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Can Higher-Achieving Peers Explain the Benefits to Attending Selective 
Schools?: Evidence from Trinidad and Tobago 

 
C. Kirabo Jackson1 

Northwestern University  
 

Abstract:  Using exogenous secondary school assignments to remove self-selection bias to schools and 
peers within schools, I credibly estimate both (1) the effect of attending schools with higher-achieving 
peers, and (2) the direct effect of short-run peer quality improvements within schools, on the same 
population. While students at schools with higher-achieving peers have better academic achievement, 
within-school short-run increases in peer achievement improve outcomes only at high-achievement 
schools. Short-run (direct) peer quality accounts for only one tenth of school value-added on average, but 
at least one-third among the most selective schools. There are large and important differences by gender. 

 

 In many nations, there is fierce competition for scarce slots at selective schools (Hsieh 

and Urquiola 2006, Hastings and Weinstein 2008). This is, in part, because students at more 

selective schools typically have better outcomes ─ giving the impression of sizable benefits to 

attending selective, and often prestigious, schools. However, because motivated and high-

achieving students tend to select to these schools, these differences may reflect selection rather 

than selective schools providing greater value-added. Addressing this selection problem, Jackson 

(2010) uses a quasi-experimental design and finds that attending a more selective school in 

Trinidad and Tobago has positive effects on exam performance and high-school graduation. 

While not all studies find positive selective school effects (e.g. Abdulkadiroglu et. al. 2011), 

similar positive effects have been found in Romania (Pop-Eleches and Urquiola 2010), the 

United Kingdom (Clark 2008), and the United States (Dobbie and Fryer 2011).  

 The effect of attending a more selective school reflects both short-run peer effects (that 

arise from contemporaneous interactions with higher-achieving classmates in addition to 

interactions with parents and teachers) and the effect of inputs that may be endogenous to long-

run differences in peer quality across schools (such as teacher quality, superior management 

style, or funding)2. As such, if students benefit directly from higher-achieving classmates (Lavy, 

Silva, and Weinhardt 2012; Hoxby and Weingarth 2006; Hanushek et. al. 2003), part of the 

benefit to attending a selective school may be attributed to the direct benefits of having higher-

                                                            
1 I thank Stephanie Riegg Cellini, David Deming, Ron Ehrenberg, David Figlio, Caroline Hoxby, Brian Jacob, 
Jordan Matsudaira, Jonah Rockoff, and Miguel Urquiola for helpful comments on early drafts of this paper. 
2 Jackson (2009) presents evidence that teacher quality is determined in part by student characteristics. 
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achieving peers. If the high concentrations of high-achieving students afforded by selective 

schools engenders an environment particularly conducive to learning, then adopting the practices 

of selective schools (such as strict discipline and educated teachers) in other schools will not 

yield similarly impressive results. Without knowing how much of the benefits associated with 

successful selective schools is due to those schools providing higher-achieving peers, we will 

have little indication of whether successful school models can be replicated in other settings.   

 I aim to shed new light on this issue by investigating the extent to which the positive 

selective school effects documented in Trinidad and Tobago (Jackson 2010) can be attributed to 

selective schools providing higher-achieving contemporaneous peers.3 This poses empirical 

difficulties because; (a) school selectivity and peer quality generally move together, (b) students 

select to schools, and (c) students select to peers. However, peculiarities of the Trinidad and 

Tobago education system provide a rare opportunity to overcome these difficulties. 

 To address concerns that peer quality and input quality tend to move together, I identify 

the effects of attending a selective school (a school with higher-achieving peers) using variation 

across schools, and I identify the direct effect of exposure to higher-achieving peers using only 

variation in peer achievement across cohorts within schools ─ effectively holding input quality 

constant.4 I present an analytical framework that shows under certain conditions, the marginal 

effect of higher achieving peers obtained within schools divided by the marginal effect of higher 

achieving peers obtained across schools will yield the fraction of the school selectivity effect that 

can be directly attributed to that school providing higher achieving peers.   

 To address concerns that students may self-select to schools and peers, I restrict analysis 

to a sub-sample where students are assigned to schools by the Ministry of Education (MOE) 

based on observable characteristics that I can control for directly ─ precluding self-selection to 

one's assigned school or assigned peers. I use the assignments to construct instruments for (a) the 

selectivity of the schools that students attend and (b) changes in the incoming achievement of 

peers across cohorts within schools. I present tests indicating that (a) school assignments are 

conditionally exogenous, and (b) changes in assigned peer quality across cohorts within schools 

are conditionally exogenous. One remaining concern is that changes in peer achievement within 

                                                            
3 This paper does not investigate the broader related question of how much school value-added can be explained by 
peer quality. This would be very ambitious research to undertake. The data available and the nature of the 
exogenous variation preclude a rigorous treatment of this broader question.    
4 Similar approaches to identifying direct peer effects are used in Ammermueller and Pischke (2006), Lavy and 
Schlosser (2009), Hoxby and Weingarth (2006), and Hanushek, et al. (2003). 



3 
 

schools across cohorts could be correlated with changes in unobserved school inputs. This is 

unlikely because the schools used are centrally operated by the MOE that rarely alters school 

policies, spending, or inputs on a school-by-school basis. Moreover, I show that changes in 

assigned peer quality over time within schools are unrelated to changes a school's desirability (a 

measure of perceived long-run school quality) or observed teacher quality. 

 I use the number of secondary school-leaving exams passed at the end of 10th grade as the 

main outcome. This variable is a summary statistic for overall educational attainment because it 

is sensitive to dropping out of school, the number of exams attempted, and performance on a 

given exam. Echoing findings of Jackson (2010), attending schools with higher incoming peer 

achievement increases the number of exams passed. Also, increases in mean peer achievement 

within schools increase the number of exams passed. The marginal effect of increases in mean 

peer achievement across schools is about 10 times larger than the marginal effect of increases in 

mean peer achievement across cohorts within schools ─ implying that approximately 1/10 = 10 

percent of the selective schooling effect can be attributed to the achievement level of peers. 

However, the direct marginal effect of peers varies considerably across schools such that peer 

achievement can account for two-thirds of the school selectivity effect among the most selective 

schools, but explains little of the effect for the lower three quartiles of schools. Four additional 

empirical facts support the notion that a sizable part of the selective school effect is a peer effect: 

(1) among high-achieving schools, both the benefits to attending a more selective school and the 

benefits of increased peer achievement within schools are large; (2) among low-achieving 

schools both the benefits to attending a school with higher-achieving peers and benefits of 

increased peer achievement within schools are small; (3) females, who benefit more from 

attending selective schools also enjoy the largest benefits to marginal increases in peer 

achievement within schools, and (4) gender differences in the response to peers can completely 

explain gender differences in response to schools.  

  In this paper, I present a framework within which one can determine how much of a 

school selectivity effect is directly attributable to a peer achievement effect. Using this 

framework, this paper is the first paper to show that, among the most selective schools, much of 

the school selectivity effect can be directly attributed to the incoming achievement level of the 

peers ─ such that the successes at the most selective schools may not be scalable. Conversely, I 

show that incoming peer achievement can only explain a small fraction of the school selectivity 
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effect on average, so that school attributes that generate the large differences in value-added 

between low- and middle-achieving schools are potentially scalable.  

 The remainder of the paper proceeds as follows: Section II describes the Trinidad and 

Tobago education system and the data. Section III lays out the analytic framework. Section IV 

outlines the empirical strategy. Section V presents results, specification tests, and robustness 

checks. Section VI concludes. 

 

II  The Trinidad and Tobago Education System and the Data. 

In Trinidad and Tobago secondary school begins in first form (6th grade) and ends at fifth 

form (10th grade) when students take the Caribbean Secondary Education Certification (CSEC) 

examinations. The exams are given in 31 subjects and are externally graded. Students who pass 

five or more subjects including English language and mathematics exams meet the requirements 

for secondary school graduation.5 There are eight public school districts, and private schools 

account for a small share of student enrollment and tend to serve those who “fall through the 

cracks” in the public system.6 There are two types of public secondary schools: Government 

schools, and Government Assisted schools (Assisted schools). Government schools provide 

instruction from 6th through 10th grade and often continue to 12th grade. These schools teach the 

national curriculum and are fully funded and operated by the Government. Assisted schools are 

almost identical to government schools but differ along the following key dimensions; (a) 

Assisted schools are run by religious boards and are often single-sex schools; (b) all operating 

expenses except teacher costs are publicly funded; (c) while the MOE assigns students to fill all 

available slots at Government schools, the MOE assigns students to 80 percent of the open slots 

at Assisted schools. The remaining 20 percent of school slots at Assisted schools are assigned by 

the principal. This last distinction is key because unlike assignment to Assisted schools, 

assignment to government schools is not subject to self-selection bias.  

 

II.1. Data and Summary Statistics: The data used in this study come from two sources: the 

official SEA test score data (5th grade) for the 1995 through 2002 cohorts and the official 2000 

                                                            
5 The CSEC examinations are accepted as an entry qualification for higher education in Canada, the United 
Kingdom and the United States. Students may continue to take the Caribbean Advanced Proficiency Examinations 
at the end of grade 12, which is a prerequisite for more selective colleges and universities in most nations.  
6 Students at private secondary schools have SEA scores 0.33 standard deviations below the average. 
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through 2007 CSEC test score data (10th grade). The SEA data contain each of the nation's 

student’s SEA test scores, their list of preferred secondary schools, their gender, age, religion 

code, primary school district, and the secondary school to which they were assigned by the 

MOE. The SEA exam is comprised of five subjects that all students take: math, English, science, 

social studies, and an essay. To track these 5th grade students through to secondary school, I link 

the SEA data with the CSEC examination data both four and five years later. About 72 percent of 

SEA test takers were linked to CSEC exam data.7 The CSEC data contain each student's grades 

on each CSEC exam and the secondary school they attended. In the data, there are 123 public 

secondary schools, some small test-taking centers and private schools. Among students linked to 

CSEC data, under seven percent attended a private institution, were home schooled, or were 

unaffiliated with any public education institution. To ensure that I have a sample within which 

the school assignments are not subject to any selection, I drop students who are assigned to 

Assisted schools and private schools. The resulting analytical dataset contains 150,701 students 

across seven cohorts and 158 school assignments.8  

Table 1 summarizes the final dataset, broken up by the assigned secondary schools’ 

rankings in incoming SEA scores (i.e. the school with the highest average incoming total SEA 

scores is ranked first). SEA scores are in standard deviation units. Females make up about half of 

students in each school group. There is much variation in school and peer quality. The 30 most 

selective schools had students with about one standard deviation higher incoming SEA scores 

than schools ranked between 31 and 90, which in turn had students with average incoming scores 

over half a standard deviation higher than schools ranked below 90. As expected, selective 

schools have better outcomes. About 87 percent of students at schools ranked better than 30 took 

the CSEC exams compared to 71 percent for schools ranked 31 to 90, and 59 percent for schools 

ranked below 90. The average student at a top 30 school passes 4.44 exams, compared to 1.9 

exams in schools ranked between 31 and 90, and passing only 1 exam at schools ranked below 

90. Some of these differences are due to students not taking the CSEC exams having no passes.  

The schools that attract the brightest students typically have the best school resources. 
                                                            
7 Students were matched on name, gender, and date of birth. The match rate is consistent with the national dropout 
rate of one third. Students with missing outcomes are coded as having zero passes and included in the sample.  
8There are more assignments than high schools because some when there are more students than available spots, the 
government assigns students with the lowest SEA scores to small "temporary" schools or purchases seats in private 
schools. Omitting students assigned to such schools does not affect the results.  
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Schools with the highest achieving students are on average smaller with cohort sizes being about 

120 students at the top 30 schools and about 440 students in both other groups of schools. 

Similarly, about 58 percent of teachers at schools ranked better than 30 have a bachelors degree 

compared to 55 percent for schools ranked 31 to 90, and 36 percent for schools ranked below 90. 

Given that having a university or college degree likely has an important effect on teaching 

ability, this may translate into sizable teacher quality differences across schools. Higher ranked 

schools also have fewer inexperienced teachers. Specifically, 14 percent of teachers at schools 

ranked better than 30 have between 0 and 3 years of teaching experience compared to 16 percent 

for schools ranked 31 to 90, and 24 percent for schools ranked below 90.    

 

III Econometric Framework 

 I present a model showing that, under reasonable assumptions, the ratio of the coefficient 

on peer quality obtained using variation across schools and the coefficient on peer quality 

obtained using variation within-schools across cohorts yields an estimate of the proportion of the 

effect of attending a school with higher-achieving peers that can be directly attributed to 

contemporaneous exposure to higher-achieving peers. The within-school peer effects will reflect 

direct peer interactions, contextual effects, and teacher and parent interactions that may all be 

directly affected by the contemporaneous classroom composition and not scalable across schools.   

 Input quality at school j at time t, denoted Ijt, is a linear function of permanent (long-run) 

peer quality jP and idiosyncratic determinants ujt. This is written as [1] below. 

[1]        where   E[ | ] E[ ] 0j jjt jt jt jtI P u u P u    . 

This captures the fact that school inputs (such as teacher quality and alumni donations) are 

endogenous to persistent characteristics of the student body. Input quality is not a function of 

contemporaneous peer quality because input quality changes are likely not sensitive to transitory 

shocks to peer quality and changes. I present empirical support of this assumption in section V.2.  

 Peer quality is comprised of long-run component jP and idiosyncratic component jt .  

[2]         where   E[ | , ] E[ ] 0j jjt jt jt jt jtP P P u      . 

The long-run component plus random error captures the fact that the schools that attract the 

highest/lowest achieving students have done so for years. This modeling assumption is akin to 

saying that Harvard and Yale (or Oxford and Cambridge) always attract the top students in any 
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given year. I present empirical support of this assumption in section V.2.  

 Achievement of student i at school j at time t ijtY  is a separable function of input quality 

and peer quality as in [3] below, where ijt  is an idiosyncratic error term.  

[3]     where  E[ | , ] [ ] 0ijt jt jt ijt ijt jt jt ijtY P I P I E           . 

 Substituting [1] into [3], the expected difference in student outcomes across schools j and 

school j' conditional on peer quality is given by [4] below.  

[4]   ' ' ' ' ' '[ | , ] ( ) ( ) ( )( )ijt i j t jt j t jt j t jt j t jt j tE Y Y P P P P I I P P           . 

Equation [4] illustrates that, under the identifying assumptions in [1],[2], and [3], differences in 

student achievement across schools associated with peer quality reflect the direct marginal effect 

of short-run variation in peers   plus the marginal effect of input quality differences across 

schools that exist in equilibrium as a result of long-run difference in peer quality .  

 Because in expectation there are no systematic differences in input quality within schools 

over time, the expected difference in student outcomes across cohorts t and t-1, within school j 

conditional on peer quality is given by [5] below. 

[5]    ' 1 1 1[ | , , ] ( )ijt i jt jt jt jt jtE Y Y P P J j P P      . 

Equation 5 illustrates that comparing the outcomes of observationally similar students attending 

the same school but exposed to different peers because they attend at different times, yields the 

direct effect of peers on outcomes  . As such, / ( )   , the coefficient on within-school 

changes in peer quality divided by the coefficient on peer quality obtained across schools, yields 

the fraction of the benefits to attending a selective school that can be directly attributed to 

exposure to higher achieving peers. Because the assumptions of linearity and the additive 

separability are restrictive, I also present findings where these assumptions are somewhat 

relaxed. I now detail strategies to uncover consistent estimates of both 
 
and   . 

 

IV Empirical Strategy 

Estimating the effect of attending a more selective school 

 To estimate the effect of attending a school with higher-achieving peers,   , the 

basic approach is to compare the outcomes of observationally similar students at different 

schools. For the naïve baseline specification, I model the outcome of student i at a school j in 
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cohort c with the following equation. 

 [6]   ( ) ( )ijcijc i c ijcY f SEA SEA           

where ( )if SEA is a function if a student's incoming SEA score, ijcSEA is the mean incoming SEA 

score of all other students at school j in cohort c with student i, c is a cohort fixed effect and ijc

is unobserved determinants of student achievement. Because students may select to schools 

based on unobserved determinants of achievement, naïve estimation of [6] might not uncover the 

parameter ( )  . This motivates an instrumental variables strategy that uses students' initial 

school assignments by the MOE to remove bias due to student selection to schools. 

Estimating the direct effect of contemporaneous peer achievement 

 To estimate the effect of contemporaneous exposure to higher-achieving peers,  , I 

compare outcomes of observationally similar students at the same school but who are exposed to 

peers with different levels of incoming achievement because they are in different cohorts.  In the 

naïve specification, I model the outcome of student i at a school j in cohort c with [7]. 

 [7]   ( ) ijcijc i c j ijcY f SEA SEA         
.
 

All variable are defined as in [6]. The difference between [6] and [7] is the inclusion of a school 

fixed effect j , that absorbs time-invariant variation in peer quality ─  so that estimation is based 

on only idiosyncratic transitory variation in peer quality within schools across cohorts. This same 

strategy has successfully been employed in several papers including Ammermueller and Pischke 

(2006), Lavy and Schlosser (2009), and Hoxby and Weingarth (2006).  However, because (a) 

students may select to schools based on unobserved determinants of achievement and this 

selection may change over time, and (b) mean peer achievement could change within schools for 

reasons other than random transitory shocks, naïve estimation of [7] by OLS may not uncover 

.  This motivates an instrumental variables strategy that uses students' initial school assignments, 

and the initial school assignments of students' peers, to remove bias due to student selection to 

schools and bias due to endogenous changes in peer achievement over time. 

 

IV.2 Student Assignment Rules:  

 After 5th grade, all students take the SEA examinations. Each student lists four ordered 

secondary school choices. These choices and the SEA scores are used by the MOE to assign 
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students to schools. School slots are assigned in successive rounds such that the most highly 

subscribed/ranked school fills its spots first, then the next highly subscribed school fills its slots 

in the second round, and so on until all school slots are filled. This is done as follows: (1) The 

number of school slots at each school nj is predetermined based on capacity. (2) Students are 

tentatively placed in the applicant pools for their first choice schools and are ranked in 

descending order by SEA score within each application pool. (3) The school at which the nj
th 

ranked applicant has the highest SEA score is deemed the most highly subscribed/ranked school 

j1, this score is the cut-off score for this school, and the top nj1 students in the applicant pool for 

top-ranked school j1 are admitted to school j1. (4) The top ranked school's slots and the admitted 

students are removed from the pool, and the second choice becomes the new "first choice" for 

students who had the top ranked school as their first choice but did not gain admission. (5) This 

process is repeated in round two to assign students to the second highest ranked school j2 and 

determine the cut-off score for the second ranked school. This is repeated in subsequent rounds 

until all slots are filled. This process applies to over 95% of students. However, assisted schools 

(16% of school slots) can admit 20% of their incoming class at the principal’s discretion. The 

rule is used to assign 80% of the students at these schools, while the remaining 20% can be hand-

picked by the principal before the next-highest ranked school fills any of its slots.9  

The actual cut-off scores for each school are not released to the public. However, because 

the rules are known, and I have the same information that the MOE used to assign students, I can 

simulate where the cut-offs would have been if Assisted schools could not hand pick students 

(see Appendix Note 1). After simulating clean cut-offs, I estimated the likelihood of attending 

one's top choice school as a function of one's score relative to the simulated cut-off for one's top 

choice school. Figure 1 depicts a sudden increase in the likelihood of assignment to one's top 

choice school as one's score goes from below to above the simulated cut off ─ indicating that (a) 

the assignments operate as described, and (b) there are meaningful differences in school 

assignments associated with scoring above/below a cut-off that are not due to selection. The fact 

that assignments to government schools are orthogonal to unobserved student characteristics 

(where both choices and SEA scores are observed) plays a crucial role for identification, and 

motivates my using only those students with exogenous assignments to government schools.    

                                                            
9 These hand-picked students are chosen based on family alumni connections, being relatives of teachers, or religion. 
These students need not list the school as their top choice. Students receive one assignment and are never made 
aware of other schools they would have been assigned to had they not been hand-picked. 
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In general, students tend to put schools with higher-achieving peers higher up on their 

preference ranking. On average, the difference between the mean incoming SEA scores at a 

student’s top choice school and second, third and fourth choice school is 0.277, 0.531, and 0.91  

standard deviations, respectively. Also, higher-achieving students tend to have more selective 

schools in their list, students request schools with the same religious affiliation as their own, and 

students typically list schools geographically close to home. Because school choices are a 

summary statistic for student/parental aspirations, preferences, expectations about ability, 

religious affiliation, and geographic location makes these choices a powerful set of controls.  

 

Identification Strategy 

 Because students assigned to government schools cannot self-select into the assignment, 

conditional on incoming test scores and student choices, the school assignments within the group 

of government schools is exogenous. I detail how I exploit this fact to identify (a) the effect of 

attending a selective secondary school, and (b) the effect of marginal increases in incoming peer 

achievement within a school. 

Using instruments to estimate the effect of attending a more selective school 

 The problem with merely comparing outcomes of observationally similar students who 

attend different schools (as in [6]) is that students may select or transfer into selective schools 

based on unobserved characteristics that directly affect student outcomes. As such, one needs 

variation in school attendance that is beyond students' control. Conditional on school choices, the 

assignment rule creates test score cut-offs above which students are assigned to one school and 

below which they are assigned to another. Among students who chose a selective school, the 

likelihood of being assigned to (and attending) a more selective  school increases in a sudden and 

discontinuous manner as one's score goes from below to above the cut-off for that selective 

school. If the locations of the cut-offs are orthogonal to student characteristics, and the effect of 

test scores on outcomes is smooth through the cut-offs, one can attribute any sudden jumps in 

outcomes as one's score goes from below to above the cut-offs to the sudden exogenous 

increased likelihood of attending a selective school. While this variation is amenable a fuzzy 

regression discontinuity design, relatively small sample sizes preclude precise estimates using 

such a design. However, the main findings are robust to using this discontinuity variation. 
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 I follow Jackson (2010; 2012) and exploit a different source of exogenous variation 

created by the assignment rules. This second source of exogenous variation comes from the fact 

that different schools have different cut-offs so that students with the same test scores but 

different choices are assigned to different schools. This variation is best illustrated with an 

example. Consider a world with two similarly selective schools 1 and 2 (both with mean peer 

quality of 0.5) and one average school 3 (with mean peer quality of 0). There are two choice 

groups; choice group 1 who list school 1 as their top choice and school 3 as their second; and 

choice group 2 who list school 2 as their top choice and school 3 as their second choice. 

Applicants to school 1 scoring above 82 on the SEA are admitted, while school 2 has a higher 

cut-off such that applicants to school 2 scoring above 92 are admitted. One can put all students 

into one of three test score groups: group A with scores of 82 and below; group B with scores 

between 83 and 92; and group C with scores of 93 and above. This is illustrated in Figure 2.  

 Students in test score group A (with scores below the cut-offs for both selective schools) 

are never admitted to a selective school whether they are in choice group 1 or choice group 2. 

Similarly, students in test score group C (with scores above the cut-offs for both selective 

schools) are all admitted to a selective school whether they are in choice group 1 or choice group 

2. However, those in test score group B (with scores above the cut-off for school 1 but below the 

cutoff for school 2) who are in choice group 1 are admitted to a selective school while those in 

choice group 2 are not admitted to a selective school. As such, if the choice group effects are 

additively separable from that of test scores, one can use a difference in difference approach to 

identify the effect of attending a selective school. 

 Because the difference in choices do not lead to a difference in selective school 

attendance within test score groups A and C, the difference in outcomes between choice groups 1 

and 2 within test score groups A and C cannot be due to differences in test scores or differences 

in selective school attendance and must therefore be due to differences in choices. However, 

because the difference in choices lead to a differences in selective school attendance within test 

score range B, the difference in outcomes between choice groups 1 and 2 within test score group 

B reflects both differences in selective school attendance (in this example a mean peer 

achievement difference of 0.5 standard deviations) and differences in choices. The difference in 

outcomes between choice groups 1 and 2 within test score group B (selective effect + choice 
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group effect), minus the difference in outcomes between choice groups 1 and 2 within test score 

groups A or C (choice group effect), reflects the effect of attending a more selective school. 

 To capture the difference in difference (DID) variation due only to the assignment rules, I 

use assigned peer quality (i.e. the average incoming test scores of other students assigned to the 

same school j* as student i in cohort c),  *ij cSEA , as an instrument for actual peer quality while 

controlling for a full set of choice indicator variables, and a full set of SEA score indicator 

variables. Specifically, I estimate the outcome of student i from cohort c, at school j with the 

following system of equations by two-stage-least-squares (2SLS). 

[8]  

 


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2 2 2 2 2
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In [8],  ijcSEA  is the mean total SEA scores for students attending the same school j as student i in 

cohort c, 
iSEA kI   is an indicator variable equal to one if the student's SEA score is in test score bin 

k (because SEA scores are continuous, SEA scores are put into 50 narrow bins per) so that 2k  is 

effectively a test score fixed effect,
 iP pI  is an indicator variable denoting whether a student has a 

particular school preference ordering (choices), and ,2p is a preference ordering (choices) fixed 

effect (i.e. there is an indicator variable denoting each distinct ordered list of schools. For 

example there is a dummy variable for all students who list schools A,B,C,D as their first, 

second, third and fourth choice schools, and another different indicator variable for all students 

who list A,B,D,C as their first, second, third and fourth choice schools.), iX  includes student 

gender, c  is a SEA test taking cohort fixed effect, and ijc  is the idiosyncratic error term.  

 The 2SLS estimate of the coefficient on peer achievement,  , from [8] should be 

unbiased since (1) the analytic sample only includes those schools and students for whom the 

initial school assignment is exogenous conditional on incoming test scores and choices, (2) the 

excluded instrument, mean peer quality of the students assigned school (based on other students 

assigned to the school), is not affected by students subsequently transferring to schools they 

prefer, and (3) inference is based on comparisons within groups of students who are similar in 

important ways  but who were assigned to different schools for reasons beyond their control. 
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 While there is no way to test for a correlation between the instruments and unobserved 

student characteristics, I present evidence consistent with the identifying assumption by showing 

that observed covariates are uncorrelated with the instruments. Specifically, I run a regression 

with SEA score fixed effects choice fixed effects and the assigned peer quality to predict each 

religion indicator variable, each primary school district indicator variable, and the number of 

times a student attempted the SEA exams. I present the estimated coefficient on mean total in 

Table 2. Assigned peer quality is not associated with student religion, the number of SEA 

attempts, or the students' primary school district at the five percent level — suggesting that the 

conditional exogeneity assumption is valid. I present further robustness checks in Section V.2. 

Using Instruments to Estimate the effect of improved peer quality within schools 

 The problem with simply comparing the outcomes of observationally similar students at 

the same school exposed to different levels peers is that (a) students select to schools and (b) 

peers select to schools. To address this problem, I use variation in peer quality that is not subject 

to student or peer selection. The fact that students assigned to government schools cannot self-

select into their assignment allows this. I use across-cohort within-school changes in average 

incoming test scores of other students assigned to the same assigned school as an instrument for 

changes in actual peer quality within students actual schools. To do this, I augment the cross-

sectional equation [8] to include an assigned school fixed effect *j .  
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The difference between [9] above and the naïve model [7] is that I include fixed effects for the 

student’s assigned secondary school (as opposed to the actual school) and I instrument for the 

actual peers at the actual school with the assigned peers at the assigned school. As long as the 

school assignments are exogenous, conditional on test scores and student choices, equation [9] 

will remove bias due to selection of students and peers and will yield an unbiased estimate of  .  

I present evidence consistent with the identifying assumptions of no selection by showing 

that observed covariates are uncorrelated with changes in assigned peers within assigned schools 

across cohorts. Specifically, I run a regression with SEA score fixed effects, choice fixed effects, 

assigned school fixed effects, and the assigned peer quality to predict each religion indicator 
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variable, each primary school district indicator variable, and the number of times a student 

attempted the SEA exams. I present the estimated coefficient on mean total in Table 2. Assigned 

peer quality is not associated with student religion, the number of SEA attempts, or the students' 

primary school district at the five percent level — suggesting that the conditional exogeneity 

assumption is valid. While this strategy may remove selection bias, there remains the concern 

that changes in peer achievement could be correlated with changes in unobserved school inputs. 

In section V.2, I present evidence that this is not the case.  

There are two sources of plausibly exogenous variation in mean peer achieving within 

schools over time. Because there are only about 20 thousand students taking the SEA each year 

and schools take small slices (between 100 and 500 students) out of the SEA distribution based 

largely on student rank, both small transitory changes in the distribution of test scores and 

idiosyncratic variation in the distribution of student preferences over time lead to meaningful 

exogenous variation in assigned peer achievement within assigned schools across cohorts.  

To illustrate this variation due only to small changes the SEA distribution, I look at mean 

SEA scores for students ranked 1 to 100, students ranked 3000 to 3500, and 10000 to 10500 for 

each year between 1995 and 1998. Figures 3 and 4 show that due to small changes in the 

distribution of test scores, the average incoming test scores of students ranked 1 to 100 decreased 

by 0.1σ between 1995 and 1996 and increased by 0.06σ between 1996 and 1997. In comparison, 

mean test scores of students ranked 10000 to 10500 increased by 0.05σ between 1995 and 1996 

and fell by 0.02σ between 1996 and 1997. Within district changes are even larger. Mean test 

scores of the top 100 students in the largest district increased by 0.21σ between 1995 and 1996, 

while the mean test scores of students ranked between 2000 and 2500 fell by 0.11σ.10  

 The second source of variation is due to year to year changes in student preferences. 

Because the assignment mechanism fills schools sequentially and a school’s order is based on the 

score of the last admitted student, small changes in preferences, demographics, and scores can 

cause a school that fills its slots first in one year to be second or third the following year. As 

such, small perturbations in the distribution of student choices and test scores play out into 

meaningful differences in peer quality within schools over time. This source of variation would 

                                                            
10 Because schools must fill a fixed number of school slots every year there is no correlation between peer quality 
changes and cohort size within a school over time. The null hypothesis that within-school changes in assigned mean 
peer quality are not correlated with within school changes in cohort size yields a p-value of  0.65.  
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be problematic if changes in student choices were correlated changes in unobserved school 

characteristics. I present empirical evidence that this is not the case in Section V.2. 

 

V Results 

Main Results: Table 3 presents the cross-school and within-school estimates for the full analytic 

sample. The top panel presents naive OLS results based on students' actual schools attended, the 

second panel presents reduced forms (RF) effect of assigned peer quality on students' outcomes, 

and the third panel presents the Instrumental Variables (IV) estimates that use assigned peer 

quality as an exogenous predictor of actual peer quality. Columns 1 through 3 present the across 

school models, while columns 4 through 7 present the within school models.  

A parsimonious OLS model of the number of exams passed as a function of the mean 

total scores of the students at the actual school, SEA cohort fixed effects, the student's gender, 

and a cubic in the total SEA score (column 1 top panel) yields an across school coefficient of 

1.044 (se = 0.082). Controlling for student choices (column 2) and including indicator variables 

for 50 SEA test score groups (column 3) yield very similar estimates of 1.229 (se = 0.073) and 

1.235 (se = 0.073), respectively. These OLS results indicate that a student who attends a school 

where peer test scores 0.2 standard deviations higher (roughly the within-school variance in peer 

quality) would pass about 0.244 more exams. These findings echo Jackson (2010).  

The second panel presents the reduced form effect of being assigned to a school with 

higher achieving peers that should be free from self-selection bias. The reduced form estimates 

range between 0.437 and 0.574 and are all statistically significant at the 1 percent level. The 

instrumental variables results in the third panel (row) are similar to the OLS results yielding 

statistically significant coefficient estimates between 0.85 and 1.177 ─ indicating that after 

taking self-selection into account, a student who attends a school where peer test scores are 0.2 

standard deviations higher would pass between 0.17 and 0.23 more exams.   

Columns 4 through 7 present the within-school results that should identify the direct 

effect of peer achievement on outcomes. The OLS results are based on actual incoming peer 

achievement at students' actual schools attended and include indicator variables for students' 

actual school attended. The parsimonious model that includes SEA cohort fixed effects gender, a 

cubic of their total SEA score, and fixed effects for the actual school attended (column 4 top 

panel) yields a within-school coefficient of 0.14 (se = 0.067). Controlling for score group 
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dummies (column 5), student choices (columns 6) and both score group dummies and choices 

(column 7) yield very similar within-school estimates of 0.144 (se = 0.067), 0.135 (se = 0.072) 

and 0.141 (se=0.074), respectively. These OLS results indicate that a student would pass about 

0.028 more exams than an observationally similar student who attends the same school when 

peer achievement was 0.2 standard deviations lower. The ratio of interest, the preferred across-

school OLS coefficient divided by the preferred within-school OLS coefficient is a statistically 

significant 0.114 (se = 0.58) ─ suggesting that roughly 11 percent of school selectivity effect can 

be attributed directly to peer quality differences across schools.11   

The IV estimates are about half the size of the OLS estimates, suggesting that there is 

positive selection on unobservables to high achieving peers. The IV estimates are not statistically 

significant, and range between 0.069 and 0.085. Taken literally, the point estimates suggest that 

after taking self-selection bias into account, a student would pass between 0.014 and 0.017 more 

exams than an observationally similar student who attended the same school when peer 

achievement was 0.2 standard deviations lower. Note that the first stage F-statistics are all above 

100. The ratio of the preferred within-school and across-school IV estimates is 0.072 (se=0.122) 

─ suggesting that on average roughly 7.2 percent of school value-added can be attributed directly 

to peer quality differences across schools. The results in Table 3 suggest that most of the school 

selectivity effect, on average is not due to contemporaneous exposure to higher achieving peers, 

so that much of the differences across schools may be scalable on average. However, these 

average effects may mask considerable heterogeneity by gender and school type.  

 

Effects by gender: Recent findings indicate that girls are more likely to benefit from attending 

better schools than boys (Hastings, Kane and Staiger 2006; Deming, Hastings, et al. 2012). Also, 

using similar data, Jackson (2010) finds that the selectivity effect is larger for girls than for boys. 

A psychology literature suggests that females may be more responsive to peers than males (Cross 

and Madson 1997, Maccoby and Jacklin 1974, Eagly 1978).  As such, a differential gender 

response to schools might be due to a differential gender response to peers. Indeed recent papers 

find that while females benefit from exposure to higher achieving peers, males may not (e.g. 

Lavy, Silva and Weinhardt 2010; Han and Li 2009).  

                                                            
11 The standard error of this ratio of coefficients was computed by estimating both the across school model and the 
within school models simultaneously (a two-equation model) and then computing the standard error of the nonlinear 
combination of coefficients using the delta method. This computation is dome by STATA's "nlcom" command. 
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 To test for whether gender differences in response to peers can explain gender differences 

in response to schools, I present the preferred specifications with the inclusion of the interaction 

between being female and peer quality in Table 4. As such, the coefficient on mean peer scores 

is the effect for males, while the coefficient on the interaction between female and mean peer 

scores is the difference in the marginal effect for males and females. Columns 1 and 2 present the 

across school estimates. In the OLS model, both males and females benefit from attending 

schools with higher achieving peers and females benefit more than males. In the OLS model in 

column 1, the coefficient on peer scores is 0.931 (se=0.069) and that for the interaction between 

peer scores and female is 0.579 (se=0.068). The IV results tell a similar story. The point 

estimates in the preferred IV model (with preference and score group fixed effects) in column 2 

suggest that males and females who attend a school with 0.2 standard deviations higher peer test 

scores will pass 0.2 and 0.27 more exams, respectively. The effect for females is 38 percent 

larger than that for males, and the difference is statistically significant at the one percent level.  

 Columns 4 through 7 present the within school estimates of the direct effect of peers by 

gender. The OLS results suggest no direct peer effect for males and large peer effects for 

females. In the within-school OLS model (column 3), the coefficient on peer scores is -0.041 

(se=0.079) and that for the interaction between peer scores and female is 0.358 (se=0.073). This 

suggests that females who attend a school during a time when peer test scores are 0.2 standard 

deviations higher would pass 0.064 more exams while males would be unaffected. The within 

school IV results (columns 4) tells a similar story to the within school OLS results, but are 

noisier. The coefficient on mean peer quality is negative and not statistically significantly 

different from zero, while the coefficient on the interaction with female is positive and 

statistically significant at the five percent level. The IV coefficient on peer scores is -0.067 

(se=0.138) and that for the interaction between peer scores and female is 0.265 (se=0.134). 

While the direct effects are imprecisely estimated, they suggest that females who attend a school 

during a period when peer test scores are 0.2 standard deviations higher would pass 0.039 more 

exams while males would pass 0.0134 fewer exams.  

 The similarity between the gender differences across the cross-section and the within-

school models is notable. In the instrumental variables models, the gender difference in the 

school effect is 0.365 while that for the direct effect of peers is similar at 0.286. In fact, one 

cannot reject the null hypothesis that peer effects account for all of the gender gap in response to 
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schools at the 10 percent level.12 The pattern of results suggest that much of the explanation for 

gender differences in response to schools (in this and other studies) has to do with females 

responding differently to their peers. Females who benefit more from exposure to higher 

achieving peers within the same school benefit more than males from attending schools with 

high-achieving peers, and the differential peer response may explain all of the differential 

response to schools ─ compelling evidence that between 6.67 and 6.67+14.4=21.1 percent of the 

school effect can be directly attributable to peers.13 Also, the similarity of the gender differences 

in response to schools   , and the gender differences in response to peers , suggest that the 

assumption of additive separability of inputs and peer quality may be a good first approximation. 

 

Relaxing the Additive Separability and Linearity Assumptions: Because the decomposition for 

schools on average may mask considerable heterogeneity by school selectivity, I relax the 

assumption that selectivity and peer effects are the same across all schools to a more flexible 

model that allows for non-linearity and non-additive separability.14 I do this in two ways. First I 

present the instrumental variables results broken up by subsamples of similar schools by the level 

of peer incoming achievement. The second approach is to present flexible semi-parametric 

reduced form estimates of the effects of being assigned to schools with higher-achieving peers 

and the effects of increases in assigned peer achievement within assigned schools over time. 

These approaches allow one to see if peer quality plays a more important role for certain schools 

than others, and if the global estimates pertain to all schools.  

 Because peer quality and input quality are both higher at high-achieving schools, non-

linearity in the across-school effect could be due to (a) peer effects being non-linear, (b) the 

effect of other inputs being non-linear, or (c) complementarity of peer inputs and other inputs. In 

contrast, non-linearity in the within-school effects will reflect only (a) and (c). This implies that 

similarities in the non-linearity in across-school models and within-school models can provide 

further evidence of the importance of peers in explaining school effects. That is, if the across-

school effects (   ) are largest among schools for which the within-school effects (  ) are 

                                                            
12 The difference between the cross-school difference and the within-school gender difference is 0.08. The standard 
errors on the across school and within school gender differences are 0.12 and 0.07, respectively.   
13 These numbers are calculated from the fraction of the school effect attributable to peers by gender from Table 5. 
14 Because linearity and additive separability are approximated locally by the first order terms of a Taylor expansion 
of a continuously differentiable function, one can represent global non-linearity and non-separability by piecewise 
linear functions applied to different regions of the data. 
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largest and vice versa, it would imply that direct peer effects are an important component of the 

school selectivity effect. I show this below.  

 The top panel of Table 5 presents the across-school estimates and the second panel 

presents the within school-estimates. Within each panel, the top row shows the reduced form 

results and the second row presents the instrumental variables results. In columns 1,2, and 3, I 

present linear peer effect estimates for different subsamples of schools based on rank (while 

controlling for gender, choices, and SEA score). Both the RF and IV estimates suggest that 

attending a school with marginally higher-achieving peers has a larger positive effect among 

schools with high-achieving peers. The IV across school coefficient on mean peer achievement is 

2.526 for the top 30 schools, 0.826 for schools ranked 31 through 90, and 0.542 for the bottom 

68 schools (all effects are significant at the 1 percent level).  

 The lower panel of Table 5 presents within-school estimates of the direct contribution of 

peers for the same groups of schools. All models include assigned school fixed effects, and 

controls for choices, gender and SEA score.15 The IV within-school coefficient on mean peer 

achievement is 1.959 for the top 30 schools (p-value= 0.015), and is statistically insignificant and 

small for schools ranked below 30. In words, while increases in peer quality have little or no 

effect in most schools, increases in peer quality have a large positive effect on achievement 

among the most selective schools.16 The fact that the non-linearity in the school effects track 

closely the non-linearity in the direct peer effect suggests that among the top 30 schools, some of 

the increased value-added can be attributed to the direct contribution of peers on outcomes. 

Consistent with this interpretation, based on the IV results, / ( )   , the fraction of the 

across school effect explained by direct peer influences is 0.78 (p-value=0.03) in the top 30 

schools, and is not statistically distinguishable from zero at other schools. 

To ensure that these effects are driven by heterogeneity by school selectivity and not 

heterogeneity in student achievement, I estimate the within-school model among students with 

different levels of incoming test scores (pooling all schools). Columns 4 through 7 present the 

results broken up by quartile of the student in incoming SEA scores. None of the within-school 

models yield results that are close to statistical significance and the pattern of point estimates are 

                                                            
15 For increased efficiency, I also include interactions of incoming test scores and cohort indicator variables with 
gender ─ this has little effect on the point estimates but does reduce the size of the standard errors. 
16 While not present in here results by gender yield a similar pattern, however the marginal benefits of peers are 
always higher for females than for males. 
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not consistent with the results in columns 1 through 3 ─ suggesting that response heterogeneity 

by student ability does not drive the non-linear peer effects. 

To provide visual evidence of the nonlinear school selectivity effects, the left panel of 

Figure 5 shows the local polynomial fit of the number of exams passed (after taking out the 

effects of own incoming test scores, choices and gender) on the mean assigned peer level of the 

assigned school (this is a semi-parametric representation of the reduced form). Between -2 and 0, 

there are small increases in the number of examinations passed, however among schools with 

assigned peer achievement above 0, there are large benefits to attending a school with higher-

achieving peers ─ consistent Table 5. On the right panel of Figure 5, I show the relationship 

between the within-school effect of increases in assigned peer achievement over time and the 

mean peer achievement of the school. Specifically, I estimate the reduced form within-school 

model for each school βj, and then fit a local polynomial of the estimated βjs to the mean 

assigned peer achievement level of the school. The marginal effect of within school increases in 

peer quality is highest among high-achievement schools ─ consistent with the regression 

evidence. Figure 5 suggests that non-linearity in the selectivity effects are driven, in part, by non-

linearity in the within-school effects ─ evidence that direct peer effects are responsible for much 

of the large selectivity effects among selective schools but do not explain selectivity effects for 

middle- and low-achievement schools.  

 While the objective of this paper is to establish how much of the benefits to attending a 

selective school can be directly attributed to the quality of the peers at the school, it is helpful to 

discuss the policy implications behind the documented non-linear peer effects. Because peer 

quality and input quality are both higher at high-achieving schools, the non-linearity of the direct 

peer effects either reflect that marginal increases in peer quality within a school are more 

effective when peer achievement is already high, or that marginal increases in peer quality within 

a school are most effective when input quality is high. Because I do not observe input quality I 

am unable to distinguish these two scenarios. This distinction does not affect the interpretation of 

the ratio / ( )   , but it does have direct implications for how improvements in input quality 

(or peer quality) may increase school effectiveness. If the non-linearity in the within-school 

effect is driven by non-linearity in the marginal effect of peers, it would imply that school value-

added can be increased by increasing input quality at all schools (and the distribution of inputs 

across schools would only have distributional effects). It would also imply that one could 
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increase overall achievement by stratifying students across schools by ability. However, if the 

non-linearity in the direct peer effect reflects complementarity between peer quality and other 

inputs, it would imply that the marginal effect of improved inputs will be highest at schools with 

the highest achieving students. It would also imply that overall education output would be 

highest if high ability students attend schools with the best inputs. Despite clear policy 

implications, data limitations preclude rigorous investigation into the source of the non-linearity. 

  

Intensive or Extensive Margin?: While the number of exams passed is a good measure of overall 

academic achievement, one may wonder if these effects are driven by students being less likely 

to drop out at schools that have higher achieving peers or due to improvements in outcomes 

conditional on taking the CSEC exams. To get a sense of this, I re-estimate the main preferred 

specifications using "taking the CSEC exams" as the dependent variable. In the cross-school 

model the IV estimate is small and not statistically significant ─ indicating that most, if not all, 

of the cross-school effect was on the intensive margin, as found in Jackson (2010). Similarly, the 

within-school model of CSEC taking yields a very small statistically insignificant point estimate. 

Even at the top 30 schools where there are large positive effects on the number of exams passed, 

the coefficient on taking the CSEC exams is a small and statistically insignificant─ suggesting 

that much of the direct peer effect is on intensive margin.  

 

V.2  Robustness Checks 

 While there are a priori reasons to believe that the results presented reflect true causal 

effects, there remain lingering concerns. I present these concerns and address them in turn. 

(1) The difference in difference variation may not be clean: Given that the source of the 

exogenous variation exploited in this paper is driven in part by the test score cut-offs, it is 

helpful to show that the main cross sectional results are robust to exploiting this discontinuity 

only, and not relying on explicit controls for school choices. To do this, I create three variables 

that denote whether a student scores above the simulated cut-off for their first second, and third, 

choice schools. I then use these three variables as instruments en lieu of the assigned peer 

quality. The results are presented in Table 6. In the first stage, scoring above the cut-off for the 

first, second and third choice schools are associated with attending school with peers with 0.033, 

0.056 and 0.076 standard deviations higher incoming test scores, respectively. The reduced form 
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regression indicates that scoring above the cut-off for the first, second and third choice schools 

are associated with passing -0.003 (se=0.44), 0.052 (se=0.36) and 0.072 (0.033) more exams, 

respectively. Using these three variables as instruments yields a coefficient on mean peer quality 

of 0.867 (se=0.254) ─ similar to the estimates obtained in Table 3. As a formal test that the 

assigned peer quality yield similar results to the cut-off instruments, I include the assigned peer 

quality as an additional instrument. In such a model (column 5) the coefficient is 1.009 

(se=0.074), and the test of overidentifying restrictions yields a p-value of 0.79 ─ indicating that 

the instrumental variables results based on the DID variation in assigned peer quality are 

consistent with discontinuity based instruments that rely only on variation due to the cut-offs.17  

(2) The estimated peer effects may be spurious:  I argue that the gender differences in 

response to peers and the differences by the school rank reflect a true causal relationship. As a 

further test of the validity of the results, I implement a test similar to Jackson and Bruegmann 

(2009) and Lavy and Schlosser (2009) where I include the current peers (for which there should 

be a true treatment effect) and the peer quality of the preceding cohort and the following cohort 

(for which there should be little to no effect).  The estimates that include current peers and peer 

quality in the following and preceding cohorts are presented in Table 7. To test for gender 

differences I show the coefficient on current peers and peer quality in the following and 

preceding cohorts interacted with whether the student is female. For all models, one rejects the 

null hypothesis that the subsequent peers and the preceding peers are jointly statistically 

significant at the 20 percent level. However, similar to Tables 4 and 5, one can reject the null 

hypothesis that current peer quality has zero effect among the top 30 schools (column 1) and the 

null hypothesis that females and males have the same response to peers (column 4) at the 10 

percent level. While the p-value on the contemporaneous effects for these two models is below 

0.1, those for the joint significance of the lag and lead are above 0.7 for both models. If we take 

the conservative view that the effect on the lag reflects some underlying spurious association, 

then we could subtract that from the contemporaneous effect to obtain a conservative causal 

estimate. Doing this for the female interaction results in a conservative reduced form peer effect 

estimate of 0.085. This is about two thirds of the reduced form estimate obtained in the preferred 

model in Table 4 ─ suggesting that there is a true gender difference. The same calculation for the 

                                                            
17 Note that a test for balance indicates that all observable covariates (including selectivity of choices) are smooth 
through the simulated cut-off. 
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top 30 schools yields a conservative reduced form current peer effect estimate of 0.99. This is 

about 70 percent of the within school reduced form coefficient in Table 5. This conservative 

estimate implies that 37 percent (as opposed to 78 percent) of the across school effect among the 

top quartile of schools can be attributed to peers. 

(3) The peer effects may be driven by sampling variation: In difference in difference models 

there is always the concern that inference based on estimated effects could be biased by 

underlying serial correlation in the data. To asses this problem I follow an approach used by 

Bertrand, Duflo and Mullainathan (2004). Specifically I create placebo treatments by taking each 

school and rearranging the actual peer achievement values for a given cohort so that the actual 

peer achievement are not lined up with the corresponding outcome for that year. I estimate the 

placebo treatments based on 100 replications of this reshuffling. I compare the actual estimates 

to the distribution of placebo estimates. Since the gender differences and the positive effect of 

peers among the top 30 school are the estimates that are statistically significant, I test these two 

models. In both cases, none of the 100 replications yielded parameter estimates larger than the 

actual estimated coefficients, suggesting that the estimates obtained were not some artifact of the 

sample and would not have been obtained merely due to sampling variation.  

(4) Changes in peer quality within schools could be correlated with changes in input 

quality within schools: Becuase more desirable schools attract higher-achieving students and 

therefore have brighter peers, one may worry that improvements in input quality at a particular 

school in a particular year may cause students to rank that school more highly in their preference 

lists generating a correlation between changes in input quality and changes in peer quality within 

a school over time. While I do not observe input quality directly, all scenarios where changes in 

inputs lead to changes in the peer quality and vice versa involve schools moving up or down the 

rankings in desirability and therefore peer quality. I can test for this possibility directly. To show 

that this is not a source of bias, I show that such changes in school rankings from the assignment 

mechanism essentially do not occur in these data. Table 8 shows the correlation between a 

school's rank in simulated cut-off scores across years. The correlation between a school's rank 

across any two adjacent years in the data is at least 0.98 and the correlation between a school's 

rank in 1995 and seven years later in 2002 is 0.96 ─ so that systematic changes in school 

rankings are not driving the variation in assigned peer achievement within schools over time. 

 As a more direct test, I test for a correlation between changes in mean assigned peer 
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achievement and teacher quality (one of the most important school inputs). Specifically, I run 

regressions of mean teacher characteristics on the mean SEA score of students assigned to the 

school while including both cohort and school fixed effects. The results (Table 9) indicate no 

relationship between changes in peer quality and changes in teacher quality. Taken together the 

results show that changes in peer quality within schools are due to idiosyncratic shocks around a 

long-run mean that are not correlated with changes in other school inputs within schools.    

 

VI Conclusions 

There is a growing body of evidence based on credible research designs indicating that 

attending selective schools may improve student outcomes. However, we have little understand 

of why. Using a unique dataset from Trinidad and Tobago, I investigating the extent to which the 

positive selective school effects can be attributed to selective schools providing higher-achieving 

contemporaneous peers. Using a carefully selected group of students where there is no self-

selection of students to assigned schools or assigned peers, I attempt to overcome a variety of 

econometric obstacles to estimating credible school selectivity effects and direct peer effects on 

the same student population.  

Using instrumental variables strategies, I find that attending a school with higher-

achieving peers is associated with substantial improvements in academic outcomes. However, on 

average, improvements in incoming peer achievement within a school are associated with small, 

improvements. The point estimates suggest that, on average, between 7 and 14 percent of the 

school effect can be directly attributed to peer quality differences across schools. Echoing other 

studies, the marginal effects of attending a school with higher achieving peers are larger for 

females than for males. I find that the gender differences in response to peers can account for all 

of the gender differences in response to schools ─ evidence that part of the school effect can be 

explained by the direct contribution of peers. I also find substantial non-linearity in the effects. 

Similar to Ding and Lehrer (2007) and Pop-Eleches and Urquiola (2008), the marginal effect of 

attending a more selective school is greatest among the most selective schools. Looking at the 

direct effect of peers, this non-linear school selectivity effect appears to be driven by the fact that 

the marginal effect of improvements in peer achievement within a school is largest at selective 

schools ─ further evidence that direct peer effects are responsible for some of the effect of 

attending schools with higher-achieving peers. The symmetry in the non-linearity leads me to 
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conclude that that while direct peer effects may explain little of the benefits to attending a more 

selective school among the bottom three-quarters of schools, at least one-third of the benefits to 

attending a more selective school among the top quarter of schools can be attributed directly to 

the achievement level of the peers.  

 The finding that at least one-third of the estimated school selectivity effect can be directly 

explained by peer achievement for the top quartile of schools is sobering because it implies that 

very little of the large estimated success at these selective schools can be scaled up to all schools. 

These findings underscore the fact that identifying highly successful schools may not be 

informative about how to improve outcomes for the average school. However, the finding that 

peer achievement explains almost none of the benefits to attending a more selective school 

among the bottom three-quarters of schools suggest that the relative successes at average schools 

may be scalable to low-performing schools.  

 Owing to the uniqueness of the institutional setup in Trinidad and Tobago, this paper is 

the first to rely on independent exogenous variation in schools attended and peer quality on the 

same student population ─ allowing one to credibly decompose a school selectivity effect and 

estimate the extent to which positive selective school effects can be attributed to selective 

schools providing higher-achieving contemporaneous peers. The findings highlight the 

importance of understanding the mechanisms through which selective schools may improve 

student outcomes.  
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Tables and Figures 

 

Table 1:  Summary Statistics 

  Rank of School in Mean incoming SEA scores 
Variable 1 to 30 31 through 90 Above 90 
Total SEA score 1.102 0.122 -0.561 

(0.333) (0.693) (0.654) 
Female 0.490 0.499 0.505 

(0.500) (0.500) (0.500) 
Take the CSEC Exams 0.871 0.706 0.586 

(0.335) (0.456) (0.493) 
Number of Exams Passed 4.444 1.939 1.005 

(2.628) (2.308) (1.746) 

Certificate a 0.508 0.128 0.037 
(0.500) (0.334) (0.189) 

Cohort size 119.1 439.7 443.9 
(63.6) (218.5) (241.9) 

% Teacher with BA 0.584 0.552 0.360 
(0.232) (0.197) (0.248) 

% Teacher 0 to 3 yrs 0.137 0.162 0.240 
(0.093) (0.120) (0.136) 

% Teachers 4 to 20 yrs 0.399 0.418 0.402 
(0.169) (0.111) (0.113) 

% Teacher 20 plus 0.309 0.356 0.279 
(0.153) (0.188) (0.145) 

Observations 17811 84746 48144 
a. Certificate is variable that is equal to 1 if the student passes five CSEC exams including 

English and Mathematics. 

Note that the teacher variables are only available for 2000, 2001, and 2002. 
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Table 2:  Falsification Tests and Implied Bias 

Cross-Section Bias tests

Dependent Variable Religions SEA Attempts 

1 2 3 4 5 attempts
Mean Total 0.001 0 -0.005 0.009 -0.008 0.013

[0.004] [0.006] [0.005] [0.006] [0.005] [0.007]+

Districts
1 2 3 4 5 6 7 8

Mean Total -0.003 -0.003 0.004 <0.00000 -0.002 -0.001 <0.0000 <0.0000
[0.003] [0.002] [0.003] [0.002] [0.002] [0.005 [0.000] [0.000]

Within-School Bias tests

Dependent Variable Religions SEA Attempts 

1 2 3 4 5 attempts
Mean Total -0.004 <0.00000 0.019 -0.014 <0.0000 0.005

[0.005] [0.008] [0.015] [0.012] [0.009] [0.012]

Districts
1 2 3 4 5 6 7 8

Mean Total 0.004 0.008 -0.024 -0.007 0.004 -0.021 <0.0000 <0.0000
[0.007] [0.008] [0.018] [0.004]+ [0.013] [0.016 [0.000] [0.000]

Robust standard errors in brackets 
+ significant at 10%; * significant at 5%; ** significant at 
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Table 3: Main Results 
Effects on the Number of Exams Passed: Full Sample 

1 2 3 4 5 6 7 Ratiob 
Cross sectional results Within School results   

Actual (OLS) 1.044 1.229 1.235 0.14 0.144 0.135 0.141 0.114 
  [0.082]** [0.073]** [0.073]**   [0.067]* [0.067]* [0.072]* [0.074]*   [0.058]* 

Assigned (RF) 0.437 0.57 0.574 0.039 0.043 0.038 0.047 0.082 
  [0.062]** [0.057]** [0.057]**   [0.058] [0.059] [0.079] [0.079]   [0.077] 

Actual (2SLS) 0.851 1.171 1.177 0.07 0.076 0.069 0.085 0.072 
[0.124]** [0.094]** [0.092]** [0.105] [0.105] [0.144] [0.144] [0.122] 

First stage F-Statistic 578.48 390.3 396.23   666.88 453.67 513.023 519.67     

Cohort Fixed Effect? YES YES YES YES YES YES YES ‐ 

Preference Effects? a YES YES YES YES ‐ 

Score Group Dummies? YES YES YES ‐ 

School Fixed Effects? YES YES YES YES ‐ 

‐ 

Observations 150701 150695 150695 150701 150701 150695 150695 ‐ 

R-squared 0.39 0.62 0.62   0.41 0.42        ‐ 

Robust standard errors in brackets. Standard errors are adjusted for clustering at the assigned school level. 
+ significant at 10%; * significant at 5%; ** significant at 1% 
a. note that preferences include gender so that all models with preference fixed effect are within both preference and gender. 
b. The estimate of β/(β+πδ) ─ the coefficient in column 7 divided by the coefficient in column 3. The standard error was computed 
by stacking the data to estimate both the within and across model simultaneously and then using the delta method. 

 

 

Table 4: Testing for Gender Differences  

Effects on the Number of Exams Passed: Effects by Gender 
Across schools Within schools 

OLS 2SLS OLS 2SLS 
1 2 3 4 

Peer SEA scores 0.931 1.005 -0.041 -0.067 
[0.069]** [0.101]** [0.079] [0.138] 

Female*Peer SEA scores 0.579 0.365 0.358 0.265 
[0.068]** [0.121]** [0.073]** [0.134]* 

Female Effect 1.509 1.37 0.317 0.198 
[se] [0.086]** [0.116]** [0.081]** [0.128] 
Cohort Fixed Effect? YES YES YES YES 
Choice Effects?  YES YES YES YES 
Score Group Dummies? YES YES YES YES 
School Fixed Effects? - YES YES YES 
Observations 150695 150695  150695 150695 
Robust standard errors in brackets. Standard errors are adjusted for clustering at the assigned 
+ significant at 10%; * significant at 5%; ** significant at 1% 
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Table 5: Effect by School Selectivity 

Dependent Variable is the Number of Exams Passed 

Across School Variation 

1 2 3 4 5 6 7 

Schools 
rank 1-30 

Schools 
rank 31-

90 
Schools 
rank 91+ 

Students 
in top 
SEA 

quartile 

Students 
in third 

SEA 
quartile 

Students 
in second 

SEA 
quartile 

Students 
in 

bottom 
SEA 

quartile 

Reduced form 2.701 0.453 0.313 1.308 0.466 0.228 0.028 

[0.366]** [0.081]** [0.075]** [0.142]** [0.075]** [0.088]** [0.032] 

Mean peer scores (2SLS) 2.526 0.826 0.543 2.457 1.046 0.526 0.079 

  [0.323]** [0.161]** [0.168]** [0.262]** [0.171]** [0.183]** [0.058] 

Within School Variation 

Reduced form 1.186 -0.0165 0.047 <0.001 -0.092 -0.164 -0.06 

[0.563]* [0.099] [0.118] [0.245] [0.162] [0.121] [0.243] 

Mean peer scores (2SLS) 1.959 -0.163 0.078 0.084 -0.166 -0.329 -0.042 

[0.797]* [0.184] [0.215] [0.490] [0.292] [0.232] [0.087] 

Observations 17811 84740 48144 26454 50348 42249 27521 

Ratio (2SLS) 0.78 -0.197 0.145 0.034 -0.16 -0.626 -0.537 

[se] [0.33]* [0.225] [0.399] [0.200] [0.280] [0.492] [1.17] 

Robust standard errors in brackets. Standard errors are adjusted for clustering at the assigned school level. 

+ significant at 10%; * significant at 5%; ** significant at 1%. 
All models include preference ordering fixed effects, and control for the total SEA score, its quadratic and its 
cubic, and gender. 
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Table 6: Effects Using Discontinuity Variation Only 

2SLS Results using Scoring Above a Simulated Cut-off for a Preferred School as Instruments 
1 2 3 4 5 

Depended Variable 
Assigned Mean 

Peer Scores 
Actual Mean 
Peer Scores 

Exams 
Passed 

Exams 
Passed 

Exams 
Passed 

OLS OLS OLS 2SLS 2SLS
Mean Peer Score (actual) - - - 0.867 1.009

- - - [0.254]** [0.074]** 
Above first choice cut-off 0.049 0.033 -0.003 - - 

[0.021]* [0.016]* [0.044] - - 
Above second choice cut-off 0.07 0.056 0.054 - - 

[0.022]** [0.015]** [0.033]+ - - 
Above third choice cut-off 0.14 0.076 0.072 - - 

[0.023]** [0.016]** [0.033]* - - 

Polynomial order of Total 5 5 5 5 5 
Cohort fixed Effects YES YES YES YES YES 
Preference fixed effects YES YES YES YES YES 

P-value of J-Stat - - - 0.63 0.79 

Observations 150695 150695 150695 114062 114062 
Robust standard errors in brackets 
+ significant at 10%; * significant at 5%; ** significant at 1% 

Column 4 includes scoring above the cut-offs as excluded instruments. Column 5  includes scoring above the cut-
offs and simulated peer quality as excluded instruments. 

 

Table 7: Placebo Peer Treatments 

Dependent Variable is the Number of Exams Passed 
1 2 3 4

Sample: 
Schools 

rank 1-30 
Schools 

rank 31-90 
Schools 
rank 91+    All 

Peersc-1 0.735 -0.06 -0.231 Female*Peersc-1 0.094
[1.043] [0.102] [0.224] [0.069] 

Peers 1.733 -0.17 -0.223 Female*Peers 0.1793 
[0.991]+ [0.112] [0.142] [0.010]+ 

Peersc+1 0.109 0.027 0.319 Female*Peersc+1 0.057 
[0.713] [0.092] [0.200] [0.135] 

Current minus lag 0.997 -0.109 0.008 0.0853
Current minus lead 1.623 -0.143 -0.542 0.1223 

P-value on lag and lead 0.7 0.75 0.23 0.73 
P-value on current 0.08 0.13 0.14 0.09 
Robust standard errors in brackets are adjusted for clustering at the assigned school level. P-values in parentheses.
+ significant at 10%; * significant at 5%; ** significant at 1%. 
All models include preference fixed effects, and control for the total SEA score, its quadratic and its cubic, and gender. 
Model 6 also includes the first order effect of the lag and lead of peer quality. 
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Table 8:  Correlations between schools' ranks across years 

Rank in 1995 1996 1997 1998 1999 2000 2001 2002 
1995 1   
1996 0.993 1   
1997 0.9855 0.9914 1   
1998 0.9838 0.9888 0.9929 1   
1999 0.9779 0.9835 0.991 0.9933 1   
2000 0.9724 0.9793 0.981 0.9877 0.9875 1   
2001 0.9622 0.971 0.9717 0.9754 0.9754 0.9833 1   
2002 0.9618 0.9697 0.9701 0.9721 0.9736 0.9824 0.9951 1 

 

 

 

 

Table 9: Relationship between changes in peer quality and changes in teacher quality  

1 2 3 4 

% Teachers with 
1 -3 years 
experience 

% Teachers 
with 1 -3 years 

experience 

% Teachers 
with 1 -3 years 

experience 

% Teachers 
with a BA 

degree 

Mean total SEA of assigned students -0.01 -0.001 -0.08 0.004 
[0.022] [0.041] [0.059] [0.097] 

Assigned School fixed Effects Y Y Y Y 
Cohort Fixed Effects Y Y Y Y 

Observations 25962 25962 25962 25962 

Robust standard errors in brackets are adjusted for clustering at the school level. 
+ significant at 10%; * significant at 5%; ** significant at 1% 
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Figure 1: Likelihood of being Assigned to One's Top Choice School  

 

 

 

Figure 2: Illustration of the Difference in Difference Variation 

 

0
.2

.4
.6

.8
1

Li
ke

lih
oo

d 
of

 b
ei

n
g 

as
si

gn
ed

 to
 fi

rs
t c

h
oi

ce
 s

ch
o

ol

-400 -200 0 200 400
SEA score relative to simulated cut-off of first choice school

Discontinuity in Assigned School



35 
 

 

Figure 3: Distribution of SEA Scores Across Cohorts 

 
Figure 4: Hypothetical Changes in Mean Test Scores Driven Only by Changes in SEA Test score 
Distribution Across Cohorts.  
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Figure 5:  Graphical evidence of non-linear peer effects 
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Appendix 

 

 

Appendix Figure 1: Distribution of Peer Quality by School Choice Rank 

 

 

Appendix Figure 2: Distribution of total SEA scores by school rank 
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Appendix Figure 3:  Discontinuity in assigned peer quality (raw SEA scores are shown) 
through the assigned cut-off for the first and second choice school. 
 
 
 
Appendix Note 1: Constructing the Simulated Cut-off 
 
The simulated cut-offs are constructed sequentially as follows: (1) All secondary school sizes are 
fixed based on capacity, (2) all students are put in the applicant pool for their top choice school, 
(3) the school for which the first rejected student has the highest test score fills all its slots (with 
the highest scoring students who listed that school as their first choice), (4) the students who 
were rejected from the top choice school are placed back into the applicant pool and their second 
choice school becomes their first choice school, (5) Steps 2 through 5 are repeated, after 
removing previously assigned students and school slots until the lowest ranked school is filled.  
The only difference between how students are actually assigned and the “tweaked” rule-based 
assignment is that at step (3) the “tweaked” rule does not allow any students to be hand-picked 
while, in fact, some students are hand-picked by principals only at Government assisted schools. 
Jackson (2009, 2010) exploits the discontinuities inherent in the assignment mechanisms to 
identify the effect of attending schools with higher achieving peers. In this paper, I use the school 
assignments (to government schools) that are not driven by any gaming or selection.  
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