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1 Introduction

The level of liquidity in the aggregate financial market is closely connected to the amount of

arbitrage capital available. During normal times, institutional investors such as investment

banks and hedge funds have abundant capital, which they can deploy to supply liquidity.

As a result, assets are traded at prices closer to their fundamental values. Price deviations

from the fundamental values will be largely eliminated by arbitrage forces. During market

crises, however, capital becomes scarce and/or willingness to deploy capital diminishes. The

illiquidity in the overall market spikes up. The lack of sufficient arbitrage capital limits the

force of arbitrage and assets can be traded at prices significantly away from their fundamental

values.1 Thus, temporary price deviations, or “noise” in prices, being a key symptom of

shortage in arbitrage capital, contains important information about the amount of liquidity

in the aggregate market. In this paper, we analyze the “noise” in the price of US Treasuries

and examine its informativeness as a measure of overall market illiquidity.

Our basic premise is that the abundance of arbitrage capital during normal times helps

smooth out the Treasury yield curve and keep the average dispersion low. This is partic-

ularly true given the presence of many proprietary trading desks at investment banks and

fixed-income hedge funds that are dedicated to relative value trading with the intention to

arbitrage across various habitats on the yield curve. During liquidity crises, however, the lack

of arbitrage capital forces the prop desks and hedge funds to limit or even abandon their rel-

ative value trades, leaving the yields to move more freely in their own habitats and resulting

in more noise in the yield curve. We therefore argue that these abnormal noises in Treasury

prices are a symptom of a market in severe shortage of arbitrage capital. More importantly,

it is not a symptom specific only to the Treasury market, but more broadly for the financial

market overall.

We focus on the U.S. Treasury market for several reasons. First, it is by far the most

important asset market in the world. Investors of many types come to the Treasury market

to trade and yields on these securities are widely used as benchmarks for pricing. As such,

trading in the Treasury market contains information about liquidity needs for the broader

financial market. Second, the U.S. Treasury market is one of the safest markets in the world,

essentially free of credit risk. More importantly, the fundamental values of Treasuries are

determined by a small number of factors, which can be easily captured empirically. Thus, we

can have a more reliable measure of price deviations. This aspect of the market is important

1There is an extensive literature on how the amount of arbitrage capital in a specific market affects the

effectiveness of arbitrage forces, or “limits of arbitrage,” and possible price deviations. See, for example,

Merton (1987), Leland and Rubinstein (1988), Shleifer and Vishny (1997), Gromb and Vayanos (2002) and

Brunnermeier and Pedersen (2008).
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for our purpose because we would like to keep the information content as “pure” as possible.

Other markets such as the corporate bond market, the equity market, or the index options

market might also be informative, but their information is “contaminated” by the presence of

other risk factors. Third, the Treasuries market is one of the most active and liquid markets.

A shortage of liquidity in this market provides a strong signal about liquidity in the overall

market.

Using CRSP Daily Treasury database, we construct our noise measure by first backing

out, day by day, a smooth zero-coupon yield curve. This yield curve is then used to price

all available bonds on that day. Associated with each bond is the deviation of its market

yield from the model yield. Aggregating the deviations across all bonds by calculating the

root mean squared error, we obtain our noise measure. This measure of noise is “noise”

only to the extent that in the fixed-income literature, deviations from a given pricing model

are often referred to as noises. In fact, our results show that these measures are rather

informative about the liquidity condition of the overall market. During normal times, the

noise is kept at an average level around 3 basis points, which is comparable to the average

bid/ask yield spread of 2 basis points. In other words, the arbitrage capital on the yield curve

is effective in keeping the deviations within a range that is unattractive given the transaction

cost. During crises, however, our noise measure spikes up much more prominently than the

bid/ask spread, implying a high degree of misalignment in bond yields that would have been

attractive for relative value arbitrage during normal times and are in fact attractive given the

contemporaneous transaction cost. These include the 1987 crash, when the noise was close to

14 basis points; the aftermath of the LTCM crisis, when the noise peaked at 7 basis points;

the first trading day after the 9/11 terrorist attack, when the noise was at 14.5; the sale of

Bear Stearns to JPMorgan, when the noise was close to 8 basis points; and the aftermath

of Lehman default, when the noise was above 10 basis points for a sustained period of time.

Given its sample standard deviation of 1.6 basis points, these are 4 to 9 standard deviations

moves.

To further understand the information content captured by the noise measure, we examine

its relation to other measures of liquidity. One popular measure of liquidity for the Treasury

market is the premium enjoyed by on-the-run bonds. Since our noise measure is a daily

aggregate of cross-sectional pricing errors, the on-the-run premium is in fact a component

of our measure. We find a positive relation between the two, but our noise measure is by

far more informative about the overall liquidity condition in the market. In particular, our

noise measure spikes up much more prominently than the on-the-run premium during crises.

This accentuates the important fact that the information captured by our noise measure is

a collective information over the entire yield curve. In other words, our noise measure is

sensitive to the commonality of pricing errors, and if such commonality heightens during
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crises, then it will be captured by our noise measure, but not by a measure that focuses

only on a couple of isolated points on the yield curve. Indeed, this is how noise becomes

information. Our results also show that factors known to be related to systematic liquidity

have a significant relation with our noise measure. This includes the RefCorp spread used as

a flight-to-liquidity premium by Longstaff (2004), the systematic liquidity factor in the US

equity market by Pastor and Stambaugh (2003), and the CBOE VIX index. By contrast, term

structure variables such as the short- and long-term interest rates and interest-rate volatility

do not have strong explanatory power for the time-variation for our noise measure. In other

words, the time-variation in our noise measure is not driven by poor yield curve fitting.

The fact that liquidity crises of varying origins and magnitudes can be captured by “noises”

measured from the US Treasury bond market reflects the transmission of different liquidity

crises through financial markets. Indeed, rather than being a measure specific only to the

Treasury market, our noise measure is a reflection of the overall market condition.2 Given

the potential importance of the aggregate liquidity risk, we further explore its asset pricing

implications, especially how it can help us to understand the behavior of asset returns. For

this purpose, instead of confining ourselves to standard test portfolios such as equity or/and

bond portfolios, we look for portfolios that are potentially sensitive to market-wide illiquidity

risks or crises. Specifically, we consider two sets of returns: hedge fund returns and currency

carry-trade returns, both are known to react substantially to market upheavals.

We use TASS hedge fund data from 1994 through 2009 to obtain hedge fund returns. Using

a two-factor model that includes monthly changes in noise as one factor and returns on the

stock market portfolio as the other, we find that the liquidity risk is indeed priced by hedge

fund returns.3 In particular, this liquidity risk premium is a main contributor to the superior

performance by hedge funds with very high exposures to liquidity risk. Moreover, such highly

exposed hedge funds have a higher death rate in 2008 than those hedge funds with minimal

exposures to liquidity risk. By contrast, we do not find such pricing implications using other

measures of liquidity such as RefCorp spread, on-the-run premiums, Pastor-Stambaugh equity

liquidity risk factor, and VIX.

Next, we construct six currency carry portfolios by sorting on the forward discount. The

main driver of the currency carry trade is the average superior performance of currencies

with high interest rate, and a typical trade is to be long on such currencies and fund the

trading with currencies with low interest rate. We find that the carry portfolio that contains

2More specifically, our measure is not a reflection of how constrained the market makers in the Treasury

market are. In fact, the bid and ask spreads of Treasury bond prices can be a better measure of such “local”

liquidity.

3Our results are robust if we add additional risk factors including default spread and the slope of term

structure.
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the “target” or “asset” currencies have a negative beta on our noise measure, implying a

worsening portfolio performance during liquidity crises. By contrast, the carry portfolio that

contains the “funding” currencies have a positive beta on our noise measure, implying relative

good performance during crises. The superior average performance of the “asset” currencies

can then be explained by a non-trivial amount of liquidity risk premium. Indeed, we test this

idea formally and find a significant risk premium for our noise measure using currency carry

portfolios.

Our paper contributes to the existing literature in several dimensions. It explores the

empirical implications of the theoretical theme on the “limits of arbitrage,” which emphasizes

the link between shortage of capital, market liquidity and price deviations (see, for example,

Merton (1987), Leland and Rubinstein (1988), Shleifer and Vishny (1997), Gromb and Vayanos

(2002) and Brunnermeier and Pedersen (2008)). Recent empirical work, such as Coval and

Stafford (2007) on equity fire sales by mutual funds and Mitchell, Pedersen, and Pulvino

(2007) and Getmansky, Lo, and Makarov (2004) on convertible bond arbitrage by hedge funds,

provides additional empirical evidence on this link. While these papers focus mostly on the

connection between arbitrage capital and liquidity in specific markets, our paper considers

the liquidity in the overall market. Our liquidity measure is able to capture episodes of

liquidity crises of varying origins and is not limited to a specific market. As such, the lack and

abundance of arbitrage capital we would like to attribute our measure to are not confined to

market makers of certain markets, or hedge funds of certain styles.

A growing body of work explores asset pricing implications of liquidity risk. This includes,

for example, Pastor and Stambaugh (2003) and Acharya and Pedersen (2005) on equities and

Bao, Pan, and Wang (2010) on corporate bonds. These studies follow a common approach,

which is to focus on a specific market to both construct and test the liquidity risk measure.

We instead focus on the liquidity risk of the whole market. By using the liquidity condition

of the US Treasury market, one of the most liquid markets in the world, we are capturing the

liquidity risk of the overall market. In addition, we use test portfolios from other markets,

namely hedge fund and currency carry trade strategies, to confirm the importance of this

aggregate liquidity risk factor in asset pricing.

Our results also complement studies specifically on hedge fund and carry trade returns.

For example, Sadka (2010) extracts a liquidity risk factor from the equity market and finds

it to be important in explaining hedge fund returns. His measure of liquidity risk, similar to

that of Pastor and Stambaugh (2003), is based on price impact in the equity market, thus is

equity specific, while ours is more market-wide. Moreover, we do not find a significant risk

premium for the Pastor-Stambaugh equity liquidity risk factor using hedge fund returns as

test portfolios.4 Since Fama (1984), the source of currency carry trade returns has been an

4Our paper is also related to the growing literature in hedge fund studies that connects hedge fund activities
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object of investigation by many studies, ranging from using consumption-based asset pricing

models (e.g., Backus, Gregory, and Telmer (1993) and Verdelhan (2010)), reduced-form term

structure models (e.g., Backus, Foresi, and Telmer (2001)), to, more recently, combining carry

trade returns with currency options to incorporate tail risks (e.g., Jurek (2009) and Burn-

side, Eichenbaum, Kleshchelski, and Rebelo (2010)). Our analysis shows that exposures to

market-wide liquidity crises and the associated liquidity risk premium might be an important

component of the risk and return tradeoff associated with this trading strategy.

The paper proceeds as follows. Section 2 describes the construction of our noise measure

from Treasury prices. In Section 3, we report the time series properties of the noise measure,

in particular, how it varies through various crises and correlates with other measures of market

liquidity. In Section 4, we provide the cross-sectional tests on our noise measure as a liquidity

risk factor using returns on hedge funds and currency carry trades, respectively. Section 5

concludes.

2 Constructing the Noise Measure

2.1 Treasury Data

We use the CRSP Daily Treasury database to construct our noise measure. The main variable

we use from the dataset is the daily cross-sections of end-of-day bond prices from 1987 through

2009. The dataset itself starts from January 1962, but we choose to start the sample from 1987

due considerations over both data quality and the sample period of interest. In particular,

we will test our noise measure using hedge fund data, which is available only from 1990. Our

sample consists of Treasury bills, notes and bonds that are noncallable, non-flower and with

no special tax treatment. Observations with obvious pricing errors such as negative prices

or yields are deleted from the sample. We also dropped Treasury securities with remaining

maturities less than 1 month because of the potential liquidity problems. We also drop bonds

with maturity longer than 10 years to base our noise measure on bonds with maturity between

1 and 10 years. For bonds with maturity long than 10 years, we have fewer observations, the

fitted yield curve becomes less reliable and their prices are less subject to arbitrage forces.

Table 1 provides details of our bond sample. On average, we have 145 bonds and bills every

day to fit the yield curve and 92 bonds with maturity between 1 and 10 years to construct

the noise measure. The cross-section varies over time, with a noticeable dip around late 1990s

and early 2000s. This coincided with record surpluses of US government and the reduction of

gross issuance of Treasury notes and bonds, which fell by 54 percent from 1996 to 2000. Also

to market liquidity and market crises, such as Cao, Chen, Liang, and Lo (2010) and Billio, Getmansky, and

Pelizzon (2010).
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reported are the key characteristics of the bonds used in constructing the noise measure. For

example, the average maturity of the bonds is 3.65 years and the average age of the bonds

is 2.65 years. Over time, both variables remain stable, alleviating the concern that time-

series variations in bond characteristics such as maturity and age might cause the time-series

variation in our noise measure. Also reported in Table 1 is the average spread between bid

and ask yields of the bonds used in our noise construction. The average bid/ask spread is 2.17

basis points, with a decreasing time trend that is caused by both improved liquidity in the

market and improved data quality. In particular, after October 16, 1996, the source for price

quotations of the CRSP Treasury database changed to GovPX, which receives its data from

5 inter-dealer bond brokers, who broker transactions among 37 primary dealers. For all of

the bond characteristics reported in Table 1, the cross-sectional mean and median are close,

indicating that the cross-section of bonds is unlikely to be dominated by a few bonds with

extremely different characteristics.

2.2 Curve Fitting

Various estimation methods can be employed to back out zero-coupon yield curves from

coupon-bearing Treasury securities. These approaches can be broadly classified into spline-

based and function-based models. Spline-based methods rely on piecewise polynomial func-

tions that are smoothly joined at selected knots to approximate the yield curve.5 Function-

based models, on the other hand, use a single parsimonious parametric function to describe

the entire yield curve. Popular models in this class include Nelson and Siegel (1987) and

Svensson (1994). Compared with function-based models, spline methods usually can fit the

data well, but tend to over fit and often generate oscillating yield curves. This is not very

attractive for our purpose given that the reason for us to employ a curve-fitting model is not to

over fit the yields, but to pass a smooth curve through bond yields of varying maturities. We

thus favor the function-based models, and choose the Svensson model because of its improved

flexibility over the Nelson-Siegel model.

The Svensson model assumes the following functional form for the instantaneous forward

rate f :

f (m, b) = β0 + β1 exp

(
−m

τ1

)
+ β2

m

τ1
exp

(
−m

τ1

)
+ β3

m

τ2
exp

(
−m

τ2

)
, (1)

where m denotes the time to maturity, and b = (β1 β2 β3 τ1 τ2) are model parameters to be

estimated. Given that f → β0 as m → ∞ and f → β0 + β1 as m → 0, it follows that β0

5This includes McCulloch (1975), Nelson and Siegel (1987), and Svensson (1994). Fisher, Nychka, and

Zervos (1995) extend the traditional cubic spline model to smoothed splines with a roughness penalty function

that determines the trade-off between the goodness-of-fit and the smoothness of the forward yield curve.
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represents the forward rate at infinitely long horizon, and β0 + β1 represents the forward rate

at maturity zero. In addition, (β2, τ1) and (β3, τ2) control the “humps” of the forward rate

curve, while β2 and β3 determine the magnitude and direction of the humps, and τ1 and τ2

affect the position of the humps. Finally, in order to model nominal interest rates, a proper

set of parameters must satisfy the conditions that β0 > 0, β0 + β1 > 0, τ1 > 0 and τ2 > 0.

Using the parameterized forward curve, the zero-coupon yield curve can be derived by,

s (m, b) =
1

m

∫ m

0

f (m, b) dm .

Using the zero-coupon yield curve, we can price any coupon-bearing bonds. Conversely, we

can use such bonds to back out the model parameters b. Specifically, we use market closing

prices, which are mid bid/ask quotes, of all Treasury bills and bonds in our sample with

maturity between one month and ten years to do the curve fitting. Let Nt be the number

of bonds and bills available on day t for curving fitting and let P i
t , i = 1, . . . , Nt be their

respective market observed prices. We choose the model parameters bt by minimizing the sum

of the squared deviations between the actual prices and the model-implied prices:

bt = argmax
b

Nt∑
i=1

[
P i(b)− P i

t

]
2 ,

where P i(b) is the model-implied price for bond i given model parameters b. On each day t,

the end product of the curve fitting is therefore the vector of model parameters bt.

2.3 Noise Measure

We next construct our noise measure using the zero-coupon curve backed out from the daily

cross-section of bonds and bills. For each date t, let bt be the vector of model parameters

backed out from the data. Suppose that, on date t, there are Nt Treasury bonds with maturity

between 1 and 10 years. For each of these Nt bonds, let y
i
t denote its market observed yield,

and let yi(bt) denote its model-implied yield. As a measure of dispersions in yields around

the fitted yield curve, we construct our noise measure by calculating the root mean squared

distance between the market yields and the model-implied yields:

Noiset =

√√√√ 1

Nt

Nt∑
i=1

[yit − yi(bt)]
2
. (2)

It should be mentioned that for curving fitting, we use qualified bonds and bills with maturity

between 1 month and 10 years, while in constructing the noise measure, we use only bonds with

maturity between one and ten years. While the short-maturity bonds and bills are informative

for the purpose of fitting the short end of the yield curve, we feel that their information content

8



might be limited with respect to the availability of arbitrage capital in the overall market.

This is because the short end of the yield curve is known to be noisier than other parts of

the yield curve. This aspect of noise is not what we are interested in. More over, the short

end is unlikely to be the object of arbitrage capital, which is the main motivation of our noise

measure. It should also be mentioned that we do not use bonds with maturity longer than 10

years in our construction. The longer maturity bonds might be useful to further capture the

effect of fixed-income relative value trades. But the supply of these bonds is not as stable,

and might introduce unnecessary time-series noise to our measure.6

To further illustrate the construction of our noise measure and the information content it is

supposed to capture, we plot in Figure 1 several examples of par-coupon yield curves and the

market-observed bond yields. The top left panel in Figure 1 plots three random days in 1994,

which represent normal days in terms of curve fitting and as can be seen, our curve fitting

method does a reasonable job. The other panels in Figure 1 focus on the days surrounding

three events including the 1987 stock market crash, the September 11, 2001 terrorist attack,

and the Lehman default in September 2008. For all of these events, we see significant increases

in our noise measure. More importantly, as shown in the cross-sectional plots, the sudden

increases were not the result of poor curve fitting on these event days. Instead, they were

caused by high levels of dispersion in bond yields. In fact, a closer examination of this

dispersion seems to indicate comovement in dispersion within various bond habitats.

3 Time-Series Properties

3.1 Noise as Information for Liquidity Crises

The daily time-series variation of our noise measure is plotted in Figure 2. The most interesting

aspect of this plot is the rich information content embedded in a variable that has been

traditionally treated as just noise or pricing errors. During normal times, the noise measure

fluctuates around its time-series average of 3.32 basis points with a standard deviation of 1.65

basis points, and it is highly persistent, with a daily autocorrelation of 94.82%. This level

of noise and its fluctuation is in fact comparable to the average spread between bid and ask

yields of 2 basis points for the same sample of bonds. In other words, the arbitrage capital on

the yield curve is effective in keeping the deviations within a range that is unattractive given

the transaction cost.

During crises, however, our noise measure spikes up much more prominently than the

bid/ask spread, implying a high degree of mis-alignment in the yield curve that would have

6For example, issuance of the 30-year Treasury bonds was suspended for a four and a half year period

starting October 31, 2001 and concluding February 2006.
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Figure 2: Daily time-series of the noise measure (in basis points).

been attractive for relative value trading during normal times and are in fact attractive given

the contemporaneous transaction cost. The includes the 1987 crash, when the noise was close

to 14 basis points; the aftermath of the LTCM crisis, when the noise peaked at 7 basis points;

the first trading day after 9/11 terrorist attack, when the noise was at 14.5; the sale of Bear

Stearns to JPMorgan, when the noise was close to 8 basis points; and the aftermath of Lehman

default, when the noise was above 10 basis points for a sustained period of time. Given its

sample standard deviation of 1.65 basis points, these are 4 to 9 standard deviations moves.

Another interesting aspect captured by our noise measure is that while some liquidity

events, such as the 1987 crash or the 9/11 terrorist attack, are short lived, others take much

longer to play out. The savings and loan crisis in the late 80’s and early 90’s is one such

example, and the aftermath of the Lehman default on September 15, 2008 is another example.

Figure 3 provides a closer examination of our noise measure during the period after Lehman

default. It shows that when Lehman defaulted on Monday, September 15, 2008, the noise
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measure was at 5.18, which was about one standard deviation above the historical mean.

Compared with the Friday before when the noise measure stood at 4.60, but it was only a

mild increase, especially give the severity of the event. But as shown in Figure 3, the Lehman

event was the beginning of a cycle of worsening liquidity that lasted until late April and

early May 2009, when Federal Reserve announced and implemented stress tests for large US

banks. During this period of liquidity crisis, the noise measure had two noticeable peaks whose

magnitudes were comparable to the 87 crash and the 9/11 attack. The first one was in mid-

October when it peaked at 13.42 on October 15, one day after Treasury and Fed announced

to inject $250 billion of capital into large US Banks via the Capital Purchase Program (CPP),

and additional details on the Commercial Paper Funding Facility (CPFF). The second one was

at the end of October when the noise measure peaked at 13.49 as concerns over the financial

crisis deepened. Overall, this period was when the crisis was at its worst and this fact was

captured by our noise measure.

It is worth emphasizing that our noise measure comes from the US Treasury bond market

— the one with the highest credit and liquidity quality and is the number one safe haven

during numerous episodes of “flight to quality,” and yet it was able to capture liquidity crises

of varying origins and magnitudes. In this respect, what captured in our noise measure is

not credit or liquidity concerns that are specific only to the Treasury market. Instead, it is a

reflection of the overall market condition, and the absence of arbitrage capital coupled with

flight to quality could be one channel through which “noise” can become “information.” Given

how well our noise measure picks up the past events, the evidence seems to be in support of

such a hypothesis.

3.2 Noise and On-the-Run Premium

One popular measure of liquidity with respect to the Treasury market is the on-the-run and

off-the-run premium: the just issued (on-the-run) Treasury bond enjoys a price premium,

therefore lower yield, compared to the rest of the yield curve. Since our noise measure is a

daily aggregate of cross-sectional pricing errors, this on-the-run premium is in fact a component

of our measure. Calculating the correlation between daily changes of our noise measure and

daily changes of the on-the-run premium, we find that the correlation is 3.95% and 8.85%,

respectively, for the five- and ten-year on-the-run premiums. Repeating the same calculation

at a month frequency, the correlation increases to 27.73% and 37.49%, respectively. Overall,

we see a positive relationship between our noise measure and the on-the-run premium, which is

not significant at the daily frequency but becomes more significant at the monthly frequency.

Moreover, while the noise measure is on average smaller than the on-the-run premium, it

tends to spike up much more significantly during crises. For example, on October 19, 1987,

the noise measure was at 6.45 standard deviations away from its sample average, while the
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Figure 3: Daily time-series of the noise measure in late 2008 and early 2009. TARP: Troubled

Asset Relief Program; CPP: Capital Purchase Program; CPFF: Commercial Paper Funding

Facility; and the MBS Program is Fed’s $1.25 trillion program to purchase agency mortgage-

backed securities.

five-year on-the-run premium was at 2 standard deviations away from its sample average and

the ten-year on-the-run premium was at 0.93 standard deviation below its sample average. On

September 21, 2001, the first bond trading day after the terrorist attack, our noise measure

was at 6.83 standard deviations away while the five- and ten-year on-the-run premiums were

at 1.15 and 2.63 standard deviations away, respectively. On October 15, 2008, when the

crisis after Lehman’s default was at one of its worst moments, our noise measure was at 6.14

standard deviations away while the ten-year premium was 4.00 standard deviations away (and

the five-year premium was 0.37 standard deviation below its sample average).

This comparison between our noise measure and the on-the-run premium is instructive

as it accentuates the important fact that the information captured by our noise measure is
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a collective information over the entire yield curve. The fact that our noise measure spikes

up during liquidity crises much more prominently than the on-the-run premiums implies that

there is commonality in the pricing errors across the entire yield curve. And the heightened

commonality during crises is reflected in noisy and mis-aligned yield curves, which are captured

by our noise measure. This is how noise could become informative. By contrast, a couple

of isolated points on the yield curve as captured by the on-the-run premiums will not be as

informative.

3.3 Noise and Other Measures of Liquidity

To further investigate the connection between our noise measure and other measures of market

liquidity, we report in Table 2 results of OLS regression of monthly changes in our noise

measure on several important market variables. The regressions are done first in univariate

form, and then pooled together in the last column to compare their relative contribution. The

pairwise correlations of monthly changes of these variables are reported in Table 3.

First, we examine the connection of our noise measure with Treasury market variables

including the level, slope, and volatility of interest rates. Since our noise measure is computed

as pricing errors in yield, it is important to make sure that the time-variation in the noise

measure is not caused by time-variations in interest rates. Results are summarized in the

top left panel of Table 2. Regressing monthly changes of our noise measure on monthly

changes in three-month TBill rates, we find a negative and statistically significant relation.

This implies increasing illiquidity during decreasing short rates, which is consistent with the

fact that liquidity in the overall market typically worsens during episodes of flight to quality

and decreasing interest rates. The explanatory power of the short rate for our noise measure,

however, is rather limited. As shown in Table 2, the R-squared of the regression is only 3.15%.

Another important factor in the Treasury market is the slope of the term structure, which is

labeled as Term in Table 2. We do not find a strong connection between our noise measure

and the term spread. We also regress changes in our noise measure on monthly Treasury

bond returns, and do not find a statistically significant relation. Overall, although our noise

measure is constructed using pricing data in the Treasury market, its connection to the time-

variation in bond yields is not very strong. In fact, this is a good indication for the “purity”

of our noise measure since term structure pricing is not something we would like to capture in

our noise measure. By contrast, a high correlation with the term-structure pricing variables

might be an indication that our curve fitting is not flexible enough to capture the shapes of

the term structure.

Given that our noise measure captures the cross-sectional dispersion in Treasury bonds,

it is natural to ask whether or not it is purely driven by the volatility of this market. To

check this, we regress monthly changes of our noise measure on monthly changes in bond
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Table 3: Pairwise Correlations

2 3 4 5 6 7 8 9 10 11 12 13

1 ΔNoise -19 28 37 22 19 -21 37 22 24 34 -35 -23

2 ΔTB3M -15 -16 -25 -53 39 -12 -38 -15 -27 28 18

3 ΔOn5Y 33 28 23 -6 -6 12 -12 28 -19 -21

4 ΔOn10Y -1 2 -3 1 16 15 24 -12 -10

5 ΔBondV 21 -25 21 24 -7 33 -32 -13

6 ΔTerm -34 4 12 -2 13 -15 -12

7 ΔRepo -21 -19 -10 -2 11 -1

8 ΔRefCorp 17 23 6 -32 -11

9 ΔLIBOR 7 26 -19 -23

10 ΔDefault 21 -3 -28

11 ΔVIX -29 -67

12 ΔPSLiq 32

13 StockRet

Pairwise correlations are computed using monthly changes from 1987 through 2009 and

reported in percentage. See Table 2 for definitions of variables.

volatility, which is calculated as the annualized bond return volatility using a rolling window

of 21 business days. We find that indeed there is a statistically significant relation between

our noise measure and bond volatility, but bond volatility can only explain 4.31% of the

monthly variation in our noise measure. In other words, the information contained in our

noise measure is not driven just by the volatility in the Treasury bond market. By contrast,

a large component of our noise measure is unrelated to the volatility of the Treasury market.

One important measure of liquidity premium for the Treasury market is proposed by

Longstaff (2004), who compares Treasury bonds with bonds issued by RefCorp, a US gov-

ernment agency guaranteed by the Treasury. He finds a large liquidity premium in Treasury

bonds, and documents the presence of a flight-to-liquidity premium in Treasury bonds. This

measure examines the symptom of illiquidity from a perspective that is very different from

ours, but is indeed very much related. It is therefore interesting to see how this measure

connects with ours. For this, we construct RefCorp spread by calculating the average spread

between RefCorp and Treasury zero-coupon bonds with maturities ranging from 3 months to

30 years. As shown in the top right panel of Table 2, regressing monthly changes of our noise

measure on monthly changes in RefCorp spread, we find a positive and statistically significant

connection. In other words, when the flight-to-liquidity premium in the Treasury market in-

creases, the illiquidity of the overall market as captured by our noise measure also increases.

In fact, the RefCorp spread can explain 13.56% of the monthly changes in our noise measure,

which makes it one of the most important variables considered in Table 2 in explaining the
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time-series variation of our noise measure.

The variable with the highest explanatory power for our noise measure is the 10-year on-

the-run premium, which can explain 13.74% of the monthly variation in our noise measure.

The 5-year on-the-run premium is also positively related to our noise measure. This not

surprising since the on-the-run premium is a component of our noise measure. In fact, the

significance of this result is that a large component of our noise measure is not captured by

the on-the-run premium and this uncaptured component is in fact very informative (see the

previous subsection for a more extensive discussion). Adding on-the-run premiums together

with RefCorp spread in a multivariate regression, we see that together, they explain changes

in the noise measure with an adjusted R-squared of 24.89%.

One liquidity factor that has been shown to be important in the US equity market is the

one constructed by Pastor and Stambaugh (2003). This liquidity measure is an aggregate

of individual-stock liquidity measures, using the idea that order flow induces greater return

reversals when liquidity is lower. Given the systematic nature of this liquidity measure and

given the importance of the US equity market, it is interesting to see how this measure

relates to our noise measure, which is designed to capture to overall market liquidity condition

including the stock market. As shown in the bottom left panel of Table 2, this measure of

liquidity has a pretty strong connection with our noise measure. The coefficient is negative

and significant, implying that a negative shock to the systematic liquidity factor in the equity

market is likely to be accompanied by an increase in our noise measure and worsening liquidity

of the overall market. The R-squared of the regression is 11.83%, making it one of the most

important variables in explaining the time-variation of our noise measure. Given that these

two measures are constructed using data from two distinctively different markets, this level

of comovement reflects the presence and the importance of a systematic liquidity factor.

Similarly, if we use the CBOE VIX index, which is constructed from S&P 500 index options

and is often referred to as the “fear gauge,” we find a positive and statistically significant

relation, and the R-squared of this regression 11.15%. In other words, an increase in the “fear

gauge” is likely to be accompanied by an increase in our noise measure. Adding the Pastor-

Stambaugh stock market liquidity measure together with the VIX index and stock market

returns in a multivariate regression, we find that they can explain the changes in the noise

measure with an adjusted R-squared of 18.74%.

The bottom right panel of Table 2 also examines the connection between our noise measure

and default spread, measured as the difference in yield between Baa and Aaa rated bonds.

We find a positive and significant relation, although the R-squared of the regression is only

5.33%. This result is consistent with the possibility that default risk and liquidity risk are

correlated. Table 2 also reports the connection with overnight general collateral Repo rates

and LIBOR spreads. Overall, the results are in the expected direction. For example, our noise
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measure increases with increasing LIBOR spreads.

Finally, we add all of the variables considered in Table 2 in a multi-variate regression.7

Overall, these variables can explain the monthly variation of our noise measure with an ad-

justed R-squared of 35.38%, and the 10-year on-the-run premium, the RefCorp spread, the

default spread, the VIX index, and the Pastor-Stambaugh equity liquidity factor remain sig-

nificant.

Overall, it is encouraging that factors known to be related to liquidity have a significant

relation with our noise measure. In the next Section, we bring our hypothesis on the in-

formation content of our noise measure to the next step by testing its pricing implications

directly using, among other, hedge fund returns. And we will be sure to perform the same

test on other liquidity measures such as the on-the-run premium, the RefCorp spread, the

Pastor-Stambaugh liquidity factor, and the VIX index.

4 Cross-Sectional Pricing Tests

Since our noise measure reflects the lack of liquidity in the overall market, its variation,

which is drastic during market crises of various origins, captures the aggregate liquidity risk.

Given the systematic nature of this risk, we now investigate its asset-pricing implications, in

particular, its impact on asset returns. In order to better identify this impact, we need to

consider returns that are potentially sensitive to the market-wide liquidity shocks. For this

purpose, we employ two sets of returns for our tests. The first set consists of returns on hedge

funds, whose trading activities cover a broad spectrum of asset classes and whose capital

adequacy is a good representation of the amount of arbitrage capital available in the market.

The second set of returns are those from currency carry trades, which are also known to be

connected with the overall arbitrage capital in the market. We conduct separate empirical

tests on these two sets returns.

4.1 Hedge Fund Returns as Test Portfolios

Hedge Fund Data

We obtain hedge fund returns, assets under management (AUM), and other fund-specific

characteristics from the Lipper TASS database. The TASS database divides funds into two

categories: “Live” and “Graveyard” funds. The “Live” hedge funds are active ones as of

the latest update of the TASS database, in our case March 2010. Hedge funds are listed as

7Given the level of comovement among these variables, collinearity might be a concern. This concern,

however, does not turn out to be too pressing since the pairwise correlations of these variables as reported in

Table 3 are not very high.
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“Graveyard” funds when they stop reporting information to the database. Fund managers

may decide not to reporting their performance for a number of different reasons such as

liquidation, merger or closed to new investment. Although TASS has been collecting data

since late 1970s, the Graveyard database was created much later in 1994. We thus choose our

sample period from 1994 through 2009 to mitigate the impact of survivorship bias.

We only include funds that report returns net of various fees in US dollars on a monthly

basis, which covers a majority of the funds in TASS. We also require that each fund has at

least $10 million assets under management, and at least 24 months of return history during

our sample period. This ensures that we have a sample of hedge funds of reasonable size and

each fund has a long enough time-series for meaningful regression results.8 The details of our

hedge fund sample are summarized in Table 4.

Portfolio Formation by Noise Betas

We follow the standard procedure of Fama and MacBeth (1973) to perform cross-sectional

tests on the noise measure. Let Ri
t be the month-t excess return of hedge fund i, and we

estimate its Beta exposure to the noise measure by

Ri
t = β0 + βN

i ΔNoiset + βM
i RM

t + εit , (3)

where ΔNoise is the monthly change of our noise measure, RM is the excess return of CRSP

value weighted portfolio, and βN
i and βM

i are estimates of fund i’s exposures to the Noise

measure and the stock market risk.

Our specification in Equation (3) implicitly assumes that, other than the liquidity risk

factor captured by our noise measure, the stock market risk is the main risk factor for hedge

funds. Given the varying styles of hedge funds in our sample, it is perhaps a strong assumption.

It is nevertheless a reasonable starting point as long as our noise measure is not a proxy for

some well known risk factors other than liquidity risk. Given our earlier analysis in Section 3.3,

this does not seem to be the case. We also experimented by adding other well known risk

factors such as term spread in the Treasury market and default spread in the corporate bond

market, and our results are robust. For this reason and to keep the specification simple, we

will perform our cross-sectional test using this model.

For each month t and for each hedge fund i, we first use its previous 24 month returns to

estimate the pre-ranking βN
i using Equation (3). We then sort the month-t cross-section of

8As mentioned in Cao, Chen, Liang, and Lo (2010), smaller funds with AUM less than $10 million are of

less concern from an institutional investor’s perspective, and they have less impact on the market as well. But

we do experiment with different size criteria such as $5 million, $50 million, and $100 million. Our main result

regarding the market price of the liquidity risk factor remains robust.
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hedge funds by their pre-ranking beta, βN
i , into 10 portfolios. The post-ranking beta’s of the

10 portfolios are estimated by

Rp
t = β0 + βN

p ΔNoiset + βM
p RM

t + εpt , p = 1, . . . , 10 . (4)

where Rp
t is the equal-weighted return for portfolio p in month t and this regression is done

over the entire sample period.

Table 5 reports the expected returns of the 10 noise-beta sorted portfolios and their post-

ranking beta’s. A negative noise beta implies that when the noise measure increases during

crises, the hedge fund returns decreases. In other words, a hedge fund with negative noise beta

is the one with high exposure to liquidity risk. Among the 10 noise-beta sorted portfolios,

portfolio 1 therefore has a much higher exposure to liquidity risk than portfolio 10, and we can

loosely characterize the hedge funds in portfolio 1 as more aggressive and those in portfolio

10 as more conservative in taking liquidity risk.

Figure 4 shows an interesting pattern in how hedge funds in portfolio 1 might be different

from those in portfolio 10. For each year t, we report the one-year “death” rate in the sample

calculating how many hedge funds among the live sample in year t − 1 end up in graveyard

by the end of year t. And we report the same exercise within each noise-beta sorted portfolio.

From Figure 4, we can see a distinctive increase in death rate in 2008. This is hardly surprising

given the severity of the financial crisis in 2008. What’s interesting is that the death rate is

much higher (close to 40%) for hedge funds in the aggressive category (portfolio 1), while

hedge funds in the conservative category have similar death rate of 27% as the sample average

of 26%.

More important for our cross-sectional pricing test, Table 5 also shows that hedge funds in

portfolio 1 differ from those in portfolio 10 in average performance. Specifically, the aggressive

funds outperform the conservative ones by a large margin. The average monthly return

for portfolio 1 is 1.45% compared with 0.49% for portfolio 10, implying a superior monthly

performance of 0.96% with a t-stat of 3.45. In fact, moving from portfolio 10 to 1, there is a

general pattern of increasing average returns, implying improved performance with increasing

exposure to the liquidity risk. One direct implication of this pattern of risk and return is

that the liquidity risk as captured by our noise measure is priced, and this pricing implication

will be formally tested later in this section as we perform cross-sectional tests a la Fama and

MacBeth (1973).

To further understand these 10 noise-beta sorted portfolios, we report in Table 6 the

characteristics of hedge funds within each portfolio. We see that the hedge funds in portfolios

1 and 10 are similar in their characteristics. Also reported in Table 6 is the relative allocation

of hedge funds within each style category to the 10 portfolios. One interesting observation

is that on average 25% of the hedge funds specializing in Emerging Markets show up in the
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Figure 4: The year-t “death rate” of hedge funds in the top- and bottom-ranked noise-beta

sorted portfolios.

aggressive portfolio. Other than that, the distribution does not seem to be very informative,

although it does point to the fact that it is important to do the cross-sectional test at the

hedge fund level. In particular, test the liquidity risk at the style indices level will not be a

successful endeavor.

Post-Ranking Noise Beta

One remaining concern over our results in Table 5 is the fact that while the post-ranking

noise-beta in large part preserves the monotonicity in the pre-ranking noise-beta, it is not

perfect. Moreover, the spread is much smaller, and the statistical significance of the post-

ranking noise-beta is weak. Indeed, this issue of weak spread in post-ranking beta is not

specific only to the risk factor tested in this paper. Using cross-sectional stock returns to test

the the VIX index, Ang, Hodrick, Xing, and Zhang (2006) have the same issue in constructing
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Table 6: Noise-Beta Sorted Portfolios, Characteristics

Portfolio Rank 1 2 3 4 5 6 7 8 9 10

Panel A: Characteristics

AUM ($M) 151.44 170.62 166.80 184.45 188.59 189.40 185.61 164.48 157.29 132.59

iAUM ($M) 14.12 13.91 12.13 14.19 14.68 13.63 12.65 12.54 12.86 11.47

reporting (mn) 130 132 133 134 135 135 134 133 133 131

age (mn) 72.7 73.2 72.6 73.2 73.8 73.8 73.2 73.8 74.7 73.9

stdret (%) 3.55 2.34 1.85 1.52 1.49 1.41 1.65 1.78 2.08 3.18

auto corr 0.14 0.18 0.22 0.25 0.26 0.25 0.23 0.20 0.17 0.13

Panel B: Allocation within Hedge Fund Style (%)

Long/Short Equity 11.88 10.64 8.38 6.09 5.55 6.18 7.94 10.97 14.63 17.73

Global Macro 17.05 13.23 7.71 7.19 5.67 6.10 6.86 10.68 12.30 13.20

Fund of Funds 4.40 7.87 11.60 14.00 14.38 14.13 13.36 10.25 6.80 3.21

Fixed Income Arb 8.93 7.70 9.90 14.74 12.04 12.03 10.83 9.39 8.13 6.31

Managed Futures 22.71 13.64 6.98 4.60 3.73 5.33 5.94 7.20 10.01 19.86

Event Driven 4.51 9.94 12.58 13.04 14.22 12.43 11.59 10.02 7.55 4.11

Equity Neutral 5.72 10.70 9.38 8.29 8.94 9.70 11.51 12.61 13.61 9.56

Emerging Markets 25.77 13.32 8.64 5.45 5.02 5.05 6.45 7.91 9.17 13.22

Convertible Arb 7.30 8.95 10.32 14.50 15.25 13.98 10.59 9.95 6.10 3.07

Others 6.87 9.79 11.17 11.06 11.76 12.18 10.05 9.63 10.20 7.28

The 10 portfolios are ranked, from low to high, by their noise beta’s. See Table 4 for variable definitions.

portfolios with strong spread with respect to their post-ranking beta’s. Facing a similar issue,

Pastor and Stambaugh (2003) use predicted beta’s instead. Specifically, they take advantage

of stock characteristics that are more stable and postulate that their liquidity beta is an affine

function of stock characteristics.

For our hedge fund sample, however, this parametric approach is not feasible given the

limited characteristics available in the data for hedge funds. But one issue that is unique to

the hedge fund data is that their returns are known to be highly serially correlated. As shown

in Getmansky, Lo, and Makarov (2004), one likely explanation is their illiquidity exposure

and the possibility of smoothed returns at the fund level. In this respect, a better way to

capture a hedge fund’s risk exposure is to regress its returns on the contemporaneous as well

as the lagged factor. Using this intuition, we estimate the post-ranking beta by

Rp
t = β0 + βN

p ΔNoiset + lagβN
p ΔNoiset−1 + βM

p RM
t + lagβM

p RM
t−1 . (5)

Given the high serial correlation in hedge fund returns, a more accurate estimate of a portfolio’s

exposure to liquidity risk is βN
p +lagβN

p . As reported in Table 5, there is much improvement in

terms of the spread of post-ranking noise beta as well as the statistical significance of the post-

ranking noise beta. It is also interesting to note that although the market exposure βM
p +lagβM

p
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also has some improvement, the improvement in noise beta is much more significant.

Following Ang, Hodrick, Xing, and Zhang (2006), we also construct a factor mimicking

portfolio using hedge fund returns and perform the cross-sectional test using this factor mim-

icking portfolio. Similar to Ang, Hodrick, Xing, and Zhang (2006), we find that portfolio

exposures to this factor mimicking portfolio has a much wider spread and the statistical sig-

nificant of the noise beta’s is also greatly improved.9

Estimating Liquidity Risk Premiums using Fama-MacBeth Regressions

Following Fama and MacBeth (1973), we perform the cross-sectional regression for each

month t:

Ri
t = γ0t + γN

t βN
i + γM

t βM
i + ageit +AUMi

t + εit . (6)

where Ri
t is the month-t return of hedge fund i, βN

i and βM
i are the noise and market beta’s of

hedge fund i. Following Fama and French (1992), we assign the post-ranking portfolio beta’s,

which are estimated as in Equation (4), to each hedge fund in the portfolio.10 The fund’s age

and log of asset under management (AUM) are used as controls. The factor premiums are

estimated as the time-series average of γN
t and γM

t .

Table 7 reports the factor risk premiums for our noise measure as well as the market portfo-

lio. The Fama-MacBeth t-stats are reported in squared brackets. We see that the liquidity risk

as captured by our noise measure is indeed priced. The coefficient is negative and statistically

significant. Given that our noise measure moves up when the market-wide liquidity deteri-

orates, this means that the liquidity risk premium is positive and significant risk premium.

Relating back to the earlier discussions on the relative performance of portfolios sorted by

noise beta (βN), this result provides a formal test in support of the intuition developed there.

Specifically, the liquidity risk premium contributes to the higher expected returns provided

by hedge funds with high negative noise beta and high exposures to illiquidity risk.

Relating to the issue with respect to post-ranking beta discussed earlier in the section, we

also test our noise measure using the sum of contemporaneous and lagged beta βN
p + lagβN

p

to better capture hedge funds exposure to the liquidity risk. The result is also reported in

Table7. The statistical significant of the risk premium for our noise measure remains at the

same magnitude, although the slope coefficient is smaller due increased noise beta’s. We also

use a factor mimicking portfolio and performance our cross-sectional pricing test using beta

exposures to the factor mimicking portfolio, and find a similar result. Again, the magnitude of

9We do not report the details here in the paper to save space, but they are available upon request.

10In addition to the 10 noise-beta sorted portfolio used here, we also perform our test using the 5x5 portfolios

double-sorted by noise-beta and market-beta. Our results on the liquidity risk premium remains robust.
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Table 7: Estimating Liquidity Risk Premiums using Hedge Fund Returns

Factor Intercept Liquidity Market Age AUM

Panel A: Noise as Proxy of Liquidity

Noise 1.65 -1.43 1.76 0.0001 -0.11

[3.99] [-2.86] [2.60] [0.19] [-4.18]

Noise (beta+lag beta) 1.90 -0.44 1.00 0.0002 -0.11

[4.46] [-2.81] [1.79] [0.25] [-4.24]

Factor Mimicking Portfolio 1.74 -0.29 1.47 0.0001 -0.12

[3.75] [-3.15] [2.05] [0.54] [-4.26]

Noise/BASpreads 1.63 -0.98 1.56 0.0001 -0.10

[4.00] [-2.64] [2.45] [0.17] [-4.11]

Panel B: Other Proxies of Liquidity

On5Y 2.26 -2.21 1.00 0.0001 -0.11

[5.27] [-0.77] [1.76] [0.1] [-4.49]

On10Y 2.24 0.38 2.07 0.0001 -0.11

[5.09] [0.59] [2.25] [-0.08] [-4.31]

RefCorp 2.14 -4.60 0.75 0.0001 -0.12

[4.8] [-1.26] [1.26] [0.36] [-4.32]

PSLiq 2.20 0.93 -0.02 0.0001 -0.11

[5.11] [0.88] [-0.18] [-0.57] [-4.36]

VIX 2.17 -0.25 1.04 0.0001 -0.11

[4.86] [-0.07] [1.42] [-0.04] [-4.23]

Each proxy of liquidity is tested together with the equity market portfolio in a two-factor model using

hedge fund returns, with age and size (AUM) as additional controls. The Fama-MacBeth t-stat’s are

reported in squared brackets. Panel A focuses on the noise measure with the base case as described

in Equations (4) and (6) and three additional cases. Panel B considers other proxies of liquidity:

“On5Y” and “On10Y” are the on-the-run premiums for 5- and 10-year Treasury bonds, “RefCorp”

is the RefCorp Treasury spread, “PSLiq” is the Pastor-Stambaugh equity liquidity measure, and

“VIX” is the CBOE VIX index.

the risk premium decreases because the increased and improved beta estimates. To take into

account of the fact that bid/ask spreads in the Treasury market also have some time-variation,

we scale our noise measure by the cross-sectional average of bid minus ask yield for all of the

bonds used in the construction of the noise measure. We find that this scaled version is also

priced with an estimated risk premium similar to the base case in magnitude and statistical

significance.

Finally, we use the hedge fund returns to perform cross-sectional tests on the other liquidity

measures including the on-the-run premiums for 5- and 10-year Treasury bonds, the RefCorp

spread, the Pastor-Stambaugh stock market liquidity risk factor, and the VIX index. Again,

we perform the test by first sorting hedge funds by their exposures to the risk factor into 10
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portfolios, and then perform the Fama-MacBeth cross-sectional test. As shown in Table 7, we

do not find strong evidence that these risk factors are priced by hedge fund returns.

4.2 Carry Trade Returns as Test Portfolios

Building Currency Portfolios

We obtain end-of-month spot and forward exchange rates with one-month maturity from Bar-

clays and Reuters via Datastream. The sample period spans from January 1987 to December

2009. Following Lustig, Roussanov, and Verdelhan (2009), we consider 37 currencies from

both developed and emerging countries. Currencies are included in the sample only when

both spot and forward rates are available. Our sample starts with 19 currencies, and reaches

a maximum of 34 currencies. Since the launch of the Euro in January 1999, our sample covers

26 currencies only. For both forward and spot rates, we use mid bid-ask quotes in units of

foreign currency per US dollar.

For the rest of this section, we denote the log of the one-month forward rate as f , and

the log of the spot rate as s. At the end of each month t, we allocate all currencies into six

carry trade portfolios based on their forward discount ft − st. Because the covered interest

parity holds closely at monthly frequency, our portfolios sorted on forward discounts ft − st

are equivalent to portfolios ranked by interest rate differentials i∗t − it, where i∗t and it are

the foreign and domestic one-month risk-free interest rates, respectively. Portfolio 1 contains

the currencies with the smallest forward discounts (or lowest interest rates), and portfolio 6

contains the currencies with the biggest forward discounts (or highest interest rates). From

the perspective of a US investor, the log excess return rx of holding a foreign currency in the

forward market and then selling it in the spot market one month later at t + 1 is:

rxt+1 = ft − st+1 = i∗t − it + st − st+1 = i∗t − it −�st+1.

The log currency excess return for a carry trade portfolio is then calculated as the equally

weighted average of the log excess returns of all currencies in the portfolio. We re-balance

carry trade portfolios at the end of every month in our sample period.

Cross-sectional Pricing Test

We use the six carry trade portfolios described in the previous section to perform the Fama

and MacBeth (1973) cross-sectional pricing test. We first estimate the factor risk exposure by

Ri
t = β0 + βN

i ΔNoiset + βM
i RM

t + εit , (7)

where Ri
t is the month-t excess return of carry portfolio i and RM

t is the month-t stock market

return.
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For the six carry portfolios, the top panel of Table 8 reports their mean excess returns and

their respective exposures, βN and βM , to the risk factors implicit in the noise measure and the

stock market portfolio. Moving from portfolio 1 to portfolio 6, the mean excess return increases

monotonically from negative 20 bps to positive 81 bps per month. Indeed, the difference in

their performance is the main driver behind currency carry trades. In particular, currencies

in portfolio 1 are those with the lowest interest rate and function as funding currencies, while

currencies in portfolio 6 have the highest interest rate and are on the asset side of the carry

trade. It is therefore interesting to see that the asset currencies in carry portfolio 6 have

a negative beta on our noise measure, implying a worsening portfolio performance during

liquidity crises when our noise measure goes up. By contrast, carry portfolio 1 have a positive

beta on our noise measure, implying relative good performance during crises.

Table 8: Liquidity Premiums from Currency Carry Returns

Panel A: Returns and Beta’s

Rank exret (%) βN βM Adj-R2 (%)

1 -0.20 0.27 -0.01 1.5

[-1.50] [1.91] [-0.18]

2 -0.06 0.07 0.04 0.9

[-0.51] [0.44] [1.06]

3 0.16 0.17 0.06 2.1

[1.25] [1.06] [1.32]

4 0.31 -0.07 0.07 2.5

[2.33] [-0.36] [1.31]

5 0.34 -0.04 0.12 6.0

[2.41] [-0.25] [2.64]

6 0.81 -0.43 0.14 8.3

[4.47] [-1.83] [2.15]

Panel B: Estimated Risk Premiums

constant Noise Market month

estimate 4× 10−6 -0.82 2.93 276

t-stat [0.003] [-2.54] [2.29]

Portfolios are formed by sorting currencies by their forward discount. Currencies in portfolio 1

have the smallest forward discount and the lowest interest rate and are often used as the funding

currency in a carry trade, while currencies in portfolio 6 are often used as the asset currency.

Returns are monthly in excess of the riskfree rate.

This specific pattern of differing expected returns and risk exposures βN across those six

carry portfolios implies a potential source of risk premium for the liquidity factor. In partic-

ular, the relative high performance of carry portfolio 6 over portfolio 1 could be contributed

by the fact that carry portfolio 6 takes on more liquidity risk. Given that carry portfolio 6
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also has more market exposure βM , however, we need to test this idea more formally.

For this, we run monthly cross-sectional regressions:

Ri
t = γ0t + γN

t βN
i + γM

t βM
i + εit , (8)

where the time-series average of γN is an estimate of the liquidity risk premium, and that for

γM is an estimate of the stock market risk premium. The results are reported in the bottom

panel of Table 8. Our result shows that the market price of “illiquidity” risk γN is −0.82%

with a t-stat of −2.54, while the stock market risk premium γM is estimated to be 2.93 with a

t-stat of 2.29. Compared with the risk premiums estimated using hedge fund returns reported

in Table 7, the results are similar in magnitude and statistical significance.

5 Conclusions

In this paper, we use price deviations from asset fundamentals as a measure of market illiq-

uidity. Instead of focusing the liquidity condition of a specific market, we are interested in

the liquidity conditions of the overall market. For this purpose, we consider the US Treasury

market, which is arguably the most important and one of the most liquid markets. Presum-

ably, signs of illiquidity in this market reflects a general shortage of arbitrage capital and

tightening of liquidity in the overall market, whatever its origins and causes. In particular, we

use the average “pricing errors” in US Treasuries as a measure of illiquidity of the aggregate

market. Indeed, we found that this measure spikes up during various market crises, ranging

from the 1987 stock market crash, the near collapse of LTCM, 9/11, GM credit crisis, to the

fall of Bear Stearns and Lehman Brothers. This clearly suggests that this illiquidity measure

captures the liquidity condition of the overall market.

The drastic variation of our illiquidity measure over time, especially during crisis, sug-

gests that it represents substantial market-wide liquidity risk. We further explore the pricing

implications of this liquidity risk factor by examine its connection with the returns on as-

sets/strategies that are generally thought to be sensitive to market liquidity conditions. Two

sets of such returns are considered: returns from hedge funds and currency carry trades. We

found that the market-wide liquidity risk, as measured by the variation in the price noise of

Treasuries, can help to explain both the cross-sectional variation in hedge fund returns and

currency carry trade strategies, while liquidity risk factors obtained from other markets such

as equity, corporate bonds and equity options show no explanatory power.
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