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1 Introduction

We use bank stock returns to develop an ex-ante measure of the distortion created by the implicit

collective guarantee extended to large U.S. financial institutions. The events after the collapse

of Lehman in September 2008 confirm the commonly held view that the U.S. government and

monetary authorities are reluctant to let large financial institutions fail collectively, even though

they may be occasionally willing to let individual institutions fail. Moreover, even if regulators

were willing to let these large banks fail, the uncertainty about the resolution regime for distressed

banks clearly favors the creditors and shareholders of large financial institutions.

The ex-ante cost of these guarantees can be measured by examining the rate of return required

by shareholders for holding different size-sorted bank stock portfolios. We find that a long position

in the stock portfolio of largest U.S. commercial banks and a short position in the stock portfolio

of the smallest banks under-performs an equally risky portfolio of all (non-bank) stocks and gov-

ernment and corporate bonds by more than 7.78 percent per annum over the last 39 years. The

average risk-adjusted returns decrease monotonically in ten portfolios of commercial banks sorted

by market cap. We compute an implicit subsidy of 3.1% to the cost of equity capital for the largest

U.S. commercial banks, and a 3.25% tax on the smallest banks. In a model that is calibrated

to match the equity premium, we back out a difference in the financial disaster recovery rate of

dividends between the largest and smallest banks of 35 cents on the dollar.

Small banks differ from large banks in many ways, but, if markets are reasonably efficient,

these differences should not lead to differences in average risk-adjusted returns on bank portfolios

unless there is bank-specific risk that is priced by markets but not spanned by the traded returns

on other stocks. The critical difference between banks and other non-financial corporations is the

phenomenon of bank runs during banking crises, not just runs by depositors but also by other

creditors (see Gorton and Metrick, 2009). This leads us to consider banking panics as a potential

explanation: rare events that are priced into expected returns on portfolios of banks, but not

spanned by the returns on other assets. To model the asset pricing impact of these rare events, we

use a version of the Barro (2006); Rietz (1988) asset pricing model with a time-varying probability
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of rare events, developed by Gabaix (2008); Wachter (2008); Gourio (2008), with two sources of

priced risk: normal risk and financial disaster risk.

There is direct evidence for this mechanism. Historically, the probability of a financial disaster

increases during recessions. Because of the size-contingent nature of the implicit guarantee ex-

tended by the government, the recovery rate for bank stockholders in case of a financial disaster

realization depends on the size of the banks in the portfolio. As a result, the variation in the

probability of a financial disaster generates a common factor in the normal-risk-adjusted returns of

size-sorted bank stock portfolios. This is a size factor because the loadings of bank stock returns

on this size factor are determined by the recovery rates and hence by size. The size factor is a

measure of the probability of a financial disaster. We find that there is a size factor in that part

of the returns on size-sorted portfolios of bank stocks that is orthogonal with respect to standard

risk factors in the data, and it is closely tied to to the business cycle.

This size factor is the second principal component of the risk-adjusted returns of size-sorted

portfolios of bank stocks. The size factor amounts to a long position in small bank stocks and a short

position in large bank stocks. After controlling for exposure to this size factor, the monotonically

decreasing size pattern in average risk-adjusted returns disappears. Hence, the covariance between

the returns on size portfolios of banks stocks and the size factor explains the size pattern in average

risk-adjusted returns. In this specific case, the characteristic –size– determines the covariance,

because of the market’s participants expectations about the government’s actions in case of a

banking crisis. This size factor in bank stocks is highly pro-cyclical, even though it is orthogonal

to standard risk factors. During NBER recessions, this factor drops by an average of 5.06% per

month or 60.83% per annum. This is not the case in other industries. Another explanation for

the cyclical variation in the size factor would be counter-cyclical variance of idiosyncratic shocks

for smaller banks. While smaller banks are more exposed to idiosyncratic risk, we do not see large

increases in this type of risk during recessions.

The average return of this size factor is the price of (government-provided) financial disaster

insurance, and the subsidy can be measured as the loading on this factor times this risk price.
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In the financial disaster model, the average normal-risk-adjusted return on the long position in

the largest banks and the short position in the smallest banks is a disaster insurance premium

priced into large bank stocks. Without the government-induced asymmetry in recovery rates,

this premium would be zero. At least 635 of the 778 basis points can be directly attributed to

covariation with the size factor. We can decompose this further into a 3.1% per annum implicit

subsidy to the largest banks and a 3.25% tax on the smallest banks. The largest banks have an

average market cap of $ 152 bn in 2005 dollars.1 For the largest commercial banks, this amounts

to an annual subsidy of $4.71 bn per bank.

While we do not have direct evidence linking the implied differences in disaster recovery rates

to the government, there is indirect evidence of this linkage. Over the entire sample, the estimated

subsidy for all commercial banks is 2.32% and 1.95% for the GSE’s. These institutions benefit

from special provisions: deposit insurance2, access to the discount window at the Federal reserve

and other special lending facilities in the case of commercial banks, and widely acknowledged debt

guarantees in the case of GSE’s. We find that the GSE’s benefited from an equity cost of capital

subsidy that is as large as those of the largest commercial banks, even though the GSE’s are

considerably smaller. Moreover, this subsidy was growing over time. For example, the Fannie Mae

subsidy tripled to 6.57% in 2000-2005. Furthermore, the estimated subsidy for investment and

foreign banks and hedge funds, which do not benefit from these special provisions in the U.S., are

much smaller and statistically insignificant.

A general equilibrium version of the model calibrated to match the equity premium can match

the average normal-risk-adjusted returns if the shareholders of the largest bank lose 35 cents less

per dollar of pre-disaster cash flows than stockholders of the smallest banks, but only if the stock

market itself is not too exposed to financial disaster risk. If it is, the spread in the risk premia

between small and large banks is absorbed by the spread in β’s, not the α’s.

The key to activating the collective bailout clause is common variation in bank payoffs. Our

paper quantifies this common variation by building portfolios of commercial bank stocks sorted

1This number only includes the market cap of the commercial bank, not the bank holding company.
2The Federal Deposit Insurance Corporation Improvement Act of 1991 limits the protection of creditors, but it

provides a systemic risk exception.
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by market capitalization. Our measure of the subsidy is determined by the firm’s loading on the

common factor, which gauges its systemic risk exposure. As far as we know, our measure is the

first to make this connection.

We find large across-the-board increases in the size of the subsidy for large commercial, invest-

ment banks and GSE’s in the 2000-2005 subsample, after the repeal of the Glass-Steagall Banking

Act. These can be interpreted as systemic risk increases. This period also coincides with the

dramatic growth in securitization, which allows financial institutions to benefit from the collective

bailout option more aggressively by eliminating idiosyncratic risk (see Brunnermeier and Sannikov,

2008, for a clear description of this effect of securitization). Because we record the largest load-

ings on the size factor for ‘smaller’ firms like Lehman and Fannie Mae with huge systemic risk,

we conclude that these loadings on the size factor truly measure the systemic impact of finan-

cial institutions. In that sense, our paper contributes to the emerging literature on systemic risk

measurement for financial institutions (see Adrian and Brunnermeier, 2008).

Why look at bank stocks? Clearly, the US government and regulators are willing to let small

banks fail, not so for large banks. The FDIC reports that 256 banks have failed in the last two

years since the failure of IndyMac. All of these banks are small by most standards. By looking

at equity, we can compare the exposure of small and large banks to different sources of aggregate

risk. This would not be possible if we focused on debt issued by banks or derivatives for bank

debt, simply because this data is not available for small banks. The bank stock returns data

also allows for a broader historical perspective. Of course, ex ante, one could have expected that

the government would wipe out shareholders of large financial institutions in case of a bailout.

Our evidence suggests that this is not what market participants expected. This is not surprising.

O’Hara and Shaw (1990) document large positive wealth effects for shareholders of banks who were

declared too big too fail by the Comptroller of the Currency in 1984, and negative wealth effects

for those banks that were not included.3

3A number of events have been important in creating and sustaining the too-big-too fail perception in the market.
Among these are the FDIC’s intervention to prevent the failure of Continental Illinois National Bank in 1984, Federal
Deposit Insurance Corporation Improvement Act of 1991, and the Federal Reserve’s intervention in 1998 to save
LTCM. While the FDICIA limits the protection of creditors,it provides a systemic risk exception.
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In more recent work, Acharya, Bharathb, and Srinivasan (2007) find that recovery rates for

bondholders actually increase for financials when the industry is in distress; this is not the case for

any other industry. This seems consistent with our findings for large financial institutions. Our

evidence is consistent with the findings of Gatev, Schuermann, and Strahan (2007); they document

a reverse bank-run phenomenon for large deposit-taking institutions in periods of tight aggregate

liquidity. In related work, Gatev and Strahan (2006) find that large banks provide aggregate

liquidity insurance to non-financial corporations. Finally, Boyd and Gertler (1993) analyze the

impact of size on the performance of banks as measured by accounting data. They show that

increased competition and financial innovation have induced the largest banks to participate in

riskier investments. They also document the poor performance of large banks, as measured by

ratios of net loan charge-offs and net income to assets, as compared to that of small and medium

sized banks.

The key to activating the collective bailout clause is common variation. In a recent paper,

Acharya and Yorulmazer (2007) and Farhi and Tirole (2009) explore the incentives for banks in

this type of environment to seek exposure to similar risk factors. The government’s guarantee

creates complementarities in firm payoffs. In earlier work, Schneider and Tornell (2004) explain

the currency mismatch on firm balance sheets in emerging markets endogenously by means of a

bailout guarantee for the non-tradeables sector. Our paper quantifies common variation in stock

returns of small versus large banks by building portfolios of commercial bank stocks sorted by

market capitalization.

Estimating the entire ex post, realized cost of the various measures implemented by the U.S.

Treasury, the Federal Reserve system, the FDIC and other regulators in the face of the crisis is

hard. Veronesi and Zingales (2010) estimate the cost to be between $21 and $44 billion with a

benefit of more than $ 86 billion.Veronesi and Zingales (2010)’s main focus is computing the ex

post cost of the bailout plan. However, they also use a version of Merton (1974) model to check

the ex ante costs.

The rest of this paper is organized as follows. In Section 2 we construct portfolios of bank stocks
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sorted by size and we measure the financial disaster risk premium. Section 3 develops a simple

asset pricing model with time-varying probabilities of a financial disaster that we subsequently use

to measure the distortion caused by the government’s guarantee. Section 4 establishes that there

is a pro-cyclical size factor in the normal-risk-adjusted returns of these portfolios, as predicted by

the theory. In section 5 we check that these findings are specific to the banking industry. We use

a calibrated version of the model to back out the implied differences in recovery rates in section 6.

Section 7 concludes.

2 Size Anomalies in Bank Stock Returns

Section 2.1 describes the data. Section 2.2 computes the average normal-risk-adjusted returns on

10 size-sorted portfolios of banks stocks in the data. We find that there is a size pattern in these

α’s. The average value of this normal-risk-adjusted return is minus 7.78% per annum when short

in the first size decile and long in the last size decile of banks.

2.1 Data

We collect data on equity returns from the Center for Research in Security Prices (CRSP) for all

firms with Standard Industrial Classification (SIC) codes 60, 61, and 62. Firms with these SIC

codes are defined as commercial banks, non-depository credit institutions, and investment banks

respectively. Henceforth, we refer to commercial banks, i.e. firms listed under SIC code 60, simply

as banks and refer to commercial banks, credit institutions, and investment banks, i.e. firms listed

under SIC codes 60, 61, and 62, collectively as financial firms. We exclude data for all financial

firms that are inactive and/or not incorporated in the United States. We exclude financial firms

not incorporated in the United States because these financial firms will be influenced by regulations

applicable both in the country of operation and the country of incorporation. Since these policies

vary across countries, our focus on financial firms operating and incorporated inside the United

States ensures that all firms in our analysis are subject to a uniform regulatory regime.

We start by focussing on portfolios of commercial bank stocks. We employ the standard port-
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folio formation strategy of Fama and French (1993) for the purpose of analysis. In January of each

year, we rank all bank stocks by market capitalization. The stocks are then allocated to 10 port-

folios based on their market capitalization. We calculate value-weighted returns for each portfolio

for each month over the next year. At the end of this exercise, we have monthly value-weighted

returns for each size-sorted portfolio of banks from January 1970 to December 2008. While the

CRSP data are available from 1926, our analysis begins only in 1970 for banks. Only a small

fraction of all banks that operate in the US are publicly listed. For instance, for the years 2000 to

2008, data is available on CRSP for approximately 630 banks. This compares to more than 7000

FDIC-insured banks operating in the United States over the same period. This is mainly an issue

for small banks. The largest 600 banks control more than 88% of all commercial bank assets in

the United States4. Most of these large banks are publicly listed. To the extent that small banks

that are not publicly listed are very different from those that are, some of our results need to be

qualified.

Market cap Table I reports the total market capitalization of banks in each size-sorted portfolio

as a fraction of the total market capitalization of the banking sector in January of each year. All

the numbers are reported in percentages. We also report the standard deviation (σ), the minimum,

the maximum fraction of market capitalization, and the average number of banks in the portfolio.

The first panel in Table I shows that during 1970 - 1980, the smallest banks (those in portfolio

1) on average represented just 0.36% of the total market capitalization of all commercial banks.

This compares to 49.78% represented by the largest banks (those in portfolio 10). During any year

between 1970 and 1980, banks in portfolio 1 at most accounted for 0.57% of the total market cap

of the commercial banking sector and at the minimum accounted for 0.25%. Table I clearly shows

the increasing concentration of the U.S commercial banking sector. The top 10% banks account

for nearly 50% of the total sector market capitalization in the 70s while they account for more

than 90% during the last decade; nearly 84% of this accounted for by the largest 1/2 in this group.

4As per FDIC Bank Statistics and Data available at
http://www.fdic.gov/bak/statistical/stats/index.html
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Table I: Market capitalization of size-sorted portfolios of commercial banks

Notes: This table presents the total market capitalization of firms in each size-sorted portfolio as a percentage of total market
capitalization for the entire banking sector. The market values are measured in January of each year. Mean represents the average
value of this percentage over the years specified. σ captures the variation in this proportion. Minimum and Maximum values indicate
the range of this ratio for each portfolio. N is the average number of banks in each portfolio over the same period.

1 2 3 4 5 6 7 8 9 10A 10 10B 10B - 1
1970-1980

Mean 0.36 0.92 1.50 1.95 3.50 4.67 7.61 11.51 18.21 13.77 49.78 36.01 35.66
σ 0.10 0.28 0.32 0.38 0.89 1.26 2.10 3.11 2.21 5.08 6.84 6.45 6.34
Min 0.25 0.41 1.21 1.05 2.83 3.47 5.84 8.82 15.49 0.00 36.04 22.20 21.94
Max 0.57 1.61 2.39 2.56 5.60 8.21 11.30 19.79 22.67 17.95 56.49 44.77 44.20
N 8.00 9.00 9.00 9.00 9.00 8.00 9.00 9.00 9.00 4.00 9.00 5.00

1980-1990
Mean 0.33 0.72 1.10 1.66 2.39 3.61 5.71 8.84 17.28 17.97 58.34 40.38 40.05
σ 0.08 0.22 0.29 0.43 0.62 0.94 1.53 1.97 2.60 1.65 7.88 8.90 8.82
Min 0.21 0.42 0.68 1.03 1.45 2.19 3.35 5.37 12.67 15.31 49.55 30.87 30.65
Max 0.45 1.05 1.59 2.23 3.11 4.87 7.31 11.03 21.20 20.41 72.63 57.19 56.75
N 26.00 27.00 26.00 27.00 27.00 26.00 27.00 26.00 26.00 13.00 27.00 14.00

1990-2000
Mean 0.17 0.34 0.52 0.76 1.10 1.56 2.32 3.99 8.52 12.37 80.71 68.34 68.18
σ 0.04 0.07 0.11 0.16 0.24 0.37 0.55 0.97 2.46 4.21 4.75 8.52 8.48
Min 0.11 0.22 0.32 0.46 0.65 0.88 1.29 2.21 4.09 5.21 72.63 57.19 57.08
Max 0.21 0.44 0.68 1.03 1.45 2.19 3.35 5.37 12.67 17.37 89.74 84.53 84.32
N 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 28.00 57.00 29.00

2000-2009
Mean 0.13 0.24 0.35 0.50 0.68 0.95 1.42 2.33 4.62 4.98 88.78 83.80 83.67
σ 0.02 0.05 0.07 0.09 0.12 0.18 0.29 0.47 0.97 0.82 2.20 2.80 2.78
Min 0.08 0.14 0.21 0.30 0.44 0.61 0.88 1.47 3.21 4.44 85.30 78.00 77.92
Max 0.17 0.31 0.45 0.62 0.85 1.21 1.80 3.15 6.62 7.31 92.66 88.22 88.05
N 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 31.00 63.00 31.00

In any given year between 1970 and 1980, on average, we have at least 9 banks per size-sorted

portfolio and this increases to 62 banks for any year between 2000 and 2009.

Returns on bank stock portfolios Table II provides mean returns for the size-sorted portfolios

of banks over the 1970-2005 sample. The mean monthly returns for all portfolios are annualized

by multiplying by 12 and are expressed in percentages. The last column reports the difference in

mean annual returns between the 10th and the 1st portfolio. Over the entire sample, a portfolio

that goes long in a basket of large banks and short in a basket of small banks on average loses

4.47% per annum. For 2000-2005, the annual loss on this portfolio is 9.64% per annum.

This relationship between bank size and equity returns may seem consistent with the general

size effect documented for non-financial firms5, but we will show that it is actually quite different.

Fama and French (1996) document that the size anomaly for non-financials disappears when one

5(see Banz, 1981; Basu, 1983; Lakonishok, Shleifer, and Vishny, 1993)
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Table II: Average returns on size-sorted bank portfolios

Notes: This table presents the mean returns for each size-sorted portfolio of banks. The first column indicates the years over which
mean returns were computed. The monthly mean returns have been annualized by multiplying by 12 and are expressed in percentages.

Year 1 2 3 4 5 6 7 8 9 10A 10 10B 10B - 1
1970 − 2005 17.47 16.73 16.15 15.96 16.05 17.03 15.89 14.37 13.77 14.24 13.26 13.01 -4.47
1980 − 2005 19.81 19.18 18.09 17.84 18.31 19.94 19.38 17.15 16.31 16.77 16.17 15.96 -3.85
1990 − 2005 19.61 20.90 18.24 17.67 20.32 19.15 18.69 17.34 16.62 17.00 16.90 16.97 -2.64
2000 − 2005 19.98 22.36 20.43 20.09 21.51 21.17 20.85 18.40 15.76 15.91 10.61 10.34 -9.64

allows for multiple priced factors; Fama and French (1993) implement a three-factor model that

includes the market, a size factor (SMB) and a value factor (HML). If the same holds true for

commercial banks, then a portfolio of large banks should not earn lower normal-risk-adjusted

returns after accounting for exposure to the size factor SMB as compared to a portfolio of small

banks. This is not what we find. In fact, we find that the size effect for banks becomes larger when

we adjust for exposure to standard risk factors.

2.2 Measuring Normal Risk Compensation

We start by adjusting the portfolio returns for exposure to the standard risk factors that explain

cross-sectional variation in average returns on other portfolios of stocks and bonds. We do so by

comparing the performance of the bank portfolio to the performance of a portfolio of non-bank

stocks with the same exposure to normal risk factors.

Banks manage a portfolio of bonds of varying maturities and credit risk.6 Therefore we also

include two bond risk factors in addition to three stock risk factors. The vector of normal risk

factors

f t =

[
MKT SMB HML LTG CRD

]

is 5 × 1. MKT , SMB, and HML represent the returns on the three Fama-French stock factors:

the market, small minus big, and high minus low respectively. The Fama/French factors are

constructed using the 6 value-weight portfolios of all stocks on NYSE, AMEX and NASDAQ

(including financials) formed on size and book-to-market. MKT is the value-weight return on all

6In a recent paper Longstaff and Myers (2009) also show that banks can be treated as active managers of fixed
income portfolios.
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NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from

Ibbotson Associates). We use LTG to denote the excess returns on an index of 10-year bonds

issued by the U.S Treasury as our first bond risk factor. The USA 10-year Government Bond Total

Return Index (LTG) is downloadable from Global Financial Data. The identifier is TRUSG10M .

In addition, active participation by banks in markets for commercial, industrial and consumer loans

exposes them to credit risk. We use CRD to denote the excess returns on an index of investment

grade corporate bonds, maintained by Dow Jones, as our second bond risk factor. We use the

one-month risk-free rate7. The Dow Jones Corporate Bond Return Index (CRD) is downloadable

from Global Financial Data. The identifier is DJCBTD.

We regress monthly excess returns for each size-sorted portfolio on the three Fama-French

factors and two bond factors. For each portfolio i we run the following time-series regression to

estimate the vector of betas βi:

Ri
t+1 − Rf

t+1 = αi + βi,′f t+1 + εi
t+1, (1)

where Ri
t+1 is the monthly return on the ith size-sorted portfolio. Since all of the risk factors in f t

are traded returns, the estimated residuals in the time series regression are the estimated normal-

risk-adjusted returns R̂i
t+1. The estimated intercept α is the average disaster risk premium, i.e.

the residual risk premium after taking out the compensation for normal risk.

Table III provides the results of the regression specified in equation (1). The table reports the

regression coefficients for each size-sorted portfolio along with their statistical significance and the

adjusted R2.

Table III excludes the recent crisis.8 The estimated intercepts decrease nearly monotonically

with bank size from 5.45% for the first portfolio to -2.66% for the last portfolio (10B). The implicit

risk prices for the factors are given by: λt =

[
5.80 0.88 6.62 2.92 4.01

]
.

7Data for the risk-free rate and the Fama-French factors was collected from Kenneth French’s website at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

8According to proposition 1 in the next section, we need to exclude the realization of the banking crisis from the
sample to measure disaster risk premia.

11

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Table III: Measuring normal and disaster risk compensation in bank stock portfolios

Notes: This table presents the estimates from an OLS regression of monthly excess returns on each size-sorted portfolio of banks on
the Fama-French stock and bond risk factors. MKT , SMB, and HML are the three Fama-French stock factors: the market, small
minus big, and high minus low respectively. LTG is the excess return on an index of long-term government bonds and CRD is the
excess return on an index of investment-grade corporate bonds. Statistical significance is indicated by *, **, and *** at the 10%, 5%
and 1% levels respectively. The α’s have been annualized by multiplying by 12 and are expressed in percentages. The standard errors
were adjusted for heteroscedasticity and auto-correlation using Newey-West with 3 lags. The sample is 1970-2005.

1 2 3 4 5 6 7 8 9 10A 10 10B

α 5.45∗∗ 4.11∗ 3.25 2.05 1.75 2.11 0.64 -0.70 -2.51 -1.94 -2.53 -2.66

MKT 0.36∗∗∗ 0.44∗∗∗ 0.49∗∗∗ 0.55∗∗∗ 0.59∗∗∗ 0.63∗∗∗ 0.69∗∗∗ 0.71∗∗∗ 0.87∗∗∗ 0.97∗∗∗ 1.07∗∗∗ 1.07∗∗∗

SMB 0.39∗∗∗ 0.44∗∗∗ 0.41∗∗∗ 0.47∗∗∗ 0.50∗∗∗ 0.47∗∗∗ 0.47∗∗∗ 0.44∗∗∗ 0.43∗∗∗ 0.18∗∗ -0.03 -0.06
HML 0.32∗∗∗ 0.38∗∗∗ 0.39∗∗∗ 0.50∗∗∗ 0.52∗∗∗ 0.53∗∗∗ 0.54∗∗∗ 0.55∗∗∗ 0.57∗∗∗ 0.51∗∗∗ 0.42∗∗∗ 0.41∗∗∗

LTG -0.16 -0.11 -0.05 0.10 0.15 0.12 0.07 0.12 0.26∗∗ 0.10 0.15 0.23∗∗

CRD 0.51∗∗∗ 0.41∗∗∗ 0.35∗∗ 0.21 0.17 0.29∗ 0.30∗∗ 0.18 0.11 0.21 0.13 0.07

R2 29.12 40.47 42.80 53.16 53.56 55.36 61.49 62.99 65.09 61.85 63.62 59.16

8 - 3 9 - 2 10A - 1 10 - 1 10B - 1

α -3.95∗∗ -6.62∗∗∗ -7.38∗∗∗ -7.97∗∗∗ -8.10∗∗∗

MKT 0.23∗∗∗ 0.43∗∗∗ 0.61∗∗∗ 0.71∗∗∗ 0.71∗∗∗

SMB 0.02 -0.01 -0.21∗∗ -0.42∗∗∗ -0.45∗∗∗

HML 0.15∗∗ 0.19∗ 0.19 0.09 0.09
LTG 0.17 0.37∗∗∗ 0.25 0.30∗ 0.39∗∗

CRD -0.17 -0.30∗ -0.30 -0.38∗ -0.44∗

R2 6.21 18.83 20.68 27.91 26.74

A long-short position that goes long one dollar in a portfolio of the largest banks and short one

dollar in a portfolio of the smallest banks loses 8.10% over the non-disaster sample. This return

spread is statistically significant at the 1% level. The average normal-risk-adjusted return on a

9-minus-2 position is -6.62 % per annum, and -3.95 % per annum for the 8-minus-3 portfolio. These

are statistically significant at the 1% and the 5% level respectively.

Equity Risk Compensation The second row of Table III reports the coefficient on excess

market return, MKT , for each size-sorted portfolio. The market beta increases monotonically

with bank size. Over the entire sample, a portfolio of large banks has a market β of 1.07 as

compared to a β of 0.36 for a portfolio of the smallest banks. The largest banks were 2.9 times

more exposed to market risk as compared to the smallest banks. This difference may be partly

due to differences in leverage. By 1990-2009, large bank stocks were nearly 4.0 times more exposed

to market risk than small banks. Thus large banks have collectively increased exposure to market

risk over time. As a result, the long-short position described above (i.e. long $1 in large banks and

short $1 in small banks) will be long the market by 71 cents. This net exposure to market risk
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increases to $1.04 during 1990-2009.

The loadings on SMB and HML also depend systematically on size. We first look at the

exposure to the size factor. Contrary to what one expects to find, over the entire sample, the

loading on SMBt+1 actually increases from 0.36 for the 1st portfolio to 0.50 for the 5th portfolio,

and then it drops to -0.03 for the 10th portfolio. Clearly, the common variation in banks stock

returns along the size dimension is very different from that in other industries. The same pattern

holds true for the loadings on HML which increase from 0.32 for the 1st portfolio to 0.42 for the

last portfolio.

Bond Risk Compensation There is a clear size pattern in the loadings on the bond risk factors

as well. LTG, the slope coefficient on the excess return on an index of 10-year bonds issued by the

U.S Treasury, is negative and statistically insignificant for small banks and is positive and almost

always statistically significant for large banks. The loadings vary monotonically in size. A $1 long

position in large banks and a $ 1 short position in small banks not only results in a net exposure

of 30 cents to long-term government bonds over the entire sample, but this exposure also increases

to 89 cents over 1990-2009. Thus large bank stocks relatively out-perform small bank stocks when

excess returns on long term government bonds are high.

Credit Risk Compensation On the other hand, the loadings on the credit risk factor, CRD,

are negative for large banks and positive for small banks. A long-large-banks-short-small-banks

position delivers a net negative exposure to credit markets of 38 cents over 1970-2005 and a positive

exposure of 30 cents to bond markets.

2.3 Other Asset Pricing Factors

Overall, because of the exposure to government bond and credit markets, the portfolio that goes

long in large and short in small banks offers insurance to investors against large, adverse shocks

to the US economy. This is the direct recession insurance effect that is captured by the standard

factors. However, the pattern in the average normal-risk-adjusted returns suggest we may be
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missing factors. Including other factors like the Pastor and Stambaugh (2003) aggregate liquidity

factor or the VIX volatility index in the vector of normal risk factors does not change these average

returns significantly. Panel I in Table IV shows the effects of including aggregate liquidity as a

priced factor. If anything, the spread in α’s in the sample excluding the current financial crisis is

larger. This is to be expected because large banks are commonly viewed as supplying liquidity when

aggregate liquidity is low; Gatev, Schuermann, and Strahan (2007)document a ‘reverse bank-run

phenomenon’ for large deposit-taking institutions in periods of tight aggregate liquidity.

The prevailing view is that momentum returns reflect the profitability of a dynamic trading

strategies that buys winners and sells loser stocks rather than a priced risk factor. Nevertheless,

we want to check the exposure of our banking portfolios to the momentum factor. Panel II in

Table IV shows the effects of including momentum as a priced factor. Including momentum as a

priced factor does reduce the difference in average normal-risk-adjusted returns by at least 200 basis

points, because large banks have negative loadings on the momentum factor while small banks have

positive loadings. This presumably happens not because banks are pursuing momentum trading

strategies, i.e., large banks are actually short in momentum strategies, and small banks are long

in momentum. If anything, one would have expected the opposite. However, large banks load

negatively on the momentum risk factor because momentum is tied to aggregate shocks (e.g., the

growth rate of industrial production growth), as first pointed out by Liu and Zhang (2008), and

to banking panics: 1$ invested in momentum in August 1929 was worth 77 cents in March 1933.

Furthermore, 1$ invested in momentum in December 2007 was worth 59 cents in December 2009.

The relevance of this will become clear in the next section. We show that the normal-risk-adjusted

returns on banking portfolios are closely tied to industrial production growth. Finally, in Table A

in the appendix, we exclude HML and SMB from the regression to guard against the possibility

that these are not truly risk factors. The spread in α is only slightly smaller.
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Table IV: Adding liquidity and momentum as normal risk factors: Differences

Notes: This table presents the estimates from OLS regression of monthly excess returns of the difference portfolios of banks on Fama-
French, bond risk factors, liquidity and momentum. LIQt+1 is the aggregate liquidity factor of Pastor and Stambaugh (2003). MOM is
Kenneth French’s momentum factor. Statistical significance is indicated by *, **, and *** at the 10%, 5% and 1% levels respectively. α’s
have been annualized by multiplying by 12 and are expressed in percentages. The standard errors were adjusted for heteroscedasticity
and auto-correlation using Newey-West with 3 lags. The sample is 1970-2005.

Year 10B - 1 10 - 1 10A - 1 9 - 2 8 - 3

Panel I: Adding a Liquidity Factor

α -8.83∗∗∗ -8.64∗∗∗ -7.75∗∗∗ -6.92∗∗∗ -4.16∗∗

MKT 0.70∗∗∗ 0.71∗∗∗ 0.61∗∗∗ 0.43∗∗∗ 0.23∗∗∗

SMB -0.44∗∗∗ -0.41∗∗∗ -0.20∗∗ -0.01 0.03
HML 0.06 0.07 0.17 0.18∗ 0.14∗∗

LTG 0.42∗∗ 0.34∗∗ 0.27 0.38∗∗∗ 0.18
CRD -0.47∗∗ -0.41∗ -0.31 -0.31∗ -0.18
LIQ 0.18∗∗ 0.17∗∗ 0.09 0.08 0.05

R2 27.58 28.64 20.81 18.98 6.23

Panel II: Adding a Momentum Factor

α -3.93 -3.83 -4.43 -6.92∗∗∗ -3.90∗

MKT 0.70∗∗∗ 0.71∗∗∗ 0.61∗∗∗ 0.43∗∗∗ 0.23∗∗∗

SMB -0.44∗∗∗ -0.40∗∗∗ -0.20∗∗ -0.01 0.03
HML 0.06 0.07 0.17 0.19∗ 0.15∗∗

LTG 0.46∗∗∗ 0.38∗∗ 0.30∗ 0.37∗∗∗ 0.17
CRD -0.51∗∗ -0.45∗∗ -0.35 -0.29∗ -0.17
MOM -0.27∗∗∗ -0.27∗∗∗ -0.19∗∗∗ 0.02 -0.00

R2 29.97 31.36 22.57 18.68 5.99

3 Asset Pricing Model

To help us interpret our empirical findings, we use a stylized dynamic asset pricing model with

time-varying probability of banking panics. In section 6, we develop a general equilibrium version

of this model.

Financial Crises and Recessions The U.S. government and the Federal Reserve , as well

as other governments, and central banks around the world, stand ready to collectively bail out

large financial institutions in the case of rare, large, adverse shocks to the real economy or the

financial system (or both), like the ‘Great’ recession of 2007-2008, that are perceived as a threat

to the stability of the financial system. Banking panics are not uncommon even in developed

economies. Since 1800, the U.K., the U.S. and France have experienced 12,13 and 15 banking

panics respectively. According to Reinhart and Rogoff (2009). Table V lists the U.S. banking

panics starting in 1873 as well as the NBER business cycle peaks and troughs. Except for the first

banking panic, all of these occur during the contraction phase of the U.S. business cycle. The dates
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Table V: NBER reference cycle peaks and banking panics

Notes: The dates of the banking panics were taken from Gorton (1988, p. 223) and Wicker (1996, p.155). Months before peak and
Months after peak indicate the number of months relative to the peak when the banking crisis occurs.

Peak Trough Panic Months before peak Months after peak

October 1873 March 1879 September 1873 1
March 1882 May 1885 May 1884 17
July 1890 May 1891 November 1890 4
January 1893 June 1894 February 1893 1
December 1895 June 1897 October 1896 10
May 1907 June 1908 October 1907 5
January 1913 December 1914 August 1914 20
August 1929 March 1933 October-November 1930 19

September-October 1931
February-March 1933

July 1981 November 1982 February-July 1982 8
December 2007 September-December 2008 9

of the banking panics were taken from Gorton (1988, p.223) and Wicker (1996, p.155). Banks are

different in this respect from non-financials: Giesecke, Longstaff, Schaefer, and Strebulaev (2010)

examine 150 years of U.S. corporate history and they document a weak relation between the

business cycle and corporate bond defaults. Overall, the U.S. has spent 13% of the time since 1800

in a banking panic, compared to 9.2% for the U.K. and 11.5% for France (see Reinhart and Rogoff,

2009, chapter 10 for more details). The number of banking crises since 1800 is 13 for the U.S.

We set up a stylized model in which the probability of this rare event (disaster) varies over time,

and we think of recessions and financial crises as periods during which this probability is elevated.

The model serves two purposes. First, it shows how to measure the disaster risk premia in the

data using stock returns on bank portfolios. To derive these analytical results, we need strong

assumption. We relax these assumptions in the general equilibrium model developed in section 6,

and we show that the qualitative results survive. Second, it yields a key testable prediction: a size

factor in normal-risk-adjusted returns tied to the U.S. business cycle.

3.1 Normal and Financial Disaster Risk

We adopt a version of the models with time-varying probabilities of disasters proposed by Gabaix

(2008) and Wachter (2008). These are extensions of the rare event models developed by Barro
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(2006); Rietz (1988). In our model, the stochastic discount factor has two components: a standard

normal component and a disaster component:

Mt+1 = MG
t+1 × 1 in states without banking crisis (2)

Mt+1 = MG
t+1 × MD

t+1 in states with banking crisis.

MG
t+1 denotes the representative investor’s intertemporal marginal rate of substitution (IMRS) in

normal times, i.e., in states without a disaster. In the simplest CCAPM-version of his model,

Gabaix (2008) defines ∆ log Ct+1 = gC +σεt+1 as the growth rate of consumption in normal times,

and ∆ log Ct+1 = gC +σεt+1+log F C
t in the financial disaster state, where F C

t > 0. εt+1 is Gaussian

white noise.

In the absence of a financial disaster, the IMRS is completely determined by normal risk, i.e.

risk that is not related to the disaster. Henceforth, we refer to these risk factors simply as normal

risk factors, to distinguish these from the disaster risk. The normal risk factors are denoted f t+1.

To derive analytical expressions, we impose some restrictive, simplifying assumptions.

Assumption 1. The projection of the Gaussian component of the stochastic discount factor on

the space of traded payoffs is linear in the normal risk factors:

Proj(MG
t+1|X) = b′f t+1.

We use βi
t to denote the vector of conditional normal risk factor betas for the returns on asset

i, and we use λt to denote the vector of normal risk prices. We make some additional simplifying

assumptions in order to characterize disaster risk premia analytically.

Assumption 2. The conditional distribution of the normal risk factors f t is independent of the

disaster realization. Moreover, pt does not co-vary with the normal risk factors ft.

This second assumption implies that the recession risk itself is not priced, only the financial
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disaster risk itself is. Finally, we assume there is a connection between the business cycle and the

incidence of banking panics.

Assumption 3. The probability of a banking crisis pt increases during recessions.

In section 6, we relax these assumptions and we develop a general equilibrium version of this

model in which the probability of a banking panic increases in a recession.

3.2 Measuring Financial Disaster Risk Premia

We do not model how and why banks are different from other corporations (see Diamond and Dybvig,

1983; Diamond and Rajan, 2001; Calomiris and Kahn, 1991, for models of banking panics). In-

stead we simply focus on what transpires in the event of a banking crisis. In case of a banking

crisis, the government and the monetary authorities stand ready to intervene. We consider the

following simple specification for the (disaster component of) dividend process of a portfolio of

bank stocks of size i:

∆ log Di
t+1 = gD + σiεi

t+1 in states without banking crisis

∆ log Di
t+1 = gD + σiεi

t+1 + log F i
t in states with banking crisis

εi
t+1 is standard Gaussian white noise. F i

t can be thought of as the recovery rate; in case the rare

event is realized, a fraction F i of the dividend gets wiped out (see Longstaff and Piazzesi, 2004;

Barro, 2006). This recovery rate will vary across banks depending on size, because the realization

of this rare event can trigger a collective bailout of larger banks, but not necessarily of smaller

banks. To obtain a simple characterization of the disaster risk premium in banks stocks, we make

the following assumption.The resilience of banks is defined as H i
t = ptEt

[
F−γ

t+1F
i − 1

]
. As the

US economy enters into a recession, pt, the probability of a large adverse shock to the economy

starts to increase, and the resilience of large banks HB
t increases relative to small banks HS

t if

F B
t+1 > F S

t+1. In fact, we assume that the recovery rate F n
t > F n−1

t increases monotonically in size.

In the interest of tractability, we assume that the recovery rates F i are constant over time, and we
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also assume that the size of the consumption disaster F c is constant over time.

To derive a simple expression for risk premia, we abstract from variation in normal betas and

risk prices.

Assumption 4. The conditional beta βt and the conditional risk prices λt are constant.

Proposition 1. The expected return on asset i, conditional on no disaster realization, after ad-

justing for normal risk exposure, becomes Et[R̂
i
t+1] = exp(r−hi

t), where Et[R̂
i
t+1] = Et[R

i
t+1]−βiλ,

and r denotes log R, and hi
t denotes log(1 + H i

t).

The proof is in Appendix A.

Corollary 1. In a sample without a disaster realization, the average return (in population) will be

given by: E[R̂i
t+1] = exp(r − h

i
), where h

i
= E[log (1 + H i

t)].

Differences in Resilience The difference in α’s reported in Table III in a regression of returns

of the bank stock portfolios on the normal risk factors in a sample without a rare event realization

reveal the differences in average resilience: log αB − log αS = h
S
− h

B
. We refer to this as the

disaster risk discount on small bank stock prices or premium in large bank stock prices. Hence,

if this model is the right one, we can interpret the 8% difference between small and large bank

portfolios in the normal-risk-adjusted returns as measuring differences in the resilience of these

bank portfolios to banking crises. However, we will compute a more conservative measure by only

imputing that part of these differences in average normal-risk-adjusted returns that can directly

be attributed to the covariation with the size factor in section 4.

Monotonic Pattern in Average Normal Risk-adjusted Returns The characteristic (the

size of the bank) actually determines the financial disaster risk premium, because of the collective

bailout guarantee for large banks. This creates an opening for arbitrage opportunities.

Let us assume that there is a single critical size threshold. In this case, the low recovery rate

(F i = F ) applies for all bank portfolios with size below the cutoff. Also, suppose banks do not

switch between portfolios as a result of growth, mergers or acquisitions. For banks in portfolios
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above the cutoff, the higher recovery rate applies: F i = F . The baseline model predicts large

positive, but constant, α’s for all the banks in size-sorted portfolios below the threshold, and much

smaller, negative α’s for all banks above the threshold. In that sense, the pattern we found in

the data is surprising. However, this stark (α, α) outcome can only be an equilibrium if there are

prohibitively large costs associated with merging and acquiring banks.

Suppose there are no such costs. Consider two banks (A and B) just below the threshold with

recovery rates F A = F B = F . By bundling the cash flows of these two banks (A and B), the

recovery rate increases to F A+B = F , and the value of a claim to the cash flows of (A and B) will

exceed the sum of the value of these cash flows: Π[{DA}]+Π[{DB}] ≥ Π[{DA+B}]. In the absence

of costs, this represents an arbitrage. However, if there are positive costs C, then the value of A

and B has to increase such that Π[{DA}] + Π[{DB}] ≥ Π[{DA+B}] − C[A, B] to eliminate the

arbitrage opportunities. This increase reflects the probability that these banks end up crossing the

size threshold because of growth or because of a future merger or acquisition. Hence, the α’s for

these banks (A and B) will decrease, as their value rises, even though they do not directly benefit

from the guarantee yet. Alternatively, A and B will actually merge right away.

This is what happened in the U.S. banking sector over the last decades. There was a large

amount of concentration in the banking sector in the last decades. Table I reported an increase

from 50% (in the 70’s) to 90 % (in the last decade) in the share of total market cap accounted for

by the top decile. The increase in the share of total balance sheet accounted for by the top decile

is from 52% to 95%. Kane (2000) and Brewer and Jagtiani (2007) document acquiring banks are

willing to pay larger premiums for banks that put them over critical size thresholds, consistent

with our hypothesis.

By backward induction, the same argument applies to smaller banks in other portfolios. How-

ever, the costs of bundling the cash flows (C[D, E, F, . . . , Z]) of many smaller banks to reach this

critical threshold increase, and this mitigates the effect on the average risk-adjusted returns. This

can account for the monotonically decreasing pattern in the α’s that we have found in the data.
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Table VI: Measuring normal risk exposure in bank stock portfolios: Excluding NBER recessions

Notes: This table presents the estimates from OLS regression of monthly excess returns of each size-sorted portfolio of banks on
Fama-French and bond risk factors only for those months in which the U.S. economy was (not) in a recession. Statistical significance is
indicated by *, **, and *** at the 10%, 5% and 1% levels respectively. α’s have been annualized by multiplying by 12 and are expressed
in percentages. The standard errors were adjusted for heteroscedasticity and auto-correlation using Newey-West with 3 lags.

1 2 3 4 5 6 7 8 9 10A 10 10B

Panel A: Financial Disaster Risk Premia with Estimated Loadings Excluding Recessions

α1 5.75 4.96 3.55 2.56 2.35 3.06 1.25 -0.16 -1.48 -1.16 -1.79 -1.91

α2 3.11 2.48 1.08 -0.43 0.01 0.46 -1.00 -1.59 -3.04 -2.27 -3.16 -3.24

Panel B: Estimated Loadings Excluding NBER Recessions - 1970-2009

MKT 0.30∗∗∗ 0.37∗∗∗ 0.45∗∗∗ 0.50∗∗∗ 0.50∗∗∗ 0.54∗∗∗ 0.64∗∗∗ 0.66∗∗∗ 0.78∗∗∗ 0.87∗∗∗ 1.03∗∗∗ 1.04∗∗∗

SMB 0.35∗∗∗ 0.42∗∗∗ 0.40∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.41∗∗∗ 0.47∗∗∗ 0.40∗∗∗ 0.37∗∗∗ 0.16∗∗ -0.12 -0.17

HML 0.35∗∗∗ 0.36∗∗∗ 0.39∗∗∗ 0.47∗∗∗ 0.46∗∗∗ 0.46∗∗∗ 0.52∗∗∗ 0.50∗∗∗ 0.51∗∗∗ 0.49∗∗∗ 0.39∗∗∗ 0.37∗∗∗

LTG -0.14 -0.05 -0.03 0.07 -0.05 -0.05 -0.02 -0.00 0.15 0.01 0.05 0.12

CRD 0.47∗∗ 0.28 0.33∗∗ 0.25∗ 0.42∗∗ 0.43∗∗∗ 0.32∗∗ 0.30∗∗ 0.19 0.26 0.16 0.10

Panel C: Estimated Loadings Excluding NBER Expansions - 1970-2009

MKT 0.54∗∗∗ 0.56∗∗∗ 0.45∗∗∗ 0.60∗∗∗ 0.68∗∗∗ 0.75∗∗∗ 0.89∗∗∗ 0.89∗∗∗ 0.99∗∗∗ 1.11∗∗∗ 1.44∗∗∗ 1.42∗∗∗

SMB 0.34∗ 0.39∗∗∗ 0.45∗∗∗ 0.53∗∗∗ 0.55∗∗∗ 0.51∗∗∗ 0.48∗∗∗ 0.61∗∗∗ 0.73∗∗∗ 0.37∗ 0.20 0.22

HML 0.27∗∗ 0.37∗∗∗ 0.23∗∗∗ 0.44∗∗∗ 0.46∗∗∗ 0.63∗∗∗ 0.88∗∗∗ 0.98∗∗∗ 0.87∗∗∗ 0.70∗∗∗ 1.25∗∗∗ 1.33∗∗∗

LTG -0.19 -0.07 -0.00 0.26∗∗ 0.50∗∗∗ 0.53∗∗∗ 0.68∗∗∗ 0.86∗∗∗ 1.02∗∗∗ 0.89∗∗∗ 0.83∗∗ 0.87∗∗∗

CRD 0.33 0.21 0.14 -0.16 -0.43∗∗ -0.27 -0.55∗ -0.86∗∗∗ -0.80∗∗ -0.79∗∗ -0.92∗ -0.92∗

3.3 Covariation between pt and normal risk factors

Obviously, the independence of risk factors and pt (see assumption (2)) that we need to derive

simple, analytical characterizations of the risk-adjusted returns is very restrictive. In section 6,

we develop a general equilibrium version of this model, in which these restrictions do not hold.

However, we show there is a qualitatively similar relation in this general equilibrium version of the

model between the average risk-adjusted returns and the financial disaster recovery rates provided

that the market itself is not very exposed to financial disaster risk.

In the data, the probability of a disaster will co-vary with the standard risk factors, which

violates assumption (2). We try to guard against this by recomputing the loadings excluding

recession data.

The loadings on the credit risk factor, CRD, are negative for large banks and positive for small

banks. A long-large-banks-short-small-banks position delivers a net negative exposure to credit

markets of 73 cents over 1970-2009 and a positive exposure of 53 cents to bond markets. These

coefficients imply that a 1% fall in excess returns on an index of investment-grade bonds results in
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a 0.73% increase in excess equity returns for a portfolio of long-large-banks-short-small-banks over

1970-2009. This is puzzling. Why should large banks load negatively or not-at-all on proxies for

credit risk? One can argue that better access to markets for securitization allows large banks to

more effectively manage exposure to credit risk. This does not, however, explain the negative or

statistically insignificant coefficients on proxies of credit risk, especially considering the fact that

the securitization process requires these banks typically hold some portion of the first-loss tranche.

In any case, because of the credit risk exposure, the long in big, short in small banks portfolio

outperforms during US recessions.

When we exclude the recent crisis, this number decreases from 73 cents to 38 cents. The

negative credit exposures in the long-short positions are much smaller: the 10-minus-one loading

on the credit risk factor drops by 30 basis points in absolute value. This is not surprising. The

normal risk factors in the data are correlated with pt, the probability of a rare event realization. As

the probability of a banking crisis increased during the recent crisis, credit spreads increases and

large banks outperformed small banks as a result. In the model, we assumed that pt is orthogonal

to f t, but this assumption is obviously violated in the data. This implies that our estimates of

the disaster risk premium in small bank stocks is likely to be biased downwards, because part of

the effect of variation in pt is absorbed by the ‘normal’ risk factors themselves. This is the likely

explanation for the anomalous negative loadings of large bank returns on the credit factor and the

large positive loadings on the long bond return.

In fact, these negative credit loadings largely disappear when we exclude NBER recessions

when pt starts to vary from our sample. These results are reported in Table VI. The first line in

Panel A reports the α computed using the loadings estimated on the 1970-2005 sample without

recessions. The second line in Panel A reports the α computed using the loadings estimated on

the 1970-2009 sample without recessions. We used the same risk prices: the averages of the factor

computed using the entire sample. Panel B reports the estimated factor loadings excluding NBER

recessions. These are a better measure of normal risk exposure. If we use these factor loadings

estimates instead of the ones estimated over the entire sample, but we keep the same risk prices,
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the estimated spread in α’s between portfolio 1 and 10 is 7.54%, with the risk price estimates from

the 1970-2005 sample.

4 Size Factor in the Risk-Adjusted Returns of Bank Stocks

Next we look for direct evidence of this mechanism. As is clear from eq. (1), a key prediction of

this model is that this variation in the probability of a financial disaster in turn imputes common

variation to the normal-risk-adjusted stock returns along the size dimension, since we assumed

that the recovery rate depends on size. The loadings on this common factor are proportional to

F i − 1. To see why, note that log(1 + H i
t) ≈ ptEt

[
F−γ

t+1F
i − 1

]
. This is a size factor because the

loadings depend on the recovery rates and hence (by assumption) on size. The conditional normal-

risk-adjusted multiplicative risk premium on a long-short portfolio is given by the following simple

expression: log Et

[
R̂B

t+1

]
− log Et

[
R̂S

t+1

]
= hS

t+1 − hB
t+1. As pt increases during recessions and

banking crisis, the risk premium on this long-short portfolio becomes more negative. The size

factor tracks the variation in pt.

In this section, we show that the second principal component of normal-risk-adjusted returns

R̂i has loadings that depend monotonically on size. We interpret this slope factor in normal-risk-

adjusted returns as the common factor in returns imputed by time variation in the probability of

a disaster. In the model, this disaster risk premium increases in recessions if the probability of a

disaster pt increases in recessions. This is what we find in the data. As dictated by the model,

we look at the time-series properties of the normal-risk-adjusted returns –the residuals of the time

series regression in equation (1) in the data. We find that there is a size factor in the time series of

the normal-risk-adjusted-returns that explains the pattern in average normal-risk-adjusted returns.

We compute the residuals from the time series regression of returns of each size-sorted portfolio of

banks on the equity and bond risk factor in 1. We extract the loadings for the principal components

(w1, w2) of these regression residuals and we report the results in Table VII. This table only shows

the loadings for the first two principal components.

The first principal component is a banking industry (’level’) factor with roughly equal weights on
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Table VII: Principal components of size-sorted bank stock returns

Notes: This table presents the loadings for the first and second principal components (w1, w2) extracted from the residuals of the
regression specified in equation 1. The last row indicates the % explained by each principal component.

1970 - 2009 1980 - 2009 1990 - 2009 2000 - 2009

Portfolio w1 w2 w1 w2 w1 w2 w1 w2

1 0.31 0.42 0.34 0.37 0.34 0.36 0.25 0.32

2 0.29 0.35 0.33 0.29 0.34 0.34 0.27 0.41

3 0.28 0.31 0.30 0.27 0.27 0.27 0.19 0.32

4 0.28 0.26 0.30 0.21 0.28 0.21 0.22 0.34

5 0.33 0.16 0.33 0.17 0.33 0.21 0.26 0.30

6 0.34 0.00 0.35 0.03 0.34 0.04 0.31 0.17

7 0.35 -0.21 0.33 -0.20 0.34 -0.20 0.39 -0.17

8 0.32 -0.26 0.29 -0.28 0.30 -0.29 0.37 -0.26

9 0.32 -0.37 0.26 -0.35 0.26 -0.37 0.30 -0.36

10 0.33 -0.51 0.31 -0.63 0.35 -0.58 0.49 -0.40

% 47.63 18.37 53.79 19.67 56.55 21.06 57.55 21.26

all 10 portfolios. The second principal component is a size factor that loads positively on portfolios

of small banks and negatively on portfolios of large banks. The loadings vary monotonically in size.

This is a candidate risk factor because the loadings line up with the average normal-risk-adjusted

returns that we want to explain. Together, these two principal components explain 66% of the

residual variation over the entire sample and this fraction increases steadily to nearly 79% of the

residual variation during 2000-2009.

Next, we take our (T × 10) matrix of estimated residuals, ǫt, formed above and multiply it by

the (10 × 10) loadings of the principal components, to construct the asset pricing factors. The

weights (w1, w2) are re-normalized to (ŵ1, ŵ2) so that they sum to 1.9 This results in a (T × 10)

linear combination of the residuals. We focus on the first two principal components, denoted

PC1
t = ŵ

′
1ǫt and PC2

t = ŵ
′
2ǫt. Thus for each month, the residuals of each of the 10 portfolios from

the above regression are multiplied by their corresponding re-normalized weights in the second

principal component and added together.

PC2 is the normal-risk-adjusted return on a portfolio that is long small banks and short large

banks. We refer to PC2 as a size factor. The weights of the portfolio are given by the second

9w2 is given by:

[
2.70 2.24 1.94 1.68 1.00 0.00 −1.31 −1.65 −2.34 −3.26

]

.
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principal component. Figure 1 plots the 12-month moving average (months t − 11 through t)

of PC2 series along with a plot of the index for industrial production. The units are monthly

returns. The grey-shaded regions in the graph represent NBER recessions and the light-shaded

regions represent banking crisis. The NBER recession dates are published by the NBER Business

Cycle Dating Committee at http://www.nber.org/cycles.html. The dates for the Mexico and

LTCM crisis were obtained from Kho, Lee, and Stulz (2000) and the FDIC (for the Less-Developed-

Country debt crisis of 1982).

The size factor, which by construction is orthogonal to the bond and equity pricing factors,

declines during recessions and financial crises, as predicted by the model. Moreover, it is very

sensitive to large slowdowns in the growth rate of industrial production. We plot a backward

looking 12-month moving average, which explains why the red line seems to drop a couple of

months after the start of the NBER recessions. The red line also tends to increase before the end

of the NBER recession. There are two exceptions. One is the double-dip recession in the early

80’s. Small banks stocks were already recovering from the huge declines suffered relative to large

bank stocks, and hence starting from very low valuations, when the second recession started. The

second is the 2001 recessions in the wake of the LTCM crisis. Moreover, in 2001, the NBER chose

the starting point of the recessions well after the decline in industrial production started (in other

recessions, the starting date coincides with the decline in i.p.). On average, during recessions, this

normal-risk-adjusted return drops by an average of 3.30% per month or 39.57% per annum.

The long-in-small-short-in-large-banks is pro-cyclical and leads unemployment and non-farm

payroll data by 12 months, both lagging business cycle indicators, while it has a smaller lead for

industrial production growth. The 12-month moving average (t − 11 to t) of the normal-risk-

adjusted returns on PC2 has a correlation of -.30 with the year-over-year change in the unemploy-

ment rate, .25 with year-over-year non-farm payroll growth, and finally a correlation of .36 with

year-over-year industrial production growth. The 24-month moving average (t − 23 to t) of the

normal-risk-adjusted returns on PC2 has a correlation of -.49 with year-over-year non-farm pay-

roll growth, .45 with non-farm payroll growth, and finally a correlation of .46 with year-over-year
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Figure 1: Size factor in normal risk-adjusted returns

The solid line plots the 12-month (backward looking) moving average (months t − 11 through t) of the time-series of the weighted
sum of the residuals from the OLS regression of monthly excess stock returns for each size-sorted portfolio of financial firms on the
Fama-French and bond risk factors. The weights are given by the second principal component and sum to 1. The dashed line represents
the growth of index of industrial production. The dates are indicated on the x-axis. The left-axis references the moving average of
the residuals and the right-axis references the index of industrial production. The dark shaded regions represent NBER recessions
and the three light shaded regions represent the Less-Developed-Country debt crisis of 1982, the Mexico Peso crisis of 1994, and the
Long-Term-Capital-Management crisis of 1998 respectively.
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industrial production growth.

Panel A in Table VIII shows the value at the trough of the NBER cycle (the end of the banking

crisis) of a $ 100 invested at the peak of the NBER cycle (the start of the banking crisis) in

the slope portfolio - the weights are given by the normalized second principal component. The

third column reports the dollar value without risk-adjustment; the second reports the dollar value

after subtracting the performance of a benchmark portfolio with the same exposure to the bond

and equity factors ($100 + x means the a cumulative return of x% in excess of the benchmark

portfolio). This can be thought of as the performance on a portfolio that is hedged to have zero

betas with respect to the standard risk factors. On average, the unhedged slope portfolio loses $

35 during a recession or banking crisis. The fourth column column reports the returns on the same

investment strategy after hedging out the exposure to the standard equity and bond factors. That

hedged strategy loses more than $ 60 per recession. If we start the 2001 recession in November

2000 instead of March 2001, when the decline in industrial output starts, the normal-risk-adjusted

return value of the portfolio is $ 101 at the end of the recession. As is clear from the bottom panel,

the largest losses are concentrated in the first 6 months of the NBER recessions, just under $ 30

in normal-risk-adjusted terms. Moreover, this portfolio (both hedged and unhedged) experienced

steep declines during the LDC and the LTCM crises. Panel B in Table VIII shows the average

value of the portfolio n months into a recession. The hedged portfolio gradually drops more in

value. 12 months after the peak it hast lost almost $63 dollars of its value.

Table B in the appendix reports the same returns, but after excluding the first portfolio with

the smallest banks. After adjusting for normal risk exposure, this hedged long-short portfolio loses

about $ 34 per recession. Most of these losses are concentrated in the first 6 months.

Covariances line up with Average Returns The size factor not only has an appealing macro-

economic interpretation, but it also is a natural candidate for explaining the size pattern in normal-

risk-adjusted returns, because the variation in average normal-risk-adjusted returns lines up nicely

with the variation in the covariance between the size factor (second principal component) and

the returns on the portfolios. This is not the case for any of the other principal components,
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Table VIII: Cumulative return on 2nd pc portfolio in recessions and financial crises

Notes: This table shows the value of a $100 invested in a portfolio that goes long in small banks and shorts large banks. The weights of
the portfolio are given by the second principal component, re-normalized so that they sum to 1 (ŵ2). $100 is invested in this portfolio at
the ’Start’ date and its value, given in columns 3 and 4, is measured on the ’End’ date. The column labeled Value represents the value
of 100$ invested at the peak (or start of the crisis) at the trough (or end of the crisis) on this portfolio and the column labeled Hedged
Value represents the normal-risk-adjusted returns on this portfolio. The average is computed for all NBER recessions only using the
NBER dating conventions. An asterisk indicates non-NBER dating. The bottom panel shows the value of a $100 investment n months
into the recession. The first two columns use all portfolios. The last two columns exclude the first portfolio containing the smallest
banks.

Panel I: Portfolio Value at NBER Trough

Start End Value Hedged Value

NBER Recessions

01: 1970 11: 1970 -12.23 32.74

11: 1973 03: 1975 -17.10 26.50

01: 1980 11: 1982 47.34 8.51

07: 1990 03: 1991 19.54 17.05

03: 2001 11: 2001 287.33 138.48

12: 2007 06: 2009 63.53 11.77

Average 64.73 39.17

Financial Crises

08: 1982 12: 1989 69.71 64.45

01: 1994 06: 1995 161.19 125.16

01: 1997 04: 1999 6.70 37.45

Panel II: Average Portfolio Value n months after NBER Peak

Value Hedged Value

Month 1 128.26 112.52

Month 2 88.76 86.04

Month 3 105.17 84.70

Month 4 86.36 65.93

Month 5 75.06 60.55

Month 6 99.79 65.32

Month 12 8.80 37.21
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Figure 2: Covariances between risk adjusted returns and principal components

Each panel corresponds to a principal component. The upper left panel uses the first principal component. The black ’X’ represent the
average risk adjusted returns for the 10 size-sorted portfolios of banks. Each blue circle represents a covariance between a given principal
component and a given bank portfolio. The covariances are re-scaled. The normal-risk-adjusted returns are annualized (multiplied by
12) and reported in percentage points.

as is clear from figure 2. This figure plots the average normal-risk-adjusted returns (labeled x)

against the covariance of that return with the n-th principal component (labeled o). The second

principal component is the only candidate factor, because the 2nd PC is the only one for which the

covariances line up with the average excess returns, and they do, which suggests that the common

variation in banks stock returns captured by the second principal component can explain the size

anomaly in bank stock returns.

To check whether the size factor actually explains the average normal-risk-adjusted returns,

we define a new independent variable. We take the (T × 10) matrix of returns for each of the

size-sorted portfolio of banks and multiply this by the (10 × 1) loading of the second principal

component. We re-normalize the loadings of the second principal component so that they sum

to one. As above, we use ŵ2 to denote the re-normalized weights. Then: R[PC2]t+1 = ŵ2Rt

denotes the results of our multiplication and is a (T × 1) vector of the returns weighted by the

second principal component. Thus for each month, the returns of each of the 10 portfolios are

multiplied by their corresponding weights in the second principal component and added together.
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This portfolio is long in small banks and short in large banks. The weights of the portfolio are

given by the second principal component loadings, re-normalized to sum to one. We then run

a time-series regression of the returns on the size-sorted bank portfolios on the equity and bond

factors, and the size factor R[PC2]:

Ri
t+1 − Rf

t+1 = αi + βi,′f t+1 + βi
PC,2R[PC2]t+1 + εi

t+1. (3)

The disaster-and-normal-risk-adjusted returns or α’s from this regression are presented in Table

IX. The risk-adjusted returns on all portfolios are smaller than 250 basis points over the entire

sample. The average risk-adjusted return on the long-short position is reduced to -27 basis points.

Remarkably, not only does the magnitude of the α’s change, but all of them are statistically

insignificant. In addition, there is no discernible size-related pattern in these normal-risk-adjusted

returns. The size factor explains the size effect in normal-risk-adjusted returns of bank portfolios.

4.1 Sorting on Total Balance Sheet

We also sort commercial banks into portfolios by total assets instead of market capitalization. Total

assets may seem like the more relevant characteristic when it comes to the government guarantee.

While our results in the main paper were based on 15,536 bank-years, the results here are based on

only 12,556 bank-years. The reduction in the number of banks is primarily on account of missing

balance sheet data in the CRSP-Compustat merged data-set. These results are very close to the

ones obtained by sorting on market cap. The separate appendix provides a detailed description.

We find essentially the same size anomaly in average normal-risk-adjusted returns and we find a

similar size factor.

4.2 Measuring the Subsidy

The average return of this size factor, Ê [R[PC2]] is 3.24% per month or 38.93% annualized. This

can be interpreted as the price of the government insurance against banking panics. We can use
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Table IX: Implicit tax for size-sorted portfolios of commercial banks

Notes: This table presents the estimates from OLS regression of monthly excess returns on each size-sorted portfolio of commercial
banks on the Fama-French stock factors, bond factors and the second principal component weighted returns. MKT , SMB, and HML
are the three Fama-French factors: the market, small minus big, and high minus low respectively. LTG is the excess return on an index
of long-term government bonds and CRD is the excess return on an index of investment-grade corporate bonds. RPC2 is the time-series
of the returns of the size-sorted portfolios weighed by the loadings of the second principal component ŵ2. The weights of the second
principal component have been re-normalized so that they sum to 1. Statistical significance is indicated by *, **, and *** at the 10%,
5% and 1% levels respectively. α’s have been annualized by multiplying by 12 and are expressed in percentages. The standard errors
were adjusted for heteroscedasticity and auto-correlation using Newey-West with 3 lags. The last two lines show the loadings on the
size factor and the implicit tax (risk price times loading on PC2). The annualized risk price is 38.93% in the sample ending in 2005.

Average Normal-and-Disaster-risk-adjusted returns

Year 1 2 3 4 5 6 7 8 9 10A 10 10B

1970 - 2005 0.78 0.60 0.26 -0.41 0.56 2.28 1.77 0.87 0.27 0.98 1.66 1.84

8 - 3 9 - 2 10A - 1 10 - 1 10B - 1

1970 - 2005 0.61 -0.33 0.88 0.20 1.06

Loading on 2nd PC

1 2 3 4 5 6 7 8 9 10A 10 10B

1970 - 2005 0.08∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.02∗∗ 0.00 -0.02∗∗ -0.03∗∗∗ -0.05∗∗∗ -0.05∗∗∗ -0.07∗∗∗ -0.08∗∗∗

Tax

1 2 3 4 5 6 7 8 9 10A 10 10B

1970 − 2005 3.25 2.44 2.08 1.71 0.83 -0.12 -0.79 -1.10 -1.94 -2.03 -2.92 -3.13

this risk price to infer the implicit subsidy to some of the largest commercial banks as this risk

price times the loading on PC2:

τ i = βi
PC2

Ê [R[PC2]] .

This is an alternative to using the estimated α’s as the measure of the implicit tax. It is a

more conservative measure because it only imputes that part which can be attributed directly to

covariance with the size factor. The last line in Table IX reports this tax rate on an annualized

basis. To compute the ex ante cost, we should use the sample ending in 2005. The implicit tax

ranges from minus 3.25% for the smallest banks to minus 3.13% for the largest banks.

Evidence for Investment Banks, Foreign Banks and GSE’s We also compare the estimated

tax to commercial banks to the tax for investment banks and foreign banks listed in the U.S. stock

markets. Table X compares the results for a value-weighted index of commercial banks, investment

banks, foreign banks and GSE’s. The first line reports the value-weighted average market-cap for

each index. For foreign banks, this only includes the market capitalization of U.S. listed shares.
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Investment and foreign banks do not benefit from the subsidy to commercial banks, but the GSE’s

(Fanny Mae and Freddie Mac) clearly do. Over the entire sample, the subsidy to commercial

banks is 2.32% and the subsidy to GSE’s is 1.95%. The loadings on R[PC2] are much smaller

(investment banks) or positive (foreign banks) and not statistically significant. We also computed

the loading on R[PC2] for an index of hedge fund returns 10. Over the entire sample (from 1991

- 2005) the loading for hedge fund returns on R[PC2] is 0.02 (t-stat of 2.66) and this reduces to

0.01 (t-stat of 0.91) over 2000 - 2005. These results lend support to our interpretation of the size

factor. Commercial banks benefit from deposit insurance and have access to the discount window

at the Federal reserve and other special lending facilities. GSE’s are smaller than the commercial

banks, but we find that they benefit as much from the subsidy. This is sensible because GSE’s

benefit from explicit government guarantees.11

After elimination of Glass-Steagall The Glass-Steagall Act (1933) effectively separated U.S.

commercial banking from investment banking. The provisions of this act preventing bank holding

companies from owning financial companies were repealed in 1999. The repeal effectively allowed

large commercial banks to originate and trade collateralized debt obligations. Our measure in-

dicates a marked increase in systemic risk. After 2000, the subsidy to commercial banks more

than doubled to 4.78%, and the subsidy to GSE’s more than tripled to 6%. These numbers were

computed by multiplying the loadings with the same risk price (38.93%) computed over the entire

sample. There was also a marked increase in the exposure of investment and foreign banks to the

size factor.

Individual Banks In Table X, we show the same results for the largest commercial, investment

banks and GSE’s. Panel A shows the results for the entire sample excluding the crisis. The implicit

subsidy are largest for the large commercial banks. For BoA (1973-2009), we estimate a subsidy of

3.12% per annum, for and Wells Fargo (1970-2009) 3.27% per annum, for Citibank (1986-2009) 1.94

% per annum. Overall, these effects are much smaller for investment banks than for commercial

10The total returns for an index of hedge funds is from Datastream and is identified by HFRIFWC(TOTR)
11The GSE’s and foreign banks were suggested to us by Martin Bodenstein.
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Table X: Implicit subsidy for investment banks, foreign banks and GSE’s.

Notes: This table presents the estimates from OLS regression of monthly excess returns on an value-weighted index of commercial banks, investment banks, and GSE’s on the
Fama-French stock factors, bond factors and the second principal component weighted returns. The table also reports results for individual banks. Foreign banks were selected
based on the share-code in CRSP. Investment banks are those with SIC code 62. A share-code ending in two indicates that firms were incorporated outside the US. For individual
banks, the longest available sample for each bank till 2009 was selected. The starting year for each bank is mentioned in parenthesis under the name of the bank. PC2 is the
time-series of the returns of the size-sorted portfolios weighed by the loadings of the second principal component ŵ2. The weights of the second principal component have been
re-normalized so that they sum to 1. Statistical significance is indicated by *, **, and *** at the 10%, 5% and 1% levels respectively. α’s have been annualized by multiplying by
12 and are expressed in percentages. The standard errors were adjusted for heteroscedasticity and auto-correlation using Newey-West with 3 lags. The implicit subsidy is the risk
price (38.93%) times (minus) loading on PC2).

Index of Banks Individual Banks

Commercial Investment Foreign GSE BoA Citi GS LEH ML MS WFC FNM FRE

Market Cap(Jan 05) 118.57 24.12 44.71 50.61 187.30 254.56 52.22 34.33 55.78 61.25 103.71 62.48 44.95

start (1973) (1986) (1999) (1994) (1971) (1986) (1970) (1970) (1989)

Panel I: Full Sample

MKT 0.83∗∗∗ 1.65∗∗∗ 0.97∗∗∗ 0.82∗∗∗ 1.12∗∗∗ 1.37∗∗∗ 1.50∗∗∗ 1.54∗∗∗ 1.85∗∗∗ 1.63∗∗∗ 0.82∗∗∗ 0.8∗∗∗ 0.68∗∗∗

SMB 0.17∗∗ 0.14 0.36 -0.01 0.08 -0.17 0.21 -0.09 0.06 -0.15 -0.12 -0.07 0.38
HML 0.41∗∗∗ 0.13 0.54 0.16 0.56∗∗∗ 0.17 -0.28 -0.10 0.20 -0.12 0.39∗∗∗ 0.16 0.43∗∗

LTG 0.04 0.09 0.07 1.39∗∗∗ 0.08 -0.07 1.09 -0.08 -0.31 -0.16 -0.01 1.34∗∗∗ 1.23∗∗∗

CRD 0.26∗∗ -0.25 -1.24 -0.22 0.44 0.44 -0.66 0.91 0.37 -0.20 0.44∗ -0.15 -0.25
PC2 -0.06∗∗∗ -0.02 0.01 -0.05∗∗∗ -0.08∗∗∗ -0.05∗∗ -0.07 -0.09∗ -0.02 -0.04∗∗ -0.08∗∗∗ -0.05∗∗∗ -0.10∗∗∗

subsidy 2.32 0.77 -0.38 1.95 3.12 1.94 2.57 3.43 0.70 1.47 3.27 1.83 3.94

Panel II: Subsamples

1990-2005

PC2 -0.07∗∗∗ -0.03∗∗ -0.02 -0.09∗∗∗ -0.08∗∗ -0.06∗∗ -0.07 -0.09∗ -0.02 -0.04∗∗ -0.11∗∗∗ -0.08∗∗∗ -0.11∗∗∗

subsidy 2.58 1.13 0.84 3.57 3.17 2.18 2.57 3.43 0.61 1.55 4.40 3.39 4.06

2000-2005

PC2 -0.12∗∗∗ -0.07∗∗∗ -0.06∗∗ -0.16∗∗∗ -0.12∗∗∗ -0.12∗∗∗ -0.06 -0.16∗∗∗ -0.04 -0.11∗∗∗ -0.16∗∗∗ -0.17∗∗∗ -0.14∗∗∗

subsidy 4.76 2.59 2.23 6.07 4.53 4.59 2.53 6.22 1.61 4.12 6.15 6.57 5.37
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banks and not statistically significant. Lehman is the only exception.

The second panel looks at different subsamples. The loadings for the largest commercial banks

increased dramatically in the last decade. The BoA subsidy increased from 2.37% to 3.56% in

2000-2005, while the Citi subsidy increased from 3.12% to 4.53%. This is exactly what one would

have expected to see given the enormous increase in total asset size realized by these banks. Wells

Fargo collected a subsidy of 5.37% in 2000-2005, compared to 4.06% in the 1990-2005 sample.

The largest subsidy is collected by Fannie Mae (6.57%), in spite of its smaller size. Lehman also

collects a large subsidy in this subsample. Both Lehman and Fannie Mae obviously were building

up substantial exposure to the subprime mortgage market during this sub-sample. Note that there

is no mechanical connection between our size factor and the subprime exposure, since we exclude

the crisis from the sample. Exposure to the size factor seems a good yardstick of systemic risk

exposure.

Size and the Subsidy Even in the highest decile, there is strong negative relation between

the market cap of individual firms and the loading on the size factor. In Figure 3, we plot the

loadings for these firms, computed over 5-year windows following time t, against the log of the

market cap/GDP ratio at time t. As individual firms grow larger over time relative to GDP, their

loadings on this size factor clearly tend to increase. The slope coefficient in the regression line is

0.018, meaning that a 100% increase in the size of market cap relative to GDP raises the loading

by 0.018 in absolute value or, equivalently, it increases the subsidy by 68 bps per annum.

4.3 Business Cycle Variation in Common and Idiosyncratic Risk

There are other factors that could explain the cyclicality in the size factor. Large common and

idiosyncratic shocks can cause bank failures. If the volatility of these shocks increases more in

recessions for small banks, that could explain some of our findings. Table XI measures the standard

deviation of normal-risk-adjusted returns at the portfolio level (Panel A) and at the bank level

(Panel B). The first one measures the quantity of residual common risk. The second one measures

the quantity of residual idiosyncratic risk. The portfolio-level measure in Panel A is the time series

34



−11 −10 −9 −8 −7 −6 −5 −4 −3

−0.5

0

0.5

1

log(Market Cap / GDP)

β re
c 2

 

 

Banks in 10A & 10B
   linear
Bankers Trust
BofA
Bank of NY Mellon
Citi
State Street
Sun Trust
Wachovia
WAMU
Wells Fargo

Figure 3: Size factor loading and market cap/GDP in portfolio 10

Notes: This graph shows the scatter-plot for the log of market capitalization/GDP of banks in portfolios 10 (x-axis) against the loadings
on βREC2

(y-axis). The black solid line shows the fitted trend line. We chose banks that were in portfolio 10 in each year from 1970 -
2000 and then computed the loadings on PC2 over the subsequent 5-year window. Desc:

standard deviation of normal risk-adjusted returns, reported for NBER expansions and recessions

separately. The bank-level measure in panel B is the average over time of the cross-sectional

standard deviation within each portfolio of normal-risk-adjusted returns.

During recessions, the exposure of the largest banks to residual common risk increases from 14.2

to 21.6%. For the smallest banks, the increase is only 3 percentage points. This suggests that large

bank stocks are more exposed to uncertainty about the nature of government intervention during

these recessions. This type of uncertainty is modeled and its effect on asset prices is analyzed in

Pastor and Veronesi (2010).

As expected, smaller banks are more exposed to idiosyncratic risk than large banks, but the

amount of idiosyncratic risk exposure of small banks does not seem to increase very much during

recessions. The standard deviation ranges from 38% for the smallest banks to 26% for the largest

banks during recessions, and from 36% to 20% in the whole sample. However, the largest percentage

point increase in volatility during recessions is noted for the largest banks: from 20% to 26%. For

the smallest banks, the increase is less than two percentage points.
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Table XI: Measuring residual risk exposure

Notes: This table presents the standard deviation of the residuals from the OLS regression of monthly excess returns of each size-sorted
portfolio of commercial banks on Fama-French factors and bond factors. In panel A the row labeled Recession computes the (time series)
standard deviation of the residuals during recession months and the row labeled Entire Sample computes the (time series) standard
deviation for the entire sample. In Panel B we examine the cross-sectional standard deviation of the residuals of banks in each bin for
each period t. Panel B reports the time-series average of the cross-sectional standard deviation for each bin. The row labeled Recession
lists the standard deviation of the residuals during recession months and the row labeled Entire sample lists the standard deviation for
the entire sample. The standard deviations have been annualized by multiply by

√
12 and are expressed in percentages.

Panel A: Portfolios

Period 1 2 3 4 5 6 7 8 9 10

Recession 15.77 14.39 12.80 12.43 13.76 13.46 15.77 14.79 18.11 21.13

Entire Sample 13.18 11.92 11.43 10.54 10.93 11.17 11.38 10.96 11.95 14.26

Panel B: Individual Banks

Recession 38.40 30.94 32.45 28.86 30.33 27.61 27.48 28.05 26.01 25.54

Entire Sample 36.36 30.05 28.79 27.45 25.88 25.13 24.68 24.03 22.43 20.83

4.4 Ex-post Evidence: Size Factor during the Crisis

Another plausibility check concerns the behavior of the size factor during the crisis. We focus

on three key events: the failure of two major financial institutions (Bear Stearns and Lehman)

and one smaller financial institution (IndyMac). All of these events trigger huge losses on the

size portfolio even though this portfolio has a negative market beta of -3.18! Figure 4 plots the

cumulative return at daily frequencies on the size portfolio after these events. We invest $ 100 at

the announcement date. The Bear Stearns event triggers a 5 σ negative daily return. The Lehman

event triggers a 10 σ negative daily return. This is surprising because Lehman and Bear Stearns

are large investment banks that are more similar in risk exposure to large commercial banks, while

IndyMac qualifies as medium-sized to large ($32 bn in assets). However, if we assume these events

increase the probability of a collective bailout for large commercial banks, that is exactly what the

model predicts.

4.5 Extending the Sample

Finally, we also checked our results on the longest sample that starts in 1925. Figure 5 plots

the 12-month moving average (months t − 11 through t) of PC2 series along with a plot of the

index for industrial production over a longer sample starting in 1927. In this extended sample, the

second principal component is not a size factor. Moreover, there is no size anomaly. We used the
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Figure 4: Size portfolio during crisis

Notes: The solid line plots the cumulative return on the size factor at daily frequencies starting with $100 invested in this portfolio
at the event. This is the cumulative return on the portfolio of size-sorted bank portfolios with weights w2. These are the unhedged
returns. The portfolio is long in small banks and short in large banks. The events considered are the failure of the Bear Stearns hedge
fund, the rescue of Bear Stearns, the liquidation of IndyMac and the bankruptcy of Lehman. A one standard deviation daily return on
the size factor is 9.18%.

same principal component loadings as in figure 1. To increase the number of banks, we included

investment banks when actually computing the banking portfolio returns. The cyclical pattern is

present throughout the sample but is most pronounced in the early part of the sample, and after

1970.

5 Other industries

This section shows that the facts we have documented for banks are in fact bank-specific. First, we

look at size portfolios of all stocks. Second, we also construct size-sorted portfolios at the industry

level.

Macro level Panel I in Table XII measures normal risk compensation in 10 size-sorted portfolios

of all stocks on NYSE-AMEX-NASDAQ. We use the longest available sample. The average normal-

risk-adjusted returns on the smallest stocks is 5.23% per annum. All the others are smaller and

most are not statistically significantly different from zero.

Figure 6 plots all of the principal components against the average risk-adjusted returns. The
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Figure 5: Size factor in normal risk-adjusted returns: Longer sample

The solid line plots the 12-month (backward looking) moving average (months t − 11 through t) of the time-series of the weighted
sum of the residuals from the OLS regression of monthly excess stock returns for each size-sorted portfolio of financial firms on the
Fama-French and bond risk factors. The weights are given by the second principal component and sum to 1. The second principal
component loadings were computed using the ten size-sorted portfolio of banks over the sample period 1970 - 2009. The weights were
applied to the residuals from the regression of each of the ten size-sorted portfolios of financial firms over the sample period 1927 - 2009.
The dashed line represents the growth of index of industrial production. The left-axis refers to the moving average of the residuals (the
units are monthly returns) and the right-axis references the index of industrial production. The dark shaded regions represent NBER
recessions and the three light shaded regions represent the Less-Developed-Country debt crisis of 1982, the Mexico Peso crisis of 1994,
and the Long-Term-Capital-Management crisis of 1998 respectively.
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Figure 6: Covariances between risk adjusted returns and principal components

Each panel corresponds to a principal component. The upper left panel uses the first principal component. The black ’X’ represent
the average risk adjusted returns for the 10 size-sorted portfolios of all NYSE-AMEX-NASDAQ stocks. Each blue circle represents a
covariance between a given principal component and a given bank portfolio. The covariances are re-scaled. The normal-risk-adjusted
returns are annualized (multiplied by 12) and reported in percentage points.

second principal component of the normal-risk-adjusted returns on these size-sorted portfolios

comes closest to a size factor:

[
-0.46 -0.08 +0.06 +0.22 +0.32 +0.37 +0.47 +0.38 +0.34 -0.07

]

However, there is no cyclical pattern. Figure 7 plots a 12-month moving average of this second

principal component. The units (shown on the left axis) are monthly returns. Quantitatively, the

variation is an order of magnitude smaller and it is not pro-cyclical.

Industry Level At the industry level, building size-sorted deciles is harder, because in many

industries there are not enough firms. We started with the 48 industries in French’s industry port-

folios, but we dropped all financials and those non-financials with less than 5 firms per size decile.

These are all of the non-financial industries in the 48 industry classification used by Fama and

French. The total market cap in the commercial banking industry exceeds that for all industries,
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Figure 7: Second pc of normal-risk-adjusted returns: NYSE-Amex-Nasdaq size deciles

The solid line plots the 12-month (backward looking) moving average (months t − 11 through t) of the time-series of the weighted sum
of the residuals from OLS regression of monthly excess stock returns for ten size-sorted portfolio of NYSE-Amex-NASDAQ stocks over
1927 - 2009. The weights are given by the second principal component and sum to 1. The dashed line represents the growth of index
of industrial production. The dates are indicated on the x-axis. The left-axis references the moving average of the residuals (units are
monthly returns) and the right-axis references the index of industrial production. The dark shaded regions represent NBER recessions
and the three light shaded regions represent the Less-Developed-Country debt crisis of 1982, the Mexico Peso crisis of 1994, and the
Long-Term-Capital-Management crisis of 1998 respectively.

except for the drugs and the oil industry. The banking industry is very large in terms of market

capitalization relative to most other industries.

The average normal-risk-adjusted return on the first portfolio (averaged across 31 different

industries) is large and positive (8.92 %), but there is no size pattern in the other average normal-

risk-adjusted returns. The 10-minus-1, 9-minus-2, and 8-minus-3 average normal-risk-adjusted

returns are negative but statistically not significantly different from zero. Moreover, stock returns

in these industries do show the standard pattern in the loadings on SMB; these decrease from

.71 to .13. Moreover, the spread in the credit risk exposure is on the 10-minus-one portfolio is

still negative but much smaller (−.38). We could have made all the same points about the size

effect in bank stock returns, while dropping the first portfolio from the sample. In these other

industries, the only remaining size effect is in the first portfolio. However, these are stocks with

very small market capitalization, much smaller than the banks in the first portfolio. In 1980, the

average market capitalization of a firm in the first portfolio is only $ 22.8 million, compared to

$ 75.9 million for the banks in the first portfolio in 1980. The average market cap in the second

portfolio is much larger ($ 65.7 million in 1980).
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Table XII: Measuring normal risk compensation for size-sorted portfolio in other industries: Aver-
ages

Notes: Panel I reports OLS regression results of monthly excess returns of 10 size-sorted portfolio of all NYSE-AMEX-Nasdaq stocks
in CRSP. The sample is 1970-2009. Panel II presents the average estimates from OLS regression of monthly excess returns of each size-
sorted portfolio of firms in 31 other industries (different from banks). The definitions for these industries were obtained from Kenneth
French’s website. We deleted those industries with less than 5 firms per portfolio. We then average the OLS estimates obtained for
each of these industries to construct the following table. MKT , SMB, and HML are the three Fama-French stock factors: the market,
small minus big and high minus low respectively. LTG is the excess return on an index of long-term government bonds and CRD is
the excess return on an index of investment-grade corporate bonds. Statistical significance is indicated by *, **, and *** at the 10%,
5% and 1% levels respectively. α’s have been annualized by multiplying by 12 and are expressed in percentages. The last 3 columns
indicate the difference between the estimates for the 10th-1st, 9th-2nd, and the 8th-3rd portfolios. The standard errors were adjusted
for heteroscedasticity and auto-correlation using Newey-West with 3 lags.

Year 1 2 3 4 5 6 7 8 9 10 10 - 1 9 - 2 8 - 3

Panel I: NYSE-AMEX-Nasdaq (1970-2009)

α 5.23∗ 0.73 -0.88 -1.25 -1.61 -1.39 -1.11∗ -0.52 -0.24 0.22∗ -5.02∗ -0.97 0.36

MKT 0.86∗∗∗ 0.91∗∗∗ 0.95∗∗∗ 0.98∗∗∗ 1.02∗∗∗ 1.04∗∗∗ 1.06∗∗∗ 1.05∗∗∗ 1.06∗∗∗ 0.99∗∗∗ 0.12 0.15∗∗ 0.11∗∗

SMB 1.13∗∗∗ 1.03∗∗∗ 0.97∗∗∗ 0.93∗∗∗ 0.89∗∗∗ 0.85∗∗∗ 0.75∗∗∗ 0.64∗∗∗ 0.42∗∗∗ -0.14∗∗∗ -1.27∗∗∗ -0.60∗∗∗ -0.32∗∗∗

HML 0.43∗∗ 0.36∗∗∗ 0.34∗∗∗ 0.36∗∗∗ 0.32∗∗∗ 0.29∗∗∗ 0.24∗∗∗ 0.21∗∗∗ 0.16∗∗∗ -0.05∗∗∗ -0.48∗∗ -0.20∗ -0.13
LTG -0.50∗∗ -0.35∗∗∗ -0.23∗∗ -0.09 -0.07 -0.00 0.02 0.05∗ 0.02 -0.01∗ 0.49∗∗ 0.38∗∗∗ 0.28∗∗∗

CRD 0.44 0.27 0.17 0.07 0.06 -0.01 -0.03 -0.03 -0.02 0.01 -0.42 -0.29 -0.20

R2 56.03 71.28 78.24 82.26 88.25 91.31 92.39 95.12 95.28 99.67 38.27 25.21 16.68

Panel II: 31 industries (1970-2009)

α 9.50∗ 1.85 -0.06 -1.61 -2.42 -1.77 -1.47 -2.10 -0.44 -0.43 -9.92∗ -2.29 -2.04

MKT 0.71∗∗∗ 0.81∗∗∗ 0.90∗∗∗ 0.94∗∗∗ 0.99∗∗∗ 1.02∗∗∗ 1.05∗∗∗ 1.06∗∗∗ 1.06∗∗∗ 1.00∗∗∗ 0.29∗∗ 0.25∗∗ 0.16
SMB 0.70∗∗∗ 0.81∗∗∗ 0.82∗∗∗ 0.87∗∗∗ 0.83∗∗∗ 0.81∗∗∗ 0.76∗∗∗ 0.66∗∗∗ 0.47∗∗∗ 0.12 -0.59∗∗∗ -0.34∗∗ -0.16
HML 0.27 0.33∗∗ 0.36∗∗ 0.34∗∗ 0.36∗∗∗ 0.30∗∗ 0.30∗∗ 0.25∗∗ 0.17∗ 0.06 -0.21 -0.16 -0.10
LTG -0.44∗ -0.45∗ -0.34 -0.30 -0.27 -0.16 -0.10 -0.07 -0.07 -0.02 0.42 0.38 0.27
CRD 0.42 0.47 0.24 0.27 0.29 0.14 0.04 0.01 0.00 -0.01 -0.42 -0.46 -0.23

R2 19.16 30.69 36.89 44.39 48.14 50.10 53.01 54.79 55.08 52.84 7.53 6.06 3.50
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Table XIII: Principal components of normal-risk-adjusted returns on size-sorted portfolios: Aver-
ages

Notes: This table presents the loadings for the first and second principal components (w1, w2) extracted from the OLS regression of
returns of ten size-sorted portfolios for 44 industries other than financials on the Fama-French and bond market factors. The definitions
for these industries were obtained from Kenneth French’s website. The last row indicates the % explained by each principal component.

1970 - 2009 1980 - 2009 1990 - 2009 2000 - 2009

Portfolio w1 w2 w1 w2 w1 w2 w1 w2

1 0.55 0.49 0.57 0.51 0.57 0.49 0.50 0.42

2 0.25 -0.24 0.24 -0.21 0.25 -0.19 0.24 -0.08

3 0.25 -0.11 0.25 -0.13 0.24 -0.10 0.26 -0.02

4 0.23 -0.13 0.23 -0.15 0.22 -0.08 0.21 -0.11

5 0.16 -0.09 0.16 -0.11 0.17 -0.09 0.19 -0.11

6 0.15 -0.13 0.14 -0.14 0.13 -0.13 0.14 -0.13

7 0.12 -0.12 0.12 -0.14 0.12 -0.13 0.14 -0.16

8 0.11 -0.13 0.11 -0.15 0.11 -0.14 0.15 -0.18

9 0.09 -0.11 0.09 -0.13 0.09 -0.12 0.12 -0.11

10 0.06 -0.08 0.06 -0.09 0.05 -0.08 0.07 -0.09

% 33.57 16.35 35.96 16.86 37.57 16.80 39.72 16.67

Table XIII reports the principal components obtained for these industries. These loadings are

averaged over 44 industries. The first two columns report the estimates for the entire sample.

The first factor is mostly a level factor, although the loadings of the first principal component do

decrease in size. There is no size factor. The second principal component has a large positive

loading on the first portfolio and negative loadings on the others.

The normal-risk-adjusted returns on the second principal component (long in small firms, short

in large firms) are only weakly procyclical. For each industry, we compute the second principal

component, and normalize these so use them as portfolio weights; we determine the sign of the

loadings by checking that we go short in the 10-th portfolio. The histogram in Figure 8 reports

how this long-in-small-sort-in-large investment strategy fares in recessions. On average, the investor

loses less than $ 10 during a recession, after hedging out exposure to other risk factors, compared

to $ 61 for banks. So, even though there is a minor recession effect in other industries, it is much

smaller. Table Iin the separate appendix reports detailed results.
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Figure 8: Histogram of cumulative recession returns on long-short portfolio for 32 industries
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Banks

Banks

Trough Value of a $100 invested at the peak in a portfolio that goes long in small banks and shorts large banks with portfolio weights
w2. 31 2-digit SIC Code Industries and commercial banks. The definition of each industry, indicated in column 1, is from Kenneth
French’s website. We started with 48 2-digit SIC code industries and we dropped all of the industries with fewer than 5 firms in each
portfolio. The cross-sectional mean is $95 and $89 for the hedged portfolio.
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6 Calibrated GE Asset Pricing Model

We use a fully specified version of our model that is calibrated to match the equity premium to

compute the implied recovery rates from the disaster risk premia that we estimated in the data.

The restrictive assumptions imposed in section 3 are relaxed: In this model, the normal risk factor

(the market) is correlated with the probability of default, and the equity risk premium partly

compensated for exposure to financial disaster risk. The average normal-risk-adjusted returns

(α’s) still reflect financial disaster risk premia provided that the stock market is not too exposed

to financial disaster risk.

We use a modified version of Gourio (2008)’s model. The stand-in agents has Epstein-Zin utility

over non-durable consumption streams:

Vt(C
t) =

[
(1 − β)C1−α

t + β(RtVt+1)
1−α

] 1

1−α

where R denotes the following operator: RtVt+1 =
(
EtV

1−θ
t+1

)1/1−θ
. This agent cares about the

intertemporal composition of risk. α−1 controls the intertemporal elasticity of substitution, while

θ controls risk aversion. When α = θ, preferences are time-separable. The equilibrium SDF is

given by:

Mt+1 = β
1−θ
1−α

(
Ct+1

Ct

)−α 1−θ
1−α

R
α−θ
1−α

w,t+1, (4)

where Rw denotes the return on a claim to aggregate consumption.

The process for aggregate consumption growth is given by:

∆ log Ct+1 = gC + εt+1σ, in states without financial disaster

∆ log Ct+1 = gC + εt+1σ + log F c, in states with financial disaster.

When p is i.i.d., this model can be solved analytically. We are interested in the case in which p

varies over the business cycle. We solve a version of this model with two aggregate states.
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6.1 Calibration

We choose σ equal to 3%, and gC equal to 2%. The time discount factor β is set to 0.975. Following

Gourio (2008), we use a two-state discretization for the aggregate state of the economy. In the

recession state, the probability of a financial disaster is high. In the expansion state, the probability

of a financial disaster is low. The average length of an expansion is 44 months. The average length

of a recession is 16 months. The ratio of the average length of an expansion to the average length

of a recession is 2.62. We set the average probability of a banking crisis to 13%, because the U.S.

spent 13% of all years since 1800 in a banking panic according to Reinhart and Rogoff (2009).12

The aggregate state of the economy follows a 2-state Markov chain with transition probability

matrix:

Q =




φ 1 − φ

1 − ϕ ϕ





with stationary distribution { (1−ϕ)
(1−ϕ)+(1−φ)

, (1−φ)
(1−ϕ)+(1−φ)

}. To match the average length of a recession

(16 months), we set ϕ equal to 0.25. The same transition matrix Q applies in disaster and non-

disaster states. To match the ratio, we choose φ equal to 0.71. In an expansion, the conditional

probability of a banking panic pex = 0. In a recession, the conditional probability of a banking

panic pre = 0.466. Finally, we consider a cumulative consumption drop of 5% (F C = 0.95)in the

financial disaster state. This scenario matches the experience of all developed economies considered

by Reinhart and Rogoff (2009) during banking crisis. The market (equity) is a levered claim to

aggregate consumption Cλ:

∆ log Dm
t+1 = λgC + λεt+1σ, in states without financial disaster

∆ log Dm
t+1 = λgC + λεt+1σ + λ log F c, in states with financial disaster.

Bank Cash Flows Bank cash flows are also a levered claim to aggregate consumption. We

assume that small and large banks have the same cash flow properties in normal times. However,

12This matches 13 U.S. financial crises over 210 years with an average length of 2.1 years.
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small banks will have recovery rates below the F S < F c, and large banks will have recovery rates

in excess of F L > F c.

∆ log Di
t+1 = λgC + λεt+1σ, in states without financial disaster

∆ log Di
t+1 = λgC + λεt+1σ + λ log F i, in states with financial disaster.

We assume that small and large banks are equally exposed to ‘normal’ aggregate risk. One might

conjecture that small banks simply under-perform during recessions. Although this should not

lead to differences in α, but rather differences in exposure to the standard risk factors, we want to

check this, because it might be important for how cash flows are modeled. Actually, we find small

bank cash flows to be less exposed to aggregate risk.

Evidence from Dividends First, we turn to the evidence in the dividend growth rates for

each of our size-sorted portfolios of banks. We first compute the dollar dividend for each portfolio13

Since each portfolio does not pay dividends every month, we use a 12-month moving average of the

dollar dividends paid on each portfolios. Finally we weight the dollar dividends of each portfolio

by its corresponding weight in the second principal component (re-normalized) so that it sums to

1. This produces dollar dividend series of the small minus large banks. Small banks are able to

maintain or increase dividends relative to large banks during most recessions and financial crises.

On average, a portfolio of small banks is able to increase repurchase-adjusted dividends by 7 cents

per dollar during recessions as compared to large banks. Hence, there does not appear to be much

empirical evidence to rationalize the under-performance of small banks during recessions.

Evidence from FDIC Reports Our second piece of evidence comes from the Quarterly

Banking Reports issued by the Federal Deposit Insurance Corporation14. While we classify banks

on market capitalization, FDIC classifies banks on balance-sheet size. In 2001, FDIC classified 80

13The cum-dividend returns, ex-dividend returns, and the portfolio price are used to compute the dollar dividend
amount for each portfolio.

14See the Quarterly Banking Profile and Reports issued by the Federal Deposit Insurance Corporation available
at http://www2.fdic.gov/qbp/. The reports on the FDIC website are available only since 2001
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banks as large with assets above $10 billion. This maps into the 71 banks in our 10th portfolio

over the same period. In 2008 FDIC classified 114 banks as large and this maps into the 106

banks in our 10th and 9th portfolios. We analyzed the data in the report for the first three quarters

of 2001 which corresponds to the recession dates provided by NBER. During this period, small

banks outperform large banks on almost all 13 performance parameters measured. Small banks

had a higher return-on-equity (14.00% versus 13.80%), a higher return-on-assets (1.15 times that

of large banks), a lower loan-loss-charge, a higher net-interest-margin (4.34% versus 3.62%), and

comparable cost-of-funds (approximately 3.75% for both). During this recession, 70% of small

banks and 60% of large banks reported earnings gains. In 2008, large banks are again unable to

match the performance of small banks on most measures. For the first-half 2008, small banks’

ROE is 1.5 times and yield-on-assets is 50 basis-point higher than corresponding values for large

banks. 14.16% of the 558 small banks and 26.72% of the 114 large banks were unprofitable. Finally,

41.22% of small banks reported an earnings gain as compared to 24.14% of large banks. For the

full-year 2008, 28.70% of small banks and 40.35% of large banks reported losses. Small banks do

have lower return-on-assets and ROE for the full year, but it is not obvious if this is due to a higher

cash flow risk. During second-half 2008, small banks not only earned a higher yield on assets and

a higher net interest margin, but also provisioned more conservatively for losses. The ratio of

loan-loss provisions to assets increases to 1.93% for small banks by 4Q 2008 from 0.76% during 1Q

2008 but this ratio hardly changes for the largest banks. If anything, we are being conservative in

the way we model bank cash flows.

6.2 Results

First, we consider the benchmark case in which the market is exposed to levered normal and

disaster risk. Panel I in Table XIV reports the results we obtained for different values of the

recovery rates. These results were generated by generating 25,000 draws from the model. The first

column reports the equity premium conditional on no disaster in the sample (E[Rm,e|no disaster]).

The second column reports the actual equity premium (E[Ri,e]). The third and fourth column
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report the conditional equity premium in expansions and recessions. Finally, the last two columns

report the average normal-risk-adjusted returns and the market beta.

We replicate the treatment of the actual data on model-generated data. To compute the

α, we assume that the Gaussian component of the SDF is linear in the market excess return

(MG = a+bRm,e), and hence we project the excess returns on the bank stocks on the excess return

on the market in a sample without disasters. In a sample with disasters, the α’s are very close to

zero, even though the CAPM does not hold exactly (see equation 4: The log SDF depends on the

(unlevered) total wealth return and consumption growth).

The left panel considers the benchmark case of a 5% drop in aggregate consumption. The

leverage of the market is 2.5. The banks have leverage of 2. With a 10% difference in the unlevered

financial disaster recovery rate, the difference in the equity premium between small and large banks

is 482 basis points; the difference is 10.82 percentage points. However, most of this difference is

accounted for by the higher beta. As a result, the unlevered difference in the recovery rates

needs to exceed 35% to match the spread in normal risk-adjusted returns we have observed in the

data. Because the market itself is exposed to financial disaster risk, small banks have much higher

loadings on the market than large banks. The right panel considers the case of a 2.5% drop in

aggregate consumption. In this case, a smaller differences in recovery rates of 30% is sufficient to

match the difference in normal-risk-adjusted returns.

Unlevering Financial Disaster Risk in the Stock Market The model can match the large

betas of large banks and small betas of small banks, while still matching the average normal risk-

adjusted-returns provided that the stock market is less exposed to financial disaster risk: The

market (equity) is a levered claim to aggregate consumption Cλ, but the leverage only applies to

the normal risk, not the disaster risk:

∆ log Dm
t+1 = gC + λεt+1σ, in states without financial disaster

∆ log Dm
t+1 = gC + λεt+1σ + log F c, in states with financial disaster.
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Table XIV: Baseline model with levered normal and financial disaster risk in the market

Calibrated version of model with Gaussian aggregate consumption growth shocks and two aggregate states. In Panel I, θ is 13.25 and α is 0.75. σ is 3% and µ is 2%. In Panel II,
θ is 15 and α is 0.75. σ is 3.5% and µ is 2%. Results shown for 25, 000 random draws.

λi F i E[Ri,e|nd] E[Ri,e] E[Ri,e|exp] E[Ri,e|rec] αi|no dis. βi|no dis E[Ri,e|nd] E[Ri,e] E[Ri,e|exp] E[Ri,e|rec] αi|no dis. βi|no dis

Panel I: Baseline Model with Levered Normal and Financial Disaster risk in the Market

5% aggregate consumption drop 2.5% aggregate consumption drop

Market Market

2.5 0.95 5.80 4.09 3.49 5.64 4.21 3.33 3.19 3.71

Large Ban ks Large Banks

2 1.00 2.29 2.29 2.30 2.26 −0.63 0.59 2.44 2.44 2.45 2.43 −0.40 0.74

Small Banks Small Banks

2 0.90 7.11 4.18 3.18 6.78 0.71 0.98 6.19 3.28 2.79 4.59 1.30 0.93
2 0.80 12.54 6.16 3.98 11.87 2.22 1.41 10.23 4.16 3.09 6.95 3.21 1.12
2 0.75 15.49 7.19 4.35 14.64 3.07 1.63 12.53 4.60 3.23 8.20 4.25 1.23
2 0.70 18.61 8.25 4.69 17.56 3.96 1.86 14.81 5.05 3.36 9.49 5.31 1.33
2 0.65 21.88 9.33 5.01 20.63 4.88 2.10 17.17 5.51 3.48 10.81 6.44 1.43
2 0.60 27.63 10.43 5.31 23.84 5.92 2.36 19.59 5.96 3.60 12.17 7.56 1.53

Panel II: Baseline Model with Levered Normal and Unlevered Financial Disaster risk in the Market

5% aggregate consumption drop 2.5% aggregate consumption drop

Market Market

2.5 0.95 5.83 5.12 4.87 5.75 5.23 4.88 4.83 5.03

Large Banks Large Banks

2 1.00 3.59 3.59 3.61 3.53 −0.59 0.76 3.78 3.78 3.79 3.75 −0.20 0.78

3 1.00 5.54 5.54 5.58 5.45 −0.85 1.17 5.75 5.75 5.76 5.76 −0.36 1.20

4 5.54 5.54 5.58 5.45 −0.56 1.56

Small Banks Small Banks

2 0.90 10.5 5.80 4.68 8.74 2.32 0.89 7.69 4.76 4.19 6.24 2.05 0.84
2 0.80 14.63 8.13 5.63 14.64 5.48 1.03 12.02 5.77 4.55 8.96 4.56 0.89
2 0.75 17.84 9.35 6.09 17.87 7.23 1.11 14.33 6.28 4.71 10.40 5.86 0.93
2 0.70 21.24 10.62 6.51 21.31 9.03 1.19 16.73 6.81 4.87 11.90 7.21 0.97

1 0.70 10.32 5.27 3.34 10.34 4.50 0.56 8.33 3.43 2.47 5.94 3.71 0.46
1 0.65 12.13 5.98 3.62 12.17 5.57 0.60 9.66 3.74 2.58 6.77 4.50 0.47
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The dividend growth process for bank stocks is unchanged. In this calibration, we increased σ to

3.50 % and we increased θ to match the same ex-disaster equity premium of 5.80%. The results

are shown in Panel II of Table XIV. The top panel considers the benchmark case of a 5% drop

in aggregate consumption. The leverage of the market is 2.5, but leverage only applies to the

Gaussian component. The key difference is that the equity premium contains a much smaller

financial disaster risk premium. As a result, a larger fraction of the difference in risk premia ends

up in the average normal risk-adjusted returns (α).

Consider the case of a 5% aggregate consumption drop. When bank leverage is equal to 2, and

with a 20% difference in the unlevered financial disaster recovery rate, the difference in α’s exceeds

600 basis points, while the β’s for the large banks are larger than the betas for small banks. In

fact, when we choose large bank leverage equal to 3, and small bank leverage equal to 1, there is a

57 basis points spread in the β’s, and a 642 basis point spread in the α’s. The required difference

in the recovery rates is 35 cents on the dollar.

Figure 9 plots the simulated returns on a small-minus-big bank portfolio (dotted line) for this

calibration. A period denotes one year. The dotted line plots the stock market return. The stock

market return is driven by normal risk, while the small-minus-big portfolio responds mostly to the

probability of a financial disaster, which increases in recessions. The shaded areas are recession

states. The small-minus-big portfolio is a recession factor, as in the data. Moreover, this portfolio

has negative market beta.

Finally, if we consider a 2.5% aggregate consumption drop, and we set the leverage of small

banks equal to one, we can actually match the spread in β ′s of more than 100 bps between portfolio

1-10 observed in the data. However, the spread in α’s is only 500 bps.

7 Conclusion

Over the last four decades, the average normal-risk-adjusted return on a stock portfolio that goes

long in the largest banks and short in the smallest banks is minus 8 percent. Moreover, this

portfolio provides investors with insurance against recessions. We show evidence that this is a
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Figure 9: Size factor in bank stocks and recessions

Notes: Simulation of 40 years. The full line is Return on SMB; the dotted line is Return on market. θ is 15 and α is 0.75. σ is 3.5%
and µ is 2%. Small bank leverage is 1 and F S = 0.65. Large bank leverage is 3 and F B = 1. The shaded areas are recessions.

financial disaster risk premium. Using a calibrated version of the model, we backed out an implicit

recovery rate of pre-disaster cash flows in disaster states that is 35 cents per dollar higher for the

largest banks than for the smallest banks.

If these large differences in the implied recovery rates indeed reflect the market’s expectations

of the government’s asymmetric actions during a disaster, then the disaster risk discount for large

banks represents a large subsidy. This obviously presents banks with a huge incentive to bundle

the cash flows of small banks and create large banks: Simply by bundling the cash flows, its risk

properties change, because of the government’s asymmetric guarantee.
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A Proofs

Proof of Proposition 1

Proof. We use F to denote F C . Consider the investor’s Euler equation for asset i: Et[Mt+1R
i
t+1] =

1. The stand-in investor’s SDF Mt+1 is described in equation (3). This Euler equation can be

decomposed as follows:

(1 − pt)Et[M
G
t+1R

i
t+1] + ptEt[M

G
t+1F

−γRG,i
t+1R

D,i] = 1.

We assume that the distribution of the Gaussian factors is (conditionally) independent of the

realization of the disaster (see assumption 2):

(
(1 − pt) + ptEt[F

−γRD,i]
)
Et[M

G
t+1R

G,i
t+1] = 1.

Given these assumptions, this expression can be further simplified to yield:

(
1 + ptEt[F

−γF i − 1]
)
Et[M

G
t+1R

i
t+1] = 1,

where we have substituted the recovery rate F i for RD,i. To see why, note that the Gaussian return

on stock i can be stated as:

RG,i
t+1 =

(Pt+1/Dt+1) + 1

Pt/Dt

Dt+1

Dt

which can be stated as follows, in the case of no disaster: RG,i
t+1 = (Pt+1/Dt+1)+1

Pt/Dt
exp(gD) exp

(
εD,i

t+1

)
.

In case of a disaster, the return is given by: Ri
t+1 = RG,i

t+1F
i
t+1, which only reflects the effect of

the recovery rate on the dividend growth realization (see assumption 2). Using the definition of

resilience ptEt[F
−γF i − 1], this yields the following expression:

(
1 + H i

t

)
Et[M

G
t+1R

G,i
t+1] = 1.
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Decomposing this expectation into a covariance term and a cross-product produces:

Et[M
G
t+1]Et[R

i
t+1] + covt[M

G
t+1, R

G,i
t+1] =

(
1 + H i

t

)−1
.

Given the linear specification of the stochastic discount factor, this equation can in turn be written

in the conditional beta representation:

Et[R
G,i
t+1] = Et[M

G
t+1]

−1
(
1 + H i

t

)−1
−

covt[M
G
t+1, R

G,i
t+1]

vart[MG
t+1]

vart[M
G
t+1]

Et[MG
t+1]

,

or equivalently: Et[R
i
t+1] − βi

t
λt = R (1 + H i

t)
−1

, where βi
t is the vector of multiple regression

coefficients in regression of returns on the factors and λt is the vector of risk prices. Note that the

variation in the p/d ratios induced by the variation in the probability of a disaster does not co-vary

with the normal risk factors–by assumption– and hence is not priced in the normal risk premium.

In addition, we assume that the market price of Gaussian risk is constant λ and that the Gaussian

factor betas βi

t
are constant. In that case, the expected return on asset i, conditional on no disaster

realization, after adjusting for Gaussian risk exposure, becomes: Et[R̂
i
t+1] = exp(rt − hi

t), where

Et[R̂
i
t+1] = Et[R

G,i
t+1] − βiλ, and r denotes log R, and hi

t denotes log(1 + H i
t).
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