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1 Introduction

The study of portfolio allocation has played a central role in financial economics, from its

very beginnings as a discipline.1 It is not difficult to see why the area has attracted (and

continues to attract) the attention that it does: As a field of study it is both highly practical

and apparently amenable to the application of sophisticated mathematics.

This study will review the recent academic literature on asset allocation. Two important

simplifications will be employed: First, the field has drawn a distinction between the study

of allocation to broad asset classes and allocation to individual assets within a class. This

article focuses on the former. In fact, the empirical applications in this article assume an

even more specific case, namely investor the chooses between a broad stock portfolio and

a riskless asset. Second, the surveyed models will assume, for the most part, no financial

frictions. That is, I assume that the investor does not face unhedgeable labor income risk or

barriers to trading in the assets, such as leverage or short-sale constraints. This is not to deny

the importance of other asset classes, or of financial frictions. Recent surveys on portfolio

choice (encompassing portfolios of many assets) include Cochrane (1999), Brandt (2009) and

Avramov and Zhou (this issue). Campbell (2006) and Curcuru, Heaton, Lucas, and Moore

(2009) survey work on asset allocation under realistic frictions faced by households.

I will focus on two broad classes of models: static models (in which the investor looks

one period ahead) and dynamic models (in which the investor looks multiple periods ahead

and takes his future behavior into account when making decisions). For static models,

the solution where investors have full information about asset returns has been known for

some time (Markowitz (1952)), so the focus will be on incorporating uncertainty about the

return process. In contrast, much has been learned in recent years about dynamic models,

even in the full-information case. A barrier to considering dynamic models is often their

complexity: for this reason I will devote space to analytical results. These results, besides

being interesting in their own right, can serve as a starting point for understanding the

1See, Bernstein (1992) for discussion of the origins of financial economics as an academic discipline and

its early focus on the asset allocation question.
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behavior of models that can only be solved numerically.

Finally, in both the static and dynamic sections, I will consider in detail the model where

excess returns on stocks over short-term Treasury bills are in part predictable. A substantial

empirical literature devotes itself to the question of whether returns are predictable; the

asset allocation consequences of such predictability being striking and well-known in at least

a qualitative sense since Graham and Dodd (1934).

Ultimately, the goal of academic work on asset allocation is the conversion of the time

series of observable returns and other variables of interest into a single number: Given the

preferences and horizon of the investor, what fraction of her wealth should she put in stock?

The aim is to answer this question in a “scientific” way, namely by clearly specifying the

assumptions underlying the method and developing based on these assumptions a consistent

theory. The very specificity of the assumptions and the resulting advice can seem dangerous,

imputing more certainty to the models than the researcher can possibly possess. Yet only

by being so highly specific does the theory turn into something that can be clearly debated

and ultimately refuted in favor of an equally specific and hopefully better theory. This

development implies the use of mathematics to model the investment decision; the reader

is encouraged to remember throughout that the subject of the modeling is an individual or

household making a decision with significant consequences for lifelong financial security.

2 Static models

2.1 The basic decision problem

In this first section, I consider the problem of an investor maximizing wealth as of time T

by allocating wealth between a risky and a riskless asset. The portfolio decision takes place

at a time T̂ < T . Let Rt+1 denote the simple return on the risky asset between times t and

t+ 1, and Rf,t+1 the simple return on the riskless asset between t and t+ 1. Let Wt denote
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the investor’s wealth at time t. The investor solves

max
z
ET̂

[
W 1−γ
T

1− γ

]
, (1)

where

WT = WT̂

z T∏
s=T̂+1

Rs + (1− z)
T∏

s=T̂+1

Rf,s

 . (2)

The parameter γ is assumed to be positive, and γ = 1 should be interpreted as logarithmic

utility. Note that the investor described above decides on the allocation z at time T̂ and

then does not trade. This is a buy-and-hold investor. The implicit weight on the risky

security can, and almost certainly will change over time, however, the problem written as

above assumes that the investor does not rebalance back to the original weights. For now,

it is assumed that z can take on any value: short-sales and borrowing at the riskfree rate

are allowed. For the purposes of solving the model, I will assume Rfs, for s between T̂ + 1

and T , is known to the investor at time T̂ . Following much of the literature, I assume that

the investor’s utility takes a power form, implying that relative risk aversion is constant and

that asset allocation does not depend on wealth. The scale-invariance of power utility has

broad empirical support in that interest rates have remained stationary despite the fact that

wealth has grown.

Define the continuously-compounded excess return to be

yt = logRt − logRft

and assume yt follows the process

yt+1 = α + βxt + ut+1 (3)

xt+1 = θ + ρxt + vt+1, (4)

where  ut+1

vt+1

 | yt, . . . , y1, xt, . . . , x0 ∼ N (0,Σ) , (5)
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and

Σ =

 σ2
u σuv

σuv σ2
v

 . (6)

That is, yt+1 has a predictable component xt that follows a first-order autoregressive process.

The errors are assumed to be serially uncorrelated, homoskedastic and jointly normally

distributed. A substantial and long-standing empirical literature documents predictability in

excess returns, in the sense that running regression (3) for observable xt generates statistically

significant coefficients.2 In what follows, I focus on the case where xt is the dividend yield

because the dividend yield and future expected excess returns are linked through a present

value identity (Campbell and Shiller (1988)). Theory suggests, therefore, that if returns

are predictable, the dividend yield should capture at least some of that predictability. The

general setting that I have laid out here largely follows that of Barberis (2000): it will differ

in some important respects however.

I assume the investor does not know the parameters of the system above. Rather, he is a

Bayesian, meaning that he has prior beliefs on the parameters and, after viewing the data,

makes inferences based on the laws of probability (Berger (1985)). Let β̂ be the ordinary

least squares (OLS) estimate of β in the regression (3). Bayesian analysis turns the standard

frequentist analysis on its head: Instead of asking for the distribution of the test statistic β̂

(which depends on the data) as a function of the true parameter β, Bayesian analysis asks

for the distribution of the true parameter β as a function of the data (which often comes

down to a function of sufficient statistics, like β̂).

For notational convenience, stack the coefficients from (3) and (4) into a vector:

b = [α, β, θ, ρ]>.

The investor starts out with prior beliefs p(b,Σ). Let L(D|b,Σ) denote the likelihood func-

tion, where D is the data available up until and including time T̂ . It follows from Bayes’

2See, for example, Fama and Schwert (1977), Keim and Stambaugh (1986), Campbell and Shiller (1988),

Fama and French (1989), Cochrane (1992), Goetzmann and Jorion (1993), Hodrick (1992), Kothari and

Shanken (1997), Lettau and Ludvigson (2001), Lewellen (2004), Ang and Bekaert (2007), Boudoukh,

Michaely, Richardson, and Roberts (2007).
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rule that the posterior distribution is given by

p(b,Σ|D) =
L(D|b,Σ)p(b,Σ)

p(D)
,

where p(D) is an unconditional likelihood of the data in the sense that

p(D) =

∫
b,Σ

L(D|b,Σ)p(b,Σ) dbdΣ,

namely that p(D) integrates out b and Σ. It follows that

p(b,Σ|D) ∝ L(D|b,Σ)p(b,Σ), (7)

where ∝ denotes “proportional to”, because p(D) does not depend on b or Σ. The likelihood

function, given T̂ years of data is equal to

L(D|Σ, b) =
T̂−1∏
t=0

pt+1|t(yt+1, xt+1|xt,Σ, b)p0(x0|b,Σ). (8)

where pt+1|t(yt+1, xt+1|xt,Σ, b) is given by a bivariate normal density function as described

in (3–6), and p0(x0|b,Σ) gives the initial condition of the time series. Given the posterior,

the predictive density for returns from time T̂ to T is defined as:

p(yT̂+1, . . . yT |D) =

∫
p(yT̂+1, . . . , yT |b,Σ, xT̂ )p(b,Σ|D) db dΣ. (9)

The predictive distribution (9) summarizes the agent’s beliefs about the return distribution

after viewing the data. The expectation in (1) is taken with respect to this distribution.

How might predictability influence an investor’s optimal allocation? Kandel and Stam-

baugh (1996) find that optimal allocation for the single-period case can be approximated

by

z ≈ 1

γ

E[yT ] + 1
2
Var(yT )

Var(yT )
, (10)

where the mean and the variance are taken under the investor’s subjective distribution of

returns (which is (9) in the Bayesian case). Holding the variance constant, an upward shift

in the mean increases the allocation. This is not surprising given that the investor prefers

more wealth to less. This approximation is valid only for short horizons and small shocks.

However, it is useful as a first step to understanding the portfolio allocation.
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2.2 The conditional Bayesian model

The initial condition p0(x0|b,Σ) in (8) is a bit of a nuisance. Kandel and Stambaugh (1996)

show that if this term were to disappear, the system (3–6) would take the form of a classical

multivariate regression model (Zellner (1971, Chapter 8)).3 Assuming the standard non-

informative prior for regression:

p(b,Σ) ∝ |Σ|−3/2, (11)

the posterior distribution for all of the parameters could then be obtained in closed form.

Indeed, conditional on Σ, β would be normally distributed around its OLS estimate β̂.

However, p0(x0|b,Σ) is there, and something must be done about it. One approach is to

let it stay and specify what it should be. I will refer to the resulting set of assumptions and

results as the “exact Bayesian model,” to be described Section 2.3. Another approach is to

make an assumption that makes it irrelevant to the decision problem. The assumption is

that x0 conveys no prior information:

p(b,Σ|x0) = p(b,Σ). (12)

Because the prior is now conditional on x0, the likelihood can condition on x0 as well. The

posterior is, of course, conditional on x0 because it is conditional on all the data. That is,

the assumption in (12) allows (7) to be replaced by

p(b,Σ|D) ∝ Lc(D|b,Σ, x0)p(b,Σ|x0),

where Lc is the likelihood conditional on x0:

Lc(D|Σ, b, x0) =
T−1∏
t=0

pt+1|t(yt+1, xt+1|xt,Σ, b). (13)

3However, it still would not be a classical regression model. An assumption of classical regression is that

the dependent variable is either nonstochastic or independent of the disturbance term ut at all leads and

lags (Zellner (1971, Chapter 3)). As emphasized in Stambaugh (1999), the independence assumption fails

in predictive regressions. Under the assumptions of classical regression, Gelman, Carlin, Stern, and Rubin

(1996) show that the likelihood function for the regressor is irrelevant to the agent’s decision problem (and

so, therefore, is the initial condition).
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I will refer to this as the “conditional Bayesian model.” I comment further on assumption

(12) below.

This conditional Bayesian model is used by Barberis (2000) to study asset allocation

for buy-and-hold investors. For comparison, Barberis also solves the model in the full-

information case, namely when the investor knows the parameters in (3–6). Figure 1 shows

the resulting optimal allocation for a risk aversion of 5 at various horizons and values of

the dividend yield. The panel on the left assumes the full-information case (parameters

are set equal to their posterior means). The panel on the right shows the results from the

conditional Bayesian model, thus taking uncertainty about the parameters, otherwise known

as estimation risk, into account.

A striking feature of the left panel of Figure 1 is the degree to which portfolio weights

respond to changes in the dividend yield. That is, the investor aggressively engages in

market timing, with the dividend yield as the signal of how much to allocate to equities.

The solid line in each plot corresponds to the optimal allocation to stocks when the dividend

yield is at its historical mean. The dash-dotted lines show the optimal allocation when the

dividend yield is one standard deviation above and below the historical mean. The dashed

lines show the allocation when the dividend yield is two standard deviations above and

below the historical mean. For an investor with a one-year horizon, the optimal allocation

to is about 80% when the dividend yield is at its mean. When the dividend yield is at one

or two standard deviations above the long-run mean, the investor has all of her wealth in

stocks. When the dividend yield is at one standard deviations below the long-run mean, the

optimal allocation falls to 20%. The optimal allocation is bounded above and below because

the power utility investor would never risk wealth below zero. Because the distribution for

returns is unbounded from above, this investor would never hold a negative position in stock.

The investor would also never hold a levered position in stock, for this too implies a positive

probability of negative wealth, since returns could be as low as -100%. Note that these

endogenous bounds on the optimal portfolio are an example of errors in the approximation

(10), which contains no such bounds.
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What about the case where the investor incorporates estimation risk into her decision

making? One might think that estimation risk would make a substantial difference, because

(as Barberis (2000) reports), the evidence for predictability at a monthly horizon is only

borderline significant in the relevant sample. However, the results incorporating estimation

risk are quite similar to those that do not at short horizons. Indeed, differences start to

become noticeable only at buy-and-hold horizons of five years or more.4 For the statistical

model for stock returns above, parameter uncertainty resulting from the regression is small

compared to the measured uncertainty of holding stocks.5

Figure 1 also reveals that the optimal allocation is increasing in the horizon in the case

of full information, and for all but the longest horizons in the parameter uncertainty case

(see Stambaugh (1999) for an explanation of the reversed relation between holdings and

the dividend yield at the longest horizons). Because innovations to the dividend yield are

negatively correlated with innovations to returns, stocks when measured at long horizons are

less risky than stocks measured at short horizons (mean reversion in stock returns is pointed

out in earlier work of Poterba and Summers (1988)). Regardless of whether parameter

uncertainty is taken into account, the longer the horizon, the greater the allocation to stocks

should be. The implications of mean-reversion for long-horizon investors is also the subject

of Siegel (1994).

4While such long buy-and-hold horizons may characterize the behavior of some investors, from the nor-

mative perspective of this article, such infrequent trading seems extreme.
5Note that the effect of the dividend yield attenuates at longer horizons both when parameter uncertainty

is taken into account and when it is not. This occurs because the dividend yield is mean-reverting and because

the investor cannot rebalance as the dividend yield reverts to its mean. In the limit, an investor with an

infinite horizon (who cares about wealth at the end of the horizon) would care only about the unconditional

distribution of returns and not about the current value of the dividend yield. Because the dividend yield is

so persistent, the effect attenuates very slowly as a function of the horizon.
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2.3 The exact Bayesian model

The results above implicitly assume (12), namely that prior beliefs are independent of the

initial observation x0. This assumption enables the use of the conditional likelihood, which,

combined with prior (11), leads to closed-form expressions for the posterior distributions of

the parameters. While (12) is convenient, how realistic is it? Under (12), the agent believes

that the value of x0 conveys no information about the parameters of the process for x or

y. For instance, the initial value of the dividend yield would tell you nothing about, say,

the average dividend yield. There is nothing mathematically incorrect about specifying such

prior beliefs; the agent can in principal believe anything as long as it does not entail a logical

inconsistency or require a peek ahead at the data. However, such beliefs do not seem very

reasonable.6

The question of whether to allow the initial condition appears to be of a technical nature,

but it turns out to have unexpectedly deep implications for Bayesian estimation and for the

portfolio allocation decision. These implications are the subject of Stambaugh (1999), which

also addresses frequentist properties of predictive regressions; namely that OLS estimation

of the coefficient β implies results that are upward-biased (i.e. biased toward finding more

evidence of predictability than is actually there). As mentioned above, the posterior mean of

β implied by the conditional Bayesian model is also given by the OLS estimate β̂, and thus

is also biased, despite the fact that Bayesian estimation explicitly takes the finite-sample

properties of the regression into account. The bias in the posterior mean of β is perhaps an

indication that all is not right with this model.

Without (12), the conditional likelihood (13) is no longer correct and the so-called exact

likelihood (8) must be used.7 Immediately, a decision must be made about the distribution

of the initial observation x0. Stambaugh (1999) assumes that x0 is drawn from the stationary

distribution of (4). If (and only if) ρ is between -1 and 1, this stationary distribution exists

6For instance, the logic of these beliefs would allow the agent to exclude an arbitrary amount of the data

from consideration, just by making the prior parameters independent of these data.
7The source for this terminology appears to be Box, Jenkins, and Reinsel (1994, Chapter 7)).
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and is given by

x0 ∼ N

(
θ

1− ρ
,

σ2
v

1− ρ2

)
(14)

(Hamilton (1994, p. 53)). The relevant likelihood function is therefore (8), where p0 is the

normal density given by (14).

Under choices (8) and (14) for the likelihood function, the assumption (11) on the prior

is no longer possible. This is because (11) allows ρ to take on any value between minus

and plus infinity, whereas (14) is only defined for ρ between -1 and 1. Stambaugh (1999)

therefore considers the prior

p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−1, 1) (15)

as well as an alternative prior specification

p(b,Σ) ∝ (1− ρ2)−1|Σ|−5/2, ρ ∈ (−1, 1). (16)

What is the rationale for (16), or for that matter, for (15) or (11)? The prior (11) is

standard in regression models. Its appeal is best understood by the fact that it embodies

three conditions: first, that b and Σ should be independent in the prior; second, for the

elements of b, ignorance is best represented by a uniform distribution (which, in the limit,

becomes a constant as in (11)); and third, that

p(Σ) ∝ |Σ|−3/2, (17)

which generalizes the assumption that, for a single system, the log of the standard deviation

should have a flat distribution on −∞ and∞. Jeffreys (1961, p. 48) proposes these rules for

cases where there is no theoretical guidance on the values of the parameters. An additional

appeal of (11) discussed above, is that when combined with the likelihood (13), explicit

expressions for the posterior distributions of the parameters can be obtained.

This discussion would seem to favor prior (15) (because theory now requires a stationary

process) in combination with the exact likelihood. However, applying these rules does not

constitute the only approach. Jeffreys (1961) proposed an alternative means of defining
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ignorance: that inference should be invariant to one-to-one changes in the parameter space.

This criterion is appealing in the case of the predictive model (3–6), in which the particular

parametrization appear arbitrary. The exact form of Jeffreys prior depends on the sample

size T and is derived by Uhlig (1994). Stambaugh (1999) derives an approximate Jeffreys

prior that becomes exact as the sample size approaches infinity. This approximate Jeffreys

prior is equal to (16). Relative to the flat prior for ρ, (15), more weight is placed on values

of ρ close to -1 and 1.

Tables 1 shows the implications of these specification choices for the posterior mean of the

regressive coefficient β and the autocorrelation ρ.8 For the conditional likelihood and prior

(11), the posterior mean of beta equals the OLS regression coefficient (which is known to be

biased upward). When values of ρ are restricted to be between -1 and 1, the posterior mean

of β is slightly higher. On the other hand, when the exact likelihood is used, the posterior

mean of β is lower and the difference is substantial, regardless of whether the uniform prior

or the Jeffreys prior is used.

To understand these differences in posterior means, consider the following approximate

relation (Stambaugh (1999)):

E[β|D] ≈ β̂ + E

[
σuv
σ2
v

|D
]

(E[ρ|D]− ρ̂) . (18)

Because σuv is negative, positive differences between the posterior mean of ρ and ρ̂ translate

into negative differences between β and β̂. Equation (18) is the Bayesian version of the

observation that the upward bias in β̂ originates from the downward bias in ρ̂. OLS estimates

the persistence to be lower than what it is in population (this bias arises from the need

to estimate both the sample mean and the regression coefficient at the same time; the

observations revert more quickly to the sample estimate of the mean than the true mean

(Andrews (1993))). Because of the negative correlation, OLS also estimates the predictive

8The specifications involving the exact likelihood or the Jeffreys prior do not admit closed-form solutions

for the posterior distribution. Nonetheless, the posterior can be constructed using the Metropolis-Hastings

algorithm (see Chib and Greenberg (1995, Section 5)). See Johannes and Polson (2006) for further discussion

of sampling methods for solving Bayesian portfolio choice problems.
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coefficient to be too high.9

Compared with the uniform prior over −∞ to∞, the prior that restricts ρ to be between

-1 and 1 lowers (slightly) the posterior mean of ρ because it rules out draws of ρ that are

greater than one. For this reason it raises (slightly) the posterior mean of β even above the

OLS value. This result is analogous to the fact that imposing stationarity in a frequentist

framework implies additional evidence in favor of predictability (Lewellen (2004), Campbell

and Yogo (2006), Campbell (2008), Cochrane (2008)). Introducing the exact likelihood leads

to an estimate of ρ that is higher that ρ̂. This result (which is sample-dependent) comes

about because of two sources of evidence on ρ contained in the specification (8). There is

the evidence from the covariance between xt and xt+1, but there is also evidence from the

difference between x0 and the sample mean. If x0 is relatively far from the sample mean,

the posterior of ρ shifts toward higher values. This implies that ρ̂ is lower than ρ, and

therefore, that β̂ is higher than β. Introducing the Jeffreys prior, in combination with the

exact likelihood further shifts ρ back towards 1; this raises ρ relative to ρ̂ and therefore

lowers β relative to β̂.10

Table 2 shows the implications for expected returns and asset allocation by reporting

these values at various levels of the dividend yield. Comparing the first and last rows of each

panel shows that Bayesian estimation with the conditional likelihood and prior (11) have

implications that are virtually identical to ignoring parameter uncertainty and using the OLS

estimates. For the exact likelihood and prior (15), both the expected returns and allocations

are less variable, as one would expect given the lower posterior mean of β. Surprisingly, not

9Intuition for this result can be stated as follows: If ρ is above the OLS estimate ρ̂, it must be the case

that ρ̂ is “too low”, namely, in the sample, shocks to the predictor variable tend to be followed more often

by shocks of a different sign than would be expected by chance. Because shocks to the predictor variable

and to the return variable are negatively correlated, this implies that shocks to the predictor variable tend

to be followed by shocks to returns of the same sign. This implies that β̂ will be “too high”.
10Generally, it appears that the net bias reduction resulting from these modifications is smaller than

standard frequentist-based estimates of the bias. Whether this is good, bad or merely neutral depends on

one’s perspective (Sims and Uhlig (1991)).
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only are the expected returns less variable, they are also substantially lower for both values

of the dividend yield, leading to lower allocations as well. In fact, the average excess stock

return is different in the various cases (Wachter and Warusawitharana (2009b)). As explained

in that paper, differences in estimates of average excess stock returns arise from differences in

estimates of the mean of the predictor variable. Over this sample, the conditional maximum

likelihood estimate of the dividend yield is below the exact maximum likelihood estimate.

Therefore, shocks to the predictor variable over the sample period must have been negative

on average; it follows that shocks to excess returns must have been positive on average.

Therefore, the posterior mean of returns is below the sample mean.

2.4 Informative priors

Introducing a Jeffreys prior and the exact likelihood has the effect of making portfolio choice

less sensitive to the dividend yield, as compared with the conditional Bayesian model. How-

ever, the agent still engages in market timing to a large degree. As Wachter and Waru-

sawitharana (2009a) show, the priors described above assign a perhaps unrealistically high

probability to high R2 statistics in the regression equation.11

Let

σ2
x =

σ2
v

1− ρ2
, (19)

and note that (19) is the variance of the stationary distribution of xt. The population R2

for the regression (3) is defined to be the ratio of the variance of the predictable component

of the return to the total variance. It follows from (19) that the R2 is equal to

R2 =
β2σ2

x

β2σ2
x + σ2

u

. (20)

Wachter and Warusawitharana (2009a) consider a class of priors that translate into distri-

butions on the population R2. Specifically, they define a “normalized” β:

η = σ−1
u σxβ

11Wachter and Warusawitharana (2009a) argue that economic theory points toward low levels of the R2,

should predictability exist at all.
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and assume that the prior distribution for η equals

η ∼ N(0, σ2
η). (21)

The population R2 can be rewritten in terms of η:

R2 =
η2

η2 + 1
. (22)

Equation 22 provides a mapping between a prior distribution on η and a prior distribution

on the population R2. The prior distribution for η implies a conditional prior for β. Namely,

β|α, θ, ρ,Σ ∼ N(0, σ2
ησ
−2
x σ2

u). (23)

Because σx is implicitly a function of ρ and σv, the prior on β is also a function of these

parameters. The approximate Jeffreys prior for the remaining parameters is given by

p(α, θ, ρ,Σ) ∝ σxσu|Σ|−
5
2 . (24)

Equations 23–24 form a class of prior distributions indexed by η. For ση = 0, the prior

dogmatically specifies that there can be no predictability: β is identically equal to zero. For

ση =∞, the prior is uninformative, and is in fact equal to the approximate Jeffreys prior in

Stambaugh (1999). Because of the relation between η and the R2, a prior on η translates

directly into a prior on the R2. An appeal of this approach is its scale-invariance: It is hard

to imagine putting an economically meaningful prior on β without knowing something about

the variance of the predictor variable x.

Figure 2 illustrates the implications of different values of ση for the prior distribution on

the R2. The prior with ση = 0 implies a dogmatic view that there can be no predictability,

which is why the R2 is a point mass at zero. On the other hand, with ση = 100 (which

well-approximates the Jeffreys prior), the R2 is very nearly flat over the single-digit range,

dipping down in a region close to 1. Figure 2 shows that uninformative beliefs imply not

only that high values of the population R2 are possible, they are extremely likely. The prior

assigns a probability of nearly 100% to the R2 exceeding any given value, except for values

that are an infinitesimal distance from one.
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The literature has considered other specifications for informative priors. Kandel and

Stambaugh (1996), for example, construct priors assuming that the investor has seen, in

addition to the actual data, a hypothetical prior sample of the data such that the sample

means, variances and covariances of returns and predictor variables are the same in the

hypothetical prior sample as in the actual sample. However, in the hypothetical sample,

the R2 is exactly equal to zero (see also Avramov (2002, 2004)). Cremers (2002) constructs

informative priors assuming the investor knows sample moments of the predictive variable.

These constructions raise the question of how the investor knows the sample moments of

returns and predictive variables (note that it is not sufficient for the investor to make a

guess that is close to the sample values). If it is by seeing the data, the prior and the

posterior are equal and the problem reduces to the full-information case. An alternative

is to assume that the investor has somehow intuited the correct values. According to this

latter (somewhat awkward) interpretation, to be consistent these moments would have to be

treated as constants (namely conditioned on) throughout the analysis, which they are not.

Figure 2 suggests that priors of the form (23–24) with small ση have more reasonable eco-

nomic properties than uninformative priors. Wachter and Warusawitharana (2009a) inves-

tigate the quantitative implications of these priors for portfolio allocation. Not surprisingly,

because the posterior mean of β shrinks toward zero, the portfolio allocation under these

priors exhibits less dependence on the dividend yield. The priors also can lead to improved

out-of-sample performance. This issue has come to the fore based on several papers that cri-

tique the evidence in favor of predictability based on out-of-sample performance. Bossaerts

and Hillion (1999) find no evidence of out-of-sample return predictability using a number of

predictors; Goyal and Welch (2008) find that predictive regressions often perform worse than

using the sample mean when it comes to predicting returns. For the empirical researcher,

these studies raises the question of how the Bayesian asset allocation strategies perform

out-of-sample. Note, however, that from the point of view of the Bayesian investor, such

additional information is irrelevant. The predictive distribution for returns, as generated

from the likelihood and the prior, is the sole determinant of the portfolio strategy.
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Wachter and Warusawitharana (2009a) examine the out-of-sample performance implied

by various priors. They show that asset allocation, using the results of OLS regression

without taking parameter uncertainty into account, indeed delivers worse out-of-sample per-

formance than a strategy implied by a dogmatic belief in no predictability. Relative to

the OLS benchmark, the strategy implied by the uninformative Jeffreys prior (16) performs

better, but still worse than the no-predictability prior. Across various specifications, the

best-performing prior is an intermediate one, representing some weight on the data and

some weight on an economically reasonable view that, if predictability should exist, the R2

should be relatively small.12

2.5 Additional sources of uncertainty

One of the objectives of adopting Bayesian decision theory into the asset allocation problem is

to better capture the uncertainty faced by investors. However, despite the uncertain nature

of the predictive relation, estimation risk appears to play a minor role in the empirical

findings. The disconnect between these results and our intuition may be due to the fact

that assuming the model given by (3–6) still, to a large degree, understates the uncertainty

actually faced by investors. While investors do not know the parameters of the system, they

know in fact that returns and predictor variables obey such a system. With the available

data, this turns out to be enough to estimate the parameters quite precisely. In reality,

of course, investors do not know that returns obey such a system. That is, while (3) is

unrestrictive in the sense that one could always regress returns on the lagged dividend yield,

the system itself is restrictive. For instance, it requires that ut+1 is not only an error in the

traditional regression sense of being uncorrelated with the right-hand-side variable, but that

12A second approach to improving out-of-sample performance is adopted by Campbell and Thompson

(2008). They show that the out-of-sample performance improves when weak economic restrictions are im-

posed on the return forecasts: namely requiring that the expected excess return be positive and that the

predictor variable has the theoretically expected sign. The Campbell and Thompson paper is non-Bayesian,

but it would not be difficult to incorporate these prior views in a Bayesian setting.
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it is in fact a shock, namely independent of any variable known at time t. The possibility

that other likelihood functions are possible is something that undoubtedly would occur to

real-world investors.

Pastor and Stambaugh (2009a, 2009b) confront this problem by assuming that returns

obey a predictive system:

yt+1 = µt + ut+1

xt+1 = (I − A)Ex + Axt + vt+1 (25)

µt+1 = (1− ρ)Er + ρµt + wt+1,

where u, v and w are iid (across time) and jointly normally distributed. Here, µ (unobserved)

is the true expected excess return and the agent learns about µ by observing x and y. Under

this predictive system, one could still regress yt+1 on the observable xt. However, the error

in the regression would be correlated with time-t variables. Pastor and Stambaugh find that

this distinction between µt and xt, and particularly the fact that the autocorrelation of x

need not equal the autocorrelation of µ, has important consequences for investors.

One could expand the uncertainty faced by investors in other ways. Recent studies

(Avramov (2002), Cremers (2002), Wachter and Warusawitharana (2009b)) explore the pos-

sibility that an investor assigns some prior probability to (3–6), but also a non-zero probabil-

ity to a model in which returns are iid. While this represents a form of “model uncertainty”,

the agent is still Bayesian in the sense that he assigns a probability to each model. One

could go further and assume that there are some forms of uncertainty that investors simply

cannot quantify. Gilboa and Schmeidler (1989) define a set of axioms on preferences that

distinguish between risk (in which the agent assigns probabilities to states of nature) and

uncertainty (in which probabilities are not assigned). They show that aversion to uncer-

tainty leads investors to maximizes the minimum over the set of priors that may be true.

Uncertainty aversion, also called ambiguity aversion, has been the subject of a fast-growing

literature in recent years, much of which has focused on asset allocation (see Chamberlain

(1999), Chen and Epstein (2002), Chen, Ju, and Miao (2009), Garlappi, Uppal, and Wang
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(2007), Hansen (2007) and Maenhout (2006)).

This notion of additional uncertain facing investors is likely to be a subject of continued

active debate. As discussed above, there are a number of complementary approaches, such as

the predictive system, model uncertainty with probabilities over the models and finally model

uncertainty such that the agent need not even formulate probabilities over the models. The

contention of the previously discussed models is that periods of low valuation (e.g. when the

dividend yield is high) represent, to some uncertain extent, an opportunity for the investor

that is just there for the taking. However, another possibility is that the excess returns

earned by this market timing strategy are in fact a compensation for a type of risk that does

not appear in the sample; the risk of a rare event.13

In Wachter (2008), I show that the level of predictability in excess returns can be captured

by a model with a representative investor with recursive preferences (see below), in which

there is a time-varying probability of a rare event. Times when this rare event probability

are high correspond to times when the dividend yield is high as well. Most of the time, the

rare event does not happen, implying higher than average realized returns. Occasionally, the

rare event does happen, in which case high dividend yields are followed by quite low returns.

The representative agent holds a constant weight in equities (as is required by equilibrium)

despite the fact that excess returns do vary in a predictable fashion. Strategies that attempt

to time the market, according to this view, are in fact quite risky, though this risk would be

difficult to detect in the available time series.

13Yet another possibility is that the excess returns represent compensation for greater volatility. Shanken

and Tamayo (2005) evaluate this claim directly in a Bayesian setting and find little support for it. A large

literature debates the extent to which changes in volatility are linked to changes in expected returns; based

on available evidence, however, it does not appear that the fluctuations in expected returns captured by the

dividend yield arise correspond to changes volatility. See Campbell (2003) for a discussion of this literature.
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3 Dynamic models

I now consider the investor who has a horizon beyond one period, and, at each time point,

faces a consumption and portfolio choice decision. I start with a general specification that

allows for multiple risk assets and state variables. Let Ct denote the investor’s consumption

at time t, zt the N × 1 vector of allocations to risky assets and Wt the investor’s wealth.

Let Rt+1 denote the vector of (simple) returns on the risky assets and Rf,t+1 the (simple)

riskfree return. Samuelson (1969) models this problem as

max
c,z

E
T∑
t=0

e−βt
C1−γ
t

1− γ
(26)

subject to the budget constraint

Wt+1 = (Wt − Ct)Rf,t+1 +Wtz
>
t (Rt+1 −Rf,t+1) (27)

and terminal condition WT ≥ 0. Here e−βt
C1−γ
t

1−γ represents period utility (for simplicity, I

have assumed that the investor does not have a bequest motive). An alternative is to consider

the problem without the utility flow from consumption, namely the investor just maximizes

W 1−γ
T

1−γ . This is not as realistic, but it is sometimes a helpful simplification. Another helpful

simplification is to take the limit of (26) as T goes to infinity.

The problem above can be solved by backward induction using the Bellman equation

(see Duffie (1996, Chapter 3)). Let Xt denote an n×1 vector of state variables that determine

the distribution of returns. Let τ = T − t denote the horizon. Define the value function as

the remaining utility:

J(Wt, Xt, τ) = max
c,z

E
τ∑
s=0

e−βsu(ct+s).

Then it follows that J can be defined through backward induction as:

J(Wt, Xt, τ) = u(ct) + e−βEt [J(Wt+1, Xt+1, τ − 1)] (28)

with the boundary condition J(W,X, 0) = u(W ). See Brandt (2009) for further discussion

of the value function and its properties.
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While (28) reduces the multiperiod problem (26) to a series of one-period problems, these

one-period problems might look quite different from the problem considered in Section 2

because of the interaction between the state variables X and wealth W . Indeed, when there

is no X (so returns are iid), Samuelson (1969) shows that (26) indeed does reduce to a series

of one-period problems. In this article, however, I am primarily interested in the case where

returns are not iid. Merton (1973) characterizes the solution to this general problem. For

technical reasons that will be discussed, it is easier to do this if one assumes that time is

continuous.

3.1 Return distribution and the value function

Let Bt denote a d× 1 vector of independent Brownian motions. Let

λ(X) = [λ1(X), . . . , λN(X)]>

denote the N × 1 vector of instantaneous excess returns and

σ(X) = [σ1(X)>, . . . , σN(X)>]>

denote the N × d matrix of loadings on the Brownian motions. Then the price process for

asset i, i = 1, . . . , N , is given by

dP
(i)
t

P
(i)
t

= (λi(Xt) + rf (Xt)) dt+ σi(Xt) dBt, (29)

where rf = logRf . I assume Xt follows a Markov process:14

dXt = b(Xt) dt+ a(Xt) dBt. (30)

14It is also possible to allow for deterministic time-variation in the investment opportunity set by defining

λ, σ and rf as functions of t as well as X. Alternatively, X could be augmented with the time t. However,

many of the results below simplify considerably when X is time-varying but deterministic; from a theory

perspective it makes sense to consider this case as distinct from the stochastic case. Because the economic

significance of deterministic time-variation is less than of stochastic variation, I will not explicitly consider

that case here. In what follows, “time-varying” should be understood to mean stochastic.
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Assumptions (29) and (30) imply that the current value of the state variables at time t,

fully determine the investment opportunities that are available to the investor; that is, they

determine the investment opportunity set.15

Merton (1971) shows that under the assumptions above, wealth follows the process

dWt =
(
Wtz

>
t λ(Xt) +Wtrf (Xt)− Ct

)
dt+Wtz

>
t σ(Xt) dBt. (31)

Merton (1973) derives a partial differential equation characterizing the value function J .

Moreover, he shows that the first-order condition with respect to z leads to the following

characterization of z in terms of derivatives of J :

z = − JW
JWWW

(
σσ>

)−1
λ− 1

JWWW

(
σσ>

)−1
σa>JXW , (32)

where JW , JWW and JXW refer to first and second partial derivatives of J . Here and in what

follows, I eliminate time subscripts and function arguments when not required for clarity. I

show in the Appendix that the value function takes the form

J(W,X, τ) =
I(X, τ)1−γW 1−γ

1− γ
. (33)

Applying (33), it follows that the allocation can be rewritten as

z =
1

γ

(
σσ>

)−1
λ+

1− γ
γ

(
σσ>

)−1
σa>

I>X
I
. (34)

Equation 34 (and, more generally, (32)) provides a gateway to understanding portfolio

choice in this rich dynamic context. There are two terms in (34), only one of which depends

on the process for X. Note that in the discrete-time setting when one period remains, the

value function depends only on wealth, not on X. The same is true in continuous time; in

the limit, as the horizon approaches 0 the value function’s dependence on X also approaches

zero. Therefore, as the horizon approaches 0, only the first term remains. For this reason,

Merton (1973) refers to this as what the investor would choose if he behaved myopically,

15When markets are complete, one can be more specific as Cox and Huang (1989) show. In this case, it

suffices to specify a vector of risk prices η, such that ση = λ and the riskfree rate rf as functions of X, as

well as the evolution of X itself. The actual assets that are available, as in (29), need not be specified.
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namely, if, like the discrete-time investor with one period left, he only took into account the

very immediate future, and did not look beyond.

Given that myopic demand captures, in a limiting sense, the desired allocation of a one-

period investor, how does it compare with the results derived in Section 2? Consider, for

simplicity the case of a single risky asset.16 In this case, λ corresponds to the (instantaneous)

expected excess return on the asset and σσ> to the (instantaneous) variance. Indeed, Ito’s

Lemma implies that for an asset with price Pt

d logPt = (λ+ rf −
1

2
σσ>) dt+ σ dBt,

so that, assuming units are the same, Et[yt+1] ≈ λ − 1
2
σσ> and Vart[yt+1] ≈ σσ>. Myopic

demand therefore closely resembles (10). The main difference is that (10) is approximate,

while (34) is exact. Recall that in the setting of Section 2 (indeed in any discrete-time

setting) power preferences rule out levered positions or short positions in the stock at any

horizon. However, when trading is continuous, the agent can exit these positions in time to

avoid negative wealth. This property, which is not without controversy, plays a key role in

making the continuous-time model tractable.

Myopic demand, then, is the continuous-time analogue of the static portfolio choice de-

scribed in Section 2. In contrast, the second term in (34) is completely new. As Merton

(1973) shows, this term represents the agent’s efforts to hedge future changes in the invest-

ment opportunity set. There are two offsetting motives: On the one hand, the investor

would like more wealth in states with superior investment opportunities, all the better to

take advantage of them; on the other hand, the investor would like more wealth in states

with poorer investment opportunities, so as to lessen the overall risk to long-term wealth.

The first of these is a substitution effect, the second, an income effect.

To see how these motives are represented by (34), consider the case with a single state

variable. Note that the sign of JX equals the sign of IX . I will say that an increase in X

indicates an improvement in investment opportunities if and only if it increases the agent’s

16In fact, the parallels hold in the multiple-risky-asset case as well (see Merton (1971)).
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utility, namely if and only if JX > 0. (Merton (1973) discusses hedging motives in terms

of the consumption-wealth ratio rather than the value function. I will explore the link

to the consumption-wealth ratio in what follows.) If an asset positively covaries with the

stock return (continue to assume, for simplicity, that there is a single risky asset), hedging

demand is negative as long as γ is greater than 1 and positive as long as γ is less than 1.

That is, the agent with γ > 1 reduces his investment to an asset that pays off in states with

superior investment opportunities (the income effect dominates), while the agent with γ < 1

increases his investment to such an asset (the substitution effect dominates). Logarithmic

utility (γ = 1) corresponds to the knife-edge case when these effects cancel each other out.

To go further, it is necessary to learn more about the function I(X, τ). This function

depends on the parameters in (29–30), and so will embody an empirical statement about the

distribution of returns. Applying the theory above to estimated processes for returns is one

way the literature has built on the insights in Merton (1973). A second source of innovation

is in the type of utility function considered. This is the topic of the next section.

3.2 Recursive utility

One limitation of assumption (26) is that it implies that an identical parameter, γ, controls

both the agent’s attitudes toward the smoothness of consumption over time, and the agent’s

attitudes toward to the smoothness of consumption over states, namely her attitudes towards

risk. Building on work of Kreps and Porteus (1978), Epstein and Zin (1989, 1991) and Weil

(1990) develop a class of utility functions that retains the attractive scale invariance of

power utility, but allows for a separation between the concepts of risk aversion and the

willingness to substitute over time. Such a separation implies that the agent has preferences

over the timing of the resolution of uncertainty, which may be attractive in and of itself. The

resulting utility function lies outside out of the expected utility framework in the sense that

the utility cannot be written explicitly as an expectation of future consumption. Rather,
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utility is defined recursively.17

I use the continuous-time formulation of the Epstein and Zin (1989) utility function

developed by Duffie and Epstein (1992a,b). Let Vt denote the remaining utility. Following

Duffie and Epstein, I will use the notation V to denote the utility process and the notation

J to denote optimized utility as a function of wealth, the state variables and the horizon.

At the optimum, Vt = J(Wt, Xt, T − t). Duffie and Epstein specify Vt as follows:

Vt = Et

∫ T

t

f(Cs, Vs) ds, (35)

where

f(C, V ) =


β

1− 1
ψ

((1− γ)V )

((
C ((1− γ)V )−

1
1−γ

)1− 1
ψ − 1

)
ψ 6= 1

β((1− γ)V )(logC − 1
1−γ log((1− γ)V )) ψ = 1.

(36)

Duffie and Epstein (1992a) show that parameter ψ > 0 can be interpreted as the elasticity

of intertemporal substitution (EIS) and γ > 0 can be interpreted as relative risk aversion.

When γ = 1/ψ, power preferences, given in (26) are recovered (note that the resulting

formulation of Vt may not take the same form as (26), but will imply the same underlying

preferences, and therefore the same choices).

Results in Duffie and Epstein (1992a) show that the first-order condition for portfolio

allocation (32), and the first-order condition for consumption fC = JW derived by Merton

(1973) are valid in this more general setting. Below, I use these results to characterize

optimal consumption and investment behavior, considering the case of ψ 6= 1 and ψ = 1

separately.18

17Kihlstrom (2009) develops an alternative approach to separating the inverse of the elasticity of substi-

tution and risk aversion within an expected utility framework.
18Interesting questions of existence and uniqueness of solutions are beyond the scope of this study. Schroder

and Skiadas (1999) provide such results assuming bounded investment opportunities and a utility function

that generalizes the recursive utility case considered here; Wachter (2002) proves existence in the return

predictability case (Section 3.3) under power utility with risk aversion greater than 1. Further existence

results under power utility are provided by Dybvig and Huang (1988) and Dybvig, Rogers, and Back (1999).
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3.2.1 Characterizing the solution when the EIS does not equal one

As shown in the Appendix, as long as ψ 6= 1, the form of the value function (33), and

therefore the form of optimal allocation, (34), still holds. Myopic demand takes the same

form as under power utility; that is, it is determined by γ alone. The parameter γ also

determines whether the income or substitution effect dominates in the portfolio decision.

These results support the interpretation of γ as risk aversion in this more general model.

It is also instructive to consider the consumption policy. Define a function H as follows:

H(X, τ) = β−ψI(X, τ)−(1−ψ). (37)

It follows form the first-order condition for consumption (fC = JW ) that the wealth-

consumption ratio is equal to H:

Wt

Ct
= H(Xt, T − t). (38)

It follows from (37) that

IX
I

= − 1

1− ψ
HX

H
. (39)

Recall that the sign of IX equals the sign of JX , the derivative of the value function with

respect to the state variables. As in the asset allocation decision, there are two effects that

changes in investment opportunities could have on consumption behavior. On the one hand,

an improvement could lead investors to consume less out of wealth, to better take advantage

of the opportunities (the substitution effect). On the other, an improvement raises wealth in

the long-run, allowing the investor to consume more today (the income effect). Equation (39)

shows that for investors who are relatively willing to substitute intertemporally (ψ > 1), con-

sumption falls relative to wealth when investment opportunities rise (the substitution effect

dominates). For investors who are relatively unwilling to substitute intertemporally (ψ < 1),

consumption rises (the income effect dominates). These results support the interpretation

of ψ as the elasticity of intertemporal substitution.

Substituting into the Bellman equation (53) leads to the following differential equation
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for H:

1

1− ψ
Hτ

H
− 1

1− ψ
HX

H
b+

1

2

1

γ
λ>
(
σσ>

)−1
λ− 1− γ

1− ψ
1

γ

HX

H
aσ>

(
σσ>

)−1
λ

+ rf +
1

2

1

1− ψ

(
1− γ
1− ψ

+ 1

)
tr

(
a>
H>X
H

HX

H
a

)
− 1

2

1

1− ψ
tr(a>HXXa)

1

H

+
1

2

(
1− γ
1− ψ

)2
1

γ

HX

H
aσ>

(
σσ>

)−1
σa>

H>X
H

− 1

1− ψ
H−1 − β

(
1− 1

ψ

)−1

= 0, (40)

with boundary condition H(X, 0) = 0. Equation (40) is useful in considering the special

cases below.

Constant investment opportunities

In the special case of constant investment opportunities, portfolio choice is myopic, as ex-

plained above. The wealth-consumption ratio can also be derived in closed-form: the differ-

ential equation for H (which is now a function of τ alone) is given by:

1

1− ψ
H ′ +

(
1

2

1

γ
λ>
(
σσ>

)−1
λ+ rf − β

(
1− 1

ψ

)−1
)
H − 1

1− ψ
= 0. (41)

The solution is

H(τ) =
1

k(1− ψ)

(
1− e−k(1−ψ)τ

)
, (42)

where

k =
1

2

1

γ
λ>
(
σσ>

)−1
λ+ rf − β

(
1− 1

ψ

)−1

.

The first two terms in k measure of the quality of investment opportunities. For ψ > 1, H(τ)

is increasing in k.19 That is, the greater are investment opportunities, the less the investor

consumes out of wealth. Note that the discount rate enters k with a negative sign: while

an increase in investment opportunities causes the investor to consume less out of wealth,

an increase in the discount rate causes the investor to consume more. For ψ < 1, H(τ) is

decreasing in k. The greater are investment opportunities, the more the investor consumes

19This follows from the fact that H(0) = 0 and that H ′(τ) is increasing in k for any (fixed) τ > 0.

26



out of wealth. Also, an increase in investment opportunities and an increase in the discount

both lead the investor to consume more and save less as a percentage of wealth.

Power utility and complete markets

In this setting without trading restrictions, markets are complete if and only if the diffusion

terms for asset prices span the diffusion terms for X. The term aσ>
(
σσ>

)−1
represents the

projection of the diffusion terms for X on the diffusion terms for P (i); therefore markets are

complete if and only if

aσ>
(
σσ>

)−1
σ = a,

namely if the projection recovers the diffusion terms on X. Further note that, because

tr(AB) = tr(BA) for conforming matrices,

tr
(
a>H>XHXa

)
= tr

(
HXaa

>H>X
)

= HXaa
>H>X .

Therefore (40) reduces to the much simpler

Hτ −HXb+
1

2

γ − 1

γ2
λ>
(
σσ>

)−1
λH +

γ − 1

γ
HXaσ

> (σσ>)−1
λ

+
γ − 1

γ
rfH −

1

2
tr(a>HXXa)− 1 +

1

γ
βH = 0. (43)

Equation (43) has a solution of the form

H(X, τ) =

∫ τ

0

F (X, s) ds (44)

with F (X, 0) = 1. To see this, note that it follows from integration by parts that∫ τ

0

∂F

∂s
ds = F (X, τ)− F (X, 0) = Hτ − 1.

Substituting in, I find that F satisfies

∂F

∂τ
− FXb+

1

2

γ − 1

γ2
λ>
(
σσ>

)−1
λF +

γ − 1

γ
FXaσ

> (σσ>)−1
λ

+
γ − 1

γ
rfF −

1

2
tr(a>FXXa) +

1

γ
βF = 0. (45)
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It is no accident that the differential equation simplifies under the case of power utility

and complete markets. This is the case where the conceptually simpler martingale method

of Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987) and Pliska (1986) is

straightforward to apply (for an example, see Wachter (2002)). While this method can be

extended to incomplete markets (He and Pearson (1991), Cuoco (1997)) and to recursive

utility (Duffie and Skiadas (1994), Schroder and Skiadas (1999), Skiadas (2007)), it is less

straightforward in these cases.

3.2.2 Characterizing the solution when the EIS equals 1

In the case of ψ = 1, the value function takes the form

J(W,X, τ) =
W (1−γ)(1−e−βτ )G(X, τ)1−γ

1− γ
.

The differential equation for G is given in the Appendix. Equation (32) still holds (see Duffie

and Epstein (1992a)), implying that the portfolio allocation is given by

z =
1

1− (1− γ)(1− e−βτ )
(
σσ>

)−1
λ+

1− γ
1− (1− γ)(1− e−βτ )

(
σσ>

)−1
σa>

G>X
G
. (46)

As in the case of ψ 6= 1 the portfolio allocation separates into two terms, the first of which

can be interpreted as myopic demand (because it does not depend on future investment

opportunities), and the second as hedging demand.

Myopic demand is horizon-dependent when ψ = 1. When the horizon is large (as τ →∞),

myopic demand approaches the myopic demand in (34): namely it is determined by the

coefficient of relative risk aversion only. However, for finite horizons, myopic demand is also

determined by the EIS. In fact, myopic demand is determined by a weighted average of

ψ−1(= 1) and γ, with the horizon determining the weights:

1− (1− γ)
(
1− e−βτ

)
= e−βτ + γ(1− e−βτ ).

The first-order condition fC = JW , applied to (46) implies that the wealth-consumption

ratio is given by W
C

= 1−e−βτ
β

. Unlike in the ψ 6= 1 case, the wealth-consumption ratio does
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not depend on investment opportunities. Unit EIS corresponds to the knife-edge case where

the substitution and income effects cancel each other out, as far as consumption behavior

is concerned. In the limiting case of an infinite horizon, the wealth-consumption ratio is

constant and equal to β−1.

3.3 Time-varying risk premia

I now consider a special case of price dynamics in which there is a single risky asset and

a single state variable Xt. This example is meant to be illustrative; the solution technique

can be extended to other forms of affine dynamics (see Schroder and Skiadas (1999), Liu

(2007)). Specifically, assume rf , σ and a = σX are constants, and let

λ(X) =
(
σσ>

) 1
2 X

b(X) = −κ(X − X̄).

This specification implies that the expected excess return on the stock is time-varying, and

depends linearly on a variable Xt that follows a mean-reverting process. It is therefore the

continuous-time equivalent of the process assumed in Section 2.20 Note that Xt is the Sharpe

ratio on the risky asset.

When are exact solutions available?

More explicit solutions for the value function, and therefore for portfolio and consumption

choice are available in two special cases of the above analysis: (1) when the EIS is equal

to 1, and (2) when power utility obtains (γ = 1/ψ), and markets are complete. The first

case is considered by Schroder and Skiadas (1999) (who also assume complete markets), and

Campbell, Chacko, Rodriguez, and Viceira (2004) (who also assume an infinite horizon).

Here I consider the first case, allowing markets to be incomplete and the horizon to be

finite.21 The second case is the subject of Wachter (2002). In a related contribution, Kim

20Wachter (2002) makes this statement precise.
21Duffie and Epstein (1992a) consider a related finite-horizon problem in which they analyze the term

structure of interest rates under Cox, Ingersoll, and Ross (1985)-type dynamics.
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and Omberg (1996) show that one can also obtain closed-form solutions for portfolio choice

when the investor maximizes power utility over terminal wealth.

Indeed, when ψ = 1, the value function is given by (60), with G taking the form

G(X, τ) = exp

{
A

(1)
1 (τ)

X2

2
+ A

(1)
2 (τ)X + A

(1)
3 (τ)

}
, (47)

and where A
(1)
i satisfy a system of ordinary differential equations with boundary conditions

A
(1)
i (0) = 0. For power utility and complete markets, the wealth-consumption ratio H(X, τ)

is given by (44), where

F (X, τ) = exp

{
A

(2)
1 (τ)

X2

2
+ A

(2)
2 (τ)X + A

(2)
3 (τ)

}
(48)

Substituting into (45) results in a set of ordinary differential equation for A
(2)
i , with boundary

conditions A
(2)
i = 0.

An approximate solution technique

The affine dynamics above lend themselves to an approximate solution technique developed

by Campbell and Viceira (1999) based on earlier work by Campbell (1993). Campbell and

Viceira propose log-linearizing the budget constraint around the mean consumption-wealth

ratio. They then derive an approximate analytical solution to the above problem, assuming

an infinite horizon. As long as the consumption-wealth ratio is not too variable (i.e. the EIS

is not far from 1), the approximation error will be small.

Chacko and Viceira (2005) show how to implement this approximation in a continuous-

time setting. Consider the differential question for the wealth-consumption ratio (40). Fol-

lowing Chacko and Viceira, I assume that the horizon is infinite, and look for a stationary

solution, namely a solution with Hτ = 0. Let h = logH, and consider a first-order approxi-

mation of e−h around the mean of −h:

e−h ≈ eE[−h] + (−h− E[−h])eE[−h]. (49)

Let h1 = eE[−h] and h0 = h1(1− log h1). Then (49) implies

H−1 ≈ h0 − h1 logH. (50)
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Substitute (50) and Hτ = 0 into (40) implies

− 1

1− ψ
HX

H
b+

1

2

1

γ
λ>
(
σσ>

)−1
λ− 1− γ

1− ψ
1

γ

HX

H
aσ>

(
σσ>

)−1
λ

+ rf +
1

2

1

1− ψ

(
1− γ
1− ψ

+ 1

)
tr

(
a>
H>X
H

HX

H
a

)
− 1

2

1

1− ψ
tr(a>HXXa)

1

H

+
1

2

(
1− γ
1− ψ

)2
1

γ

HX

H
aσ>

(
σσ>

)−1
σa>

H>X
H

− 1

1− ψ
(h0 − h1 logH)− β

(
1− 1

ψ

)−1

≈ 0. (51)

Observe that this differential equation is similar in form to the one for the value function in

the ψ = 1 case (given by (65)). In fact, it is simpler in that there is no time-dependence. It

follows that the approximation method can be implemented any setting where the EIS = 1

yields an exact solution. Under the above assumptions on the asset return process and state

variable processes,

H(X, τ) ≈ exp

{
A

(3)
1

X2

2
+ A

(3)
2 X + A

(3)
3

}
,

where A
(3)
i can be determined by matching coefficients. Campbell and Viceira (1999) use this

approximation to show, among other results, that, in the infinite-horizon problem, portfolio

decisions are driven, almost entirely, by risk aversion γ.

Numerical results

When calibrated to reasonable values, what do these dynamic considerations add to the asset

allocation problem? In what follows, I present results from Wachter (2002); the near perfect

negative correlation between the dividend yield and the stock return makes it reasonable

to assume that markets are complete. I calibrate this model using the same parameters as

Barberis (2000) and assume a risk aversion of 5, so the results are quantitatively comparable

to those discussed in Section 2.22 Similar results are found using alternative specifications

22Wachter (2002) provides details on how the discrete-time results are used to calibrate the continuous-

time model. However, that paper calibrates the model mistakenly assuming that the process in Barberis

(2000) applies to the net return on equities rather than the excess return. These results correct that mistake.
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and methods (e.g. Brennan, Schwartz, and Lagnado (1997), Brandt (1999), Balduzzi and

Lynch (1999)).

Figure 3 shows the optimal allocation as a function of horizon for various levels of the

dividend yield. As in the static case, there are substantial horizon and market timing effects.

However, in this case, rather than decreasing (slowly) in the horizon, the degree to which the

allocation varies with the dividend yield is even more marked for long-term investors than

for short-term investors. This greater dependence results from hedging demand. Because

the dividend yield (proportional to X) is negatively correlated with stock returns, hedging

demand leads the investor to allocate more money to stocks for γ > 1. The greater is the

dividend yield the more the investor cares about this hedge, which is why hedging demand

makes market timing more extreme. Unlike the simpler horizon effect in Section 2, this

effect reverses for γ < 1. The long-horizon investor with γ < 1 holds less in stock than the

short-horizon investor.

3.4 Parameter uncertainty and learning in dynamic models

So far in this section I have assumed that the investor has full knowledge of the parameters.

I now consider the case of parameter uncertainty in dynamic models. One obvious difference

between the dynamic and static settings is that the degree to which parameters are uncertain

varies over time; that is, the agent learns more about the distribution as time goes on. Less

obviously, learning introduces hedging demands for investors with risk aversion not equal

to one. A well-studied special case is when returns are iid and the investor learns about

the average excess return (see the discussion in Pastor and Veronesi (2009)). Given the

assumption of iid returns, it is natural to assume that only the mean is uncertain as, in

a continuous-time setting, the volatility can be estimated with effectively infinite precision

(Merton (1980)). Moreover, as the time horizon shortens, the role of uncertainty about the

mean goes to zero (Detemple (1986), Gennotte (1986)). The estimated mean, will differ

from the true mean; however, the uncertainty about this estimated mean has no effect on
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the allocation.23

What does have an effect, and a large, one, is learning. Hedging demand induced by

learning is negative and can be substantial (Brennan (1998)). The reason is that the in-

vestor’s estimate of the average return (effectively a state variable) is positively correlated

with realized returns. When a positive shock to prices occurs, the investor updates his be-

liefs about the average return, estimating it to be higher than before. Thus stocks are less

attractive to an investor with γ > 1 (see (34)).

Uncertainty about parameters other than the mean is harder to address because it does

not lend itself to closed-form solutions.24 Studies have explored this question using numerical

methods. Xia (2001) allows the investor to be uncertain about the degree of predictability

(the coefficient β in (3)) and assumes the other parameters are known. She decomposes

hedging demand into the component to hedge learning about β, and the component to hedge

changes in Xt. Learning-induced hedging demand decreases in the difference between the

dividend yield and its mean. Moreover, it switches in sign: it is positive when the dividend

yield is below its long-run mean, zero when it is at the long-run mean, and negative when it

is above the long-run mean. As Xia shows, these properties make the overall allocation less

variable then when only predictability is taken into account. However, the allocation is still

more variable than implied by the myopic strategy.

Solving the asset allocation problem when there is uncertainty about the full set of

parameters is undertaken by Brandt, Goyal, Santa-Clara, and Stroud (2005) and by Skoulakis

(2007). The lack of closed-form solutions and the high dimensionality of the problem make

this a formidable technical challenge. These studies show that, in addition to the effect

noted by Xia (2001), uncertainty about the mean (as in Brennan (1998)) exerts an important

influence, driving down the average allocation relative to that discussed above. While the net

effect of hedging demand is under dispute, the market timing effect remains alive and well.

23Given this limiting result in continuous time, it is perhaps not surprising that estimation risk should

have little effect at short horizons as shown in Section 2.
24As in the static case, Bayesian learning requires that a prior and likelihood function be specified; the

studies discussed below make use of the conditional Bayesian framework (Section 2.2).
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4 Concluding remarks

In this study, I have reviewed the literature on static and dynamic asset allocation, with

a focus on the implications of return predictability for long-run investors. For both buy-

and-hold and dynamically trading investors, the optimal allocation to stocks is greater, the

longer the horizon, given reasonable assumptions on preferences. This similarity should not

obscure some key differences. In the static case, the effect of any stationary variable on the

allocation will diminish as the horizon grows. In the dynamic case, there is no reason for

this to happen, and indeed the opposite may be true. That is, for investors who dynamically

trade, even short-term variables can have long-term implications.

This survey has also highlighted efforts to introduce parameter uncertainty into the

agent’s decision process. This, in theory, serves to pass on some of the uncertainty faced

by the econometrician to the agent; the agent now incorporates this estimation risk into his

decisions. Empirically, however, estimation risk appears to have very little effect, except

at long buy-and-hold horizons (at least for the specifications explored herein). This is not

to say that the perfect and imperfect-information cases are identical. Indeed, learning can

induce important hedging demands in the dynamic setting. Furthermore, I show in the

static setting that the choice of prior and likelihood can have a large impact on the results.

The notion of uninformative is less than clear in a predictive regression setting, moreover

economic theory indicates a possible role for unapologetically informative priors that take

this theory into account. While these results do not arise from estimation risk per se, they

do incorporate the small-sample nature of the evidence into the decision problem. Our data

on financial markets is unavoidably finite; this should influence agents in economic models

just as it influences the economists doing the modeling. Despite the progress reported here,

it is fair to say that much work along these lines remains to be done.
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Appendix: Solving for the value function in the dynamic

recursive utility model

In this Appendix I will use the more general form of the aggregator suggested by Duffie and

Epstein (1992a) for the ψ = 1 case. The formulas in the text result from taking the limit as

ξ → 0.

f(C, V ) =


β

1− 1
ψ

((1− γ)V )

((
C ((1− γ)V )−

1
1−γ

)1− 1
ψ − 1

)
ψ 6= 1

β(ξ1−γ + (1− γ)V )(logC − 1
1−γ log(ξ1−γ + (1− γ)V )) ψ = 1.

(52)

The continuous-time Bellman equation is derived by Duffie and Epstein (1992b):

−Jτ + JXb+ JW (Wz>λ+Wrf − C) +
1

2
tr(Σ) + f(C, J(X,W, τ)) = 0, (53)

where

Σ =

 a

Wz>σ

>  JXX JXW

JWX JWW

 a

Wz>σ

 .
The first order condition for consumption is

fC = JW .

Substituting in from (52), I find (with some abuse of notation), C as a function of W , X

and τ :

C(W,X, τ) =

 βψJ−ψW ((1− γ)J)
1−γψ
1−γ ψ 6= 1

βJ−1
W (ξ1−γ + (1− γ)J) ψ = 1.

(54)

It follows from (54), it follows that

f(C, V ) =


βψ
(

1− 1
ψ

)−1

J1−ψ
W ((1− γ)J)

1−γψ
1−γ − β

(
1− 1

ψ

)−1

(1− γ)J ψ 6= 1

β(ξ1−γ + (1− γ)J) log(βJ−1
W (ξ1−γ + (1− γ)J))−

β
1−γ (ξ1−γ + (1− γ)J) log(ξ1−γ + (1− γ)J) ψ = 1.

(55)

Further note that

CJW =

 βψJ1−ψ
W ((1− γ)J)

1−γψ
1−γ ψ 6= 1

β(ξ1−γ + (1− γ)J) ψ = 1.
(56)
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For ψ 6= 1, substituting into (53) from (55), (56) and (32) implies

− Jτ + JXb−
1

2

J2
W

JWW

λ>
(
σσ>

)−1
λ− JW

JWW

J>XWaσ
> (σσ>)−1

λ

+ JWWrf +
1

2
tr(a>JXXa)− 1

2

1

JWW

J>XWaσ
> (σσ>)−1

σa>JXW

− 1

1− ψ
βψJ1−ψ

W ((1− γ)J)
1−γψ
1−γ − β

(
1− 1

ψ

)−1

(1− γ)J = 0. (57)

The form of J (33), combined with (37) implies

J(W,X, τ) =
(
βψH(X, τ)

)− 1−γ
1−ψ . (58)

Substituting (58) into (57) leads to (40).

The remainder of this section assumes the ψ = 1 case. Substituting into (53) from (55),

(56) and (32) implies

− Jτ + J>Xb−
1

2

J2
W

JWW

λ>
(
σσ>

)−1
λ− JW

JWW

J>XWaσ
> (σσ>)−1

λ

+ JWWrf +
1

2
tr(a>JXXa)− 1

2

1

JWW

J>XWaσ
> (σσ>)−1

σa>JXW

− β
(
ξ1−γ + (1− γ)J

)
+ β

(
ξ1−γ + (1− γ)J

)(
1− 1

1− γ

)
log
(
ξ1−γ + (1− γ)J

)
+ β

(
ξ1−γ + (1− γ)J

)
log(βJ−1

W ) = 0 (59)

Guess

1

1− γ
log
(
ξ1−γ + (1− γ)J(W,X, τ)

)
= q(τ) logW + logG(X, τ). (60)

Derivatives of J can be found by implicitly differentiating on both sides of (60):

Jτ =
(
ξ1−γ + (1− γ)J

)(
q′ logW +

Gτ

G

)
JW =

(
ξ1−γ + (1− γ)J

)
q

1

W
(61)

JX =
(
ξ1−γ + (1− γ)J

) GX

G
.

Second derivatives follow from (61):

JWX =
(
ξ1−γ + (1− γ)J

)
q(1− γ)W−1GX

G

JWW =
(
ξ1−γ + (1− γ)J

)
W−2

(
−q + q2(1− γ)

)
(62)

JXX =
(
ξ1−γ + (1− γ)J

)(
−γGXG

>
X

G2
+
GXX

G

)
.
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Substituting (60), (61) and (62) into (59) and dividing by ξ1−γ + (1 − γ)J leads to the

following:

− q′ logW − Gτ

G
+
GX

G
b+

1

2

q

1− q(1− γ)
λ>
(
σσ>

)−1
λ

+
q(1− γ)

1− q(1− γ)

GX

G
aσ>

(
σσ>

)−1
λ

+ qrf +
1

2
tr

(
−γ a

>G>XGXa

G2
+
a>GXXa

G

)
+

1

2

q(1− γ)2

1− q(1− γ)

GX

G
aσ>

(
σσ>

)−1
σa>

G>X
G

− β − βγ(q logW + logG) + β log(βq−1) + β logW − β(1− γ)(q logW + logG) = 0. (63)

Matching coefficients on logW implies that

−q′ + β − βq = 0,

with boundary condition q(0) = 0. Therefore

q(τ) = 1− e−βτ . (64)

The resulting differential equation for G is as follows:

− Gτ

G
+
GX

G
b+

1

2

q

1− q(1− γ)
λ>
(
σσ>

)−1
λ

+
q(1− γ)

1− q(1− γ)

GX

G
aσ>

(
σσ>

)−1
λ

+ qrf +
1

2
tr

(
−γ a

>G>XGXa
>

G2
+
a>GXXa

G

)
+

1

2

q(1− γ)2

1− q(1− γ)

GX

G
aσ>

(
σσ>

)−1
σa>

G>X
G

− β − βγ logG+ β log(βq−1)− β(1− γ) logG = 0. (65)
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Table 1: Posterior means of β and ρ under various combinations of the likelihood and the

prior

Posterior means

Specification β ρ

Conditional likelihood; p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−∞,∞) 0.437 0.9800

Conditional likelihood; p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−1, 1) 0.441 0.9798

Exact likelihood; p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−1, 1) 0.375 0.9828

Exact likelihood; p(b,Σ) ∝ (1− ρ2)−1σ2
v |Σ|−5/2, ρ ∈ (−1, 1) 0.276 0.9872

Notes: Results are from Stambaugh (1999, Figure 1). The predictor variable is the dividend-

price ratio. Data are monthly from 1952–1996. The conditional likelihood refers to (13); the

exact likelihood refers to (8) with initial condition given by (14).
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Table 2: Expected returns and optimal allocations under various combinations of the likeli-

hood and prior (monthly horizon)

Specification Current dividend yield

3% 4% 5%

Panel A: Expected excess returns (in percent)

Conditional likelihood; p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−∞,∞) 2.0 7.3 12.5

Exact likelihood; p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−1, 1) 1.0 5.5 10.0

Exact likelihood; p(b,Σ) ∝ (1− ρ2)−1σ2
v |Σ|−5/2, ρ ∈ (−1, 1) 1.9 5.2 8.5

Conditional MLEs as true parameters 2.0 7.3 12.5

Panel B: Stock allocation (in percent)

Conditional likelihood; p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−∞,∞) 22 61 97

Exact likelihood; p(b,Σ) ∝ |Σ|−3/2, ρ ∈ (−1, 1) 15 46 79

Exact likelihood; p(b,Σ) ∝ (1− ρ2)−1σ2
v |Σ|−5/2, ρ ∈ (−1, 1) 21 45 68

Conditional MLEs as true parameters 22 60 98

Notes: Results are from Stambaugh (1999, Table 3,4). The predictor variable is the dividend-

price ratio. Data are monthly from 1952–1996. The conditional likelihood refers to (13); the

exact likelihood refers to (8) with initial condition given by (14). The table assumes that the

investor has a horizon of one month and has constant relative risk aversion equal to seven.
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Figure 1: Static allocation as a function of horizon assuming return predictability
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Notes: Panel A shows the allocation when there is no parameter uncertainty; Panel B

incorporates parameter uncertainty. The solid line corresponds to the optimal (buy-and-

hold) allocation when the dividend yield is at its sample mean (3.75%). The dash-dotted

lines correspond to the allocations when the dividend yield is one standard deviation above

or below its mean (2.91% and 4.59% respectively). The dotted lines correspond to the

allocations when the dividend yield is two standard deviations above or below its mean

(2.06% and 5.43% respectively). The agent has power utility over terminal wealth with

relative risk aversion equal to 5. Note that some lines may lie on top of each other and

that the allocations weakly increase as a function of the dividend yield except at very long

horizons in Panel B. The model is estimated over monthly data from 1952 to 1995. This

figure is adapted from Barberis (2000, Figure 3).
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Figure 2: Prior distributions on the R2 of a predictive regression
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Notes: The prior probability that the R2 exceeds a value k implied by various prior beliefs.

Prior beliefs are indexed by ση, the prior standard deviation of the normalized coefficient on

the predictor variable. The dogmatic prior is given by ση = 0; the diffuse prior by ση =∞.

Intermediate priors express some skepticism over return predictability. Note that left portion

of the x-axis of the graph is scaled differently than the right portion.
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Figure 3: Dynamic allocation as a function of horizon assuming return predictability
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Notes: The figure shows the optimal allocation as a function of horizon, assuming the in-

vestor can trade continuously. The solid line corresponds to the optimal allocation when the

dividend yield is at its sample mean (3.75%). The dash-dotted lines correspond to the allo-

cations when the dividend yield is one standard deviation above or below its mean (2.91%

and 4.59% respectively). The dotted lines correspond to the allocations when the dividend

yield is two standard deviations above or below its mean (2.06% and 5.43% respectively).

The agent has power utility over consumption (lines with circles) or over terminal wealth

(lines without circles) with risk aversion equal to five. Note that the allocations increase as

a function of the dividend yield. The model is estimated over monthly data from 1952 to

1995.
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