinforces all the other effects mentioned above.

The third graph in Figure (14.2) grapns real balances for various

values of k. The first interesting aspect of the Figure is that k=5% is

quite different from all the other paths. When k=5, the shock at time zero

does not cause any consumer to change his holding period. Real balances

rise at first because the consumers who have a paydate at t hold more than

their pro—rata share of cash, since consumers who have not yet exhausted

their time 0 cash stocks hold less than their pro—rate share of cash. As t

rises the fraction of consumers with a paydate since time zero rises

sufficiently high that most of the money in the economy is held by people

who have made a withdrawal and thus incremented their cash balances. For

smaller values of k a non—monotonicity appears for the same reason as in the

Money Figure.
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5. Interest Rate Policies

In the standard LM model, if an interest rate r(t) r > is chosen,

then in a general equilibrium the money supply must be growing for t >0. In

that model consumers (correctly) expect inflation so they immediately

increment their cash holdings. In contrast with the standard LM model, the

model considered here can, for example, have r * > 0 and yet the money

supply will be falling. This is because consumers do not find it optimal in

the face of a rise in the inflation rate to immediately increment their cash

balances. Instead there is a liquidity effect, where a contractionary

monetary policy is needed in the short run to implement a higher interest

rate. That is, a rise in interest rates will be associated with those

consumers who have a stock of money at the time of the announcement holding

less money than before (rather than more) because of a desire to exhaust

their money sooner when interest rates rise.

As is well known any discussion of interest rate policies must specify

an additional nominal magnitude before a well defined money supply rule

exists, see e.g., Sargent and Wallace (1975). In the standard UI model, it

is necessary to specify an additional nominal magnitude e.g., M0. In the

model developed here it is also necessary to specify a nominal magnitude,

and we implement this through q. The simplest interest rate policy to

analyze is one where the change in the interest rate is permanent. Recall

that changes in q represent long run changes in the level of the money

supply. Note that after at most h units of time, every consumer has

exhausted his initial money stock. Further, any money held by a consumer at

t > h, is derived from a withdrawal made after the new interest rate has
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been announced. Thus for t > h, and r(t) = r, the money market clearing

condition is

(5.1) M(t) = M(t, z)dz

where t satisfies (using (2.6) and (2.7)):

(5.2) rt — log k

under the assumption, which we shall maintain, that t < h. Under the

assumption of logarithmic utility, and r(t) : r : B+rr (2.7) and (2.15) can

be used to write (5.1) as

t

(5.3) M(t) = et
f

e!'t Ee'= Jdy for t ) h,

Thus, changes in q change the long run level of the money supply in a

proportional manner.

The short run dynamics of the money supply is more complicated. This

is because, by (2.18), the initial exhaust time of consumers who have money

at the time of the shock depends on q as well as r. Equation (4.5) can be

used to compute the rate of change in money at time 0:

1— —t1(o)
° i(t (z))

(5.) M(o) =
qBh f qkh

dz ]

z (o)
0
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where the first term on the RFIS is the money withdrawn by the person with a

paydate at time .--" The second term is the spending out of money. Thus

(5.14) states that the flow of money into the economy must equal the

difference between the flow increases in money holdings generated by

consumers with paydates, and the flow decrement in money holding by

consumers spending out of money.

We will be able to show that if q is unchanged by the monetary policy

and any interest rate policy is chosen for .'hich r(t) > B for tc[o,h], then

M(o) < 0, i.e., a higher interest rate is associated with a contracting

money supply. Recall that a fall in q is associated with a higher price

level policy. If the interest rate policy is combined with a sufficiently

strong price level policy, then arbitrarily large inflation can be generated

between t = 0 and t = h. In such an extreme case the liquidity effect

associated with a higher interest rate is overwhelmed. If q only falls by

enough to keep money withdrawn at t = 0 unchanged when r rise above 8,

then we will show that the expansionary price level policy does not

overwhelm the liquidity effect associated with a rise in r(t). We now show

that if q is permitted to change in the following two ways then a rise in

r(t) will be associated with a fall in the money supply: (1) if q falls no

more than necessary to keep money withdrawn at t=0 unchanged by the shock;

or (ii) if q rises when r rises.

Theorem 5.1

Assume u(c) = log c, and the preshock steady state involves no inflation.

Let a new interest rate policy r(t) and price level policy q be chosen such

that r(t) > B for tc[o,h]. (i) If q < q and q satisfies
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1— t1(o) 1e e

q q0

where q and t are respectively the pre—shock values of q, and the exhaust

time corresponding to r , then the money supply will initially contract.

(ii) If' q q, then the money supply will initially contract.

Proof

Recall that in preshock steady state the money supply is constant. Thus we

need only show that M(o) < 0.

Case (I) q q: Under condition (5.5) the first term on the RHS of (5.)

clearly is lower than its pre—shock value. It remains to show that the

second term on the RHS of (5.4) rises. Rewrite (2.18) as

't (z) i(t (z))
(5.6) k8M0(z) = (1 — e 0 0

When q falls, 1(t)/q rises for each t. Hence t0(z) falls for each z when q

Bt 1(t(z))
falls. But 1 — e 0 is a monotone increasing function of' t so

q

rises when 1(•)/q rises. Therefore the second term on the RHS of (5.J4)

rises.

Case (ii) q

Let t(z;q) denote the solution to (5.6) for to where q appears explicitly

as a determinant of' to. First fix q and raise 1(t) for each t; clearly from
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(5.6) this cause to (z;q) to fall. But 1 e o is a monotone increasing

function so, 1(t (z;q)) must rise when 1(•) rises. Next rewrite (5.) as

1 ieti(0) 1(t0(z;q))
M(o)

qhL J k dz ]

z (a)

From (2.7), t1(o) clearly falls when I rises, thus M(o) becomes negative

as I(•) rises for a given q. Next fix Y(') and raise q. From (5.6), to

(z;q) is an increasing function of q. Hence M(o) becomes negative when q

rises for a given I(•).

(It should be recalled that z(o) is the paydate of someone who has

just exhausted his money at time zero; and this is clearly unaffected by a

change in q or r() at time zero.) QED

Before presenting numerical simulations of money supply paths which

implement monetary policies, it is of interest to mention one other method

of choosing q. In the standard LM model it is possible to implement a new

interest rate policy at time 0 and keep the money supply at time zero

unchanged from Its pre—announcement value. (Of course, such a monetary

policy would lead to a jump in the price level at time 0.) Further, in the

LM model every interest rate r(t) is given by r(t) + P/P, and if H/P

L(r), then any P/P may be implemented by the M which satisfies

(5•7) = + p/p)
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Eq. (5.7) can be solved for M at an arbitrary time 1, as

M(T) = M(o)1(T)eBT L(r(T))/L(r(o)).

+Hence if an interest rate policy is announced where r(T) = r(o ) then the

level of money at time T should increase by a factor of 1(T)e BT relative

to M(o).

+
Thus, when the change in r() is permanent so that r(T) r(o ) =

r(t) r we can calibrate the price level effect of the shock to be the same

in our model as in the LM model where M(o) is unchanged. In the case where

the change in r is permanent, (5.3) may be used to choose q such that at T =

h (by which the short run effect of the shock is over) M(T) eTITM(o_).

Figure 5.la shows the effect of a permanent increase in the interest

rate by 10%, i.e., from r B .03 to r .033. Curves are drawn for 3

values of q. The first is for q which corresponds to the long run

money supply increase generated in the LM model when M(o) is not allowed

to jump; the second denoted by q corresponds to a decrease in q which

just keeps the money withdrawn of those at the bank at the time of the

announement unchanged; the third sets q = q0. Figures 5.lb and 5.lc show

corresponding curves for the price level and real balances respectively.'

Figure 5.la shows the liquidity effect for q = q most clearly. There is

a fall in money for 10 days to accomodate the desire of those people who

have not "been to the bank" to reduce their money holdings. As the fraction

of' money held by those people who have not been to the bank falls, the curve

rises to its new steady state rate of growth (which looks flat only because

of the scale of the Figure). The curve labelled q shows the effect of

choosing a q larger than q. It has the same liquidity effect, but is
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associated with a lower steady state path of money. The final curve in

Figure 5.la, labelled q, shows the effect of keeping q equal to its pre

shock value. The decrease in the money holding period causes a fall in

money demand which is not compensated for by an increase in perceived

nominal wealth.

Figure 5.lb shows the price paths associated for the various values of

q. It simply reflects the fact that q > q > q. The value of the price

level at time t is plotted relative to the pre—shock steady state level.

Note that q = q leads to essentially no change in the price level when

the new interest rate policy is announced. Figure 5.lc combines the

previous two figures to generate a path of real balances. In the standard

LM model real balances immediately fall to their new steady state level,

while here there is a delayed response.

DISCUSSION OF FIGURES 5.2 TO 5L

Figure 5.2 shows the effect of a temporary Increase in the interest

rate from 3% to L% which lasts for 100 days. The lower section of the

Figure shows the path of interest rates, while the upper section shows the

path of money (denoted by M) and inflation (denoted by it). For this Figure

and all the Figures which follow, q is set equal to q0 . The inflation

rate is given by the broken line, and the units (in percent per year) are

given on the right hand vertical axis in the Figure. There is an initial

jump in the price level indicated by a very high inflation rate at time 0.

Then for about 20 days, an inflation rate of about .5% associated with the

fact that the people who have not yet had a paydate do not increase their

spending rate by 1%, since this would cause them to bear an excessive

transactions cost. The period between 20 and 30 days in a transitional one
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in which all those people who had money stocks at date zero are just about

exhausted. Indeed at around t 30, the inflation rate jumps as the

spending out of money in the economy becomes solely generatec from those

consumers who have had a paydate after t 0. Between t = 30 ana t 70

all money is held by people who know that interest rates will be until

their next paydate, so the economy has reached a temporary steady state

associated with r = J4% The inflation rate is 1%. Note that at around t

80, the money supply starts growing to accommodate the fact that the people

making a money withdrawal anticipate a fall in interest rates during their

payperiod. In comparing Figure 5.lb with Figure 5.2, it should be noted

that for each q, prices are indeed varying over time in Figure 5.lb,

however the scale of the graph is such that these variations cannot be seen.

Figure 5.3 is similar to Figure 5.2 except that the interest rate

policy lasts only 10 days. This shar7 rise and fall of interest rates

occurs within the length of a single pay—date, and more importantly, within

the length of a single money holding period. As a consequence, the

inflation rate never attains the 1 level even though the nominal interest

rate is above the rate of time preference by 1%. Figure 5.14 is also

similar, but the interest rate policy lasts for 50 days, which is long

enough so that at around t = 30 everyone in the economy faces the 14%

interest rate for almost a whole money holding period, so that the inflation

rate does rise to 1% for a short period. The Figures show that the real

rate of interest on bonds rises in short run when there is a monetary policy

designed to raise the nominal rate of interest. It also is clear that the

nominal interest rate is not highly correlated with the expected rate of

inflation when these rates are measured over periods of length equal to the

average holding period of money in the economy.
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DISCUSSION OF FIGURES 5.5 TO 5.8

The next set of numerical simulations concern permanent monetary

policies. Here we are interested in the economies response to oscillatory

interest rate policies. In these Figures w denotes the frequency of

oscillation in interest rates, relative to the pre—shock steady state, that

is, in the pre—shock steady state the money holding period is 30 days, and

thus j = 2 denotes an interest rate sine curve that has a period of 15

days." As we move from Figure 5.5 to Figure 5.8 the period for one

interest rate cycle rises from a period of 12 days ( = 2.5) to a period of

120 days (w .25). Though the money supply path is qualitatively the same

in all the Figures, there are important quantitative differences. The first

thing to note is that the money scale is different on each of the Figures.

As w falls, the size of the money supply movement consistent with the

Interest rate path rises. When w = 2.5 (Figure 5.5) the money supply

oscillations are on the order of 1%. However, by Figure 5.8 the money

supply oscillations are on the order of 50%. In all cases interest rates

are oscillating by as much as 33%. When the interest rate oscIllates very

rapidly around the steady state of r 3% the optimal money exhaustion time

changes very little relative to the case where r = 3%. This is because the

accumulated interest over a given period of time determines the money

holding period, and if interest rates vary very rapidly around 3% then the

accumulated interest will be very close to the value it would have if

interest rates were constant at 3%. These Figures thus illustrate the fact

that rapidly varying Interest rates will have very little effect on money

demand.

The next interesting aspect of the Figures is that money and interest

rates are negatively correlated. A rise in the nominal interest rate lowers
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the desired money holding period, and also lowers money demand. Note that

in the Figures M and M/P are plotted together. This is because prices are

measured relative to the pre—shock steady state, and are thus sufficiently

close to 1 that given the scale of the Figures M is sufficiently close to

M/P as to be indistinguishable.

Another interesting aspect of the Figures is that, though interest

rates and inflation are roughly in phase, it is false that ir(t) = r(t) B

even after the economy reaches the new steady state. This is because the

spending of consumers is varying with time due to the fact that the money

exhaustion period is time varying. This effect is in addition to the effect

that consumers desire a rate of growth in nominal spending of r(t) — for

a given money holding period. Further, at any point in time different

consumers have spending determined by interest rates over different periods,

so there is a time averaging of the interest rate which determines nominal

spending growth for a given money holding period.

Further note should be made of the initial effect of the new interest

rate policy. The interest rate policy is designed such that interest rates

initially rise. In all the Figures this leads to a jump in the price level

and a fall in the money supply. Thus a rise in interest rates is

associated with a contractionary monetary policy.

As in the temporary interest rate policy Figures, there is a

transitory effect at the time t in the inflation rate associated with the

final exhaustion of the stock of cash present at the announcement date of

the new policy (i.e., present at t = 0). The shift in monetary policy is

also apparent at t0.

It is interesting to note that if A 1 , then each consumer who

makes a withdrawal will choose the same money holding period under the
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state. If we had included such a Figure it would have shown the money

supply at 1 (the old steady state) for t > to and a small liquidity effect

for earlier values of t. Some of this is apparent in Figures 5.6 and 5.7

where the average level of the money supply changes after to. In each case

the fact that w is not equal to 1 changes the long run average holding

period. For example in Figure 5.7 the long run average money supply falls

below the pre—shock steady state because the average person is choosing a

lower exhaustion time at = .9 than at w = 1.

DISCUSSION OF FIGURES 5.9 AND 5.10

Figure 5.9 shows the path of money and inflation when the transactions

cost is sufficiently small that people exhaust their money in one day (k

1+8*10 and .25. It can be seen that the short run effects described

earlier are absent, and more importantly that ir(t) = r(t) — B. Figure 5.10

involves a choice of the transactions cost such that people never find it

optimal to exhaust their cash in between pay periods (k = infinity). This

corresponds to the Grossman—Weiss (1983) model. The first thing to note is

the scale on the money axis. As we pointed out in Section 3 there is

virtually zero interest elasticity of the demand for money in this case, so

that the movements in money are extremely small relative to Figure 5.8.

Next note that the price level does not jump, so that M/P diverges from M.

In addition the inflation rate is damped relative to r(t) — B because of

the fact that the spending rate at t of a consumer who had a paydate at z

is Y(z)e 1q by (2.16). Hence aggregate spending at t is determined by

an average of interest rates over a period from t to tt. In particular

it can be shown that
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t) - + Y(t) - Y(t-t)
Y(z)dz

t —t

So the inflation rate at t depends on interest rates from t—t to t.
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6. CONCLUSIONS

We have developed a simple model of money demand based upon a fixed

payment period and a proportional transactions cost of converting bonds into

money. The model is useful for analyzing the short run dynamics associated

with various anticipated and unanticipated monetary policies. A crucial

feature of the model is that there is an endogenous money holding period.

Hence, though consumers do not find it optimal to cause a jump in their

stock of cash balances when a new monetary policy is announced, they do

adjust the rate at which they exhaust their cash (i.e., their spending

flow). Hence, as in earlier work there is a liquidity effect associated

with the transactions cost of converting between money and bonds, but the

size of the liquidity effect is endogenous here.

The two classes of monetary policies analyzed here are price level

policies and interest rate policies. Price level policies are monetary

polices which in general equilibrium keep the nominal rate constant, but

change the long run price level. We have shown that the money supply must

rise gradually to its new steady state level if the price level is to be

raised without causing nominal interest rates to fall. After one payment

period the money supply has risen by g% if the price level policy involves

an increase in the price level of g%.

When interest rate policies are analyzed, it becomes clear that

aggregate money demand at time t depends on the path of interest rates, not

just the instantaneous interest rate at time t. Thim is because the

aggregate money holding at time t is composed of' the money holdings of

various consumers, each of whom has a different but overlapping holding

period. The staggering of money holding periods is a necessary conditon for
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general equilibrium; general equilibrium requires that some consumers must

be incrementing their cash when other consumers are decrementing their cash

via spending. (If all consumers decrement their cash at the same time, then

where does the money go to?) That is, general equilibrium requires that not

all consumers act in an identical manner.!''

Some results of our analysis which highlight the above point include

the fact that high frequency movements of the interest rate cause a much

smaller change in money demand than low frequency movements, since it is the

integral of the interest rate over a holding period which determines money

demand. Further, at high frequencies, the rate of inflation is not the

difference between the nominal interest rate and the rate of time

preference. This is because different consumers face different relevant

paths of interest rates when the interest rate oscillates within the length

of a pay period. Our theoretical results are consistent with the empirical

relationships presented in Cochraine (1985) that there is a negative

correlation between interest rate movements and money supply movements at

frequencies of about 14 weeks. He also finds that higher frequency movements

produce an effect too small to measure, and very low frequency movements

produce a positive correlation between money supply changes and interest

rates; all of which is consistent with the results in Section 5 of this

paper. A model which distinguishes between low frequency and high frequency

interest rate movements is also necessary to explain the money supply

announcement effects (documented in e.g., Cornell (1983)), though clearly a

stochastic version of our model must be developed for this purpose.

In contrast to previous work on monetary dynamics with overlapping pay

periods and exogenous money holding periods (where the interest rate

elasticity of money demand is almost zero), the aggregate cemand for money
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here is very interest rate elastic.' In those earlier models the low

interest rate elasticity implied that a very small open market operation,

say of about 5% per year is sufficient to drive the nominal interest rate to

zero. The monetary velocity, and the aggregate interest rate elasticity

observed in the US is probably generated by a combinatiofl of the two models.

That is, the consumers in the model developed here with high elasticities

represent firms in our economy for whom the fixed transactions cost of

converting between bonds and cash may be negligible, but for whom the

proportional transactions cost is important. For consumers in our economy

the fixed and proportional transactions costs are much higher, and it is

probably a satisfactory approximation to take their money holding period as

fixed over a large range of interest rates.' Hence aggregate money demand

probably responds to shocks as if it is composed of a convex combination of

consumers with a small proportional transactions cost, and another group of

consumers with a sufficiently large proportional transactions cost that

their money holding period is fixed.

The model clearly needs to be extended to deal with a fixed

transactions cost as well as a proportional cost. The non—convexities

associated with a fixed cost makes this difficult except for very simple

interest rate policies. Another problem with the model is that it is not

explicitly stochastic, so that it is impossible to understand the effects of

high frequency innovations to the money supply. The proportional

transactions cost model may be far simpler to develop in a stochastic

framework than the fixed cost model.
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FOOTNOTES FOR SECTION 1

*
Department of Economics, University of Chicago. I am grateful to

Jerry Fusselman and Narayana Kocherlakota for helpful comments. The

computer simulations were generated by Narayana Kocherlakota and Chi Ki

Chaing.

1"See Jovanovic (1982) for an analysis of the steady state of an

economy where there is a cash in advance constraint and a fixed cost of

converting between capital and money. See Leach (1982) for an analysis of

the steady state of an economy where there is a proportional transactions

cost, but each consumer spends out of money for only a single period in his

life.

FOOTNOTES FOR SECTION 2

proportional cost model has been chosen because of its

tractability. I prefer a model without exogenously determined paydates,

where a consumer can withdraw any sum of money for a fixed transactions

cost. I have analyzed the steady states of such a model in Grossman [1982],

and it is quite similar to the steady states of the proportional

transactions cost model. However, the non—convexities inherent in the fixed

cost model make the dynamics intractible except for the simplest sorts of

interest rate policies.

This is the obvious benefit from using proportional rather than

fixed transactions costs.
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(2.15) and (2.16) if n 1 and if T(znh) > z+(n+1)h then

Y(t(z))/k must be replaced by 1(zrth).

FOOTNOTES FOR SECTION l

!'Note from (2.18) that a rise in the price level, i.e., a fall in q,

causes t(x) to fall. Hence t < t
, so that none of the people who

have made a withdrawal in (o,t) have yet exhausted their cash. If

instead, a < o , then the first integral on the RHS of (4.5) would be from

1.. to t , rather 0 to t. The argument given can be modified in an obvious

manner in this case.

"All the numerical simulations in this paper are solutions to a

discrete time version of the model. In the discrete time version agents

choose an integer number of periods over which to exhaust their cash. It is

assumed that the new policy is announced at the end of period zero, so that

consumers making a withdrawal at time zero can do so with perfect foresight

about the path of prices and interest rates. The simulations reported in
Figure L.1 are based on a discretization of 1 period 1/365 of a year.

/From (149) it is clear that the jump in prices to the new steady

state level is not instantaneous because t0(x) falls when q falls. If

= r then (2.18) can be used to compute:

diog t0(x) ieto(
diog q Bt0(x)

1

so t(x) is very sensitive to q . However 1(t0(x)) = e8to( is not

very sensitive to q
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diog Y(t(x)) diog t0(x)
= t (x) Bt (x)dlogq 0 dlogq 0

which in the simulations is at most (.03)(30/365). Thus spending will move

very quickly to its new steady state value. It is interesting to note why

the money supply does not also move very quickly to its new steady state

value. From (14.8) the percentage change in the money held at time 0 by

someone who has a paydate of x is less than I + by a factor:

t Cx) diog t Cx)°

[1_eto)J=[1+8t0Cx)i dlog q° =Bt0(x)1

Intuitively, the fact that spending will move proportionally with q

implies that money holdings will change much less than proportionally

because t(x) falls a lot when q rises.

FOOTNOTES FOR SECTION 5

-"The derivation in (5.) refers to the derivative from the right,

i.e., from t > 0.

"Unless stated otherwise, all the plots in Section 5 are for the

discretized version of the model with 1 period = 1/365 years. The

proportional transaction cost is chosen to generate a steady state holding

period of 30 days at an interest rate of 3%. The pay period is set equal to

50 days.

-1More precisely the Figures are drawn using the function r(t) =

.03÷.ol 2Tut
to give the annual interest rate at day t. Further, the

plots of the inflation rate were generated by using a discretization of 14
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periods per day and then using the average price per day to compute the

inflation rate. This is because there was too much numerical noise in

inflation calculations from period to period.

FOOTNOTES FOR SECTION 6

--'Thus our model should be distinguished from models which use one

period (lower cash in advance constraints such as Grandmont and Younes

(1972)). In such models all consumers decrement their cash during a period,

and markets only clear at the end of each period.

See Lucas and Stokey (1983) for a cash in advance constraint model

where the demand for money depends on the nominal rate of interest, but in

which the money holding period is exogenous.

clearer way of stating this is that consumers and firms face the

same transactions cost schedule, but firms are operating at much higher

levels of cash on the same schedule. The schedule involves a fixed cost

plus a U shaped proportional cost.
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Appendix A

Al Characteristics of Optimal Money Exhaustion Times

Assume u'(o) = , u' > 0, u" < 0, r(t) > 0, P(t) has at most a finite

number of discontinuities in any finite interval of time. If P(t) > 0, k >

1, then there exists multipliers q > 0 for the wealth constraint (2.5a) and

A 0 for (2.5b) such that the optimal c(t) 0, D 0 anci t satisfy:

(Al) e u'(c(y)) = kP(y)q for t y < z(n+l)h, ri=0,l,2,3...:

(A2) e'u'(c(y)) = for z + nh y K t, n=l,2,3...;

Y(t )

(A3) If t < z÷(nl)h then k, for nl,23...;

z÷h

(A4) If M - > JP(t)c(t)dt, then:

(A4a) u'(c(y))e'= gP(Y) for y e[0,z+h]

(A4b)
Y(zh)

and DL
1(zh) J = 0.

zh
(A5) If M - 0 JP(t)c(t)dt, then:

(A5a) 'i'(t)A qk and [qk — 'Y(t)X] [z+h * t 0 tf to > 0; A qk

if t =0;
0
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(ASb) u'(c(y))e8' AP(y) for y

(A5c) A q/k and D0 CA — q/kJ = 0;

(A5d) If there is equality in (A5) then A q/1(zh);

The deriviation of the above inequalities is standard. Note that (A3) is

derived from noting that a small increase in t yields net benefit

+ + + +
k ?(t ) c (t ) P(t ) c (t )

1(t) Y(z + nh) J , and a small decrease in t yields

the same expression except that t is replaced by t . Hence (A3) holds

even if P(t) jumps at t=t. Note that (A5d) holds because when (A5) is an

equality, i.e., t= z+h, it is always possible to reduce consumption a

little at t < z+h, and hold the money for spending at t0= (z÷h)÷. The net

benefit of such a decrement in spending before t = zh is q/1(z+h) — A, and

this leads to (ASd).

The analysis of the initial exnaust time to is complicated by the fact

that the consumer may choose to make a deposit at time 0, or to not exhaust

his initial money holaings. The following theorem characterizes the optimal

choice of his initial exhaustion policy. Let F(x,y) JP(t) c(t,y) dt,

where c(t,y) is as defined in (2.11).

Theorem Al

Let q > 0 be given and M ) 0, then:

Case (a) if '(z+h) > k, then (A5) holds. In addition, if

Case (al) F(z+h, qk/'(zh)) < M and F(z+h,q/k)
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then t zh and D 0, and A is the solution to
0 0

(A6) F(z+h,A) Mo;

Case (a2) if F(zi-h, qk/1(z+h)) < and F(z+h,q/k) <

and if 1(z÷h)

then to z÷h and D M — F(zh, q/k) and A q/k;

if 1(z+h) > then to is given by the solution to

(A7) 1(t0) = and

(A8) A qk/1(t), and

(A9)
D0 M0 F(t0, qk/1(t0));

Case (a3) If F(z+h, qk/1(z+h)) M, then

let t solve

(AlO) F(t*, qk/1(t*)) =

and let

(All) A qk/1(t*).

If A > q/k then = 0. to t and A = A

If A qlk then t01A, and are given by (A7) — (A9).

If:

Case (b) 1(z+h) k, then it is impossible for > 0 and t0(o,zh);

Case (bi) In addition if F(zh, qk/1(z+h)) < M0, then

consider the A* which solves (A6). If A* < q/1(z+h) then

z+h, c(t) is given by (A14a) and DEk — 1(z+h)] = 0. If A*

q/Y(z+h), then c(t) is given by (A5b), t0 = z÷h and D0[k

Y(z+h)] = 0.

Case (b2) In addition if F(zh, qk/1(z+h))

then (A5) holds, and to where t is given by (AlO), and A

= A as defined in (All), and D0 = 0.
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Proof

Note that F(x,y) is increasing in x and decreasing in y.

Case (a) From (A4b) we are sure that (A5) must hold.

Case Cal)

The inequalities involving F(.) imply that > Y(zh). If to £

Eo,z+h) then F(zh, qk/1(z+h) < M0 implies that > 0. Thus using

(A5a) and (A5c) 1(t) which is impossible, since IC.) is

nondecreasing. Since to = zh, if D > 0, then (A5c) implies that

F(zi-h, q/k) = M0-D0 which contradicts F(z+h, q/k) M.

Case (a2)

Note that for to c(o,zh) and D> 0, (A5a) and (A5c) imply that (A7)

and (A8) must hold. Hence if 1(zh) we have to — z+h and D0

F(zh), q/k) and A = q/k as the only solution to (A5) (recall that A

qk/1(z+h) since this inequality is equivalent to 1(z+h) when A

q/k). If 1(zh) > k, then there is a to c(0,zh) such that (A7)

holds.

Case (a3)

Here there is exhaustion at a t0(0,z+h). If CAb) holds and A in

(All) satisfies A > q/k, then we must have 0 by (A5c). However

if A < q/k, then we must have D > 0, so the solution must instead be

given by (A7)—(A9). Note that A q/k implies 1(t*) > so there

will be a solution to (A8).

Case (b)

Here we must have 1(zh) < so there is no solution to (A5a) and

(A5c) with both as equalities. Thus > 0 implies to z+h and

that (A5) must be an equality if it holds at all.
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Case (bi)

If to (o,z+h) then D 0 and consumDtion would be governed by the

A such that A = qk/T(t) and F(t0,qk/Y(t)) = . But

F(t,qk/1(t)) < F(z+h,kq/Y(z+h)), which contradicts F(z+h,qk/'f(z+h))

< M. Hence to zh, since to 0 implies D3 M0 > 0 and (A5a)

contradicts (A5c). Note that to zh means that if (A5) holds at all

then it must hold as an equality. Further if' (1) Y(z+h) < k, (A5) is

impossible since > 0 implies A q/k which contradicts (ASd), and

D 0 to = zh implies that A A and A < q/'f(z+h) contradicts

(A5d); while if (ii) 'r(z÷h) = k, it is impossible for (A5) to hold

with A K q/k by (A5d), while A > q/k would imply = 0 and thus A =

A which contradicts A K q/1(z+h) and k = Y(zh). Thus the optimal

solution involves A q/k q/Y(z+h) and = F(z+h,q/k). It is

also optimal to be in case (A!t) and have D< F(z÷h), q/Y(z+h))

when k = Y(z+h); of course (A14a) and (A5b) coincide in that case.

If A* q/1(z+h), then F(z+h,q/'(z+h)) > so case (A4) is

impossible. Hence (A5) holds with A = A*.

Case (b2)

Note that F(z+h,q/1(z+h)) > M, since F(z-h, qk/Y(z+h) M, hence we

cannot be in case (Ai). Under the hypothesis of Case (b2) t z-'h.

Further we cannot have D > 0 since, (1) to interior is ruled out in

Case (b), and (ii) to = zh is ruled out by the fact that Y(z÷h) k

and 'Y(zh)A qk imply F(z÷h,A) > which contradicts (AS)

holding as an equality. Hence =0.
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APPENDIX B

by

Narayana Kocherlakota

In this appendix, we will show that under some mild assumptions, the

only distribution of paydates compatible with steady state constant

aggregate money demand is a uniform one.

Of' major importance in making this claim is the fact that if

transaction costs are positive, individuals always spend Out of money for

some discrete time period after their paydates. This allows us to establish

*
the following restriction on individual money holdings. Define M (x) to

be the money holdings of an individual paid x periods ago; this is well—

defined since the economy is in steady state. If the individual buys goods

using his stock of cash, then

*
(P1) There exists b > 0 such that M '(x) < 0 for all x (0,b].

*
Clearly, M '(x) 0 for all x c (o,h).

We will assume that the distribution of paydates has an associated

density function f, which we will require to be positive-valued and

continuous on the real line. The structure of the model further implies

that f is periodic with period h and that J f(z)dz = 1

0

Mathematically, then, we want to show f is constant if aggregate money

demand:
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d rt *
M Ct) =

J
M (tz)f(z)dz

t h

is constant over t . To do so, we need the following lemma.

Lemma B.1: Define:

T= ft e [o,h]If(t) sup f(x))
x c[o,h]

* *If f is not constant, then there exist t c T and > 0 such that [t —
*

6,t ) intersected with T is empty.

Proof: We know T is not empty since f is continuous; let s T. Define

r(a) = inf {xjx E T and x a} for a c [o,sj. T is closed, so r(a)

T. Suppose the lemma is false. Then r(a) = a, and [O,s] is contained in

T. However, by the periodicity of f, this implies h c T. It follows that

[o,h] = T, which contradicts the hypothesis that f is not constant.

We can use this lemma and (P1) to prove our result.

Theorem B.1: If

It *
(1)

J
M (t—z)f(z)dz = H

t -h

for all t, then f is constant.

*Proof: Suppose f is not constant. Then let t c [o,h] have the
*

property described in Lemma B.1. Differentiating (1) at t then gives:
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*
* + * — * t * *

(2) [M (o ) - M (h )f(t ) + * M '(t _z)f(Z) 0
t -k-t

* + * * — *
where (x ) = urn M (y) and M (x ) = urn M (y). o1viflg for f(t ) in

y4x ytx

(2), we

*t * ** M '(t

)

M Ui ) H (0 )

* *
Using (P1) and the fact that there existS ó > Q CP that f[t ,t ) <

*f(t ), we can derive

t * * ** H '(t z)f(t )dz

f(t) <

M(h) —M(°)

Of course, this is a cOfltrb0tiO Q.E




