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1 Introduction

Fertility rates in the U.S. varied dramatically over the 20th century. During the first part

of the century, they continued a drop, begun in the mid 19th century, that demographers

associate with the Demographic Transition. Total Fertility Rates (TFR) fell from 5.7 children

per woman to 3.0 over the period from 1850 to 1925. In the years that followed there was an

even more abrupt drop during the years of the Great Depression, from 3.0 to 2.1. Indeed,

women in their prime fertility years during the Great Depression had, on average, only 2.2

children in their entire lifetime. These women, born between 1905 and 1915, had fewer

children than any previous cohort (in fact, fertility did not go back down to those levels

until the 1970s). Following this, fertility rebounded significantly during the 1950s and early

1960s, the Baby Boom. At its peak, TFR reached 3.6 while Cohort Total Fertility (CTFR)

showed a similar, but smaller, increase up to 3.2.

One of the key hypotheses put forward by economic demographers for these large and

opposite swings is known as the ‘Easterlin hypothesis’, see Easterlin (1961, 1968, 1978, 1987).

In a nutshell, the idea behind this hypothesis is that fertility was exceptionally low during the

Great Depression because of the large negative shock to incomes. Then, in substantial part,

due to the fact that fertility had been so low during the 1930s, the Baby Boom occurred. The

mechanism through which low fertility in the past leads to high fertility one generation later

has usually been attributed to the feedback effects of the resulting unbalanced age-structure

on relative wages of young fertile workers to older workers in combination with differences

between expected lifetime income relative to ’material aspirations formed in childhood.’1

In this paper, we build a model of fertility choice combining features of a stochastic growth

model with a model of fertility choice with dynastic altruism à la Barro-Becker (Becker

and Barro, 1988, and Barro and Becker, 1989).2 In addition to the stochastic component,

the model extends existing Barro-Becker type models to include multiple periods in the

working life. For simplicity, we assume that labor is the only factor of production (except in

Section 5.3) and that different age-groups are perfect substitutes in production (up to age-

specific productivity levels). Thus, we abstract from feedback effects of relative cohort sizes

1The so called ‘Easterlin hypothesis’ has developed over Easterlin’s own work and has been interpreted
in more than one way by other authors along the way. For an excellent overview until 1998, see Macunovich
(1998). She ‘focuses just on the fertility aspects of the Easterlin hypothesis’, which is our focus as well. For
a more general overview, see Macunovich and Easterlin (2008).

2Some have put forth the idea that the baby boom was a consequence of low fertility during the Great
Depression – i.e., the baby boom was ‘catching up.’ However, completed fertility (CTFR) was low for both
the women immediately preceding and immediately following the baby boom and hence, this cannot be true
at the level of the individual mother. It can, in principle, hold across cohorts in a dynastic model. This
distinction is relevant in our analysis and is one of our motivations for studying a dynastic model.
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on relative wages. In this model, we study, both qualitatively and quantitatively, fluctuations

in fertility, triggered by (large) income shocks using preference parameter configurations in

line with the standard growth and business-cycle literatures.

We show that both of the effects originally discussed by Easterlin, the large reactions

of fertility to large income shocks, and the oscillations thereafter, are present in the model

(despite the absence of feedback effects through wages). In particular, we find that fertility

is procyclical as long as most of the costs of children are in terms of goods, or as long as

there is sufficient curvature in the period utility function. On top of this, the policy function

for current fertility as a function of past fertility that comes out of our model is negatively

sloped around the steady state. We find that that the dynamics of adjustment following a

movement off a balanced growth path is one of dampened oscillations. Putting these two

effects together, in the model, a large negative income shock is met with a contemporaneous

reduction in fertility followed by a baby boom a generation later. Thus, in the model the

Great Depression would trigger a baby bust, followed by a baby boom a generation later.

In our model, children are partly a consumption good (Barro-Becker preferences) and

partly an investment good (future labor force) for the dynasty. Comparing our results with

those standard in growth models gives substantial intuition. The role of the capital stock(s),

is played by the age distribution of the population, while the number of births plays the role

of investment. Then, as is standard in growth models (for standard consumption smoothing

reasons), periods when productivity is particularly high are times when investment is high.

Here this translates to: fertility is high during periods of high productivity – an income

boom generates a baby boom. Correspondingly, an income bust generates a baby bust. In

addition, the larger is the desire to smooth consumption, the larger the elasticity of fertility

to income shocks. There is one subtlety that needs to be added with this interpretation.

This is that, when the cost of a new child is primarily in terms of time, good times are both

good times to save for the future (invest) and times when that investment is most expensive.

As a result, in this case, fertility is only procyclical when there is sufficient desire to smooth

consumption (i.e., more curvature than log utility).3

A similar intuition gives us insight as to why the model exhibits dampened oscillations.

This has to do with the specification of the implicit depreciation rates of the age-specific

populations. When the stock is the number of people, the counterpart of depreciation is

movement out of the work force. Thus, fertility (i.e., investment) will be higher in periods

3Notice that one important feature here is that income is temporarily high or low, relative to trend. As
shown by Jones and Schoonbroodt (2010), a permanent increase in productivity growth has a permanent
negative effect on fertility under the parameter values that generate pro-cyclical fertility here. Thus, the
important distinction between temporary and permanent changes in productivity shocks is just as important
here as it is in standard growth and business cycle models.
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when a relatively large share of workers are nearing retirement age. Because of this effect, a

baby bust now means that the next generation’s workforce is primarily older workers – more

workers will be retiring. Consequently, investment will be higher in response – a baby boom

will occur.

On the quantitative side, we use a calibrated version of the model to simulate the size of

the response of fertility to productivity shocks, both contemporaneous and delayed. After

calibrating to U.S. averages, we find that the contemporaneous response to a 1 percent

deviation in productivity lies in the range of 1 to 1.7 percent depending on the nature of the

costs of children (generally, responses are smaller when the costs of children are primarily in

terms of parental time) while the elasticity one period later lies between 0.94 and 1.5. This

implies that the response of (completed) fertility to a ‘standard recession’ (say, productivity

is 5 percent below trend for 2 years) is relatively small – of the order of 0.02 to 0.04 children

per woman with a subsequent baby boom of similar size. However, we find that the reduction

in fertility implied by the model as a response to the 12 percent decrease in productivity

during the Great Depression is between 38 and 63 percent of the observed pre-WWII baby

bust in Total Fertility Rates (TFR). Moreover, the subsequent endogenous fluctuations in

fertility triggered by this bust, in conjunction with the productivity boom in the 1950s and

1960s, captures between 53 and 92 percent of the post-WWII baby boom in TFR.4

Since both the Depression and the Baby Boom are phenomena that occurred in many

different countries, we go on to study one obvious implication of our model. If the mechanisms

that we study are important, it should be true that countries that had deeper depressions in

the 1930s should also have larger baby busts in the 1930s, and that those with larger baby

busts should experience larger baby booms in the 1950s. In Section 6, we show that this

is indeed true, conditional on the economic circumstances in the 1950s. These observations

further support our theory.

Many other demographers and economists have studied fluctuations in fertility but they

have focused on different channels. First, operationally, the mechanisms that are the driving

forces behind our results are considerably different than those emphasized by Easterlin in his

work. For example, he emphasizes differences between expected lifetime income relative to

’material aspirations formed in childhood.’ Here, the basic mechanisms are best understood

as variants of standard effects of growth models – the desire to smooth consumption, etc.5

Second, following Easterlin many authors have analyzed the dynamics of age-structured

4Realistically, it seems unlikely that fertility decisions are affected by quarter to quarter fluctuations in
productivity (as addressed in the business cycle literature). This is consistent with our quantitative findings.
Rather, a prolonged boom or bust is required for the fertility effect to be large.

5Feichtinger and Dockner (1990) assume a positive relationship between births and the difference between
actual and expected consumption, which is more in line with Easterlin’s original argument.
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populations that results when it is assumed that the relationship between fertility today and

past fertility has a negative slope, see Lee (1974) and Samuelson (1976) for early analysis

of dynamic population systems of this kind.6 In contrast, we provide a choice-theoretic

foundation for these cycles.

Third, we assume that different ages of workers are perfect substitutes in production.

Nevertheless, fertility cycles are generated through the curvature of preferences. This shows

that feedback effects from the age-structure on wages are not necessary to generate popula-

tion cycles. This is an alternative to Easterlin’s feedback effect which, as suggested by Lee

(2008), can be generated by using a CES production specification, where different age-groups

are not perfect substitutes.

Further, the mechanisms that we highlight here are also complementary to those explored

in other papers that have used choice-theoretic dynamic macroeconomic models to study

the Baby Boom. Three key examples are Greenwood et al. (2005), Doepke et al. (2007) and

Albanesi and Olivetti (2010). In Greenwood et al. (2005), the channel that is highlighted is

the effects of the drastic improvement in technologies of home production that took place in

the post WWII period. In essence, these improvements temporarily made having children

cheaper generating the boom. In Doepke et al. (2007), they emphasize the relatively high

female participation rate that took place during WWII. This, because of learning on the job,

made that specific cohort of women relatively high productivity. Because of this, the cohort

of women entering their 20s in the 1950s faced a relatively tough job market causing them

to delay entering the workforce and have larger than normal families. Albanesi and Olivetti

(2010) emphasize the decrease in maternal mortality as a cause of the baby boom. This

decrease in mortality also increased the incentive to invest in human capital, triggering the

return to low fertility in the 1970s. Thus, the primary channels emphasized in those papers

differ from ours. One advantage of our approach is that it is also able to capture the sizeable

downward movement, relative to trend, in fertility in the 1930s.

Finally, our findings can rationalize the observations in Butz and Ward (1979) as follows.

In brief, they find that fertility, while procyclical, has become less responsive to business

cycle frequency fluctuations over time. In our model, this can happen for two reasons. The

first comes from the fact that the size of the effects that we find are smaller when the

costs of children are in terms of time. Since there has been a large increase in labor force

participation among married women, this causes the time cost of children to be increasingly

important. Second, due to continuing fluctuations triggered by the Great Depression, the

fertility response to productivity shocks is mitigated. In our data analysis, we show that,

6Feichtinger and Sorger (1989) extend Samuelson’s initial model to continuous time.

4



controlling for productivity shocks in the past is crucial to find a positive correlation of

fertility with contemporary shocks. It is yet to be seen how large the fertility response to

the most recent recession will be, though it does go in the direction predicted by the theory

(see, for example, Sobotka et al., 2010).

In Section 2 we review the data for the U.S. since 1900. The model is laid out in Section 3

and the analytic results are presented. In Section 4, we explore the quantitative implications

of a calibrated version of the model compared to U.S. data. In Section 5 we study the

sensitivity of our results to some basic changes in our assumptions. Finally, we present

international evidence in Section 6 while Section 7 concludes.

2 U.S. data

In this section, we lay out the basic facts about the time paths of productivity and fertility in

the U.S. over the 20th century. We begin with the facts pertaining to the growth in produc-

tivity using a consistent measure for total factor productivity (TFP) and labor productivity

(LP) from Chari et al. (2007). As most economists know, this period is one of more or less

continued growth in productivity with a few interruptions. The most significant of these is

the Great Depression. Figure 1 shows the natural logarithms of TFP and LP over the period

from 1901 to 2000.

The facts about productivity over this period can be described as follows:

1. the continual upward trend;

2. the marked decline below trend that took place in the 1930s and early 1940s;

3. the return to trend in the early 1950s;

4. the significant increase above trend that took place in the 1950s and 1960s;

5. the productivity slowdown since the 1970s.

This timing of the movements of productivity around trend fits well with the movements

in fertility seen in the data. Figure 2 shows the time path of the Total Fertility Rate (TFR)

and Cohort Total Fertility Rates (CTFR) (by birthyear of mother +23 years) over the period

from 1850 to 2000. We have two time series for TFR, which calculates how many children a

woman would have over her lifetime if current age-specific fertility rates were to prevail in the

future. The first series is the one prepared by Haines (1994) using Census data and hence is

available only every 10 years. The second comes from the Natality Statistics Analysis from

National Center for Health Statistics. It is available at annual frequencies, but only since

1917. The CTFR series comes from Jones and Tertilt (2008) and counts how many children
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Figure 1: Total Factor Productivity and Labor Productivity, 1901-2000 (1929=100)
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were born to a particular cohort of women at the end of their fertile period. Implicitly, it

is equivalent to adding age-specific fertility rates pertaining to a particular cohort of women

over time. Its frequency is five-year birth cohorts.

At the beginning of the period, fertility is still in the midst of what is known to demog-

raphers as the demographic transition, the marked fall in fertility (and mortality) that has

occurred in all developed countries. This fall accelerates from the late 1920s to the mid

1930s. Fertility then increases to reach its peak in the baby boom of the 1950s and 1960s.

It appears that a good description would be:

1. high, and fairly constantly decreasing fertility from 1850 until 1925, when it reaches a
TFR of about 3.0 children per woman;

2. an acceleration of the rate at which fertility is falling between 1925 and 1933 (from
TFR=3.0 to TFR=2.1);

3. constant, but low, fertility over the period from 1933 to 1940, with the level at about
TFR=2.2;

4. rapidly rising fertility from 1940 to 1957, with TFR going from 2.2 up to 3.7;

5. high, stable fertility from 1957 to 1961 at about TFR=3.6;

6. a rapid decrease from 1961 to 1976, with TFR going from 3.6 down to 1.7;

7. a slight increase and then stable low fertility over the remainder of the period, with
the level at about TFR=2.
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Figure 2: (Cohort) Total Fertility Rate, 1850-2000
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We will refer to 2 and 3 as the pre-WWII baby bust, 4 and 5 as the post-WWII baby

boom and 6 as the baby bust of the 1970s. The exact sizes of these features of the data

depend on how one treats the trend growth in productivity and trend decrease in fertility over

the period. For example, was there a common, exogenous growth rate in productivity over

the entire period with higher frequency (albeit highly autocorrelated) fluctuations around

this trend? Or, were there several regimes of growth? For fertility, one can see that while

TFR decreases smoothly over time, the early CTFR data shows that the largest decrease

happens for cohorts of women born between 1858 (4.9 children per women) and 1878 (3.25

children per woman). The fluctuations thereafter, however, look very similar in both series,

though somewhat larger in TFR than CTFR.

For fluctuations, we fit a linear trend to the (ln) TFP and LP series from 1901 to 2000

(lnPt = α0 + α1t + εt, where P = {TFP, LP}), and detrend TFR using an HP filter

(smoothing parameter, w = 20, 000). We obtain annual percent deviations over this period

plotted in Figure 3. Several alternative detrending methods were studied with very similar

results.

Although it is not perfect, there is an impressive coincidence in timing. The coefficient

of correlation between annual TFP and TFR deviations for the years 1901 to 2000 is 0.4,

with a coefficient of 0.71 from 1901 to 1940 and a correlation of 0.2 from 1941 to 2000. This

suggests that the U.S. TFR is procyclical during the early time period but the correlation is

much weaker thereafter (see also Butz and Ward, 1979). As suggested by the model below,

one reason for the decrease in the correlation may be the increase in female labor supply
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Figure 3: TFR, TFP and LP Percent Deviations From Trend, 1901-2000
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which made the opportunity cost of children, women’s wages, procyclical.

What our model simulation is also going to capture is the large downward deviation in the

1930s due to the large negative shock during the Great Depression and a baby boom following

endogenously as a response to the baby bust itself, one generation later. We therefore also

run the following regression. Let X̂t denote the percent deviation from trend in variable X

in period t.
T̂FRt = λ0 + λ1P̂t + λ2P̂t−l + εt

where P = {TFP, LP} and l ∈ {20, ..., 25}. The results for l = 20 are given in Table 1.

Similar results go through for larger values of l.

Table 1: U.S. TFR and Productivity: Regression results

Indep. Var. Coefficient Indep. Var. Coefficient

Constant -0.0051 Constant -0.0058

T̂ FP t 0.8363** L̂P t 0.6004*

T̂ FP t−20 -0.8401** L̂P t−20 -0.6218*

*, **: Significantly different from zero at 5% and 1%, respectively.

These regressions show that the coefficients on contemporaneous productivity (λ1) are

all positive and significantly different from zero, while the coefficients on productivity a

generation ago (λ2) are all negative and significantly different from zero. Also, λ1 and λ2 are

of similar magnitude in absolute value, while the constant (λ0) is likely to be zero.
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3 The model

In this section, we lay out a model of the response of fertility to period by period stochastic

movements in productivity. To do this, we use a model of fertility based on that developed

in Becker and Barro (1988) and Barro and Becker (1989) (Barro-Becker henceforth). The

simplification that we make is to assume that there is no physical (or human) capital in the

model. Thus, the flow of income is solely due to wage income.7 On the other hand, we add

a stochastic component as well as an explicit age-structure to the basic Barro-Becker model.

3.1 Model setup

A period is 20 years. Every person lives for four periods, one as a child and T = 3 periods as

an adult. There is an initial age distribution of the population given by (N3
0 , N

2
0 , N

1
0 ) where

N3
0 is the number of initial old (i.e., their age in period t = 0 is a = 3). We will normalize

by assuming that N3
0 = 1.

Children (age a = 0) do nothing. At age a = 1, young workers consume, have children

and supply one unit of labor (net of time spent to raise children) to earn a wage, w1
t . At age

a = 2, old workers consume and supply one unit of labor inelastically to earn a wage, w2
t ,

but are no longer fertile. In the last period of their lives, age a = 3, agents are retired and

only consume.

Adults care about consumption, the number of children and their children’s future utility.

Following the original Barro-Becker formulation, we assume that the utility of a person who

was born in period t− 1 and whose first period as an adult is in period t is given by:

(1) U1
t = V 1

t + φβg(nt)U
1
t+1

where U1
t represents the full value of utility of an age a = 1 adult in period t looking from

that point forward, V 1
t is the utility this person gets from his own path of consumption, nt is

the number of children that he has and U1
t+1 is the utility that his typical child will receive.

Let cas be the amount of consumption for the typical person in period s that is age a. We

assume that utility from the time path of own consumption ((c1t , c
2
t+1, c

3
t+2) – young worker,

old worker, retirement) is of the form:

(2) V 1
t =

3∑

a=1

βa−1u(cat+a−1).

We distinguish between time preference as measured by the discount factor, β and the

7We relax this assumption in Section 5.3.
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degree of altruism between generations within a period, φ. That is, φ = 1 means that

a person cares as much about the utility of his children as he cares about his own (see

Manuelli and Seshadri, 2009).

Similarly to equation (1), we can define the continuation utility for a person who was a

young adult in period t (i.e., he was born in period t − 1) looking forward from the point

when he reaches age a > 1. Of particular interest is the continuation utility of an adult of age

T in period 0 – i.e., the initial old. These are the only agents in the model who care about

all agents of all ages in all periods. Sequentially substituting V and U for later generations

and grouping terms by period instead of generations, utility for the initial old, UT
0 , is given

by:

(3) UT
0 =

∞∑

t=0

(βφ)t

[
T∑

a=1

φ1−a
[
Πt−1−a

k=0 g(nk)
]
u(cat )

]

Assuming g(n) = nη, simplification occurs in equation (3) because g(nt)g(nt+1) = g(ntnt+1).

To see this, let Na
t be the number of descendants of the initial age T agent, that are of age

a in period t. Then the laws of motion for population are given by:

N1
t = nt−1N

1
t−1 is the number of births in period t− 1;(4)

Na
t = Na−1

t−1 for a = 2, ..., T ;

Na
t = 0 for a > T ;

NT
0 = 1.

Using the functional form assumption for g and the laws of motion for population, UT
0 can

be written as:

(5) UT
0 =

∞∑

t=0

(βφ)t

[
T∑

a=1

φ1−ag(Na
t )u(cat )

]

Hence, as is standard in dynastic models à la Barro-Becker, the utility of the initial old

can be written in terms of the number of descendants of age a in period t, Na
t . Assuming

u(c) = c1−σ

1−σ
, following Jones and Schoonbroodt (2010), there are two sets of parameter

restrictions that satisfy the natural monotonicity and concavity restrictions of UT
0 :

AI. 0 < 1 − σ ≤ η < 1;

AII. 0 > 1 − σ ≥ η.8

8The knife-edge case where σ → 1 and η = δ(1 − σ) can also be analyzed. See Jones and Schoonbroodt
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Under AI., g is increasing and utility is positive, while under AII. g is decreasing but

utility is negative, so that, in both cases, ancestor’s utility is increasing in the number

of descendants. Also, under AI. the desire to smooth consumption over time and across

generations is low, while under AII., it is high. These distinctions are relevant for the results

below.

We assume that the cost of children born in period t is in terms of period t consumption

but allow this cost to depend on the wage of young workers – θt(w
1
t ). Thus, this allows for

the two most common ways of modeling child costs: goods costs – θt(w
1
t ) = θt – and time

costs – θt(w
1
t ) = bw1

t . Thus, feasibility for the dynasty in period t is given by:

(6)
3∑

a=1

Na
t c

a
t + θt(w

1
t )N

b
t ≤

2∑

a=1

wa
tN

a
t ≡Wt

where N b
t = ntN

1
t = N1

t+1 is the total number of births in period t. If the costs are in terms

of time, θt = bw1
t , there is an additional constraint, namely that 0 ≤ bN b

t ≤ N1
t .

We assume that wages grow at a constant rate, γ, on average. Moreover, there is an

aggregate shock so that the entire age-specific wage profile shifts up and down by st in

period t. Thus, in period t, wages are given by:

(w1
t , w

2
t ) = (γtstw

1, γtstw
2).

We assume that st is a first-order Markov Process.

To ensure the existence of a balanced growth path, we also assume that the costs of

children grow at rate γ. That is, we assume that, θ(w1
t ) = γtθ in the goods cost case and

θ(w1
t ) = γtbw1 in the time cost case.

To complete the specification of the model we need to make a decision about which agents

get to choose what and when. There are many different ways to do this. A useful benchmark

is a Planner’s problem approach. Accordingly we analyze the problem that maximizes the

overall utility of the initial old. This has two advantages as a benchmark. First, this is the

only group that cares, either directly or indirectly about all agents in the model. Second,

it has the feature that the resulting allocation can also be supported dynamically as the

equilibrium of a game in which in each period, the oldest individuals make choices for all

variables for all of their descendants.

Given this, the Planner’s Problem, P (γ, β; {Na
0 } , s0), is to choose

{
{cat (s

t)}3
a=1, N

1
t+1(s

t)
}
∞

t=0

to maximize utility in (5) subject to feasibility in (6) and laws of motion of population in (4)

where st = (s0, s1, ...., st) is the history of shocks up to and including period t.

(2010) or Schoonbroodt and Tertilt (2010) for details.
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As is usually true in models with exogenous, trend growth, solutions can be obtained by

solving a related model with no growth and a different discount factor. Thus, the solution

to P (γ, β; {Na
0 } , s0) can be obtained directly from the solution to P (1, β̂; {Na

0 } , s0) – i.e.,

γ = 1 (no growth) and the discount factor, β̂, depends on γ, β, σ, and η. Because of this

result, we abstract from trend growth through most of the remainder of the paper. In those

cases where the solution to the model depends on the discount factor, we will use this result

to calibrate to the appropriate discount factor in the detrended model.

Let us introduce one additional piece of notation. Let nb
t ≡

Nb
t

0.5N1
t

be the number of births

per woman. This is the model quantity that we will identify with the Cohort Total Fertility

Rate (CTFR) in the data, while TFR will be a weighted average over several cohort’s fertility.

3.2 Consumption across the age distribution

First, we analyze how consumption within a given period, t, is distributed across the different

ages of agents alive at the time. The relevant term in a typical period, t, is:

3∑

a=1

φ1−ag(Na
t )u(cat ) =

3∑

a=1

φ1−ag(Na
t )u

(
Na

t c
a
t

Na
t

)
=

3∑

a=1

φ1−ag(Na
t )u

(
Ca

t

Na
t

)
,

where Ca
t = Na

t c
a
t is the total consumption of the age a cohort in period t.

Given any level of aggregate consumption in a period, Ct, the planner will choose a

distribution across ages to maximize the above subject to
∑3

a=1C
a
t = Ct. It follows that

this is done by equating the marginal utility of a unit of aggregate consumption across the

different ages.

To gain more intuition, consider the Planner’s objective within a period:

3∑

a=1

φ1−a(Na
t )η+σ−1 (Ca

t )1−σ

1 − σ

As can be seen, the marginal utility of Ca
t is affected by three things. First, is g increasing

(AI) or decreasing (AII) in N? Second, is N growing over time? Third, what is φ?

For example, suppose φ = 1. In this case, the age a term is g(Na
t )u

(
Ca

t

Na
t

)
. If population

is growing (the case typically of empirical interest), then Na
t is decreasing in a – there are less

people in older generations. Thus, if g is increasing (decreasing) in N , g(Na
t ) is decreasing

(increasing) in a. Thus, other things equal, the marginal value of an increase in per capita

consumption within a period is decreasing (increasing) in age. On the other hand, in this

case a given level of aggregate consumption in a cohort is split across fewer people in older

groups increasing per capita consumption. This leads to a lower value of u′.
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Thus if g is increasing in N , whether the Planner will want consumption to be increasing

or decreasing in age within a particular period will depend on which of these two effects

is larger. If g is decreasing in N , then if population is growing, per capita consumption

is increasing in a for sure. For example, specializing further to the case where η = 1 − σ

(allowed under both configurations), and φ = 1, period t utility becomes:

3∑

a=1

Ca1−σ
t

1 − σ
.

Thus, aggregate consumption of all age groups within a period will be equalized, Ca = Ca′

for all a, a′, and hence, larger age groups (younger cohorts if N is increasing) will have smaller

per capita consumption – cat < ca
′

t for a < a′.

3.3 Procyclical fertility and endogenous oscillations

In this section we study the properties of the solution to the Planner’s Problem outlined

above. In particular, we characterize how the policy functions from this problem depend on

both the current shock and the initial state.

To gain some intuition about the working of the model, notice that if η = 1 − σ, then

N does not enter the period utility function except in aggregate consumption, and hence, if

people are productive for only one period (wa = 0, a 6= 1), N plays exactly the same role in

this model as k does in a stochastic Ak model.9 Similar to Ak models, without exogenous

growth (i.e., γ = 1), aggregate consumption, C, grows at the same rate as N . However, in

the absence of shocks, per capita consumption is constant. There is one important twist to

the Ak-analogy. This is that, at least in the case where child-rearing is modeled as a time

cost, the cost of the investment good is also stochastic. In that case, since θt = bw1
t , periods

when productivity is high are also periods when children – the analog of the investment good

in the Ak model – are expensive. Other than that, the analogy is very close.

We now derive comparative statics of current fertility with respect to productivity shocks

and last period’s fertility. To do this, we first simplify the problem to one with only one

state variable. We then take first-order conditions and analyze comparative statics across

steady states/balanced growth paths therein.

Denote by V (N1, N2, N3; s) the maximized value obtained in the problem P (1, β̂; {Na
0 } , s0)

when the initial conditions are (N1
0 , N

2
0 , N

3
0 ) = (N1, N2, N3) and s0 = s. Because of our as-

sumptions on the functional forms for the utility function, it is straightforward to show that

the value function is homogeneous of degree η in (N1, N2, N3), i.e., V (λN1, λN2, λN3; s) =

ληV (N1, N2, N3; s). The problem P (1, β̂; {Na
0 } , s0) is therefore a standard, stationary dy-

9See Jones and Manuelli (1990) and Rebelo (1991), seminal papers on this model.
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namic program as long as s is first-order Markov. Because of this result, we can characterize

the solution through Bellman’s Equation.

Under the additional assumptions that η = 1−σ, and φ = 1, as discussed in Section 3.2,

Ca = Ca′ and V satisfies:

(7) V (N1, N2, N3; s) ≡ max
Na′ ,C,Nb

[
T
C1−σ

1 − σ
+ βφE

[
V (N1′, N2′, N3′; s′)|s

]]

subject to:

TC + θN b ≤ s
∑2

a=1w
aNa;

Na′ = Na−1, for a = 2, 3;

N1′ = N b.

As can be seen from this, since w3 = 0 by assumption, we have that V (N1, N2, N3; s) =

V (N1, N2, N3∗; s) for any N3, N3∗. Assuming further that shocks are i.i.d. and using the

homogeneity property of V , the Bellman Equation in (7) is equivalent to one where fertility

per young person, n′ = N b/N1, is the choice variable and last period’s fertility per person,

the current stock of young to old workers n = N1

N2 is the state variable. That is, let V̂ (n; s) =

V (N1/N2, 1; s)/T , then (7) becomes:

(8) V̂ (n; s) ≡ max
n′

[(
s [w1n + w2] − θ(s)n′n

T

)1−σ

/(1 − σ) + βn1−σE
[
V̂ (n′; s′)

]]
.

Taking the first-order condition with respect to n′ and rearranging gives:

(9) LHS(n′) ≡
θ(s)

TEV̂1(n′, s′)
=



s
[
w1 + w2

n

]
− θ(s)n′

T




σ

β ≡ RHS(n′).

LHS(n′) is increasing in n′, with LHS(0) = 0 if EV̂1(0, s) = ∞. Also, RHS(n′) is decreasing

in n′ with a positive intercept at n′ = 0. Thus, there is a unique solution.

To see the behavior of n′ as a function of the shock, we consider the two extreme cases,

θ(s) = θ, a goods cost, and a time cost, θ(s) = bsw1. In the first case, θ(s) = θ, RHS

shifts up when s goes up while LHS is unchanged. Thus, n′ is increasing in s – fertility is

procyclical. This is a pure income effect which is larger, the larger σ, i.e. the desire to smooth

consumption. Also, it follows that n′ is linear in s. On the other hand, when θ(s) = bsw1,

both LHS and RHS shift up when s increases. The effect on RHS is still the pure income

effect, which tends to increase fertility and is increasing in σ, sσ. The effect on LHS is

the substitution effect because when s is high, fertility is temporarily more expensive which

tends to decrease fertility. This effect is linear in s. If σ > 1, the income effect dominates, i.e.

RHS shifts up by more than LHS. Thus, again n′ is increasing in s – fertility is procyclical.

14



If, σ < 1 the substitution effect dominates – fertility is countercyclical.

To see how current fertility (per young adult), n′, depends on past fertility, n, notice that

RHS shifts down when the current state, n, increases while LHS is independent of n. Thus

n′ decreases when n increases, generating cycles. This crucially depends on w2 > 0. If there

is only one period of working life (as in standard Barro-Becker models), this effect is zero.10

We summarize these results in the following proposition:

Proposition 1. Current fertility, n′(n, s), is

1. a. procyclical if θ(w1) = θ, or if θ(w1) = bsw1 and σ > 1;

b. countercyclical if θ(w1) = bsw1 and σ < 1;

2. a. independent of last period’s fertility, n, if w2 = 0;

b. decreasing in last period’s fertility, n, if w2 > 0.

Thus, if w2 > 0 the model generates endogenous cycles, triggered by productivity shocks.

The intuition for why fertility is procyclical in this model is similar to that in many growth

models. Here, fertility plays the role of an investment good and the usual consumption

smoothing logic implies that when the shock is high, investment should be high so as to

offset the effects of future shocks on consumption. This argument is direct when the cost of

children is a goods cost. It is tempered when the cost is a time cost by a second effect. This

is that the cost of the investment good is also higher than average when the shock is high.

Thus, whether or not it is a good idea to invest in those periods depends on how strong the

desire is to smooth consumption. When this force is strong – σ is large – the consumption

smoothing effect is large relative to the cost effect and fertility is procyclical. Thus, the more

important the time cost in raising children, the more procyclical is the cost of children itself.

That is, whenever productivity is high, the cost of children is also high and vice versa. This

dampens the procyclicality of fertility and, indeed, when the desire to smooth consumption

is very low, fertility actually is countercyclical.

Some intuition for the fertility cycles in point 2 of the proposition can also be obtained

by analogy with growth models. Here, what we find is a source of endogenous cycles. The

relevant analogy from capital theory here is to consider a model in which depreciation is not

constant. Here, we have an extreme version. Capital (i.e., people) that is built in period t−1

has full productive capacity in period t and period t+ 1 – there is no depreciation between

periods t and t + 1 – but has zero productive capacity in period t + 2. Thus, age-specific

depreciation rates here would be δ1 = 0 and δ2 = 1 – no depreciation after one period,

10Note that since the number of births per woman (CTFR) is nb = n/0.5, all these comparative statics go
through without change.
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full depreciation after two. In a situation like this, when n = N1/N2 is higher than usual,

the planner expects next periods depreciation rate to be lower than usual (because N2 is

relatively low). Because of this, to smooth consumption, current investment – n′ = N b/N1

– will be relatively low. Thus, n′ is low when n is high. When there is only one period of

working life, the depreciation rate is always 100 percent and hence this effect is not present.

Because of this, fertility is independent of last period’s fertility. The example with one

period working life, w2
t = 0, is interesting because it corresponds most closely to that of the

original Barro-Becker model while the model with more than one period productive life is

more realistic.11

Thus, according to our theory, while the baby bust in the 1930s may be explained by

the Great Depression, the baby boom in the 1950s is first and foremost a response to low

fertility in the past.

4 Quantitative results

In this section, we use the facts about the time paths of productivity and fertility in the

U.S. over the 20th century laid out in Section 2 to perform quantitative experiments on

the model. To do this, we calibrate parameters to selected moments of our data. We then

use this model to explore two kinds of questions. First, what does the calibrated model

say about the size of responses to shocks to productivity – e.g., what is the elasticity of

fertility with respect to a productivity shock? In keeping with the theoretical results of the

previous section we study both the current response to a shock and also the lagged response

one generation later due to the misalignment of the age structure of the workforce. Second,

based on the estimated policy functions from the calibrated model we study the predicted

response to a productivity shock like those seen in US history – e.g., the Great Depression.

We find that the answers to these quantitative questions also depends on the nature of

the costs of children. Because of this, we give results for two alternative specifications. These

are: (1) all costs are time costs (θ(s) = bw1s); (2) all costs of raising children are goods costs

(θ(s) = θ). As noted above, these two specifications are qualitatively different in that with

a time cost, the costs of children are higher in productivity booms than in busts. Reality

probably lies somewhere inbetween these two extreme cases.12

We find that the quantitative responses in the model are economically significant in all

11In Section 5.4 we add a third period of working life to show that results, though qualitatively more
complicated, are very similar quantitatively.

12Indeed, the time cost may have become more relevant over time as women entered the labor force. Since
women tend to be the parent taking care of children, the relevant opportunity cost is only procyclical if the
latter are actually working whenever they are not busy raising children.
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cases. For example, the elasticity of fertility to a contemporaneous productivity shocks lies

between 1 and 1.7,13 while the elasticity one period later lies between 0.94 and 1.5. Standard

recessions will have rather modest effects on fertility, however. Large recessions, such as the

Great Depression, on the other hand, have important and long lasting effects.

We therefore turn to the historical record of the United States and study the predicted

response of fertility to the productivity booms and busts over the 20th century. To do this,

we must first construct a series of shocks to feed into the model. It is not obvious how to do

this realistically. On the one hand, in the model, it is assumed that the shock for the current

period is realized at the beginning of the period. Effectively, this means that individuals

know, at the beginning of the period, what the sequence of annual shocks will be over the

next 20 years. Even with highly correlated shocks at annual frequency, this assumption

seems extreme at best. Another alternative is to decrease the length of a period. This

necessarily increases the size of the state space. For example, even decreasing the period

length to 10 years and maintaining the i.i.d. assumption increases the size of the state space

from 2 dimensional to 5.14 Relaxing the i.i.d. assumption which might be required for 10-

as opposed to 20-year periods, adds another state variable. In addition, one would have

to address timing of births (between age 20-30 versus 30-40) more seriously. This is not

an easy problem (see Caucutt et al. (2002), Doepke et al. (2007) and Sommer (2010) for

examples). Thus, there are technical difficulties with following the strategy of decreasing the

period length.

Because of this, we present results for several alternative methods for constructing the

relevant series of productivity shocks for TFP and LP. First, since the data shows that over

the period 1940 to 1980 at least 60 percent of all births are to women age 20 to 30,15 we assume

that women have all their children between age 21 and 30. As our baseline experiment, we

therefore assume that the relevant productivity shock for them is the average one in the data

for that 10 year period. We conduct sensitivity analysis on this specification in Section 5.1.

We also have to choose which productivity measure to use, total factor productivity (TFP)

or labor productivity (LP). We use TFP in our baseline case and discuss LP in Section 5.2.

In our baseline experiment, a shock to productivity (or labor income) the size of the Great

Depression gives rise to a contemporary baby bust that accounts for 64 to 103 percent of the

13As will be seen below, the model response to a shock is smaller when the cost is in terms of time than
when it is in terms of goods. Thus, ’between 1 and 1.7’ corresponds to 1 with a time cost and 1.7 with a
goods cost.

14The state space is three-dimensional in our problem: N1, N2 and s. Using the homogeneity results,
this can be reduced to two state variables, N = N1/N2 and s. With 10-year periods (and age-groups) the
problem becomes six-dimensional: N2

b , N1,1, N1,2, N2,1, N2,2 and s, which using the same methods can be
reduced to a five-dimensional problem.

15See Vital Statistics of the United States, Table 1-7.
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reduction in CTFR and 39 to 63 percent of the reduction in TFR seen in the data. Further,

the model prediction of the lagged response to such a shock is a baby boom. Combined

with the productivity boom in the 1950s and 1960s, the predicted size of the baby boom lies

between 84 and 150 percent of the actual size of the baby boom observed in the CTFR data

and 53 to 92 percent of the one observed in the TFR data.

4.1 Parameterization

Preference Parameters: Throughout, we assume that η = 1 − σ and set σ = 3 following

Jones and Schoonbroodt (2010) among others.16 The discount factor is set to β = 0.9620 to

match an annual interest rate of about 4 percent.

Wage and Productivity Parameters: From the model, wages are given by wa
t = stγ

twa,

where wa is the base wage (in period 0) for workers of age a = 1, 2 , γ is the trend productivity

growth rate for a 20-year period and st is the productivity shock which we assume to be

i.i.d. over time.17 Further, for computational reasons, it is convenient to assume a functional

form for the distribution of productivity shocks, st. We assume that ln ŝt ∼ N(0, σ2
s) where

ŝt = ste
σ2

s/2 so E(st) = 1. Thus, the parameter values to be determined are w1, w2, γ and σs.

We normalize w1 = 1 and choose w2 = 1.25. This is in line with life-cycle earnings

profiles from Hansen (1993) and Huggett (1996). The growth rate of productivity, γ, and

the standard deviation of productivity shocks, σs, are calculated from the TFP series plotted

in Figure 1. First, we compute the linear trend in productivity by running the following

ordinary least-squares regression on annual data:

(10) lnTFPt = α0 + α1t+ εt.

We find that α1 = 0.0159 and therefore set γ = (eα1)20 = 1.016120. That is, productivity

grows at an average of 1.61 percent per year over the 20th century.18

To pin down the value of σs several steps are required. First, in our baseline experiment,

we use the 10 most fertile years of each cohort within a dynasty, namely age 20 to 30, to

determine the productivity shock this cohort’s fertility choice is affected by. Thus, the shock

we are interested in is ln ŝt = ln
(∑10

t=1 e
εt
)
− µ where µ = E(ln(

∑10
t=1 e

εt)). To approximate

16e.g., Mateos-Planas (2002) and Scholz and Seshadri (2009) also use a value of σ = 3.
17This is a reasonable approximation for long movements in labor productivity across generations, which

within a dynasty are 20 years apart.
18An alternative detrending method would be to use a Hodrick-Prescott filter, instead. However, it is

not clear what value to use for the smoothing parameter since we are interested in long fluctuations, rather
than quarter-to-quarter or annual deviations from trend. In any case, for low enough smoothing parameter
resulting productivity shocks would typically be smaller. Assuming that the growth rate of productivity is
constant in the model but using HP productivity shocks would result in smaller fertility responses in the
experiments at the end of this and the next section.
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its standard deviation, σs, we assume that εt follows an AR1 process and estimate

(11) εt = ρ0 + ρ1εt−1 + νt,

where νt ∼ N(0, σν), simulate a long series of {εt}, compute a series {ln st} and calculate

its standard deviation to get σs = 0.07. Of course, the series, ln st, so constructed is not

exactly normally distributed. However, for all simulations, the Kolmogorov-Smirnov test

produces a p-value of about 0.4. This means that, at any reasonable significance level, the

test would accept the null hypothesis that the distribution of ln st is normal and hence this

should provide a good approximation.

Costs of Children: Given preference and productivity parameters, we then calibrate child

costs, θ(·), to match an annual population growth rate of 0.645 percent per year (see Haines,

1994, Table 1). In the model, population growth corresponds to Nb+N1+N2

N1+N2+N3 . In a steady

state with no uncertainty, this is given by the level of fertility choice (per person), nss,

satisfying n′(nss, 1) = nss. Thus, the target is nss = 1.0064520. This corresponds to a steady

state CTFR level of nss/0.5 = 2.27 children per woman. In the goods cost case, we find

θ = 0.1932, while with time costs we find b = 0.1927. Since the wage for young workers is

normalized to 1, these costs imply that it takes about 20 percent of a young worker’s income

or time to produce a child. This means that a two person household can at most have ten

children.

Summary: These parameters are summarized in Table 2.19

Table 2: Parameter Values, Baseline

Parameter σ β w1 w2 γ σs θ b
(goods cost) (time cost)

Value 3.00 0.9620 1.00 1.25 1.016120 0.07 0.1932 0.1927

4.2 Model impulse responses

Given the parameter values from the previous section we calculate the decision rules from the

model. These can then be used to estimate the model responses to different size productivity

shocks. The results are summarized in Table 3. The rows of the table correspond to the two

alternative types of cost structures for children, goods and time. The first two columns report

19We provide sensitivity to the parameter values in the Appendix, Table A.9.
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the elasticities (at the steady state) of (a) current and (b) lagged fertility to productivity

shocks. The next two columns give the (c) contemporaneous and (d) lagged change in

fertility levels that the model predicts will result from a one percent increase in productivity.

Column (e) recalls the steady state level of completed fertility (CTFR).

Table 3: Impulse Response (in percent and levels), Baseline

Cost % Deviations CTFR Levels

Type
Initial Lagged Initial Lagged Steady St.

(a) (b) (c) (d) (e)

Goods 1.741 -1.561 2.314 2.239 2.274
Time 1.039 -0.940 2.298 2.253 2.274

As can be seen from this table, in the goods cost case the fertility response to a 1-percent

productivity shock generates a 1.74 percent contemporaneous increase in fertility (column

(a)) with a lagged decrease of 1.56 percent one period later (column (b)). In the time cost

case, the corresponding percentage changes are a 1.04 percent contemporaneous increase and

a 0.94 decrease one period later.

These magnitudes can be compared to the regression results shown in Table 1. In par-

ticular, column (a) is to be compared with λ1 and column (b) with λ2. Thus, if the model

fit the data perfectly we should see 0.83 in column (a), and -0.84 in column (b). Although

the model quantities are higher, they are remarkably similar in the time cost case.

Comparing the two cases, the initial effect is 70 percent larger in the goods cost case

than it is in the time cost case. The reason for this difference is that when child costs are

primarily in terms of time there are two offsetting effects. First, when times are good there

is a natural tendency to save for the future to equalize marginal utilities. Here, the only way

to do this is by increasing family size. On the other hand, since the cost of raising children is

positively related to the wage, when times are good, children are relatively more expensive

– a force in the opposite direction. When the costs of children are in terms of goods, this

second effect is not at work and hence, the overall effect is larger in this case. As can be seen

in the table, as the theory predicts, the first effect dominates if the intertemporal elasticity

of substitution is low enough (σ > 1, see Proposition 1).

Further, since in both cases, the ratio of the initial response to the lagged response is

about -90 percent, the half-life (in absolute value) of the effect is 7 periods (or generations)
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in both cases. In particular, the effect 7 periods later is a decrease in fertility of 0.8 percent

in the goods cost case and 0.5 percent in the time cost case (i.e., half of the initial responses).

To get a sense about the size of these effects note that a one-percent decrease in produc-

tivity for a 10-year period roughly corresponds to a recession where GDP is 5 percent below

trend for two years. This would decrease fertility by about 0.02 to 0.04 children per woman

with a subsequent baby boom of similar size. Thus, the quantitative effects on (completed)

fertility of a normal sized recession would be quite modest. As we shall see below, the model

predicts that a recession the size of the Great Depression gives a much larger response.

4.3 A historical episode: the U.S. Great Depression

In this section we use the historical record of the actual series of productivity shocks in the

U.S. to study the predicted response of fertility to the productivity busts and booms that

have occurred over the last 100 years.

We first focus on the dynasty most affected by the Great Depression, i.e., the cohort

making fertility decisions in the 1930s (followed by the 1950s cohort, the 1970s cohort and

the 1990s cohort).

Second, we consider other dynasties also affected by the Great Depression but less so.

That is, those making fertility choices either in the late 1920s and early 1930s (i.e., between

1926 and 1935, etc.) or in the late 1930s and early 1940s (between 1936 and 1945, etc.).

Finally, we consider the dynasty making fertility choices in the 1920s (between 1921 and

1930, etc). By construction, the Great Depression has no effect on the fertility choices of

this last dynasty. Thus, we simplify by assuming that there is no connection or opportunity

for trade between the four dynasties. Cohorts within these dynasties make overlapping

fertility decisions.

Finally, the measure of fertility constructed in this way – using different shocks for dif-

ferent cohorts – corresponds to CTFR since it represents completed fertility for each cohort.

We also construct an analog for TFR, i.e., period fertility, by averaging over the two cohorts

making their fertility decisions in any five-year period. In doing this, we solve the model

separately for the different dynasties and then aggregate.

4.3.1 CTFR: Most Affected Dynasty (M.A.D.)

First, to focus on the effects of the Great Depression, we start with the dynasty making

fertility decisions in the 1910s, 1930s, 1950s, 1970s and 1990s. This dynasty is the most

affected by the Great Depression. As a benchmark, we assume that the initial state of the

dynasty is at its steady state age-distribution. In other words, the dynasty has been facing

average shocks (s = 1) for a long time so that its current age-distribution is stationary.

21



For this dynasty, the relevant series of productivity shocks, st, is shown in Table 4.

The results are shown in Figure 4. With a goods cost, the model predicts that fertility is

19.1 percent below trend during the 1930s; with a time cost the prediction is 11.8 percent

below trend. In the data, CTFR actually fell by 18.5 percent. Thus, the model captures

a significant fraction of this movement in either case. This is primarily due to the large,

negative shock of 12.4 percent during the Great Depression of the 1930s – the dynasty’s

young-to-old worker ratio is initially almost at its steady state value and hence effects from

this are minimal.

Table 4: Productivity shocks (in percent), Baseline (M.A.D.)

Decade 1910s 1930s 1950s 1970s 1990s
Productivity Shock -1.8 -12.43 6.89 3.90 -8.97

Figure 4: Percent Deviations in CTFR, Baseline (M.A.D.)
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As noted above, there is also a lagged effect in the model from the Great Depression due

to the misalignment of the age structure that results from low fertility during the 1930s.

This implies, a baby boom for the next cohort in this dynasty which takes place in the

1950s. With a goods cost, the model prediction is an increase in fertility above trend of 34.9

percent, while with a time cost, the corresponding model prediction is 19.7 percent above

trend. These model predictions result from a combination of the fertility response to the

low young-to-old worker ratio due to the baby bust and the 8.4 percent productivity boom
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in the 1950s. For the purposes of comparison, the peak of the baby boom in the CTFR data

is 23 percent above trend.

In the model, the Great Depression has continuing impacts on the fertility choices in this

dynasty – there are continued fluctuations with a decrease of 11 to 18 percent below trend

in the 1970s (due to the lagged response to the baby boom but dampened by the 3.9 percent

upward fluctuation in TFP in the 1970s); this is followed by an increase of 2.7 to 4.2 percent

above trend in the 1990s – again a response to the low young-to-old worker ratio dampened

by the negative productivity shock of 8 percent during the 1990s.

This is an extreme version of the baby bust and boom in the model because it is con-

structed so that the cohort’s entire fertile period falls during the Great Depression. For other

cohorts or dynasties, the effects are mitigated because at least part of their fertile period

is unaffected by the Great Depression. This is also true for the baby boom: the dynasty

considered here is most affected by the low young-to-old worker ratio and has a large positive

productivity shock in the post-war period.

4.3.2 CTFR: All dynasties and cohorts

Table 5 shows how we construct our four dynasties. It illustrates the state variables and

shocks for each cohort. For each dynasty, we assume that the initial value of the state

variable is n = nss, the balanced growth level of fertility. The first dynasty (d1) starts with

women born between 1876-1880 (labeled 1880), cohort 1 (c1). They face a productivity

shock, s1, averaging over the period 1901-1910 when they are roughly age 20 to 30. Their

fertility choice is nc1 = n′(nss, s1). The second dynasty (d2) starts with women born five

years later, between 1881-1885 (labeled 1885), cohort 2 (c2). Their first productivity shock,

s2, is obtained by averaging over 1906-15. Their fertility choice is nc2 = n′(nss, s2). The

third dynasty (d3) starts with women born between 1886-1890 (labeled 1890), cohort 3 (c3).

This is the most affected dynasty described above. The fourth dynasty (d4) starts with

women born between 1891-1895 (labeled 1895), cohort 4 (c4). Their first productivity shock

s4, comes from averaging over the period 1916-1925. Cohort 5, born between 1896-1900

(labeled 1900) are the next generation in d1. Their initial productivity shock s5, comes from

averaging over the period 1921-30. Thus, their fertility choice is given by nc5 = n′(nc1 , s5).

Proceeding further in this fashion leads to Cohort 9, born between 1916-1920 (labeled 1920),

the third generation in dynasty 1 making fertility decisions between 1941 and 1950. The

shock that this cohort faces is not affected by the Great Depression at all. We expand this

series to Cohort 20, born between 1971-1975 (labeled 1975), the third generation in dynasty

1 making fertility decisions between 1996 and 2005.

The percent deviations in fertility choice in the last two column of Table 5 is what we
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Table 5: Dynasties and Cohorts, Baseline

Cohort Birthyear Fertile Productivity State var., n Fertility
Label Label Period Shock Dynasty Choice

Label Value d1 d2 d∗3 d4 Label Goods Time
(%) (%) (%)

c1 1880 1901-10 s1 -0.90 nss ... ... ... nc1 -1.57 -0.94
c2 1885 1906-15 s2 -3.85 ... nss ... nc2 -6.71 -4.06
c3 1890 1911-20 s3 -1.84 ... nss ... nc3 -3.20 -1.93
c4 1895 1916-25 s4 3.02 ... ... ... nss nc4 5.25 3.12

c5 1900 1921-30 s5 1.58 nc1 ... ... ... nc5 4.23 2.52
c6 1905 1926-35 s6 -7.06 ... nc2 ... nc6 -6.20 -3.79
c7 1910 1931-40 s7 -12.43 ... nc3 ... nc7 -19.05 -11.79
c8 1915 1936-45 s8 -1.68 ... ... ... nc4 nc8 -7.41 -4.50

c9 1920 1941-50 s9 5.72 nc5 ... ... ... nc9 6.04 3.55
c10 1925 1946-55 s10 5.65 ... nc6 ... nc10 16.17 9.50
c11 1930 1951-60 s11 6.89 ... nc7 ... nc11 34.88 19.68
c12 1935 1956-65 s12 8.92 ... ... ... nc8 nc12 23.43 13.56

c13 1940 1961-70 s13 11.14 nc9 ... ... ... nc13 13.61 7.93
c14 1945 1966-75 s14 8.91 ... nc10 ... nc14 1.68 0.75
c15 1950 1971-80 s15 3.90 ... nc11 ... nc15 -17.76 -11.34
c16 1955 1976-85 s16 -1.56 ... ... ... nc12 nc16 -19.82 -12.48

c17 1960 1981-90 s17 -4.49 nc13 ... ... ... nc17 -18.31 -11.31
c18 1965 1986-95 s18 -5.82 ... nc14 ... nc18 -11.58 -6.83
c19 1970 1991-00 s19 -7.97 ... nc15 ... nc19 4.25 2.67
c20 1975 1996-00 s20 -8.86 ... ... ... nc16 nc20 5.10 2.90
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Figure 5: Percent Deviations in CTFR, Baseline (All Cohorts)
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plot in Figure 5. Again, we show the results of the model for goods and time costs cases

separately. Also plotted is CTFR data from Jones and Tertilt (2008). As expected, we see

that dynasties other than the M.A.D. are less affected by the Great Depression. Still, there

is some effect – there are smaller deviations from trend both down and up, 20 years later.

4.3.3 TFR

Next, we compute an analog of TFR, i.e., period fertility, by averaging over the two cohorts

making their fertility decisions in any five-year period. That is, we compute TFR in any

five-year period by computing the average of fertility of the two cohorts who are making

half their fertility decision in that five-year period, weighted by their size (i.e., their parent’s

fertility choice). For example, TFR1931−35 =
nc6nc2+nc7nc3

nc2+nc3
. Note that, if all dynasties are in

a steady state CTFR = TFR = nss/0.5. One advantage of this fertility measure is that we

have data until 2000, while for completed fertility the last cohort in Jones and Tertilt (2008)

makes fertility decisions in the 1980s.

The results are shown in Figure 6. Since deviations in TFR in the data are larger than

deviations in CTFR and since we are averaging over less affected cohorts, the model accounts

for a smaller fraction of these deviations.

With a goods cost, the model predicts that TFR would be 12.7 percent below trend in

the early and late 1930s; with a time cost, the analog is 7.8 percent. In the data, TFR is

20 percent below trend in the early 1930s and 22 percent below trend in the late 1930s. As

with CTFR, this result is mainly due to the negative shock of 12.4 percent during the Great

Depression but here the results are mitigated because some women don’t make their entire
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Figure 6: Percent Deviations in TFR, Baseline
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fertility decision during this period. In the data, the peak of the baby boom occurs in the

late 1950s when fertility is 31 percent above trend. With a goods cost, the model predicts

TFR will be 28.5 percent above trend while with a time cost, the prediction is 16.4 percent.

Again, this result is a combination of the fertility response to the low young-to-old worker

ratio due to the baby bust and the productivity boom in the 1950s and early 1960s. Hence,

the model accounts for 38.5 to 62.6 percent of the baby bust and for 53 to 92 percent of the

baby boom in TFR.

In subsequent periods, TFR in the model keeps fluctuating – 11.9 to 18.9 percent below

trend in the late 1970s (due to the prior baby boom but dampened by the 3.9 percent increase

in TFP). The corresponding movements in the data on TFR is 20.7 percent below trend.

The increase in fertility in the 1990s of 7.1 percent above trend in the data is also partly

captured by the model which predicts a 2.8 to 4.7 percent increase.

5 Sensitivity

In this section, we discuss the sensitivity of our results two types of changes. The first

type take the parameters in Table 2 as given but change the way productivity shocks in

Section 4.3 are computed. Here, we explore (1) changes in the age range used to assign TFP

shocks to different cohorts, and (2) the effects of using labor productivity (LP) instead of

TFP. Given the nature of these experiments, elasticities and impulse responses remain the

same but the size of shocks differs. Results are reported in Figure 7. Increasing the age

range tends to decrease the effect of the Great Depression on fertility because it is diluted
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across more cohorts. Therefore, the predicted size of the baby boom is also smaller. It

also affects the timing of the baby bust and boom. The results using labor productivity

are very similar to the baseline, except for the cohort making fertility decisions in the 1910s

who experience a productivity boom and those making fertility decisions in the 1920s who

experience a significant negative shock. Due to endogenous fluctuations, these changes work

themselves through the fertility fluctuations later on in the century.

The second type of change that we explore involves altering some of the basic features of

the model. Here we study the robustness of our results both to including capital and having

more (i.e., shorter) time periods and hence, more active generations. We find that our basic

results are robust to these two qualitative changes to the model.

5.1 Age range of productivity shocks

One problem with the assumption that the only relevant shock for the dynasty is when their

youngest cohort is age 20 to 30 is that it implicitly assumes that the shock lasts for the entire

period of 20 years. In this section, we describe model results when the shock is set to the

average productivity shock over the period where the cohort is age 20 to 40.

Figure 7(a), shows cohort productivity shocks for this experiment compared to the base-

line. Overall shocks are smoother and smaller because some busts and booms are smoothed

out due to the longer time period. Also, Cohort c5 making part of their fertility decisions in

the 1920s faces a relatively large negative shock due to the Great Depression in the 1930s

when c5 is age 30 to 40. Therefore, the baby bust starts earlier and is smaller than in the

baseline model as can be seen in Figure 7(b). Because of the smaller baby bust in the 1930s

and smaller shocks, the baby boom is also smaller and so are subsequent fluctuations.

The problem with this alternative is that it implicitly assumes that fertility is uniform

between age 20 and 40. Hence, the fertility decision of women born at the beginning of the

century is heavily affected by the Great Depression in this experiment when in reality most

of them had completed their fertility in the 1920s.

Since this alternative is at the opposite extreme of the baseline, the two experiments

together should give us reasonable bounds on how much of the fluctuations in fertility over

the 20th century in the U.S. the model can account for.20

5.2 Labor productivity versus total factor productivity

Since there is no capital in our model, it is not clear wether we should use labor productivity

(LP) or total factor productivity (TFP) to infer productivity shocks. The argument for using

20In Appendix A.2 we perform an experiment where TFP shocks are weighted by average age-specific
fertility rates. This is an intermediate case between the baseline and the present experiment.
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Figure 7: Percent Deviations in TFR, Age Range and Labor Productivity
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Experiment: LP
Baseline
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LP Shock
TFP Shock

Note: Tables A.1 to A.3 in Appendix A.1 show the exact numbers of shocks, CTFR and TFR responses for the two experiments
compared to the baseline.

TFP is that if capital were included in the model, fertility would respond to TFP alongside

investment. The argument for using LP is that most people don’t own much capital (besides

durable goods and houses) so that their fertility response is to changes in LP.

Here we perform the same experiment as in the main text but use deviations from trend

in LP instead of TFP. Again, we fit a linear trend through the LP data. The resulting

productivity shocks for each cohort are compared to the baseline in Figure 7(c). As can be

seen in the figure, there are two main differences between the LP compared to the TFP series

of shocks. The very first cohort making fertility decisions in the early 1900s experience a

productivity boom and those making fertility decisions in the 1910s and 1920s experience a

significant negative shock. Therefore, as shown in Figure 7(d), the baby bust is already well

underway at this time. Despite the similar size of the shock in the 1930s, fertility decreases
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less in the LP case than in the TFP case. This is because of the mitigating effect of the low

young-to-old worker ration due to low fertility in the 1910s. Subsequently, the baby boom

starts earlier but is of similar size as the baseline due to the larger LP shock in the 1950s

and 1960s compared to TFP. Overall, however, the results are quite similar.

Note that the growth rate of LP in the data is 2.23 percent per year on average, while

it is only 1.61 percent per year for TFP. Also, the estimated standard deviation of shocks

is 0.08 in most simulations while it is only 0.07 for TFP. In the experiment above, we held

these two parameters constant so that we perform only one change at a time and this may

have some effect on the outcomes.

5.3 The effects of including physical capital

In this section we show that including physical capital as an alternative investment into the

model does not change the contemporaneous elasticity to productivity shocks for reasonable

calibrations. To do this while keeping the size of the parameter space small, we consider

the special case where w2 = 0 and θ(st) = θ (i.e. the goods cost case) and compare two

specifications of the production function for the dynasty:

1. F (K,N1) = w1N1, the simplified version of the baseline case without capital;

2. F (K,N1) = Kα(N1)1−α, the case including capital.

Case 1 is a special case of the model laid out in Section 3 where w2 = 0, and, as such, the

results of that section apply automatically. The important equation describing the elasticity

of fertility with respect to current productivity shocks is:

n′(s) − E(n′(s))

E(n′(s))
=
ψs− ψ

ψ
= s− 1

where ψ =

(
w

θ+ θ

β(1−σ)E[V (s′)]

)
is independent on s.

When capital is included (case 2), the problem the dynasty solves is given by:

P (γ, β; {Na
0 } , K0, s0) max UT

0 = E
[∑

∞

t=0 (βφ)t
[∑T

a=1 φ
1−ag(Na

t (st−a))u(cat (s
t))
]
|s0

]

subject to:

∑3
a=1N

a
t (st−a)cat (s

t) + θN b
t (s

t) +Kt+1(s
t) ≤ st(Kt(s

t−1))α (γtN1
t (st−1))

1−α
;

N1
t (st−1) = N b

t−1(s
t−1) is the number of births in period t− 1;

Na
t (st−a) = Na−1

t−1 (st−1−(a−1)) for a = 2, ..., T ;

Na
t (st−a) = 0 for a > T ;
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Na
0 given, a = 1, ..., T .

where st = (s0, s1, ...., st) is the history of shocks up to and including period t.

Under the assumptions that φ = 1, η+ σ = 1, that costs are in terms of goods, θt = γtθ,

and shocks are i.i.d. the solution for fertility is given by:

(12) n′(s) =
(βγ1−σ(1 − σ)Ev(k′, s′))

1
σ

(
(γk′ + θ)

1
σ + (γk′ + θ) (βγ1−σ(1 − σ)Ev(k′, s′))

1
σ

) [sf(k) + (1 − δ)k]

where f(k) = F (K/N, 1).

Some useful intuition can be gained by examining the case where capital fully depreciates

after one 20-year period, δ = 1. In this case, since s′ and k′ are independent of s, we can

write n′(s) = Ψs, where Ψ independent of s, and hence:

n′(s) − E(n′(s))

E(n′(s))
=

Ψs− Ψ

Ψ
= s− 1

as above. Thus, the elasticity of fertility with respect to a productivity shocks is the same

in the two models.

If δ < 1, this is not the case, but under realistic assumptions about the annual rate of

depreciation the effects are quantitatively similar. To see this, we use the same parameters

as in the baseline, except w2 = 0. Further, we follow Jones and Schoonbroodt (2010) and

set α = 0.33 and δ = 1 − (1 − 0.088)20. Finally, we calibrate θ = 0.0214 to get an annual

population growth rate of 0.65. The wage, w1, is not fixed in this model but moves with the

marginal product of labor. Therefore, the relevant magnitude to be compared to θ = 0.19 in

the baseline model, where w1 was normalized to w1 = 1, is the cost of children as a fraction

of one person’s income, θ/w1 = 0.1609.

We find that, with these parameters, the fertility response to a 1 percent deviation in

productivity decreases from 1.0 to 0.9938. Hence, introducing capital into the model with

one period working life tends to dampen the effects of productivity shocks ever so slightly.21

5.4 Three Period Working Life (3PWL)

While the initial fertility response to productivity shocks is very similar whether w2 > 0 or

w2 = 0, dampened oscillations only occur when w2 > 0. Since this property of the model

21One can show show that in a model with stochastic ageing (useful to obtain reasonable working life
lengths while keeping the state space small), the elasticity is larger (smaller) than 1 if the adult survival
rate is larger (smaller) than (1 − δ). Since in the present model, survival in the workforce is zero, this
is an extreme special case. Thus, introducing capital in general does not change the fertility response to
productivity shocks very much.
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is important both qualitatively and quantitatively, in this subsection we study whether this

feature is robust to more realistic decision periods. To do this, we add one more period

of working life and show that similar dampened oscillations occur in this case. Thus, we

assume that w3 > 0. Since this increases the number of state variables by one, we abstract

from productivity shocks thereby reducing the size of the state-space back to two. In the

experiments, we take the initial fertility deviation in and around the 1930s as given and

evaluate the oscillations that follow.

Under the assumptions that η = 1− σ, and φ = 1, as discussed in Section 3.2, Ca = Ca′,

and the BE in (7) becomes:

(13) V (N1, N2, N3) ≡ max
C,Nb

T
C1−σ

1 − σ
+ βV (N1′, N2′, N3′)

subject to:

TC + θN b′ ≤
∑3

a=1w
aNa;

Na′ = Na−1, for a = 2, 3;

N1′ = N b.

The relevant first-order condition here is:

(FOC) LHS(n′) =
θ

T V̂1(n′, 1, 1
n
)

= β

(
w1 + w2

n
+ w3

nn−
− θn′

T

)σ

= RHS(n′),

where n
′

= N b/N1, n = N1

N2 and n− = N2

N3 .

Then, LHS(n′) is increasing in n′, with LHS(0) = 0 if EV̂1(0, s) = ∞. Also, RHS(n′)

is decreasing in n′ with a positive intercept at n′ = 0. Thus, there is a unique solution.

As before, RHS shifts down when last period’s fertility per capita, n, or fertility two

periods ago, n−, increase. Since LHS is independent of n−, it follows that n′ decreases

when n− increases and hence, there will necessarily be some oscillatory behavior. This is

complicated however since LHS depends on n. Which way LHS shifts following an increase

in n depends on the cross-partial derivative with respect to N1 and N3, V13. In particular,

if V13 > 0 then LHS shifts up when n increases and, hence, n′ unambiguously decreases.

However, if V13 < 0, then LHS shifts down when n increases and, hence, the overall effect

on n′ is ambiguous.

In what follows, we compare simulations of this model to simulations in the baseline

as well as a non-stochastic version of the baseline model (i.e., a special case of the model

presented in this section where w3 = 0). This intermediate simulation allows us to disentangle

how much of the difference comes from having a third period of working life and how much

comes from ignoring productivity shocks.

31



Figure 8: Percent Deviations in CTFR, 3PWL, Goods Cost
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We assume the model period is 15 years. Thus, people work from age 15 to age 60. Hence,

we will have three, instead of four dynasties, five years apart from each other. We keep all

the parameters the same as in the baseline, except for w3 and the cost of children, θ. We

set w3 = 1.125. That is, 45-60 year old workers earn 25 percent less than workers age 30-45.

Calibrated costs don’t change much from the baseline (θ = 0.1932 or b = 0.1927). Here, we

find θ = 0.1946 to match the steady state population growth rate of 0.65 percent per year as

before. In the intermediate deterministic version with w3 = 0, θ = 0.1901. Incidentally, note

that in all these simulations V13 < 0 so that the effects of last period’s fertility on current

fertility are ambiguous.

The simulation consists of off balanced growth path dynamics taking the fertility devia-

tion in and around the 1930s from the baseline as given. That is, everything plotted until

1940 is exogenous here and we are interested in the baby boom and the potential for damp-

ened oscillations thereafter. Note that in the deterministic version of the model, whether

costs are in terms of time or goods is irrelevant – the only reason why the two cases would

differ here is that we use different baby busts from the baseline results as initial conditions.

Figure 8 shows CTFR for all cohorts for goods costs. As can be seen, magnitudes don’t

differ much between the deterministic model with two versus three periods of working life.

Hence, most of the difference to the baseline results are due to the lack of additional pro-

ductivity shocks, reinforcing the baby boom (and hence subsequent fluctuations). However,

the baby boom happens slightly earlier. This is less of an issue of length of the period as

it is one of length of generations. In the three period model, parents and children are 15,
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instead of 20 years apart. The analogous results for CTFR with a time cost and TFR with

both goods and time costs are similar and hence are not included.

In sum, the dampened oscillations we find in the baseline model are not just an artifact

of having two periods working life.

6 International Evidence

In this section, we show that countries with a smaller Depression in the 1930s also tend

to have smaller baby busts and that those with smaller baby busts tend to have smaller

baby booms in the 1950s, conditional on the economic circumstances in the 1950s. Before

we start, several data related issues should be addressed. These relate to data availability,

detrending methods and dealing with war periods.

Ideally, we would like to use the same measures of fertility and productivity as we do for

the U.S.. However, for the 20th century complete TFR series and consistent TFP measures

are only available for few countries (see e.g., Chesnais (1992) for TFR and Cette et al. (2009)

for TFP). We therefore use Crude Birth Rates (CBR) mostly from Mitchell (1998) and GDP

per capita from Barro and Ursua (2008), instead.22 This gives us 17 countries for which we

have data from 1900 until 1993.23

As to detrending, for CBR, we use the same detrending method as we did for TFR in the

U.S., namely a Hodrick-Prescott (HP) filter. While for the U.S. a linear detrending method

for log-TFP poses few problems, this is not true for all countries we consider. In particular,

if one uses linear detrending, countries such as Portugal or Japan show a permanent negative

deviation in GDP early in the century and a permanent positive one later on. Besides the

linear detrending method, we therefore also use an HP filter in comparison.

Furthermore, the two world wars affected fertility levels in several ways that are unrelated

to our mechanism. For example, men being away to fight prevents some women from having

children. Typically, there is rapid catching up as soon as the men return, if they do (e.g.,

see the period 1943-1946 in U.S. data shown in Figure 3). The longer the war involvement

and the larger the death rate of soldiers, the more unpredictable this effect on fertility rates

becomes. Similar issues emerge for GDP data during war periods. For example, a large

22CBR data form 1900 to 1993 are obtained from Mitchell (1998) for all countries, except Germany.
German data was combined using Chesnais (1992, Appendix A1) for the 1900 to 1943 period and Statistisches
Bundesamt (2007) for 1946 to 1993, linearly interpolating 1944 and 1945. All GDP per capita data comes
from Barro and Ursua (2008) and is in millions 1990 International Geary-Khamis dollars.

23The main issues are. CBR as opposed to TFR is sensitive to mortality in certain groups of the population
such as wars which affect total population but not the number of fertile women. GDP per capita as opposed
to TFP or LP is only an indirect measure of the productivity of the labor force and therefore corresponds
less well to our model.
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part of the increase in output in Germany during the war was not for private consumption

but rather war related. We therefore also use dummies for war and immediately after war

periods to adjust our measures of deviations in CBR and GDP in comparison to deviations

resulting from a simple linear trend and the HP filter.24

Given these provisos, we are now ready to analyze sizes of depressions, baby busts and

baby booms. First, we aim to determine the correlation between the size of the Depression

in the 1930s and the size of the baby bust at the time across countries. Since the timing of

the Depression was different across countries, we divide the 1930s into two periods: 1930 to

1934 and 1935 to 1939. We then run eight cross-country OLS regressions, one for each time

period combined with one of four detrending methods. Let X̂ i
t denote the percent deviation

from trend in variable X in country i in five-year period t.

ĈBR
i

t = λ1,t + λ2,tĜDP
i

t + εi

where t = {30− 34, 35− 39}. The results for each detrending method are given in Table 6.25

As can be seen, the coefficient, λ2,t, is positive for all detrending methods and both time

periods. It is larger (with a lower p-value) whenever an HP filter is used rather than linear

detrending and whenever the effects of wars are taken into account in detrending. Also, for

most detrending methods, λ2,t is larger in the early 1930s than in the late 1930s.26

Second, we aim to determine whether a larger baby bust in the 1930s implies a larger

baby boom in the 1950s, controlling for the GDP deviation in the 1950s. To do this, we

run eight cross-country OLS regressions, one for each time period combined with one of four

detrending methods.

ĈBR
i

t = λ3,t + λ4,tĈBR
i

t−20 + λ5,tĜDP
i

t + εi

where t = {50− 54, 55− 59}. The results for each detrending method are given in Table 7.27

As can be seen, the coefficient, λ4,t, is negative for all detrending methods and both

time periods. It is larger in absolute value (with a lower p-value) whenever an HP filter

is used rather than linear detrending and, for the late 1950s, whenever the effects of wars

are taken into account in detrending. Also, λ4,t is larger in the early 1930s than in the late

24For details on detrending procedures, see Appendix A.3.
25Tables A.5 to A.6 Appendix A.3 show the inputs into these regressions, namely percent deviations from

trend in CBR and GDP in the 1930s for each country and each detrending method.
26Observations relating to depressions and busts across countries leading to these regression results are

given in Appendix A.3.1.
27Tables A.7 to A.8 Appendix A.3 (NOT for publication) show the inputs into these regressions, namely

percent deviations from trend in CBR in the 1930s and 1950s and in GDP in the 1950s for each country
and each detrending method.
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Table 6: Cross-Country: Depressions and Busts, 1930s

Dependent Independent Detrending Method

Variable Variable
Linear HP Linear HP

No war No war

ĈBR
i

30−34 Constant (λ1,30−34) -0.0522 -0.0839 -0.0365 -0.0446

ĜDP
i

30−34 (λ2,30−34) 0.3512 0.4253 0.3933 0.6480
(p-value) (0.059) (0.008) (0.084) (0.008)

ĈBR
i

35−39 Constant (λ1,35−39) -0.0856 -0.1211 -0.0716 -0.0806

ĜDP
i

35−39 (λ2,35−39) 0.2118 0.5743 0.2482 0.5554
(p-value) (0.441) (0.005) (0.335) (0.004)

Table 7: Cross-Country: Busts and Booms, 1950s vs. 1930s

Dependent Independent Detrending Method

Variable Variable
Linear HP Linear HP

No war No war

ĈBR
i

50−54 Constant (λ3,50−54) 0.0477 0.0203 0.0853 0.0506

ĈBR
i

30−34 (λ4,50−54) -0.2795 -0.3680 -0.1527 -0.2792
(p-value) (0.229) (0.058) (0.634) (0.372)

ĜDP
i

50−54 (λ5,50−54) 0.2181 0.3316 0.2571 0.2034
(p-value) (0.171) (0.092) (0.208) (0.428)

ĈBR
i

55−59 Constant (λ3,55−59) 0.0960 0.0296 0.0680 0.0296

ĈBR
i

35−39 (λ4,55−59) -0.0973 -0.2854 -0.4048 -0.5748
(p-value) (0.714) (0.181) (0.143) (0.020)

ĜDP
i

55−59 (λ5,55−59) 0.6052 1.0424 0.4029 0.4887
(p-value) (0.012) (0.004) (0.045) (0.046)
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1930s when the effects of wars are not taken into account in detrending, smaller when they

are. Similar to λ2,t, the coefficient λ5,t is positive for all detrending methods and both time

periods. However, p-values are larger, especially in the early 1950s.28

In sum then, international evidence on the sizes of depressions and baby busts in the

1930s strongly supports our theory while the evidence for the size of the subsequent baby

boom, though rightly signed, is somewhat weaker.

7 Concluding remarks

In this paper, we have studied the properties of models of fertility choice with dynastic al-

truism in which both aggregate shocks and multiple generations are present. We have shown

that in simple versions of this class of models, fertility is procyclical and has dampened

oscillations when perturbed away from the steady state. Moreover, these effects are quan-

titatively significant. In calibrated simulations of the model, we find that in response to a

negative shock to income like the Great Depression, the decline in fertility in the model is

between 40 and 70 percent of the decline actually seen in the data. Moreover, because of a

(mild) productivity boom in the 1950s and early 1960s in conjunction with the oscillatory

effects discussed above, the model accounts for between 60 and 90 percent of the Baby Boom.

The key parameter determining the quantitative findings is the nature of the cost of children

– goods versus time.

28Observations relating to busts and booms across countries leading to these regression results are given
in Appendix A.3.1.
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A Appendix

A.1 Tables of shocks and fertility responses in Sections 5.1 and 5.2

Table A.1: Productivity Shocks (in percent) for Experiments

Cohort TFP LP

Label
Baseline Age 20-40 Age 20-30

c1 -0.90 -1.10 5.30
c2 -3.85 -0.14 -0.63
c3 -1.84 0.14 -6.04
c4 3.02 -1.75 -4.55

c5 1.58 -5.17 -2.00
c6 -7.06 -4.11 -6.41
c7 -12.43 -3.09 -10.84
c8 -1.68 2.26 -4.79

c9 5.72 6.59 1.65
c10 5.65 7.57 4.80
c11 6.89 9.31 8.86
c12 8.92 9.21 11.60

c13 11.14 7.81 13.17
c14 8.91 3.95 11.59
c15 3.90 -0.03 7.73
c16 -1.56 -3.43 2.39

c17 -4.49 -5.97 -2.25
c18 -5.82 -6.58 -6.44
c19 -7.97 -7.71 -10.69
c20 -8.86 -8.62 -12.48

i



Table A.2: CTFR response (in percent) from Experiments

Cohort Baseline TFP, age 20-40 LP, age 20-30

Label
Goods Time Goods Time Goods Time

c1 -1.57 -0.94 -1.92 -1.15 9.22 5.44
c2 -6.71 -4.06 -0.25 -0.15 -1.09 -0.65
c3 -3.20 -1.93 0.25 0.15 -10.54 -6.42
c4 5.25 3.12 -3.05 -1.83 -7.94 -4.81

c5 4.23 2.52 -7.31 -4.43 -11.05 -6.77
c6 -6.20 -3.79 -6.94 -4.20 -10.24 -6.23
c7 -19.05 -11.79 -5.61 -3.39 -9.30 -5.78
c8 -7.41 -4.50 6.87 4.07 -0.85 -0.56

c9 6.04 3.55 19.12 11.12 14.36 8.40
c10 16.17 9.50 20.47 11.89 19.23 11.16
c11 34.88 19.68 22.10 12.80 25.56 14.86
c12 23.43 13.56 9.63 5.60 21.02 12.23

c13 13.61 7.93 -2.17 -1.57 9.96 5.66
c14 1.68 0.75 -9.23 -5.85 3.78 1.96
c15 -17.76 -11.34 -16.58 -10.41 -6.55 -4.44
c16 -19.82 -12.48 -13.73 -8.38 -12.08 -7.63

c17 -18.31 -11.31 -8.51 -4.93 -12.02 -7.21
c18 -11.58 -6.83 -2.79 -1.52 -14.36 -8.55
c19 4.25 2.67 3.30 1.94 -12.93 -7.52
c20 5.10 2.90 -1.74 -1.26 -10.79 -6.50
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Table A.3: TFR response (in percent) from Experiments

Time Baseline TFP, age 20-40 LP, age 20-30

Period
Goods Time Goods Time Goods Time

1901-05 -0.78 -0.47 -0.48 -0.29 4.61 2.72
1906-10 -4.14 -2.50 -0.54 -0.32 4.06 2.39
1911-15 -4.96 -2.99 -0.48 -0.29 -5.82 -3.54
1916-20 1.03 0.60 -1.24 -0.75 -9.24 -5.61

1921-25 4.71 2.80 -2.72 -1.65 -9.66 -5.90
1926-30 -0.84 -0.59 -4.43 -2.69 -10.66 -6.51
1931-35 -12.74 -7.84 -5.80 -3.51 -9.79 -6.02
1936-40 -12.99 -8.06 -3.31 -2.01 -5.01 -3.13

1941-45 -0.34 -0.25 3.46 2.06 6.63 3.84
1946-50 10.70 6.38 10.44 6.15 16.81 9.78
1951-55 25.01 14.42 17.37 10.12 22.41 13.02
1956-60 28.54 16.42 17.61 10.28 23.19 13.49

1961-65 17.94 10.47 11.40 6.67 15.10 8.71
1966-70 7.85 4.41 3.67 2.07 6.81 3.77
1971-75 -8.23 -5.37 -5.41 -3.46 -1.52 -1.32
1976-80 -18.86 -11.93 -10.56 -6.60 -9.26 -6.00

1981-85 -19.00 -11.85 -11.99 -7.35 -12.05 -7.43
1986-90 -15.24 -9.19 -10.37 -6.22 -13.15 -7.86
1991-95 -4.35 -2.33 -5.55 -3.20 -13.68 -8.06
1996-00 4.70 2.79 -2.58 -1.49 -11.89 -7.03
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A.2 Additional experiment relating to Section 5.1

A second alternative is to use the average productivity shock ages 15 to 45, weighted by the

percentage of all births born to the particular age-groups. This takes the typical timing of

births into account. In addition, even if the shock we attribute to any individual cohort does

not correspond to the actual 20 year shock they experienced, it leaves the aggregate shock

in any five year period at its correct level (since different dynasties receive a fraction of it).

To see this, consider Table A.4. Now, consider a cohort that is age 15-19 in 1901-05. The

Table A.4: Percent of total births that occur to five-year age group (average 1940-70)

Age group 1: 15-19 2: 20-24 3: 25-29 4: 30-34 5: 35-39 6: 40-44 7: 45-49
% all births 12.45 32.84 27.19 16.54 8.40 2.39 0.18

seven relevant shocks are from 1901-05 to 1931-35. However, the weight of the shock in the

beginning of the Great Depression, 1931-35, will only receive weight 0.0018. The next cohort

of women, age 15-19 in 1906-10 will receive a weight of 0.0239 for the same shock and so on.

Finally, the cohort age 15-19 in 1931-35 will receive a weight 0.1245 for this shock. Hence,

100 percent of the Great Depression shock will be accounted for as part of 7 distinct cohort

shocks. The results from this experiment can be seen in Figure A.1. The results are quite

similar, albeit smoother and somewhat smaller, to the baseline described in Section 4.3.

Note, however, that this alternative does not allow our cohorts to adjust their timing

of births to shocks experienced at different ages while fertile. As shown in Doepke et al.

(2007), timing of births for any given cohort did change during the bust-boom-bust episode,

albeit to a limited extent. As mentioned before, decreasing the length of the period in order

to start addressing this issue would significantly increase the state space. In addition, it

would to require a bulk of additional assumptions and complicate the theoretical results.

We therefore chose to concentrate on the two simple mechanisms from Proposition 1 in the

main paper and leave this issue to future research.

A.3 Details on detrending methods used in Section 6

CBR deviations reported in Table A.5, columns 1 and 2, and Table A.7, columns 1 to 4, and

used in regressions reported in Tables 6 and 7, columns 1 and 2, are obtained by running an

HP filter (smoothing parameter, w = 20, 000) on annual CBR data for each country with

implied annual deviations averaged over five years.
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Figure A.1: Percent Deviations in TFR, Age 15-45, weighted
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GDP deviations reported in Table A.5, columns 3 and 4, and Table A.7, columns 5 and 6,

and used in regressions reported in Tables 6 and 7, column 1, are obtained by running an OLS

regression of the form lnGDP i
t = αi

0 + αi
1t+ εi

t using annual GDP per capita data for each

country, i, with five-year deviations computed as ĜDP
i

s−(s+4) = exp
[
ln
(∑s+4

t=s e
εi
t

)
− µi

]

where µi = E(ln(
∑s+4

t=s e
εi
t)).

GDP deviations reported in Table A.5, columns 5 and 6, and Table A.7, columns 7 and

8, and used in regressions reported in Tables 6 and 7, column 2, are obtained by running

an HP filter (smoothing parameter, w = 20, 000) on lnGDP per capita data (smoothing

parameter, w = 20, 000) for each country, i, with five-year deviations computed as above

using HP residuals.

To account for the effect of wars, we first create four dummy variables, di
k, k = 1, ...4,

for the time periods t = {1 : 1914 − 1918, 2 : 1919 − 1923, 3 : 1940 − 1945, 4 : 1946 − 1950}

for each country, i. We then run the following time series regression on annual data for

X i = {GDP i, CBRi} for each country, i.

lnX i
t = αi

0 + αi
1t+

4∑

k=1

αi
k+1d

i
kt + εi

t

We then compute X̃ i
t = exp

[
lnX i

t −
∑4

k=1 αk+1d
i
kt

]
. The deviations used in regressions

reported in Tables 6 and 7, columns 3 and 4, are then calculated exactly as those in columns

1 and 2, except that we use X̃ i
t instead of X i

t .
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A.3.1 Observations about Cross-Country Busts and Booms

From Tables A.5 and A.6 we make the following observations. Countries that, similar to

the U.S., have large depressions and large baby busts throughout the 1930s are Canada,

Australia and New Zealand. Countries with slightly smaller depressions and baby busts

are Germany, the U.K. and France. Note that France has a late depression (late 1930s)

and correspondingly, a late baby bust while Germany and the U.K. have large depressions

in the early 1930s and correspondingly large baby busts early on. For the Netherlands,

Belgium and Switzerland, the depression is noticeable only if the effects of wars are taken

into account when detrending (Table A.6). For Southern European countries, Italy, Portugal

and Spain, both the depression as well as the baby bust are small or non-existent, depending

on detrending method. For Northern European countries, Denmark, Norway and Sweden,

large baby busts can be observed, despite the fact that the depression is small or non-existent

depending on detrending method. These observations rationalize results in Table 6.

Because of the last observation, when analyzing baby booms in the main text, we use

ĈBR1930s rather than ĜDP 1930s as the independent variable. This allows us to determine

whether baby busts are correlated with subsequent baby booms, independently of their cause.

Indeed, from Tables A.7 and A.8, all three Northern countries display substantial baby

booms in the 1950s, though potentially mitigated by a recession in the 1950s. Similarly,

Central European and Southern European countries, all have small baby booms in the late

1950s with GDP significantly below trend for most detrending methods. Southern European

countries have somewhat of a baby boom. The largest baby booms are to be observed in

the U.S., Canada, Australia and New Zealand where the baby bust was particularly large.

These observations rationalize the weaker results in Table 7.

A.4 Sensitivity to changes in parameters

we compute how elasticities and fertility levels change when we change parameter values

in Table 2. Results are reported in Table A.9. For each parameter change, we report two

cases. First, we give results in the case where costs of children remain at their baseline

value, which leads to varying fertility levels in steady state. Second, we recalibrate to the

target population growth by adjusting costs of children accordingly. Results show that

within a reasonable range of parameter values, the elasticity of contemporaneous fertility to

productivity shocks ranges from 1.6 to 1.9 in the goods cost case and 0.95 to 1.2 for the time

cost case, while the elasticity of lagged fertility ranges from -1.25 to -1.9 in the goods cost

case and -0.7 to -1.2 for the time cost case, whether we recalibrate or not. Thus, the results

don’t seem to be very sensitive to parameter choices.
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Table A.5: Depressions and Baby Busts across Countries

Country ĈBR1930s ĜDP 1930s, Linear ĜDP 1930s, HP

1930-34 1935-39 1930-34 1935-39 1930-34 1935-39

U.S. -0.167 -0.184 -0.264 -0.209 -0.206 -0.149

Canada -0.127 -0.183 -0.256 -0.254 -0.179 -0.166
Australia -0.184 -0.185 -0.211 -0.124 -0.150 -0.043
New Zealand -0.181 -0.169 -0.243 -0.090 -0.177 -0.010

U.K. -0.123 -0.111 -0.115 -0.059 -0.058 0.012
Germany -0.137 0.087 -0.296 -0.076 -0.168 0.126
France -0.005 -0.134 -0.014 -0.176 0.137 -0.001

Netherlands -0.084 -0.121 0.016 -0.052 0.111 0.079
Belgium 0.009 -0.081 0.039 -0.046 0.168 0.112
Switzerland -0.088 -0.135 0.017 -0.061 0.091 0.024

Italy -0.004 -0.003 -0.080 -0.060 0.019 0.094
Spain 0.059 -0.116 -0.041 -0.081 0.039 0.030
Portugal 0.008 -0.031 -0.074 -0.178 0.086 0.007

Denmark -0.135 -0.094 0.027 -0.008 0.093 0.078
Norway -0.184 -0.189 -0.026 0.001 0.040 0.089
Sweden -0.172 -0.128 -0.083 -0.014 -0.022 0.053

Japan 0.027 -0.010 -0.111 -0.083 0.029 0.138
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Table A.6: Depressions and Baby Busts across Countries, No War

Country ĈBR1930s ĜDP 1930s, Linear ĜDP 1930s, HP

1930-34 1935-39 1930-34 1935-39 1930-34 1935-39

U.S. -0.144 -0.163 -0.258 -0.202 -0.192 -0.129

Canada -0.104 -0.158 -0.252 -0.251 -0.177 -0.165
Australia -0.170 -0.173 -0.211 -0.124 -0.152 -0.047
New Zealand -0.166 -0.147 -0.250 -0.098 -0.191 -0.032

U.K. -0.137 -0.126 -0.111 -0.055 -0.055 0.016
Germany -0.189 0.027 -0.305 -0.086 -0.178 0.129
France -0.047 -0.160 -0.107 -0.251 -0.041 -0.181

Netherlands -0.065 -0.094 -0.064 -0.124 -0.035 -0.085
Belgium -0.062 -0.141 -0.088 -0.156 -0.043 -0.105
Switzerland -0.101 -0.139 -0.036 -0.107 0.001 -0.067

Italy -0.021 -0.013 -0.093 -0.076 -0.028 0.017
Spain 0.046 -0.126 -0.059 -0.098 0.003 -0.011
Portugal 0.013 -0.024 -0.119 -0.217 -0.005 -0.090

Denmark -0.126 -0.073 -0.016 -0.047 0.015 -0.011
Norway -0.163 -0.169 -0.055 -0.028 -0.017 0.018
Sweden -0.147 -0.097 -0.106 -0.038 -0.065 0.004

Japan 0.080 0.052 -0.112 -0.087 0.010 0.100

viii



Table A.7: Baby Busts and Baby Booms across Countries

Country ĈBR1950s ĈBR1930s ĜDP 1950s, Linear ĜDP 1950s, HP

1950-55 1955-60 1930-35 1935-40 1950-55 1955-60 1950-55 1955-60

U.S. 0.144 0.167 -0.167 -0.184 0.049 0.009 0.072 0.016

Canada 0.155 0.198 -0.127 -0.183 -0.040 -0.037 0.033 0.013
Australia 0.102 0.097 -0.184 -0.185 -0.085 -0.077 -0.013 -0.022
New Zealand 0.093 0.121 -0.181 -0.169 0.006 0.057 0.030 0.056

U.K. -0.024 0.016 -0.123 -0.111 -0.091 -0.068 -0.026 -0.014
Germany 0.006 0.065 -0.137 0.087 -0.314 -0.119 -0.172 0.017
France 0.103 0.052 -0.005 -0.134 -0.177 -0.112 -0.003 0.025

Netherlands 0.039 0.045 -0.084 -0.121 -0.152 -0.081 -0.021 0.026
Belgium 0.060 0.100 0.009 -0.081 -0.111 -0.102 0.040 0.015
Switzerland 0.013 0.042 -0.088 -0.135 -0.104 -0.035 -0.039 0.010

Italy -0.071 -0.042 -0.004 -0.003 -0.264 -0.177 -0.106 -0.034
Spain -0.066 0.018 0.059 -0.116 -0.133 -0.157 0.024 -0.013
Portugal -0.026 0.025 0.008 -0.031 -0.268 -0.237 -0.087 -0.085

Denmark 0.131 0.039 -0.135 -0.094 -0.106 -0.103 -0.029 -0.049
Norway 0.068 0.056 -0.184 -0.189 -0.061 -0.066 0.024 0.002
Sweden 0.014 -0.025 -0.172 -0.128 -0.029 -0.016 0.001 -0.007

Japan -0.020 -0.179 0.027 -0.010 -0.443 -0.353 -0.251 -0.168

ix



Table A.8: Baby Busts and Baby Booms across Countries, No War

Country ĈBR1950s ĈBR1930s ĜDP 1950s, Linear ĜDP 1950s, HP

1950-55 1955-60 1930-35 1935-40 1950-55 1955-60 1950-55 1955-60

U.S. 0.168 0.187 -0.144 -0.163 0.059 0.019 0.100 0.037

Canada 0.189 0.228 -0.104 -0.158 -0.038 -0.035 0.034 0.013
Australia 0.114 0.107 -0.170 -0.173 -0.086 -0.078 -0.017 -0.025
New Zealand 0.128 0.150 -0.166 -0.147 -0.003 0.048 0.009 0.038

U.K. -0.035 0.009 -0.137 -0.126 -0.089 -0.066 -0.021 -0.009
Germany -0.026 0.040 -0.189 0.027 -0.316 -0.120 -0.155 0.037
France 0.105 0.058 -0.047 -0.160 -0.243 -0.180 -0.170 -0.112

Netherlands 0.083 0.083 -0.065 -0.094 -0.209 -0.140 -0.160 -0.091
Belgium 0.021 0.073 -0.062 -0.141 -0.195 -0.179 -0.134 -0.120
Switzerland 0.025 0.054 -0.101 -0.139 -0.140 -0.071 -0.110 -0.049

Italy -0.066 -0.035 -0.021 -0.013 -0.281 -0.199 -0.182 -0.101
Spain -0.073 0.012 0.046 -0.126 -0.147 -0.170 -0.013 -0.042
Portugal -0.016 0.034 0.013 -0.024 -0.298 -0.267 -0.168 -0.150

Denmark 0.180 0.079 -0.126 -0.073 -0.138 -0.133 -0.103 -0.106
Norway 0.087 0.070 -0.163 -0.169 -0.086 -0.091 -0.039 -0.048
Sweden 0.047 0.002 -0.147 -0.097 -0.048 -0.035 -0.037 -0.036

Japan 0.053 -0.126 0.080 0.052 -0.449 -0.361 -0.286 -0.200

x



Table A.9: Impulse Response (in percent and levels), Parameter Sensitivity

Cost % Dev. CTFR Level % Dev. CTFR Lev. Cost

Type Init. Lag. Init. Lag. SS Init. Lag. Init. Lag. (Rec.)

Baseline (σ = 3, β = 0.9620, γ = 1.01620, σs = 0.07, w1 = 1, w2 = 1.25)

Goods 1.74 -1.56 2.31 2.24 2.27 1.74 -1.56 2.31 2.24 0.193
Time 1.04 -0.94 2.30 2.25 2.27 1.04 -0.94 2.30 2.25 0.193

Sensitivity No Recalibration Recalibration

σ = 3.5
Goods 1.81 -1.73 2.17 2.10 2.13 1.83 -1.72 2.32 2.24 0.150
Time 1.16 -1.12 2.16 2.11 2.14 1.20 -1.13 2.30 2.25 0.150
σ = 2.5
Goods 1.66 -1.36 2.52 2.44 2.48 1.66 -1.41 2.31 2.24 0.246
Time 0.88 -0.73 2.50 2.46 2.48 0.86 -0.74 2.29 2.26 0.247
β = 0.9720

Goods 1.68 -1.40 2.47 2.40 2.43 1.65 -1.40 2.31 2.24 0.242
Time 0.99 -0.83 2.46 2.42 2.44 0.96 -0.82 2.30 2.26 0.243
β = 0.9520

Goods 1.81 -1.75 2.15 2.08 2.12 1.82 -1.70 2.32 2.24 0.151
Time 1.09 -1.06 2.14 2.10 2.12 1.11 -1.04 2.30 2.25 0.152
γ = 1.02620

Goods 1.88 -1.93 2.03 1.95 1.99 1.88 -1.82 2.32 2.23 0.122
Time 1.14 -1.18 2.02 1.97 2.00 1.17 -1.13 2.30 2.25 0.123
γ = 1.00620

Goods 1.61 -1.25 2.63 2.55 2.59 2.22 -2.38 2.32 2.22 0.294
Time 0.94 -0.73 2.62 2.57 2.59 1.29 -1.48 2.30 2.24 0.295
σs = 0.08
Goods 1.75 -1.57 2.31 2.24 2.27 1.75 -1.57 2.31 2.24 0.193
Time 1.04 -0.94 2.30 2.26 2.28 1.04 -0.94 2.30 2.25 0.194
σs = 0.06
Goods 1.74 -1.57 2.31 2.23 2.27 1.74 -1.56 2.31 2.24 0.191
Time 1.04 -0.94 2.30 2.25 2.27 1.04 -0.94 2.30 2.25 0.192
w2 = 1.5
Goods 1.84 -1.88 2.33 2.25 2.29 1.83 -1.87 2.32 2.23 0.198
Time 1.11 -1.15 2.32 2.27 2.30 1.10 -1.14 2.30 2.25 0.199
w2 = 1
Goods 1.61 -1.21 2.28 2.22 2.25 1.61 -1.20 2.31 2.25 0.186
Time 0.95 -0.71 2.27 2.24 2.25 0.95 -0.71 2.30 2.26 0.187
w2 = 0.5
Goods 1.29 -0.51 2.23 2.19 2.21 1.30 -0.51 2.30 2.26 0.176
Time 0.73 -0.29 2.23 2.20 2.21 0.73 -0.29 2.29 2.27 0.177

xi


