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1 Introduction

Over the last several decades, social scientists have identified a range of important violations

of Expected Utility Theory, the standard theory of choice under risk. Perhaps at the most

basic level, in both experimental situations and everyday life, people frequently exhibit

both risk loving and risk averse behavior, depending on the situation. As first stressed

by Friedman and Savage (1948), people participate in unfair gambles, pick highly risky

occupations (including entrepreneurship) over safer ones, and invest without diversification

in individual risky stocks, while simultaneously buying insurance. Attitudes towards risk are

unstable in this very basic sense.

This systematic instability underlies several paradoxes of choice under risk. As shown

by Allais (1953), people switch from risk loving to risk averse choices among two lotteries

after a common consequence is added to both, in contradiction to the independence axiom

of Expected Utility Theory. Another form of instability is preference reversals (Lichtenstein

and Slovic, 1971): in comparing two lotteries with a similar expected value, experimental

subjects choose the safer lottery but are willing to pay more for the riskier one. Camerer

(1995) reviews numerous attempts to amend the Expected Utility Theory to deal with these

findings by changing some of its axioms, but these attempts have not been conclusive.

We propose a new psychologically founded model of choice under risk, which naturally

exhibits the systematic instability of risk preferences and accounts for the puzzles. In this

model, risk attitudes are driven by the salience of different lottery payoffs. Psychologists

view salience detection as a key attentional mechanism enabling humans to focus their lim-

ited cognitive resources on a relevant subset of the available sensory data. As Taylor and

Thompson (1982) put it: “Salience refers to the phenomenon that when one’s attention is dif-

ferentially directed to one portion of the environment rather than to others, the information

contained in that portion will receive disproportionate weighting in subsequent judgments.”

In line with this idea, in our model the decision maker focuses on salient payoffs. He is then

risk seeking when a lottery’s upside is salient and risk averse when its downside is salient.

To formalize this idea in a choice between two lotteries, we define a state of the world

to be salient if, roughly speaking, the distance between the lotteries’ payoffs in that state is



large. We thus follow Kahneman (2003), who writes that “changes and differences are more

accessible to a decision maker than absolute values”. The model then describes how decision

makers replace the objective probabilities they face with decision weights that increase in the

salience of states. Through this process, the decision maker develops a context-dependent

representation of each lottery. Aside from replacing objective probabilities with decision

weights, the agent’s utility is standard.1

At a broad level, our approach is similar to that pursued by Gennaioli and Shleifer (2010)

in their study of the representativeness heuristic in probability judgments. The idea of both

studies is that decision makers do not take into account fully all the information available

to them, but rather over-emphasize the information their minds focus on.2 Gennaioli and

Shleifer (2010) call such decision makers local thinkers, because they neglect potentially

important, but unrepresentative, data. Here, analogously, in evaluating lotteries, decision

makers overweight states that draw their attention and neglect states that do not. We

continue to refer to such decision makers as local thinkers. In both models, the limiting case

in which all information is processed is the standard economic agent.

Our model leads to an understanding of what encourages and discourages risk seeking,

but also to an explanation of the Allais paradoxes. The strongest departures from Expected

Utility Theory occur in the presence of extreme payoffs, particularly when these occur with

a low probability. Due to this property, our model predicts that subjects in the Allais

experiments are risk loving when the common consequence is small and draws attention

to the highest lottery payoffs, and risk averse when the common consequence is large and

draws attention to the lowest payoffs. We explore this prediction by describing, and then

experimentally testing, how Allais paradoxes can be turned on and off. We also show that

preference reversals can be seen as a consequence of lottery evaluation in different contexts

(that affect salience), rather than the result of a fundamental difference between pricing and

choosing. The model thus provides a unified explanation of risk preferences and invariance

violations based on a psychologically motivated mechanism of salience.

1In most of the paper, we assume a linear utility function. However, this function does not deal with the
phenomenon of loss aversion, i.e. the extreme risk aversion with respect to small positive expected value
bets. To deal with this phenomenon, we modify preferences around zero along the lines of Kahneman and
Tversky (1979) in Section 6.2.

2Other models in the same spirit are Mullainathan (2002) and Schwartzstein (2009).
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It is useful to compare our model to the gold standard of existing theories of choice under

risk, Kahneman and Tversky’s (KT, 1979) Prospect Theory. Prospect Theory incorporates

the assumption that the probability weights people use to make choices are different from

objective probabilities. But the idea that these weights depend on the actual payoffs and

their salience is new here. In some situations, our endogenously derived decision weights

look very similar to KT’s, but in other situations – for instance when small probabilities

are not attached to salient payoffs or when lotteries are correlated – they are very different.

We conduct multiple experiments, both of simple risk attitudes and of Allais paradoxes

with correlated states, that distinguish our predictions from KT’s, and uniformly find strong

support for our model of probability weighting.

The paper proceeds as follows. In section 2, we present an experiment illustrating the

switch from risk averse to risk-loving behavior as lottery payoffs, and their salience, change.

In section 3, we present a general model and derive its most fundamental properties, namely

how changes in the structure of lotteries affect the endogenous decision weights. In section

4, we use the model to analyze in detail the forces that lead to risk averse and risk seeking

behavior. In particular, we derive some of the building blocks of Prospect Theory from first

principles, and provide experimental evidence for new predictions concerning risk attitudes.

In Section 5 we focus on the two principal phenomena our model accounts for: Allais para-

doxes and preference reversals. We illustrate our analysis by extending these paradoxes in

several ways, including correlation effects. In Section 6, we consider framing effects and

mixed lotteries. Section 7 concludes.

2 A Simple Example

In this section, we present the results of two experiments illustrating two central intuitions

behind our model: how the contrast between payoffs in different states makes some states

more salient to the decision maker than others, and how the relative salience of different

states leads to a transformation of objective probabilities into decision weights, shaping risk

attitudes. The procedures for all experiments in the paper are described in Appendix 2. The

two experiments are:
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Experiment 1: Choose between the two options:

L1 =

 $1 with probability 95%

$381 with probability 5%
, L2 = {$20 for sure.

Experiment 2: Choose between the two options:

L1 =

 $301 with probability 95%

$681 with probability 5%
, L2 = {$320 for sure.

Three points are noteworthy. First, the second experiment simply adds $300 to all the

payoffs in the first. Second, in both experiments the two options have the same expected

payoffs. Third, in both experiments there is the same relatively small (5%) probability of a

high payoff, and a high (95%) probability of a $19 loss relative to the sure outcome.

The same 120 subjects participated in the two experiments over the internet. In Exper-

iment 1, 83% of the subjects chose the safe option L2, whereas in Experiment 2 67% of the

same subjects chose the risky option L1. The difference between the two experiments in the

probability of choosing the safe option is highly statistically significant. In fact, over half

the subjects who chose L2 in the first experiment switched to L1 in the second.

Although in each experiment the two options offer the same expected value, the same

subjects are risk averse in the first experiment and risk loving in the second. Expected Utility

Theory typically assumes risk aversion, and so would have trouble accounting for Experiment

2. Prospect Theory (both in its standard and cumulative versions) holds that the small 5%

probability of the high outcome is over-weighted by decision makers, creating a force toward

risk loving behavior in both experiments. To account for risk averse behavior in Experiment

1 and risk loving behavior in Experiment 2, Prospect Theory requires a combination of

probability weighting and declining absolute risk aversion in the value function.3

Our explanation of these findings does not rely on the shape of the value function. It

goes roughly as follows. In the first experiment, in the state where the lottery loses relative

3This is only true if the reference point of a Prospect Theory agent is the status quo. If instead the
reference point is the sure prospect, then both problems are identical and Prospect Theory cannot account
for the switch from risk aversion in Experiment 1 to risk seeking in Experiment 2.
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to the sure payoff, the lottery’s payoff $1 feels a lot lower than the sure payoff of $20: this

bad outcome is more salient than the possibility of winning $381, and subjects focus on the

former when making their decision. In the second experiment, the lottery’s payoff in the

state where it loses, $301, does not feel nearly as bad compared to the sure payoff of $320:

the outcome of winning $681 is thus more salient and subjects focus on it when making their

decision. Put differently, the risk of losses is more salient than the opportunity for gains in

the first experiment, and vice versa in the second. The focus on losses (relative to the safe

payoff) then pushes subjects toward risk-averse choice in Experiment 1, while the focus on

gains pushes them toward risk-loving choice in Experiment 2. The analogy here is to sensory

perception: the salient states are those featuring the strongest difference between lottery

payoffs, and the decision maker’s mind is drawn to the salient state when making a decision.

How do we implement this rough intuition formally? In section 3 we present a general

model, but here consider a special case helpful for analyzing this experiment. Define the

salience of a state of the world as the percentage difference between the higher and the

lower payoff in that state. In Experiment 1 the salience of the state where the lottery

loses is equal to 20/1 = 20, the salience of the state where the lottery wins is given by

381/20 = 19.05. In contrast, in Experiment 2 the salience of the state where the lottery loses

is given by 320/301 = 1.06, while the salience of the state where the lottery wins is given by

681/320 = 2.13. In line with our previous intuition, in Experiment 1 the lottery loss is more

salient than the gain, and vice versa in Experiment 2.

We formally assume that the agent overweights the probability of the more salient state,

underweighting the other state’s probability. Thus, in Experiment 1 subjects under-weight

the probability of a 5% gain, whereas in Experiment 2 they over-weight the probability of a

5% gain. The agent computes the lottery’s expected utility using these transformed decision

weights. An agent with a linear utility will then value the lottery less than its expected

value in Experiment 1, behaving in a risk averse manner, while he will value the lottery

more than its expected value in Experiment 2, behaving in a risk loving manner, just as

the experimental results indicate. By focusing the agent on different lottery states, extreme

payoffs shape risk preferences. In the next sections we show that our emphasis on the salience

of lottery payoffs gives an intuitive account of risk attitudes and yields novel predictions on
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how the context in which a choice is presented should affect behavior.

3 The Model

An agent chooses between two lotteries L1 and L2. The state space S includes all lotteries’

payoff combinations occurring with positive probability. In a generic state s = (xs, ys) ∈ S,

which occurs with probability πs > 0, lottery L1 pays xs and L2 pays ys. If lotteries are

statistically independent, then S = X × Y , where X = (xi)i=1,...,|X| and Y = (yj)j=1,...,|Y |

are the sets of payoffs for L1 and L2 , respectively, and state sij = (xi, yj) occurs with

probability πi,j = pi · qj, where pi, qj > 0 are the probabilities with which L1 and L2 pay

xi and yj, respectively. The experiments of Section 2 involve the choice between the lottery

L1 = (x, p; x, 1− p) and the sure prospect L2 = (y, 1), where x > y > x. Here S consists of

the state (x, y) where L1 “gains” over L2, and the state (x, y) where L1 “loses” over L2.

The agent evaluates lottery payoffs using a value function v : R→ R. Absent probability

distortions, the agent chooses lottery L1 over L2 if and only if:

∑
s∈S

πs [v(xs)− v(ys)] > 0. (1)

Throughout most of the paper, we illustrate the mechanism that generates risk prefer-

ences in our model by assuming a linear value function v, which allows us to deal with cases

involving lotteries that have all positive or all negative payoffs. In section 6.2, when we focus

on mixed lotteries, we consider a piece-wise linear value function featuring loss aversion, as

in Kahneman and Tversky (1979). 4 With a linear value function, expression (1) says that

the agent trades off the state-by-state gains and losses of L1 relative to L2 by weighting them

by their respective probabilities. For instance, the two outcomes lottery is preferred to the

sure prospect when its expected gain p(x− y) in state (x, y) is larger than its expected loss

4Our approach is complementary to Koszegi and Rabin (2006), who build a model of reference point
formation. Koszegi and Rabin (2007) use this model to explain shifts in attitudes towards risky lotteries
in the real world. Our focus on lottery choice in the lab allows us to focus on the role of salience, holding
reference points constant. Our model of probability weights can also be studied using a two part utility
function of the kind introduced by Koszegi and Rabin (2006) which combines a standard concave utility
function with a reference dependent value function featuring loss aversion around status quo wealth.
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(1− p)(y − x) in state (x, y).

The local thinker (LT) departs from Equation (1) by overweighting the most salient

states s ∈ S relative to the others. This process consists of two stages: first, the states of

the world are ranked by salience and the probability πs of each state is transformed into

decision weights πLTs ; second, the weights πLTs replace the probabilities πs in Equation (1).

To analyze the first stage, we offer a formal definition of salience:

Definition 1 The salience of a generic state of the world s = (x, y) is measured by a con-

tinuous, bounded, and symmetric salience function σ(x, y) that satisfies four conditions:

1) Ordering: if [x′, y′] is a subset of [x, y] then σ(x, y) > σ(x′, y′). For any x, limy→∞ σ(x, y) =

supx′,y′ σ(x′, y′).

2) Diminishing sensitivity: for any x, y such that x+y > 0 and for any ε > 0, σ(x+ε, y+ε) <

σ(x, y).

3) Reflection: for any x, y, x′, y′ such that x + y > 0 and x′ + y′ > 0, σ(x, y) < σ(x′, y′) if

and only if σ(−x,−y) < σ(−x′,−y′).

4) Convexity: for any x, y, ε > 0, the ratio σ(x,x+y)
σ(x+ε,x+ε+y)

decreases in x and tends to 1 as

x→∞.

To illustrate these four properties, consider the following specific salience function:

σ(x, y) =
|x− y|

|x|+ |y|+ θ
, (2)

where θ > 0 is a constant and σ(x, y) ∈ [0, 1]. According to the ordering property 1, salience

increases in the distance between payoffs. In Equation (2), this is captured by the numerator

|x − y|. According to diminishing sensitivity and reflection (properties 2 and 3), salience

decreases as a state’s average payoff gets further away from zero in both the positive and

negative domains. This captures the intuitive idea that salience is shaped by the magnitude

rather than the sign of payoffs. To illustrate diminishing sensitivity and reflection, Figure 1

plots the salience function of Equation (2) keeping the distance between payoffs constant at

|x− y| = 1. Note that in (2) diminishing sensitivity is captured by the term |x|+ |y| in the

denominator, and reflection takes the strong form σ(x, y) = σ(−x,−y), as illustrated by the

symmetry of salience in Figure 1. Finally, according to the convexity property 4, salience
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falls at a decreasing rate as payoffs become very large in absolute value. This property limits

the effect of diminishing sensitivity, implying that at large absolute payoff values the distance

between payoffs is the principal determinant of salience. As shown by Figure 1, in Equation

(2) this effect is captured by the convexity of salience as a function of x + y. Section 3.1

discusses the connection between these properties and the cognitive notion of salience.

Figure 1: A simple salience function, Eq. (2)

Although our main results rely only on the properties in Definition 1, we sometimes use

the tractable salience function (2) to illustrate the workings of our model. One feature of

this functional form is that it parsimoniously parameterizes, via θ, the relative strength of

ordering and diminishing sensitivity. If θ = 0, diminishing sensitivity is strong in the sense

that any state with a zero payoff has maximal salience, σ(0, x) = 1, regardless of the distance

between 0 and the payoff x. This is the case we used in Section 2, since for θ = 0 salience is

an increasing function of the ratio max{|x|, |y|}/min{|x|, |y|}. If instead θ > 0, even a state

with a zero payoff can be less salient than a state with positive payoffs provided the distance

between payoffs in the latter state is sufficiently large. In this sense, when θ > 0 ordering

can overcome diminishing sensitivity.

For a given salience function σ(x, y), the local thinker ranks the states and distorts their

probability weights as follows:

Definition 2 Given any two states s, s̃ ∈ S, s 6= s̃, we say that s is more salient than s̃ if
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σ(xs, ys) > σ(xs̃, ys̃). Index ks ∈ {1, ..., |S|} denotes the salience ranking of a generic s ∈ S,

with lower ks indicating higher salience. States with the same salience are given the same

ranking. For any two states s, s̃ ∈ S having ks ≥ ks̃, the local thinker distorts the odds πs̃/πs

into πLTs̃ /πLTs , where:

πLTs̃
πLTs

=

(
1

δ

)ks−ks̃ πs̃
πs

, (3)

with δ ∈ (0, 1], and by assumption
∑

s π
LT
s = 1. Defining ωs = δks−1/

(∑
r δ

kr−1 · πr
)
, the

decision weight attached by a local thinker to a generic state s ∈ S is equal to:

πLTs = πs · ωs. (4)

The parameter δ captures the (inverse of the) extent of the local thinker’s focus on salient

states. With δ < 1, the local thinker discounts the probability of the less salient states. In

this case, the state s is overweighted if and only if ωs > 1, which occurs if and only if s

is sufficiently salient to be less discounted than the average (δks−1 >
∑

r δ
kr−1 · πr). For a

local thinker with δ < 1, ωs represents the extent of overweighting of state s. In the case of

independent lotteries, Equation (4) implies that the weight placed on each specific lottery

outcome is equal to pLTi = pi
∑

j qjωij/
∑

kj pkqjωij.

The agent evaluates lotteries L1 and L2 by using the weights πLTs rather than the objective

probabilities πs. He chooses L1 whenever:

∑
s∈S

δks−1πs [v(xs)− v(ys)] > 0, (5)

which is equivalent to
∑

s∈S π
LT
s [v(xs)− v(ys)] > 0. The case where δ → 0 describes the

agent who only focuses on the most salient state and decides based solely on payoffs in that

state. In general, for δ < 1 the local thinker under-weights – compared with true probabilities

– the gains and losses of L1 relative to L2 that occur in low salience states. As δ → 1, our

model converges to Expected Utility Theory.
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3.1 Discussion of Assumptions and Setup

Our formalization of salience relies on the basic principle of human perception that a sensorial

stimulus gives rise to a subjective representation whose intensity increases in the stimulus’

magnitude but also depends on context (Kandel et al, 1991). The function σ(x, y) maps this

idea to lottery states: the strength of the stimulus is the payoff difference within a state, and

salience captures the subjective intensity with which a state is perceived. This subjective

intensity decreases with the distance of the state’s payoffs from the status quo of zero, which

is our measure of context. As in Weber’s law of diminishing sensitivity, whereby a change

in luminosity is perceived less intensely if it occurs at a higher luminosity level, our agent

perceives less intensely payoff differences occurring at high (absolute) payoff levels.5

We model the agent’s overweighting of salient states by assuming that the probability

of the kth most salient state is multiplied by the (k − 1)th power of the “local thinking”

parameter δ, which may reflect an individual’s ability to pay attention to multiple aspects

of the problem, cognitive load, or simply intelligence. This rank-based discounting buys

us analytical tractability, but our main results also hold if the probability of each state

(x, y) is multiplied by an increasing function δ [σ(x, y)], for instance δ−σ(x,y); obviously, in

this case, the cardinal properties of σ(x, y) yield additional effects beyond those we already

find. The only significant restriction embodied in our formalization is that the distortions

in the odds of any two states do not depend on these states’ underlying probabilities. The

salience function in Equation (2) and the decision weights in Definition 2 provide a tractable

and parsimonious version of our model, characterized only by the two parameters (θ, δ).

This allows us to derive predictions concerning a large variety of experimental lottery choice

problems and to find ranges for θ and δ that are consistent with the observed choice patterns.

To compare our model to Prospect Theory, recall that the latter is based on four modifica-

tions of Expected Utility Theory. First, lotteries are evaluated without integrating them into

5There is some neurobiological evidence connecting visual perception to risk taking behavior. McCoy
and Platt (2005) show in a visual gambling task that when monkeys made risky choices neuronal activity
increased in an area of the brain (CGp, the posterior cingulate cortex) linked to visual orienting and reward
processing. Crucially, the activation of CGp was better predicted by the subjective salience of a risky option
than by its actual value, leading the authors to hypothesize that “enhanced neuronal activity associated with
risky rewards biases attention spatially, marking large payoffs as salient for guiding behavior (p. 1226).” As
we will see, a similar mechanism underlies risky choices in our model.
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the decision maker’s wealth (narrow framing). Second, people have a stable value function

that is concave in gains and convex in losses. Third, people exhibit loss aversion, the kink in

utility around the reference point. Fourth, and crucially to the comparison, KT follow the

earlier work of Edwards (1962) and Fellner (1961) in assuming a stable probability weighting

function, which centrally features overweighting of small probabilities but does not depend

on lottery payoffs. It is the various properties of this function, such as sub-additivity, that

allow KT to account for risk loving behavior and the Allais paradoxes.6

Our framework adopts the narrow framing assumption. In Section 6.2, we also incor-

porate loss aversion; although our model does not deal centrally with mixed lotteries, loss

aversion seems to be a natural way to explain risk aversion toward small bets, such as the

refusal to take a 50-50 chance of winning $10 and losing $5. We do not need to assume that

utility is concave for gains and convex for losses; we show in Section 6.1 how our model gen-

erates these features of preferences without additional assumptions. Most importantly, we

adopt KT’s general idea of probability weighting but replace their fixed probability weighting

function with context-dependent decision weights based on the salience of payoffs.

Quiggin’s (1982) rank-dependent expected utility and Tversky and Kahneman’s (1992)

Cumulative Prospect Theory (CPT) constitute early attempts to study the impact of the

rank order of a lottery’s payoffs on probability weighting. Prelec (1998) axiomatizes a set of

theories of choice based on probability weighting, which include CPT. Our theory exhibits

two sharp differences from these works. First, in our model the magnitude of payoffs, not

only their rank, determines salience and probability weights: the lottery upside may still be

underweighted if the payoff associated with it is not sufficiently large. As we show in Section

4, this feature is crucial to explaining shifts in risk attitudes.

Second, and more important, in our model probability weights depend on the choice

context, namely on the available alternatives as they are presented to the agent. Our model

thus provides a tractable setup to study context dependence. In Section 5 we exploit this

feature to shed light on the psychological forces behind the Allais paradoxes and preference

reversals. We are not the first to propose a model of context dependent choice among

lotteries. Rubinstein (1988) builds a model of similarity-based preferences, in which agents

6For a recent attempt to estimate the probability weighting function, see Wu and Gonzalez (1996).
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simplify the choice among two lotteries by pruning the dimension (probability or payoff, if

any), along which lotteries are similar. The working and predictions of our model are very

different from Rubinstein’s, even though we share the general idea that the common ratio

Allais paradox (see Section 5) is due to subjects’ focus on lottery payoffs. Another theory of

context dependent choice is Regret Theory (Loomes and Sugden 1982, Bell 1982, Fishburn

1982). In this theory, the alternative lotteries directly affect the agent’s utility by adding

a regret/rejoice term to a standard utility function. In our model, instead, context affects

decisions by shaping the salience of states and decision weights. By adopting a traditional

utility theory perspective, Regret Theory cannot capture framing effects.

Context-dependence in our model captures the influence of payoff salience on decisions

and enables us to address several long-standing puzzles in decision theory. The theory could

perhaps be generalized to take into account determinants of salience other than payoff values,

such as prior experiences, which might matter in some situations. Our emphasis on the state

space as a source of context dependence does not lead to accurate predictions when lotteries

are presented in such a way that the state space is neglected. For example, consider a choice

problem in which the payoffs of two lotteries are determined by the roll of the same dice.

One lottery pays 1,2,3,4,5,6, according to the dice’s face, while the other lottery has payoffs

2,3,4,5,6,1. In our model, the state in which the first lottery pays 6 and the second pays 1

would appear most salient to the agent, leading him to prefer the first lottery. But of course

a moment’s thought would lead him to realize that the second lottery is just a rearrangement

of the first. What is salient here is that the two lotteries are the same. Our model needs to be

extended to understand how people represent different problems to deal with this situation.

3.2 Lottery Valuation and Risk Preferences

Let us go back to the choice between L1 and L2. Given over-weighting ωs of state s = (xs, ys),

one can see that he chooses L1 over L2 if and only if:

∑
s∈S

πsv(xs)−
∑
s∈S

πsv(ys) > cov [v(ys)− v(xs), ωs] , (6)
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where the left-hand side measures the difference between the valuation of L1 and L2 computed

by an agent who does not distort probabilities. Equation (6) says that probability weighting

tilts the choice in favor of L2 when the right hand side of Equation (6) is positive, namely

when the states where L2 delivers higher payoffs than L1 [i.e. where v(ys) − v(xs) > 0] are

more salient, and thus have higher ωs.

Equation (6) illustrates that the local thinker’s over-weighting of salient states plays a

central role in his choices. To explore this role, we begin with the following result:

Proposition 1 The local thinker’s over-weighting ωs has two properties:

1) Change in a state’s probability. If the probability of state s is increased by dπs = hπs and

the probabilities of other states are reduced while keeping their odds constant, i.e. dπs̃ =

− πs
1−πshπs̃ for all s̃ 6= s, then:

dωs
h

= − πs
1− πs

· ωs · (ωs − 1) . (7)

2) Change in a state’s payoffs. A change in the payoffs xs, ys of a state s which, by increas-

ing (only) that state’s salience σ (xs, ys), improves its ranking from ks to ks−1 increases this

state’s over-weighting ωs.

The over-weighting of the probability of a state depends on two factors: the state’s true

probability and the salience of its payoffs. According to property 1, an increase in a state’s

probability πs reduces the weight ωs if the state is over-weighted (i.e. if ωs > 1), while it

increases ωs otherwise. Put differently, low probability states are subject to the strongest

distortions: they are severely over-weighted if salient and severely under-weighted otherwise.

Intuitively, a given distortion caused by salience is relatively more severe if the state’s true

probability is low.

Property 2 says that changing the payoffs of a state s in a way that increases its salience

ranking (without affecting the salience of other states), unambiguously increases the decision

weight placed by the local thinker on this state, for any given objective probability πs.

This proposition stands in contrast with KT’s (1979,1992) assumption that high rank,

low probability payoffs are always overweighted. In our model states are overweighted if and
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only if they are salient, regardless of their probability. Probabilities do however affect the

extent of distortion: the most severe over-weighting occurs when salient states are unlikely.

We next investigate the implications of this notion for the local thinker’s preferences toward

risk, shedding further light on the experimental findings of Section 2.

4 Salience and Attitudes Towards Risk

Consider the choice between a lottery L1 = (x, p; x, 1 − p) and a sure prospect L2 = (y, 1),

where x > y > x > 0. An expected utility maximizer with linear utility chooses the

lottery when the latter’s expected value is larger than y, namely when the lottery wins with

sufficiently high probability:

p ≥ y − x
x− x

. (8)

The right hand side falls in x because the lottery becomes more attractive at any given p as

long as its upside goes up.

A local thinker’s choice is described by replacing p in Equation (8) with the salience

distorted weight pLT . To determine this weight, recall that the lottery’s “gain” state sg =

(x, y) is more salient than the “loss” state sl = (x, y) when σ(x, y) > σ(x, y). Definition 1

ensures that there is a threshold payoff x∗ such that the gain state is more salient than the

loss state if and only if x > x∗. As the agent inflates by 1/δ the odds of the salient state,

the weight of the gain state sg is equal to:

pLT =


pδ

pδ+(1−p) if x < x∗

p
p+δ(1−p) if x > x∗

; (9)

in the knife edge case x = x∗ we have pLT = p. If x > x∗, the lottery gain is over-weighted,

i.e. ωsg = 1/[p + δ(1 − p)] > 1. If instead x < x∗, the lottery gain is under-weighted, i.e.

ωsg = δ/[pδ+(1−p)] < 1. By Proposition 1, the overweighting of the gain state when x > x∗

and its underweighting when x < x∗ fall in the probability p of the state.

To illustrate the role of salience in the starkest manner, notice that as local thinking

becomes severe, i.e. as δ → 0, then by Equation (9) the agent forms his decision by focusing
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solely on the most salient state. Figure 2 compares the choice of a local thinker and an

expected utility maximizer in this case:

Figure 2: Local Thinking vs. Expected Utility when δ → 0

Above the solid downward sloping curve, the expected utility maximizer chooses the

lottery; below it he chooses the sure prospect. The dashed curve separates these two regions

for the local thinker: if x < x∗, the local thinker focuses on the lottery loss and chooses the

sure prospect, if x > x∗ he focuses on the gain and chooses the lottery.

In Figure 2, two patterns stand out. First, by boosting the salience of the lottery upside,

a higher x induces the local thinker to switch from risk aversion to risk seeking. Second,

departures from Expected Utility Theory emerge when the salient state is relatively unlikely.

If the gain is both salient and likely, we are in the Lottery region where both the expected

utility maximizer and the local thinker take the risk; if the loss is both salient and likely, we

are in the Safe region where both agents choose the sure prospect. In contrast, in the Excess

Lottery region not only is the lottery gain salient, but its probability p is quite low. It is

precisely in this region that the local thinker chooses the lottery even if the the Expected

Utility maximizer does not. Similarly, in the Excess Safe region not only is the lottery loss

salient, but its probability 1− p is quite low. As a consequence, the local thinker refuses the

lottery even if the the Expected Utility maximizer would take it.
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4.1 Payoffs, Probabilities and Risk Attitudes

In Figure 2 an independent change in x affects not only the salience of the lottery’s upside but

also the premium that the lottery pays relative to the sure prospect (namely the difference

in expected values). For δ > 0, both effects change the local thinker’s risk taking.7

To see the “pure” impact of probabilities and payoffs on the local thinker’s risk attitudes,

consider the case in which the premium is zero, namely where the lottery has the same

expected value as the sure prospect, i.e. (x− y) = (y − x)(1− p)/p. This is akin to moving

along the solid downward sloping curve of Figure 2. In this case, from Equation (8) a local

thinker chooses the lottery if and only if:

pLT ≥ p, (10)

so the agent is risk loving when the gain is more salient than the loss and is risk averse

otherwise. Now risk attitudes are independent of δ < 1: due to the agent’s underlying risk

neutrality, the slighest over or under-weighting of the lottery gain induces a strict preference

for the lottery or sure prospect, respectively.

To obtain a sharp prediction, consider the salience function of Equation (2). In this case,

the lottery gain is more salient than the loss whenever:

(
y +

θ

2

)
(1− 2p) > (y − x)(1− p), (11)

which uniquely identifies the parameter values for which the agent is risk seeking. To shed

light on the experiments of Section 2, we now investigate how the agent’s risk attitudes vary

holding the lottery loss (y − x) constant at some value l (in Section 2, l = 19). The risk

attitudes implied by Equation (11) are graphed in Figure 3:

Two patterns stand out. First, as in Section 2, for a fixed p < 1/2, an increase in the

7This is shown by replacing Equation (9) into Equation (8): when δ > 0 the local thinker chooses the
sure prospect when x < x∗ and p ≥ y−x

δ(x−x)+(y−x)(1−δ) , while he chooses the lottery when x > x∗ and

p ≥ (y−x)δ
(x−y)+(y−x)δ . The main features of the local thinker’s choice track those represented in Figure 2, but

now the local thinker’s risk attitudes become sensitive to the lottery premium. For instance, as the lottery
upside grows closer to x∗ in the Excess Safe region then – for a given probability p – the local thinker
eventually starts taking the lottery because its premium has gone up.
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Figure 3: Shifts in risk attitudes

lottery’s expected value y fosters risk seeking. When the expected value y is low, the lottery’s

downside is close to zero and diminishing sensitivity implies that the loss is salient, inducing

risk aversion. As y becomes larger, diminishing sensitivity becomes weaker and absolute

payoff differences become crucial for determining salience. Since for p < 1/2 the lottery gain

is larger than the loss, for y sufficiently large this effect leads to risk taking.8

Second, for a given expected value y, a higher probability p of the gain reduces risk

seeking. Intuitively, as p increases the lottery’s upside must fall for the expected value to

stay constant. As a consequence, the lottery gain becomes less salient, inducing risk aversion.

Risk taking never occurs when p ≥ 1/2, since in this case the gain is smaller than the loss

and thus the latter is always more salient by diminishing sensitivity.

One way to present this logic is to derive the probability weighting function generated

by our model. Fix a value of y in Figure 3 and increase the probability p along the hori-

zontal axis. Figure 4 below shows the decision weight pLT along this path as determined

8The main features of Figure 3 are obtained under the properties in Definition 1. Define l = y − x as
the fixed downside of the lottery, and x(p, y) as the upside at which the lottery’s expected value is equal to
the sure prospect. Then the local thinker is risk seeking provided σ(x(p, y), y) > σ(y − l, y). Since x(p, y)
decreases in p, by the ordering property we know that, holding y constant, for p sufficiently large the lottery
downside becomes salient and the agent is risk averse. This is surely the case for p ≥ 1/2. On the other
hand, since σ(y − l, y) decreases in y the convexity property implies that, for fixed p < 1/2, as y increases
the upside eventually becomes salient, generating the patterns in Figure 3.
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by our model, where p∗ is the threshold at which the agent switches from risk seeking to

Figure 4: Context dependent probability weighting function

risk aversion in Figure 3. Remarkably, our model endogenously recovers the key features of

Prospect Theory’s inverse S-shaped π(p) function (KT 1979): over-weighting of low probabil-

ities, under-weighting of high probabilities. In Figure 4, low probabilities are over-weighted

because they are associated with salient upsides of longshot lotteries. High probabilities are

under-weighted as they occur in lotteries with a small, non salient, upside.

Crucially, however, in our model the specific weighting function of Figure 4 does not

capture subjects’ universal perception of probabilities, because the weighting function is

context dependent. At high expected values y, the probability weighting function shifts

up, which expands the range of overweighting, leading to risk seeking even at moderate

probabilities; at low expected values y, the probability weighting function shifts down, which

expands the range of under-weighting, leading to risk aversion even at low probabilities. More

generally, decision weights in our model are shaped by the way lottery choice is presented.

Section 5 uses this idea to unify observed patterns of violation of the independence axiom

and preference reversals.

These results indicate that the salience of particular states can be a powerful force induc-

ing individuals to gamble or engage in risky behavior in conditions that are far more common
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than those characterizing longshot bets. More generally, changes in lottery stakes or in prob-

abilities that are irrelevant to an expected utility maximizer can, by shaping salience, induce

a local thinker to “over-react” in the direction of risk seeking or risk aversion.

4.2 Experimental Evidence on Risk Attitudes

We tested the predictions of Figure 3 by giving experimental subjects a series of binary

choices between a lottery L1(p) = (x, p;x, 1 − p) and a sure prospect L2 = (y, 1) where L1

is a mean preserving spread of L2. We set the downside of the lottery at l = $20, yielding

an upside (x − y) of $20 · (1 − p)/p. We varied y in {$20, $100, $400, $2100, $10500} and

p in {.01, .05, .2, .33, .4, .5, .67}. For each of these 35 choice problems, we collected at least

70 responses. On average, each subject made 5 choices, several of which held either p or y

constant. The observed proportion of subjects choosing the lottery for every combination

(y, p) is reported in Table 1; for comparison with the predictions of Figure 3, the results are

shown graphically in Figure 5.

$10500 0.83 0.65 0.50 0.48 0.46 0.33 0.23
$2100 0.83 0.65 0.48 0.43 0.48 0.38 0.21
$400 0.60 0.58 0.44 0.47 0.33 0.30 0.23
$100 0.58 0.54 0.40 0.32 0.22 0.30 0.13
$20 0.15 0.2 0.12 0.08 0.10 0.25 0.15

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 1: Proportion of Risk-Seeking Subjects

The patterns are qualitatively consistent with the predictions of Figure 3. For a given

expected value y, the proportion of risk takers falls as the probability p of the gain increases;

for a given probability p < 0.5 of the gain, the proportion of risk takers increases with the

expected value y. The effect is statistically significant: at p = 0.05 a large majority of

subjects (80%) are risk averse when y = $20, but as y increases to $2100 a large majority

(65%) becomes risk seeking. Finally, there is a large drop in risk taking as p crosses 0.5.

Note that the increase in y raises the proportion of risk takers from less than 10% to 50%

even for moderate probabilities in the range (0.2, 0.35). Even for probabilities as high as
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Figure 5: Proportion of Risk-Seeking Subjects

40%, we observe a 5-fold rise in risky choices as y increases. These patterns are broadly

consistent with the predictions of our model. As hinted in Section 2, the weighing function

of Prospect Theory and CPT can explain why risk seeking prevails at low p, but not the

shift from risk aversion to risk seeking as y rises. To explain this feature, both theories need

a concave value function characterized by strong diminishing returns.9

We further explore our model’s predictions by considering the choice between a sure

prospect of gaining y and a longshot lottery L that promises, for the same expected value y,

a large positive payoff with small probability and zero with large probability. Equation (11)

implies that for these lotteries, where x = 0, risk taking occurs when y is sufficiently small:

y < θ
1− 2p

2p
. (12)

Now a high expected value y discourages risk seeking. Note the difference with Figure 5,

where higher y fosters risk taking: in that case the amount of the lottery’s loss (y − x) stays

constant so that by diminishing sensitivity the salience of the loss state decreases as all

payoffs rise. In the case of longshot lotteries instead, a higher y unambiguously boosts the

salience σ(0, y) of the loss while it exerts two conflicting effects on the salience of the gain,

9In the Appendix we explore different calibrations of Prospect Theory, and in particular find that these
results cannot be explained with Tversky and Kahneman’s (1992) baseline calibration of the value function
for two outcome lotteries.
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σ(y, y/p), for it increases the payoff difference but also raises the average payoff level. Using

the salience function of Equation (2), these effects imply that an increase in y discourages

risk taking by making more salient the state in which the longshot lottery loses.

To test this prediction, we asked subjects to choose between the longshot lottery and

the sure prospect for y ∈ {1, 5, 20, 50, 100, 200} and p = 0.01. As predicted by our model,

subjects take longshot lotteries only at low expected values and risk seeking already drops

dramatically between y = $5 and y = $20. Interestingly, Prospect Theory and CPT cannot

yield this pattern under a standard value function v(x) = xα, for in this case risk attitudes

over longshot lotteries only depend on probability weighting, and not on payoffs.

In the Appendix, we compute values for our parameters θ and δ that are consistent with

the evidence on risk preferences of this section, namely δ ∼ 0.7 and θ ∼ 0.1. Although these

values are not a formal calibration, we employ them as a useful reference for discussing Allais

paradoxes in the next section.

5 Local Thinking and Context Dependence

We have seen that the context dependent probability weighting function produced by our

model gives an intuitive account of risk attitudes. We now use such context dependence to

shed further light on the Allais paradoxes and on preference reversals.

5.1 The “Common Consequence” Allais Paradox

The Allais paradoxes (1953) are the best known and most discussed instances of failure of the

independence axiom. Kahneman and Tversky’s (1979) version of the “common consequence”

paradox compares the choices:

Lz1 = (2500, 0.33; 0, 0.01; z, 0.66), Lz2 = (2400, 0.34; z, 0.66) (13)

for different values of the payoff z. By the independence axiom, an expected utility maximizer

should not change his choice as the “common consequence” z is varied, for the latter cancels

out in the comparison between Lz1 and Lz2.
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In reality, experiments reveal that for z = 2400 most subjects are risk averse, preferring

L2400
2 = (2400, 1) to L2400

1 = (2500, 0.33; 0, 0.01; 2400, 0.66). When instead z = 0, most

subjects are risk seeking, preferring L0
1 = (2500, 0.33; 0, 0.67) to L0

2 = (2400, 0.34; 0, 0.66).

In violation of the independence axiom, z affects the experimental subjects’ choices.

Prospect Theory and CPT (KT 1979 and TK 1992) explain the switch from L2400
2 to L0

1

by the so called “certainty effect”, namely the idea that adding a downside risk to the sure

prospect L2400
2 undermines agents’ valuation much more than adding the same downside risk

to the already risky lottery L2400
1 . This effect is directly built into the probability weighting

function π(p) by the assumption of subcertainty, e.g. π(0.34)− π(0) < 1− π(0.66).10

Our model endogenizes this feature of decision weights, and thus explains the Allais

paradox, by arguing that the common consequence z alters the salience of lottery outcomes.

To see this, consider the choice between L2400
1 and L2400

2 . Here there are three states of the

world and the most salient state is one where L2400
1 pays zero and the riskless lottery L2400

2

pays 2400 because:

σ(0, 2400) > σ(2500, 2400) > σ(2400, 2400). (14)

The inequalities follow from diminishing sensitivity and ordering, respectively, and can be

verified for the case of the salience function in Equation (2). By Equation (5), a local thinker

then prefers the riskless lottery L2400
2 provided:

(0.01) · 2400− δ · (0.33) · 100 > 0, (15)

which holds for δ < 0.73. Although the risky lottery L2400
1 has a higher expected value, it is

not chosen when local thinking is sufficiently severe, because its downside of 0 is very salient.

Consider the choice between L0
1 and L0

2. Now both options are risky and there are four

states of the world, whose salience ranking is:

σ(2500, 0) > σ(0, 2400) > σ(2500, 2400) > σ(0, 0). (16)

The first inequality follows from ordering, and the second from diminishing sensitivity. By

10In CPT the mathematical condition on probability weights is slightly different but carries the same
intuition: the common consequence is more valuable when associated with a sure rather than a risky prospect.
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Equation (5), a local thinker prefers the risky lottery L0
1 provided:

(0.33) · (0.66) · 2500− δ · (0.67) · (0.34) · 2400 + δ2 · (0.33) · (0.34) · 100 > 0 (17)

which is verified for all δ, so that any local thinker chooses the risky lottery L0
1 because its

upside is very salient.

In sum, when δ < 0.73 – which holds in the parameterization δ = 0.7, θ = 0.1 – a local

thinker exhibits the Allais paradox. It is worth spelling out the exact intuition for this result.

When z = 2400, the lottery L2400
2 is safe, whereas the lottery L2400

1 has a salient downside of

zero. The agent focuses on this downside, leading to risk aversion. When instead z = 0, the

downside payoff of the safer lottery L0
2 is also 0, just as the downside of the risky lottery.

As a result, the lotteries’ upsides are now crucial to determining salience. This induces the

agent to overweight the larger upside of L0
1, triggering risk seeking. The salience of payoffs

endogeneizes the “certainty effect” as a form of context dependence: when the same downside

risk is added to the lotteries, the sure prospect is particularly damaged because the common

downside payoff induces the agent to focus on the larger upside of the risky lottery, leading

to risk seeking choices.

This role of context dependence invites the following test. Suppose that subjects are

presented the following correlated version of the lotteries Lz1 and Lz2 in Equation (13):

Probability 0.01 0.33 0.66

payoff of Lz1 0 2500 z

payoff of Lz2 2400 2400 z

(18)

where the table specifies the possible joint payoff outcomes of the two lotteries and their

respective probabilities. Correlation changes the state space but not a lottery’s distribution

over final outcomes, so it does not affect choice under Expected Utility Theory or Prospect

Theory. Critically, this is not true for a local thinker: the context of this correlated version

makes clear that the state in which both lotteries pay z is the least salient one, and also that

it drops from evaluation in Equation (5), so that the value of z should not affect the choice

at all. That is, in our model – but not in Prospect Theory – the Allais paradox should not
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occur when Lz1 and Lz2 are presented in the correlated form as above.

We tested this prediction by presenting experimental subjects correlated formats of lot-

teries Lz1 and Lz2 for z = 0 and z = 2400. The observed choice pattern is the following:

L2400
1 L2400

2

L0
1 8% 8%

L0
2 13% 71%

The vast majority of subjects do not reverse their preferences (79% of subjects lay on the

diagonal), and most of them are risk averse, which in our model is also consistent with the

fact that (0, 2400) is the most salient state in the correlated choice problem (18). Among

the few subjects reversing their preference, no clear pattern is detectable. Thus, when the

lotteries pay the common consequence in the same state, choice is invariant to z and the

Allais paradox disappears. Our model accounts for this fact by stressing that when the

lotteries pay z in the same state, this state is not salient and is disregarded in evaluation.11

5.2 The “Common Ratio” Allais Paradox

The “common ratio” effect occurs in the choice between lotteries:

Lq1 = (6000, q; 0, 1− q), Lp2 = (α · 6000, p; 0, 1− p), (19)

where α < 1. By the independence axiom, an expected utility maximizer with utility function

u(·) chooses Lp2 over Lq1 when:

q

p
· u(6000) + u(0)

(
1− q

p

)
≤ u(α · 6000). (20)

11We tested the robustness of the correlation result by changing the choice problem in several ways: 1) we
framed the correlations verbally (e.g. described how the throw of a common die determined both lotteries’
payoffs), 2) we repeated the experiment with uncertain real world events, instead of lotteries, and 3) we varied
the ordering of questions, the number of filler questions, and payoffs. As the Appendix shows, our results
are robust to all these variations. We also ran an experiment where subjects were explicitly presented the
lotteries of Equation (13) with z = 2400 as uncorrelated, with a state space consisting of the four possible
states. The choice pattern exhibited by subjects is: i) very similar to the one exhibited when the state
space is not explicitly presented, validating our basic assumption that an agent assumes the lotteries to be
uncorrelated when this is not specified otherwise, and ii) very different from the choice pattern exhibited
under correlation (with 35% of subjects changing their choice as predicted by our model, see Appendix).
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The choice should not vary as long as the odds q/p with which Lq1 pays out relative to Lp2

are kept constant. A stark case arises when q/p = α; now the two lotteries have the same

expected value and a risk averse expected utility maximizer always prefers Lp2 to Lq1 for any

p. Parameter α identifies the “common ratio” between q and p at different levels of p.

It is well known (KT 1979) that, contrary to the Expected Utility Theory, the choices

of experimental subjects depend on the value of p: for fixed q/p = α = 0.5, when p = 0.9

subjects prefer the safer lottery L0.9
2 = (3000, 0.9; 0, 0.1) to L0.45

1 = (6000, 0.45; 0, 0.55).

When instead p = 0.002, subjects prefer the riskier lottery L0.001
1 = (6000, 0.001; 0, 0.999)

to L0.002
2 = (3000, 0.002; 0, 0.998). This shift towards risk seeking as the probability of

winning goes down has provided one of the main justifications for the introduction of the

probability weigthing function. In fact, KT (1979) account for this evidence by assuming

that π(p) grows slower than linearly for small p; hence, π(αp)/π(p) is relatively high at low

p, inducing the choice of Lq1 when p = 0.002.

Consider the choice between Lq1 and Lp2 in our model. For α = 1/2 there are four states

of the world, and the salience ranking among them is

σ(6000, 0) > σ(0, 3000) > σ(6000, 3000) > σ(0, 0), (21)

as implied by ordering and diminishing sensitivity. This implies that the local thinker eval-

uates the odds with which the riskier lottery Lq1 pays out relative to the safer one Lp2 as:

qLT

pLT
=
q

p
· (1− p) + pδ2

(1− q)δ + qδ2
. (22)

The local thinker then follows the criterion in Equation (20) where the true ratio q/p = 1/2

is replaced by the distorted ratio of Equation (22). With a linear utility, the local thinker

selects the safer lottery Lp2 if qLT/pLT ≤ 1/2 and the riskier lottery Lq1 otherwise. This

implies that the local thinker chooses the safer lottery when:

p ≥ 2(1− δ)
2− δ − δ2

. (23)

As in the common ratio effect, the local thinker is risk averse when p is sufficiently high and
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risk seeking otherwise. In particular, for δ ∈ (0.22, 1), the local thinker switches from L0.9
2

to L0.01
1 just as experimental subjects do. Our model therefore generates the common ratio

effect, also under the parameterization δ = 0.7, θ = 0.1.

The intuition for this result is that there is a tradeoff between the salience and likelihood

of states in our model. The upside of the riskier lottery Lq1 is salient at every p, creating a

force toward risk seeking. When p is large, though, obtaining a positive payoff under the

safer lottery is much more likely than under the riskier one. If δ is not too low, this implies

that the decision weight attached to the second most salient state in ranking (21) is higher

than the one attached to the first most salient state, so that the agent is risk averse. When

instead p is low, the safer lottery pays out with just marginally higher probability. Now

decision weights are mostly shaped by the salience of payoffs, inducing the local thinker to

over-weight the higher upside of L1, which triggers risk seeking.

Crucially, experimental evidence shows that this common ratio effect is also not robust

to the introduction of correlation among lotteries. KT (1979) gave subjects a choice between

L0.5
1 or L1

2 from Equation (19), in a game with two stages. In the first stage there is a 75%

probability of the game ending without any winnings and a 25% change of going to stage

two. In stage two, the chosen lottery is played out. Most subjects here are risk averse,

choosing the safer lottery L1
2. The key point is that the final distribution of payoffs in this

two stage gamble corresponds to a choice between L0.125
1 and L0.25

2 . Crucially, when directly

presented with the single stage choice between L0.125
1 and L0.25

2 , most subjects are risk seeking

and choose L0.125
1 , just as in the low probability case of the common ratio effect. This is not

so when the probabilities are reduced by adding a correlated state in which both lotteries

pay zero. In this case, there is no violation of the independence axiom.

In explaining this behavior, KT informally argue that individuals “edit out” the common

consequence when the two lotteries are presented as correlated, thereby choosing as if p = 1.

Our model yields such editing as a consequence of the low salience and cancellation of the

correlated state in which both lotteries pay 0. To see this, note that adding a correlated

state where both lotteries pay 0 neither affects the salience ranking in Equation (21), in

which the correlated state is just a replica of (0, 0), nor – more importantly – the odds

ratios between the first three most salient states. As a consequence, for any probability
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r < 1 of the correlated (0, 0) state, the odds ratio qLT/pLT assessed by the agent is equal

to that in Equation (22) where the correlated state is absent. In other words, the local

thinker chooses as if he disregards the correlated state and its probability r, namely as if he

is choosing among the single stage lotteries L0.5
1 and L1

2. This is what experimental subjects

do. We thus reconcile the subjects’ choice in single and two stage lotteries: in the single

stage case, the rescaling of probabilities affects choice by changing the weights attached to

salient states. In the two stage case, rescaling occurs by adding a correlated non-salient state

which is disregarded in choice, leaving the weighting of salient states unaffected.

In sum, our model explains the Allais paradoxes as the product of a specific form of

context dependence working though the salience of lottery payoffs. Adding a common payoff

to all lotteries changes risk preferences by changing the salience of lotteries’ upsides or down-

sides. Rescaling the lotteries’ probabilities shapes the importance of salience vs. likelihood

in determining decision weights, which also affects choice. Crucially, the presence of context

dependence implies that risk attitudes depend on how the lotteries are correlated. Adding a

common payoff or rescaling probabilities by introducing in the lotteries a non-salient payoff

state does not affect choice: it is too enticing for subjects to disregard this non-salient state

and to abide by the independence axiom.

5.3 Preference Reversals

Context dependence in our model can also explain the phenomenon of preference reversal

described by Lichtenstein and Slovic (1971). They showed that subjects may systematically

prefer a safer lottery Lp to a riskier lottery L$ and yet have a higher minimum selling price for

the riskier lottery L$ (we follow the conventional notation, whereby Lp has a high probability

of a low payoff, and L$ a low probability of a high payoff). Subjects’ preferences are thus

revealed by choice to be the opposite of preferences revealed by pricing. This phenomenon,

confirmed also by Grether and Plott (1979) and Tversky et al. (1990), is at odds with both

standard Expected Utility Theory and Prospect Theory, leading to claims that choosing and

pricing follow two fundamentally different principles.

To study preference reversals in our model, we must specify how a local thinker prices a

lottery. As in Expected Utility Theory, we define the minimum selling price to be the price
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at which the local thinker is indifferent between playing the lottery and receiving that price.

For a local thinker, this price is found by replacing the lottery’s probabilities with decision

weights. Maintaining our interpretation of decision weights as spontaneously arising from

the agent’s perception of the alternatives, it is natural to assume that the lotteries being

considered jointly determine the weights used by a local thinker to compute the selling price

of each of them. Formally, in the context of choosing between lotteries L1 and L2, a local

thinker with a value function v(·) prices L1 at:

P (L1 |L2 ) = v−1
[∑

pLTs v(xs)
]

, (24)

where pLTs are the decision weights in the choice of L1 vs. L2. When the agent is asked to

price a lottery in isolation, we assume that he evaluates it in the context of a choice between

the lottery and the status quo of not having it L0 ≡ (0, 1), i.e. of getting zero for sure.

The price P (L1|L2) is then the (decision weights-adjusted) certainty equivalent of L1 in the

context of the comparison with L2; with a linear value function, this corresponds to the

expected value of L1 as perceived by the local thinker.

Consider now how preference reversals arise in our model. In the experiments, subjects

are first asked to price in isolation the following two lotteries:

Lp =

 x, p

0, 1− p
, L$ =

 2x, p/2

0, 1− p/2
(25)

and subsequently to choose among them. The lotteries in Equation (25) are of the kind used

to test for the common ratio effect (where α = 1/2) and typically have p > 3/4. Equation

(23) thus says that, when asked to choose, a local thinker is risk averse and prefers Lp to L$,

just like most experimental subjects do.

In contrast, when the local thinker is asked to price the lotteries in isolation, he evaluates

each lottery relative to L0 = (0, 1) and this comparison makes each lottery’s upside salient.

As a consequence, the local thinker prices the lotteries as:

P (Lp |L0 ) = x · p
p+(1−p)δ , P (L$ |L0 ) = 2x · p/2

p/2+(1−p/2)δ . (26)
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For any δ < 1, the local thinker prices L$ higher than Lp in isolation, i.e.

P (L$ |L0 ) > P (Lp |L0 ).

Both lotteries are priced above their expected value, but L$ is more overpriced than Lp

because it pays a higher gain with a smaller probability, and from Proposition 1 we know

that lower probabilities are relatively more distorted.12

As a consequence, while in a choice context the local thinker prefers the safer lottery Lp, in

isolation he prices the risky lottery L$ higher, thus exhibiting preference reversal. Crucially,

this behavior is not due to the fact that choosing and pricing are different operations. In fact,

in our model choosing and pricing are the same operation, as in standard economic theory.

Preference reversals occur because, unlike in standard theory, evaluation in our model is

context dependent. Pricing and choosing occur in different contexts in the sense that the

alternatives of choice are different in the two cases.

Another way to describe our account of preference reversals is to note that these arise

through violations of “procedural invariance”, defined by Tversky et al. (1990) as situations

in which a subject prices a lottery above its expected value, P (L|L0) > EV (L), and yet

prefers the expected value to the lottery, L ≺ (EV (L), 1). In our model, such violations

directly follow from context dependent pricing. Tversky et al (1990) show that the vast ma-

jority of observed reversals follow from the violations of procedural invariance, as predicted

by our model. Regret Theory can produce preference reversals by a distinct mechanism,

intransitivities in choice, but does not violate procedural invariance.

Our context-based explanation suggests that reversals between choice and pricing should

only occur when pricing takes place in isolation but not if agents price lotteries in the

choice context itself. To test this hypothesis, subjects were given a choice between lotteries,

L$ = (16, 0.31; 0, 0.69) and Lp = (4, 0.97; 0, 0.03). Subjects also stated their certainty

equivalents for the two lotteries, in isolation and in the context of choice.13 Our prediction

12These predictions are borne out by the literature as well as by our own experimental data. Tversky
et al (1990) show that preference reversals follow from overpricing of L$ in isolation, and that Lp is not
underpriced. Our model predicts that agents price Lp close to its expected value because it offers an
extremely high probability of winning, which is hardly distorted.

13In our experimental design, each subject priced each lottery only once, and different lotteries were priced
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of context dependent pricing would then be verified if preference reversal occurs between

choice and pricing in isolation, but not between choice and pricing in the choice context.

We find that, despite considerable variation in subjects’ evaluations (which is a general

feature of such elicitations14) the results are consistent with our predictions. First, among

the subjects who chose Lp over L$, Lp was on average priced lower than L$ in isolation:

P (Liso
p ) = 4.6 < P (Liso

$ ) = 5.2 .

Thus, there is a preference reversal between choice and average pricing in isolation. This

reversal holds not only with respect to average prices, but also for the distribution of prices

we observe. Assuming that subjects draw evaluations randomly from the price distributions,

we estimate that around 54% of the subjects who choose Lp would exhibit the standard

preference reversals (see Appendix 2).15

Second, preference reversals subside when we compare choice and pricing in the choice

context. In fact, in this context the same subjects priced their chosen lottery Lp higher, on

average, than the alternative risky lottery L$:

P (Lp|L$) = 4.3 > P (L$|Lp) = 4.1

As predicted by our model, in the context of choice, the average pricing is consistent with

choice.16 One might object that this agreement may be caused by the subjects’ wish to be

coherent when they price just after a choice. However, recall that each subject priced only

one of the two lotteries in the choice context. Moreover, we ran another version of the survey

in different contexts. This design ensures that subjects do not deform their prices to be consistent with their
choices; however, it also implies that preference reversals are not observed within-subject but only at the
level of price distributions across subject groups (see Appendix 2 for more details).

14See Grether and Plott (1979), Bostic et al (1990), Tversky et al (1990).
15The average prices above imply that some subjects priced the safer lottery Lp above its highest payoff.

Such overpricing can occur even in a laboratory setting and with incentives schemes (Grether and Plott
1974, Bostic et al 1990), perhaps due to misunderstanding of the pricing task. In Appendix 2 we consider
truncations of the data that filters out such overpricing.

16In our data, the distribution for P (Lp|L$) does not dominate that for P (L$|Lp). This is due to the
fact that: i) on average subjects attribute similar values to both lotteries in the choice context, and ii)
there is substantial variability in choice (and thus in pricing), as about half the subjects chose each lottery.
In Appendix 2 we look in a more detailed way at the manifestation and significance of fact ii) in light on
Tversky’s et al. (1990) analysis of preference reversals.
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where we asked the subjects to price the lotteries under comparison but without having to

choose between them. These subjects exhibited similar behavior on average, namely pricing

L$ higher than Lp in isolation, but similarly to Lp under comparison. It appears to be the

act of comparing the lotteries that drives their evaluation during choice, and not (only) an

adjustment of value subsequent to choice.

These results suggest that choice and pricing follow the same fundamental principle of

context-dependent evaluation. Preferences based on choice may differ from those inferred

from pricing in isolation because they represent evaluations made in different contexts.

6 Other applications and extensions

6.1 Reflection and Framing Effects

KT (1979) show that experimental subjects shift from risk aversion to risk seeking as gains

are reflected into losses. Our model yields such shifts in risk attitudes solely based on the

salience of payoffs, without relying on the S-shaped value function of Prospect Theory. To

see this, consider the choice between lottery L1 = (xi, pi) and sure prospect L2 = (y, 1), both

of which are defined over gains (i.e. xi > 0, y > 0) and where E(L1) = y. By Equation (6),

a local thinker with linear utility is risk averse, choosing L2 over L1 when:

y −
∑
i

pixi = 0 > cov [xi, ωi] , (27)

namely when the agent overweights lower payoffs. Suppose now that L1 and L2 are reflected

into lotteries over losses L′1 = (−xi, pi)i and L′2 = (−y, 1). Property 3) in Definition 1 then

implies that such reflection does not alter the salience ranking. That is, if the ranking of

state (xi, y) is ki, then the ranking of state (−xi,−y) is also ki. As a result, the same agent

is risk seeking, choosing L′2 over L′1 when:

0 < cov [−xi, ωi] = −cov [xi, ωi] . (28)
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Risk seeking prevails when small losses (i.e. low values of xi) are more salient than larger

ones. Note that Equation (27) is the same as Equation (28), implying that a local thinker

with linear utility is risk averse for gains if and only if he is risk seeking for losses. Thus, our

model yields the fourfold pattern of risk preferences17 without assuming, as Prospect Theory

does, a value function that is concave for gains and convex for losses. In our model, reflection

of payoffs generates shifts in risk attitudes by inducing the agent to shift his attention from

the lottery upside to its downside and vice versa.

KT (1981) exploited the reflection effect to investigate how choice among lotteries can

be shaped by framing. Some subjects were first asked to imagine that they had been given

a lump sum of 1000 Israeli shekels, and then to choose between L1 = (1000, 0.5; 0, 0.5)

and L2 = (500, 1); in this experiment, 16% percent of the subjects chose the lottery. A

different group of subjects was instead asked to imagine that they had been given 2000

shekels at the outset, and then to choose between the reflected version of the previous

lotteries, L′1 = (−1000, 0.5; 0, 0.5) and L′2 = (−500, 1); in this case, as many as 69% of

subjects chose the lottery. The two problems are identical in terms of final monetary payoffs,

so an expected utility maximizer would always choose either the lottery or the sure prospect

but never switch between them as gains are reflected into losses. In Prospect Theory, this

framing effect arises because the agent adjusts his reference point to include the initial lump-

sum payoff and then the S-shaped value function leads to risk aversion in L1 vs. L2 but to

risk seeking in L′1 vs. L′2.

In our model instead, this framing effect arises because salience depends on lottery payoffs

as presented (not on final wealth states). Thus, even if the agent’s utility is linear, risk

attitudes change because the reflection of lottery payoffs shifts the agent’s focus from the

lottery downside to its upside. This intuition can also account for KT’s (1981) famous Public

Health Dilemma, which describes the outbreak of a disease that is expected to kill 600 people.

When the choice between medical responses is framed in terms of lives saved (resp. lost),

the local thinker specifies the payoffs as gains (resp. losses). Thus, in the “saved” frame

the most salient outcome is the one where nobody is saved, leading to a risk-averse choice,

17The four-fold pattern of risk preferences refers to risk seeking behavior for gambles with small probabil-
ities of gains and gambles with moderate or large probabilities of losses, and risk averse behavior when the
signs of payoffs are reversed, see Tversky et al (1990).
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while in the “die” frame the most salient outcome is the one where nobody dies, triggering

a risk-seeking choice.

6.2 Mixed Lotteries

We now apply our model to mixed lotteries, those involving both positive and negative

payoffs. To this end, we come back to the KT (1979) piecewise linear value function exhibiting

loss aversion, for loss aversion provides an intuitive explanation for risk aversion with respect

to small mixed bets. Under the salience function of Equation (2), which features σ(x, y) =

σ(−x,−y) for all x, y, all risk aversion for lotteries symmetric around zero is due to loss

aversion. For non-symmetric lotteries, salience and loss aversion interact to determine risk

preferences. To see this, consider Samuelson’s wager, namely the choice between the lotteries:

LS =

 $200, 0.5

−$100, 0.5
, L0 = ($0, 1) .

In this choice, many subjects decline LS even though it has a positive and substantial

expected value. With a symmetric salience function, we have that σ(200, 0) > σ(100, 0) =

σ(−100, 0), implying that in this choice the local thinker focuses on the lottery gain.

Consider now what happens under the following piecewise linear value function:

v(x) =

 x, if x > 0

λx, if x < 0
,

where λ > 1 captures loss aversion. Now the local thinker rejects LS provided:

200 · 1

1 + δ
− 100λ · δ

1 + δ
< 0.

The agent rejects LS when his dislike for losses more than compensates for his focus on

the lottery gain, i.e. λ > 2/δ.18 In lotteries where the negative downside is larger than the

18The role of loss aversion can also be gauged by considering the choice between two symmetric lotteries
with zero expected value, L1 = (−x, 0.5; x, 0.5) and L2 = (−y, 0.5; y, 0.5), with x > y. Since (2) is
symmetric, the states (−x, y) and (x,−y) have salience rank 1, whereas states (−x,−y) and (x, y) have
salience rank 2, so that L1 is evaluated at x(1− λ)/2, and L1 is evaluated at y(1− λ)/2. This implies that
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positive upside, salience and loss aversion go in the same direction in triggering risk aversion.

Although our approach can be easily integrated with standard loss aversion, we wish to

stress that salience may itself provide one interpretation of the idea that “losses loom larger

than gains” (KT 1979) where, independently of loss aversion in the value function, states

with negative payoffs are ceteris paribus more salient than states with positive payoffs. The

ranking of positive and negative states is in fact left unspecified by Definition 1. One could

therefore add an additional property:

5) Loss salience: for every state (x, y) such that x+ y > 0 we have that

σ(−x,−y) > σ(x, y).

This condition relaxes the symmetry around zero of the salience function of Equation (2)

represented in Figure 1, postulating that departures from zero are more salient in the negative

than in the positive direction. In this specification, local thinking can itself be a force towards

risk aversion for mixed lotteries, complementing loss aversion. In particular, if losses are

sufficiently more salient than gains, one can account for Samuelson’s wager based on salience

alone (and linear utility): if σ(−100, 0) > σ(200, 0), a local thinker with linear utility rejects

Samuelson’s bet as long as 200 · δ
1+δ
− 100 · 1

1+δ
< 0, or δ < 1/2. A specification where

risk aversion for mixed lotteries arises via the salience of lottery payoffs may give distinctive

implications from standard loss aversion, but we do not investigate this possibility here.19

7 Conclusion

Our paper explores how cognitive limitations cause people to focus their attention on some

but not all aspects of the world, the phenomenon we call local thinking. We argue that

salience, a concept well-known to cognitive psychology, shapes this focus. In the case of

for any degree of loss aversion λ > 1, the Local Thinker prefers the safer lottery L2.
19If we endow the local thinker with a standard utility function, instead of a value function, then in the

absence of property 5) the utility function would be subject to Rabin’s critique (Rabin, 2000) in the domain
of mixed lotteries (but not in the domain of positive lotteries). Adding property 5) would entail that aversion
to mixed lotteries with positive payoffs follows from salience, and not from underlying preferences. Thus,
even though such a local thinker is at heart an expected utility maximizer, he is immune to Rabin’s critique.
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choice under risk, this perspective can be implemented in a straightforward and parsimonious

way by specifying that contrast between payoffs shapes their salience, and that people inflate

the decision weights associated with salient payoffs. Basically, decision makers overweight

the upside of a risky choice when it is salient and thus behave in a risk-seeking way, and

overweigh the downside when it is salient, and behave in a risk averse way. This approach

provides an intuitive and unified explanation of the instability of risk preferences, including

the dramatic switches from risk seeking to risk averse behavior resulting from seemingly

innocuous changes in the problem, as well as of some fundamental puzzles in choice under

risk such as the Allais paradox and preference reversals. It makes predictions for when these

paradoxes will and will not occur, which we test and confirm experimentally.

Other aspects of salience have been used by economists to examine the consequences

of people reacting to some pieces of data (salient ones) more strongly than to others. For

example, Chetty et al. (2009) show that shoppers are more responsive to sales taxes already

included in posted prices than to sales taxes added at the register. Barber and Odean (2008)

find that stock traders respond to attention “grabbing news ”. Perhaps most profoundly,

Schelling (1960) has shown that people can solve coordination problems by focusing on salient

equilibria based on their general knowledge, without any possibility for communication.

Memory becomes a potential source of salient data. Our formal approach is consistent with

this work, and stresses that in the specific context of choice under risk the relative magnitude

of payoffs is itself a critical determinant of salience.

Our paper leaves some important issues open. One of them is how agents choose be-

tween more than two lotteries. We focused on the two-lottery problems because most of the

experimental evidence on paradoxes and shifts in risk attitudes deals with problems of this

sort. Although there is no reason why it should not be possible to extend our formalism to

account for choice among more than 2 lotteries, the N-lottery case does not directly follow

from our current model because to define salience we need to specify what lottery states an

agent is drawn to when he considers a larger choice set. We plan to pursue this extension in

future work, which may be useful for important applications (such as those to finance).

More broadly, our specification of contrast as a driver of salience could be useful for

thinking about a variety of economic situations. For instance, in considering which of differ-
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ent brands to buy, a consumer might focus on the attributes where the potential brands are

most different, neglecting the others (see Tversky and Simonson 1993). The same might be

true when investors choose stocks, entrepreneurs choose projects, or voters choose political

candidates. Applied to these cases, the key idea of our approach is that mental frames,

rather than being fixed in the mind of the consumer, investor, or voter, are endogenous to

the contrasting features of the alternatives of choice. This notion could perhaps provide a

way to study how context shapes preferences in many social domains.
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