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ABSTRACT

This paper examines how optimal unemployment insurance (UI) responds to the state of the labor
market. The theoretical framework is a matching model of the labor market with general production
function, wage-setting mechanism, matching function, and preferences. We show that optimal UI is
the sum of a conventional Baily-Chetty term, which captures the trade-off between insurance and job-
search incentives, and a correction term, which is positive if UI brings labor market tightness closer
to its efficient level. The state of the labor market determines whether tightness is inefficiently low
or inefficiently high. The response of optimal UI to the state of the labor market therefore depends
on the effect of UI on tightness. For instance, if the labor market is slack and tightness is inefficiently
low, optimal UI is more generous than the Baily-Chetty level if UI raises tightness and less generous
if UI lowers tightness. Depending on the production function and the wage-setting mechanism, UI
could raise tightness, for example by alleviating the rat race for jobs, or lower tightness, for example
by increasing wages through bargaining. To determine whether UI raises or lowers tightness in practice,
we develop an empirical criterion. The criterion involves a comparison of the microelasticity and the
macroelasticity of unemployment with respect to UI.
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1 Introduction

Unemployment insurance (UI) is a key component of social insurance because it provides relief

to people who cannot find a job. The microeconomic theory of optimal UI is well understood:

it is an insurance-incentive trade-off in the presence of moral hazard. UI helps workers smooth

consumption when they are unemployed, but it also increases unemployment by discouraging job

search. The Baily [1978]-Chetty [2006a] formula resolves this trade-off.

The macroeconomic theory of optimal UI is less well understood.1 This becomes problematic in

slumps, when unemployment is unusually high, because adjusting UI could improve welfare through

macroeconomic channels. Some argue that UI should be decreased because it creates upward pres-

sure on wages thereby discouraging job creation, which is particularly harmful when unemployment

is already high. Others argue that UI should be increased because it cannot have much impact on

the unemployment rate when unemployment is already high, since jobs are simply not available.

This paper proposes a framework to analyze how optimal UI responds to the state of the la-

bor market. The framework encompasses the microeconomic insurance-incentive tradeoff and the

macroeconomic influence of UI on firms’ hiring decisions. We obtain a simple optimal UI formula

showing the theoretical conditions under which it is desirable to increase UI when unemployment

is high, and the conditions under which this would not be desirable. Our formula also identifies the

empirical statistics needed to make policy recommendations. Our framework could help design UI

system in which the generosity of UI is linked to the state of the labor market—such as in the US.2

To examine the response of optimal UI to the state of the labor market, we embed the Baily-

Chetty framework into a matching model with general production function, wage-setting mecha-

nism, and matching function.3 The matching model is well suited for our purpose because it lends

itself to an analysis of the state of the labor market. In our framework, the key variable linked to

the state of the labor market is labor market tightness: the ratio of vacancies to aggregate search

1A few papers such as Mitman and Rabinovich [2011] and Jung and Kuester [2014] study the optimal response of

UI to shocks by simulating calibrated macroeconomic models, but by nature the results are somewhat specific to the

calibration and structural assumptions about the wage-setting mechanism or production function.
2US unemployment benefits have a duration of 26 weeks in normal times. The Extended Benefits program automat-

ically extends duration by 13 weeks in states where the unemployment rate is above 6.5% and by 20 weeks in states

where the unemployment rate is above 8%. Duration is often further extended by the government in severe recessions.

For example, the Emergency Unemployment Compensation program enacted in 2008 extends durations by an additional

53 weeks in states where the unemployment rate is above 8.5%.
3Matching models have been used to study UI in other contexts. See for instance Cahuc and Lehmann [2000],

Fredriksson and Holmlund [2001], Coles and Masters [2006], and Lehmann and Van Der Linden [2007].
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effort, determined in equilibrium to equalize labor demand and labor supply. In general, UI affects

tightness because labor supply and labor demand both respond to UI.

The state of the labor market is determined by the equilibrium level of tightness. The labor

market is said to be efficient if equilibrium tightness maximizes welfare given the UI system. When

the labor market is inefficient, it can be either tight or slack. The labor market is tight if equilibrium

tightness is inefficiently high—that is, unemployment is inefficiently low and firms devote too much

labor to recruit workers. The labor market is slack if equilibrium tightness is inefficiently low—that

is, unemployment is inefficiently high and not enough jobseekers find a job.

When the labor market is efficient, as one might expect, optimal UI satisfies the Baily-Chetty

formula. The reason is that when the labor market is efficient, the marginal effect of UI on tightness

has no first-order effect on welfare. Hence, optimal UI is governed by the same principles as in

the Baily-Chetty framework, in which tightness is fixed. Our theory uses the Baily-Chetty level as

a baseline in the generosity scale. This is convenient because we have a good idea of the UI level

implied by the Baily-Chetty formula. In fact, the Baily-Chetty formula has been extensively studied

and the statistics that it involves have been estimated in many studies following Gruber [1997].

When the labor market is inefficient, an interesting result arises: optimal UI systematically de-

parts from the Baily-Chetty level. There is a simple intuition for this result. Consider a slack market

in which tightness is inefficiently low. If UI raises tightness, UI is desirable beyond the insurance-

incentive trade-off, and optimal UI is higher than the Baily-Chetty level. Conversely, if UI lowers

tightness, UI is not as desirable as what the insurance-incentive trade-off implies, and optimal UI is

lower than the Baily-Chetty level. The same logic applies in a tight market.

Formally, we develop an optimal UI formula that is the sum of the Baily-Chetty formula plus

a correction term. The correction term is equal to the effect of UI on tightness times the effect of

tightness on welfare. The term is positive if UI brings tightness closer to efficiency, and negative

otherwise. Hence, optimal UI is above the Baily-Chetty level if and only if UI brings the labor

market closer to efficiency.

We then explore the mechanisms through which UI affects tightness by studying several match-

ing models that differ by their wage-setting mechanism and production function. In these matching

models, UI has two possible effects on tightness. The first effect is a job-creation effect: when

UI rises, firms hire less because wages increase through bargaining, which reduces tightness. This
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effect operates in the standard model of Pissarides [2000], with bargaining and linear production

function. The second effect is a rat-race effect: the number of jobs available is somewhat limited

so by discouraging job search, UI alleviates the rat race for jobs and increases job-finding rate and

labor market tightness. When workers search less, they mechanically increase others’ probability of

finding one of the few jobs available. This effect operates in the job-rationing model of Michaillat

[2012], with a rigid wage that does not respond to UI and a concave production function.

Finally, we show how to implement our theoretical framework empirically. The optimal level

of UI relies on two properties: whether UI raises or lowers tightness, and whether the labor mar-

ket is slack or tight. Following Chetty [2006a], we express these properties in terms of statistics

that can be estimated in the data. First, we develop an empirical criterion to determine whether UI

raises or lowers tightness. The criterion involves a comparison of the microelasticity and macroe-

lasticity of unemployment with respect to UI. The microelasticity measures the partial-equilibrium

response of unemployment to UI, keeping tightness constant, whereas the macroelasticity measures

its general-equilibrium response. The microelasticity accounts only for the response of job search

to UI while the macroelasticity also accounts for the response of tightness. The criterion is that UI

raises tightness if and only if the microelasticity of unemployment with respect to UI is larger than

its macroelasticity. This criterion is simple to understand. Imagine that UI increases tightness. Then

UI increases the job-finding rate, which dampens the negative effect of UI on job search. Therefore,

the macroelasticity is smaller than the microelasticity.

Second, to be able to evaluate the state of the labor market using empirical evidence, we express

the efficiency condition in terms of estimable statistics. Using data from the Current Employment

Statistics (CES) program and the National Employment Survey (NES) of the Bureau of Labor Statis-

tics (BLS), we construct a novel, monthly time series on the share of labor devoted to recruiting. This

share is the key statistic in th efficiency condition. We find that in the US over the 1990–2014 pe-

riod, the labor market is systematically slack in slumps and tight in booms. The labor market was

the slackest in 2009 and the tightest in 2000.

Arguably, we need more estimates of the macroelasticity to reach a consensus on whether the

macroelasticity is lower than the microelasticity, and thus whether optimal UI should be higher

in slumps than in booms. Indeed, while the magnitude of the microelasticity is well established,

estimates of the macroelasticity are still scattered. Nonetheless, we explain how one could use
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our framework to deliver concrete policy recommendations as further evidence on these elasticities

becomes available. First, we explain how to use our formula to conduct a diagnostic of the current

UI system. Second, we calibrate and simulate dynamic versions of the matching models. The

calibration relies on available estimates of the microelasticity and the elasticity wedge. We simulate

business cycles caused by standard macroeconomic shocks. For example, we find that optimal UI is

procyclical in the standard model but countercyclical in the job-rationing model.

In our model optimal UI depends on the state of the labor market because UI influences tightness.

Other mechanisms may also matter. Unemployed workers may be more likely to exhaust their

savings or less able to borrow in slumps. It would then be desirable to provide more UI in slumps,

when the consumption-smoothing value of UI is higher.4 UI may also increase how long jobseekers

can afford to wait before accepting a job, and longer search may lead to more productive matches

upon reemployment.5 If mismatch between workers and jobs is severe in slumps, providing more

UI in slumps could be desirable. Adding these mechanisms to our model is left for future work.

2 A Matching Model of Unemployment Insurance

This section presents a static matching model of UI. The assumption that the model is static will be

relaxed in Section 6. There is a measure 1 of identical workers and a measure 1 of identical firms.

The Labor Market. There are matching frictions on the labor market. Initially, all workers are

unemployed and search for a job with effort e. Each firm posts o vacancies to recruit workers. The

number l of workers who find a job is given by a matching function taking as argument aggregate

search effort and vacancies: l = m(e,o).6 The function m has constant returns to scale, is differen-

tiable and increasing in both arguments, and satisfies the restriction that m(e,o) ≤ 1. Labor market

tightness is defined as the ratio of vacancies to aggregate search effort: θ ≡ o/e.

Since the matching function has constant returns to scale, labor market tightness determines the

4Kroft and Notowidigdo [2011] analyze this issue.
5Acemoglu and Shimer [1999] and Marimon and Zilibotti [1999] propose models with this feature.
6As explained by Pissarides [2000, Chapter 5], search effort can be interpreted as a technical-change parameter in

the matching function. Technical change in production functions is always defined as input augmenting. The matching

literature follows the same convention in modeling matching with variable search effort. The standard assumption is

that the matching function take as argument the efficiency units of searching workers—number of jobseekers u times

effort per jobseeker e—and vacancies o. In our model, u = 1 so the efficiency units of searching workers is e.
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probabilities that a unit of search effort is successful and a vacancy is filled. A jobseeker finds a

job at a rate f (θ)≡ m(e,o)/e = m(1,θ) per unit of search effort. Thus, a jobseeker searching with

effort e finds a job with probability e · f (θ). A vacancy is filled with probability q(θ)≡ m(e,o)/o =

m(1/θ ,1) = f (θ)/θ . The function f is increasing in θ and the function q is decreasing in θ ; in

other words, it is easier to find a job but harder to fill a vacancy when the labor market tightness is

higher. We denote by 1−η and −η the elasticities of f and q: 1−η ≡ θ · f ′(θ)/ f (θ) > 0 and

η ≡−θ ·q′(θ)/q(θ)> 0.

Firms. The representative firm hires l workers, paid a real wage w, to produce a consumption

good. As in Michaillat and Saez [2013], we assume that some workers are engaged in production

while others are engaged in recruiting. A number n < l of workers are producing an amount y(n) of

good, where the production function y is differentiable, increasing, and concave. Posting a vacancy

requires a fraction r > 0 of a worker’s time. Thus, l −n = r ·o = r · l/q(θ) workers are recruiting a

total of l workers so that l · (1− r/q(θ)) = n. Hence, workers and producers are related by

l = (1+ τ(θ)) ·n, (1)

where τ(θ) ≡ r/(q(θ)− r) is the recruiter-producer ratio. The function τ is positive and increas-

ing when q(θ) > r, which holds in equilibrium. It is easy to show that the elasticity of τ is

θ · τ ′(θ)/τ(θ) = η · (1+ τ(θ)).

The firm sells its output on a perfectly competitive market. Given θ and w, the firm chooses n to

maximize profits π = y(n)− (1+ τ(θ)) ·w ·n. The optimal number of producers satisfies

y′(n) = (1+ τ(θ)) ·w. (2)

At the optimum, the marginal revenue and marginal cost of hiring a producer are equal. The marginal

revenue is the marginal product of labor, y′(n). The marginal cost is the real wage, w, plus the

marginal recruiting cost, τ(θ) ·w.

We implicitly define the labor demand ld(θ ,w) by

y′
(

ld(θ ,w)

1+ τ(θ)

)

= w · (1+ τ(θ)) . (3)
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The labor demand gives the number of workers hired by firms when firms maximize profits given

labor market tightness and real wage.

The UI System. Search effort is not observable, so the receipt of UI cannot be contingent on

search. Hence, UI provides all employed workers with ce consumption goods and all unemployed

workers with cu < ce consumption goods. We measure the generosity of UI in three different ways.

UI is more generous if the consumption gain from work ∆c ≡ ce − cu decreases, the utility gain

from work ∆v ≡ v(ce)− v(cu) decreases, or the replacement rate R ≡ 1−∆c/w increases. When a

jobseeker finds work, she keeps a fraction ∆c/w = 1−R of the wage and gives up a fraction R as

UI benefits are lost. This is why we can interpret R as the replacement rate of the UI system.7 The

government must satisfy the budget constraint

y(n) = (1− l) · cu + l · ce. (4)

If firms’ profits π are equally distributed, the UI system can be implemented with a UI benefit b

funded by a tax on wages t so that (1− l) ·b = l · t and cu = π +b and ce = π +w− t. If profits are

unequally distributed, a 100% tax on profits rebated lump sum implements the same allocation.

Workers. Workers cannot insure themselves against unemployment in any way, so they consume

ce if employed and cu if unemployed. The utility from consumption is v(c). The function v is

differentiable, increasing, and concave. The disutility from job-search effort, e, is k(e). The function

k is differentiable, increasing, and convex. Given θ , ce, and cu, a representative worker chooses e to

maximize expected utility

l · v(ce)+(1− l) · v(cu)− k(e) (5)

subject to the matching constraint

l = e · f (θ), (6)

7Our definition of the replacement rate is not completely conventional. Consider a UI system that provides a benefit b

funded by a tax t so that ∆c = w− t−b. Our replacement rate is defined as R = (t+b)/w. The conventional replacement

rate is b/w; it ignores the tax t and is not the same as R. However, unemployment is small relative to employment so

t ≪ b and R ≈ b/w.
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where l is the probability to find a job and 1− l is the probability to remain unemployed. The optimal

search effort satisfies

k′(e) = f (θ) ·∆v. (7)

At the optimum, the marginal utility cost and marginal utility gain of search are equal. The marginal

utility cost is k′(e). The marginal utility gain is the rate at which a unit of effort leads to a job, f (θ),

times the utility gain from having a job, ∆v. We implicitly define the effort supply es( f (θ),∆v) as

the solution of (7). The function es increases with f (θ) and ∆v.

We define the labor supply by

ls(θ ,∆v) = es( f (θ),∆v) · f (θ). (8)

Labor supply gives the number of workers who find a job when workers search optimally for a given

tightness and UI system. The labor supply increases with θ and with ∆v. Labor supply is higher

when UI is less generous because search efforts are higher. Labor supply is higher when the labor

market is tighter because the job-finding rate per unit of effort is higher and search efforts are higher.

Equilibrium. An equilibrium is a collection of variables {e, l,n,θ ,w,ce,cu,∆v} such that workers

maximize utility given tightness and UI, firms maximize profits given tightness and wage, and the

government satisfies a resource constraint. These variables satisfy equations (1), (2), (4), (6),(7),

and ∆v = v(ce)− v(cu).

Since there are eight variables but only six equations, two variables are indeterminate. One vari-

able is the generosity of UI, ∆v. In the rest of the paper, ∆v is determined by the government to

maximize welfare. The other variable is the wage, w. As is well understood, the wage is indeter-

minate because of the matching frictions.8 In Section 4, we assume that the wage follows a general

wage schedule, which may be efficient or inefficient. In Section 5, we are more specific and study

different wage-setting mechanisms.

Given ∆v and w, the key to solving the equilibrium is to determine labor market tightness. In

8See for instance the discussions in Howitt and McAfee [1987], Hall [2005a], and Michaillat and Saez [2013].
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Figure 1: Equilibrium in an (employment, labor market tightness) plane

equilibrium, tightness equalizes labor supply to labor demand:9

ls(θ ,∆v) = ld(θ ,w). (9)

Once θ is determined, l is determined from l = ls(θ ,∆v), e from e = es( f (θ),∆v), n from n =

l/(1+ τ(θ)), and ce and cu from the budget constraint (4) and ∆v = v(ce)− v(cu).

The equilibrium is represented in Figure 1(a) in a (l,θ) plane. This equilibrium diagram will be

useful to understand our analysis.10 The labor supply curve is upward sloping, and it shifts inward

when UI increases. The labor demand curve may be horizontal or downward sloping, and it responds

to UI when the wage responds to UI. The intersection of the labor supply and labor demand gives

equilibrium labor market tightness, equilibrium employment, and equilibrium unemployment.

3 The States of the Labor Market

We describe social welfare as a function of two arguments—labor market tightness and UI. We

express the derivatives of the welfare function in terms of estimable statistics. These expressions are

key building blocks of the optimal UI formula derived in Section 4. Using the welfare function and

9Michaillat and Saez [2013] provide more details about the equilibrium concept and characterize the equilibrium and

its properties in a model with exogenous search effort.
10More generally, Michaillat [2014] and Michaillat and Saez [2013, 2014] show that the equilibrium diagram is useful

to study a number of fiscal and monetary policies.
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its derivative, we formally define the possible states of the labor market: efficient, slack, or tight.

These states will be important determinants of optimal UI.

We begin by defining the social welfare function. Consider an equilibrium parameterized by a

utility gain from work, ∆v, and a wage, w. For a given ∆v, there is a one-to-one relationship between

w and the labor market tightness, θ . This relationship is given by (9). Hence, we can equivalently

parameterize the equilibrium by ∆v and θ . Social welfare is thus a function of ∆v and θ :

SW (θ ,∆v) = v(ce(θ ,∆v))− [1− (es(θ ,∆v) · f (θ))] ·∆v− k(es(θ ,∆v)), (10)

where ce(θ ,∆v) is the equilibrium level of consumption for employed workers. The consumption

ce(θ ,∆v) is implicitly defined by

y

(

ls(θ ,∆v)

1+ τ(θ)

)

= ls(θ ,∆v) · ce(θ ,∆v)+(1− ls(θ ,∆v)) · v−1 (v(ce(θ ,∆v))−∆v) , (11)

This equation ensures that the government’s budget constraint, given by (4), is satisfied when all the

variables take their equilibrium values. The term v−1 (v(ce(θ ,∆v))−∆v) is the equilibrium level of

consumption for unemployed workers, cu(θ ,∆v), because v(cu) = v(ce)−∆v.

Next, we define two estimable elasticities that measure how search effort responds to UI and

labor market conditions. We will use them to analyze the social welfare function.

DEFINITION 1. The microelasticity of unemployment with respect to UI is

εm =
∆v

1− l
·

∂ ls

∂∆v

∣

∣

∣

∣

θ

.

The microelasticity measures the percentage increase in unemployment when the utility gain

from work decreases by 1%, taking into account jobseekers’ reduction in search effort but ignoring

the equilibrium adjustment of labor market tightness. The microelasticity can be estimated by mea-

suring the reduction in the job-finding probability of an unemployed worker whose unemployment

benefits are increased, keeping the benefits of all other workers constant. In Figure 1(b), a change

in UI leads to a change in search effort, which shifts the labor supply curve. The microelasticity

measures this shift.

The empirical literature does not typically estimate εm. Instead, this literature estimates the
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microelasticity εm
R of unemployment with respect to the replacement rate, R. This is not an is-

sue, however, because the two elasticities are closely related. Usually εm
R is estimated by changing

benefits cu while keeping ce constant. As ∆c = (1−R) ·w, ∆v = v(ce)− v(ce − (1−R) ·w)) and

∂ ls/∂R
∣

∣

θ ,ce
=−w · v′(cu) ·

(

∂ ls/∂∆v
∣

∣

θ

)

. The empirical elasticity εm
R is thus related to εm by

εm
R ≡

R

1− l
·

∂ (1− ls)

∂R

∣

∣

∣

∣

θ ,ce

=
R ·w · v′(cu)

∆v
· εm. (12)

DEFINITION 2. The discouraged-worker elasticity is

ε f =
f (θ)

e
·

∂es

∂ f

∣

∣

∣

∣

∆v

.

The discouraged-worker elasticity measures the percentage increase in search effort when the

job-finding rate per unit of effort increases by 1%, keeping UI constant. In our model, workers

search less when the job-finding rate decreases and ε f > 0; hence, ε f captures jobseekers’ discour-

agement when labor market conditions deteriorate. The discouraged-worker elasticity determines

the elasticity of labor supply with respect to labor market tightness:

LEMMA 1. The elasticity of labor supply with respect to tightness is related to the discouraged-

worker elasticity by

θ

l
·

∂ ls

∂θ

∣

∣

∣

∣

∆v

= (1−η) · (1+ ε f )

Proof. Obvious because ls(θ ,∆v) = es( f (θ),∆v) · f (θ), ε f is the elasticity of es with respect to f ,

and 1−η is the elasticity of f with respect to θ .

Equipped with these elasticities, we can differentiate the social welfare function:

LEMMA 2. The social welfare function admits the following derivatives:

∂SW

∂θ

∣

∣

∣

∣

∆v

=
l

θ
· (1−η) ·φ ·w ·

[

∆v

φ ·w
+R ·

(

1+ ε f
)

−
η

1−η
· τ(θ)

]

(13)

∂SW

∂∆v

∣

∣

∣

∣

θ

= (1− l) ·
φ ·w

∆v
· εm ·

[

R−
l

εm
·

∆v

w
·

(

1

v′(ce)
−

1

v′(cu)

)]

, (14)
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where φ is an harmonic mean of workers’ marginal utilities:

1

φ
=

l

v′(ce)
+

1− l

v′(cu)
. (15)

Proof. We first derive (13). Since workers choose effort to maximize expected utility, a standard

application of the envelope theorem says changes in effort, es(θ ,∆v), resulting from changes in θ

have no impact on social welfare. The effect of θ on welfare therefore is

∂SW

∂θ
=

l

θ
· (1−η) ·∆v+ v′(ce) ·

∂ce

∂θ
. (16)

The first term is the welfare gain from increasing employment by increasing tightness. It is obtained

by noting that the elasticity of f (θ) is 1− η so e · f ′(θ) = (l/θ) · (1− η). This term accounts

only for the change in employment resulting from a change in job-finding rate, and not for the

change resulting from a change in effort. The second term is the welfare change arising from the

consumption change following a change in θ .

The next step is to derive the consumption change, ∂ce/∂θ . To do so, we implicitly differentiate

ce(θ ,∆v) with respect to θ in (11). A few preliminary results are helpful. First, (2) implies that

y′(n)/(1+ τ(θ)) = w. Second, Lemma 1 implies that ∂ ls/∂θ = (l/θ) · (1−η) · (1+ ε f ). Third,

v−1 (v(ce(θ ,∆v))−∆v) = cu so ce−v−1 (v(ce(θ ,∆v))−∆v) = ∆c. Fourth, the elasticity of 1+τ(θ)

is η · τ(θ) so the derivative of 1/(1+ τ(θ)) with respect to θ is −η · τ(θ)/ [θ · (1+ τ(θ))]. Fifth,

the derivative of v−1 (v(ce)−∆v) with respect to ce is v′(ce)/v′(cu). The implicit differentiation

therefore yields

l

θ
· (1−η) · (1+ ε f ) · (w−∆c)−

l

θ
·η · τ(θ) ·w =

[

l

v′(ce)
+

1− l

v′(cu)
·

]

· v′(ce) ·
∂ce

∂θ
.

The first term on the left-hand side is the budgetary gain from the new jobs created. Each new job

increases government revenue by w−∆c. The increase in employment results both from a higher

job-finding rate and from a higher search effort. The term (1+ ε f ) captures the combination of the

two effects. The second term is the loss in resources due to a higher tightness. A higher tightness

forces firms to devote more labor to recruiting and less to producing. Introducing the variable φ

defined by (15) and plugging the resulting expression for ∂ce/∂θ into (16) yields (13).
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Next, we derive (14). Following the same logic as above, the effect of ∆v on welfare is

∂SW

∂∆v
=−(1− l)+ v′(ce) ·

∂ce

∂∆v
. (17)

The first term is the welfare loss suffered by unemployed workers after a reduction in UI benefits.

The second term is the welfare change arising from the consumption change following a change in

∆v. Next, we implicitly differentiate ce(θ ,∆v) with respect to ∆v in (11). We need two preliminary

results in addition to those above. First, the definition of the microelasticity implies that ∂ ls/∂∆v =

[(1− l)/∆v] · εm. Second the derivative of v−1 (v(ce)−∆v) with respect to ∆v is −1/v′(cu). The

implicit differentiation yields

1− l

∆v
· εm · (w−∆c)+

1− l

v′(cu)
=

[

l

v′(ce)
+

1− l

v′(cu)
·

]

· v′(ce) ·
∂ce

∂∆v
.

The first terms captures the budgetary gain from increasing employment by reducing the generosity

of UI. This is a behavioral effect, coming from the response of job search to UI. The second term

captures the budgetary gain from reducing the UI benefits paid to unemployed workers. This is a

mechanical effect. As above, we plug the expression for ∂ce/∂∆v into (17) and obtain

∂SW

∂∆v
= (1− l) ·φ ·

[

R · εm ·
w

∆v
+

1

v′(cu)
−

1

φ

]

.

The definition of φ implies that (1/v′(cu))− (1/φ) =−l · [(1/v′(ce))− (1/v′(cu))]. Combining this

expression with the last equation yields (14).

The idea of defining the state of the economy by comparing the equilibrium level of activity

relative to an optimal level of activity has a long history in macroeconomics. For instance, in modern

business-cycle theory, slumps and booms are defined as periods in which the output gap is negative

or positive, and the output gap is defined as the gap between the equilibrium level of output and an

optimal level of output. We use a similar idea to define the state of the labor market:

DEFINITION 3. The labor market equilibrium is efficient if a marginal increase in tightness keep-

ing constant the utility gain from work has no effect on welfare, slack if the increase enhances

welfare, and tight if the increase reduces welfare. The equilibrium tightness is inefficiently low when

the equilibrium is slack and inefficiently high when the equilibrium is tight.
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In a matching model the equilibrium may not be efficient because the wage is determined through

bilateral bargaining.11 When the equilibrium is slack, the wage is inefficiently high. When the

equilibrium is tight, the wage is inefficiently low. The following proposition provides a simple

condition to assess the state of the labor market:

PROPOSITION 1. We define the efficiency term by

∆v

φ ·w
+R ·

(

1+ ε f
)

−
η

1−η
· τ(θ), (18)

where φ is given by (15). The labor market equilibrium is efficient if the efficiency term is zero, slack

if the efficiency term is positive, and tight if the efficiency term is negative.

Proof. The result directly follows from Lemma 2.

Our analysis is closely related to the work of Hosios [1990] in that we study the efficiency of

labor markets with matching frictions. One difference in that Hosios [1990] focuses on models with

risk-neutral workers whereas workers are risk averse in our a model. Another difference is that the

efficiency condition in Hosios [1990] takes the form of a condition on the wage-setting mechanism—

the Hosios condition relates workers’ bargaining power to the elasticity of the matching function—

whereas our efficiency condition takes the form of a condition expressed with estimable statistics. As

far as we know, the Hosios condition has never been implemented empirically, probably because of

the difficulty in measuring workers’ bargaining power. On the other hand, our efficiency condition is

easy to implement empirically. In Section 6, it will allow us to evaluate the state of the labor market

in the US over the 1990–2014 period using readily available data.

4 The Optimal Unemployment Insurance Formula

We derive the optimal UI formula. Following Chetty [2006a], we express the formula in terms of

estimable statistics. Section 6 will provide estimates for these statistics and implement the formula.

The wage is determined by a general wage schedule that may depend on UI. The response of

the wage to UI has important implications for optimal UI because it determines how labor demand

11See for instance the excellent discussion in Pissarides [2000, Chapter 8].
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responds to UI. However, we do not need to give an explicit expression for the wage schedule. The

only information needed is the response of employment to UI, measured by the following elasticity:

DEFINITION 4. The macroelasticity of unemployment with respect to UI is

εM =
∆v

1− l
·

dl

d∆v
.

The macroelasticity measures the percentage increase in unemployment when the utility gain

from work decreases by 1%, taking into account jobseekers’ reduction in search effort and the equi-

librium adjustment of labor market tightness. The macroelasticity can be estimated by measuring

the increase in aggregate unemployment following a general increase in unemployment benefits.

Of course, the macroelasticity is endogenous. It may respond to the generosity of UI or the state

of the labor market. We illustrate this property in Section 6 by simulating in several models the

variations of the macroelasticity over the business cycle and in response to changes in UI.

We will show that the response of optimal UI to the state of the labor market depends on the

response of tightness to UI. The following proposition is therefore important because it shows that

the response of tightness to UI can be captured by the wedge between the microelasticity and the

macroelasticity of unemployment with respect to UI.

DEFINITION 5. The elasticity wedge is 1− εM/εm.

PROPOSITION 2. The elasticity wedge measures the response of labor market tightness to UI:

∆v

θ
·

dθ

d∆v
=−

1− l

l
·

1

1−η
·

εm

1+ ε f
·

(

1−
εM

εm

)

. (19)

The elasticity wedge is positive if tightness increases with the generosity of UI. The elasticity wedge

is negative if tightness decreases with the generosity of UI. The elasticity wedge is zero if tightness

does not depend on UI.

Proof. Since l = ls(θ ,∆v), we have:

∆v

1− l
·

dl

d∆v
=

(

θ

1− l
·

∂ ls

∂θ

)

·

(

∆v

θ
·

dθ

d∆v

)

+

(

∆v

1− l
·

∂ ls

∂∆v

)

.
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Using (θ/l)(∂ ls/∂θ) = (1−η)(1+ ε f ) from Lemma 1, we obtain

εM =
l

1− l
· (1−η) ·

(

1+ ε f
)

·
∆v

θ
·

dθ

d∆v
+ εm. (20)

Dividing this equation by εm and rearranging the terms yields the desired result.

The proposition shows that a wedge between microelasticity and macroelasticity appears when

UI affects tightness, and that the elasticity wedge has the same sign as the effect of UI on tightness.

Figure 2 illustrates this result. In Figures 2(a) and 2(b), the horizontal distance A–B measures

the microelasticity and the horizontal distance A–C measures the macroelasticity. In Figure 2(a),

the labor demand curve is downward sloping, and it does not shift with a change in UI. After a

reduction in UI, the labor supply curve shifts outward (A–B) and tightness increases along the new

labor supply curve (B–C). Tightness rises after an increase in UI and the macroelasticity is smaller

than the microelasticity.

In Figure 2(b), the labor demand also shifts inward with an increase in UI (for example because

higher UI leads to higher wages). Tightness falls along the new supply curve after the labor demand

shift (C’–C). In sum, tightness can rise or fall. In Figure 2(b), tightness falls and the macroelastic-

ity is larger than the microelasticity. In Section 5, we will specify several models that clarify the

mechanisms through which UI affects tightness.

Having understood the properties of the social welfare function and the possible effects of UI on

tightness, we are now equipped to derive the optimal UI formula. The problem of the government

is to choose the utility gain from work to maximize social welfare, given by (10), subject to the

equilibrium response of tightness, given by (9). The following proposition characterizes optimal UI:

PROPOSITION 3. The optimal UI policy satisfies the formula

R =
l

εm
·

∆v

w
·

[

1

v′(ce)
−

1

v′(cu)

]

+
1

1+ ε f

(

1−
εM

εm

)[

∆v

w ·φ
+R ·

(

1+ ε f
)

−
η

1−η
· τ(θ)

]

, (21)

where φ satisfies (15). The first term in the right-hand side is the Baily-Chetty term, and the second

term is the correction term.

Proof. We define welfare SW (θ ,∆v) by (10). The derivative of the social welfare with respect to ∆v

is dSW/d∆v= ∂SW/∂∆v+(∂SW/∂θ) ·(dθ/d∆v). Therefore, the first-order condition dSW/d∆v=
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Figure 2: The effect of UI on tightness determines the sign of the elasticity wedge, 1− εM/εm

Notes: This figure illustrates the results of Proposition 2. Panel (a) considers a downward-sloping labor demand that

does not respond to UI. Panel (b) considers a downward-sloping labor demand that shifts inward when UI increases.

0 in the current problem is a linear combination of the first-order conditions ∂SW/∂θ = 0 and

∂SW/∂∆v = 0. Hence, the optimal UI formula is a linear combination of the efficiency condi-

tion and the Baily-Chetty formula. Moreover, the efficiency condition is multiplied by the wedge

1− εM/εm because the factor dθ/d∆v is proportional to that wedge.

Equation (20) shows that the labor market tightness variation is given by

dθ

d∆v
=

1− l

l
·

1

1−η
·

1

1+ ε f
·

θ

∆v
·
(

εM − εm
)

.

We combine this equation with the derivatives provided by Lemma 2 to write the first-order condition

dSW/d∆v = 0. Dividing the resulting equation by (1− l) ·φ ·w · εm ·/∆v yields (21).

COROLLARY 1. If the labor market equilibrium is efficient, optimal UI satisfies the Baily-Chetty

formula:

R =
l

εm
·

∆v

w
·

(

1

v′(ce)
−

1

v′(cu)

)

. (22)

Proof. Equation (22) obtains from Propositions 1 and 3. It may not be immediately apparent

that (22) is equivalent to the traditional Baily-Chetty formula. The equivalence becomes clear using
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Table 1: Optimal replacement rate compared to Baily-Chetty replacement rate

Elasticity wedge, 1− εM/εm

− 0 +

Slack labor market lower same higher

Efficient labor market same same same

Tight labor market higher same lower

Notes: The replacement rate is R = 1− (ce − cu)/w. The Baily-Chetty replacement rate is given by formula (22). The

optimal replacement rate is higher than the Baily-Chetty rate if the correction term in formula (21) is positive, same as

the Baily-Chetty rate if the correction term is zero, and lower than the Baily-Chetty rate if the correction term is negative.

(12), which allows us to rewrite formula (22) as

εm
R = l ·

(

v(cu)

v′(ce)
−1

)

.

This is the standard expression for the Baily-Chetty formula.

Formula (21) shows that the optimal UI replacement rate, R, is the sum of the Baily-Chetty term

and a correction term. The Baily-Chetty term captures the trade-off between the need for insurance,

measured by (1/v′(ce))− (1/v′(cu)), and the need for incentives to search, measured by εm, exactly

as in the analysis of Baily [1978] and Chetty [2006a]. The correction term is the product of the effect

of UI on tightness, measured by 1− εM/εm, by the effect of tightness on welfare, measured by the

efficiency term. The correction term is positive if and only if UI brings the labor market equilibrium

toward efficiency.12

There are two situations where the optimal replacement rate is given by the Baily-Chetty for-

mula: the two situations where the correction term is zero. The first situation is when the labor

market equilibrium is efficient such that the efficiency term is zero. This is the situation described

by the corollary. When the labor market equilibrium is efficient, the marginal effect of UI on tight-

ness has no first-order effect on welfare; hence, optimal UI is governed by the same principles as

in the Baily-Chetty framework in which tightness is fixed. The second situation is when UI has

not effect on tightness such that 1− εM/εm = 0, regardless of whether tightness is efficient or not.

12The response of tightness to UI can be interpreted as a pecuniary externality. The reason is that tightness can be

interpreted as a price influenced by the search behavior of workers and influencing welfare when the labor market is

inefficient. Under this interpretation, the additive structure of the formula—a standard term plus a correction term—is

similar to the structure of many optimal taxation formulas in the presence of externalities.
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When tightness is fixed, the matching model is isomorphic to the Baily-Chetty model, so optimal UI

is guided by the same principles in the two models.

In all other situations, the correction term is nonzero and the optimal replacement rate departs

from the Baily-Chetty rate. The main implication of (21) is that increasing UI above the Baily-Chetty

rate is desirable if and only if UI brings the labor market closer to efficiency. UI brings the labor

market closer to efficiency either if equilibrium tightness is inefficiently low and UI raises tightness

or if equilibrium tightness is inefficiently high and UI lowers tightness. In concrete terms, UI brings

the labor market closer to efficiency either if the labor market is slack and the microelasticity is

larger than the macroelasticity or if the labor market is tight and the microelasticity is smaller than

the macroelasticity. Table 1 summarizes all the possible situations depending on the state of the

labor market and the sign of the elasticity wedge.

As is standard in optimal tax formulas, the right-hand-side of (21) is endogenous to UI. Even

though the formula characterizes optimal UI only implicitly, it is useful. First, it transparently shows

the economic forces at play. Second, it gives general conditions for optimal UI to be above or below

the Baily-Chetty level. These conditions apply to a broad range of matching models, as we illustrate

in Section 5. Third, the right-hand-side term is expressed with statistics that are estimable. Hence,

the formula can be combined with empirical estimates to assess a UI system, as we illustrate in

Section 6. This assessment is valid even if the right-hand-side term is endogenous to UI.

A key implication of formula (21) is that even in the presence of private provision of UI, the pub-

lic provision of UI is justified. Indeed, small private insurers do not internalize tightness externalities

and offer insurance according to the Baily-Chetty term. It is therefore optimal for the government

to correct privately provided UI by a quantity equal to the correction term in (21). The correction is

positive or negative depending on the state of the labor market.

Formula (21) reveals a few counterintuitive properties of optimal UI. First, even if UI has no

adverse on unemployment and εM = 0, full insurance is not desirable. Consider a model in which

the number of jobs is fixed. Increasing UI redistributes from employed workers to unemployed

workers without destroying jobs, but, unlike what intuition suggests, the optimal replacement is

strictly below 1. This can be seen by plugging εM = 0 and εm > 0 in (21). The reason is that

increasing UI increases tightness and forces firms to allocate more workers to recruiting instead of

producing, thus reducing output available to consumption. In fact, if the efficiency condition holds,
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UI is given by the standard Baily-Chetty formula and the magnitude of εM is irrelevant.

Second, even in the absence of any concern for insurance, some UI should be offered if UI brings

the economy closer to efficiency.13 Consider a model with with risk neutral workers. Formula (21)

boils down to τ(θ) = (1−η)/η .14 which is the condition on tightness to maximize output and

hence restore efficiency.

Third, even though wages may respond to UI, the response of wages does not appear directly

in the formula. It does not matter whether wages change or not because wages do not enter in

the government’s budget constraint or workers’ search decisions. The wage does appear in firms’

decisions, but this effect is measured by the macroelasticity. In other words, the elasticity wedge is

the sufficient statistics that captures the effects of UI on wages.

Finally, Formula (21) is quite robust: it would remain valid in a number of extensions. In the

analysis, we assume that the utility of employed workers differs from that of unemployed worker

only because employed workers consume more. In reality, they are many other differences between

employed and unemployed workers that matter for their utility. For instance, it is well documented

that the state of unemployment has high psychological and health costs [Clark and Oswald, 1994;

Hawton and Platt, 2000; Sullivan and von Wachter, 2009]. To capture all the differences between

employment and unemployment beyond consumption, we could assume that employed workers have

utility ve(c
e) and unemployed workers have utility vu(c

u), where the functions ve and vu differ. In

that case, formula (21) would carry over after adjusting the utility gain from work to ve(c
e)−vu(c

u)

and the marginal utilities to v′u(c
u) and v′e(c

e). In the analysis, we also assume that workers cannot

insure themselves against unemployment. In reality, unemployed workers partially insure them-

selves [Gruber, 1997]. We could assume that workers self-insure partially against unemployment

with home production.15 In that case, formula (21) would carry over after adjusting the utility gain

from work and the marginal utility of unemployed workers to account for home production.

13This result was noted by Rogerson, Shimer and Wright [2005].
14To see this, multiply the formula of Proposition 3 by εm · (1−R). With εm = 0 and hence ε f = 0, and with ∆v = ∆c

due to risk neutrality, we have φ = 1 and ∆v/w = 1−R. Therefore, −εM · [(1−R)+R−η · τ(θ)/(1−η)] = 0. If UI

has an influence on tightness, εM > 0 and τ(θ) = (1−η)/η .
15Home production is a reduced-form representation of all the means of self-insurance available to workers. In

practice, workers self insure not only with home production but also with savings or spousal income. Analyzing savings

or spousal income would be more complex.
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Table 2: Effect of UI on labor market tightness in matching models

Model

Standard Rigid-wage Job-rationing Aggregate-demand

A. Assumptions

Production function linear linear concave linear

Wage setting bargaining rigid rigid rigid

B. Properties

Type of UI effect job-creation no effect rat-race rat-race

Effect of UI on tightness − 0 + +
Elasticity wedge, 1− εM/εm − 0 + +

Notes: This table summarizes the results of Propositions 4, 6, 8, and 11. The job-creation and rat-race effects are

depicted in Figure 3.

5 Application of the Formula to Four Matching Models

Section 4 showed that optimal UI may be above or below the conventional Baily-Chetty level de-

pending on the state of the labor market and the effect of UI on tightness. However, Section 4 re-

mained deliberately vague on the sources of labor market fluctuations and the mechanisms through

which UI affects tightness. Here we specify four matching models to clarify the origins of labor

market fluctuations and precise the mechanisms through which UI can affect tightness. Table 2

provides a description of the models and a summary of their properties.

5.1 The Standard Model

The standard model shares the main features of the model developed by Pissarides [1985, 2000] and

Shimer [2005]. The production function is linear: y(n) = n. When they are matched, worker and

firm bargain over the wage. The outcome of this bargaining is that the match surplus is shared, with

the worker keeping a fraction β ∈ (0,1) of the surplus.16 The parameter β is the worker’s bargaining

power.17 As in Jung and Kuester [2014], we model slumps as equilibria with high β and booms as

equilibria with low β . Bargaining-power shocks ensure that the labor market is slack in slumps and

16In a seminal paper, Diamond [1982] also assumed a surplus-sharing solution to the bargaining problem. If workers

and firms are risk neutral, the surplus-sharing solution coincides with the generalized Nash solution. Under risk aversion,

these two solutions generally differ. We use the surplus-sharing solution for its simplicity.
17To obtain a positive wage, we impose that β/(1−β )> ∆v.

20



tight in booms, as observed in the data (see Figure 5).

We need to derive the labor demand to analyze the model. We begin by determining the bar-

gained wage. The worker’s surplus from a match with a firm is W = ∆v. The firm’s surplus from

a match with a worker is F = 1−w because once a worker is recruited, she produces 1 unit of

good and receives a real wage w. Since worker and firm split the total surplus from the match,

W /β = F/(1−β ). Hence, the bargained wage satisfies

w = 1−
1−β

β
·∆v.

Increasing UI raises the bargained wage. The reason is that the outside option of jobseekers increases

after an increase in UI, so they are able to obtain a higher wage.

We combine the wage equation with equation (3) to obtain the labor demand:

τ(θ)

1+ τ(θ)
=

1−β

β
·∆v. (23)

This equation defines a perfectly elastic labor demand curve in a (l,θ) plane, as depicted in Fig-

ure 3(a). The labor demand shifts downward when UI increases. The reason is that when UI in-

creases, wages rise so it becomes less profitable for firms to hire workers.

Having obtained the labor demand, we can describe the effect of UI on equilibrium tightness:

PROPOSITION 4. Increasing UI lowers tightness: dθ/d∆v > 0. The elasticity wedge is

1−
εM

εm
=−

l

1− l
·

1−η

η
·

1+ ε f

εm
< 0. (24)

Proof. We differentiate (23) with respect to ∆v. Since the elasticities of τ(θ) and 1+ τ(θ) with

respect to θ are η · (1+ τ(θ)) and η · τ(θ), we obtain (∆v/θ) · (dθ/d∆v) = 1/η . It follows that

dθ/d∆v > 0. Using (19) then immediately yields (24).

Figure 3(a) illustrates the results of the proposition. After an augmentation in UI, jobseekers

search less, shifting the labor supply curve inward by a distance A–B, and bargained wages increase,

shifting the labor demand downward and further reducing employment by a distance B–C. The total

reduction in employment is given by the distance A–C. Since the labor demand is horizontal and
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shifts downward, tightness necessarily falls. Since A–C is larger than A–B, the macroelasticity is

larger than the microelasticity.

The standard model nicely captures two effects of UI: the moral-hazard effect and the job cre-

ation effect. The moral-hazard effect is the reduction in employment caused by the reduction in

search effort, which is not observable and thus a source of moral hazard. The distance A–B mea-

sures this effect. The job-creation effect is the reduction in employment caused by the reduction in

hiring following the increase in wages. The distance B–C measures this effect. The job-creation

effect is the reason why tightness falls when UI increases and why the macroelasticity is larger than

the microelasticity. It is not impossible that UI has additional effects on employment, however.

Below, we present alternative models to illustrate these other effects.

The proposition implies that optimal UI is higher than the Baily-Chetty level in a tight labor

market and lower in a slack labor market. For example, in a tight market, increasing UI raises wages

and decreases tightness, which improves welfare beyond the insurance-incentive trade-off.

Of course, we would like to know the conditions under which the labor market is slack or tight.

But in a general-equilibrium environment, this is complicated. As a first step, we provide conditions

under which the labor market is in a slump or in a boom.

PROPOSITION 5. For a given utility gain from work, an equilibrium in which workers have higher

bargaining power has lower tightness and lower employment: ∂θ/∂β
∣

∣

∆v
< 0 and ∂ l/∂β

∣

∣

∆v
< 0.

Proof. The comparative static for θ comes from (23), as τ ′(θ) > 0. The comparative static for l

follows as l = ls(θ ,∆v) and ∂ ls/∂θ > 0.

The proposition says that in an equilibrium in which workers have high bargaining power, the

economy is in a slump, and in an equilibrium in which they have low bargaining power, the economy

is in a boom. The mechanism is that with high bargaining power, workers extract a high share of

match surpluses so wages are high, which depresses labor demand and thus tightness and employ-

ment. In Figure 3(a), an increase in workers’ bargaining power shifts the labor demand downward.

As we expect the labor market to be slack in slumps and tight in booms, we expect the labor mar-

ket to be slack when workers have high bargaining power and tight when they have low bargaining

power. We cannot prove this result, but we will show that it holds in the simulations of Section 6.
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Figure 3: Effect of UI on labor market tightness and employment in matching models

5.2 The Rigid-Wage Model

The rigid-wage model shares the main features of the model developed by Hall [2005a]. The produc-

tion function is linear: y(n) = a ·n, where a is the technology level. The wage is partially rigid with

respect to technology and completely rigid with respect to UI: w = ω ·aγ , where γ ∈ [0,1) parame-

terizes the rigidity of wages with respect to technology. If γ = 0, wages are completely rigid: they

do not respond to technology. If γ = 1, wages are fully flexible: they are proportional to technology.

Slumps are equilibria with low technology, and booms are equilibria with high technology.
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We combine the wage schedule with equation (3) to obtain the labor demand:

1 = ω ·aγ−1 · (1+ τ(θ)) . (25)

Equation (25) defines a perfectly elastic labor demand in a (l,θ) plan, as depicted in Figure 3(b).

The labor demand is unaffected by UI because the wage does not respond to UI.

Having obtained the labor demand, we can describe the effect of UI on equilibrium tightness:

PROPOSITION 6. Increasing UI has no effect on tightness: dθ/d∆v = 0.

Proof. Equilibrium tightness is determined by (25). This equation is independent of ∆v.

Figure 3(b) illustrates the result. Since the labor demand is horizontal and independent of UI,

UI has no effect on tightness. The only effect at play is the moral-hazard effect, as in the original

Baily-Chetty framework. The rigidity of wages with respect to UI eliminates the job-creation effect

that was present in the standard model. The proposition implies that optimal UI is always given by

the Baily-Chetty formula even if the efficiency condition does not hold. Tightness may be inefficient

but this inefficiency does not affect optimal UI because UI has no effect on tightness.

For completeness, we show that when technology is low, the labor market is in a slump, and

when technology is high, the labor market is in a boom.

PROPOSITION 7. For a given utility gain from work, an equilibrium in which technology is lower

has lower tightness and lower employment: ∂θ/∂a
∣

∣

∆v
> 0 and ∂ l/∂a

∣

∣

∆v
> 0.

Proof. The comparative static for θ comes from (25), as γ < 1 and τ ′(θ) > 0. The comparative

static for l follows as l = ls(θ ,∆v) and ∂ ls/∂θ > 0.

When technology is low, the wage-technology ratio is high by wage rigidity, which depresses

labor demand, tightness, and employment. In Figure 3(b), an fall in technology shifts the labor

demand downward.

5.3 The Job-Rationing Model

The job-rationing model shares the main features of the model developed by Michaillat [2012]. The

production function is concave: y(n) = a · nα , where a is technology and α ∈ (0,1) parameterizes
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diminishing marginal returns to labor. As in the rigid-wage model, the wage is partially rigid with

respect to technology and completely rigid with respect to UI: w = ω · aγ with γ ∈ (0,1). Slumps

are equilibria with low technology, and booms are equilibria with high technology.

We combine the wage schedule with equation (3) to obtain the labor demand:

ld(θ ,a) =
(ω

α
·aγ−1

)− 1
1−α

· (1+ τ(θ))−
α

1−α . (26)

The labor demand is unaffected by UI because the wage does not respond to UI. The labor demand

is decreasing with θ . When the labor market is tighter, hiring workers is less profitable as it requires

a higher share of recruiters, τ(θ). Hence, firms choose a lower level of employment. The labor

demand is also increasing in a. When technology is lower, the wage-technology ratio, w/a = ω ·

aγ−1, is higher as wages are somewhat rigid, and hiring workers is less profitable. Hence, firms

choose a lower level of employment. In the (l,θ) plane of Figure 3(c), the labor demand curve is

downward sloping, and it shifts inward when technology falls.

The properties of the labor demand imply that jobs are rationed in slumps. When technology is

low enough (a < (α/ω)
1

γ−1 ), then ld(θ = 0,a) < 1 and jobs are rationed: firms would not hire all

the workers even if workers searched infinitely hard and tightness was zero. In Figure 3(c), the labor

demand crosses the x-axis at l < 1.

Having characterized the labor demand, we describe the effect of UI on equilibrium tightness:

PROPOSITION 8. Increasing UI raises tightness: dθ/d∆v < 0. The elasticity wedge is

1−
εM

εm
=

(

1+
η

1−η
·

α

1−α
·

1

1+ ε f
· τ(θ)

)−1

> 0. (27)

Proof. The elasticity of 1+τ(θ) with respect to θ is η ·τ(θ). From (26), we infer that the elasticity

of ld(θ ,a) with respect to θ is −η · τ(θ) · α/(1 − α). By definition, εM is l/(1 − l) times the

elasticity of l with respect to ∆v. Since l = ld(θ ,a) in equilibrium, we infer that

εM =−
l

1− l
·η ·

α

1−α
· τ(θ) ·

∆v

θ
·

dθ

d∆v
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We plug the expression for (∆v/θ) · (dθ/d∆v) given by (19) into this equation and obtain

εM =
η

1−η
·

α

1−α
·

1

1+ ε f
· τ(θ) ·

(

εm − εM
)

.

Dividing this equation by εm and re-arranging yields (27).

Figure 3(c) illustrates the results of the proposition. After an augmentation in UI, jobseekers

search less, shifting the labor supply curve inward by a distance A–B. Since the labor demand is

downward sloping, the initial reduction in employment is attenuated by a distance B–C. The total

reduction in employment is given by the distance A–C. Since the labor demand is downward sloping

and does not respond to UI, tightness necessarily increases. Since A–C is smaller than A–B, the

macroelasticity is smaller than the microelasticity.

In addition to the moral-hazard effect, the job-rationing model captures the rat-race effect, which

is not present in the standard model. The rat-race effect is the increase in employment caused by

the increase in tightness following the increase in UI. Intuitively, the number of jobs available is

somewhat limited because of diminishing marginal returns to labor. Hence, when workers searching

less, they reduce their own probability of finding a job but mechanically increases others’ probability

of finding one of the few jobs available. By discouraging job search, UI alleviates the rat race for

jobs and increases the job-finding rate per unit of effort and labor market tightness.18 The distance

B–C measures employment gained through the rat-race effect. The rat-race effect is the reason why

tightness rises when UI increases and why the macroelasticity is smaller than the microelasticity.

Proposition 8 implies that optimal UI is lower than the Baily-Chetty level in a tight labor market

and higher than the Baily-Chetty level in a slack labor market. For instance, in a slack market,

increasing UI raises tightness by alleviating the rat-race for jobs, which improves welfare beyond

the insurance-incentive trade-off. The proposition also shows that the sign of the elasticity wedge

does not depend at all on the rigidity of wages with respect to technology. Even if the wage were

completely flexible with respect to technology (γ = 1), the job-rationing model would feature a

18The formal argument is as follows. Consider an increase in UI. Imagine that tightness, θ , remained constant. Then

the marginal recruiting cost, τ(θ), would remain constant. As the wage, w, remains constant, the marginal cost of labor,

w · (1+τ(θ)), would remain constant. Simultaneously, firms would employ fewer workers because workers search less.

Hence, the marginal product of labor would be higher because of the diminishing marginal returns to labor. Firms would

face the same marginal cost but a higher marginal product of labor, which would not be optimal. Thus, firms post more

vacancies and the new equilibrium has higher labor market tightness.
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Figure 4: Countercyclicality of the elasticity wedge, 1− εM/εm, in the job-rationing model

Notes: This figure illustrates the results of Proposition 10. A slump corresponds to an equilibrium with low technology.

A boom corresponds to an equilibrium with high technology.

positive elasticity wedge and thus a rat-race effect. In a way this is obvious because the response of

tightness to UI is independent of the response of tightness to technology. What is critical to obtain a

positive elasticity wedge is the rigidity of wages with respect to UI.

As in the standard model, it is complicated to determine the conditions under which the labor

market is slack or tight. But we can show that the economy is in a slump when technology is low

and in a boom when technology is high.

PROPOSITION 9. For a given utility gain from work, an equilibrium with lower technology has

lower tightness and lower employment: ∂θ/∂a
∣

∣

∆v
> 0 and ∂ l/∂a

∣

∣

∆v
> 0.

Proof. The equilibrium condition is ld(θ ,a) = ls(θ ,∆v), where ld is given by (26) and ls by (8). Im-

plicit differentiation of the equilibrium condition yields ∂θ/∂a=
(

∂ ld/∂a
)

·
(

∂ ls/∂θ −∂ ld/∂θ
)−1

.

We have seen that ∂ ld/∂a > 0, ∂ ls/∂θ > 0, and ∂ ld/∂θ < 0. Thus ∂θ/∂a > 0. The other result

follows since l = ls(θ ,∆v) and ∂ ls/∂θ > 0.

The proposition says that when technology is low, tightness and employment are low, as in a

slump. Conversely, tightness and employment are high when technology is high, as in a boom.

When technology is low, the wage-technology ratio is high by wage rigidity, which depresses labor

demand and therefore tightness and employment. Figure 4(a) plots the labor demand curve for a
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low technology, which represents a slump, and Figure 4(b) plots it for a high technology, which

represents a boom. As we expect the labor market to be slack in slumps and tight in booms, we

expect the labor market to be slack when technology is low and tight when technology is high. We

cannot prove this result, but we will show that it holds in the simulations of Section 6.

To explore further how the correction term varies in slumps and booms, we describe the com-

parative static effect of technology on the elasticity wedge.

ASSUMPTION 1. The matching function and the marginal disutility of search effort are isoelastic:

m(e,v) = ωh · e
η · v1−η and k′(e) = ωk · e

κ for η ∈ (0,1), κ > 0, ωh > 0, and ωk > 0.

PROPOSITION 10. Suppose that Assumption 1 holds. An equilibrium with lower technology has

a higher elasticity wedge: ∂
[

1− εM/εm
]

/∂a
∣

∣

∆v
< 0.

Proof. This result follows from combining Proposition 9 with (27), the fact that τ(θ) is increasing

with θ , and the fact that ε f = 1/κ and η are constant under Assumption 1.

Proposition 10 shows that the elasticity wedge is higher when technology is lower. It makes

clear that the elasticity wedge is endogenous; it is not necessarily a parameter of the model.19

This result is illustrated by comparing a boom in Figure 4(b) to a slump in Figure 4(a). The

wedge between εM and εm is driven by the slope of the labor supply relative to that of the labor

demand. In a boom, the labor supply is steep at the equilibrium point because the matching process

is congested by the large number of vacancies. Hence, εM is close to εm. Conversely, in a slump,

the labor supply is flat at the equilibrium point because the matching process is congested by search

efforts. Hence, εM is much lower than εm. Formally, let ε ls ≡ (θ/l) · (∂ ls/∂θ) and ε ld ≡ −(θ/l) ·
(

∂ ld/∂θ
)

be the elasticities of labor supply and labor demand with respect to tightness (ε ld is

normalized to be positive). We could rewrite the elasticity wedge as 1−εM/εm = 1/
[

1+(ε ld/ε ls)
]

.

The elasticity wedge is countercyclical because ε ld/ε ls is procyclical.20

19The result that the elasticity wedge is endogenous is not true in the standard and rigid-wage models. Of course,

the wedge is always zero in the rigid-wage model. In the standard model, the wedge is a constant. The proof is

simple. Under Assumption 1, equation (7) implies that ε f = 1/κ and (1− l) · εm/l = 1/κ . Hence, (24) becomes

1− εM/εm = (1+κ) · (1−η)/η , which is a constant.
20The cyclicality of the elasticity wedge is closely connected to the cyclicality of the public-employment multiplier

in Michaillat [2014]. Both results rely on the cyclicality of the ratio ε ld/ε ls. The main difference is that the wedge

describes the response to a shift in labor supply whereas the multiplier describes the response to a shift in labor demand.
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5.4 The Aggregate-Demand Model

The aggregate-demand model does not appear elsewhere in the literature, but it is useful to establish

the robustness of the rat-race effect. This model shows that diminishing marginal returns to labor are

not required to obtain a rat-race effect. Here the rat-race effect is present even though the marginal

returns to labor are constant. We will see that this effect is present because the general-equilibrium

labor demand is downward sloping in a (l,θ) plane, such that the number of jobs is limited for a

given tightness. This model also shows that technology shocks combined with real wage rigidity is

not the only mechanism that can generate slumps and booms. In this model, slumps and booms are

generated by money-supply shocks and nominal wage rigidity.

We make the following assumptions on the production function and wage schedule. The produc-

tion function is linear: y(n) = n. The nominal wage is partially rigid with respect to the price level,

P, and completely rigid with respect to UI: W = µ ·Pζ , where ζ ∈ [0,1) parameterizes the rigidity

of the nominal wage with respect to the price level. The real wage is w =W/P = µ ·Pζ−1.

Because of nominal wage rigidity, it is necessary to define the price-setting mechanism. As

in Mankiw and Weinzierl [2011], we assume that workers are required to hold money to purchase

consumption goods and that the money market is described by a quantity equation: M = P · y. The

parameter M > 0 is the money supply. The quantity equation says that nominal consumer spending

is equal to the money supply.21 Since y = n, the quantity equation implies that P = M/n. A high

number of producers implies high output and, for a given money supply, a low price. In general

equilibrium, the real wage is therefore related to the number of producers by

w = µ ·
( n

M

)1−ζ
. (28)

When money supply falls or the number of producers rises, the price falls and the real wage rises.

The product market is perfectly competitive; hence, firms take the price as given and (3) remains

valid. We combine the wage equation (28) with (3) to obtain the general-equilibrium labor demand:

ld(θ ,M) = M ·µ
− 1

1−ζ · (1+ τ(θ))
− ζ

1−ζ . (29)

This is a general-equilibrium demand because it takes into account the quantity equation describ-

21We implicitly assume that the velocity of money is constant and normalized to 1.
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ing the money market. Labor demand decreases with θ , as in the job-rationing model. But the

mechanism is different. Higher employment implies more production, lower prices in the goods

market, and higher real wages by nominal wage rigidity. Firms are willing to hire more workers

only if tightness is lower, which reduces recruiting costs and compensates for the higher real wage.

Moreover, the labor demand increases with M: After a negative money-supply shock, prices fall.

Nominal wage rigidity combined with a lower price level leads to a higher real wage and a higher

marginal cost of labor, which leads to lower hiring and higher unemployment. The labor demand

slopes downward in the (l,θ) plane, as depicted in Figure 3(c). The labor demand shifts inward

when the money supply decreases, but the labor demand does not shift after a change in UI. Jobs

are also rationed in slumps. If money supply is low enough (M < µ
1

1−ζ ), then ld(θ = 0,M)< 1 and

jobs are rationed: firms would not hire all the workers even if workers searched infinitely hard.

It is clear by now that the aggregate-demand model has exactly the same properties as the job-

rationing model, except that money-supply shocks and not technology shocks generate fluctuations

in tightness and employment. To conclude, we list all the properties of the aggregate-demand model.

The interpretation is the same as in the job-rationing model.

PROPOSITION 11. Increasing UI raises tightness: dθ/d∆v < 0. The elasticity wedge is

1−
εM

εm
=

(

1+
η

1−η
·

ζ

1−ζ
·

1

1+ ε f
· τ(θ)

)−1

> 0. (30)

PROPOSITION 12. For a given utility gain from work, an equilibrium with lower money supply

has lower tightness and lower employment: ∂θ/∂M
∣

∣

∆v
> 0 and ∂ l/∂M

∣

∣

∆v
> 0.

PROPOSITION 13. Suppose that Assumption 1 holds. An equilibrium with lower money supply

has higher elasticity wedge: ∂
[

1− εM/εm
]

/∂M
∣

∣

∆v
< 0.

Proof. The proofs follow the same logic as those of Propositions 8, 9, and 10.

6 Empirical Implementation of the Formula

In this section we implement the optimal UI formula using empirical evidence. We propose two

implementations. The first one is in the public-finance tradition. It requires few functional-form

assumptions but only allows us to say whether the current UI replacement rate should be increased
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or decreased. The second one is in the macroeconomic tradition. It requires more assumptions but

allows us to quantify the optimal replacement rate at different stages of the business cycle.

These implementations rely on two key statistics: the elasticity wedge, which indicates the effect

of UI on tightness, and the recruiter-producer ratio, which indicates the effect of tightness on welfare.

We borrow estimates of the elasticity wedge from the literature. We construct a new time series for

the recruiter-producer ratio.

6.1 The Dynamic Model

To offer a better mapping between the theory and the data, we first embed the static model into a

dynamic environment. We work in continuous time.

At time t, the number of employed workers is l(t) and the number of unemployed workers

is u(t) = 1− l(t). Labor market tightness is θt = ot/(et · ut). Jobs are destroyed at rate s > 0.

Unemployed workers find a job at rate e(t) · f (θ(t)). Thus, the law of motion of employment is

l̇(t) = e(t) · f (θ(t)) · (1− l(t))− s · l(t). (31)

In steady state l̇(t) = 0. Hence, employment, effort, and tightness are related by

l =
e · f (θ)

s+ e · f (θ)
. (32)

Let L(x) = x/(s+ x). The elasticity of L with respect to x is 1−L. It is because l = L(e · f (θ)) in

the dynamic model instead of l = e · f (θ) in the static model that the factor 1− l appears in many

formulas of the dynamic model.

Firms employ n(t) producers and l(t)−n(t) recruiters. Each recruiter handles 1/r vacancies so

the law of motion of the number of employees is

l̇(t) =−s · l(t)+
l(t)−n(t)

r
·q(θ(t)). (33)

In steady state l̇(t) = 0 and the number of employees is proportional to the number of producers:

l = (1+ τ(θ)) ·n, where τ(θ) = (s · r)/ [q(θ)− (s · r)].22

22The wedge τ(θ) is a different function of the parameters in the static and dynamic environments, but τ(θ) should
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We focus on the steady state of the model with no time discounting. Firms, workers, and gov-

ernment maximize the flow value of profits, utility, and social welfare subject to the steady-state

constraints. Given w and θ , the firm chooses n to maximize y(n)−w · (1+ τ(θ)) · n. The optimal

employment level satisfies (2). Given θ , ce, and cu, the representative unemployed worker chooses

e to maximize (with l given by (32))

l · v(ce)+(1− l) · v(cu)− (1− l) · k(e) (34)

subject to (32). Routine calculations show that the optimal search effort e satisfies

k′(e) =
l

e
· (∆v+ k(e)) . (35)

Finally, the government chooses ce and cu to maximize (34) subject to (1), (2), (32), (35), and (4).

Without discounting, the static results are barely modified in the dynamic model. Following the

same steps as in the static model, we can show that the formula of Lemma 1 becomes

θ

l
·

∂ ls

∂θ

∣

∣

∣

∣

∆v

= (1− l) · (1+ ε f ) · (1−η)

The only difference with the original formula is the extra factor 1− l. In the dynamic environment,

equation (20), which links micro- and macroelasticity becomes

εM = εm + l · (1−η) ·
(

1+ ε f
)

·
∆v

θ
·

dθ

d∆v
. (36)

As expected, the only difference with the original formula is that a factor l replaces the factor l/(1−

l). Equation (20) is an important building block to compute the elasticity wedge. Accordingly, in

the dynamic model, the wedge becomes

1−
εM

εm
=−l · (1−η) ·

1+ ε f

εm
·

∆v

θ
·

dθ

d∆v
. (37)

Here again, the only difference with the original wedge is that a factor l replaces the factor l/(1− l).

be considered as a sufficient statistic defined as 1+ τ(θ)≡ l/n. That is, τ(θ) is the recruiter-producer ratio.
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Accordingly, in the dynamic model, the formula of Proposition 2 becomes

R =
l

εm

∆v

w

[

1

v′(ce)
−

1

v′(cu)

]

+
1

1+ ε f

[

1−
εM

εm

][

∆v+ k(e)

w ·φ
+R

(

1+ ε f
)

−
η

1−η

τ(θ)

1− l

]

. (38)

where φ satisfies equation (15). Two differences appear in the correction term: ∆v is replaced by

∆v+ k(e) and τ(θ) is replaced by τ(θ)/(1− l).

While it seems that the formula is modified in the dynamic model, the two formulas are in fact

identical once expressed with the correct statistics. It appears in the derivation of the formula that the

∆v in the correction term stands for the utility gap between employed and unemployed workers. This

gap is ∆v in the static model where both workers and the unemployed search while it is ∆v+ k(e) in

the dynamic model where only the unemployed search. It also appears that the τ(θ) in the correction

term should be divided by the elasticity of the function L, defined by ls(θ ,∆v) = L(es(θ ,∆v) · f (θ)).

This elasticity is 1 in the static model and 1− l in the dynamic model.

6.2 Estimates of the Microelasticity, Macroelasticity, and Elasticity Wedge

The Microelasticity. A large body of work has estimated the microelasticity εm, and provides

compelling evidence that UI increases unemployment durations.23 The ideal experiment to estimate

εm is to offer higher or longer UI benefits to a randomly selected and small subset of jobseekers

within a labor market and compare unemployment durations between treated and non-treated job-

seekers. In practice, εm is estimated by comparing individuals with different benefits in the same

labor market at a given time, while controlling for individual characteristics. As mentioned above,

most empirical studies estimate the elasticity with respect to the benefits level or equivalently the

replacement rate R, which we denote εm
R .

In US administrative data from the 1980s, the classic study of Meyer [1990] finds an elasticity

εm
R = 0.6 using state fixed-effects (Table VI, columns (6) to (9), p. 773). In a larger US administrative

dataset for the same early 1980s years, and using a regression kink design to compellingly identify

the elasticities, Landais [2012] finds an elasticity εm
R = 0.3 (Table 4, column (1)). Therefore, εm

R =

0.5 is a reasonable estimate.

23See Krueger and Meyer [2002] for a comprehensive survey.
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The Macroelasticity. Estimating the macroelasticity εM, is inherently more difficult than estimat-

ing εm because it necessitates exogenous variation in UI benefits across comparable labor markets,

instead of exogenous variations across comparable individuals within a single labor market. The

ideal experiment to estimate εM is to offer higher UI benefits to all individuals in a randomly se-

lected subset of labor markets and compare unemployment rates between treated and non-treated

labor markets. Very few estimates of εM are available.24 We discuss two notable macro estimates

here. Both use variation in benefits duration instead of benefits levels.

Card and Levine [2000] analyze UI benefit extensions in New Jersey. They estimate that the

long-run effect of a 13-week extended benefit program would be a 7 percentage point increase in

the regular exhaustion rate and a roughly 1 week increase in the average number of weeks of regular

UI collected by claimants (p. 136, where simulations are using estimates of Table 6 column (2)).

This translates into an elasticity of unemployment with respect to benefits duration, denoted εM
D ,

of 0.12. This elasticity appears smaller than the corresponding micro-elasticities of unemployment

with respect to benefits duration, denoted εm
D , that are around 0.4.25 Hence, Card and Levine [2000]

appears consistent with a positive elasticity wedge, 1− εM/εm > 0.

In recent work, Hagedorn et al. [2013] use the large UI extensions implemented in the US in the

2009–2013 period and compare border counties across states with different UI durations. They find

a large macroelasticity of εM
D = 0.55.26 With a microelasticity εm

D around 0.4, Hagedorn et al. [2013]

is consistent with a negative elasticity wedge, 1− εM/εm < 0.

The Elasticity Wedge. The ideal experiment to estimate the elasticity wedge, 1− εM/εm, is a

design with double randomization : (i) some randomly selected areas are treated and some are not,

and (ii) within treated areas, all but a randomly selected and small subset of jobseekers are treated.

24Most studies surveyed in Krueger and Meyer [2002] do not distinguish between micro- and macroelasticity: they

often use both micro and macro variations and thus obtain an average of the micro- and macroelasticity.
25For example, the classic study by Katz and Meyer [1990] finds a microelasticity with respect to UI duration of 0.43

(Table 4, p. 66). Landais [2012], using a more compelling regression kink design on the same data finds an elasticity

around 0.35 (Table 4, column (1)). The recent studies by Rothstein [2011] and Farber and Valletta [2013] find smaller

microelasticities during the Great Recession than these previous studies, with εm
D = 0.1. That could be partly explained

by noise in the Current Population Survey data relative to the superior administrative data used by Katz and Meyer

[1990] and Landais [2012].
26They note that (p. 14) “We find that the effect of permanently increase the benefits from 26 to 99 weeks is quite

sizable: the effect on unemployment is 110%, meaning that such a permanent increase would increase the long-run

average unemployment rate from 5 to 10.5%.” Therefore elasticity of unemployment with respect to benefit duration is

ln(10.5/5)/ ln(99/26) = 0.55.

34



The treatment is to offer higher or longer UI benefits. The elasticity wedge can be estimated by

comparing the unemployment durations of non-treated jobseekers in non-treated areas to that of

non-treated jobseekers in treated areas. We discuss two recent studies that estimate this wedge.

Lalive, Landais and Zweimüller [2013] use a natural experiment that offers the desired design:

the Regional Extended Benefit Program (REBP) implemented in Austria in 1988–1993. The treat-

ment was an increase in benefit duration from 52 to 209 weeks for eligible unemployed workers in

a subset of regions. Their estimates suggest a positive elasticity wedge 1− εM/εm = 0.3 > 0.

Marinescu [2014] offers another route to assess the sign and magnitude of the elasticity wedge by

directly estimating the effect of UI on tightness. She uses the same UI extensions as Hagedorn et al.

[2013] and very detailed information on vacancies and job applications from CareerBuilder.com, the

largest American online job board, to compute the effects of UI extensions on aggregate search effort

(e ·u) measured by job applications and on vacancy posting (o) at the state level. She finds a negative

effect of UI extensions on job applications but no effect of UI extensions on vacancy posting. Since

θ = o/(e · u), these results imply that UI extensions have a positive effect on tightness which is

consistent with a positive elasticity wedge 1− εM/εm > 0

These two studies capture both rat-race and job-creation effects. Several papers have tried to

estimate the magnitude of the rat-race effect. They find that an increase in the search effort of some

jobseekers, induced for example by job training programs, has a negative effect on the job-finding

probability of other jobseekers [Burgess and Profit, 2001; Crepon et al., 2013; Ferracci, Jolivet and

van den Berg, 2010; Gautier et al., 2012]. This findings are consistent with rat-race effects.

The best way to measure the job-creation effect is to look directly at whether a more generous UI

increases wages. At the macro level, Hagedorn et al. [2013] find significant effects of UI extensions

on wages, which is evidence of job-creation effect. At the micro level, a number of studies have

investigated whether more generous UI benefits affect the re-employment wage. Most studies find

no effect on wages or even slightly negative effects [Card, Chetty and Weber, 2007]. However, more

generous benefits induce longer unemployment durations that may have a negative effect on wages

if, for instance, the duration of unemployment spells affects the productivity of unemployed workers

or is interpreted by employers as a negative signal of productivity. It is difficult to disentangle this

negative effect from the positive effect of UI on wages through bargaining, which is the relevant

effect for our analysis. In German data, Schmieder, von Wachter and Bender [2013] attempt such a
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Figure 5: A measure of the state of the labor market over time

Notes: The time period is January 1990–February 2014. In panel (a) the unemployment rate ut (green line, right

scale) is the seasonally adjusted monthly unemployment rate constructed by the BLS from the CPS. The recruiter-

producer ratio τt (blue line, left scale) is constructed as τt = σ · rect/(lt − rect), where rect is the seasonally adjusted

monthly number of workers in the recruiting industry (NAICS 56131) computed by the BLS from CES data, lt is the

seasonally adjusted monthly number of workers in all private industries computed by the BLS from CES data, and

σ = 8.56 is a scaling factor ensuring that the recruiter-producer ratio in 1997 is 2.6% as in Villena Roldan [2010]. In

panel (b) the solid blue line is [η/(1−η)] · τt/ut with η = 0.7 as in Petrongolo and Pissarides [2001]. The dashed

red line is (∆v+ k(e))/(φ ·w)+R · (1+ ε f ). We set the replacement rate to R = 58%, consistent with the US system.

We set the discouraged-worker elasticity to ε f = 0.021, consistent with a microelasticity of εm = 0.3. Last, we set

(∆v+ k(e))/(φ ·w) = 0.54, consistent with the normalization that k(e) = 0 on average, the assumptions of log utility

and linear production function, and the calibration R = 58%.

decomposition by controlling for the duration of the unemployment spell and find a negative effect

of UI on wages through longer unemployment durations but zero effect through wage bargaining.

Lalive, Landais and Zweimüller [2013] use the same methodology and find a positive but small

effect of UI through wage bargaining in Austria. Therefore, there is no consensus on the magnitude

of the job-creation effect in the literature.

As substantial uncertainty remains about the sign of the elasticity wedge, we will be unable to

stand firmly in favor or against countercyclical UI. Below, we explore two approaches that will be

useful to quantify optimal UI once robust estimates of the elasticity wedge become available.
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6.3 Is the Labor Market Slack or Tight?

We use the efficiency term from Definition 3 to test empirically whether the labor market is tight or

slack. In the dynamic environment, the efficiency term is

∆v+ k(e)

w ·φ
+R ·

(

1+ ε f
)

−
η

1−η
·

τ(θt)

ut
,

where φ satisfies equation (15). This term determines the state of the labor market. For a given level

of UI, all the statistics except τ(θt)/ut are fairly stable. To illustrate our methodology, we assume

that (∆v+ k(e))/(φ ·w)+R · (1+ ε f ) remains constant over time at its average level and we only

measure τ(θt)/ut at high frequency. The results are presented in Figure 5.

We measure the efficiency term in US data. Here, we only sketch the overall measurement

strategy, highlight the measurement of the most interesting statistics, and list the values for the other

statistics. The Appendix contains all the details.

We set η = 0.7, in line with empirical evidence [Petrongolo and Pissarides, 2001]. We mea-

sure unemployment, ut , with the seasonally adjusted monthly unemployment rate constructed by the

Bureau of Labor Statistics (BLS) from the Current Population Survey (CPS). The average unem-

ployment rate over the December 2000–February 2014 period is 6.6%.

We measure the recruiter-producer ratio, τ(θt), from the number of employees in the recruiting

industry. More precisely, we construct τ(θt) = σ · rect/(lt − rect). The series rect is the seasonally

adjusted monthly number of workers in the recruiting industry computed by the BLS from Current

Employment Statistics (CES) data. The recruiting industry is the industry with North American

Industry Classification System (NAICS) code 56131. Its official name is “employment placement

agencies and executive search services”. It comprises firms primarily engaged in listing employment

vacancies and referring or placing applicants for employment, and firms providing executive search,

recruitment, and placement services. The series is available over the period January 1990–February

2014. This industry is composed of 279,800 workers on average. The series lt is the seasonally

adjusted monthly number of workers in all private industries computed by the BLS from CES data.

The workers employed in the recruiting industry are only a small share of all the workers devoted

to recruiting. Many workers in firms outside of the recruiting industry spend a lot of time and effort

to recruit workers for their own firm. To account for these workers and capture the total amount of
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labor devoted to recruiting in the economy, we scale up our measure based on the recruiting industry

by a factor σ = 8.56. This scaling factor ensures that the average recruiter-producer ratio in 1997

is 2.6%. We obtain this amount from a comprehensive source of information on recruiting: the

National Employer Survey (NES) conducted in 1997 by the Census Bureau. The survey gathered

employer data on employment practices, especially recruiting. In the 1997 survey, 4500 establish-

ments answered detailed questions about the methods used to recruit applicants. Villena Roldan

[2010] analyzes this survey and finds that firms spend 2.5% of their total labor cost in recruiting

activities. In other words, 2.5% of the workforce is devoted to recruiting, which implies a recruiter-

producer ratio of 0.025/(1−0.025) = 2.6%.27 Our measure of τ(θ) is valid as long as the share of

recruitment done through recruiting firms is stable over the business cycle.

Figure 5(a) displays τ(θt) on the left y-axis. The figure also depicts the unemployment rate

on the right y-axis. The recruiter-producer ratio is clearly procyclical. This result implies that the

number of recruiters move more than one-for-one with the number of producers in the labor market.

This result is consistent with the prediction of the matching model that τ(θ) is an increasing function

of θ . To our knowledge, this is the first time that such a result is established.

UI benefits replace between 50% and 70% of the pre-tax earnings of a worker [Pavoni and Vi-

olante, 2007]. Following Chetty [2008] we set the benefit rate to 50%. Since earnings are subject

to a 7.65% payroll tax, we set the average replacement rate to R = 0.5+ 0.0765 = 58%. Combin-

ing this replacement rate with the resource constraint yields an employed-unemployed consumption

ratio of ce/cu = 1.79. We assume a log utility of consumption, v(c) = ln(c), which implies a coef-

ficient of relative risk aversion ρ = 1, consistent with labor supply behavior [Chetty, 2006b].28 We

normalize the average search effort to e = 1 and the disutility of effort such that k(e = 1) = 0.29 The

term (∆v+ k(e))/(φ ·w) now only depends on R, ce/cu, and the average unemployment rate. With

R = 58%, ce/cu = 1.79, and u = 6.6%, we get (∆v+ k(e))/(φ ·w) = 0.54.

The last statistic to measure is the discouraged-worker elasticity, ε f . We do not have direct

evidence on ε f , but ε f is closely related to the microelasticity, εm, for which we have good estimates.

27In monetary terms in 1997, firms spent on average $4200 per recruited worker.
28This coefficient of relative risk aversion is maybe on the low side of available estimates, but using log utility

simplifies the measurement of the efficiency term. Naturally, the higher risk aversion, the more generous optimal UI.
29This normalization implies that on average, the costs of search while unemployed are of same magnitude as the

costs of work while employed (which are not modeled).
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Indeed, on average,

ε f =
u

1−u
· εm. (39)

Using (12) and the estimate εm
R = 0.5 from the literature, we get εm = 0.3. With εm = 0.3 and

u = 6.6%, we get ε f = 0.021. Since εm = 0.3, our calibration implies a strong response of search

effort to UI.30 Since ε f = 0.021, our calibration is also consistent with the evidence that the response

of search effort to the job-finding rate is very weak [Shimer, 2004].

Figure 5(b) displays (∆v+ k(e))/(φ ·w)+R · (1+ ε f ) in dashed line, and [(1−η)/η ] · τ(θ)/u

in solid line. As depicted on the figure, when [(1−η)/η ] ·τ(θ)/u is above (∆v+k(e))/(φ ·w)+R ·

(1+ ε f ), the market is tight, and when it is below, the market is slack. The market was tight in the

1997–2001 period, was efficient in the 2006–2008 period, and was slack otherwise. Unsurprisingly,

the labor market was the most slack in 2009 during the Great Recession.

6.4 A Reduced-Form Implementation to Evaluate the Current UI System

Our formula is useful to explore whether the current UI replacement rate should be increased or

decreased. The evaluation of current UI system requires reduced-form statistics but does not require

assumptions about the underlying model of the economy. The possibility to evaluate the current UI

system without making structural assumptions demonstrates the value expressing a formula in terms

of sufficient statistics. Of course, a limitation is that we can only assess whether the replacement

rate should be increased or decreased but not obtain the level of the optimal replacement rate.

The optimal UI formula in a dynamic environment is (38). Since the right-hand-side term of (38)

can be evaluated using current estimates, the formula can be used to assess the desirability of a small

reform around the current system. If the current replacement rate is less than the right-hand-side term

of (38), increasing UI increases welfare, and conversely if the current replacement rate is more than

the right-hand-side term, decreasing UI increases welfare.

The statistics in the Baily-Chetty term, microelasticity εm and coefficient of risk aversion, are

well measured and are commonly used to estimate the Baily-Chetty level of UI [for example, Gruber,

1997]. With log utility, u= 6.6%, and εm = 0.3, the current replacement rate R= 58% approximately

30We show in the Appendix that εm is l times the elasticity of search effort with respect to ∆v.
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satisfies the Baily-Chetty formula.31 Since the current replacement rate is approximately at the

Baily-Chetty level, the sign of the correction term determines whether the current replacement rate

is above or below the right-hand-side term of (38), and thus whether the current replacement rate

should be increased or decreased.

To illustrate the method, assume that the elasticity wedge is estimated to be positive. Our mea-

sure of the efficiency term in Figure 5 immediately indicates how to adjust the current replacement

rate, following the argument in Table 1. When the efficiency term is positive and the labor market

is slack, the current replacement rate should be increased. When the efficiency term is negative and

the labor market is tight, the current replacement rate should be decreased.

6.5 A Structural Implementation to Quantify Optimal UI over the Cycle

Our formula is useful to quantify the optimal UI replacement rate over the business cycle. We

simulate a dynamic and calibrated version of the matching models of Section 5 and use the formula

to determine the optimal replacement rate at the different stages of the business cycle. Compared to

the reduced-form implementation of the formula, this structural implementation has the advantage

of providing the level of the optimal replacement rate over the business cycle but the disadvantage

of relying on functional-form assumptions.

The elasticity wedge and the efficiency term, which are the two critical statistics determining the

cyclicality of optimal UI, are outcomes of the simulations. This does not mean that the empirical es-

timates of the elasticity wedge and efficiency term provided above are irrelevant; these estimates are

fundamental to conduct relevant simulations. The sign of the elasticity wedge estimated in empirical

work allows researchers to choose the right model of the labor market: a negative wedge advocates

for using the standard model whereas a positive wedge advocates for using the job-rationing or

aggregate-demand model. Here we simulate all the models because empirical evidence on the elas-

ticity wedge is inconclusive. The estimated magnitude of the elasticity wedge allows researchers to

calibrate their model appropriately: here, we calibrate the production-function parameter, α , in the

job-rationing model and the wage-rigidity parameter, ζ , in the aggregate-demand model to match

31With log utility the Baily-Chetty formula, given by (22), can be written R/(1−R) = (1− u) ·∆v(R)/εm where

∆v(R) = ln(ce/cu) = ln([1+α · (1−R) ·u/(1−u)]/ [1−α · (1−R)]). The Appendix derives the expression of ce/cu

as a function of R, u, and the production-function parameter, α . Setting εm = 0.3 and u = 6.6% and solving the Baily-

Chetty formula for R, we obtain R = 55% (with α = 2/3) or R = 61% (with α = 1).
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the positive estimates of the elasticity wedge in the literature. Last, the fluctuations of the efficiency

term allow researchers to choose the right shock to generate business cycles. The evidence in Fig-

ure 5 advocates for using shocks that generate inefficient fluctuations in unemployment. Hence, we

select shocks generating inefficient business cycles.

We represent the business cycle as a succession of steady states with different values for the

bargaining power, technology, or money supply. Formally, the simulations provide a comparative

steady-state analysis. This analysis provides a good approximation to a dynamic simulation be-

cause labor market matching models reach their steady state quickly.32 For each model, we compute

a collection of steady states spanning all the stages of the business cycle, from slumps with high

unemployment to booms with low unemployment. For each model, we perform two types of simu-

lations. We first simulate a collection of steady states in which the replacement rate remains constant

at its average value of 58%. We then simulate steady states for the same values of the underlying

parameter but with the optimal replacement rate, given by (38).

Computing a steady state is straightforward. For a given replacement rate, we find the utility

gain from search, ∆v, and given ∆v, we determine n, l, θ , and e by solving a system of 4 equations

and 4 unknowns. Furthermore, we have analytical expressions for all the elasticities. Hence, we

can compute all the relevant elasticities once we have solved for the steady state, and we can use

them to evaluate the optimal UI formula at the given replacement rate. To determine the optimal

replacement rate, we compute steady states associated with a collection of replacement rates; the

optimal replacement rate is the only one for which the optimal UI formula holds.

We calibrate all the models to US data, as summarized in Table 3. Here, we only sketch the

calibration; some details are provided in Section 6.3, and all the other details are discussed in the

Appendix. We begin with the parameters common to all the models. We use a log utility, v(c) =

ln(c). We use a Cobb-Douglas matching function m(e ·u,o) = ωm ·(e ·u)η ·o1−η with η = 0.7. Over

the December 2000–February 2014 period, the average job-destruction rate is s = 3.5%, average

unemployment rate is u = 6.6%, average tightness is θ = 0.37, and average effort is normalized to

32Shimer [2005] and Pissarides [2009] argue that in a standard matching model, the steady-state equilibrium with

technology a approximates well the equilibrium in a stochastic environment when the realization of technology is a.

They have two reasons. First, after a shock the labor market rapidly converges to a situation where inflows to and

outflows from employment are balanced because rates of inflow to and outflow from unemployment are large [Hall,

2005b]. Second, the underlying source of the business cycle (say, technology) is usually very persistent. Michaillat

[2012] validates this approximation with numerical simulations (see Appendix A5 in Michaillat [2012]).
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e = 1. Matching these values requires ωm = 0.67. We calibrate the recruiting cost r to match the

average recruiter-producer ratio of τ(θ) = 2.2% over the December 2000–February 2014 period. We

set r = 0.82. We use a disutility of effort k(e) = ωk · e
κ+1/(κ +1)−ωk/(κ +1). We set κ = 3.11

to match the microelasticity of εm = 0.3. When the production function is linear, ∆v = 0.58 so

ωk = 0.54. When the production function is concave with α = 0.76, ∆v = 0.41 so ωk = 0.38. We

discuss the calibration of the remaining, model-specific parameters when we simulate that model.

The Standard Model. Figure 6 displays the results of the simulations of the standard model. Each

steady state is indexed by the workers’ bargaining power, β . The average value of the bargaining

power, which yields an unemployment rate of 6.6% for a replacement rate of 58%, is β = 0.65.

For the entire simulation, β spans the interval [0.25,0.95]. The steady states with high β have high

wages and therefore high unemployment: they represent slumps. Conversely, the steady states with

low β have low wages and low unemployment: they represent booms. As showed in Figure 6(a),

unemployment falls from 12.6% to 4.0% when β falls from 0.95 to 0.25 and UI remains constant.

It is not the unemployment rate but the efficiency term that matters for optimal UI. This term is

presented in Figure 6(b). In a slump (high β ), it is positive and the labor market is slack. The labor

market is efficient for β = 0.55 and an unemployment rate of 5.9%. In booms (low β ), it is negative

and the labor market is tight.

The efficiency term is combined with the elasticity wedge to determine the departure of optimal

UI from the Baily-Chetty level. In the dynamic environment without discounting, the wedge is

1−
εM

εm
=−

(1−η) · (1−u)

(1−η) · (1−u)+η
·

1+ ε f

εm
·

∆v

∆v+ k(e)
.

This expression is an extension of (24) to the dynamic environment without discounting.33 Fig-

ure 6(c) displays the elasticity wedge: it is negative and broadly constant around its average value of

−0.97. The wedge is larger in absolute value than the estimate of 1−εM/εm = 1−0.55/0.4=−0.38

implied by Hagedorn et al. [2013]. Since the wedge is negative, the optimal replacement rate should

be above the Baily-Chetty level in booms and below it in slumps.

33To obtain it, we establish that the wage obtained by sharing surplus is w = 1− (1−β ) ·u · (∆v+ k(e))/β . Plugging

the wage into the condition (2), we obtain the following equilibrium condition: τ(θ)/(1+ τ(θ)) = (1−β ) · u · (∆v+
k(e))/β . We differentiate this condition with respect to ∆v to obtain the effect of UI on tightness: (∆v/θ) · (dθ/d∆v) =
[1/(η +(1−η) · l)] · [∆v/(∆v+ k(e))]. Combining the effect of UI on tightness with (36) yields the elasticity wedge.
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Table 3: Parameter values in the simulations of the matching models

Parameter Value Source

A. Average values

u unemployment rate 6.6% CPS, 2000–2014

θ labor market tightness 0.37 JOLTS and CPS, 2000–2014

τ(θ) recruiter-producer ratio 2.2% Villena Roldan [2010] and CES, 2000–2014

εm microelasticity 0.3 literature

e search effort 1 normalization

R replacement rate 58% Chetty [2008]

B. Common parameters

η unemployment-elasticity of matching 0.7 Petrongolo and Pissarides [2001]

ρ relative risk aversion 1 Chetty [2006b]

s monthly job-destruction rate 3.5% JOLTS, 2000–2014

ωm matching efficacy 0.67 matches average values

r recruiting cost 0.82 matches average values

κ convexity of disutility of search 3.11 matches average values

C. Parameters of the standard model

ωk level of disutility of search 0.54 matches average values

D. Parameters of the rigid-wage model

ωk level of disutility of search 0.54 matches average values

ω level of real wage 0.98 matches average values for a = 1

γ technology-elasticity of real wage 0.7 Haefke, Sonntag and van Rens [2008]

E. Parameters of the job-rationing model

α marginal returns to labor 0.76 matches 1− εM/εm = 0.3

ωk level of disutility of search 0.38 matches average values

ω level of real wage 0.76 matches average values for a = 1

γ technology-elasticity of real wage 0.7 Haefke, Sonntag and van Rens [2008]

F. Parameters of the aggregate-demand model

ωk level of disutility of search 0.54 matches average values

µ level of nominal wage 1.00 matches average values for M = 1

ζ price-elasticity of nominal wage 0.76 matches 1− εM/εm = 0.3
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The analysis so far suggests that optimal UI should be rather high in booms and rather low in

slumps. Figure 6(c) quantifies this statement. It shows that the optimal replacement rate is sharply

procyclical: it increases from 45% in a slump (β = 0.95) to 75% in a boom (β = 0.25). In these

simulations our theoretical characterization of optimal UI relative to the Baily-Chetty level in tight

and slack markets translates into a correlation between the optimal replacement rate and the param-

eter underlying business cycles, which is the usual notion of cyclicality in macroeconomics. This

will generally be true when the Baily-Chetty rate is constant over the business cycle and business

cycles are inefficient—such that the labor market is slack in slumps and tight in booms.

Finally, the unemployment rate responds to the adjustment of the replacement rate from its orig-

inal level to its optimal level. In slumps, the optimal replacement rate is below its original level so

the unemployment rate falls below its original level as well. For instance, at β = 0.95 the unemploy-

ment rate falls by 2.2 percentage point from 12.6% to 10.4%. In booms, the optimal replacement

rate is above its original level so the unemployment rate rises above its original level. For instance,

at β = 0.25 the unemployment rate rises by 2.3 percentage point from 4.0% to 6.3%. On the other

hand, the elasticity wedge does not seem sensitive to the replacement rate.

In general, the source of fluctuations is critical to determine the cyclicality of optimal UI. If the

business cycle is driven by changes in workers’ bargaining power, as in our paper and in Jung and

Kuester [2014], business cycles involve systematic departure from efficiency. Indeed, our numeri-

cal results are consistent with the findings in Jung and Kuester [2014] that UI should be lower in

slumps caused by high bargaining power and higher in booms caused by low bargaining power.34

However, if the business cycle is driven by changes in technology, as in Mitman and Rabinovich

[2011], business cycles may not involve systematic departures from efficiency and may not lead to

systematic deviations of optimal UI from Baily-Chetty. It is therefore hard to link our results to

those of Mitman and Rabinovich [2011].

The Rigid-Wage Model. There remain two parameters to calibrate: the level of the real wage, ω ,

and the elasticity of the real wage with respect to technology, γ . We normalize average technology

to a = 1 and τ(θ) = 2.2% on average so the steady-state relationship 1 = ω ·aγ−1 · (1+τ(θ)) yields

34Jung and Kuester [2014] also find that when UI is combined with other policies such as vacancy subsidies and

layoff taxes, UI should remain broadly constant over the business cycle. These results are also consistent with our

theory. Essentially, vacancy subsidies and layoff taxes maintain the labor market at efficiency and optimal UI is always

at the Baily-Chetty level, which is broadly acyclical, as showed in Figure 7.
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ω = 0.98. We calibrate γ from microeconometric estimates of the elasticity for wages in newly

created jobs—the elasticity that matters for job creation [Pissarides, 2009]. In panel data following

production and supervisory workers from 1984 to 2006, Haefke, Sonntag and van Rens [2008] find

that the elasticity of new hires’ earnings with respect to productivity is 0.7.35 Hence, we set γ = 0.7.

Figure 7 displays the results of the simulations. Each steady state is indexed by technology,

a ∈ [0.95,1.10]. Because of wage rigidity, the steady states with low a have a high wage-technology

ratio and therefore high unemployment: they represent slumps. Conversely, the steady states with

high a have a low wage-technology ratio and low unemployment: they represent booms. As showed

in Figure 7(a), unemployment falls from 10.8% to 4.7% when a increases from 0.95 to 1.10 and UI

remains constant. This numerical results implies that even a modest amount of wage rigidity, in line

with the empirical findings of Haefke, Sonntag and van Rens [2008], generates realistic fluctuations

in unemployment. Indeed, the elasticity of unemployment with respect to technology implied by the

simulations is 6.3, larger than the elasticity of 4.2 observed in US data.36

The efficiency term is presented in Figure 7(b). In a slump (low a), it is positive and the labor

market is slack. At a = 1, it is slightly positive and the labor market is mildly slack. The labor

market is efficient for a = 1.02 and an unemployment rate of 5.9%. In booms (low a), it is negative

and the labor market is tight. Figure 7(c) displays the elasticity wedge, which is always zero. Since

the wedge is zero, UI has no effect on tightness and the optimal replacement rate is always at the

Baily-Chetty level. Figure 7(d) shows that the optimal replacement rate constant at 61%. This result

suggests that the replacement rate given by the Baily-Chetty formula is very stable over the business

cycle. It also suggests that the US replacement rate of 58% is close to the Baily-Chetty level.

The Job-Rationing Model. The key parameter here is the production-function parameter, α < 1.

This parameter determines the magnitude of the elasticity wedge and of the rat-race effect. We

calibrate α to match the estimate of the elasticity wedge provided by Lalive, Landais and Zweimüller

35See Table 6, Panel A, column 4 in Haefke, Sonntag and van Rens [2008].
36The elasticity is obtained by looking at a small change in technology around the average. When a = 1, u = 6.56%

and when a = 0.99, u = 6.97% so the elasticity is (1/6.56) · (6.97− 6.56)/(1− 0.99) = 6.3. Michaillat [2012] shows

that the elasticity of unemployment with respect to technology over the 1964–2009 period in the US is 4.2.
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Figure 6: Steady states under constant UI and optimal UI in the standard model
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Figure 7: Steady states under constant UI and optimal UI in the rigid-wage model
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Figure 8: Steady states under constant UI and optimal UI in the job-rationing model
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Figure 9: Steady states under constant UI and optimal UI in the aggregate-demand model
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[2013]: 1− εM/εm = 0.3. Extending (27) to the dynamic environment without discounting yields

1−
εM

εm
=

(

1+
η

1−η
·

α

1−α
·

1

1+ ε f
·

τ(θ)

u

)−1

.

We set 1− εM/εm = 0.3, η = 0.7, ε f = 0.021, τ(θ) = 2.2%, and u = 6.6% and obtain α = 0.76.

As in the rigid-wage model, we set γ = 0.7. We exploit the steady-state relationship α · nα−1 =

ω · aγ−1 · (1+ τ(θ)). We set a = 1, α = 0.76, τ(θ) = 2.2%, and n = (1− u)/(1+ τ(θ)) = 0.915

and get ω = 0.76.

Figure 8 displays the simulations of the job-rationing model. As in the rigid-wage model, steady

states are indexed by technology, a ∈ [0.91,1.10]. The steady states with low a represent slumps and

those with high a represent booms. As showed in Figure 8(a), unemployment falls from 12.3% to

4.6% when a increases from 0.91 to 1.10 and UI remains constant.

The efficiency term is presented in Figure 8(b). In a slump, it is positive and the labor market

is slack. The labor market is efficient for a = 1.02 and an unemployment rate of 6.0%. In booms,

it is negative and the labor market is tight. Figure 8(c) displays the elasticity wedge. The wedge is

positive, which implies that optimal UI should be below the Baily-Chetty level in booms and above

it in slumps. The wedge is also countercyclical, consistent with the results of Proposition 10. In an

average situation (a = 1), the wedge is 0.3. The average wedge matches exactly the estimate from

Lalive, Landais and Zweimüller [2013] due to our calibration of the production-function parameter,

α . From a slump (a = 0.91) to a boom (a = 1.10), the wedge falls from 0.81 to 0.11.

Figure 8(d) shows that the optimal replacement rate is sharply countercyclical: it falls from 76%

in a slump (a = 0.91) to 53% in a boom (a = 1.10). Thus, the theoretical characterization of optimal

UI relative to the Baily-Chetty level in tight and slack markets translates into a correlation between

the optimal replacement rate and the parameter underlying business cycles.

Finally, the unemployment rate responds to the adjustment of the replacement rate from its orig-

inal level to its optimal level. In slumps, the optimal replacement rate is higher than its original level

so the unemployment rate increases above its original level, but not by much. At a = 0.91 the un-

employment rate increases by 0.5 percentage point from 12.3% to 12.8%. UI has little influence on

unemployment in a slump because the macroelasticity is very low, as suggested by the high elasticity

wedge in slumps: for a = 0.91, εM = 0.06 whereas εm = 0.28. In booms, the optimal replacement
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rate is below its original level so the unemployment rate falls below its original level. At a = 1.10

the unemployment rate falls by 0.2 percentage point from 4.6% to 4.4%.

The Aggregate-Demand Model. The key parameter here is the wage-rigidity parameter, ζ < 1,

because it determines the magnitude of the elasticity wedge. We calibrate ζ to match the estimate

provided by Lalive, Landais and Zweimüller [2013], 1− εM/εm = 0.3. Extending (30) to the dy-

namic environment without discounting yields

1−
εM

εm
=

(

1+
η

1−η
·

ζ

1−ζ
·

1

1+ ε f
·

τ(θ)

u

)−1

.

As in the job-rationing model, we get ζ = 0.76. Using the steady-state relationship 1= µ ·(n/M)1−ζ ·

(1+ τ(θ)), the normalization M = 1, τ(θ) = 2.2%, ζ = 0.76, and n = 0.915, we get µ = 1.00.

Figure 9 displays the simulations of the aggregate-demand model. Each steady state is indexed

by a money supply, M ∈ [0.9,1.15]. The steady states with low M have a low price level and thus a

high real wage, because of nominal wage rigidity. These steady states therefore have high unemploy-

ment: they represent slumps. Conversely, the steady states with high M have a high price level, a low

real wage, and low unemployment: they represent booms. As showed in Figure 7(a), unemployment

falls from 11.5% to 4.4% when M increases from 0.95 to 1.15 and UI remains constant.

The results are almost identical to those in the job-rationing model, so we only discuss them

briefly. As showed in Figure 9(b), the labor market is slack in slumps (low M) and tight in booms

(high M). As showed in Figure 9(c), the elasticity wedge is positive and strongly countercyclical.

And as showed in Figure 9(d), the optimal replacement rate is sharply countercyclical: it falls from

75% in a slump (M = 0.9) to 57% in a boom (M = 1.15).

These results reinforce two points that we made in Section 5. First, diminishing marginal returns

to labor are not necessary to obtain a countercyclical optimal UI. Here, marginal returns to labor are

constant but optimal UI is sharply countercyclical. The necessary ingredients to obtain this result are

a downward-sloping labor demand and wages that do not respond much to UI. Second, technology

shocks are not necessary to obtain large unemployment fluctuations. Here, large fluctuations arise

from monetary shocks.

48



7 Conclusion

This paper studies the response of optimal UI to the state of the labor market. The paper shows that

optimal UI is the sum of a conventional Baily-Chetty term, which captures the trade-off between

insurance and job-search incentives, and a correction term, which is positive if UI brings equilibrium

labor market tightness closer to efficiency. Since tightness is inefficiently low in a slack labor market

and inefficiently high in a tight labor market, the response of optimal UI to the state of the labor

market depends on the effect of UI on tightness. The paper develops an empirical criterion for

determining whether UI raises or lowers tightness: we show that UI raises tightness if and only if

the macroelasticity of unemployment with respect to UI is smaller than its microelasticity.

The question that is especially relevant for policy is whether UI should be increased or decreased

when the unemployment rate rises. Our analysis indicates how to answer this question. The first

step is to verify that the labor market indeed becomes slack as unemployment rises. Section 6.3

proposes a methodology to do this. The second step is to compare the macroelasticity to the mi-

croelasticity. The studies by Card and Levine [2000], Lalive, Landais and Zweimüller [2013], and

Marinescu [2014] find that the macroelasticity is smaller than the microelasticity. But Hagedorn

et al. [2013] find the opposite. Thus, further empirical research comparing the microelasticity to the

macroelasticity is required before we can take a stand on the cyclicality of optimal UI.

In principle, our methodology could be applied to the optimal design of other public policies

over the business cycle. We conjecture that a policy that maximizes welfare in an economy with

inefficient tightness obeys the same general rule as the one derived in this paper for UI. The optimal

policy is the sum of the optimal policy when the economy is efficient plus a correction term when

the economy is slack or tight. If a marginal increase of the policy increases tightness, the correction

is positive in a slack economy and negative in a tight economy. We conjecture that the methodology

could be applied to the provision of public good. In the model of Michaillat and Saez [2013], public

good provision stimulates aggregate demand and increases tightness. As a result, the government

should provide more public good than in the Samuelson [1954] rule when the economy is slack

and less when the economy is tight. We conjecture that the methodology could also be applied to

income taxation. In the model of Michaillat and Saez [2013], if high-income earners have a lower

propensity to consume than low-income earners, transfers from high-income earners to low-income

earners stimulate aggregate demand and increase tightness. As a result, the top income tax rate
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should be higher than in the Mirrlees [1971] optimal top income tax formula in a slack economy

and lower in a tight economy. This agenda in normative analysis could help bridge the gap between

the analysis of tax, social insurance, and public good policies in public economics and the analysis

of business-cycle stabilization policies in macroeconomics.37
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Appendix: Details of the Calibration

We provide details of the calibration in Section 6. All the derivations apply to the steady state of the

dynamic model without discounting.

Measuring the Employed-Unemployed Consumption Ratio, ce/cu. The production function is

y(n) = nα so the firm’s optimality condition, given by (2), implies that y(n) = w · l/α . We can

therefore rewrite the government’s budget constraint, given by (4), as ce − u · (ce − cu) = w · (1−
u)/α , where u = 1− l is the unemployment rate. We divide this budget constraint by ∆c = ce − cu.

We get (ce/cu)/(ce/cu −1) = u+(1−u)/ [(1−R) ·α]. After some algebra we obtain

ce

cu
=

1+α · (1−R) ·u/(1−u)

1−α · (1−R)
, (A1)

On average, u = 6.6% and R = 58%. With a linear production function, α = 1, ce/cu = 1.79. Since

we assume log utility, ∆v = ln(ce/cu) = 0.58. With a concave production function and α = 0.76,

ce/cu = 1.50 and ∆v = ln(ce/cu) = 0.41.

Measuring (∆v+k(e))/(φ ·w). With log utility and e= 1, (∆v+k(e))/(φ ·w)= (1−R) ·ln(ce/cu) ·
(u+(1−u) ·ce/cu)/(ce/cu−1). With R= 58% and ce/cu = 1.79, we get (∆v+k(e))/(φ ·w) = 0.54.

Measuring the Microelasticity, εm. On average, R = 58%. With a linear production function,

ce/cu = 1.79 and ∆v/(v′(cu) ·R ·w) = (1−R) · ln(ce/cu)/ [R · (ce/cu −1)] = 0.54. Using (12) and

the estimate εm
R = 0.5 from the literature, we get εm = 0.27. At the other hand of the spectrum, with

a concave production function and α = 2/3, ce/cu = 1.42, ∆v/(v′(cu) ·R ·w) = 0.61, and εm = 0.31.

The differences between the two values of εm are negligible. We choose a middle value of εm = 0.3.
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Linking Discouraged-Worker Elasticity, ε f , to εm. Let εe
∆
≡ (∆v/e) ·(∂es/∂∆v), κ ≡ (e/k′(e)) ·

k′′(e), and L(x) ≡ x/(s+ x). The elasticity of L(x) is 1−L(x). The effort supply es( f ,∆v) satisfies

k′(es) = (L(es · f )/es) · (∆v+ k(es)). Differentiating this condition with respect to ∆v yields

κ · εe
∆
= (1− l) · εe

∆
− εe

∆
+

∆v

∆v+ k(e)
+ εe

∆
·

e · k′(e)

∆v+ k(e)
.

In equilibrium, (e · k′(e))/(∆v+ k(e)) = l. Therefore, εe
∆
= (1/κ) ·∆v/(∆v+ k(e)). Since the labor

supply satisfies ls( f ,∆v) = L(es( f ,∆v) · f ), the elasticity of ls(θ ,∆v) with respect to ∆v is (1− l) ·εe
∆

.

By definition, εm is l/(1− l) times the elasticity of ls(θ ,∆v) with respect to ∆v. Thus,

εm =
1−u

κ
·

∆v

∆v+ k(e)
. (A2)

Similarly, differentiating the effort supply condition with respect to f yields

κ · ε f = (1− l) · (ε f +1)− ε f + ε f ·
e · k′(e)

∆v+ k(e)
,

which implies that

ε f =
u

κ
. (A3)

Combining (A2) and (A3), we find (39) when e = 1 and thus k(e) = 0.

Calibrating Labor Market Parameters. We focus on the December 2000–February 2014 period.

This is the longest period for which the Job Openings and Labor Turnover Survey (JOLTS) is avail-

able. We use seasonally adjusted monthly series. We set the job-destruction rate at s = 3.5%, which

is the average of the total separation rate in all nonfarm industries constructed by the BLS from

JOLTS. We use a Cobb-Douglas matching function m(e · u,o) = ωm · (e · u)η · o1−η , with η = 0.7.

To calibrate ωm, we exploit the steady-state relationship u · e · f (θ) = s · (1 − u), which implies

ωm = s · θ η−1 · (1− u)/(u · e). On average, u = 6.6% and e = 1. We measure average tightness

as the ratio of the average vacancy level in all nonfarm industries constructed by the BLS from the

JOLTS to the average unemployment level constructed by the BLS from the CPS (average effort is

normalized to 1). We obtain θ = 0.37. Using these averages, we get ωm = 0.67.

Calibrating the Disutility of Search. We use a disutility of search k(e) = ωk · eκ+1/(κ + 1)−
ωk/(κ +1). To calibrate κ , we use (A2). On average, u = 6.6%, e = 1, and εm=0.3 so κ = 3.11. To

calibrate ωk, we exploit the steady-state relationship k′(e) = [(1−u)/e] · (∆v+ k(e)). This implies

ωk = (1− u) ·∆v when e = 1. With a linear production function, ∆v = 0.58 so ωk = 0.54. With a

concave production function and α = 0.76, ∆v = 0.41 so ωk = 0.38.

Calibrating the Recruiting Cost, r. To calibrate r we exploit the steady-state relationship τ(θ) =
r · s/ [om ·θ−η − r · s], which implies r = om ·θ−η · τ(θ)/ [s · (1+ τ(θ))]. Taking the average of the

recruiter-producer ratio series constructed in Section 6, we find τ(θ) = 2.2%. Using ωm = 0.67,

s = 3.5%, θ = 0.37, and τ(θ) = 2.2%, we obtain r = 0.82.
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