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1. Introduction 

How do firms make decisions regarding irreversible investments in uncertain economic 

environments? Such situations are common in a variety of industries: American Electric Power 

must commence construction of new plants before knowing future demand for electricity, 

Boeing must sink costs into new airplane designs before orders from customers are realized, and 

ExxonMobil must drill wells in the midst of a fluctuating price of oil. Each of these investments 

is at least partially irreversible because the assets created cannot be fully appropriated to an 

alternative use. In other words, these investments, once complete, become sunk costs. 

The real options literature, beginning with Marschak (1949) and Arrow (1968) and 

developed in Bernanke (1983), Pindyck (1991), and Dixit and Pindyck (1994), explains how 

firms should time such investments. Real options theory views an irreversible investment as an 

option in that, at any point in time, a firm may choose to either invest immediately or delay and 

observe the evolution of the investment’s payoff. A key insight is that the option to delay has 

value when future states of the world with positive returns to investing and states with negative 

returns are both possible, even holding the expected future return constant at its current level. 

Thus, in the presence of irreversibility and uncertainty, a naïve investment timing rule—proceed 

with an investment if its expected benefit even slightly exceeds its cost—is suboptimal because it 

does not account for the value of continuing to hold the option. Instead, firms should delay 

irreversible investments until a significant gap develops between the investments’ expected 

benefits and costs. Moreover, as uncertainty increases, real options theory tells us that the 

incentive to delay should grow stronger and the gap between the expected benefit and cost 

necessary to trigger investment should widen. 

While real options theory therefore prescribes how firms should carry out irreversible 

investments in uncertain environments, it is not empirically well-known how firms actually 

proceed in such situations. In particular, the theory’s central prediction that firms should be more 

likely to delay investment if uncertainty increases, all else equal, has received only limited 

empirical scrutiny. The primary aim of this paper is therefore to assess the extent to which firms’ 
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responses to changes in uncertainty align with the theory, using data on oil drilling activity in 

Texas coupled with market expectations of the volatility of the future price of oil. 

The need for empirical work in the real options literature is underscored by the existence 

of numerous applications that assume firms optimally make decisions in the presence of 

uncertainty. In industrial organization, Pakes (1986), Dixit (1989), Grenadier (2002), 

Aguerrevere (2003), and Collard-Wexler (2008) model the implications of uncertainty and sunk 

costs for investment, entry, and research and development in several settings and under various 

forms of competition. The general dynamic oligopoly model of Ericson and Pakes (1995) is built 

on a framework in which firms treat many decisions as options. In macroeconomics, Bernanke 

(1983), Hassler (1996), Bloom (2009), and Bloom et al. (2007, 2009) construct models that 

emphasize the importance of changes in economy-wide uncertainty in determining the level of 

aggregate investment. Finally, in the environmental and resource economics literature, Arrow 

and Fisher (1974), among others, discuss the role of uncertainty in dictating when “green” 

investments should be undertaken.  

I empirically examine the extent to which investments in oil wells respond to changes in 

uncertainty using a unique dataset of well-level drilling activity in Texas. I combine these 

drilling data with information from the New York Mercantile Exchange (NYMEX) on the 

expected future price of oil and the expected future price volatility. The expected volatility is 

derived from the NYMEX futures options market, in which volatility is implicitly traded and 

priced. Under a hypothesis that the market is an efficient aggregator of information, the implied 

volatility from futures options will incorporate more information than an expected volatility 

measure derived from price histories alone.  

I conduct my analysis using an econometric model of firms’ optimal drilling investment 

in the presence of time-varying uncertainty. The model is based on Rust’s (1987) nested fixed 

point approach but allows the volatility of the process governing state transitions to vary over 

time. The use of this model allows me to do more than carry out a simple “yes/no” test of 
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whether or not firms respond to changes in expected oil price volatility: I can also compare the 

magnitude of firms’ responses in the data to the magnitude prescribed by the model.  

I find that the response of investment to changes in implied volatility is broadly 

consistent with optimal decision-making. In the reference case specification, in which the 

model’s auxiliary parameters and assumptions most closely match the data and institutional 

setting, I find that the magnitude of firms’ collective response to volatility shocks aligns very 

closely with theory. Alternative specifications and assumptions lead to estimates of different 

magnitudes, though these estimates remain qualitatively similar to the optimal response so long 

as volatility expectations are measured using implied volatility from futures options. When I 

instead measure expectations using historical price volatility, the estimated response of 

investment to changes in volatility is attenuated and imprecise, reflecting the relatively weak 

forecasting power of this measure. 

There exist previous studies that have empirically examined whether investments respond 

to changes in uncertainty, though without linking the magnitudes of the estimated effects to 

theory. Several of these studies, like this one, focus on natural resource industries. Hurn and 

Wright (1994), Moel and Tufano (2002), and Dunne and Mu (2010) examine the impact of 

resource price volatility on offshore oil field investments, gold mine openings and closings, and 

refinery investments, respectively. None of these papers uses implied volatility to measure 

expected price volatility—the uncertainty measure is the historic realized variance of commodity 

prices—and they collectively find mixed evidence on whether increases in volatility reduce 

investment. Paddock, Siegel, and Smith (1988) shows that option pricing techniques yield more 

accurate predictions of oil lease valuations than do traditional net present value calculations, 

though without investigating the impact of changes in uncertainty over time. Other micro-

empirical work includes Guiso and Parigi (1999), which finds evidence from a cross-sectional 

survey that Italian firms whose managers subjectively report high levels of expected demand 

uncertainty tend to have relatively low levels of investment. List and Haigh (2010) meanwhile 
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provides experimental evidence that investment timing decisions of agents (drawn from student 

and professional trader subject pools) are generally responsive to changes in payoff uncertainty. 

Another set of papers in the macroeconomics literature measures the response of 

aggregate output and investment to changes in economy-wide uncertainty, as measured by the 

volatility of stock market returns or interest rates (Hassler 2001, Alexopoulos and Cohen 2009, 

Fernandez-Villaverde et al. 2009, and Bloom 2009). A related work is Leahy and Whited (1996), 

which examines firm-level investment and stock return volatilities. These papers generally find 

that increases in volatility are associated with decreases in output or investment. However, 

factors that influence the level of investments’ expected payoffs are difficult to proxy for in this 

literature, and Bachmann et al. (2010) argues that a negative correlation between first and second 

moment shocks can lead to downward-biased estimates of the effects of an increase in 

uncertainty. Leahy and Whited (1996) also note that fluctuations in stock returns likely reflect 

the volatility of factors beyond those impacting the future revenues associated with new, 

marginal investment opportunities. 

This paper’s focus on the Texas onshore drilling industry as its object of study, combined 

with the econometric modeling of the firms’ investment timing problem, confers valuable 

advantages relative to previous work. First, I possess data at the level of each individual 

investment—the drilling of each well—and need not rely on aggregate data or accounting data. 

Second, the NYMEX futures and futures options markets provide measures of the expected level 

and volatility of each investment’s expected return that, in principle, incorporate all available 

information at the time of the investment. Such measures are not available in most industry 

settings, and here they allow for a separation of first and second moment shocks. Finally, I take 

advantage of the fact that oil production is a highly competitive industry, with no one firm able 

to influence the price of oil, and I focus on oil fields in which common pool issues are not a 

concern. I am therefore able to treat each firm’s investment decision as a single-agent dynamic 

investment problem. This approach, which would be questionable in most other industries, 
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allows me to measure the magnitude of firms’ response to uncertainty relative to the theoretical 

optimum, going beyond a simple test of whether or not firms respond to volatility shocks at all. 

In what follows, I first discuss relevant institutional details of the Texas onshore drilling 

industry and the datasets I use. Section 3 follows with a descriptive analysis of the data. The 

remainder of the paper focuses on the estimation of a structural model of the drilling investment 

problem with time-varying uncertainty: section 4 presents the model, section 5 discusses the 

estimation procedure, and section 6 follows with the estimation results. Section 7 provides 

concluding remarks. 

 

2. Institutional Setting and Data 

2.1 Drilling description, types of wells used in this study, and drilling data 

Oil and gas reserves are found in geologic formations known as fields that lie beneath the 

earth’s surface, and the mission of an oil production company is to extract these reserves for 

processing and sale. To recover the reserves, the firm needs to drill wells into the field. Drilling 

is an up-front investment in future production; if a drilled well is successful in finding reserves, it 

will then produce oil for a period of several years, requiring relatively small operating expenses 

for maintenance and pumping. The firm does not know in advance how much oil will be 

produced (if any) from a newly drilled well, though it will form an expectation of this quantity 

based on available information, such as seismic surveys and the production outcomes of 

previously drilled wells. The price that the firm will receive for the produced oil is also not 

known with certainty at the time of drilling. Conversations with industry participants have 

indicated that some, though not all, firms use the NYMEX market to hedge at least some of their 

price risk. This use of the NYMEX indicates that risk aversion over future oil prices is unlikely 

to influence drilling decisions, since any firm that is risk averse can hedge the price risk away. 

Drilling costs range from a few hundred thousand dollars for a relatively shallow well 

that is a few thousand feet deep to millions of dollars for a very deep well (as much as 20,000 
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feet deep). Once drilled, these costs are almost completely sunk: the labor and drilling rig rental 

costs expended during drilling cannot be recovered, nor can the expensive steel well casing and 

cement that run down the length of the hole. Drilling can therefore be modeled as a fully 

irreversible investment. 

Wells can be one of three types: exploratory, development, or infill. Exploratory wells are 

drilled into new prospective fields, and if successful they can not only be productive themselves 

but also lead to additional drilling activity. Development wells are those that follow the 

exploratory well: they increase the number of penetrations into a recently discovered field in 

order to drain its reserves. Finally, infill wells are drilled late in a field’s life to enhance an oil 

field’s production by “filling in” areas of the reservoir that have not been fully exploited by the 

pre-existing well stock. 

In this paper, I exclude exploratory and development wells and analyze only the subset of 

data corresponding to infill wells. This exclusion facilitates this study in two important ways. 

First, examining only infill wells constrains the set of available drilling options to those that exist 

within a finite, known set of fields. Thus, I need not be concerned with the creation of new 

options through new field discoveries or leasing activity. Second, the majority of production 

from a typical infill well takes place within the first year or two of the well’s life: because infill 

wells tap only small isolated pools of oil that have been left behind by older wells in a field, their 

productive life is quite short. Thus, I may rely on liquid near-term futures to provide expected 

prices and volatilities that are relevant for these wells rather than less liquid long-term futures. 

I also distinguish wells drilled in fields operated by a single firm from wells drilled in 

fields operated by multiple firms. The process by which production companies acquire leases—

rights to drill on particular plots of land—often leads to situations in which several firms have 

the right to drill in and produce from a single field (see Wiggins and Libecap 1985). This 

division of operating rights leads to a common pool problem to the extent that each firm’s 

actions leads to informational and extraction externalities for its neighbors, suggesting that in 

such situations a dynamic game is needed to model firms’ drilling problem. This paper avoids 
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this substantial complication by focusing exclusively on wells drilled in sole-operated fields, for 

which a single-agent model is sufficient to model drilling behavior.1 

I obtained drilling data from the Texas Railroad Commission (TRRC), yielding 

information regarding every well drilled in Texas from 1977 through 2003.2 These data identify 

when each well was drilled, which field it was drilled in, whether it was drilled for oil or for gas, 

and the identity of the production company that drilled it. During the 1993-2003 period for which 

I also observe data on drilling costs and expected oil prices, I observe a total of 23,279 oil wells.3 

Of these, 17,456 are infill wells and 1,150 are infill wells drilled in sole-operated fields.4  

The time series of Texas-wide drilling activity is depicted in figure 1 as the number of 

wells drilled per month. These data appear to be noisy because they are integer count data 

ranging from 2 to 19 wells per month. The time series of drilling activity in a larger sample that 

includes wells drilled in common pool fields does not exhibit this noisiness, confirming that it is 

due to the integer count nature of the data rather than a systematic feature of the industry. 

The drilled wells are spread over 663 sole-operated fields and 453 firms. The mean 

number of wells per field is 1.73, and I observe only one well drilled in the majority of fields in 

the data. The maximum number of wells I observe in any field is 31. In addition to the 663 fields 

                                                 
1 Industry participants have suggested that the degree of strategic interaction amongst firms drilling infill wells in 
common pool fields may be limited in practice because infill drilling targets tend to be small pools that are 
geologically isolated from other parts of the field. In addition, the TRRC regulates the minimum distance from a 
neighbor’s lease at which a well may be drilled. Correspondingly, the time series of infill drilling in common pools 
is very similar to that shown for sole-operated fields in figure 1. I nonetheless focus my analysis on sole-operated 
fields to be conservative, though estimating the model using the full sample of infill wells yields similar results to 
those presented here (the estimate of β is 1.033). 
2 While drilling data exist beyond 2003, industry participants have indicated that the dramatic increase in oil and 
natural gas prices that began in 2004 increased drilling activity to the extent that the rig market became extremely 
tight. Long wait lists developed when large production companies locked up rigs on long-term contracts so that the 
spot rental market could not allocate rigs based on price. Because these unobservable wait lists disconnect drilling 
decisions from observed drilling, I only use data through 2003. 
3 I define an oil well as a well that is marked as a well for oil (rather than for “gas” or “both”) on its TRRC drilling 
permit and is drilled into a field for which average oil production exceeds average natural gas production on an 
energy equivalence basis (1 barrel of oil is equivalent to 5.8 thousand cubic feet of gas). 
4 I define infill wells as those that are drilled into fields discovered prior to 1 January, 1990. I define a sole-operated 
field as one for which, in every year from 1993-2003, only a single firm is listed as a leaseholder in the field’s 
annual production data. This definition allows a field to be traded from one firm to another but disallows fields in 
which several firms operate simultaneously on different leases. 
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in which I observe drilling, I also observe 6,637 sole-operated oilfields in which no infill wells 

are drilled. The median number of wells per firm is 1, the mean is 2.54, and the maximum is 31. 

Thus, the majority of wells in the dataset can be characterized as having been drilled by small 

firms in relatively small, old fields with few remaining drilling opportunities. 

 

2.2 Oil production 

I acquired oil production data from the TRRC to assess the production that resulted from 

the observed drilling activity. The TRRC records monthly oil production at the lease-level, not 

the well-level, because individual wells are not flow-metered. I am therefore only able to identify 

the production from those wells that are drilled on leases on which there exist no other producing 

wells and there is no subsequent drilling: this is the case for 162 of the 1,150 drilled wells. For 

these wells, I tabulate the total production of each for the three years subsequent to drilling: the 

median well produces 8,625 barrels (bbl), and the mean produces 15,794 bbl. 4.3% of the wells 

are dry holes and produce nothing; the maximum production is 164,544 bbl.  

Figure 2 displays the average monthly production profile of a drilled well in the sample. 

Production begins immediately subsequent to drilling, and depletion of the oil pool results in a 

fairly steep production decline so that a typical well’s monthly production falls to one-half of its 

initial level only 7 months into the well’s life. In addition, firms do not appear to alter production 

rates or delay the start of production due to oil price changes; the shape of the production profile 

is consistent throughout the data, including the 1998-1999 period when the price of oil was very 

low. This profile is consistent with a production technology in which production rates are 

constrained by geologic characteristics of the oil reservoir such as its pressure, the remaining 

volume of oil near the well, and rock permeability. It is also consistent with low operating 

expenses, so that the probability that the oil price will fall below the point at which revenues 

equal operating costs is extremely low. Thus, the option value represented by the ability to adjust 

a well’s production rate in response to price changes is negligible, implying that drilling and 

production do not need to be modeled as a compound option. 
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2.3 Expected oil prices 

I obtained data on the expected oil price from the prices of NYMEX crude oil futures 

contracts. With risk neutral traders and efficient aggregation of information by the market, the 

futures price is in theory the best predictor of the future price of oil. In practice, while futures 

prices have been found to provide slightly more precise predictions than the current spot price 

(i.e., a no-change forecast) during the 1993-2003 period I study here (Chernenko et al. 2004), the 

improvement is not statistically significant. Moreover, when data through 2007 are used, spot 

prices actually slightly outperform futures prices, though again the difference is not statistically 

significant (Alquist and Kilian 2010). Given the slightly superior performance of NYMEX 

futures during the sample period of this paper and the fact that a majority of producers claim to 

use futures prices in making their own price projections (SPEE 1995), I will use futures prices as 

the measure of firms’ expected price of oil. In a secondary specification, I explore how the use of 

spot prices impacts the results.  

I focus on the prices of futures contracts with 18 months to maturity.5 This maturity is the 

longest time horizon for which NYMEX futures are traded regularly (on 84% of all possible 

trading days over 1993-2003). In addition, the typical production profile of drilled infill wells 

suggests that 18 months might be a reasonable forecast horizon for a firm to use when evaluating 

a drilling prospect, since approximately one-half the well’s total expected production is likely to 

be exhausted at this time.6 In an alternative specification, I use the 12-month contract. 

Futures prices are generally consistent with mean-reverting expectations about the future 

price of oil, as shown in figure 3. When the front-month (nearest delivery month) oil price 

exceeds approximately $20/bbl (real $2003), the price of an 18-month futures contract tends to 

                                                 
5 In reality, it is rare that a NYMEX futures contract has a time to maturity of exactly 18 months (548 days) since the 
available contracts that can be traded have maturities that are either one full month or one full quarter apart. On any 
given trading date, I therefore treat contracts with a time to maturity that is within 46 days of 18 months as having a 
maturity of 18 months. When more than one such contract is traded on any given trading date, I average the prices 
across the contracts. 
6 This half-life is derived by fitting a hyperbolic curve to the average production data (figure 2) and extrapolating 
production beyond 3 years. Based on this curve and a 9.9% real discount rate (see section 5.1), half of a typical 
well’s expected discounted production is exhausted in 19.2 months. 
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be lower than the front-month price, and the reverse holds when the front-month price is below 

$20/bbl. The prices of 12-month futures are usually near those of 18-month futures, indicating 

that the market generally believes that most mean reversion will occur within a year of the 

trading date.  

 

2.4 Expected oil price volatility 

I derive my primary measure of firms’ expected future price volatility from the volatility 

implied by NYMEX futures options prices. Across numerous commodity and financial contracts, 

implied volatility has been found to be a better predictor of future volatility than measures based 

on historic price volatility, including GARCH models (Poon and Granger 2003, Szakmary et al. 

2003). Intuitively, if markets are efficient then options prices incorporate up-to-date information 

beyond that available from price histories alone, improving their predictive power. 

The classic formula for the value of a commodity option contract is based on the Black-

Scholes model (1973) and given by Black (1976). It requires as inputs the expected volatility of 

the commodity price, the option’s time to maturity τ, the price of the futures contract with time to 

maturity τ, the option’s strike price, and the riskless rate of interest.7 Given an options price, 

Black’s formula can be inverted to calculate the expected price volatility implied by the option. 

Black’s formula assumes that the term structure of volatility is constant over the life of 

the option; that is, spot price volatility equals future price volatility at any time to maturity.8 

Hilliard and Reis (1998), however, show that when futures prices exhibit mean reversion, the 

expected volatility of futures prices declines as time to maturity increases. In figure 3, for 

example, it is apparent that the NYMEX front-month contract is, on average, more volatile than 

the 18-month contract. With mean reversion, an 18-month futures option price gives the average 

implied volatility of futures price contracts with maturities between the front-month and 18 

                                                 
7 I use the interest rate on one-year treasury bills to measure the riskless rate of interest. 
8 The Black (1976) formula also assumes that the options are European and that volatility is not stochastic. As 
discussed in appendix 1, however, these assumptions are likely to be minor in importance. 
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months. This average implied volatility will be greater than the implied volatility of an 18-month 

futures price contract, and my analysis requires the latter of these two variables, not the former. 

To address this issue, I first use the realized volatility of futures prices to estimate the 

average term structure of volatility: the function by which the volatility of the future price of oil 

declines as time to maturity increases. I then use liquidly traded short-term futures options to 

generate a time series of the implied volatility of a one-month futures option contract. Because a 

one month time horizon is short, this time series is equivalent to the time series of the implied 

volatility of the one-month futures price contract. Finally, I combine the one-month futures price 

volatilities with the estimated term structure to generate the desired time series of the implied 

volatility of an 18-month futures price contract. In appendix 1, I discuss this procedure in more 

detail and provide evidence that the term structure of volatility is stable over time.9 The time 

series of implied 18-month futures price volatilities is given in figure 1 alongside the time series 

of 18-month futures prices (both series are averages of daily observations within each month). 

In secondary empirical specifications, I construct volatility forecasts using historic 

futures price volatility rather than implied volatility derived from futures options. These 

specifications address the possibility that oil production firms’ volatility forecasts differ from 

those of the market. One possible forecast is a no-change forecast; that is, the expected future 

volatility of the NYMEX futures price is its recent historic volatility. Figure 4a compares the 

historic volatility of the futures price, measured over rolling windows of one month and one 

year, to the implied volatility series. The one-month forecast is clearly noisy relative to implied 

volatility, reflecting small sample variation in volatility calculated using only one month of price 

data. The one-year forecast is considerably smoother than the one-month forecast and sometimes 

                                                 
9 An alternative procedure to that used here would use the term structure of the implied volatility of futures options 
directly to derive the implied volatility of 18-month futures prices. This approach would use the fact that the 
volatility of a τ-month futures price is equal to the volatility of a τ-month futures option plus τ times the derivative of 
the futures option term structure (with respect to τ) at τ. The use of the derivative implies that this approach requires 
a very precise estimate of the term structure of futures options’ implied volatility. Thin markets for futures options 
beyond 6 months render this procedure impractical. For example, 18-month futures options are traded, on average, 
only 18 days each year from 1993-2003. 
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deviates substantially from implied volatility. Historic volatility is relatively high in 1997, low in 

1998, and does not reflect the implied volatility spikes in 1999 and September 2001. 

I have also forecast volatility using a GARCH(1,1) model. For each date in the dataset, I 

estimate the GARCH parameters using a four-year rolling window of daily 18-month futures 

prices.10 At each date, I then use the estimated GARCH model to forecast volatility over the 

upcoming month. The average forecasted volatility over this month is then used as the measure 

of firms’ expected price volatility. Figure 4b plots this GARCH volatility forecast against the 

implied volatility from futures options. The GARCH forecast aligns more closely with the 

implied volatilities than do the measures of historic volatility, though these time series do still 

differ substantially at various points, most notably 1997-1998 and late 2001. 

 

2.5 Drilling costs 

The primary source for information on drilling costs is RigData, a firm that publishes 

reports on the onshore U.S. drilling industry and collects data on daily rental rates (“dayrates”) 

for drilling rigs from surveys of drilling companies.11 Rig rental comprises the single largest line-

item in the overall cost of a well, and industry sources have suggested that at typical dayrates rig 

rental accounts for one-third of a well’s total cost.12 Because I observe dayrates but not other 

components of drilling costs, I will assume that non-rig costs are constant in real terms and equal 

to twice the rig rental cost at the average sample dayrate. This constant cost assumption seems 

reasonable over the 1993-2003 sample. Prices for steel, which factor into prices for drill pipe, 

                                                 
10 In the GARCH model, the mean price equation is a seventh-order autoregression; this number of lags is necessary 
to eliminate serial correlation in the price residuals. A GARCH(1,1) process is then sufficient to eliminate 
conditional heteroscedasticity in the residuals (the p-value for rejecting a null hypothesis of no conditional 
heteroscedasticity is 0.423). 
11 The oil production firms that hold leases, make drilling decisions, and are the focus of this study do not actually 
own the drilling rigs that physically drill their wells. Rigs are instead owned by independent drilling companies that 
contract out their drilling services. See Kellogg (2009) for further information regarding the contracting process 
between production firms and drilling companies.  
12 This one-third figure was suggested by RigData and substantiated by information from the Petroleum Services 
Association of Canada’s (PSAC’s) Well Cost Study (summers of 2000 through 2004). This study provides a break-
out of the costs of drilling representative wells across Canada during the summer months. For the non-Arctic, non-
offshore areas that most closely resemble conditions in Texas, rig rental costs averaged 35.2% of total costs. 
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bits, and well casing, were fairly stable over this time, nominally increasing by an average of 

1.8% per year according to data from the Bureau of Labor Statistics. Other substantial 

components of cost, such as site preparation, construction, and general equipment rental (pumps, 

for example), should be based primarily on prices for non-specialized labor and capital inputs 

and therefore also be stable in real terms.13 As for the assumption that these non-rig costs 

constitute two-thirds of total drilling costs on average, I explore the use of alternative ratios as 

robustness tests when estimating the model. 

The RigData dayrate dataset is quarterly and continuously reported from 1993 onwards. 

Because I conduct my analysis at a monthly level, I generate monthly dayrate data by assigning 

each quarterly reported dayrate to the central month of each quarter and then linearly 

interpolating dayrates for the intervening months. The alternative approach of simply treating 

dayrates as constant within each quarter has only a minor effect on the estimated results. 

Because drilling rigs are pieces of capital that are specific to the oil and gas industry, rig 

rental rates are positively correlated with oil and gas prices and, accordingly, vary over the 

sample frame. For a well of average depth (5,825 feet in the sample), the dayrate ranges from 

$5,015 to $12,056, with an average of $7,163.14 Given an average drilling time of 19.2 days, the 

average rig rental cost for a well is therefore $137,528 and average non-rig costs, estimated to be 

twice this amount, are $275,057 (all figures in real 2003 US$).  

For each month in the sample, I calculate the total drilling cost of an average well as the 

sum of 19.2 days times the prevailing dayrate for that month (in real terms) with average non-rig 

costs. The time series of drilling costs for an average well is plotted alongside oil futures prices 

in figure 5. The positive correlation between these two series is readily apparent. 

                                                 
13 Evidence in support of this claim is available from the 2002, 2003, and 2004 PSAC Well Cost Studies, during 
which time the specifications for the representative wells were essentially unchanged. These data indicate that non-
rig drilling costs changed, on average, by only -0.2% in 2003 and +3.1% in 2004. Rig-related drilling costs, 
however, increased by 9.8% in 2003 and 30.9% in 2004, following increases in the price of oil. 
14 RigData reports dayrates separately for rigs drilling wells between zero and 5,999 feet deep and for rigs servicing 
wells between 6,000 and 9,999 feet deep. The dayrates used in this study are the average of these two depth classes 
for the Gulf Coast / South Texas region. 
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3. Descriptive results 

Figure 1 plots the three time series of primary data: drilling activity, oil futures prices, 

and implied oil price volatility from futures options. Several features of the plot are worth noting. 

First, drilling activity rises and falls with the oil price. In particular, the oil price crash of 1998-

1999 that was driven by the Asian financial crisis (Kilian 2009) is associated with a sharp 

reduction in drilling activity. Second, following the 1998-1999 price crash, oil prices rapidly 

recovered and by the beginning of 2000 actually surpassed their pre-1998 levels. However, oil 

drilling did not enjoy a similar recovery: activity did increase once prices began to rise in the 

summer of 1999 but recovered only to approximately two-thirds of its pre-1998 level. Why did 

drilling activity not reach its earlier level despite such a high oil price? The third line on the 

graph—implied volatility—suggests that an increase in uncertainty following the 1998 price 

crash may have caused producers to delay the exercise of their drilling options. Implied volatility 

increases sharply at the end of 1998 and remains at an elevated level for the remainder of the 

sample; this high level of volatility is associated with the period in which expected oil prices 

were high yet drilling activity was low. Moreover, several positive shocks to volatility 

subsequent to 1999, such as the volatility spike following 11 September, 2001, appear to be 

associated with reductions in drilling activity. 

A descriptive statistical analysis using a hazard model confirms that the negative 

relationship between drilling and expected oil price volatility that is apparent in figure 1 is in fact 

statistically significant. The unit of observation in this analysis is an individual drilling prospect 

and I model 7,787 such prospects: the 1,150 observed infill wells plus one prospect for each of 

the 6,637 sole-operated fields in which I observe no drilling activity. In doing so, I treat 

prospects that exist within the same field as independent of one another. While this treatment 

does not allow for the modeling of factors that might cause wells within the same field to be 

drilled at nearly the same time, the fact that most fields have zero or one well suggests that the 

impact of modeling all drilling decisions independently of one another may be minor.  
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I choose a hazard model, rather than a more conventional OLS regression of drilling 

activity on expected price and volatility, to capture the idea that drilling activity should decline 

over time as the set of available options is gradually reduced through drilling. In the simplest 

possible model, I model the hazard rate as an exponential function of the expected future price 

level and expected price volatility per (1) below.  

0 3 3( ) exp( )p t v tγ t β β Price β Vol         (1) 

In estimating both this model and the structural model described below, I lag all 

covariates by three months, as industry participants have indicated that the engineering, 

permitting and rig contracting processes generally drive a three month wedge between the 

decision to drill and the commencement of drilling. For inference, I use a “sandwich” variance-

covariance matrix estimator that allows arbitrary within-field correlation of the likelihood scores 

(Wooldridge 2002).15 In practice, this estimator increases the estimated standard errors by about 

25%, on average, relative to the standard BHHH estimator. 

The results of estimating (1) are presented in column I of table 1. A $1.00 increase in the 

expected future price of oil is associated with an increase in the likelihood of drilling of 4.1%, 

and a one percentage point increase in expected price volatility is associated with a decrease in 

the likelihood of drilling of 3.1%. Both of these point estimates are statistically significant at the 

1% level. Columns II through IV of table 1 indicate that these correlations are robust to 

alternative specifications that allow for changes in drilling costs, unobserved prospect-specific 

heterogeneity, and a time trend. Column V, however, indicates that no statistically significant 

correlation between the drilling hazard and expected volatility is found when the specification 

includes an indicator variable for whether the date is greater than or equal to July 1998. Thus, the 

                                                 
15 Wooldridge (2002) shows that that this approach, which is analogous to clustering in linear regression models, 
still produces consistent estimates of the parameters even though serial and cross-well correlation within each field 
is not explicitly accounted for in the likelihood function. I also use this approach when estimating the structural 
model, discussed in sections 4 through 6. I have also estimated these models while clustering the standard errors on 
time rather than field to account for cross-sectional correlation of the likelihood scores. These estimated standard 
errors are generally similar to those obtained from the standard BHHH estimator. 
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observed negative correlation between drilling rates and expected volatility is largely accounted 

for by the substantial and persistent increase in volatility beginning in July 1998 and the 

coincident, persistent decrease in drilling. 

Because these descriptive results, in the absence of an economic model, cannot speak to 

the optimality of firm decision-making or welfare, the remainder of this paper focuses on 

formulating and estimating a model of the infill drilling problem faced by oil production 

companies in Texas. The primary goal of this model is to relate the observed responses of firms 

to changes in uncertainty to the theoretically optimal response. In what follows, I also discuss the 

plausibility of alternative explanations for the persistent decrease in drilling subsequent to 1998. 

 

4. A model of drilling investment under time-varying uncertainty 

4.1 Model setup 

Consider a risk-neutral, price-taking oil production firm that is deciding whether to drill 

some prospective well i at date t. Using geologic and engineering estimates, the firm generates 

an expectation regarding the monthly oil production from the well should it be drilled. The 

present value of the well’s expected revenue is then equal to the sum, over the months of the 

well’s productive life, of the product of the well’s expected monthly production with the 

expected oil price each month, net of taxes and royalties, and discounted at the firm’s discount 

factor δ. Rather than model this discounted sum explicitly, I model it instead as simply the 

product riPt. Here, ri represents the sum of the well’s expected monthly production, net of taxes 

and royalties, and discounted so that it is in present value terms.16 Pt represents the “average” oil 

price that will prevail over all barrels of oil expected to be produced by the well, so that the 

                                                 
16 A narrow view of ri suggests that I am assuming that the ongoing production from any previously drilled wells in 
the same field as well i is unaffected by the drilling of well i. This assumption is incorrect if the new well is, at least 
to some extent, only accelerating the recovery of reserves from the field rather than exploiting new reserves that the 
existing well stock did not reach. However, the model can handle wells drilled with the purpose of acceleration by 
interpreting the expected productivity ri as the expected production of the new well net of its expected impact on the 
production from the existing well stock (if any). 
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product riPt is equal to the original discounted sum of monthly revenue. In the estimation that 

follows, I will use the 18-month futures price of oil as Pt. This simplification allow me to model 

the price level using only the single state variable Pt rather than a vector of state variables for the 

expected price in each month of the well’s productive life. 

I emphasize that riPt is the firm’s expectation of the value that will be obtained from 

drilling. Realized value may differ substantially from riPt because the realized oil price may 

differ from Pt (though the firm could hedge this risk away) and because realized production may 

differ from ri. Recall that some of the wells observed in the sample yielded zero oil production. 

Clearly, a dry hole was not the firms’ expected outcome for these wells. 

In month t, the well’s drilling cost is equal to the sum of non-rig costs ci with the product 

of the dayrate Dt and the number of days di required to drill the well.17 Then, given an expected 

oil price Pt and a dayrate Dt, the expected profits πit from drilling the well are given by the 

function πi: 

 ( , )it i t t i t i i tP D r P c d Dp p= = - -  (1) 

It will be useful for estimation to rearrange (1), defining the expected productivity of a 

well as the ratio of its expected production ri to its drilling cost at the average dayrate. Denote 

this cost by i i iC c d D   and let this ratio be denoted by xi. Further, let c  denote /i ic C  and let 

d  denote /i id C . Assuming that the ratio of non-rig costs to total costs at the average dayrate is 

constant across wells implies that both c  and d  are constant across wells (in the reference case 

model, I set 2 / 3c   and 1/ 3dD   per the discussion in section 2.5). Then, expected profits πit 

can be re-written as (2) below, in which all cross-well productivity heterogeneity relevant to the 

drilling timing decision is collapsed into the single variable xi. 

 ( , ) ( )it i t t i i t tP D C x P c dDp p= = - -   (2) 

                                                 
17 I assume that di does not vary over time. Learning-by-doing could cause di to decrease as more wells are drilled in 
the field (Kellogg 2009); however, since most of the observed sole-operated fields have only one new well during 
the sample, this effect is likely to be negligible. Technological progress might also decrease di over time; this 
possibility is part of the motivation for allowing for a time trend in an alternative specification. 
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I treat all firms as price takers, in the sense that they believe that their decisions do not 

impact Pt or Dt. This assumption almost certainly holds institutionally. The market for oil is 

global, and Texas as a whole constitutes only 1.3% of world oil production. With respect to oil 

producers’ monopsony power in the market for drilling services, the largest firm in the dataset is 

responsible for only 2.2% of all wells drilled in Texas during the sample period, a quantity that 

seems insufficient for exertion of substantial market power. 

Let the processes by which firms believe the price of oil and drilling costs evolve be first-

order Markov and be given by (3) and (4) below. Pt denotes the oil price (18-month NYMEX 

future) in the current month t, and Pt+1 is the price in month t+1. Dt and Dt+1 represent the 

current and next month’s dayrates.18 

 2
1 1

2ln ln ( , ) / 2t t t t t t tP P μ P σ εσ σ       (3) 

 2 2
1 1ˆˆ ˆ ˆ ˆln ln ( , ) / 2t t t t t t tD D μ D σ σ σ ε      (4) 

The firm’s current expectation of the volatility of the oil price is denoted by σt, and the 

price shock εt+1 is an iid standard normal random variable that is realized subsequent to the 

firm’s drilling decision in the current period. Because I do not observe expectations of dayrate 

volatility ˆtσ , I assume that this volatility is a scalar multiple of the oil price volatility so that ˆtσ = 

ασt. The cost shock 1t̂ε   is drawn from a standard normal that has a correlation of ρ with εt+1. 

2( , )t tμ P σ  and 2ˆ ˆ( , )t tμ D σ denote the expected price and drilling cost drifts as stationary 

functions of the current expected level and volatility of the oil price and dayrate. Dependence of 

these drifts on the price and dayrate levels allows for the mean reverting expectations exhibited 

by NYMEX futures prices (figure 3). I also allow the drifts to depend on volatility because, as 

pointed out by Pindyck (2004), an increase in volatility may increase the marginal value of 

storage and therefore raise near-term prices. In addition, a volatility increase may also affect 

investments related to oil production and consumption (via the real options mechanism 

                                                 
18 These transition functions are the discrete time analogue to geometric Brownian motion with drift (see Dixit and 
Pindyck 1994). Volatility is assumed to be constant within each time step. 
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considered here, for example), affecting expectations of future prices. The specification and 

estimation of 2( , )t tμ P σ  and 2ˆ ˆ( , )t tμ D σ  is discussed in section 5.1 

 

4.2 Optimal drilling with time-varying volatility 

The firm’s problem at a given time t is to maximize the present value of the well Vit by 

optimally choosing the time at which to drill it. This optimal stopping problem is given by (5) 

below, in which Ω denotes a decision rule specifying whether the well should be drilled in each 

period τ ≥ t as a function of Pτ and Dτ (conditional on the well not having been drilled already). Iτ 

denotes a binary variable indicating the outcome of this decision rule each period and δ denotes 

the firm’s real discount factor. 

 
Ω

max ( , )τ t
it τ i τ τ

τ t

V E δ I π P D






 
  

 
  (5) 

In formulating (5), I assume that firms holding multiple drilling options treat them 

independently of one another. Given that I only observe zero or one well drilled in most fields in 

the sample, this assumption does not seem particularly strong. In those cases in which a firm 

holds multiple drilling options within the same field, it may be that the outcome from drilling 

one well may convey information regarding other prospects. That is, if the first well drilled by a 

firm in a field turns out to be highly productive, the firm may increase its estimate of xi for its 

remaining prospects.19 This contingent re-evaluation will result in temporal clustering of drilling 

activity in multi-well fields relative to what would be predicted by (5) alone. 

Because drilling a well is irreversible and future prices and costs are uncertain, the 

decision rule for maximization of (5) is not simply to invest in the first period in which πit ≥ 0. 

The firm must trade off the value of drilling immediately against the option value of postponing 

the investment to a later date, at which time the expected oil price may be higher or the drilling 
                                                 
19 The process by which firms learn about the quality of fields through drilling is examined by Levitt (2009), which 
develops and estimates a dynamic learning model. That paper’s approach cannot be used here because it requires 
data on oil production outcomes for all drilled wells and because the separate identification of learning effects and 
location-specific heterogeneity requires observations of different firms drilling wells in the same field (as well as an 
assumption of no cross-firm information spillovers).  
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cost lower. This trade-off is captured by re-stating the optimal stopping problem as the Bellman 

equation (6) below, in which Vi(·) represents the current maximized value of the drilling option 

as a function of the state variables P, D, and σ (from which I now remove the subscript t). Vi’ 

represents this maximized value in the upcoming period. 

  ( , , ) max ( , ), E[ '( ', ', ')]i i iV P D σ π P D δ V P D σ   (6) 

Equation (6) includes the firm’s expected oil price volatility σ as a state variable even 

though it does not appear in the profit function πi(·). Volatility impacts drilling decisions through 

its impact on the distribution of next period’s expected oil price P’ given the current expected 

price P. An increase in σ increases the variance of P’ conditional on P, thereby increasing the 

value of holding the drilling option relative to the value of drilling immediately. 

Intuition suggests that the solution to (6) will be governed by the following “trigger rule”: 

at any given P, D, and σ, there will exist a unique x*(P,D,σ) such that it will be optimal to drill 

prospect i if and only if xi  ≥ x*(P,D,σ). Furthermore, x* will be strictly decreasing in P and 

strictly increasing in D and σ. The following conditions on the stochastic processes governing the 

evolution of P, D, and σ (none of which is rejected by the data) are sufficient for this trigger rule 

to hold. S denotes the state space. 

(i) [ ' | , , ]     , ,E P P D P P D Sd s s< " Î  (oil prices cannot be expected to rise more 

quickly than the rate of interest) 

(ii) 
[ ' | , , ] 1E P P D

P

s
d

¶
<

¶
, with the same holding for D and σ, , ,P D Ss" Î  (the 

expected rates of change of each state variable cannot increase too quickly with 

the current state) 

(iii) ρ < 1 (oil price shocks and dayrate shocks are not perfectly correlated)  

(iv) The distribution of P’ is stochastically increasing in P, with the same holding 

for D and σ 



 21  

(v) [ ( ', ', ') | , , ] ( , , )    , ,E P D P D P D P D Sd p s s p s s< " Î  (the Hotelling condition 

necessary for drilling to be optimal: expected profits cannot rise more quickly 

than the rate of interest) 

It is straightforward to show that conditions (i)-(iii) imply that ( ) [ ( ' | )]s E s s   is 

strictly increasing in P and xi, and strictly decreasing in D and σ. Given this result and conditions 

(iv) and (v), a fixed point contraction mapping argument given in Dixit and Pindyck (1994) 

proves that the trigger x*(P,D,σ) must exist. There must also exist similar triggers P*(D,σ,xi), 

D*(P,σ,xi), and σ*(P,D,xi), representing the minimum price, maximum drilling cost, and 

maximum volatility at which drilling is optimal as functions of the other variables. The existence 

of all four triggers implies that x*(P,D,σ) must be strictly decreasing in P and strictly increasing 

in D and σ. 

Thus, an increase in expected volatility σ will cause a fully optimizing firm to increase 

the productivity trigger x* necessary to justify investment, holding the expected price and dayrate 

constant. Consider such a firm for which the price volatility expectation σ is equal to the 

volatility implied by the futures options market, which I denote by σm. Figure 6 illustrates how 

the firm’s critical productivity x* will vary with P and σm for a well with an average drilling cost 

at the average sample dayrate. The relationship between x* and P is shown at both low (10%) and 

high (30%) levels of expected price volatility σm. At both volatility levels, x* decreases with price 

so that less productive wells may be drilled in relatively high price environments. Holding price 

constant, x* is greater in the high volatility case than the low volatility case. 

Now, however, suppose that firms have time-varying expectations about future volatility 

that coincide with those of NYMEX market participants but do not take these expectations into 

account when making drilling decisions, so that in terms of the model σ is effectively constant 

over time. In this case, the two lines in figure 6 will coincide. It is this difference in investment 

behavior between firms that respond to σm and those that do not that will provide identification in 

the empirical exercise described below. Note, however, that an observed lack of response to σm 
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could also reflect the possibility that, while firms properly take expected volatility into account 

when making investment decisions, they hold a belief that volatility σ is constant over time rather 

than equal to the time-varying σm. Thus, to the extent that the data imply differences between σ 

and σm, I will not be able to identify whether the differences are due to sub-optimal investment 

decision-making or to differences between firms’ beliefs and those of the broader market. 

I capture the extent to which firms optimally respond to the market’s implied volatility σm 

by parameterizing firms’ beliefs through a behavioral parameter β. First, define lnσ  to be the 

average log of the market volatility over the first year of the sample (12.3%), and let ln d  be the 

deviation of ln m  from lnσ . That is: 

 ln ln lnm dσ σ σ   (7) 

I then relate the firm’s expected volatility σ to σd via (8): 

     ln ln ln dσ σ β σ   (8) 

Through this formulation, the behavioral parameter β regulates the extent to which firms 

respond to changes in σm. A firm that behaves according to β = 1 is a firm that shares the 

market’s beliefs regarding future price volatility and correctly optimizes its investment decisions 

according to those beliefs. Conversely, a firm with β = 0 does not respond to changes in σm 

because it either has beliefs that are orthogonal to σm or does not optimize its investment 

decisions correctly. The primary objective of the empirical work is to obtain an estimate of β and 

test whether the estimate is consistent with investment behavior that is optimal given beliefs that 

coincide with those of the market. 

The final component of the model is the process by which firms believe σd evolves over 

time. My reference case specification models this process as a random walk per (9) below, in 

which γ denotes the volatility of the volatility process and η’ is an iid standard normal random 
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variable.20 I discuss alternatives to the random walk approach in the discussion of the estimation 

results in section 6.3. 

 2' / 2 'ln lnd d γ γησ σ    (9) 

 

5. Empirical Model and estimation 

The parameter of primary interest is β, the behavioral parameter that reflects firms’ 

sensitivity to the expected volatility of the price of oil. To obtain an estimate of β, I must also 

estimate the parameters α, ρ, and γ that govern the state transition processes as well as the oil 

price and dayrate drift functions 2( , )t tμ P σ  and 2ˆ ˆ( , )t tμ D σ . An estimate of the discount factor δ is 

also required. In what follows, I first discuss how I estimate these “secondary” parameters 

independently of the full model before turning to the estimation of β via a procedure based on the 

nested fixed point approach of Rust (1987). 

 

5.1 Estimates of the discount factor and state transition processes 

While the firms’ discount factor δ can in principle be estimated as part of the nested fixed 

point routine, obtaining precise inference in practice is challenging. I adopt the standard 

approach in the literature by setting δ in advance. According to a 1995 survey by the Society of 

Petroleum Evaluation Engineers, the median nominal discount rate applied by firms to cash 

flows is 12.5%. Given average inflation over 1993-2003 of 2.36%, I set δ equal to the quotient 

1.0236 / 1.125, approximately 0.910. 

I assume that 2( , )t tμ P σ , the expected drift of the log oil futures price, is the stationary 

linear function given by (10): 

  2 2
0 1 2( , )t t p p t p tμ P σ κ κ P κ σ    (10)  

                                                 
20 A random walk process cannot be rejected using an augmented Dickey-Fuller test. With 12 lags, the p-value for 
rejecting the null of a unit-root process is 0.3182. 
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Per equation (3), consistent estimates of κp0, κp1, and κp2 may be obtained via an OLS 

regression of E[ln Pt+1] – ln Pt + 2 / 2tσ  on Pt and 2
tσ . Because the reference case specification 

uses 18-month future prices for Pt, I use 19-month future prices to measure E[ln Pt+1] in this 

regression. I estimate that κp0 = 0.0095, κp1 = -0.00055, and κp2 = 0.401. These values are 

consistent with mean reversion to an oil price of $19.56 per barrel (at the sample average 

volatility of 19.4%).  

I similarly assume that 2ˆ ˆ( , )t tμ D σ , the expected dayrate drift, is a linear function of the 

current dayrate, so that 2 2
0 1 2ˆ ˆ ˆ( , )t t d d t d tμ D σ κ κ D κ σ   . There does not exist a futures market for 

rig dayrates to facilitate estimation of the κd. Rather than attempt to estimate these parameters 

from a short time series of quarterly drilling cost observations, I instead assume that the 

parameters κd0, κd1, and κd2 match those from the oil price drift equation, with κd1 re-scaled by the 

ratio of the average dayrate to the average oil price. 

To estimate α, the ratio of ˆtσ  to σt in each period (this ratio is assumed to be constant), I 

first calculate 1ln lnt t tξ P P   and 1
ˆ ln lnt t tξ D D    in each period. α is then estimated by the 

ratio of the standard deviation of t̂ξ  to the standard deviation of tξ . I then estimate ρ to be the 

correlation coefficient between t̂ξ  and tξ . The estimate of α is 1.50, and the estimate of ρ is 

0.395. Finally, I take γ, the volatility of the volatility process, to be the standard deviation of 

1ln lnm m
t tσ σ  . This value is 0.1136.  

 

5.2 Primary empirical model and estimation 

Given the state transition functions estimated above, the remaining unknowns in the 

econometric model are the behavioral parameter β and the unobserved expected productivity of 

each drilling prospect, the xi. Because all firms face the same price, volatility, and dayrate 

processes, the trigger productivity x* will be the same for all prospects in the data at any given 

time. If xi is modeled as identical across prospects, then all firms would make the decision to drill 

at the same time, a prediction that conflicts with the spread of drilling activity over time evident 

in figure 1. Clearly, there must exist a distribution of xi across prospects.  
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It is therefore tempting, at first, to estimate a model in which xi varies across prospects 

but for each individual prospect is constant over time. However, this model is also incapable of 

rationalizing the data. Given the trigger rule described in section 4, such a model implies that in 

each period t, all wells with productivity xi > *
tx  will be drilled. Now consider what would 

happen should x* rise in period t+1, perhaps because the oil price fell or because volatility 

increased. In this case, only prospects with *
1i tx x   will be drilled. However, all such prospects 

will already have been drilled in period t since 
* *

1t tx x  . Thus, an implication of a model in 

which xi does not vary over time is that there cannot be any drilling activity following an 

increase or no change in x*. Such a model is clearly inconsistent with the drilling data. In 1999, 

for example, the expected price is considerably lower than it was in 1998 and the expected 

volatility is higher; however, drilling activity does not go to zero. Clearly, any firm that drilled a 

well during this period must have positively updated its xi. 

There exist numerous reasons why xi may vary over time. The process by which 

geologists and engineers develop an estimate of a prospective well’s production is inherently 

challenging and error-prone. They must make inferences about an oil reservoir buried thousands 

of feet below the earth’s surface with very limited information: seismic surveys, production 

outcomes from previously drilled wells, and electromagnetic “logs” of the rock characteristics at 

nearby wells. Any individual geologist or engineer may change his or her views regarding a 

prospect as more time is spent studying the information, and different personnel may draw 

different conclusions from the same set of information (much like different econometricians may 

draw different inferences from the same data). Such re-evaluations of prospects, particularly if 

there is turnover amongst the firms’ personnel, can drive substantial variation in the xi over time. 

In addition, firms may sometimes “discover” new prospects in old fields in their analyses of their 

data. Observationally, such discoveries are equivalent to an increase in the xi of what had been a 

low-quality prospect. 

Prospect re-evaluation is not the only mechanism by which the xi may vary over time. In 

multi-prospect fields, the results from the drilling of one well may yield information regarding 
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the quality of another prospect. Firms may also undertake costly information gathering by taking 

a seismic survey of their field. Finally, variance in the lag between the decision to drill and the 

actual commencement of drilling may arise due to delays in engineering design, permitting, or 

drilling contracting. These stochastic lags will lead to drilling at times not predicted by the 

model, observationally similar to variation over time in the xi. 

To account for these changes in xi, the econometric model must treat each prospect’s 

expected productivity as xit, an unobserved state variable that evolves over time. I therefore 

rewrite the original Bellman equation (6) as (11):  

  ( , , , ) max ( , , , ), E[ '( ', ', ', ')]i i i i iV P D σ x π P D σ x δ V P D σ x   (11) 

In modeling the state variable xi, I abstract away from explicit modeling of the 

mechanisms above, such as firms’ use of seismic surveys to gather information. A firm that 

undertakes such an action is in reality making an endogenous investment that should in principle 

be modeled dynamically in conjunction with the drilling model. This aspect of information 

acquisition is omitted from the model both to maintain tractability and because I lack data on the 

occurrence of seismic surveys. The present model can accommodate costly information 

gathering to the extent that the drilling of a well can be viewed as a compound investment: when 

prices rise or volatility falls so that the firm is ready to contemplate drilling, it first undertakes a 

seismic survey prior to drilling the well. I also continue to model each prospect independently, 

abstracting away from the process by which the drilling of a well in a field can influence the 

firm’s beliefs about other prospects in the same field. This omission may result in un-modeled 

clustering of drilling behavior in fields with multiple wells drilled, motivating the use of a 

sandwich variance-covariance estimator (Wooldridge 2002). 

In my reference case empirical specification, I treat log xit as an iid normal variable 

across both prospects i and time t, and I estimate the mean μ and variance ζ of this distribution in 

addition to the behavioral parameter β. This approach agglomerates the possible sources of 

variation in the xit into a single, parsimonious distribution. Separate identification of each source 



 27  

of variation would require strong functional form assumptions and a substantially more complex 

model than that given here. In addition, for each source of variation discussed above, the shocks 

to the xi are not due to exogenous arrival of new information but rather reassessments of old 

information, new prospect “discovery,” costly and deliberate information acquisition, or 

variation in the lag between drilling decisions and actual drilling. Because the xit
 incorporate 

these effects rather than exogenous information shocks, I model firms as believing that xit+1 = xit. 

Despite the emphasis of the above discussion on time-variance in xit, there may exist 

some persistent cross sectional heterogeneity in the expected productivity of each prospect. I 

therefore also estimate a model in which log xit is the sum of a time-invariant normally 

distributed random variable φi, with mean and standard deviation given by μ1 and ζ 1, and an iid 

normal variable νit with a zero mean and standard deviation ζ2. In this specification, I estimate μ1, 

ζ 1, and ζ2 in addition to the behavioral parameter β. 

Given the state transition processes discussed in section 5.1, the parameters governing the 

distribution of the xit, the behavioral parameter β, and the realized monthly time series of future 

prices, rig dayrates, and implied volatilities (denoted by P, D, and σ, respectively), the model’s 

solution yields the likelihood that a given prospect will be drilled in any given month t 

conditional on not having been drilled already. This likelihood is simply the probability that xit 

exceeds the trigger productivity *
tx .21 Starting from the initial period of January 1993, these 

conditional probabilities yield the probability that any given prospect will be drilled in each 

month t, as well as the probability that the prospect will not be drilled by the end of the sample.22 

These probabilities form the basis for the likelihood function. Let Iit denote an indicator variable 

that takes on a value of one if prospect i is drilled in month t and zero otherwise, T denote the 

                                                 
21 Unlike Rust (1987), the unobservable xit is not additively separable to the reward function, implying that I cannot 
take advantage of the logit formulation of the likelihood. Instead, I directly model xit as a state variable, and the 
model’s solution then yields the trigger productivity each period. Details are provided in appendix 2. 
22 For example, the probability that the prospect will be drilled in February 1993 is the conditional probability that it 
is drilled in February 1993 multiplied by probability that it was not drilled in January 1993. The probability that it is 
drilled in March 1993 is then the conditional probability that it is drilled in March 1993 multiplied by probability 
that it was not drilled in February 1993 or earlier, and so on. 
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final month of the sample, Nt denote the number of wells actually drilled at t, and N0 denote the 

number of prospects not drilled (N0 = 6,637, the number of undrilled sole-operated fields).23 The 

log-likelihood function is therefore: 

 1 2 0
1

0

(( , ,..., ), | , , ; , , ) log Pr( 1| , , ; , , )

                                                                + log Pr( 0 | , , ; , , )

T

T t it
t

it

N N N N β μ ζ N I β μ ζ

N I t β μ ζ


 

 

l P D σ P D σ

P D σ

 (12) 

Estimation of β, μ, and ζ is carried out by maximizing this likelihood function using a 

nested fixed point routine. The outer loop searches over the unknown parameters while the inner 

loop solves the model and calculates the likelihood function at each guess. Details regarding this 

procedure, such as the discretization of the state space used to numerically solve the model, are 

provided in appendix 2. The specification with cross-sectional heterogeneity proceeds by 

integrating the likelihood over the distribution of φi.  

 

6. Estimation results and discussion 

6.1 Reference case estimation results 

I begin by estimating the version of the model in which log xit is assumed to be iid across 

prospects i and time t. As a baseline, column I of table 2 provides the estimation results when I 

impose the restriction that β = 0; that is, firms do not respond to changes in implied volatility. I 

find that a broad distribution of expected productivity xit is needed to sufficiently smooth the 

model’s simulated drilling activity such that it rationalizes the data. The estimated mean μ and 

variance ζ of log xit are -0.653 and 3.094, respectively. Here, and throughout the presentation of 

the results, xit is given in barrels of expected discounted production per $100,000 of drilling cost 

at the average rig dayrate. These estimates together imply that, in the model, the average 

prospect at any point in time is expected to produce only 62 barrels of oil per $100,000 of cost, 

                                                 
23 Throughout this section, I use “drilled” as shorthand for the drilling decision. As with the descriptive hazard 
model, I allow for a three-month lag between the drilling decision and the actual start of drilling. Thus, for example, 
the model’s drilling probability for January 1993 is matched with drilling activity for April 1993. The final period of 
the sample is September 2003, which is matched with drilling activity for December 2003. 
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well below the productivity necessary to justify investment at any reasonable oil price.24 This 

estimate reflects the presence of a large number of fields in the data (6,637) in which no drilling 

occurs. A large estimate of the variance ζ is therefore necessary to rationalize the observed 

drilling. For example, a prospect with average costs and a log xit three standard deviations greater 

than the mean will be expected to produce 23,070 barrels of oil, sufficient to trigger drilling over 

a range of prices and implied volatilities in the sample. 

In column II I allow β, the firms’ sensitivity to implied volatility, to be a free parameter, 

and its point estimate is 1.039. This value is very close to one in both an economic and statistical 

sense (the standard error is 0.064), consistent with optimal investment responses to volatility 

expectations that match the implied volatility of NYMEX futures options.25 Moreover, a 

likelihood ratio test strongly rejects, with a p-value less than 0.001, a null hypothesis that firms 

do not respond at all to implied volatility (β = 0).26 The time series of predicted drilling under 

models I and II are given in figure 7, alongside actual drilling activity. The prediction from 

model II, allowing for a response to volatility, yields a better fit to the data, particularly during 

the 1999 low price period and the volatility spike following September 11th, 2001. More broadly, 

the model that does not allow a response to time-varying volatility under-predicts drilling in the 

early part of the sample and over-predicts drilling in the latter part. Allowing for a volatility 

response largely corrects these mis-predictions, though there remain sections of the time series, 

such as early 1997, that the model does not fit well.  

Column III of table 2 presents estimates of the richer model in which xit is permitted to 

have persistent cross-sectional heterogeneity. This relaxation has virtually no impact on the 

estimate of β. The estimated degree of persistent heterogeneity is low relative to the estimated 

                                                 
24 The 62 barrel per $100,000 figure is equal to exp(-0.653 + 3.0942/2). 
25 Note that, in column II, the distribution of log xit is estimated to have a lower mean and higher variance than in 
column I. This shift in parameters is necessary to rationalize non-zero drilling activity in early 1999 when oil prices 
were low and implied volatility was high: the increased variance allows simulated prospects to have an expected 
quality xit greater than the high drilling cutoff xt* during this period. 
26 Rejection of the restricted estimate with a test size of 5% requires a difference in log likelihoods of 1.92. A 
likelihood ratio test does not take clustering of the likelihood scores on field into account so will therefore 
underestimate the true p-value. 
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variance of the time-varying shocks: the estimate of ζ1 is 0.166 while that of ζ2 is 6.177. 

Allowing for a deterministic time trend also does not significantly impact the estimate of β, as 

shown in column IV. The estimated time trend is slightly negative and indicates a productivity 

decrease of about 0.9% per year. This result is consistent with the presence of some cross-

sectional heterogeneity that causes the most promising prospects to be drilled first.  

Why might these estimates of firms’ responses to changes in expected volatility accord so 

well with theory? Given the small size of the majority of these firms, it seems unlikely that they 

are formally solving Bellman equations. However, they may have developed decision heuristics 

that roughly mimic an optimal decision-making process. Moreover, the firms have a strong 

financial incentive to get their decision-making at least approximately right. Consider a firm that 

has a drilling prospect of average cost that is expected to produce 17,000 bbl, faces an average 

dayrate (so that the drilling cost is $412,585), and faces an expected oil price of $30/bbl. 

Suppose further that the expected oil price volatility is relatively high: 34%. If the firm is myopic 

in that its β equals zero, it will drill the well and realize an expected profit of $97,414. However, 

if the firm makes its decision optimally, it will postpone drilling, preserving the full value of the 

prospect: $148,000 (this value is taken directly from the model’s value function). In this 

example, optimal decision-making in the presence of time-varying volatility yields a 52% 

increase in value over behavior consistent with an expectation that volatility is constant at 12.3%. 

 
6.2 Identification and the July 1998 step change 

The above results indicate that, in periods of high expected oil price volatility, drilling 

activity falls in a way that is commensurate with the predictions of real options theory. This 

section considers potential alternative explanations for this measured empirical response.  

I first examine the extent to which the empirical results above can be explained by the 

correlation of implied volatility with the downward step change in drilling activity that began in 

July 1998. To do so, I model a permanent shock to the xit that begins in July 1998 and is common 

across all prospects. In this approach, the shock proxies for an unobserved factor that may have 
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affected the likelihood of drilling subsequent to July 1998. The results of estimating the model 

while allowing for this step change are given in column V of table 2. The estimated shock is 

large, decreasing log xit by 0.454, although it is not statistically significant. The point estimate of 

β is not significantly affected, changing from 1.039 in the reference case to 1.060 here.  

The standard error on the estimate of β in specification V is 0.040, strongly rejecting a 

null of β = 0 in a simple Wald test. However, a likelihood ratio test against the restricted model 

of column VI in which β = 0 yields a p-value of only 0.036, suggesting the presence of non-

concavities in the likelihood function when the July 1998 shock is included in the model. In fact, 

there is a second local maximum, shown in column VII, at which β = 0.416. The log likelihood at 

this maximum is lower than that at β = 1.060 by only 0.2, and β = 0.416 therefore cannot be 

rejected by the data. This last result suggests that the persistent step changes in volatility and 

drilling activity following 1998 played a non-trivial role in the identification of the robust 

response to volatility in the reference case. 

Is it possible that unobserved and unmodeled factors took effect after 1998 and caused 

the subsequent decrease in drilling activity observed in the data? I investigate here two candidate 

explanations: (a) that there was a discontinuous decrease in the expected productivity of drilling 

prospects (the literal interpretation of the model estimated in columns V through VII of table 2); 

and (b) that the low price period beginning in 1998 caused production firms to lay off 

engineering and management staff that they could not subsequently re-hire, restricting their 

ability to carry out drilling programs when prices recovered. 

Proposition (a), that there was a sudden decrease in prospect quality in 1998, seems 

unlikely. Prospect quality is a function of the geologic characteristics of oil reservoirs in Texas, 

and there is no obvious reason why firms’ beliefs about these characteristics would sharply 

decrease, across many fields and firms, at precisely the same time that oil price volatility rose. 

Moreover, a fall in perceived prospect quality should be manifest in the realized production data 

from drilled wells. Figure 8 displays a scatter plot of the log of the ratio of oil production to 

drilling time for the 162 drilled wells that I could match to oil production data. This plot provides 
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no evidence in support of a drop in prospect quality beginning in July 1998, though the 

production realizations are sufficiently noisy that they do not rule out such a drop either.  

To examine the plausibility of proposition (b), I obtained data from the Bureau of Labor 

Statistics on the employment of petroleum engineers and geologists in Texas. These data are 

given in table 3. While the data do indicate a decrease in employment from 1998 to 1999, as 

expected, employment quickly rebounds with the oil price and in fact surpasses 1998 

employment by 2001. These data therefore suggest that staffing constraints were unlikely to play 

a role in determining the low level of drilling activity following 1998. I cannot, however, rule out 

the possibility that the employees hired in 2000 and 2001 were of lower quality than those whose 

employment terminated after 1998. This quality decrease would need to be substantial, however, 

to explain the data: the estimated magnitude of the drop in log(xit) in the restricted model of 

column VI in table II is -0.359. 

 

6.3 Alternative specifications  

Alternative measures of expected volatility 

The analysis thus far has used implied volatility from the NYMEX futures options market 

as the measure of firms’ oil price volatility expectations. Table 4, column II reports results in 

which expected volatility is instead measured by the historic volatility of futures prices over a 

12-month rolling window. The use of historic volatility yields a worse fit to the drilling data than 

does implied volatility, as evidenced by the decrease in the log likelihood relative to the implied 

volatility results in column I. Moreover, the estimate of the behavioral parameter β is only 0.288 

and not statistically significant, indicating that firms do not respond as strongly to historic 

volatility as they do to volatility signals that are reflected in the NYMEX futures options market.  

Column III of table 4 uses the GARCH(1,1) model to forecast future volatility. This 

model yields an estimate of β of 0.551 that is statistically significant at the 5% level, though the 

fit of the model is still substantially worse than when implied volatility is used (the decrease in 

the log likelihood is equal to 6.5). The reduced fit reflects the fact that, while GARCH provides a 
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closer match to implied volatility than does historic volatility, the two series still diverge 

substantially at several points in time (figure 4b). This result, as well that obtained from the 

direct use of historic volatility, suggests an explanation for why some previous empirical studies 

(Hurn and Wright 1994, Moel and Tufano 2002) have not found strong evidence that time-

varying volatility significantly affects investment. These studies measure firms’ volatility 

expectations using historic volatility, which may only be a noisy measure of firms’ true beliefs 

because it does not reflect up-to-date information regarding volatility shocks. 

Thus far, the analysis has modeled firms as believing that volatility follows a random 

walk per equation (9). Alternatively, column IV of table 4 models firms as believing that the 

volatility process is mean-reverting. I estimate firms’ expected mean reversion rates using the 

GARCH model. At each month in the sample, this model provides volatility forecasts for both 

the current month (the forecast used in generating the time series in figure 4(b) and the estimates 

in column III) and the subsequent month. These two series of predictions are consistent with 

mean reversion: when the current GARCH volatility is relatively high, the upcoming-month 

forecast predicts a fall in volatility, and the reverse holds when the current GARCH volatility is 

relatively low. Using these predictions, I estimate that the expected rate of change in the log of 

expected volatility is given by 0.0544 minus 0.0021 times the current volatility (in annualized 

percent). This estimate implies that, if the current expected volatility is 10%, the expected 

volatility next month is 10.3%. In contrast, if the current expected volatility is 30%, the expected 

volatility next month is 29.7%. 

When firms have volatility beliefs that are consistent with mean reversion, they will 

believe that changes in volatility will not be persistent and therefore not respond as strongly to 

such changes. Thus, the estimate of this model in column IV yields a relatively high value of β of 

1.304 because a value of one will not yield sufficient sensitivity to volatility to match the data.27 

A null hypothesis that β = 1 is rejected at the 5% level. 

                                                 
27 To be clear, this estimate uses implied volatility, not GARCH volatility, as the measure of expected volatility over 
the current month. The GARCH model is used only to generate a forecast of expected mean reversion. 



 34  

Alternative forecast horizons 

Column V of table 4 considers a model in which firms respond to the 12-month oil 

futures price and volatility rather than the 18-month price and volatility. I replace the price series 

Pt with the NYMEX 12-month futures contract and the implied price volatility σm with that of 

12-month futures prices. Re-estimating the full model (including auxiliary parameters such as the 

expected rate of price drift) yields an estimate of β of 1.044, very near the reference case 

estimate of 1.039. This result reflects the closeness of the 12-month price and volatility series to 

the 18-month series (figures 3 and A1). 

Column VI considers a model in which firms respond to the current price and volatility of 

oil rather than 18 month futures and volatilities. I replace the price series Pt with the NYMEX 

front-month futures contract and the market’s implied 18-month price volatility σm with that of 

front-month futures options. Because firms’ use of current prices as expected prices is consistent 

with a no-change forecast for the price of oil, I set the price and cost drift functions ( )   and 

ˆ ( )   to zero. The estimate of β from this model is 1.226, with a relatively large standard error of 

0.549. The increase in the estimate of β relative to the reference case model likely reflects the 

zero price drift assumption associated with the use of front-month prices. A relatively high 

volatility state in this model is not associated with an expectation that prices will increase in the 

future, as was the case in the reference case model using 18-month futures. A higher estimate of 

β is therefore required in order to offset this change in the model and fit the data. 

 
Alternative discount rate and drilling cost assumptions 

The estimates heretofore have been based on an assumed 12.5% nominal discount rate, 

taken from a 1995 survey by the Society of Petroleum Evaluation Engineers. Columns II and III 

of table 5 examine the use of alternative discount rates. A 14.5% discount rate yields an estimate 

of β of 1.149 while a 10.5% discount rate yields β = 0.890. These changes to the estimated β are 

in line with real options theory’s predictions. As the discount rate increases, firms value the 

future less, option value decreases, and firms become less responsive to changes in expected 
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volatility. Thus, to fit the empirical volatility response, the volatility sensitivity parameter β must 

increase when the assumed discount rate increases. 

Finally, columns IV and V of table 5 examine the estimates’ sensitivity to the assumption 

that rig costs constitute one-third of total drilling costs, on average. Assuming a value of 20% or 

50% does not substantially alter the estimate of β. 

 

7. Conclusions 

The importance of irreversibility and uncertainty in investment decision-making has been 

recognized since Marschak (1949) and Arrow (1968). Theoretical work has since derived 

optimal timing rules for irreversible investments and demonstrated that firms should defer 

projects when uncertainty is relatively high. These concepts have taken a prominent role in 

industrial organization and the macroeconomic modeling of aggregate investment. However, 

there has been a shortage of empirical evidence regarding the extent to which firms actually take 

option value into account when making irreversible investments. 

This paper tests the sensitivity of firms’ investment decisions to changes in the 

uncertainty of their economic environment by assembling a new, detailed dataset that combines 

information on well-level oil drilling with expected oil price volatility data from the NYMEX 

market. I develop and estimate a dynamic model of firms’ drilling investment timing problem, 

taking advantage of industry features that make a single-agent approach appropriate. I find not 

only that firms reduce their drilling activity when expected volatility rises but also that the 

magnitude of this reduction is consistent with the optimal response prescribed by theory. This 

result provides micro-empirical support for the frequent use of real options models in economic 

research. It is also consistent with the existence of a strong incentive for firms to behave 

optimally. I find that the cost of failing to respond to changes in volatility can be substantial, 

potentially exceeding 50% of a drilling prospect’s value at in-sample oil price and volatility 

realizations. 
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I also show that a forward-looking measure of expected price volatility derived from 

futures options is a more powerful determinant of drilling behavior than are backward-looking 

measures based on historic volatility. The relative strength of the implied volatility measure is 

consistent with the hypothesis that participants in the NYMEX commodity market and physical 

industry participants share common beliefs about future price uncertainty. This result thereby 

provides support for the use of data from financial markets as measures of firms’ expectations in 

applied work. It is also well-aligned with other research regarding the predictive power of 

option-based implied volatility and supports the intuition that options prices incorporate up-to-

date information about uncertainty shocks that cannot be conveyed by price histories alone. 
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Figure 1: Time series of monthly drilling activity, oil futures prices, and implied volatility 
from futures options prices 

 

Notes: Oil futures prices are 18-month ahead prices from the New York Mercantile Exchange 
(NYMEX). Implied volatility is calculated from futures options prices per the discussion 
in section 2.4. Drilling activity corresponds only to infill oil wells drilled in sole-operated 
fields. 
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Figure 2: Average monthly production profile from a drilled well  

  
Notes: Production data are from the subset of observed drilled wells that are the only active 

producing well on their respective lease for the first 36 months subsequent to drilling. 
This subset amounts to 162 of the observed 1,150 drilled wells from 1993-2003. 

 
 
 
 

Figure 3: NYMEX front-month, 12 month, and 18 month oil futures prices 
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Figure 4a: Comparison of implied volatility to the historic volatility of the future price, 
calculated with one month and one year rolling windows 

  

Figure 4b: Comparison of implied volatility to a GARCH(1,1) forecast 

  

Notes:  Implied volatility is calculated from futures options prices per the discussion in section 
2.4. Historic volatility at any point in time is the standard deviation of the return on the 
18-month futures price within a one month or one year rolling window. The 
GARCH(1,1) model is estimated at each date using a 4-year rolling window of 18-month 
futures prices.  
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Figure 5: Drilling costs and oil futures prices 

 
Notes: Oil futures prices are 18-month ahead prices from the New York Mercantile Exchange 

(NYMEX). Drilling costs are those for an average well that requires 19.2 days of drilling 
time. These costs are based on daily rig rental rates obtained from RigData, as discussed 
in section 2.5. 
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Figure 6: Illustration of the impact of the expected oil price and price volatility on the 
“trigger” expected production required so that drilling is optimal 

  

Notes: The relationships shown are for a well of average cost facing an average dayrate, so that 
the drilling cost is $413,000. The model used to generate these curves uses the state 
transition parameters estimated in section 5.1 of the text. 
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Figure 7: Predicted drilling from the estimated model vs. actual drilling 

  
Notes: Predicted drilling with no volatility response refers to the time series of predicted drilling 

activity from the model with the parameters of table 2, column I, in which the behavioral 
parameter β is restricted to zero. Predicted drilling with a volatility response refers to 
table 2, column II, in which β is estimated to be 1.039. 
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Figure 8: Scatter plot of realized oil production from drilled wells, relative to the number 
of days required to drill each well 

 
Notes: Production data are from the subset of observed drilled wells that are the only active 

producing well on their respective lease for the first 36 months subsequent to drilling. 
This subset amounts to 162 of the observed 1,150 drilled wells from 1993-2003. Dry 
holes (wells with zero production) are plotted as having a log(production/drilling time) of 
zero 
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I II III IV V

Coefficient on covariate:

Basic 
exponential 

hazard
Include 

drilling cost

Prospect-
specific 

heterogeneity

Drilling cost 
and time 

trend

Drilling cost 
and July 

1998 dummy

      1.041***       1.053***       1.041***       1.053***       1.056***

(0.016) (0.023) (0.016) (0.023) (0.024)

      0.969***       0.973***       0.969***       0.964*** 1.005
(0.008) (0.009) (0.008) (0.013) (0.013)

- 0.842 - 0.804 0.949
- (0.163) - (0.159) (0.189)

- - - 1.020 -
- - - (0.021) -

- - - -      0.654***

- - - - (0.094)

Log likelihood -3979.0 -3978.5 -3979.0 -3978.0 -3972.0

Reported coefficients are hazard ratios: the multiplicative effect on the hazard rate of a one unit increase in the covariate

All estimates use prices of futures and options that are 18 months from maturity

Standard errors are estimated using a sandwich estimator that allows for correlation of the likelihood scores across wells within the same field

*,**,*** indicate significance at the 10%, 5%, and 1% level for a two-tailed test that the coefficient is different from one

All covariates are lagged by three months

Unobserved heterogeneity (gamma 
distribution)

N N NY N

Dummy for date ≥ July 1998

Table 1: Hazard model results for the probability of drilling

Oil futures price ($/bbl)

Implied volatility of future price (%)

Drilling Cost ($100,000)

Linear time trend (in years)
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Year Employment Year Employment
1997 4600 2003 5670
1998 5280 2004 7240
1999 4670 2005 7610
2000 4830 2006 7000
2001 5470 2007 8240
2002 5110 2008 10640

Source: Bureau of Labor Statistics, occupation code 19-4041
for 1999-2008 and 22111 for 1997 and 1998

Table 3: Employment of petroleum engineers 
in Texas

I II III IV V VI

Parameter:

Reference case 
model (table 2, 

column II)

Historic volatility 
of futures prices, 

12 month 
window GARCH volatility

Mean-reverting 
volatility

12-month futures 
and implied 

volatility

Front month 
futures and 

implied volatility

1.039 0.288 0.551 1.304 1.044 1.226
(0.064) (0.304) (0.258) (0.143) (0.109) (0.549)

-9.675 -0.995 -2.068 -8.389 -10.737 -3.736
(6.666) (2.828) (3.269) (5.426) (6.524) (4.100)

6.176 3.214 3.603 5.768 6.511 4.224
(2.224) (0.939) (1.092) (1.809) (2.174) (1.361)

Log likelihood -8670.8 -8680.2 -8677.3 -8671.2 -8670.6 -8671.2

xit is expressed in expected oil production (in bbl) divided by the cost of drilling (in $100,000) at the average sample dayrate

Standard errors are estimated using a sandwich estimator that allows for correlation of the likelihood scores across wells within the same field

β (sensitivity to volatility)

μ (mean of log(xit))

ζ (std. dev. of log(xit))

Table 4: Alternative specifications of volatility beliefs and decision time horizons

I II III IV V

Parameter:

Reference case 
model (table 2, 

column II)
14.5% nominal 
discount rate

10.5% nominal 
discount rate

Rig costs average 
20% of total 
drilling cost

Rig costs average 
50% of total 
drilling cost

1.039 1.149 0.890 1.046 1.044
(0.064) (0.051) (0.094) (0.056) (0.055)

-9.675 -10.522 -9.011 -10.410 -10.449
(6.666) (6.756) (6.497) (6.707) (6.410)

6.176 6.451 5.960 6.418 6.442
(2.224) (2.251) (2.171) (2.235) (2.136)

Log likelihood -8670.8 -8671.2 -8670.8 -8671.4 -8670.9

All estimates use prices of futures and options that are 18 months from maturity

xit is expressed in expected oil production (in bbl) divided by the cost of drilling (in $100,000) at the average sample dayrate

Standard errors are estimated using a sandwich estimator that allows for correlation of the likelihood scores across wells within the same field

Table 5: Alternative specifications: discount rates and drilling costs

β (sensitivity to volatility)

μ (mean of log(xit))

ζ (std. dev. of log(xit))
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Appendix 1: Construction of the time series of implied futures price volatility 

This appendix describes how I construct a time series of the implied volatility of the 18-

month NYMEX oil futures contract. First, I discuss the estimation of the term structure of the 

volatility of oil futures. Second, I discuss how I use futures options to construct a time series of 

the implied volatility of the one-month oil futures contract. Finally, I discuss the use of the 

estimated term structure in converting this time series from one-month to 18-month volatilities. 

Let Ft,τ denote the price of a NYMEX futures contract traded at date t with time to 

maturity τ measured in months.28 For each t and τ, I calculate the realized volatility at t of the τ-

month futures contract as the standard deviation of ln(Fs,τ / Fs-1,τ) for all dates s within the 6 

months prior and subsequent to t.29 Let this volatility be denoted by σt,τ. I then estimate the term 

structure of futures price volatility by regressing the log of σt,τ on fixed effects for each τ and t:30  

ln σt,τ = ητ + δt + ετ,t     (A1) 

The fixed effects ητ represent the estimated term structure while the δt control for the 

level of volatility on each date t. Given estimates of these fixed effects, the predicted volatility of 

a τ-month futures price is given by A·exp(ητ), where A = exp(δt + v2 / 2) and v2 is the variance of 

the estimated residuals. Thus, for a fixed trade date t, varying τ will trace out the term structure 

of volatility. Figure A1 verifies that the term structure of volatility is stable over the sample by 

plotting two estimates of the term structure: one using data from 1999-2003 and another using 

data prior to 1999. The constant term A for each estimate is set so that the one-month future price 

volatility is 31%, approximately equal to the average one-month volatility over 1993-2003. The 

plots overlay each other closely, particularly through 18 months, indicating that the term 

                                                 
28 Time to maturity in months is equal to the time to maturity in days divided by 365.25, multiplied by 12, and 
rounded to the nearest whole number. 
29 Observations Fs,τ for which date s - 1 is missing (for example, if s - 1 is a Sunday) are excluded. 
30 I use the log of σt,τ as the dependent variable rather than the level because the levels regression does not yield an 
estimated term structure that is stable over time. In levels, the term structure is has a steeper slope during 1999-2003 
than in the earlier part of the data. 
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structure of volatility is stable over the sample despite the substantial increase in the overall level 

of volatility after 1999.  

Given the estimated term structure (the ητ), all that is needed to compute expected 18-

month futures price volatilities is a time-series of short-run (one month) expected futures price 

volatilities. I derive this time series from the implied volatility of short-term futures options with 

a time to maturity between 60 and 180 days. The implied volatility of options with a shorter time 

to maturity are noisy, potentially reflecting low option values and integer problems (options 

prices must be in whole cents), while options with a longer time to maturity are thinly traded.  

For each trade date and time to maturity within the 60 to 180 day window, I use the Black 

(1976) model to find the implied volatilities of the call and put options that are nearest to at-the-

money.31 I then estimate the implied volatility term structure by regressing the log of each 

option’s implied volatility on its time to maturity τ (in days), a call/put dummy, and trade date 

fixed effects δt.
32 I then use this estimated term structure (the estimated coefficient on τ) to 

extrapolate implied volatility back to a 30 day maturity.  

As a validation check on the this procedure, I compare the average, over 1993-2003, of 

the estimated implied volatilities of 30-day futures options to the average realized volatility of 

one-month futures prices over the same timeframe. These two averages should be approximately 

equal given the short one month time to maturity. The former series has an average volatility of 

30.74% while the average of the latter is 31.07%. The closeness of these two numbers (derived 

from two completely different data sets) supports the argument that implied volatilities from one-

month futures options can be used as implied volatilities of one-month futures prices. 

                                                 
31 The Black (1976) model assumes that the options are European rather than American and that volatility is 
constant. Neither of these assumptions holds here; however, their effects are likely to be minor and they save 
considerable computational complexity. Hilliard and Reis (1998) demonstrate that the American premium is no 
more than 2% of the European option price for volatilities similar to those considered here. Stochastic volatility acts 
in the opposite direction, causing the Black (1976) model to slightly over-price at-the-money options (this effect is 
particularly small for the relatively short maturities considered here); see Hull and White (1987), Wiggins (1987), 
and Poon and Granger (2003). The argument that these assumptions are of minor effect is supported by the close 
agreement between the average realized and average implied volatility over the 1993-2003 sample. 
32 Inspection of the residuals indicates that a linear term structure specification is appropriate. Moreover, when a 
squared time to maturity term is added, it is not statistically significant (p-value = 0.465). 
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Finally, I convert the time series of implied volatilities of one-month futures prices to 

implied volatilities of 18-month futures prices using the estimated term structure of futures price 

volatility (the ητ). This conversion amounts to multiplying the one-month volatility at each trade 

date t by exp(η18 - η1). 

 
 

 

 

       Figure A1: Estimated term structures of futures price volatility 

  
Notes: The figure displays two term structures, one estimated using data from before 1999, the 

other using data from 1999-2003. Volatility of a one-month future is set to 31.0% for 
both term structures. 
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Appendix 2: Numerical solution and estimation methods 

A2.1 Value function iteration 

I solve the value function (11) on a grid of points in (P,D,σ,x) space (in logs) using 

standard value function iteration. An important factor in defining the grid is that, while the price, 

dayrate, and volatility states that are realized in the data are bounded, the stochastic processes for 

these variables (equations 3, 4 and 9) imply that agents place nonzero probabilities on 

realizations outside of these bounds. Thus, the value function must be solved for states extending 

beyond the boundaries of the data. The state space I use extends from one-fifth of the lowest 

realized price and dayrate to five times the highest price and dayrate, and from one-half the 

lowest realized volatility to twice the highest volatility. With this state space, further extensions 

do not substantially affect the estimated parameters or the value function within the range of 

realized observations. 

I found that a relatively dense grid was required to accurately capture the effects of 

stochastic volatility. The grid I used has 1,875,000 points: 50 price states by 50 dayrate states by 

15 volatility states by 50 productivity states. Starting from this density, the estimated results are 

insensitive to variations in the number of grid points. For example, increasing the number of 

price and dayrate states to 55 does not change any estimated parameter by more than 2%. 

Sensitivity is substantial, however, at sparser state spaces. 

In the full estimation routine, the initial value function used for each guess of parameters 

is the value function from the previous guess. For the first parameter guess, the initial value 

function is zero in all states. The convergence criterion is a tolerance of 10-6 on the sup norm of 

the value function (the value function used in the computations is in units of $412,585, the 

average drilling cost at the average dayrate). Increasing the tolerance to 10-7 has essentially no 

affect on the parameter estimates or value function. 

With the value function solved, I can then find, for any given P, D, and σ, the critical 

productivity x* such that drilling is optimal iff xi ≥ x*. Because the P, D, and σ realizations do 
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not coincide with the grid states used in the model, I use linear interpolation to find x*. At each xi 

grid point, I calculate the value function at the realized P, D, and σ by linearly interpolating the 

value function between the states immediately above and below the P, D, and σ. I then find the 

smallest xi grid point such that the value of waiting exceeds the realized profits from drilling 

immediately and the largest xi such that it is optimal to drill immediately (these two values of xi 

will be adjacent grid points). Interpolation gives x* as the productivity level for which the firm is 

indifferent: the value of waiting equals the value of drilling immediately. As described in the 

text, the realized time series of P, D, and σ can then be combined with a parameterized 

distribution on the xit to yield the probability that a given prospect will be drilled each period. 
 

A2.2 Estimation 

I search for the parameters β, μ, and log ζ that maximize the log-likelihood function (12) 

via a gradient-based search that uses the BFGS method for computing the Hessian at each step (I 

take the logarithm of ζ to allow for negative values in the parameter search). I accelerate the 

search by conducting it in two stages. First, holding β fixed, I search for the μ and log ζ that 

maximize the likelihood. This stage is fast because changing μ and ζ does not require re-solving 

the model. The outer-most loop then searches for β. The stopping criterion is a tolerance on the 

likelihood function (scaled down by a factor of 10,000) of 10-10 for the μ and ζ loop and 10-8 for 

the β loop. 

To compute the standard errors of the parameter estimates, I obtain the likelihood score 

of each observation (drilling prospect - month) numerically. With respect to each parameter θk, I 

calculate the derivative of the log likelihood for observation j as 
( ) ( )

2
j k k j k k

k

θ ε θ ε

ε

  l l
. For the 

parameters β and μ, I use a value for εk of 0.001, and for log ζ I use a value of 0.0001 because the 

likelihood function is particularly concave in this parameter. The standard errors are robust to 

values of εk that are an order of magnitude larger or smaller. 
 


