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Banks are different from non-financial firms in many ways. One of the most salient distinctions

is that banks are subject to bank runs during banking panics and crises, not just by depositors,

but also by other creditors (see Gorton and Metrick (2009) and Duffie (2010)). Because financial

crises are high marginal utility states for the average investor, the expected return on bank stocks

should be especially sensitive to variation in the anticipated financial disaster recovery rates of

bank shareholders related to bank size, the regulatory regime, implicit government guarantees and

other characteristics. For example, if a bank is deemed too-big-to-fail, its expected return would

be lower in equilibrium than that of smaller banks holding the exact same assets in their portfolio,

as the government absorb some of the large bank’s tail risk. We find evidence that the pricing of

bank-specific tail risk held in financial markets depends on all of these bank characteristics.

To explore the asset pricing implications of financial disasters, our paper studies historical bank

stock returns in the U.S. We find that there is a size effect in bank stock returns that is different

from the market capitalization effects that have been documented in non-financial stock returns

(see Banz (1981) and many others). All else equal, a 100% increase in a bank’s book value lowers its

annual return by 2.45% per annum. For non-financial stocks, there is no similar relation between

book value and returns (Berk (1997)).

These return differences cannot be imputed to differences in standard risk exposure. A long

position in the stock portfolio of largest commercial banks, measured by deciles of total book value,

and a short position in the stock portfolio of the smallest banks under-performs an equally risky

portfolio of all (non-bank) stocks and government and corporate bonds by more than 5.85% per

annum. The average alphas are large and positive for commercial banks in the first five deciles

and then decrease for the largest banks in the top three deciles.

Small banks differ from large banks in many ways, but these differences should not lead to

differences in average risk-adjusted returns on bank portfolios unless there is bank-specific tail risk

that is priced but not spanned by the traded returns on other stocks in the sample. We found

evidence of such a risk factor in bank stock returns: The second principal component (p.c.) of

the risk-adjusted returns on size-sorted portfolios of commercial banks is a size factor that has the
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exactly the right covariance with the portfolio returns to account for most of this pricing anomaly.

By construction, this size factor is orthogonal to the stock and bond risk factors.

This size portfolio, determined by the second p.c., which goes long in small bank stocks and

short in large bank stocks, loses an average of 61 cents during NBER (National Bureau of Economic

Research) recessions per dollar invested at the start, after hedging out exposure to standard stock

and bond risk. We attribute the cyclical banking size factor in the data to size-dependent differences

in the perceived shareholder recovery rates on these bank portfolios during financial disasters.

In a version of the Barro (2006), Rietz (1988) and Longstaff and Piazzesi (2004) asset pricing

model with a time-varying probability of rare events, developed by Gabaix (2008), Wachter (2008),

and Gourio (2008), financial disasters which disproportionately impact bank cash flows contribute

an additional bank-specific risk factor. These rare events are priced into expected returns on

portfolios of banks, but are not fully spanned by the returns on other assets in a small sample.

A general equilibrium version of our model that is calibrated to match the equity premium can

match the average alphas in a sample without disasters if the financial disaster recovery rate is 35

cents higher for large banks, in line with the failure rate of banks in the lowest decile during the

latest crisis.

Historically, the probability of a financial disaster increases during recessions. Because of the

size-contingent nature of the the recovery rate for bank stockholders in case of a financial disaster,

the variation in the probability of a financial disaster generates a common business cycle factor in

the normal-risk-adjusted returns of size-sorted bank stock portfolios; the loadings of bank stock

portfolio returns on this size factor are determined by the recovery rates and hence by size. Small

banks have positive loadings while large banks have negative loadings. As the probability of a

financial disaster increases, the expected return gap between small and large banks grows.

Shareholder recovery rates for banks depend on size. During financial disasters, large banks fare

much better, even though they are more levered than their smaller counterparts. A total of 30% of

publicly traded commercial banks in the first size decile were delisted in 2009 alone although there

were none in the last decile. During the recent U.S. financial crisis, the size portfolio of commercial
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banks, hedged against exposure to commercial banks, lost 90 cents per dollar invested at the start

of the crisis, while the same hedged size portfolio of all banks lost all of its value during the Great

Depression.

To back out the implicit financial tail risk premium or discount charged by the shareholders

of commercial banks, we multiply the loadings on the size factor by its market risk price. The

implicit insurance provided against financial disaster risk lowers the expected equity return for

the largest U.S. commercial banks by 3.10%, but the additional exposure to bank-specific tail risk

increases the expected return on the smallest bank stocks by 3.25%, compared to a portfolio of

non-bank stocks and bonds with the same standard risk characteristics. The largest banks have an

average market capitalization of $152 bn in 2005 dollars.1 For the largest commercial banks, this

amounts to an annual savings of $4.71 bn per bank. The market imposes large financial tail risk

‘subsidies’ (‘taxes’) on large (small) bank stocks compared to a portfolio of stocks and bonds with

the same observed risk profile. There is direct evidence from option markets: Kelly, Lustig, and

Nieuwerburgh (2011) find that out-of-the-money put options on large banks were cheap during the

crisis.

The pricing of financial tail risk depends not only on bank size. We relate the financial disaster

premium of banks to the regulatory regime. Commercial banks, who have access to the discount

window and benefit from deposit insurance, and Government-sponsored enterprises (GSE), who

benefit from an explicit guarantee, are imputed a large financial tail risk subsidy while investment

and foreign banks are not. On the other hand, hedge funds are imputed a financial tail risk tax,

just like small banks.

After the repeal of key provisions in the Glass-Steagall Banking Act in 1999, we find large

across-the-board increases in the size of the subsidy for large commercial, investment banks and

GSE. For example, the Fannie Mae subsidy tripled to 6.57% in 2000-2005. This period also

coincides with the dramatic growth in securitization, which allows financial institutions to benefit

from the collective bailout option more aggressively by eliminating idiosyncratic risk exposure (see

Brunnermeier and Sannikov (2008) for a clear description of this effect of securitization).

1This number only includes the market capitalization of the commercial bank, not the bank holding company.
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Furthermore, we provide a direct link to bailouts; we show that the financial disaster subsidy of

the largest 10 banks increases immediately after bailout announcements. O’Hara and Shaw (1990)

document large positive wealth effects for shareholders of banks who were declared ‘too-big-to-fail’

by the Comptroller of the Currency in 1984, and negative wealth effects for those banks that were

not included. Consistent with this, we document large increases in the implicit financial disaster

subsidy to these too-big-to-fail banks after this announcement, and six other bailout announcements

prior to the recent financial crisis that were identified by Kho, Lee, and Stulz (2000). Furthermore,

we find large increases after announcements that benefited large banks during the recent financial

crisis as well.

The rest of this paper is organized as follows. The first section discusses the related literature.

In Section II we construct portfolios of commercial U.S. bank stocks sorted by size. Section III

describes the size effect in bank stock returns. Section IV establishes that there is a pro-cyclical

size factor in the normal-risk-adjusted returns of these portfolios. Section V relates the pricing of

bank tail risk to government announcements and the regulatory environment. We use a calibrated

version of the model to back out the implied differences in recovery rates in section VI. Section

VII concludes.

I Related Literature

There is obviously a large literature on size effects in stock returns (see Banz (1981), Basu (1983),

Lakonishok, Shleifer, and Vishny (1993), Fama and French (1993), Berk (1995) and others), but

most of these papers actually do not include financial stocks, presumably because of their high

leverage. Our paper is the first to document that the size effect in financial stocks is really about

size, rather than market capitalization. We attribute the size effect to how tail risk is priced in

financial stocks.

There is direct evidence from option markets that tail risk in the financial sector is priced

differently. Kelly, Lustig, and Nieuwerburgh (2011) find that the out-of-the-money index put

options of bank stocks were relatively cheap during the recent crisis, as a consequence of the

6



government absorbing sector-wide tail risk. In related work on bank stock returns, Fahlenbrach,

Prilmeier, and Stulz (2011) document that those banks which incurred substantial losses during

previous crises were more likely to incur losses during the recent crisis. If some banks benefit from

a larger perceived tail risk subsidy, they have an incentive to load up on this type of risk risk. In

fact, shareholder value maximization requires that they do so, as pointed out by Panageas (2010a)

who analyzes optimal risk management in the presence of guarantees. Interestingly, Fahlenbrach

and Stulz (2011) find some evidence that banks whose managers’ interests were more aligned with

shareholders actually performed worse during the recent financial crisis.

Our work contributes to the important task of measuring systemic risk in the financial sec-

tor. Acharya, Pedersen, Philippon, and Richardson (2010), Adrian and Brunnermeier (2010) and

Huang, Zhou, and Zhu (2011) develop novel methods for measuring systemic risk. Our measure

of the banking tail risk premium is determined by the bank’s loading on the size factor, which

gauges a firm’s systemic risk exposure. Firms that are deemed systemically important have large

negative loadings on the size factor, because these are less likely to be allowed to fail in the event

of a financial disaster, and they trade at a premium as a result. As far as we know, our paper is

the first to link the subsidy that accrues to banks who are deemed systemically important with

exposure to systemic risk. To the extent that these differences in bank tail risk pricing are directly

attributable to government policies, they are an ex ante measure of the distortion created by the

implicit guarantee extended to some U.S. financial institutions.2

Why study the effect of bailouts on bank equity? The anticipation of future bailouts of bond-

holders and other creditors always benefits shareholders (see Kareken and Wallace (1978)) ex ante.

Furthermore, during the crisis, there may be massive uncertainty about the resolution regime,

especially for large financial institutions. As a result, government guarantees will inevitably tend

to benefit shareholders ex post as well. Clearly, the U.S. government and regulators are willing to

let small banks fail, not so for large banks. Of course, ex ante, one could have expected that the

2Estimating the entire ex post, realized cost of the various measures implemented by the U.S. Treasury, the
Federal Reserve system, the FDIC and other regulators in the face of the recent crisis is hard. Veronesi and Zingales
(2010) estimate the cost to be between $21 and $44 billion, with a benefit of more than $86 billion.
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government would wipe out shareholders of large financial institutions in case of a bailout.3Our ev-

idence suggests that this is not what market participants expected. A number of events have been

important in creating and sustaining the too-big-too fail perception in the market. Among these

are the Federal Deposit Insurance Corporation’s intervention to prevent the failure of Continental

Illinois National Bank in 1984, Federal Deposit Insurance Corporation Improvement Act of 1991,

and the Federal Reserve’s intervention in 1998 to save Long Term Capital Management.

Finally, our findings suggests that cost of capital distortions might have contributed to the pre-

crisis growth in the size of the financial sector relative to the overall economy. Philippon (2008)

has argued that much of the variation in the size of the U.S. financial sector can be imputed to

standard corporate finance forces. However, he notes the 2002-2007 period as an exception, which

is exactly when we measure the largest distortions.

II Size Effect in Bank Stock Returns.

This section reports the returns on size-sorted portfolios of bank stocks. We also show the results

of a cross-sectional regression of returns on firm characteristics that confirms the portfolio results.

II.1 Data

We collect data on equity returns from the Center for Research in Security Prices (CRSP) for

all firms with Standard Industrial Classification (SIC) codes 60, 61, and 62. The data starts in

January 1970 and ends in December 2009. Firms with these SIC codes are defined as commercial

banks, non-depository credit institutions, and investment banks respectively. Henceforth, we refer

to commercial banks, credit institutions, and investment banks collectively as banks. We exclude

data for all financial firms that are inactive and/or not incorporated in the U.S., and we also

3The key to activating the collective bailout clause is common variation in bank payoffs. In a recent paper,
Acharya and Yorulmazer (2007) and Farhi and Tirole (2009) explore the incentives for banks in this type of en-
vironment to seek exposure to similar risk factors. The government’s guarantee creates complementarities in firm
payoffs. In earlier work, Schneider and Tornell (2004) explain the currency mismatch on firm balance sheets in
emerging markets endogenously by means of a bailout guarantee for the non-tradeables sector. Ranciere and Tor-
nell (2011) discuss how to design regulation in the context of government bailout guarantees. Panageas (2010b)
explores the optimal taxation implications of bailouts.
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exclude financial firms not incorporated in the U.S. because these financial firms will be influenced

by regulations applicable both in the country of operation and the country of incorporation. Since

these policies vary across countries, our focus on financial firms operating and incorporated inside

the U.S. ensures that all firms in our analysis are subject to a uniform regulatory regime.

We start by focusing on portfolios of commercial bank stocks. We employ the standard portfolio

formation strategy of Fama and French (1993). We rank all bank stocks by market capitalization

as of January of each year. The stocks are then allocated to 10 portfolios based on their market

capitalization. We calculate value-weighted returns for each portfolio for each month over the next

year. At the end of this exercise, we have monthly value-weighted returns for each size-sorted

portfolio of banks.

While the CRSP data are available from 1926, our main sample only begins only in 1970 for

banks, as there are not enough publicly traded commercial banks prior to 1970. Only a small

fraction of all banks that operate in the U.S. are publicly listed. For instance, for the years 2000

to 2008, data are available from CRSP for approximately 630 banks, as compared to more than

7000 FDIC-insured banks operating in the U.S. over the same period. However, the largest 600

banks control more than 88% of all commercial bank assets in the U.S. Most of these large banks

are publicly listed. To the extent that small banks that are not publicly listed are very different

from those that are, some of our results need to be qualified.

We also use book value data from the CRSP-Compustat merged data-set. While our market

capitalization results are based on 15,536 bank-years, the book-value results are based on only

12,556 bank-years. The reduction in the number of banks is primarily due to missing balance sheet

data in the CRSP-Compustat merged data-set.

II.2 Summary Statistics

Table I reports the total market capitalization of banks in each of 10 size-sorted portfolio as a

fraction of the total market capitalization of the banking sector in January of each year. The

numbers are reported in percentages. We also report the the average number of banks in the
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portfolio.

Panel A in Table I shows that during the 1970 - 1980 subsample the smallest banks (those in

portfolio 1) on average represented just 0.36% of the total market capitalization of all commercial

banks, as compared to 49.78% represented by the largest banks (those in portfolio 10). During

any year between 1970 and 1980, the banks in portfolio 1 at most accounted for 0.57% of the total

market capitalization of the commercial banking sector.

Table I clearly shows the increasing concentration of the U.S commercial banking sector. The

top 10% of banks account for nearly 50% of the total sector market capitalization in the 70s while

they account for more than 90% during the 2000-2009; nearly 84% of this accounted for by the

largest 1/2 in this group. In any given year between 1970 and 1980, there are at least 9 banks per

size-sorted portfolio, which increases to 62 banks for any year between 2000 and 2009.

Panel B of Table I reports the total book value of banks in each size-sorted portfolio as a

fraction of the total asset value of the banking sector in January of each year. Total book value

is the better measure of size. These results are very close to those obtained by sorting on market

capitalization. We also report leverage. Leverage is computed as total book value divided by the

book value of equity. Bank leverage clearly increases with bank size. Between 1980 and 1990, the

average leverage in the first decile is 13.55, and it gradually increases to 22.37 in the last decile.

We document the same pattern in subsequent decades.

[Table 1 about here.]

II.3 Returns on Commercial Bank Stock Portfolios

When we report portfolio return averages, we exclude the recent financial crisis, as we consider

samples that exclude realizations of the rare events in the model. However, the results that we

report are quite robust to extending the sample.

Table II provides mean returns for the size-sorted portfolios of banks over the 1970-2005 sample.

In panel A, the stocks are sorted into deciles by market capitalization. The mean monthly returns

for all portfolios are annualized by multiplying by 12 and are expressed in percentages. The last
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column reports the difference in mean annual returns between portfolio 10 and portfolio 1. Over

the entire sample, a portfolio that goes long in a basket of large banks and short in a basket of

small banks on average loses 4.47% per annum. The average returns on the first (last) portfolio

are 17.47% (13.01%). There is a monotonic decline in average returns from the first to the last

portfolio.

Market cap measures size, but it also measures expected returns. Firms which generate more

cash flows will tend to have higher market cap, but firms with lower expected returns, holding cash

flows constant, also have larger market capitalization. As a result, Berk (1995) argues that there

should be a relation between expected returns and market capitalization. Of course, this argument

does not apply to other measures of size such as book value. A priori, there is no reason to expect

a relation between book values and expected returns.

In Panel B of Table II, we sort stocks into deciles by total book value. The pattern in realized

returns is quite different. There is an inverted U-shaped pattern. The average returns between

1980 and 2005 increase from 16% in the first portfolio to 21.75% in the sixth portfolio, and then

decline to 13.68% in the last portfolio. The difference between the sixth and the 10th portfolio is

8.07% per annum. This is remarkable because the largest commercial banks are more levered than

medium-sized banks, and hence, if anything, one would expect to see the opposite pattern.

[Table 2 about here.]

II.4 Characteristics Regression

The portfolio results in table II suggest there is a negative relation between total book value

and returns for commercial banks, at least for the largest banks. We investigated this relation

in the 1970-2005 sample. When we run a cross-sectional regression of average annual returns on

firm characteristics: the log of market capitalization, the log of book value, book-to-market, and

leverage, we obtain a large and significant negative coefficient for log book value (-2.45) and a

positive coefficient for market capitalization (2.76). These coefficients are significant at the 1%

level. The detailed results are in the appendix in section C.
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This pooled regression explains 0.38% of the variation in annual returns. Thus a 100% increase

in book value above the sample average lowers annual returns by 245 bps for a typical bank, holding

all variables, including market capitalization, fixed. Leverage and book-to-market ratio seem to

have no additional explanatory power for returns. We obtain identical results when we exclude

leverage and book-to-market ratios from the regression. When we drop book value, the regression

only accounts for 0.004% of the variation in annual returns. Hence, this size effect in bank stock

returns is very different from the market capitalization effect first documented by Banz (1981).

II.5 Returns on size-sorted portfolios of non-financials.

What we usually refer to as a size effect is really a market capitalization effect in most industries.

Berk (1997) points out that there is only a moderate size effect in the raw returns of non-financials

when size is measured by book value rather than market capitalization. The same conclusion

applies when other measures of actual firm size are used, such as the number of employees (Berk

(1997)). When we perform the same sorting exercise using book values for non-financials, we do

not find similar patterns.

Panel A of Table III reports the average returns on portfolios of non-financial firms sorted by

market capitalization. The average returns on firms in the first decile of market capitalization are

high (24.51%). These small cap stocks have smaller market capitalization than the smallest banks,

are highly illiquid and hence earn much higher expected returns. Between the second and the tenth

portfolio, average returns gradually decline from 15.76% to 11.39%.

The book-sorting results are reported in Panel B of Table III. Between 1970 and 2005, the

average returns in the first decile are 276 bps higher than the average returns in the last portfolio.

The average returns on the the first portfolio are 16.05% per annum. Returns increase to 16.75%

in the second portfolio and subsequently decrease to 13.29% in the last portfolio. The difference

between the sixth and the tenth portfolio is only 2.10 % per annum (compared to 8.07% for

non-financials).

[Table 3 about here.]
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III Size Effect in Normal Risk-Adjusted Bank Stock Re-

turns

We start by adjusting the portfolio returns for exposure to the standard risk factors that explain

cross-sectional variation in average returns on other portfolios of non-financial stocks and bonds.

We do so by comparing the performance of the bank portfolio to the performance of a portfolio of

non-bank stocks with the same exposure to normal risk factors.

A bank manages a portfolio of bonds of varying maturities and credit risk.4 Therefore, we also

include two bond risk factors in addition to three stock risk factors. The vector of normal risk

factors:

f t =

[
market smb hml ltg crd

]
, (1)

is 5 × 1. market, smb, and hml represent the returns on the three Fama-French stock factors:

the market, small minus big, and high minus low respectively. The Fama/French factors are

constructed using the 6 value-weight portfolios of all stocks on NYSE, AMEX And NASDAQ

(including financials) formed on size and book-to-market. market is the value-weight return on all

NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from

Ibbotson Associates). We use ltg to denote the excess returns on an index of 10-year bonds issued

by the U.S. Treasury as our first bond risk factor. The USA 10-year Government Bond Total

Return Index (ltg) is downloadable from Global Financial Data. In addition, active participation

by banks in markets for commercial, industrial, and consumer loans exposes them to credit risk. We

use crd to denote the excess returns on an index of investment grade corporate bonds, maintained

by Dow Jones, as our second bond risk factor. To compute excess returns, we use the one-month

risk-free rate.5

4Longstaff and Myers (2009) also show that banks can be treated as active managers of fixed income portfolios.
5Data for the risk-free rate and the Fama-French factors was collected from Kenneth French’s website. The Dow

Jones Corporate Bond Return Index (crd) is downloadable from Global Financial Data.
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III.1 Returns on Commercial Bank Stock Portfolios

We regress monthly excess returns for each size-sorted portfolio on the three Fama-French factors

and two bond factors. For each portfolio i we run the following time-series regression to estimate

the vector of betas βi:

Ri
t+1 −R

f
t+1 = αi + βi,′f t+1 + εit+1, (2)

where Ri
t+1 is the monthly return on the ith size-sorted portfolio. Since all of the risk factors in

f t are traded returns, the estimated residuals in the time series regression are estimates of the

normal-risk-adjusted returns R̂i
t+1.

Table IV provides the results of the regression specified in equation (2). Panel A reports the

results based on sorting by market capitalization. The table reports the regression coefficients for

each size-sorted portfolio, along with their statistical significance and the adjusted R2. Table IV

excludes the recent financial crisis. The estimated intercepts decrease nearly monotonically with

bank size from 5.45% for the first portfolio to -2.53% for the tenth portfolio. The implicit risk

prices for the factors f t =

[
market smb hml ltg crd

]
are given by:

λt =

[
5.80 0.88 6.62 2.92 4.01

]
.

A long-short position that goes long one dollar in a portfolio of the largest market capitalization

banks and short one dollar in a portfolio of the smallest market capitalization banks loses 7.97%

over the non-disaster sample. This return spread is statistically significant at the 1% level. The

average normal-risk-adjusted return on a 9-minus-2 position is -6.62% per annum, and -3.95% per

annum for the 8-minus-3 portfolio. These are statistically significant at the 1% and the 5% level

respectively. The differences in risk-adjusted portfolio returns tend to be larger than the differences

in raw portfolio returns, because larger banks are more levered and hence impute higher market

betas to large bank stock portfolios. The market beta increases from 0.36 for the first decile to

1.07 in the last decile. However, this effect is attenuated by the lower credit risk exposure for the
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larger banks.

The second row of Table IV reports the coefficient on excess market return, market, for each

size-sorted portfolio. The market beta increases monotonically with bank size. Over the entire

sample, a portfolio of large banks has a market β of 1.07, as compared to a β of 0.36 for a portfolio

of the smallest banks. The largest banks were 2.9 times more exposed to market risk as compared

to the smallest banks. This difference can be attributed to differences in leverage.

The loadings on smb and hml also depend systematically on size. We first look at the exposure

to the size factor. Contrary to what one expects to find, over the entire sample, the loading on

smbt+1 actually increases from 0.39 for the first portfolio to 0.50 for the fifth portfolio, and then

it drops to -0.03 for the tenth portfolio. Clearly, the common variation in stock returns of banks

along the size dimension is very different from that in other industries. The same pattern holds

true for the loadings on hml which increase from 0.32 for the first portfolio to 0.42 for the last

portfolio.

There is a clear size pattern in the loadings on the bond risk factors as well. ltg, the slope

coefficient on the excess return on an index of 10-year bonds issued by the U.S. Treasury, is

negative and statistically insignificant for small banks and is positive and almost always statistically

significant for large banks. The loadings vary monotonically in size. A $1 long position in large

banks and a $1 short position in small banks results in a net exposure of 30 cents to long-term

government bonds over the entire sample. On the other hand, the loadings on the credit risk

factor, crd, are surprisingly small for large banks and positive for small banks. A long-large-banks-

short-small-banks position delivers a net negative exposure to credit markets of 38 cents per dollar

invested.

[Table 4 about here.]

Panel B reports the results obtained by sorting by book value. The pattern in risk-adjusted

returns is different from the one obtained when sorting by the market capitalization of banks. The

risk-adjusted returns remain around 400 bps for the first six portfolios. The seventh portfolio posts

average risk-adjusted returns of 212 bps. After that, the the average risk-adjusted returns decline
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to -139 bps for portfolio 8, -317 bps for portfolio 9, and - 256 bps for portfolio 10. A long-short

position that goes long one dollar in a portfolio of the largest banks and short one dollar in a

portfolio of the smallest banks loses 5.85% over the non-disaster sample. This return spread is

statistically significant at the 1% level. The average normal-risk-adjusted return on a 9-minus-

2 position is -7.15% per annum, and -6.30% per annum for the 8-minus-3 portfolio. These are

statistically significant at the 1% and 5% levels respectively.

Larger banks have higher market betas, consistent with leverage increasing in size, although

the increase is smaller than the difference in leverage suggests. However, the negative effect of

higher market betas on risk-adjusted returns is partly offset by a strong inverse U-shaped pattern

in the credit risk loading. The loading increases from 0.06 in the first portfolio to 0.43 in the fifth

portfolio, and then it declines to 0.07 in the tenth portfolio.

III.2 Returns on Portfolios of Non-financial Stocks

Table V provides the results of the regression specified in equation (2) for non-financials sorted

by market capitalization (Panel A) and book value (Panel B). The table reports the regression

coefficients for each size-sorted portfolio along with their statistical significance and the adjusted

R2. Table IV excludes the recent financial crisis.

In the top panel, stocks with market capitalization in the lowest decile earn much higher risk-

adjusted returns. This is not surprising. These small cap stocks are typically highly illiquid

stocks. It has been documented that illiquid stocks earn abnormal returns (see, e.g., Brennan and

Subrahmanyam (1996)). However, these are stocks with very small market capitalization, which

are much smaller than the banks in the first portfolio. In 1980, the average market capitalization

of a firm in the first portfolio is only $22.8 million, compared to $75.9 million for the banks in the

first portfolio in 1980. The average market capitalization in the second portfolio is much larger ($

65.7 million in 1980). Other than this illiquidity effect in the first decile, the risk-adjusted returns

are small and statistically insignificant. In Panel B, we sort by book values. While smaller firms

seem to earn higher risk-adjusted returns, the effects do not exceed 300 bps, and are statistically
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insignificant.

[Table 5 about here.]

III.3 Robustness

These results are robust. First, we checked the robustness of our results by building three portfolios

of all banks, including investment banks, sorted by market capitalization, starting in 1927. This

is when the CRSP data starts. There are only a few banks in each portfolio at the start of the

sample in 1927. Over the entire 1927-2009 sample, the banks in the first portfolio earned 5.48%

per annum more than banks in the last portfolio after adjusting for exposure to the same five stock

and bond risk factors.

Second, we also split the 1970-2005 benchmark sample to check the stability of our results.

In particular, we want to make sure that our results are not driven by the banking merger and

acquisition wave of the 1990’s. In fact, we find that the differences in the normal-risk-adjusted

returns are fairly constant throughout our 1970-2005 sample.

Third, when we extend the sample to include the recent financial crisis (1970-2009), we obtain

a 778 bps spread in risk-adjusted returns on commercial bank portfolios between the first and the

last market decile. This spread is statistically significant at the 1% level. Hence, our findings are

quite robust.

IV Size Factor in Bank Stock Returns

The second principal component of normal-risk-adjusted returns on size-sorted portfolios of bank

stocks has loadings that depend monotonically on size. The covariance between the returns on

size-sorted portfolios of banks stocks and the size factor can explain the size pattern in average

risk-adjusted returns. In the next section, we interpret this slope factor in normal-risk-adjusted

returns as a measure of financial tail risk.
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IV.1 Constructing the Size Factor

We compute the residuals from the time series regression of returns of each size-sorted portfolio

on the equity and bond risk factor in 2. We extract the loadings for the principal components

(w1,w2) and we report the results in Table VI. This table only shows the loadings for the first

two principal components. The other eight are plotted in figure 1. Together, these two principal

components explain 66% of the residual variation over the entire sample.

The first two columns in the Table shows results for market capitalization sorts; the last two

columns show results for book sorts. They are very similar. We focus on the results obtained using

the market capitalization sort, mainly because this sort provides more observations.

The first principal component is a banking industry (’level’) factor with roughly equal weights on

all 10 portfolios. The second principal component is a size factor that loads positively on portfolios

of small banks and negatively on portfolios of large banks. The loadings vary monotonically in size.

This is a candidate risk factor because the loadings align with the average normal-risk-adjusted

returns that we want to explain.

[Table 6 about here.]

Next, we take our (T × 10) matrix of estimated residuals, ǫt, and multiply it by the (10× 10)

loadings of the principal components, to construct the asset pricing factors. The weights (w1,w2)

are re-normalized to (ŵ1, ŵ2) so that they sum to 1.6 This results in a (T ×10) linear combination

of the residuals. We focus on the first two principal components, denoted PC1
t = ŵ

′
1ǫt and

PC2,t = ŵ
′
2ǫt.

The size factor not only has an appealing macro-economic interpretation, but it also is a natural

candidate for explaining the size pattern in normal-risk-adjusted returns, because the average

normal-risk-adjusted returns align with the covariance between the size factor (second principal

component) and the returns on the portfolios. This is not the case for any of the other principal

6w2 is given by:

[
2.70 2.24 1.94 1.68 1.00 0.00 −1.31 −1.65 −2.34 −3.26

]

.
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components, as is clear from Figure 1. This figure plots the average normal-risk-adjusted returns

(labeled x) against the covariance of that return with the n-th principal component (labeled o).

The second principal component is the only candidate factor, because the second p.c. is the only

one for which the covariances line up with the average excess returns, suggesting that the common

variation in banks stock returns captured by the second principal component can explain the size

anomaly in bank stock returns.

[Figure 1 about here.]

To check whether the size factor actually explains the average normal-risk-adjusted returns,

we define a new independent variable. We take the (T × 10) matrix of returns for each of the

size-sorted portfolio of banks and multiply this by the (10 × 1) loading of the second principal

component. We re-normalize the loadings of the second principal component so that they sum

to one. As above, we use ŵ2 to denote the re-normalized weights. Then: R[PC2]t+1 = ŵ2Rt

denotes the results of our multiplication and is a (T × 1) vector of the returns weighted by the

second principal component. Thus for each month, the returns of each of the 10 portfolios are

multiplied by their corresponding weights in the second principal component and added together.

This portfolio is long in small banks and short in large banks. The weights of the portfolio are

given by the second principal component loadings, re-normalized to sum to one. We then run

a time-series regression of the returns on the size-sorted bank portfolios on the equity and bond

factors, and the size factor R[PC2]:

Ri
t+1 −R

f
t+1 = αi + βi,′f t+1 + βi

PC,2R[PC2]t+1 + εit+1. (3)

The tail-and-normal-risk-adjusted returns or α’s from this regression are presented in Panel A of

Table VII. The risk-adjusted returns on all portfolios are smaller than 250 bps over the entire

sample. The average risk-adjusted return on the long-short position is reduced to 20 bps. Not

only does the magnitude of the alphas change, but all of them are statistically insignificant. In

addition, there is no discernible size-related pattern in these normal-risk-adjusted returns.
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[Table 7 about here.]

IV.2 What is the Size Factor?

PC2 is the normal-risk-adjusted return on a portfolio that is long small banks and short large

banks. The weights of the portfolio are given by the second principal component. Figure 2 plots

the 12-month moving average (months t − 11 through t) of PC2 series along with a plot of the

index for industrial production. The units are monthly returns. The gray-shaded regions represent

NBER recessions and the light-shaded regions represent banking crisis. The NBER recession

dates are published by the NBER Business Cycle Dating Committee. The dates for the Mexico

and LTCM crisis were obtained from Kho, Lee, and Stulz (2000) and the FDIC (for the Less-

Developed-Country debt crisis of 1982).

The size factor, which by construction is orthogonal to the bond and equity pricing factors,

declines during recessions and financial crises. Moreover, it is very sensitive to large slowdowns in

the growth rate of industrial production. We plot a backward looking 12-month moving average,

which explains why the returns appear to drop a couple of months after the start of the NBER

recessions. The returns also tends to increase before the end of the NBER recession.7 On average,

during recessions, this normal-risk-adjusted return drops by an average of 3.30% per month or

39.57% per annum. During the most recent recession, which coincides with financial crisis, the size

factor lost 89% of its value, after adjusting for risk exposure.

[Figure 2 about here.]

We also extended our sample to the pre-war era by including all banks and sorting these by

market capitalization. We used the same principal component weights on this sample; see Figure 4

in the appendix. We observe the same pattern in the size factor in risk-adjusted returns. In every

7There are two exceptions to this cyclical pattern. One is the double-dip recession in the early eighties. Small
banks stocks were already recovering from the huge declines suffered relative to large bank stocks, and hence starting
from very low valuations, when the second recession started. The second is the 2001 recessions in the wake of the
Long Term Capital Management crisis. Moreover, in 2001, the NBER chose the starting point of the recessions well
after the decline in industrial production started (in other recessions, the starting date coincides with the decline
in industrial production.)
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NBER recession that we examined, the size factor decreases substantially; the largest losses in this

sample are incurred towards the end of the Great Depression.

Panel A in Table VIII shows the value at the trough of the NBER cycle (the end of the banking

crisis) of a $100 invested at the peak of the NBER cycle (the start of the banking crisis) in the

slope portfolio – the weights are given by the normalized second principal component. The second

column reports the dollar value after subtracting the performance of a benchmark portfolio with

the same exposure to the bond and equity factors ($100 + x means the a cumulative return of x%

in excess of the benchmark portfolio). This is the return on a portfolio that is hedged to have

zero betas with respect to the standard risk factors. The third column reports the dollar value

without risk-adjustment. On average, the unhedged size portfolio loses $35 during a recession or

banking crisis. The fourth column column reports the returns on the same investment strategy

after hedging out the exposure to the standard equity and bond factors. That hedged strategy loses

more than $60 per recession. As is clear from panel B, the largest losses are concentrated in the

first six months of the NBER recessions, just under $30 in normal-risk-adjusted terms. Moreover,

this portfolio (both hedged and unhedged) experienced steep declines during the Less Developed

Country and the LTCM crises.

Panel B in Table VIII shows the average value of the portfolio n months into a recession. The

hedged portfolio gradually drops more in value. Twelve months after the peak it has lost almost

$63 dollars of its value.

[Table 8 about here.]

The size factor appears to be a reliable measure of bank-specific tail risk. During the most

recent U.S. recession, a full-fledged banking crisis, the hedged size portfolio of commercial banks

lost close to 90 cents on the dollar (see Table VIII). This is not a surprise. In 2008, 18% of

the commercial banks in the first market capitalization decile were delisted, followed by another

30% in 2009. We also went back to 1926 by including all banks in our sample. During the Great

Depression (NBER recession dates), the hedged size portfolio of all financials was trading at -44

cents at the end of the recession per $100 invested at the peak.
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In the data, there is a strong connection between the business cycle and the incidence of banking

panics. We examined the U.S. banking panics starting in 1873, as well as the NBER business cycle

peaks and troughs. Except for the first banking panic, all of these occur during the contraction

phase of the U.S. business cycle. The dates of the banking panics were taken from Gorton (1988,

p. 223) and Wicker (1996, p. 155). The details are provided in Table XIV in the separate

appendix. This is not the case for non-financials. Giesecke, Longstaff, Schaefer, and Strebulaev

(2010) examine 150 years of U.S. corporate history and they find a weak relation between the

business cycle and corporate bond defaults.

IV.3 Alternative Explanations

Large idiosyncratic shocks can cause bank failures. If the volatility of these shocks increases more

in recessions for small banks, that could explain some of our findings. Smaller banks are much

more exposed to idiosyncratic risk than large banks, but the amount of idiosyncratic risk exposure

of small banks does not seem to increase very much during recessions. During NBER recessions,

the standard deviation ranges from 38% for the smallest banks to 26% for the largest banks as

compared to 36% and 20% respectively in the whole sample. The details are in the separate

appendix (section B). Hence, the largest percentage point increase in volatility during recessions

is noted for the largest banks: from 20% to 26%. For the smallest banks, the increase is less than

two percentage points. There is no evidence to suggest that the cyclicality of the size factor is due

to idiosyncratic banks risk. While smaller banks are more exposed to idiosyncratic risk, we do not

see large increases in this type of risk during recessions.

There is no evidence that business cycle variation in cash flows can explain our findings. If

anything, the evidence suggests that large financial institutions are more exposes to business cycle

risk. Boyd and Gertler (1993) analyze the impact of size on the performance of banks as measured

by accounting data. They show that increased competition and financial innovation have induced

the largest banks to participate in riskier investments.8 We examined bank performance during

8This is consistent with the findings of Gatev, Schuermann, and Strahan (2007); they document a reverse bank-
run phenomenon for large deposit-taking institutions in periods of tight aggregate liquidity. In related work, Gatev
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the last two recessions by studying the Quarterly Banking Reports issued by the FDIC, and we

found that small banks tend to outperform large banks during recessions. Section B of the separate

appendix contains the details.

V The Pricing of Bank Tail Risk and the Government

The average return of this size factor is the price of banking tail risk insurance, and it can be

measured for individual banks as the loading on this factor times this risk price. When the price

of tail risk measured by the size factor is negative, we will refer to this as a tail risk subsidy. If

not, it is a tail risk tax. This section examines how bank-specific tail risk is priced in the stock

market, and relates it to the regulatory regime and to government announcements.

V.1 Size of Largest Banks

The events immediately after the collapse of Lehman in September 2008 confirm the commonly-

held view that the U.S. government and monetary authorities are reluctant to let large financial

institutions fail collectively, even though they may be occasionally willing to let individual insti-

tutions fail. For example, over the course the recent financial crisis, the Federal Reserve made

emergency loans totaling about $9.99 trillion to 10 of the largest U.S. financial institutions, which

accounted for 83% of the emergency credit extended to all U.S. institutions.9 Moreover, even if

regulators are willing to let these large banks fail, the uncertainty about the resolution regime for

distressed banks clearly favors the creditors and shareholders of large financial institutions.

Consistent with this view, even in the highest market capitalization decile of commercial banks,

we find a strong negative relation between the market capitalization of individual firms relative to

GDP and the loading on the size factor. We chose banks that were in portfolio 10 in each year

of our sample and then computed the loadings on PC2 over the subsequent five-year window. As

and Strahan (2006) find that large banks provide aggregate liquidity insurance to non-financial corporations.
9Data from the Term Auction Facility (TAF) (provided emergency loans to commercial banks), the Primary

Dealer Credit Facility (PDCF)(provided emergency loans to investment banks and other broker-dealers, which
typically do not have access to Fed funds) and the Term Securities Lending Facility (TSLF)(which allowed financial
firms to borrow Treasury securities).
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individual banks grow larger over time relative to GDP, their loadings on this size factor clearly tend

to increase. The slope coefficient in the regression of PC2 loadings on market capitalization/GDP

is 0.018, meaning that a 100% increase in the size of market capitalization relative to GDP raises

the loading by 0.018 in absolute value or, equivalently, it increases the tail risk subsidy by 68 bps

per annum.

V.2 Regulatory Regime

We want to relate the pricing of tail risk, as captured by the size factor, to the regulatory regime of

different banks. Commercial banks and GSEs benefit from special provisions: deposit insurance10,

access to the discount window at the Federal reserve and other special lending facilities in the case

of commercial banks, and widely acknowledged debt guarantees in the case of GSEs. Foreign banks

and investment banks do not enjoy the same level of protection.

Table IX compares the results for a value-weighted index of commercial banks, investment

banks, foreign banks, and GSEs. The first row reports the value-weighted average market capi-

talization for each index. For foreign banks, this only includes the market capitalization of U.S.

listed shares.11 Investment and foreign banks do not benefit from the tail risk subsidy to commer-

cial banks, but the GSEs (Fannie Mae and Freddie Mac) clearly do. Over the entire sample, the

subsidy to commercial banks is 2.32% and the subsidy to GSEs is 1.95%. The loadings on R[PC2]

are much smaller (investment banks) or positive (foreign banks) and not statistically significant.

Table IX shows the same results for the largest commercial, investment banks and GSEs. Panel

A shows the results for the entire sample excluding the crisis. The tail risk subsidy is largest for

the large commercial banks. For BoA (1973-2009), we estimate a tail risk subsidy of 3.12% per

annum, for Wells Fargo (1970-2009) it is 3.27%, and for Citibank (1986-2009) it is 1.94 %. For

investment banks, these effects are much smaller and not statistically significant. Lehman is the

only exception.

10The FDIC Improvement Act of 1991 limits the protection of creditors, but it provides a systemic risk exception.
11The worldwide market-cap for just the 6 largest banks included in the index of foreign banks is $330.21 billion

in 2010
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As a benchmark, we also computed the loading on R[PC2] for an index of hedge fund returns.

Hedge funds do not benefit from the umbrella extended to large banks. We used the HFRI fund-

weighted hedge fund index. These results are not reported. Over the entire sample (from 1991 -

2005) the loading for hedge fund returns on R[PC2] is 0.02 (t-stat 2.66) and this reduces to 0.01

(t-stat 0.91) over 2000 - 2005. Hence, as expected, hedge funds face a tail risk tax, because the

loadings are positive, just like small banks.

These results lend some support to a government-based interpretation of the size factor, as com-

mercial banks and GSEs benefit from more extensive government guarantees than other financial

institutions.12

V.3 Elimination of Glass-Steagall

The Glass-Steagall Act (1933) effectively separated U.S. commercial banking from investment

banking. The provisions of this act preventing bank holding companies from owning financial

companies were repealed in 1999. Its repeal allowed large commercial banks to originate and trade

collateralized debt obligations.

After 2000, the tail risk subsidy to commercial banks more than doubled to 4.76%, and the

subsidy to GSEs more than tripled to 6%. These numbers were determined by multiplying the

loadings with the same risk price (38.93%) computed over the entire sample. There was also a

marked increase in the exposure of investment and foreign banks to the size factor.

[Table 9 about here.]

The loadings for the largest commercial banks increased dramatically in the last decade. The

BoA tail risk subsidy increased from 3.17% to 4.53% in 2000-2005, while the Citi subsidy increased

from 2.18% to 4.59%. This is exactly what one would have expected to see given the enormous

increase in total asset size realized by these banks. Wells Fargo collected a subsidy of 6.15% in

2000-2005, compared to 4.40% in the 1990-2005 sample. The largest subsidy is collected by Fannie

Mae (6.57%), in spite of its smaller size. Lehman also collect a large subsidy in this period. Both

12The GSEs and foreign banks were suggested to us by Martin Bodenstein.
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Lehman and Fannie Mae were building up substantial exposure to the subprime mortgage market

during this period. Note that there is no mechanical connection between our size factor and the

subprime exposure, since we exclude the financial crisis from the sample. Exposure to the size

factor seems a good yardstick of systemic risk exposure.

V.4 Announcement Effects

In September 1984, the Comptroller of the Currency announced a list of 10 banks that were deemed

too big to fail. We examine the pricing of the financial tail risk embedded in the stocks of these

10 banks around this announcement date. Table X lists all the announcement dates.

Pre-crisis Announcement Dates We also look at six other announcement dates listed by Kho,

Lee, and Stulz (2000). Table XI reports the results. We report regressions for windows of 30, 45,

60, 90, and 105 days around the announcement date. Panel A lists results from a pooled regression

for all seven announcement dates. In the 30-day window after the Comptroller announcements,

the loading increases by 0.12. This amounts to an annualized 4.56 % tail risk subsidy. This effect

gradually decreases as we increase the window around the event. We find slightly smaller effects

for the LTCM, Brazilian, Mexican and South-Korean crisis. The average effect is a 1.14 pps (0.03

times 38%) increase in the tail risk subsidy. This average effect is roughly constant across the

windows. These effects are economically and statistically significant.

Crisis Announcement Dates In the crisis sample, we identified announcements that increased

the likelihood of a bailout for all banks, for large banks and, finally, we also looked at events that

decreased the likelihood of a bailout. These are listed in Panel B of Table X.

[Table 10 about here.]

[Table 11 about here.]

Panel B looks at the financial crisis announcements. Only the positive announcements for large

banks have an economically and statistically significant effect on the pricing of tail risk. The tail
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risk subsidy for the too-big-to-fail banks increases by 2.66 pps in a 30-day window around these

announcements. The other announcements have small or negative effects that are not statistically

significant.

VI Recovery Rates and Equilibrium Pricing of Tail Risk

in the Banking Sector

To help us interpret our empirical findings, we use a stylized dynamic asset pricing model with

time-varying probability of banking panics that reproduces the size anomalies, as well as the size

factor in returns. The driving force is the size variation in recovery rates.

VI.1 A Simple Model of the Size Anomaly in Bank Stock Returns

The model yields a key testable prediction: a size factor in normal-risk-adjusted returns on banking

portfolios that is tied to the U.S. business cycle.

We adopt a version of the models with time-varying probabilities of financial disasters proposed

by Gabaix (2008) and Wachter (2008). These are extensions of the rare event models developed by

Barro (2006) and Rietz (1988). In our model, the stochastic discount factor has two components:

a standard normal component and a disaster component:

Mt+1 = MG
t+1 × 1 in states without a financial disaster (4)

Mt+1 = MG
t+1 ×MD

t+1 in states with a financial disaster.

MG
t+1 denotes the representative investor’s intertemporal marginal rate of substitution (IMRS) in

normal times, i.e., in states without a disaster. In the simplest version of his model, Gabaix

(2008) defines ∆ logCt+1 = gC + σηt+1 as the growth rate of consumption in normal times, and

∆ logCt+1 = gC + σηt+1 + logF c
t as the consumption growth rate in the financial disaster state,

where 1 ≥ F c
t > 0. ηt+1 is Gaussian white noise. pt denotes the probability of a financial disaster.
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In the absence of a financial disaster, the IMRS is completely determined by normal risk. We

assume that the normal component of the stochastic discount factor is linear in the normal risk

factors:

MG
t+1 = b′f t+1. (5)

We use βi
t to denote the vector of conditional normal risk factor betas for the returns on asset i,

and we use λt to denote the vector of normal risk prices. We make some additional simplifying

assumptions in order to characterize disaster risk premia analytically. First, we assume that the

conditional distribution of the normal risk factors f t is independent of the disaster realization.

Second, we assume that pt does not co-vary with the normal risk factors ft. This second assumption

implies that the recession risk itself is not priced, only the financial disaster risk itself is.

The dividend process of a portfolio of bank stocks of size i is given by:

∆ logDi
t+1 = ∆ logDi,G

t+1 in states without banking crisis

∆ logDi
t+1 = ∆ logDi,G

t+1 + logF i
t in states with banking crisis

∆ logDi,G
t+1 is the Gaussian component of dividend growth. 1 ≥ F i

t > 0 can be thought of as

the recovery rate; in case the rare event is realized, a fraction F i of the dividend gets wiped out

(See Longstaff and Piazzesi (2004) and Barro (2006)). This recovery rate will vary across banks

depending on size, partly because the realization of this rare event can trigger a collective bailout

of larger banks, but not necessarily of smaller banks. There is strong empirical evidence for size-

dependent variation in disaster recovery rates. In our sample (1970-2009), the average delisting

rate for banks in the first market capitalization decile is 1.77%, compared to 0.018% for the ninth

decile and 0% for the tenth decile. During 2008, 18% of banks in the first decile were delisted,

another 30% were delisted in 2009, and, finally, 10% in 2010. None of the commercial banks in

the highest decile were delisted. Including acquisitions increases these numbers to 19% and 32%

respectively.

The resilience of banks is defined as the marginal-utility-weighted recovery rate in disaster
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states (Gabaix (2008)): H i
t = ptEt

[
MD

t+1F
i − 1

]
. In the simplest CCPAM case, this would be

H i
t = ptEt

[
(F c

t+1)
−γF i

t+1 − 1
]
. As the economy enters into a recession, pt increases and the resilience

of large banks HB
t increases relative to small banks HS

t if FB
t+1 > F S

t+1. In fact, we assume that the

recovery rate F n
t > F n−1

t increases monotonically in size.

The expected return on asset i, conditional on no disaster realization, after adjusting for normal

risk exposure, becomes Et[R̂
i
t+1] = exp(r − hi

t), where Et[R̂
i
t+1] = Et[R

i
t+1] − βi

t
λt, and r denotes

logRt = logEt[M
G
t+1]

−1, and hi
t denotes log(1 +H i

t). The proof is in the Appendix .

To derive a simple expression for average normal-risk-adjusted returns, we abstract from vari-

ation in normal betas and risk prices. In the interest of tractability, we assume that the recovery

rates F i are constant over time, and we also assume that the size of the consumption disaster FC

is constant over time. The conditional beta βt and the conditional risk prices λt are constant. In

a sample without a disaster realization, the average normal-risk-adjusted return will be given by:

E[R̂i
t+1] = E[Ri

t+1]− βiλ = exp(r − h
i
),

where h
i
= E[log (1 +H i)]. The difference in alphas in a sample without a rare event realization

measures the differences in average resilience between different bank stock portfolios: logαB −

logαS = h
S
−h

B
. Hence, we can interpret the 6% difference between small and large bank portfolios

in the normal-risk-adjusted returns as measuring differences in the resilience of these bank portfolios

to banking crises.

A key prediction of this model is that this variation in the probability of a financial disaster in

turn imputes common variation to the normal-risk-adjusted stock returns along the size dimension,

since we assumed that the recovery rate depends on size, even in a sample without disasters. The

loadings on this common factor are proportional to F i − 1. To see why, note that log(1 +H i
t) ≈

ptEt

[
MD

t+1F
i − 1

]
. This is a size factor because the loadings depend on the recovery rates and hence

(by assumption) on size. The conditional normal-risk-adjusted multiplicative risk premium on a

long-short portfolio is given by the following expression: logEt

[
R̂B

t+1

]
−logEt

[
R̂S

t+1

]
= hS

t+1−hB
t+1.

As pt increases during recessions, the risk premium on this long-short portfolio becomes more
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negative. This variation in risk premia is the driving force. The size factor tracks the variation in

pt.

The characteristic (the size of the bank) actually determines the financial disaster risk premium,

because of the collective bailout guarantee for large banks. This creates an opening for arbitrage

opportunities. Let us assume that there is a single critical size threshold. In this case, the low

recovery rate (F i = F ) applies for all bank portfolios with size below the cutoff. Also, suppose

banks do not switch between portfolios as a result of growth, mergers or acquisitions. For banks in

portfolios above the cutoff, the higher recovery rate applies: F i = F . The baseline model predicts

large positive, but constant, α’s for all the banks in size-sorted portfolios below the threshold, and

much smaller, negative α’s for all banks above the threshold. In that sense, the pattern we found

in the data is surprising. However, this stark (α, α) outcome can only be an equilibrium if there

are prohibitively large costs associated with merging and acquiring banks.

Suppose there are no such costs. Consider two banks (A and B) just below the threshold with

recovery rates FA = FB = F . By bundling the cash flows of these two banks (A and B), the

recovery rate increases to FA+B = F , and the value of a claim to the cash flows of A and B will

exceed the sum of the value of these cash flows: P (A)+P (B) ≤ P (A+B). In the absence of costs,

this represents an arbitrage. However, if there are positive costs C, then the value of A and B has

to increase such that P (A)+P (B) ≥ P (A+B)−C[A,B] to eliminate the arbitrage opportunities.

This increase reflects the probability that these banks end up crossing the size threshold because

of growth or because of a future merger or acquisition. Hence, the α’s for these banks (A and B)

will decrease, as their value rises, even though they do not directly benefit from the guarantee yet.

Alternatively, A and B will actually merge right away.

There was a large amount of concentration in the banking sector in the last decades. Table

I reports an increase from 50% (in the 1970’s) to 90 % (in the last decade) in the share of total

market capitalization accounted for by the top decile. The increase in the share of total balance

sheet accounted for by the top decile is from 52% to 95%. Kane (2000) and Brewer and Jagtiani

(2007) document acquiring banks are willing to pay larger premiums for banks that put them
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over critical size thresholds, consistent with our hypothesis. By backward induction, the same

argument applies to smaller banks in other portfolios. However, the costs of bundling the cash

flows (C[D,E, F, . . . , Z]) of many smaller banks to reach this critical threshold increase, and this

mitigates the effect on the average risk-adjusted returns. This can account for the decreasing

pattern in the alphas that we have found in the data.

VI.2 Calibrated GE Asset Pricing Model

Obviously, the independence of risk factors and pt that we need to derive simple, analytical charac-

terizations of the risk-adjusted returns is very restrictive. This section develops a general equilib-

rium version of this model, in which these restrictions are relaxed. We show there is a qualitatively

similar relation between the average risk-adjusted returns and the financial disaster recovery rates

provided that the market itself is not as exposed to financial disaster risk as banks.

We use a modified version of Gourio (2008)’s model. The stand-in agents has Epstein-Zin utility

over non-durable consumption streams:

Vt(C
t) =

[
(1− β)C1−α

t + β(RtVt+1)
1−α

] 1

1−α , (6)

where R denotes the following operator: RtVt+1 =
(
EtV

1−θ
t+1

)1/1−θ
. This agent cares about the

intertemporal composition of risk. α−1 controls the intertemporal elasticity of substitution, while

θ controls risk aversion. When α = θ, preferences are time-separable. The equilibrium SDF is

given by:

Mt+1 = β
1−θ
1−α

(
Ct+1

Ct

)−α 1−θ
1−α

R
α−θ
1−α

w,t+1, (7)

where Rw denotes the return on a claim to aggregate consumption.

The process for aggregate consumption growth is given by:

∆ logCt+1 = gC + σηt+1, in states without financial disaster

∆ logCt+1 = gC + σηt+1 + logF c, in states with financial disaster.
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When p is i.i.d., this model can be solved analytically. We are interested in the case in which p

varies over the business cycle. We solve a version of this model with two aggregate states.

We choose σ, the standard deviation of Gaussian aggregate consumption growth shocks, equal

to 3%, and gC equal to 2%. The time discount factor β is set to 0.975. Following Gourio (2008),

we use a two-state discretization for the aggregate state of the economy. In the recession state,

the probability of a financial disaster is high. In the expansion state, the probability of a financial

disaster is low. The average length of an expansion is 44 months. The average length of a recession

is 16 months. The ratio of the average length of an expansion to the average length of a recession

is 2.62. We set the average probability of a banking crisis to 13%, because the U.S. spent 13% of

all years since 1800 in a banking panic according to Reinhart and Rogoff (2009).13 The aggregate

state of the economy follows a 2-state Markov chain with transition probability matrix:

Q =




φ 1− φ

1− ϕ ϕ




with stationary distribution { (1−ϕ)
(1−ϕ)+(1−φ)

,
(1−φ)

(1−ϕ)+(1−φ)
}. To match the average length of a recession

(16 months), we set ϕ equal to 0.25. The same transition matrix Q applies in disaster and non-

disaster states. To match the ratio, we choose φ equal to 0.71. In an expansion, the conditional

probability of a banking panic pex = 0. In a recession, the conditional probability of a banking

panic pre = 0.466. Finally, we consider a cumulative consumption drop of 5% (FC = 0.95) in the

financial disaster state. This scenario matches the experience of all developed economies considered

by Reinhart and Rogoff (2009) during banking crises. The market (equity) is a levered claim to

aggregate consumption Cλ:

∆ logDm
t+1 = λmgC + λmηt+1σ, in states without financial disaster

∆ logDm
t+1 = λmgC + λmηt+1σ + λm logF c, in states with financial disaster.

13This matches 13 U.S. financial crises over 210 years with an average length of 2.1 years.
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Bank cash flows are also a levered claim to aggregate consumption:

∆ logDi
t+1 = λigC + λiσηt+1, in states without financial disaster

∆ logDi
t+1 = λigC + λiσηt+1 + λi logF i, in states with financial disaster.

We assume that small and large banks have the same cash flow properties in normal times. However,

small banks will have recovery rates below the F S < F c, and large banks will have recovery rates

in excess of FL > F c.14

First, we consider the benchmark case in which the market is exposed to levered normal and

disaster risk. Panel A in Table XII reports the results for different values of the recovery rates.

These results were generated by generating 25,000 draws from the model. The first column reports

the equity premium conditional on no disaster in the sample (E[Rm,e|no disaster]). The second

column reports the actual equity premium (E[Ri,e]). The third and fourth column report the

conditional equity premium in expansions and recessions. Finally, the last two columns report the

average normal-risk-adjusted returns and the market beta.

We replicate the treatment of the actual data on model-generated data. To compute the

alpha, we assume that the Gaussian component of the SDF is linear in the market excess return

(MG = a+bRm,e), and hence we project the excess returns on the bank stocks on the excess return

on the market in a sample without disasters. In a sample with disasters, the alphas are very close

to zero, even though the CAPM does not hold exactly (see equation 7: The log SDF depends on

the (unlevered) total wealth return and consumption growth).

The left panel of Table XII considers the benchmark case of a 5% drop in aggregate consumption.

The leverage of the market is 2.5. The banks have leverage of 2. With a 10% difference in the

unlevered financial disaster recovery rate, the difference in the equity premium between small

(7.11%) and large banks (2.29%) is 482 bps. However, most of this difference is accounted for by

14One might conjecture that small banks simply under-perform during recessions. Although this should not lead
to differences in α, but rather differences in exposure to the standard risk factors, we want to check this, because it
might be important for how cash flows are modeled. Actually, we find small bank cash flows to be less exposed to
aggregate risk. The evidence is reported in section B of the appendix.
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the higher beta, not by α differences.

As a result, the unlevered difference in the recovery rates needs to exceed 35% to match the

spread in normal risk-adjusted returns we have observed in the data. Given that 32% of banks in

the first decile were delisted in 2010 alone, that seems reasonable. When the difference in recovery

rates is 35 cents, the differences in α is 551 bps. However, because the market itself is exposed

to financial disaster risk, small banks have much higher loadings (2.10) on the market than large

banks (0.59). This is at odds with the data.

The right panel Table XII considers the case of a 2.5% drop in aggregate consumption. In

this case, a smaller differences in recovery rates of 30% is sufficient to match the difference in

normal-risk-adjusted returns.

[Table 12 about here.]

The model can match the large betas of large banks and small betas of small banks, while still

matching the average normal risk-adjusted-returns provided that the stock market is less exposed

to financial disaster risk: The market (equity) is a levered claim to aggregate consumption Cλ, but

the leverage only applies to the normal risk, not the disaster risk:

∆ logDm
t+1 = gC + λmσηt+1, in states without financial disaster

∆ logDm
t+1 = gC + λmσηt+1 + logF c, in states with financial disaster.

The dividend growth process for bank stocks is unchanged. In this calibration, we increased σ to

3.50 % and we increased θ to match the same ex-disaster equity premium of 5.80%. The results

are shown in Panel II of Table XII. The top right panel considers the benchmark case of a 5%

drop in aggregate consumption. The leverage of the market is 2.5, but leverage only applies to the

Gaussian component. This seems reasonable. Between June 2007 and March 2009, the market lost

about 50% of its value, while the financial sector lost more than 80% of its value during the same

period.

The key difference is that the equity premium contains a much smaller financial disaster risk
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premium. As a result, a larger fraction of the difference in risk premia ends up in the alpha.

Consider the case of a 5% aggregate consumption drop. When bank leverage is equal to 2, and

with a 20% difference in the unlevered financial disaster recovery rate, the difference in alphas

exceeds 600 bps, while the betas for the large banks are larger than the betas for small banks. In

fact, when we choose large bank leverage equal to 3, and small bank leverage equal to 1, there is

a 57 bps spread in the betas, and a 642 basis point spread in the alphas. The required difference

in the recovery rates is 35 cents on the dollar.

Figure 3 plots the simulated returns on a small-minus-big bank portfolio (dotted line) for this

calibration. A period denotes one year. The dotted line plots the stock market return. The stock

market return is driven by normal risk, while the small-minus-big portfolio responds mostly to the

probability of a financial disaster, which increases in recessions. The shaded areas are recession

states. The small-minus-big portfolio is a recession factor, as in the data. Moreover, this portfolio

has negative market beta.

[Figure 3 about here.]

Finally, if we consider a 2.5% aggregate consumption drop, and we set the leverage of small

banks equal to one, we can actually match the spread in betas of more than 100 bps between

portfolio 1-10 observed in the data. However, the spread in alphas is only 500 bps.

VII Conclusion

We document a size anomaly in bank stock returns that is different from the size effect that has

been documented for non-financials. This size effect can be explained by the covariance with a

new size factor that we extract from that component of bank stock returns that is orthogonal

to standard risk factors. This size factor is a measure of bank-specific tail risk. Our evidence

from bank stock returns reveals how the pricing of bank-specific tail risk in financial markets may

depend on which bank is holding the risk. To the extent that these effects reflect implicit bailout
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guarantees in financial disasters, the government subsidizes large financial institutions to take on

bank-specific tail risk.
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Table I: Market capitalization and book value for size-sorted portfolios
Notes: This table presents the total market capitalization (book value) of firms in each size-sorted portfolio as
a percentage of total market capitalization (book value) for the entire banking sector. The market values (book
values) are measured in January of each year. Mean represents the average value of this percentage over the years
specified. N is the average number of banks in each portfolio over the same period.

1 2 3 4 5 6 7 8 9 10

Panel A: Market Capitalization

1970-1980

Mean 0.36 0.92 1.50 1.95 3.50 4.67 7.61 11.51 18.21 49.78

N 8.00 9.00 9.00 9.00 9.00 8.00 9.00 9.00 9.00 9.00

1980-1990

Mean 0.33 0.72 1.10 1.66 2.39 3.61 5.71 8.84 17.28 58.34

N 26.00 27.00 26.00 27.00 27.00 26.00 27.00 26.00 26.00 27.00

1990-2000

Mean 0.17 0.34 0.52 0.76 1.10 1.56 2.32 3.99 8.52 80.71

N 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00

2000-2009

Mean 0.13 0.24 0.35 0.50 0.68 0.95 1.42 2.33 4.62 88.78

N 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 63.00

Panel B: Book Value

1980-1990

Mean 0.34 1.04 1.83 2.44 3.39 4.33 6.06 9.90 18.72 51.94

N 10.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00

Leverage 13.55 15.86 16.04 16.42 16.59 17.22 17.67 17.73 18.54 22.37

1990-2000

Mean 0.13 0.31 0.50 0.73 1.02 1.46 2.41 4.14 10.75 78.56

N 45.00 46.00 45.00 46.00 45.00 45.00 46.00 45.00 45.00 46.00

Leverage 11.42 11.16 12.17 11.82 14.03 13.56 13.73 14.40 13.83 15.86

2000-2009

Mean 0.08 0.14 0.20 0.27 0.36 0.51 0.79 1.35 3.33 92.96

N 61.00 61.00 61.00 61.00 61.00 61.00 61.00 62.00 61.00 62.00

Leverage 8.38 10.82 5.86 14.36 11.64 11.97 12.35 12.27 10.77 14.01
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Table II: Mean returns for size-sorted portfolios of commercial banks
Notes: This table presents the mean returns for each size-sorted portfolio of banks sorted by market capitalization
in the top panel and by total balance sheet in the bottom panel. The first column indicates the years over which
mean returns were computed. The monthly mean returns have been annualized by multiplying by 12 and are
expressed in percentages.

Panel A: Market Cap

Year 1 2 3 4 5 6 7 8 9 10

1970− 2005 17.47 16.73 16.15 15.96 16.05 17.03 15.89 14.37 13.77 13.26

1980− 2005 19.81 19.18 18.09 17.84 18.31 19.94 19.38 17.15 16.31 16.17

1990− 2005 19.61 20.90 18.24 17.67 20.32 19.15 18.69 17.34 16.62 16.90

Panel B: Book Value

Year 1 2 3 4 5 6 7 8 9 10

1980− 2005 16.36 17.57 19.46 18.84 20.68 21.75 20.12 16.89 13.95 13.68

1990− 2005 13.65 18.03 19.44 18.76 20.54 20.00 21.34 17.96 13.67 11.00
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Table III: Mean returns for size-sorted portfolios of non-financial firms
Notes: This table presents the mean returns for each size-sorted portfolio of non-financial firms sorted by market
capitalization in the top panel and by total balance sheet in the bottom panel. Non-financial firms are defined
as those for which the SIC code lies outside 6000 - 6799. The first column indicates the years over which mean
returns were computed. The monthly mean returns have been annualized by multiplying by 12 and are expressed
in percentages. The first column indicates the years over which mean returns were computed. The monthly mean
returns have been annualized by multiplying by 12 and are expressed in percentages.

Year 1 2 3 4 5 6 7 8 9 10

Panel A: Market Cap

1970− 2005 24.51 15.76 13.38 12.41 11.61 12.12 12.21 12.55 13.30 11.39

1980− 2005 26.29 15.47 13.25 12.02 11.27 11.51 12.07 12.57 14.32 13.18

1990− 2005 30.13 17.75 14.96 14.11 12.43 12.04 11.47 10.65 12.56 10.61

Panel B: Book Values

1970− 2005 16.05 16.75 15.90 15.15 14.90 15.39 15.63 15.26 15.02 13.29

1980− 2005 16.08 17.14 16.59 15.65 15.19 15.81 16.52 15.92 15.94 14.74

1990− 2005 21.06 19.68 18.32 17.62 16.28 16.43 16.24 15.80 14.75 12.56
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Table IV: Mean Risk-adjusted returns in size-sorted portfolios of commercial banks
Notes: This table presents the estimates from an OLS regression of monthly excess returns on each size-sorted portfolio of banks on the Fama-French
stock and bond risk factors. market, smb, and hml are the three Fama-French stock factors: the market, small minus big, and high minus low
respectively. ltg is the excess return on an index of long-term government bonds and crd is the excess return on an index of investment-grade corporate
bonds. Statistical significance is indicated by *, **, and *** at the 10%, 5%, and 1% levels respectively. The alphas have been annualized by multiplying
by 12 and are expressed in percentages. The standard errors were adjusted for heteroscedasticity and auto-correlation using Newey-West with 3 lags.
The sample is 1970-2005.

1 2 3 4 5 6 7 8 9 10 8 - 3 9 - 2 10 - 1

Panel A: Market Cap

α 5.45∗∗ 4.11∗ 3.25 2.05 1.75 2.11 0.64 -0.70 -2.51 -2.53 -3.95∗∗ -6.62∗∗∗ -7.97∗∗∗

market 0.36∗∗∗ 0.44∗∗∗ 0.49∗∗∗ 0.55∗∗∗ 0.59∗∗∗ 0.63∗∗∗ 0.69∗∗∗ 0.71∗∗∗ 0.87∗∗∗ 1.07∗∗∗ 0.23∗∗∗ 0.43∗∗∗ 0.71∗∗∗

smb 0.39∗∗∗ 0.44∗∗∗ 0.41∗∗∗ 0.47∗∗∗ 0.50∗∗∗ 0.47∗∗∗ 0.47∗∗∗ 0.44∗∗∗ 0.43∗∗∗ -0.03 0.02 -0.01 -0.42∗∗∗

hml 0.32∗∗∗ 0.38∗∗∗ 0.39∗∗∗ 0.50∗∗∗ 0.52∗∗∗ 0.53∗∗∗ 0.54∗∗∗ 0.55∗∗∗ 0.57∗∗∗ 0.42∗∗∗ 0.15∗∗ 0.19∗ 0.09

ltg -0.16 -0.11 -0.05 0.10 0.15 0.12 0.07 0.12 0.26∗∗ 0.15 0.17 0.37∗∗∗ 0.30∗

crd 0.51∗∗∗ 0.41∗∗∗ 0.35∗∗ 0.21 0.17 0.29∗ 0.30∗∗ 0.18 0.11 0.13 -0.17 -0.30∗ -0.38∗

R2 29.12 40.47 42.80 53.16 53.56 55.36 61.49 62.99 65.09 63.62 6.21 18.83 27.91

Panel B: Book Value

α 3.29 3.98 4.91∗ 4.54∗∗ 3.80 4.53∗ 2.12 -1.39 -3.17 -2.56 -6.30∗∗ -7.15∗∗∗ -5.85∗

market 0.49∗∗∗ 0.50∗∗∗ 0.56∗∗∗ 0.54∗∗∗ 0.69∗∗∗ 0.74∗∗∗ 0.81∗∗∗ 0.83∗∗∗ 0.85∗∗∗ 0.91∗∗∗ 0.27∗∗ 0.35∗∗∗ 0.41∗∗∗

smb 0.50∗∗∗ 0.51∗∗∗ 0.46∗∗∗ 0.51∗∗∗ 0.60∗∗∗ 0.57∗∗∗ 0.55∗∗∗ 0.59∗∗∗ 0.32∗∗∗ 0.05 0.13 -0.19∗∗∗ -0.45∗∗∗

hml 0.44∗∗∗ 0.45∗∗∗ 0.50∗∗∗ 0.51∗∗∗ 0.65∗∗∗ 0.65∗∗∗ 0.64∗∗∗ 0.72∗∗∗ 0.57∗∗∗ 0.42∗∗∗ 0.22∗∗ 0.12 -0.02

ltg 0.17 0.19 0.09 0.14 0.00 0.03 0.21∗ 0.29∗∗∗ 0.19 0.18 0.20 -0.00 0.00

crd 0.06 0.14 0.26 0.19 0.43∗∗ 0.40∗∗∗ 0.31∗∗ 0.16 0.16 0.07 -0.09 0.03 0.01

R2 38.53 44.04 46.66 52.12 53.17 60.49 63.50 54.84 62.13 46.24 8.04 15.03 14.46

43



Table V: Mean risk-adjusted returns in size-sorted portfolios of non-financials
Notes: This table presents the estimates from an OLS regression of monthly excess returns on each size-sorted portfolio of non-financials on the
Fama-French stock and bond risk factors. market, smb, and hml are the three Fama-French stock factors: the market, small minus big, and high minus
low respectively. ltg is the excess return on an index of long-term government bonds and crd is the excess return on an index of investment-grade
corporate bonds. Statistical significance is indicated by *, **, and *** at the 10%, 5% and 1% levels respectively. The alphas have been annualized by
multiplying by 12 and are expressed in percentages. The standard errors were adjusted for heteroscedasticity and auto-correlation using Newey-West
with 3 lags. The sample is 1970-2005.

Year 1 2 3 4 5 6 7 8 9 10 8 - 3 9 - 2 10 - 1

Panel A: Market Cap

α 11.17∗∗∗ 1.55 -1.22 -2.10 -3.03∗∗ -2.36∗∗ -2.02∗∗ -1.06 0.20 0.61 0.16 -1.35 -10.56∗∗∗

market 0.77∗∗∗ 0.89∗∗∗ 0.95∗∗∗ 0.99∗∗∗ 1.05∗∗∗ 1.13∗∗∗ 1.14∗∗∗ 1.12∗∗∗ 1.10∗∗∗ 0.95∗∗∗ 0.17∗∗∗ 0.21∗∗∗ 0.19∗

smb 0.82∗∗∗ 0.96∗∗∗ 1.02∗∗∗ 0.97∗∗∗ 0.94∗∗∗ 0.90∗∗∗ 0.80∗∗∗ 0.67∗∗∗ 0.41∗∗∗ -0.14∗∗∗ -0.35∗∗∗ -0.55∗∗∗ -0.96∗∗∗

hml 0.34∗∗ 0.37∗∗∗ 0.36∗∗∗ 0.29∗∗ 0.27∗∗ 0.25∗∗ 0.18 0.11 0.09 -0.10∗∗∗ -0.25∗∗∗ -0.29∗∗∗ -0.44∗∗∗

ltg -0.47∗∗∗ -0.37∗∗∗ -0.36∗∗∗ -0.31∗∗∗ -0.24∗∗ -0.20∗∗ -0.18∗∗ -0.14∗ -0.07 -0.10∗∗∗ 0.21∗ 0.30∗∗∗ 0.37∗∗∗

crd 0.36∗ 0.23 0.24 0.25 0.19 0.05 0.09 0.09 0.03 0.13∗∗∗ -0.15 -0.20 -0.23

R2 52.70 67.11 74.48 76.89 82.69 86.57 89.16 89.62 91.22 97.03 17.42 22.76 34.76

Panel B: Book Value

α 3.02 2.91 2.16 1.13 0.62 1.00 0.73 0.80 0.55 -0.07 -1.36 -2.36 -3.09

market 0.99∗∗∗ 1.02∗∗∗ 1.04∗∗∗ 1.06∗∗∗ 1.09∗∗∗ 1.12∗∗∗ 1.16∗∗∗ 1.14∗∗∗ 1.14∗∗∗ 0.98∗∗∗ 0.10 0.12 -0.01

smb 0.92∗∗∗ 0.97∗∗∗ 1.00∗∗∗ 0.99∗∗∗ 0.94∗∗∗ 0.87∗∗∗ 0.80∗∗∗ 0.66∗∗∗ 0.45∗∗∗ -0.05 -0.35∗∗∗ -0.51∗∗∗ -0.97∗∗∗

hml 0.14 0.23 0.18 0.20 0.22∗ 0.24∗∗ 0.29∗∗∗ 0.31∗∗∗ 0.31∗∗∗ 0.27∗∗∗ 0.13 0.08 0.13

ltg -0.42∗∗ -0.39∗∗∗ -0.30∗∗∗ -0.32∗∗∗ -0.29∗∗∗ -0.23∗∗∗ -0.16∗∗∗ -0.06 -0.03 -0.07∗ 0.25∗∗∗ 0.37∗∗∗ 0.35∗∗

crd 0.23 0.20 0.16 0.19 0.17 0.08 0.04 -0.11 -0.09 0.07 -0.27∗ -0.29 -0.15

R2 55.54 67.97 75.48 83.02 86.01 88.98 91.62 92.07 93.97 93.32 14.89 16.70 27.23
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Table VI: Principal components of size-sorted commercial bank stock returns
Notes: This table presents the loadings for the first and second principal components (w1,w2) extracted from
the residuals of the regression specified in equation 2. The last row indicates the % explained by each principal
component.

Market Cap Book Value

1970 - 2009 1980 - 2009

Portfolio w1 w2 w1 w2

1 0.31 0.42 0.21 0.34

2 0.29 0.35 0.25 0.30

3 0.28 0.31 0.31 0.26

4 0.28 0.26 0.28 0.19

5 0.33 0.16 0.38 0.20

6 0.34 0.00 0.37 -0.01

7 0.35 -0.21 0.36 -0.11

8 0.32 -0.26 0.40 -0.19

9 0.32 -0.37 0.30 -0.24

10 0.33 -0.51 0.23 -0.74

% 47.63 18.37 47.56 15.39
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Table VII: Size-factor-adjusted returns for size-sorted portfolios of commercial banks
Notes: This table presents the estimates from OLS regression of monthly excess returns on each size-sorted
portfolio of commercial banks on the Fama-French stock factors, bond factors, and the second principal component
weighted returns. mkt, smb, and hml are the three Fama-French factors: the market, small minus big, and high
minus low respectively. ltg is the excess return on an index of long-term government bonds and crd is the excess
return on an index of investment-grade corporate bonds. RPC2 is the time-series of the returns of the size-sorted
portfolios weighed by the loadings of the second principal component ŵ2. The weights of the second principal
component have been re-normalized so that they sum to 1. Statistical significance is indicated by *, **, and *** at
the 10%, 5%, and 1% levels respectively. The alphas have been annualized by multiplying by 12 and are expressed
in percentages. The standard errors were adjusted for heteroscedasticity and auto-correlation using Newey-West
with 3 lags. The last two lines show the loadings on the size factor and the implicit tax (risk price times loading on
PC2). The annualized risk price is 38.93% in the sample ending in 2005.

Year 1 2 3 4 5 6 7 8 9 10

Risk-adjusted Returns

1970 - 2005 0.78 0.60 0.26 -0.41 0.56 2.28 1.77 0.87 0.27 1.66

Loading on 2nd PC

1970 - 2005 0.08∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.02∗∗ 0.00 -0.02∗∗ -0.03∗∗∗ -0.05∗∗∗ -0.07∗∗∗

Size Factor Adjustment

1970− 2005 3.25 2.44 2.08 1.71 0.83 -0.12 -0.79 -1.10 -1.94 -2.92
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Table VIII: Cumulative return on 2nd pc portfolio in recessions and financial crises
Notes: This table shows the value of a $100 invested in a portfolio that goes long in small banks and shorts large
banks. The weights of the portfolio are given by the second principal component, re-normalized so that they sum
to 1 (ŵ2). $100 is invested in this portfolio at the ’Start’ date and its value, given in columns 3 and 4, is measured
on the ’End’ date. The column labeled Value represents the value of $100 invested at the peak (or start of the
crisis) at the trough (or end of the crisis) on this portfolio and the column labeled Hedged Value represents the
normal-risk-adjusted returns on this portfolio. The average is computed for all NBER recessions only using the
NBER dating conventions. The bottom panel shows the value of a $100 investment n months into the recession.
The first two columns use all portfolios. The last two columns exclude the first portfolio containing the smallest
banks.

Panel A: Portfolio Value at NBER Trough

Start End Value Hedged Value

NBER Recessions

01: 1970 11: 1970 -12.23 32.74

11: 1973 03: 1975 -17.10 26.50

01: 1980 11: 1982 47.34 8.51

07: 1990 03: 1991 19.54 17.05

03: 2001 11: 2001 287.33 138.48

12: 2007 06: 2009 63.53 11.77

Average 64.73 39.17

Panel B: Average Portfolio Value n months after NBER Peak

Value Hedged Value

Month 1 128.26 112.52

Month 2 88.76 86.04

Month 3 105.17 84.70

Month 4 86.36 65.93

Month 5 75.06 60.55

Month 6 99.79 65.32

Month 12 8.80 37.21
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Table IX: Bank Tail Risk Pricing for investment banks, foreign banks, and GSEs.
Notes: This table presents the estimates from OLS regression of monthly excess returns on a value-weighted index of commercial banks, investment
banks, and GSEs on the Fama-French stock factors, bond factors, and the second principal component weighted returns. The table also reports results
for individual banks. Foreign banks were selected based on the share-code in CRSP. Investment banks are those with SIC code 62. A share-code ending
in two indicates that firms were incorporated outside the US. For individual banks, the longest available sample for each bank till 2009 was selected.
The starting year for each bank is mentioned in parentheses under the name of the bank. PC2 is the time-series of the returns of the size-sorted
portfolios weighed by the loadings of the second principal component ŵ2. The weights of the second principal component have been re-normalized so
that they sum to 1. Statistical significance is indicated by *, **, and *** at the 10%, 5%, and 1% levels respectively. The alphas have been annualized
by multiplying by 12 and are expressed in percentages. The standard errors were adjusted for heteroscedasticity and auto-correlation using Newey-West
with 3 lags. The implicit subsidy is the risk price (38.93%) times (minus) loading on PC2). The risk price is fixed in the different subsamples.

Index of Banks Individual Banks

Commercial Investment Foreign GSE BoA Citi GS LEH ML MS WFC FNM FRE

Market Cap(Jan 05) 118.57 24.12 44.71 50.61 187.30 254.56 52.22 34.33 55.78 61.25 103.71 62.48 44.95

start (1973) (1986) (1999) (1994) (1971) (1986) (1970) (1970) (1989)

Panel A: Full Sample

market 0.83∗∗∗ 1.65∗∗∗ 0.97∗∗∗ 0.82∗∗∗ 1.12∗∗∗ 1.37∗∗∗ 1.50∗∗∗ 1.54∗∗∗ 1.85∗∗∗ 1.63∗∗∗ 0.82∗∗∗ 0.8∗∗∗ 0.68∗∗∗

smb 0.17∗∗ 0.14 0.36 -0.01 0.08 -0.17 0.21 -0.09 0.06 -0.15 -0.12 -0.07 0.38

hml 0.41∗∗∗ 0.13 0.54 0.16 0.56∗∗∗ 0.17 -0.28 -0.10 0.20 -0.12 0.39∗∗∗ 0.16 0.43∗∗

ltg 0.04 0.09 0.07 1.39∗∗∗ 0.08 -0.07 1.09 -0.08 -0.31 -0.16 -0.01 1.34∗∗∗ 1.23∗∗∗

crd 0.26∗∗ -0.25 -1.24 -0.22 0.44 0.44 -0.66 0.91 0.37 -0.20 0.44∗ -0.15 -0.25

PC2 -0.06∗∗∗ -0.02 0.01 -0.05∗∗∗ -0.08∗∗∗ -0.05∗∗ -0.07 -0.09∗ -0.02 -0.04∗∗ -0.08∗∗∗ -0.05∗∗∗ -0.10∗∗∗

size 2.32 0.77 -0.38 1.95 3.12 1.94 2.57 3.43 0.70 1.47 3.27 1.83 3.94

Panel B: Subsamples

1990-2005

PC2 -0.07∗∗∗ -0.03∗∗ -0.02 -0.09∗∗∗ -0.08∗∗ -0.06∗∗ -0.07 -0.09∗ -0.02 -0.04∗∗ -0.11∗∗∗ -0.08∗∗∗ -0.11∗∗∗

size 2.58 1.13 0.84 3.57 3.17 2.18 2.57 3.43 0.61 1.55 4.40 3.39 4.06

2000-2005

PC2 -0.12∗∗∗ -0.07∗∗∗ -0.06∗∗ -0.16∗∗∗ -0.12∗∗∗ -0.12∗∗∗ -0.06 -0.16∗∗∗ -0.04 -0.11∗∗∗ -0.16∗∗∗ -0.17∗∗∗ -0.14∗∗∗

size 4.76 2.59 2.23 6.07 4.53 4.59 2.53 6.22 1.61 4.12 6.15 6.57 5.37
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Table X: Announcement Dates
Dates for the pre-crisis announcements are from O’Hara and Shaw (1990) and Kho, Lee, and Stulz (2000). Dates for the crisis announcements are from the New York Fed Timeline
of the Financial Crisis.

+ All + large - large

Panel A: Pre-Crisis Bailout Announcement Dates

9/19/1984 Comptroller of Currency x

9/24/1998 LTCM x

9/15/1998 Brazilian Crisis x

10/08/1998 Brazilian Crisis x

11/13/1998 Brazilian Crisis x

11/14/1997 South Korean Crisis x

01/25/1995 Mexico Crisis

Panel B: Crisis Announcement Dates

2007/08/10 The FR provides liquidity x

2007/12/12 Term auction facility is announced x

2007/12/17 First Term auction takes place x

2007/12/21 Term auction facility is extended x

2008/03/11 Term securities lending facility is extended x

2008/03/14 Emergency lending from the Fed to Bear Stearns x x

2008/03/17 Bear Stearns is bought for $2 per share x

2008/03/17 Primary dealer credit facility is extended **delayed by a day* x x

2008/05/02 TSLF collateral eligibility is expanded x

2008/07/15 Paulson requests govnmt funds for Fannie Mae and Freddie Mac x x

2008/07/30 84-day TAF auctions are introduced x

2008/09/15 Lehman files for bankruptcy x

2008/09/29 House votes down bailout plan x

2008/10/03 Revised plan passes House x

2008/10/06 TALF increased to $900 billion x

2008/10/14 Treasury announces $250 billion capital injection

2008/11/7 Bush Speech x

2008/11/13 TARP not used for buying troubled assets from banks x

2008/11/25 Term Asset-Backed Securities Loan Facility (TALF) x

2009/01/16 Treasury/ Federal Reserve and the FDIC Provide Assistance to Bank of America x x

2009/02/10 The FRB expands TALF to as much as $1 trillion x

2009/03/18 The FRB purchases up to $300 billion of longer-term Treasury securities x
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Table XI: Bailout announcements
Notes: This table presents the results of the regression RTBTF

t −Rf
t = α+β1PC2+β2PC2D+ǫ. TBTF represents

the value-weighted return of the 10 banks that were announced to be by the Comptroller of Currency in September
of 1984. PC2 represents the daily return of the portfolio that goes long in small banks and shorts large banks.
The weights for the portfolio are given by the second principal component and sum to 1. D represents a dummy
variable that equals 1 after the announcement date and 0 otherwise. The regression is estimated over a 30-, 60-, 90-,
and a 105-day window around the announcement date. A 7-day window around the exact announcement date was
excluded from the sample while estimating coefficients. Dates for the announcements are from O’Hara and Shaw
(1990) and Kho, Lee, and Stulz (2000) .

Coeff 30D 45D 60D 90D 105D

Panel A: Pre-crisis Announcements

9/19/1984; Comptroller of Currency

PC2 -0.19∗∗∗ -0.19∗∗∗ -0.20∗∗∗ -0.21∗∗∗ -0.20∗∗∗

PC2D -0.12∗ -0.05 -0.03 -0.02 0.00

9/24/1998; LTCM

PC2 -0.22∗∗∗ -0.23∗∗∗ -0.24∗∗∗ -0.23∗∗∗ -0.24∗∗∗

PC2D -0.05 -0.05 -0.05 -0.05 -0.05∗

9/15/1998; Brazilian Crisis

PC2 -0.24∗∗∗ -0.25∗∗∗ -0.25∗∗∗ -0.26∗∗∗ -0.26∗∗∗

PC2D -0.03 -0.03 -0.03 -0.02 -0.03

10/08/1998; Brazilian Crisis

PC2 -0.24∗∗∗ -0.24∗∗∗ -0.25∗∗∗ -0.25∗∗∗ -0.25∗∗∗

PC2D -0.08∗ -0.09∗∗ -0.09∗∗∗ -0.08∗∗∗ -0.06∗∗

11/13/1998; Brazilian Crisis

PC2 -0.27∗∗∗ -0.26∗∗∗ -0.27∗∗∗ -0.25∗∗∗ -0.25∗∗∗

PC2D -0.06 -0.05 -0.03 -0.05 -0.03

11/14/1997; South Korean Crisis

PC2 -0.27∗∗∗ -0.27∗∗∗ -0.27∗∗∗ -0.26∗∗∗ -0.26∗∗∗

PC2D -0.01 0.00 0.00 0.00 0.00

01/25/1995; Mexico Crisis

PC2 -0.17∗ -0.11∗ -0.12∗∗∗ -0.15∗∗∗ -0.14∗∗∗

PC2D -0.06 -0.12∗ -0.08 -0.05 -0.05

Pooled Regression

PC2 -0.24∗∗∗ -0.24∗∗∗ -0.24∗∗∗ -0.24∗∗∗ -0.24∗∗∗

PC2D -0.03∗∗ -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗

Panel B: Crisis Announcements

Positive Announcements: All Banks

PC2 -0.17∗∗∗ -0.17∗∗∗ -0.17∗∗∗ -0.16∗∗∗ -0.16∗∗∗

PC2D 0.00 -0.00 -0.01 -0.01 -0.01

Positive Announcements: Large Banks

PC2 -0.11∗∗∗ -0.15∗∗∗ -0.16∗∗∗ -0.15∗∗∗ -0.14∗∗∗

PC2D -0.07∗∗∗ -0.04∗∗ -0.02 -0.02 -0.03∗

Negative Announcements

PC2 -0.15∗∗∗ -0.15∗∗∗ -0.16∗∗∗ -0.16∗∗∗ -0.16∗∗∗

PC2D -0.01 -0.01 0.00 -0.01 -0.01
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Table XII: Baseline model with levered normal and financial disaster risk in the market
Calibrated version of model with Gaussian aggregate consumption growth shocks and two aggregate states. In Panel A, θ is 13.25 and α is 0.75. σ is
3% and µ is 2%. In Panel B, θ is 15 and α is 0.75. σ is 3.5% and µ is 2%. Results shown for 25, 000 random draws.

λi F i E[Ri,e|nd] E[Ri,e] E[Ri,e|exp] E[Ri,e|rec] αi|no dis. βi|no dis E[Ri,e|nd] E[Ri,e] E[Ri,e|exp] E[Ri,e|rec] αi|no dis. βi|no dis

Panel A: Baseline Model with Levered Normal and Financial Disaster risk in the Market

5% aggregate consumption drop 2.5% aggregate consumption drop

Market Market

2.5 0.95 5.80 4.09 3.49 5.64 4.21 3.33 3.19 3.71

Large Banks Large Banks

2 1.00 2.29 2.29 2.30 2.26 −0.63 0.59 2.44 2.44 2.45 2.43 −0.40 0.74

Small Banks Small Banks

2 0.90 7.11 4.18 3.18 6.78 0.71 0.98 6.19 3.28 2.79 4.59 1.30 0.93

2 0.80 12.54 6.16 3.98 11.87 2.22 1.41 10.23 4.16 3.09 6.95 3.21 1.12

2 0.75 15.49 7.19 4.35 14.64 3.07 1.63 12.53 4.60 3.23 8.20 4.25 1.23

2 0.70 18.61 8.25 4.69 17.56 3.96 1.86 14.81 5.05 3.36 9.49 5.31 1.33

2 0.65 21.88 9.33 5.01 20.63 4.88 2.10 17.17 5.51 3.48 10.81 6.44 1.43

2 0.60 27.63 10.43 5.31 23.84 5.92 2.36 19.59 5.96 3.60 12.17 7.56 1.53

Panel B: Baseline Model with Levered Normal and Unlevered Financial Disaster risk in the Market

5% aggregate consumption drop 2.5% aggregate consumption drop

Market Market

2.5 0.95 5.83 5.12 4.87 5.75 5.23 4.88 4.83 5.03

Large Banks Large Banks

2 1.00 3.59 3.59 3.61 3.53 −0.59 0.76 3.78 3.78 3.79 3.75 −0.20 0.78

3 1.00 5.54 5.54 5.58 5.45 −0.85 1.17 5.75 5.75 5.76 5.76 −0.36 1.20

4 5.54 5.54 5.58 5.45 −0.56 1.56

Small Banks Small Banks

2 0.90 10.5 5.80 4.68 8.74 2.32 0.89 7.69 4.76 4.19 6.24 2.05 0.84

2 0.80 14.63 8.13 5.63 14.64 5.48 1.03 12.02 5.77 4.55 8.96 4.56 0.89

2 0.75 17.84 9.35 6.09 17.87 7.23 1.11 14.33 6.28 4.71 10.40 5.86 0.93

2 0.70 21.24 10.62 6.51 21.31 9.03 1.19 16.73 6.81 4.87 11.90 7.21 0.97

1 0.70 10.32 5.27 3.34 10.34 4.50 0.56 8.33 3.43 2.47 5.94 3.71 0.46

1 0.65 12.13 5.98 3.62 12.17 5.57 0.60 9.66 3.74 2.58 6.77 4.50 0.47
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Figure 1: Covariances between risk adjusted returns and principal components
Each panel corresponds to a principal component. The upper left panel uses the first principal component. The black ’X’ represent the average risk
adjusted returns for the 10 size-sorted portfolios of banks. Each blue circle represents a covariance between a given principal component and a given
bank portfolio. The covariances are re-scaled. The normal-risk-adjusted returns are annualized (multiplied by 12) and reported in percentage points.
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Figure 2: Size factor in normal risk-adjusted returns of commercial banks
The solid line plots the 12-month (backward looking) moving average (months t− 11 through t) of the time-series of the weighted sum of the residuals
from the OLS regression of monthly excess stock returns for each size-sorted portfolio of commercial banks on the Fama-French and bond risk factors.
The weights are given by the second principal component and sum to 1. The dashed line represents the growth of index of industrial production. The
gray-shaded regions represent NBER recessions and the light-shaded regions represent banking crisis. The NBER recession dates are published by the
NBER Business Cycle Dating Committee. The dates for the Mexico and LTCM crisis were obtained from Kho, Lee, and Stulz (2000) and the FDIC
(for the Less-Developed-Country debt crisis of 1982). The left-axis references the moving average of the residuals and the right-axis references the index
of industrial production.
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Figure 3: Size factor in bank stocks and recessions
Notes: Simulation of 40 years. The full line is Return on smb; the dotted line is Return on market. θ is 15 and α
is 0.75. σ is 3.5% and µ is 2%. Small bank leverage is 1 and FS = 0.65. Large bank leverage is 3 and FB = 1. The
shaded areas are recessions.
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Separate Appendix

A Derivation of Tail Risk Premium Expression

We use F to denote FC . Consider the investor’s Euler equation for asset i: Et[Mt+1R
i
t+1] = 1. The stand-in

investor’s SDF Mt+1 is described in equation (5). This Euler equation can be decomposed as follows:

(1− pt)Et[M
G
t+1R

i
t+1] + ptEt[M

G
t+1M

D
t+1R

G,i
t+1R

D,i] = 1.

We assume that the distribution of the Gaussian factors is (conditionally) independent of the realization of the
disaster: (

(1− pt) + ptEt[M
D
t+1R

D,i]
)
Et[M

G
t+1R

G,i
t+1] = 1.

Given these assumptions, this expression can be further simplified to yield:

(
1 + ptEt[M

D
t+1F

i − 1]
)
Et[M

G
t+1R

i
t+1] = 1,

where we have substituted the recovery rate F i for RD,i. To see why, note that the Gaussian return on stock i can
be stated as:

RG,i
t+1 =

(Pt+1/Dt+1) + 1

Pt/Dt

Dt+1

Dt

which can be stated as follows, in the case of no disaster: RG,i
t+1 = (Pt+1/Dt+1)+1

Pt/Dt

exp
(
gD +∆ logDi,G

t+1

)
. In case

of a disaster, the return is given by: Ri
t+1 = RG,i

t+1F
i
t+1, which only reflects the effect of the recovery rate on the

dividend growth realization. Using the definition of resilience ptEt[M
D
t+1F

i−1], this yields the following expression:

(
1 +Hi

t

)
Et[M

G
t+1R

G,i
t+1] = 1.

Decomposing this expectation into a covariance term and a cross-product produces:

Et[M
G
t+1]Et[R

i
t+1] + covt[M

G
t+1, R

G,i
t+1] =

(
1 +Hi

t

)
−1

.

Given the linear specification of the stochastic discount factor, this equation can in turn be written in the conditional
beta representation:

Et[R
G,i
t+1] = Et[M

G
t+1]

−1
(
1 +Hi

t

)
−1

−
covt[M

G
t+1, R

G,i
t+1]

vart[MG
t+1]

vart[M
G
t+1]

Et[MG
t+1]

,

or equivalently: Et[R
i
t+1] − βi

t
λt = Rt

(
1 +Hi

t

)
−1

, where βi
t is the vector of multiple regression coefficients in

regression of returns on the factors and λt is the vector of risk prices, and Rt = Et[M
G
t+1]

−1. Note that the variation
in the p/d ratios induced by the variation in the probability of a disaster does not co-vary with the normal risk
factors–by assumption– and hence is not priced in the normal risk premium. In addition, we assume that the
market price of Gaussian risk is constant λ and that the Gaussian factor betas βi

t
are constant. In that case, the

expected return on asset i, conditional on no disaster realization, after adjusting for Gaussian risk exposure, becomes:
Et[R̂

i
t+1] = exp(rt − hi

t), where Et[R̂
i
t+1] = Et[R

G,i
t+1]− βiλ, and rt denotes logRt, and hi

t denotes log(1 +Hi
t).

55



B Other Explanations

Business Cycle Variation in Common and Idiosyncratic Risk Finally, there are factors other
than financial disasters that could explain the cyclicality in the size factor. Large idiosyncratic shocks can cause
bank failures. If the volatility of these shocks increases more in recessions for small banks, that could explain some
of our findings. Table XIII measures the standard deviation of normal-risk-adjusted returns at the portfolio level
(Panel A) and at the bank level (Panel B). The first one measures the quantity of residual common risk. The
second one measures the quantity of residual idiosyncratic risk. The portfolio-level measure in Panel A is the time
series standard deviation of normal risk-adjusted returns, reported for NBER expansions and recessions separately.
The bank-level measure in panel B is the average over time of the cross-sectional standard deviation within each
portfolio of normal-risk-adjusted returns.

During recessions, the exposure of the largest banks to residual common risk increases from 14.2 to 21.6%. For
the smallest banks, the increase is only 3 percentage points. As expected, smaller banks are much more exposed to
idiosyncratic risk than large banks, but the amount of idiosyncratic risk exposure of small banks does not seem to
increase very much during recessions. The standard deviation ranges from 38% for the smallest banks to 26% for
the largest banks during recessions, and from 36% to 20% in the whole sample. However, the largest percentage
point increase in volatility during recessions is noted for the largest banks: from 20% to 26%. For the smallest
banks, the increase is less than two percentage points. There is no evidence to suggest that the cyclicality of the
size factor is due to idiosyncratic banks risk.

[Table 13 about here.]

Business Cycle Variation in Cash Flows We analyzed the data in the report for the first three quarters
of 2001 which corresponds to the recession dates provided by NBER. During this period, small banks outperform
large banks on almost all 13 performance parameters measured. Small banks had a higher return-on-equity (14.00%
versus 13.80%), a higher return-on-assets (1.15 times that of large banks), a lower loan-loss-charge, a higher net-
interest-margin (4.34% versus 3.62%), and comparable cost-of-funds (approximately 3.75% for both). During this
recession, 70% of small banks and 60% of large banks reported earnings gains.

In 2008, large banks are again unable to match the performance of small banks on most measures. For the
first-half 2008, small banks’ ROE is 1.5 times and yield-on-assets is 50 basis-point higher than corresponding values
for large banks. 14.16% of the 558 small banks and 26.72% of the 114 large banks were unprofitable. Finally, 41.22%
of small banks reported an earnings gain as compared to 24.14% of large banks.

For the full-year 2008, 28.70% of small banks and 40.35% of large banks reported losses. Small banks do have
lower return-on-assets and ROE for the full year, but it is not obvious if this is due to a higher cash flow risk. During
second-half 2008, small banks not only earned a higher yield on assets and a higher net interest margin, but also
provisioned more conservatively for losses. The ratio of loan-loss provisions to assets increases to 1.93% for small
banks by 4Q 2008 from 0.76% during 1Q 2008 but this ratio hardly changes for the largest banks.
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C Additional Tables

[Table 14 about here.]

[Table 15 about here.]

[Figure 4 about here.]
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Table XIII: Measuring residual risk exposure
Notes: This table presents the standard deviation of the residuals from the OLS regression of monthly excess returns of each size-sorted
portfolio of commercial banks on Fama-French factors and bond factors. In panel A the row labeled Recession computes the (time series)
standard deviation of the residuals during recession months and the row labeled Entire Sample computes the (time series) standard
deviation for the entire sample. In Panel B we examine the cross-sectional standard deviation of the residuals of banks in each bin for
each period t. Panel B reports the time-series average of the cross-sectional standard deviation for each bin. The row labeled Recession
lists the standard deviation of the residuals during recession months and the row labeled Entire sample lists the standard deviation for
the entire sample. The standard deviations have been annualized by multiplying by

√
12 and are expressed in percentages.

Panel A: Portfolios

Period 1 2 3 4 5 6 7 8 9 10

Recession 15.77 14.39 12.80 12.43 13.76 13.46 15.77 14.79 18.11 21.13

Entire Sample 13.18 11.92 11.43 10.54 10.93 11.17 11.38 10.96 11.95 14.26

Panel B: Individual Banks

Recession 38.40 30.94 32.45 28.86 30.33 27.61 27.48 28.05 26.01 25.54

Entire Sample 36.36 30.05 28.79 27.45 25.88 25.13 24.68 24.03 22.43 20.83
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Table XIV: NBER reference cycle peaks and banking panics
Notes: The dates of the banking panics were taken from Gorton (1988, p. 223) and Wicker (1996, p.155). Months before peak and
Months after peak indicate the number of months relative to the peak when the banking crisis occurs.

Peak Trough Panic Months before peak Months after peak

October 1873 March 1879 September 1873 1
March 1882 May 1885 May 1884 17
July 1890 May 1891 November 1890 4
January 1893 June 1894 February 1893 1
December 1895 June 1897 October 1896 10
May 1907 June 1908 October 1907 5
January 1913 December 1914 August 1914 20
August 1929 March 1933 October-November 1930 19

September-October 1931
February-March 1933

July 1981 November 1982 February-July 1982 8
December 2007 September-December 2008 9
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Table XV: Coefficients for the cross-sectional regression of annual returns on size as measured by
market capitalization
Notes: Pooled regression. The dependent variable is the annual return for each individual bank in our sample. The independent
variables are the market capitalization of the bank, the book to market value for the bank, the book value of the bank, and the leverage
of the bank. All variables are at date t. Statistical significance is indicated by *, **, and *** at the 10%, 5% and 1% levels respectively.
The standard errors were adjusted for heteroscedasticity and auto-correlation using Newey-West with 3 lags. Annual data. The sample
is 1970-2005.

constant 9.85 ∗∗ -0.14

logBook -2.45∗∗∗ 0.00

logMarketcap 2.76∗∗∗ 0.54∗∗

Book
Marketcap

0.00

Leverage 0.00 -0.01

adj − R2 0.0038 0.0004
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Figure 4: Size factor in normal risk-adjusted returns of all banks
The solid line plots the 12-month (backward looking) moving average (months t− 11 through t) of the time-series of the weighted sum of the residuals from the OLS regression of
monthly excess stock returns for each size-sorted portfolio of all financial firms on the Fama-French and bond risk factors. The weights are given by the second principal component
and sum to 1. The dashed line represents the growth of index of industrial production. The dates are indicated on the x-axis. The left-axis references the moving average of the
residuals and the right-axis references the index of industrial production.
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