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ABSTRACT
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1 Introduction

Firms engage in research and development (R&D) because they anticipate future benefits

in the form of lower costs, new methods of production, and new uses for their products.

To the extent that they can capture the fruits of their efforts, private and social returns

to R&D should be equal.1 However, when they cannot appropriate the returns, R&D

becomes a public good and underinvestment is expected. A knowledge of the magnitude

and direction of the problem (i.e., who benefits from the efforts of whom) is therefore a

prerequisite for an appropriate design of public policy.

We address the much studied question of the relationship between R&D spillovers and

productivity, where a spillover occurs when firm i benefits from the R&D activities of firm

j. There is substantial evidence that spillovers exist. Furthermore, it is commonly agreed

that spillovers are larger when firms are closer. However, it is not clear what closeness

means or how it can be measured, and those questions are the focus of our research.

Specifically, although we are most interested in geographic proximity, we look at variants

of three measures of closeness: proximity in horizontal (product market), technological

(R&D), and geographic space.2

Our research differs from the literature to date in three respects. First, we assess

all three measures simultaneously, which removes the possibility that one measure (say

geographic proximity) appears to be important simply because researchers fail to control

adequately for the common influence of a second measure (say technological proximity).

In other words, firms that are technologically similar might locate in the same region and

benefit from each other’s R&D activities. There has been little work that uses the same

data and model to evaluate multiple measures of closeness, both individually and jointly.

Second, we refine the measures of closeness, particularly geographic proximity. To

illustrate, most previous researchers have used the (single) location of a firm’s headquarters

to calculate geographic distance. It is not clear, however, that technological advances are

likely to be communicated by CEOs. We hypothesize that inventors are more apt to

communicate and we use the distribution of a firm’s (multiple) inventor locations to

calculate proximity. To our knowledge, no one has exploited firms’ research locations to

create a multidimensional measure of geographic closeness.

Third, whereas previous researchers have used either a zero/one measure of geographic

distance (same or different region) or a simple one–parameter function of Euclidean

distance between headquarters, we allow the effect of our multi–dimensional measure of

geographic proximity to decay in a more flexible manner. Specifically, we estimate that

1For optimality, technology markets must also be competitive. In other words, strategic behavior can also
distort decisions (see, e.g., Spence 1984).

2We do not assess vertical proximity because we do not have adequate data.

1



function semiparametrically.

Our research attempts to answer a number of questions. First and foremost, what is the

nature of spillovers? In particular, who benefits from the R&D activities of whom? This

question is logically prior to all others. Indeed, in the absence of an answer, it is impossible

to formulate appropriate public policy towards R&D. Furthermore, it cannot be answered

by considering one source of spillovers in isolation. Second, to what extent is knowledge

private or public? In other words, can firms capture the lion’s share of the rents that are

associated with their R&D activities or are they freely available to rivals? This question

must be answered if we are interested in assessing under and over investment and the need

to correct the associated externalities. Finally, are knowledge flows confined to narrowly

defined product markets, technology classes and/or geographic regions? Put differently,

are spillovers local or global? This question must be answered if we are concerned with

asymmetric patterns of regional or industrial growth and decline and whether growth

paths will converge or diverge.

We use U.S. firm level accounting data (sales, employment, capital, R&D, etc.) from U.S.

Compustat 1980-2000 matched into the U.S. Patent and Trademark Office (USPTO) data

from the NBER data archive. The Compustat data were compiled by Bloom, Schankerman,

and Van Reenen (2008). The use of patent data to create distributions of inventor locations,

however, is new.

To analyze that data, we employ spatial econometric techniques that were developed

by Pinkse, Slade, and Brett (2002) and Pinkse and Slade (2004). With those techniques,

which allow us to handle multiple measures of closeness in a flexible but parsimonious

manner, space is broadly defined to include a number of geographic and nongeographic

dimensions.

Section 2 discusses the previous literature, section 3 the model, and section 4 measuring

spillovers. The data is discussed in section 5, econometric methods in section 6, and results

in section 7. Some concluding comments are offered in section 8.

2 Previous Literature

Griliches (1979) was perhaps the first to recognize the multi–dimensional nature of the

spillover problem. He discussed alternative hypotheses about the nature of closeness,

which can be:

Horizontal or learning from product–market rivals

Firms that produce similar products can often benefit from each other’s R&D activities.

For example, when a pharmaceutical firm introduces a new drug, in the absence of patent
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protection, rival companies can easily determine its makeup and offer close substitutes.

Horizontal spillovers have been studied by e.g., Levin and Reiss (1988), Bernstein (1988),

and Ornaghi (2006).

Technological or learning from technology–market rivals

Firms that perform similar types of research can also learn from each other. For example,

the discovery of froth flotation, which facilitated the refining of sulfide ores, was an

important advance in the mining industry that benefitted firms from many different

product markets (e.g., copper, lead, and zinc metals, which are used in wiring, batteries,

and galvanizing, respectively). Technology–market spillovers have been studied by e.g.,

Jaffe (1986).

Vertical or learning from suppliers or retailers

Firms that are related through a vertical chain might experience technological synergies.

Although vertical or input/output spillovers have been studied, it is not clear if these

are real or simply result from failure to control for quality or price. For example, if

there is an advance that increases the quality or lowers the cost of producing auto bodies,

auto manufacturers benefit. However, their technology has not changed; they can simply

purchase better bodies at lower prices (a pecuniary externality). Vertical spillovers have

been studied by e.g., Scherer (1982), Griliches and Lichtenberg (1984), and Goto and Suzuki

(1989).

More recently, researchers have recognized that there is another type of closeness that

Griliches (1979) did not mention:

Geographic or learning by meeting

Firms that are located in the same or proximate regions have opportunities to communicate.

For example, employees of different firms that are located in close geographic proximity

might meet on the golf course or belong to common civic organizations where they

discuss and learn from each other’s research activities. In other words, social networks

can facilitate learning. In addition, geographic proximity can enable capitalization of

complementarities among firms’ research activities. Geographic spillovers are particularly

important since they affect the potential for regional and national convergence. Indeed,

if spillovers are highly localized, the prospects for convergence are poor. Geographic

spillovers have been studied by e.g., Jaffe, Trajtenberg and Henderson (1993), Eaton and

Kortum (1996), Keller (2002), and Orlando (2004).

Most early spillover studies used data on industrial sectors to examine intersectoral
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input/output flows or vertical spillovers based on sectoral input/output tables. More

recently, however, researchers have used firm level data that allow them to examine such

issues as intra versus inter product or geographic market spillovers. In general, researchers

have found significant spillover effects. However, most concentrate on one proximity

measure in isolation.3 In addition, all use scalar measures of geographic proximity that

depend on at most one parameter.

Our research, which is based on firm data in a multi–proximity–measure setting, takes

a production–function approach to the problem. There are of course other approaches. For

example, some researchers (e.g., Bernstein and Nadiri 1989) have used a dual framework

based on a system of factor demands.4 The advantage of the former is that it requires no

behavioral assumptions and therefore avoids misspecification bias. The dual approach,

in contrast, requires strong assumptions such as perfectly competitive input and output

markets or, if imperfect competition is assumed, on the nature of the product market

game or the bargaining process. Since the latter exploits more information, the estimates

obtained are more efficient if that information is correct. Unfortunately, if that information

is inaccurate, biases are introduced. Furthermore, since a system of interrelated equations

is estimated, the bias in a single equation can contaminate all equations.5

There are a number of issues that we have chosen not to cover. For example, we

consider private R&D but neglect public and academic activity (for work on the latter,

see e.g., Adams 1990, Jaffe 1989, and Acs, Audretsch, and Feldman 1992). Furthermore,

although we exploit patent data to create our measure of geographic proximity, we do

not consider patent flows as direct measures of spillovers (as in, e.g., Jaffe, Tratjenberg,

and Henderson 1993). Finally and most importantly, we do not consider vertical or

input/output spillovers. We do this for two reasons. First, we do not have detailed data on

interfirm purchases and sales. In addition, we believe that most such studies suffer from

a measurement problem that is due to the fact that both price and quantity aggregates

underestimate the value of new or higher quality goods. Productivity is therefore apt to

be mismeasured.

Finally, as is typical of studies that use cross sectional or panel–data, we do not exploit

information on individual industries but instead use a common model for all. We adopt a

common framework because ultimately we want to test whether a simple model has wide

applicability.

3Exceptions include Orlando (2004), who assesses technological and geographic proximity in a discrete
framework (e.g., same product market/different geographic market), and Bloom, Schankerman and Van
Reenen (2008), who assess product and technology–market proximity.

4Still others have used a consumer–surplus framework (see, e.g., the survey by Griliches 1991).
5The dual approach also allows one to endogenze R&D and capital investment decisions through the use

of Euler equations. This is a plus if the specified model is correct but a minus if not.
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3 The Model

We use a standard value–added production–function framework similar to that employed

by Griliches (1979). In particular, output Q is produced by conventional inputs capital

K and labor L. In addition to the conventional inputs, output depends on a stock of

knowledge or productivity, which we model as Hicks neutral. Firms’ R&D activities

augment that stock, which depreciates over time.

Specifically, there are n firms, i = 1, . . . , n, observed in T time periods, t = 1, . . . , T.

The production function is

Qit = Ait MtUitHi(xit), (1)

where Q is output, A×M×U is the state of knowledge or productivity, and x is a vector

of conventional inputs. Taking logs we have

qit = ait + hi(xit) + µt + uit, (2)

where lower case letters denote logarithms (ait = ln Ait, etc.). Productivity consists of two

parts: a systematic component a, and a random component µ + u. The random component

is further subdivided into an aggregate shock, µ, and an idiosyncratic shock u ∼ F(0, V).

We model knowledge acquisition using a standard capital–accumulation type equation.

Specifically, firm i’s systematic stock of knowledge is

Sit = (1− δ)Sit−1 + Rit−1, (3)

where δ is the depreciation rate and Rit is firm i’s investment in knowledge in period t.6

We assume that the systematic component of productivity is a weighted average of the

R&D activities of all firms

ait = θSit + ∑
j 6=i

wijSjt, (4)

where wij is a weight that corresponds to some notion of the distance between i and j. Our

objective is to uncover the weighting matrix W = [wij].

We do this as follows. Assume that we have K distance (really proximity) measures,

where each measure is an n× n matrix, Dk = [dk
ij]. Let Dij = (d1

ij, . . . , dK
ij) be the vector of

measures for the (i, j) pair of firms and define the spillover pool associated with Dk to be

S−ikt = ∑
j 6=i

dk
ijSjt. (5)

6We follow Hall et al. (2005) in constructing the empirical measure of the R&D stock using a knowledge
depreciation rate of 15%. See the data appendix for details.
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Based on this definition, the simplest parametric weights correspond to

ait = θSit + ζkS−ikt, (6)

or

ait = θSit + ∑
k

ζkS−ikt. (7)

With (6), wij = ζkdk
ij and with (7), wij = ∑k ζkdk

ij.

More generally one can incorporate flexibility into the weighting matrix and estimate

the associated equation parametrically or nonparametrically. With the latter, each element

of W is assumed to be a common function of the vector of distance measures, wij = g(Dij).

The vector D must be specified by the practitioner. However, the functional form of g is

determined by the data.

4 Measuring Spillovers

Alternative distance or proximity measures have been used in the literature. We build on

and refine some of these.

Technology Spillovers

We, like most researchers who examine technological proximity, use a measure that is

due to Jaffe (1986). Suppose that there are L technology clases, l = 1, . . . , L. Let FT
il be

the fraction of firm i’s R&D activities (e.g., expenditures or patents) that are in class

l. i’s technology locational distribution is then FT
i = (FT

i1, FT
i2, . . . , FT

iL). The measure of

technology match between firms i and j is the uncentered correlation coefficient

wT
ij =

∑L
l=1 FT

il FT
jl√

[∑L
l=1(FT

il )
2][∑L

l=1(FT
jl )

2]
. (8)

Notice that with (8) all classes are treated symmetrically — no class is ‘closer’ to any other.

Furthermore, spillovers occur within but not across classes. In other words, there are no

FT
il FT

jk terms with l 6= k.

Horizontal Spillovers

Most people use a discrete measure, same or different Standard Industrial Classification

(SIC), that distinguishes between intra and interindustry spillovers (e.g., Levin & Reis

1988, Bernstein 1988, Bernstein & Nadiri 1989, Ornaghi 2006). We use a continuous and
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more disaggregate measure that was employed by Bloom, Shankerman, & Van Reenen

(2008). In particular, suppose that there are M product markets, m = 1, . . . , M, where

markets are proxied by SICs, and let FP be defined similarly to FT, i.e., FP
im is the fraction

of i’s output that belongs to product market m. Then FP
i is firm i’s product–market

locational distribution, and wP
ij is the uncentered correlation coefficient between the output

distributions FP
i and FP

j . Notice that here, as with the technology measure, product markets

are treated symmetrically — no market is ‘closer’ to any other — and spillovers occur

within but not across markets.7

Geographic Spillovers

Most previous studies focus on the location of firms’ headquarters as the basis for mea-

suring geographic spillovers. Several measures have been used: i) the Euclidean distance

between the capital cities of the countries where the headquarters of firms i and j are

located (Eaton & Kortum 1996, Keller 2002) and ii) a 0/1 variable that distinguishes if the

firms’ headquarters are located in a different or the same region (Eaton & Kortum 1999,

Orlando 2004).

It is not clear, however, that headquarters is the relevant locational variable. It seems to

us more likely that inventors communicate, and many inventors are employed in research

labs. Moreover, unlike headquarters, a given firm might locate laboratories in many

regions. Although the locations of headquarters and labs are correlated, correlation is far

from perfect. To illustrate, Microsoft began operations in the Seattle area, where it located

both its head office and its research lab. However, over time, it constructed additional labs

in high–tech areas of the US, such as Silicon Valley and the Boston area. Still more recently,

it has developed international labs in places as distant as Bangalore and Beijing.

In our empirical work we look at the locations of both headquarters and research labs.

However, we do not have data on the geographic locations of labs. To circumvent this

problem, we use patent data. Specifically, each patent gives the address of its principal

inventor, and we construct geographic R&D locational distributions from those addresses.

We do this as follows. Suppose that there are K geographic regions, k = 1, . . . , K. Let

FG
ik be the fraction of firm i’s inventors that are located in region k, and FG

i be firm i’s
geographic–market locational distribution. All of our geographic measures are of the form

wG
ij = ∑

k
∑

l
f (FG

ik , FG
il , FG

jk , FG
jl )C(dkl), i 6= j, wG

ii = 0, (9)

where dkl is the Euclidean distance between regions k and l.

7The revised version of Bloom et al (2008) considers extending this to measures which do take into account
the idea that some industries (and technological classes) may be closer to each other by using the Mahalanobis
distance metric instead of the Jaffe style measure.
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We distinguish between measures of match ( f ) and measures of Euclidean distance (C).

i) Measures of match

We use two functions f (.) of the locational distributions:

The product function,

fprod(.) = FG
ik FG

jl , (10)

and the sum function

fsum(.) = Oijkl(FG
ik + FG

il + FG
jk + FG

jl ), (11)

where Oijkl equals 1 if there is an overlap between the activities of firms i and j in the

combined regions k and l. The product function is a multidimensional relative of the

uncentered correlation coefficient, whereas the sum function measures, for those regions

where the two firms’ activities overlap, the fraction of their combined activities that are

located in the combined regions.

There are a number of attributes of our geographic measures that should be noted.

First, unlike our product market and technology class measures, with our geographic

measures spillovers occur across markets and cross–market spillovers are weighted by

geographic distance between the markets. Note also that the second measure (the sum)

favors diversification of labs. In other words, if a rival’s inventors are distributed across all

locations, firm i would also like to diversify its locations. In contrast, with the product

measure, firm i is indifferent between specialization and diversification. Finally, note that

each measure specializes to headquarters, which is similar to considering firms that have

only one lab or have all of their labs in the same region.

ii) Measures of Euclidean distance

With our parametric specifications, we also use alternative functions of dkl . Specifically, we

define two simple functions C(.) of the Euclidean distance between regions k and l.

Ccorr(dkl) =

{
1, k = l,
0, k 6= l,

(12)

and

Cexp(dkl) = exp(−αdkl). (13)

With the first function, geographic distance does not matter. Indeed, no spillovers occur

unless firms i and j are located in the same region. We use the subscript corr to indicate

that this is the distance measure that is implicit when the uncentered correlation coefficient
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is calculated (i.e., our measures of technology and product–market spillovers). With the

second measure, the effect of distance decays gradually. The parameter α in (13), which

determines the rate of decay, can be estimated or set exogenously. We use the subscript

exp to denote exponential decay.

5 Data

We use two firm level data sources. Accounting data (sales, employment, capital, etc.) come

from U.S. Compustat 1980-2000. Since we focus on manufacturing, we removed all firms

whose primary industries are outside of the manufacturing sector (SIC codes 2000-3990).

The data items available in Compustat, which are those reported in standard corporate

income statements, are used to construct our measures of output and conventional inputs,

Q, L, and K. We deflate sales by a year–specific four digit producer price index and capital

by the CPI. The Compustat Segment data also allow us to create breakdowns of each firm’s

activities across product markets. Specifically, firms’ sales are allocated to industry codes

or lines of business, such as 3660 (“Communications equipment”) and 3820 (“Measuring

and controlling devices”). On average each firm reports sales in approximately 4.8 different

industry codes.

The Compustat firms were matched into the U.S. Patent and Trademark Office (USPTO)

data from the NBER data archive. This archive contains detailed information on almost

three million U.S. patents granted between January 1963 and December 1999 and all

citations made to those patents between 1975 and 1999.8 Since our method requires

information on patenting, we kept only those firm years with a positive patent stock (firms

that had no patents at all in the period of 1970-2000 were dropped), leaving an unbalanced

panel of 812 manufacturing firms with at least four observations with non-missing sales,

capital stock and employment information. The USPTO allocates patents into technology

classes, such as class 042 (“Firearms”) and class 257 (“Solid state devices”), the breakdown

that we use to construct technological proximity. On average each firm owns 496 patents

in 37 classes.

Inventor location is taken from the address of the lead inventor of the patent, which is

recorded at the city level. This is the standard measure of inventor location used by Jaffe

and Trajtenberg (2002) and Griffith , Harrison and Van Reenen (2006), among many others.

We feel that it is a more appropriate proxy for the location of the firm’s R&D, and thus

the potential for spillovers, than the headquarters of the firm, as it is a better indicator of

where the key research was conducted. We allocate R&D activity into 2,039 geographic

units, where a unit is a county. Because there are multiple patents, we are able to build

8See Hall, Jaffe, and Trajtenberg (2005) and Jaffe and Trajtenberg (2002).
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Table 1: Descriptive Statistics

Variable (1) (2) (3)
Mean Median Std.dev.

Sales, Q 2,832 349 10,320

Stock of physical capital, K 1094 94 4,203

Employment, L 13,582 2,600 43,631

R&D stock, S 546 47 2,446

Technological spillovers, SpillTech 30,670 26,034 21,296

Product market spillovers, SpillSIC 35,855 20,740 39,393

Geographic market spillovers, SpillGeog 42,790 42,101 19,227

Notes:
The means, medians and standard deviations are taken over all non-missing
observations between 1980 and 2000; values measured in 2000 prices in
$million
The geographic spillover measure is based on inventor locations and uses
the product measure of match and exponential decay with distance

up a picture of the location of the firm’s R&D activity spatially. We do not use inventor

information outside the United States because we have focused on US firms.

Each firm’s own stock of knowledge, S, is constructed from R&D expenditure data as

in equation (3) with the depreciation rate δ set to 0.15 following Hall, Jaffe, and Trajtenberg

(2005). The horizontal product–market spillover measure (with weights wP), which is

denoted SpillSIC, makes use of 349 3 digit SICs, and the technological spillover measure

(with weights wT), which is denoted SpillTech, makes use of 410 technology classes. Finally,

the measures of geographic proximity (with weights wG), which are denoted SpillGeog,

differ depending on the functions of match ( f ) and geographic distance (C) that are chosen.

5.1 Descriptive Statistics

Table 1 provides some basic descriptive statistics for the accounting and patenting data,

and the technology, product market, and geographic distance measures, SpillTech, SpillSIC,

and SpillGeog. The sample firms are large (mean employment is over 13,000), but with

much heterogeneity in size (measured by sales, employment, or physical capital), R&D

intensity, patenting activity, and location. The three spillover measures also differ widely

across firms.

In order to distinguish between the effects of technology, product market, and geo-

graphic spillovers econometrically we need independent variation in the distance metrics

in technology, product market, and geographic space. To gauge this we do two things.

First, we calculate and report in table 2 raw correlation coefficients between pairs of
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Table 2: Correlations between the spillover measures

Correlation between (1) (2) (3)
SIC–Tech SIC–Geog Geog–Tech

weights, w 0.359 0.040 0.038

lnSpillM 0.420 0.162 0.220

the change of lnSpillM 0.460 0.129 0.327

Notes:
All correlations are significant at the 1% level
In column one, M denotes SIC, TECH, or Geog
The change in lnSpill is defined as a residual from the regression
with firm fixed effects and time dummies.

Figure 1: SIC and TECH correlations

measures. To interpret table 2, consider the first column. The first row in that column

contains the correlation coefficient between the product and technology market weights,

wP and wT, the second column that between lnSpillSIC and lnSpillTech, and the third

between ∆lnSpillSIC and ∆lnSpillTech. In performing this calculation, we used the product

measure of match and the exponential measure of distance to construct SpillGeog. The

correlations between the weights, the levels, and the changes of the spillover variables

are positive and significant at the 1% level. However, they are well below unity, implying

substantial independent variation in each of the three measures.

Second, we plot each pair of weights. Figures 1, 2, and 3, which show wT, wP, and wG

plotted against each other reveal that the positive correlations that we observe are caused

by a dispersion across the unit box rather than by a few outliers.

We also investigate the relationship between the locations of inventors and headquarters

in two ways. First, we calculate the aggregate distribution of inventor locations, which

shows the aggregate fraction of inventors that are located at various distances from their
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Figure 2: SIC and GEOG correlations

Figure 3: GEOG and TECH correlations

Table 3: Distance between inventors and headquarters

Percentile 0% 20% 40% 60% 80% 100%
Distance 0 km 0 km 52 km 414 km 1656 km 8097 km

headquarters. The quintiles of this distribution are reported in table 3, which shows that

although some firms have all of their research activities located in close proximity to their

headquarters, the activities of others are much more dispersed.

Second, we picked four firms that exhibit very different patterns. The information

for those firms is summarized in figure 4. The triangles in the graphs locate each firm’s

headquarters, whereas the circles show the distribution of its inventors. The first firm, Po-

laroid, has almost all of its research activities located in close proximity to its headquarters;

the second, Motorola, has four concentrations of inventors, one of which is in close to its
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headquarters; the third, Eaton (a power management company), has many concentrations

of research activities. This dispersion is due to the fact that Eaton has expanded mainly

through acquisitions; finally, the fourth, Union Carbide, has most of its R&D activities

located in the Northeast where its headquarters used to be. In 1982, however, it relocated

its headquarters to Connecticut and later to Texas but left its labs in place.

6 Econometric Methodology

6.1 The Model

We use a Cobb–Douglas production function. The dependent variable is lnQ, where Q
is real sales, and the explanatory variables are lnK, where K is capital, and lnL, where

L is labor, as well as firm and year fixed effects. In addition, we include a firm’s own

stock of knowledge, lnOwnS, the horizontal product–market spillover measure, lnSpillSIC,

and the technological spillover measure, lnSpillTech. Most equations that are reported

below contain all of these variables. In addition, they contain one or more measures of

geographic proximity, lnSpillGeog, that differ depending on the functions of match ( f ) and

geographic distance (C) that are chosen. Variables that are preceded by ln are in natural

logarithms.

In some cases, our construction of the geographic spillover measure is somewhat

different from that of the product–market and technology spillover measures, lnSpillSIC

and lnSpillTech. We define two geographic spillover variables,

lnSpillGeogit = ln
(
∑

j
wG

ij Sjt

)
, (14)

and

SpillGeoglnit = ∑
j

wG
ij ln(1 + Sjt). (15)

We make this distinction because using the logarithm of sums makes semiparametric

estimation difficult. As one substitutes a series approximation for wG
ij , the production–

function equation becomes nonlinear in the unknown parameters, and the estimates can

only be obtained from numerical minimization. The problem is that the objective function

is not convex; it has many local minima, their number growing with the number of terms

in the series expansion. Using the sum of logarithms, in contrast, makes the equation

linear in parameters, and one can estimate it simply by applying OLS.

We therefore faced a tradeoff between being confident that the global minimum was

found, which is difficult to ensure with (15), and being consistent in the definition of the

spillover measure. We chose the former (log–of–sums) for the parametric exercise. All
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Figure 4: Inventor Distributions
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semiparametric estimates reported, however, use the sum–of–logs form.

Our estimating equation is thus

yit = β0 + Xitβ + νi + µt + uit, i = 1, . . . , nt, t = 1, . . . , Ti, (16)

with yit = lnQit and

Xit = [lnKit, lnLit, lnOwnSit, lnSpillSICit, lnSpillTechit, lnSpillGeogit], (17)

where, in the semiparametric case, lnSpillGeog is replaced with SpillGeogln. Note that we

have a doubly unbalanced panel, since n differs by year and T differs by firm.

6.2 Econometric Issues

i) Identification

The potential bias in OLS estimates of production functions has long been recognized (see,

e.g., Marschak and Andrews 1944). This bias results from the possible correlation between

input levels and firm level productivity shocks. Specifically, when firms experience a large

productivity shock, they might respond by using more inputs. Applied economists have

devised alternatives to OLS that circumvent this problem. Most use either a variant of the

method developed by Olley and Pakes (1996) and extended by Levinsohn and Petrin (2003)

or the GMM methods proposed by Arellano and Bond (1991), Arellano and Bover (1995)

and Blundell and Bond (2000). We have chosen to focus on GMM approaches because it is

difficult to introduce endogenous R&D into Olley–Pakes approaches.

Essentially, the Arellano and Bond approach assumes that serial correlation of the error

term (after controling for fixed effects) is of finite order. In the simplest case of no serial

correlation this implies that levels dated t− 2 and earlier are valid instruments. If there

is some first order correlation (e.g. MA(1)) we can use t− 3 dated instruments. We also

considered the additional moments for the levels equations suggested by Arellano and

Bover (1995) and first used in a production function context by Blundell and Bond (2000).

We assume that the inventor distances are exogenous and instrument for the terms in

the semiparametric expansion by the corresponding terms with potentially endogenous

regressors replaced with corresponding instruments (see Pinkse, Slade, and Brett, 2002).

The assumption that inventor distances are exogenous is questionable. However, in our

model inventor locations are constant over the observed time period. Moreover, finding

plausible instruments for such distances is near impossible in the present application,

unlike in Pinkse, Slade, and Brett (2002).
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ii) Estimation

We use four different methods to estimate the unknown coefficients in (16): OLS, GMM,

semiparametric least squares (SLS) and semiparametric GMM (SGMM). For (S)GMM we

consider both a static and a dynamic version.

The parametric methods presume that we know the shape of the weights in lnSpillGeog,

which is likely unreasonable. As is often the case, our choice is a tradeoff between ‘bias’

arising from using a parsimonious model and increased ‘variance’ arising from having too

many unknowns.

For the static models we subtract out firm–specific means in (16) to eliminate firm fixed

effects. We then obtain

y∗i = X∗i β + µ∗ + u∗i , (18)

where y∗i , X∗i , µ∗, u∗i are demeaned versions of yi, Xi, µ, ui respectively. With OLS and SLS

there is an implicit and impausible assumption of strict exogeneity. Errors here can be

serially correlated.

For the static versions of GMM and SGMM, we use sufficiently lagged xit’s as instru-

ments. This presumes that such instruments are orthogonal to current and (one period–)

lagged errors. Such orthogonality of instruments and errors for all intents and purposes

entails either strict exogeneity of the instruments or an absence of serial correlation in the

errors. Our choice of using lagged xit’s as instruments implies the second interpretation.

For the dynamic version of the model we use the methodology of Arellano and Bond

(1991) and estimate a model similar to that of Blundell and Bond (2000). Consider equation

(16), but allow the error term to follow the AR(1) process

uit = ρuit−1 + ε it,

where ε it is serially independent (we can allow this to be correlated up to finite order).

Substituting this back into equation (18) gives

yit = π1yit−1 + Xitπ2 + Xit−1π3 + ν∗i + µ∗t + ε it. (19)

The production function estimates are identified using the common factor restriction:

β = π2 = −π3

π1
. (20)

We estimate the unrestricted model of equation (19) and then impose (20) by minimum

distance methods.
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iii) Semiparametric Estimation

For our semiparametric estimation of the distance function C, as before, the estimated

equation is (18). However, as discussed in subsection 6.1, lnSpillGeog is replaced by

SpillGeogln.

We follow Chen (2007) (see also Dechevsky and Penev, 1997) and approximate C by

C(d) =
2Jn

∑
m=0

γmb
(
2Jn G̃(d)−m + 1

)
,

where

b(x) =

1− |x− 1|, |x− 1| < 2,

0, |x− 1| ≥ 1,

and G̃ is a monotonic distance transformation described below.

The advantage of our choice of basis functions is that it allows us to control the shape

of C by imposing restrictions on the γ–coefficients. This is important to ensure that C
decrease to zero sufficiently fast; see Pinkse and Slade (2010) for further discussion.

As with all nonparametric methods there is a sample–size–dependent input parameter,

here Jn. Jn should increase with the sample size n to an infinite limit. In finite size samples,

however, this requirement provides little guidance, and we experiment with two different

values for Jn: Jn = 2 (5 basis functions) and Jn = 3 (9 basis functions).

In some specifications, we impose that our γ–coefficients satisfy the restrictions γ2Jn = 0

and

∀0 ≤ m̃ ≤ m ≤ 2Jn : γm ≤ γm̃ exp
[
−α
(

G̃−1(m/2Jn)− G̃−1(m̃/2Jn)
)]

, (21)

for α = 0 and α = (ln 2)/3000, which results in monotonically decreasing C and both

exponentially and monotonically decreasing C, respectively.

Finally, if d is distance in thousands of kilometers and [d] is the largest integer no

greater than d, then G̃(d) = (d− [d])G̃[d]+1 +
(
1− (d− [d])

)
G̃[d], where G̃i is the fraction

of inventor pairs at different firms who are no more than 1000i kilometers apart.

For SGMM we again apply the Arellano and Bond (1991) technique, albeit that we now

need a sample–size dependent number of instruments. We obtain such instruments using

a simplified version of the estimation procedure of Pinkse, Slade and Brett (2002).

iv) Inference

For the parametric result, we use fairly standard methodology, albeit that we make some

independence assumptions across firms for the errors. More precisely, we assume the
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existence of constants σti such that

E[uitujs|zit, zjs] =

0, j 6= i,

σ|t−s|,i, j = i.
(22)

For most specifications, we set σ|t−s|,i = 0 if |t− s| ≥ r, where r is a parameter that we

choose. The difference between (22) and full ‘clustering’ is that the covariance between

uit and uis depends only on the identity of the firm and the difference |t− s| and that the

conditional covariance of uit, uis does not depend on zit, zis. Our choice is motivated by the

idea of providing a reasonable compromise between the extremes of Stock and Watson

(2008) and full clustering.

Asymptotics for semiparametric IV estimators under spatial dependence are derived

by Pinkse, Slade, and Brett (2002), who establish consistency and asymptotic normality.

However, their results do not allow for the presence of inequality restrictions like those

imposed to achieve monotonicity and exponential decline, they do not explicitly address

the issue of Comfac restrictions,9 and the method of generating spillover measures based

on inventor locations complicates matters further.

An earlier version of this work contained standard errors and confidence bands based

on the Pinkse, Slade, and Brett (2002) method, again using a compromise between the

extremes of full clustering and Stock and Watson (2008). The results presented here are

based on subsampling10 and yield qualitatively the same results. We opted for subsampling

since the requirements for its consistency are the weakest among possible alternatives.

Nevertheless, we do not rigorously establish that our estimator has a limiting distribution

nor indeed a convergence rate, and some of the issues mentioned in the first paragraph

are problematic with subsampling, also. So standard errors and confidence bands for the

semiparametric case should be viewed with some caution, but the qualitative similarity of

results based on the two methods mentioned is reassuring.

7 Results

The remaining tables contain a number of specifications of our production function with

knowledge spillovers, all of which include firm and year fixed effects. We begin with the

OLS estimates.
9Comfac would be a comparatively straightforward adjustment.

10Subsampling is a resampling method akin to the bootstrap. It requires weaker conditions than the
bootstrap at the cost of slower convergence if the bootstrap conditions are satisfied; see Politis, Romano, and
Wolf (1999).
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7.1 Fixed Effects OLS

Single Spillover Measures

Table 4, which assesses each spillover measure in isolation as well as all three jointly, shows

that when only one measure is considered, the coefficient of that measure is positive and

significant at conventional levels. However, the coefficients of lnSpillTech and lnSpillGeog

are an order of magnitude larger than the coefficient of lnSpillSIC. Furthermore, when all

three measures are included in the same equation, the coefficient of lnSpillSIC becomes

negative and insignificant. We will see that the negative insignificant coefficient persists in

virtually all subsequent specifications.

This is consistent with the model outlined in Bloom et al (2008) where R&D by product

market rivals affects market value, but should have no effect on total factor productivity

(TFP), as it does not alter technological capabilities (conditional on own R&D). If we have

not properly controlled for firm-specific prices when measuring output, however, then

SpillSIC could have a negative effect in the (revenue-based) production function as it

depresses own prices.

Multiple Spillover Measures

Tables 5–7 contain further estimates of the production function. The geographic measures

in table 5 are based on inventor locations, those in table 6 are based on headquarters,

whereas table 7 assesses inventors and headquarters based measures jointly. Looking

across equations and tables, we can see that, in all specifications, the coefficients of the

common variables are remarkably similar in magnitude and significance. Furthermore,

all of those coefficients are positive, significant at high levels, and the capital and labor

coefficients are similar in magnitude to those obtained by previous researchers.11 Finally, as

in Bloom, Schankerman, and Van Reenen (2008), the coefficient of the technology spillover

variable is substantially larger than that of the horizontal measure.

To examine geographic spillovers in more detail, first consider table 5, which is based on

inventor locations and contains all combinations of our measures of match (sum and prod)

and distance (corr and exp). When considered separately, the estimates of the coefficients

of the sum measure are larger than those of the prod measure. However, when both are

included in the same equation, the coefficients of the prod measure become larger than

those of the sum measure. Moreover, with the exponential distance function, the latter

become negative and insignificant whereas the former remain virtually unchanged. Finally,

comparing across specifications, we see that the sum coefficients are highly unstable. For

11Note that our estimates show mildly diminishing returns when only the firm’s choice variables are
considered but strongly increasing returns when spillovers are added.
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Table 4: OLS Production Function Estimates, Single Proximity Measures

Dependent variable is ln(sales)
(1) (2) (3) (4)

SpillSIC SpillTech SpillGeog All Three
Prod,Exp Prod,Exp

lnK 0.249 (0.008) 0.234 (0.008) 0.234 (0.008) 0.225 (0.008)
lnL 0.599 (0.010) 0.606 (0.010) 0.610 (0.010) 0.614 (0.010)
lnOwnS 0.077 (0.005) 0.060 (0.005) 0.066 (0.005) 0.054 (0.005)
lnSpillSIC 0.073 (0.017) -0.025 (0.018)
lnSpillTech 0.550 (0.035) 0.395 (0.039)
lnSpillGeog 0.607 (0.028) 0.524 (0.029)

Notes:
Inventor location measures
Firm and year fixed effects included.
Standard errors are in parentheses (homoskedasticity is assumed)
Distance weight declines at a rate of 50% per 200km

Table 5: OLS Production Function Estimates, Inventors

Dependent variable is ln(sales)
(1) (2) (3) (4) (5) (6)
Sum, Prod, Both, Sum, Prod, Both,
Corr Corr Corr Exp Exp Exp

lnK 0.234 0.230 0.231 0.234 0.225 0.225

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
lnL 0.609 0.611 0.611 0.611 0.614 0.613

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
lnOwnS 0.059 0.060 0.059 0.055 0.054 0.054

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
lnSpillSIC -0.038 -0.029 -0.030 -0.038 -0.025 -0.025

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
lnSpillTech 0.524 0.490 0.485 0.468 0.395 0.400

(0.039) (0.040) (0.040) (0.040) (0.039) (0.040)

lnSpillGeog(sum) 0.464 0.169 0.920 -0.104

(0.066) (0.083) (0.085) (0.110)
lnSpillGeog(prod) 0.281 0.232 0.524 0.548

(0.031) (0.040) (0.029) (0.039)

Notes:
lnSpillGeog is standardized: mean = 0, standard deviation = 1.
Firm and year fixed effects included.
Standard errors are in parentheses (homoskedasticity is assumed)
Exponential weight declines at a rate of 50% per 200km
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Table 6: OLS Production Function Estimates, Headquarters

Dependent variable is ln(sales)
(1) (2)

Prod, Corr Prod,Exp
lnK 0.235 (0.008) 0.229 (0.008)
lnL 0.606 (0.010) 0.606 (0.010)
lnOwnS 0.061 (0.005) 0.055 (0.005)
lnSpillSIC -0.047 (0.018) -0.045 (0.018)
lnSpillTech 0.564 (0.039) 0.528 (0.039)
lnSpillGeog(prod) 0.087 (0.014) 0.298 (0.022)

Notes:
lnSpillGeog standardized: mean 0, standard deviation 1

Firm and year fixed effects included.
Standard errors are in parentheses (homoskedasticity is assumed)
Exponential weight declines at a rate of 50% per 200km

Table 7: OLS Production Function Estimates, Headquarters and Inventors

Dependent variable is ln(sales)
(1) (2)

Prod, Corr Prod,Exp
lnK 0.232 (0.008) 0.225 (0.008)
lnL 0.610 (0.010) 0.613 (0.010)
lnOwnS 0.059 (0.005) 0.053 (0.005)
lnSpillSIC -0.036 (0.018) -0.028 (0.018)
lnSpillTech 0.489 (0.040) 0.403 (0.040)
lnSpillGeog(inventors) 0.246 (0.032) 0.476 (0.040)
lnSpillGeog(HQ) 0.062 (0.014) 0.053 (0.030)

Notes:
lnSpillGeog is standardized: mean = 0, standard deviation = 1.
Firm and year fixed effects included.
Standard errors are in parentheses (homoskedasticity is assumed)
Exponential weight declines at a rate of 50% per 200km
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Table 8: Production Function Estimates and t–statistics, Covariance Estimation

Dependent variable is ln(sales)
(1) (2) (3) (4) (5) (6) (7)

Coef. Homo. Hetero. Cluster. Cluster. Cluster. Cluster.
t stat t stat r = 0 r = 2 r = 21 Unrestr.

lnK 0.225 29 21.5 24.1 14.5 11.9 11.1
lnL 0.614 62.9 45.4 52.1 31.8 25.4 23.6
lnOwnS 0.054 10.2 8.17 9.38 5.42 4.09 4.07

lnSpillSIC -0.025 -1.42 -1.4 -1.58 -0.88 -0.65 -0.64

lnSpillTech 0.395 10 8.07 9.22 4.85 3.1 3.11

lnSpillGeog 0.524 17.9 11 13.4 6.86 4.16 4.15

Notes:
Inventor geographic measures.
Measure of match: product. Distance weight: exponential (half-life distance 200km)
lnSpillGeog is standardized: mean = 0, standard deviation = 1.
Firm and year fixed effects included.
Columns (2) through (7) contain t–statistics for the indicated choices of covariance matrix
estimate, where in columns (4) through (6) dependence up to lag no greater than r is
assumed.
Columns (3) and (7) allow for heteroskedasticity across time and firm, whereas columns
(4) through (6) allow for heteroskedasticity across firms, but not time.

these reasons, in what follows, we report only equations that use the product measure.

Table 5 also contains specifications that use the corr and exp functions of geographic

distance. It is clear that, although the coefficients of both measures are positive and

significant at conventional levels, with one exception the magnitude of the spillover effect

is much larger when the effect of distance is allowed to decay gradually. In other words,

a zero/one distinction (different or same geographic market) has much less explanatory

power, implying that cross–market spillovers are important.

Table 6, which contains measures based on headquarters, shows similar patterns. In

particular, the estimate of the coefficient of the spillover measure that uses the corr distance

function is considerably smaller than that of the measure that uses the exp function. Finally

table 7, which assesses measures based on inventor and headquarters locations jointly,

shows that inventor measures outperform headquarters measures.

Tables 5–7 thus reveal four regularities that persist in alternative specifications. First,

the prod measure of match, which is the natural extension of the uncentered correlation

coefficient, outperforms the sum measure. Second, although match by itself is important, it

is clear that considering both match and Euclidean distance is associated with estimates of

spillover effects that are both larger and more significant than when distance is ignored.

Third, geographic distance effects are larger when inventor rather than headquarter

locations are chosen. Our use of the patent data therefore appears to result in an improved
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geographic measure. Finally, the coefficients of the spillover variables are substantially

larger that those of the own stock of knowledge, another finding that is consistent with

previous research.

Estimates in tables 5–7 use standardized geographic spillover variables.12 Standard-

ization makes it more difficult to interpret the values of coefficients. To demonstrate the

magnitude of geographic spillovers we perform the following thought experiment.13 We

track the total factor productivity (TFP) of a hypothetical firm, whose inventors are located

in Los Angeles County (“incumbent LA firm”). We assume that another hypothetical

firm has a lab in the same county with an R&D stock of $500m. We then relocate this lab

farther and farther away from LA. As the lab moves to an infinite distance, its contribution

to the LA incumbent’s geographic spillover variable declines to zero, while the product

market and the technology spillovers are left unaffected. Having such a lab in LA raises

the incumbent LA firm’s TFP by 0.82%, whereas having the mobile R&D lab in San Diego

would raise TFP by only 0.44%. If the lab were moved to San Francisco, its contribution

would decline further to 0.12%. Having the lab as far as Seattle would only raise the

LA–based firm’s TFP by 0.00038% (essentially zero). Since LA’s GDP was approximately

$55 billion in 2002 according to the Census, this implies the lab with a $500m R&D stock

raises LA county’s net output by $451 million. This is a substantial effect and could

rationalise why cities and states compete so eagerly for the location of R&D activities (e.g.

Wilson, 2009).

These OLS estimates, which suffer from a number of econometric problems that are

discussed in section 6, are only preliminary. Nevertheless, they serve as a guide to our

more rigorous specifications. In particular, in what follows, we report specifications based

on inventor locations, product measures of match, and nontrivial functions of Euclidean

distance (Cexp or a semiparametric specification).

7.2 Corrected Standard Errors

Table 8 contains t statistics for six different estimates of the covariance matrix. All are

based on inventor locations, the fprod measure of match, and the Cexp function of distance.

The first equation was obtained under the assumption of homoskedasticity, whereas the

second assumes unrestricted heteroskedasticity. Neither allows for serial correlation. The

remaining entries in the table are based on the assumption that errors cluster by firm but

make different assumptions concerning the nature of serial correlation. In particular, the

third, fourth, and fifth equations, which allow for restricted correlation, correspond to r

12See appendix A for an explanation.
13 For this experiment, we reestimated the equation in table 5 column (5) without standardizing the

geographic spillover variable.
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= 0, r = 2, and r = 21, where serial correlation dies out after r periods. Finally, the last

equation allows for unrestricted serial correlation.

The table shows that the t statistics tend to decline as we move from left to right.

This occurs because the number of coefficients that must be estimated grows. The single

exception is the move from specification two to three, since clustering without serial

correlation involves fewer parameters than unrestricted heteroskedasticity.

Two regularities are notable. First, the coefficients of the geographic and technology

spillover measures are positive and significant, regardless of covariance–matrix estimator.

Second, the coefficient of the product–market measure is negative and insignificant in all

specifications

Although we do not report further estimates, the qualitative nature of the regularities

than we have noted persists when other measures of geographic match and distance are

used.

7.3 Semiparametric Estimates

Table 9: Semiparametric estimates, parametric part

Dependent variable is ln(sales)
Jn = 2 Jn = 3

(1) (2) (3) (4) (5) (6)
no constr. monot. exp. decl. no constr. monoton. exp. decl.

lnK 0.231
∗∗

0.232
∗∗

0.232
∗∗

0.226
∗∗

0.229
∗∗

0.230
∗∗

lnL 0.614
∗∗

0.612
∗∗

0.612
∗∗

0.611
∗∗

0.613
∗∗

0.614
∗∗

lnOwnS 0.052
∗∗

0.057
∗∗

0.058
∗∗

0.053
∗∗

0.053
∗∗

0.054
∗∗

lnSpillSIC -0.044 -0.040 -0.038 -0.024 -0.034 -0.035

lnSpillTech 0.452
∗∗

0.505
∗∗

0.497
∗∗

0.434
∗∗

0.441
∗∗

0.428
∗∗

Notes:
Firm and year fixed effects included.
Inventor geographic measures, product measure of match.
Significance levels are obtained by subsampling
Number of subsamples: 1,000. Size of the subsample: 200 firms
Significance level: † – 10%, ∗ – 5%, ∗∗ – 1%.

Figure 5 shows estimates of C(d) from our semiparametric estimations under various

specifications of the approximating function. The three rows of graphs correspond to the

three sets of restrictions, or lack thereof: no restrictions, monotonicity, and exponential

decline. The graphs on the left side were obtained by assuming that Jn = 2 (5 basis

functions), whereas those on the right assume that Jn = 3 (9 basis functions). Table 9 lists

the estimates of the parametric parts of the equation.

As is typical with series estimation, the unrestricted functions are highly nonmonotonic.
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Figure 5: Estimates of the distance weight.
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The rate of decline is restricted to be at least 50% per 3000km. Measure of match: product.
Dotted and dashed lines depict the boundaries of the 90% and 95% one-sided confidence
bands.
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Here, moreover, failing to impose exponentially declining functions is likely to result in

inconsistent estimates; see Pinkse and Slade (2010). The other functions are, of course,

monotonic by assumption. Regardless of specification, however, one regularity stands out

— the function declines sharply close to the origin. Indeed, after about 500 km., geographic

spillovers are small or nonexistent. This finding implies that technology markets are

confined to narrow geographic areas.14

7.4 Correction for Endogeneity

IV Estimates

An obvious concern with the estimation strategy is that even after controlling for fixed

effects the production function inputs are endogenous. There is a huge literature on esti-

mating production functions (see, e.g. Ackerberg et al, 2007). We present some experiments

in table 10 to allow for endogeneity following Arellano and Bond (1991). Column (1)

presents estimates of the static production function coefficients. The results are consistent

with our main within–groups estimates: geographically–based knowledge spillovers are

positive and significant, albeit with a coefficient that is somewhat smaller than the Jaffe–

based technological distance measure. As before, the product–market–based spillover term

is statistically insignificant.

The diagnostics at the base of column (1) indicate that there is significant autocorrela-

tion, which invalidates our use of instruments. If we follow Blundell and Bond (2000) and

assume that there is an AR(1) error term in the static production function, this generates a

model that includes a lagged dependent variable and lags of all the production function

inputs and spillovers. We present the results of the unrestricted model in column (3),

and note that the diagnostics at the base of the column indicate that there is no further

evidence of serial correlation.

As outlined in section 6.2, the structure of the model implies common factor (COMFAC)

restrictions on the coefficients, which we impose in column (2). The qualitative results

from this COMFAC model are consistent with the findings in column (1) and elsewhere

in the paper. In particular, there is a significant effect of the geographically–based R&D

spillover in addition to the standard technological spillover term. We also experimented

with using further “levels” moments that follow if we make assumptions over the initial

conditions (essentially mean stationarity) as suggested by Arellano and Bover (1995) and

Blundell and Bond (1998).15 Unfortunately, Sargan–Difference tests suggested that these

14This pattern of local spillovers has also been found from patent citation data for universities (see Belenzon
and Schankerman, 2010).

15Note, that unlike the main estimates, the coefficient on own R&D is no longer significant. This probably
reflects the well-known problem discussed in Blundell and Bond (1998) that it is difficult to instrument very
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Table 10: Productions functions Estimated by GMM
Dependent variable is ln(sales), ln Qt (1) (2) (3)

GMM (restr.) (unrestr.)
lnQt−1 0.368

(0.048)
lnK 0.149 0.192 0.192

(0.052) (0.044) (0.048)
lnKt−1 -0.174

(0.043)
lnL 0.619 0.546 0.514

(0.058) (0.051) (0.054)
lnLt−1 -0.052

(0.059)
lnOwnS 0.020 -0.021 -0.097

(0.028) (0.049) (0.072)
lnOwnSt−1 0.066

(0.047)
lnSpillSIC 0.012 -0.023 0.073

(0.102) (0.078) (0.081)
lnSpillSICt−1 0.008

(0.063)
lnSpillTech 0.716 1.108 -1.464

(0.303) (0.313) (0.903)
lnSpillTecht−1 2.159

(0.887)
lnSpillGeog 0.690 0.609 0.401

(0.276) (0.262) (0.564)
lnSpillGeogt−1 -0.075

(0.573)
Autocorrelation 0.406

(0.046)
LM(2) p–value 0.017 0.184

Hansen p–value 0.008 0.006

Comfac p–value 0.001

Observations 9148 8260 8260

Notes:
Coefficients with standard errors in parentheses clustered by firm (these are
the one-step robust results for GMM). All factor inputs and spillover terms
are treated as endogenous and instrumented using the Arellano-Bond (1991)
method using instruments dated t-2 to t-6 (i.e. all variables first differenced and
instrumented with their own lagged levels from t-2 and before). Column (1)
estimates a static production function and column (3) a dynamic production
function including a lagged dependent variable and lags of all the variables.
Column (2) imposes the Comfac restrictions i.e. it assumes that the DGP is a
static production function with an AR(1) levels error term (see Blundell and
Bond, 2000). All columns include a full set of time dummies.

moments are violated in our data implying that we cannot use the additional instruments.

persistent variables such as R&D stocks because lagged levels are poor predictors of future growth rates.
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The estimates are far from ideal. First, Hansen/Sargan tests reject instrument validity

in both specifications. This is common, however, when one has large samples (e.g. Nevo,

2000). Second, the COMFAC restrictions are rejected, which formally implies that we

cannot go from the unrestricted to the restricted model. Nevertheless, we present our

results and note that the positive and significant effect of the spillover terms is invariant

to many experiments with different instrument sets. This finding suggests that our key

conclusions are robust.16

Semiparametric IV Estimates

We have also estimated the COMFAC specification using our semiparametric estimator.

The results are reported in table 11 and figure 6. Although there are differences with the

unrestricted (i.e. without common factor restrictions) case, the main conclusions are the

same.

Table 11: Semiparametric COMFAC estimates, parametric part

Dependent variable is ln(sales)
(1) (2) (3) (4) (5) (6)

Restrictions none mono exp decl none mono exp decl
# of basis functions 5 5 5 9 9 9

lnQt−1 0.365
∗∗

0.377
∗∗

0.383
∗∗

0.388
∗∗

0.403
∗∗

0.409
∗∗

lnK 0.102
∗∗

0.104
∗∗

0.104
∗∗

0.131
∗∗

0.137
∗∗

0.139
∗∗

lnL 0.627
∗∗

0.622
∗∗

0.622
∗∗

0.568
∗∗

0.579
∗∗

0.582
∗∗

lnOwnS 0.057
∗

0.060
∗

0.063
∗

0.077
∗∗

0.080
∗∗

0.083
∗∗

lnSpillSIC 0.042 0.048 0.051 0.028 0.007 0.002

lnSpillTech 0.933
∗∗

1.001
∗∗

1.021
∗∗

0.834
∗∗

0.870
∗∗

0.867
∗∗

Notes:
One-step GMM is used
GMM weighting matrix is computed under the assumption of homoskedasticity
Moments in levels are not used
Differences are instrumented by the GMM-style lags in the range of 2 to 6

Exponential decline restriction requires that the rate of decay is at least 50% per 3,000

km
Year fixed effects included.
Inventor geographic measures, product measure of match.
Significance levels are obtained by subsampling
Number of subsamples: 1,000. Size of the subsample: 200 firms
Significance level: † – 10%, ∗ – 5%, ∗∗ – 1%.

16 We could go for an alternative dynamic form, say from a general to specific method. However, we do
not want to overwhelm the reader with too many specifications. Indeed, there are diminishing returns to
changing the specification.
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Figure 6: Estimates of the distance weight: Comfac.
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Notes:
The rate of decline is restricted to be at least 50% per 3000km. Measure of match:
product.
Dotted and dashed lines depict the boundaries of the 90% and 95% one-sided confi-
dence bands.
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8 Conclusions

A number of conclusions can be drawn from our study. First and foremost, geography

matters. Indeed, intraregional spillovers are significant, sizeable, and economically im-

portant, even after conditioning on technological and product–market spillovers. This

finding is consistent with an emerging literature suggesting important local productivity

spillovers (e.g. Greenstone, Hornbeck and Moretti, 2010). We conclude that social learning

and capitalization of complementarities among firms’ research activities can be important

factors for economic growth. Second, distance matters. More precisely, a geographic

distance function that allows spillovers to decay gradually as regions become farther apart

outperforms a specification that constrains spillovers to occur only within regions (i.e.,

a zero/one distance function that indicates that two regions are the same or different).

Finally, estimated geographic spillover effects are larger when the distribution of each

firm’s inventors is used as a measure of R&D location rather than the location of its

headquarters. Our use of the patent data to create spatial distributions of the location of

firms’ research activities therefore appears to be a worthwhile extension.

Turning to technological spillovers, we have experimented less with different measures

of this important variable. Nevertheless, as with geographic spillovers, we find that

technological spillovers are significant, sizeable, and economically important. In fact, in

most specifications, the magnitude of the coefficients of this measure are comparable to

those of the geographic measures.

The picture with respect to product–market productivity spillovers is very different.

Indeed, although the coefficient of this variable is positive and significant when it is consid-

ered in isolation, more often than not that coefficient becomes negative and insignificant

when the other spillover variables are included in the specification. We argue that this

finding is consistent with the model outlined in Bloom et al (2008), where R&D by product

market rivals affects market value, but should have no effect on total factor productivity,

as it does not alter technological capabilities conditional on own R&D.

What have we learned from a policy point of view? We can conclude that since

estimated spillover effects are large, there is a sizeable public–good aspect to R&D activity.

In the absence of public policy to rectify this externality, we might therefore expect to see

underinvestment in R&D. Nevertheless, as there are also costs associated with intervention,

more research would be required before one could advocate interference in R&D markets.

Finally, we can conclude that geographic markets are very local. This could explain why

local policymakers invest substantial sums in tax incentives to attract R&D labs to their

cities, states, and countries (e.g. Wilson, 2008). Indeed, our semiparametric estimates show

that, although knowledge spillovers are large, they decay quickly, which is not good news

for regional convergence.
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Possible Extensions
Note that, although we have used specifications of proximity measures that allow for

cross–market spillovers only for geographic markets, the same could be done for product

and technology markets. To illustrate, consider product markets. Although it is clear

that the production of cars is much closer to that of trucks and buses than it is to that

of breakfast cereals and ladies apparel, the zero/one distance function that is implicitly

assumed in research to date does not allow for intermediate cases (i.e., two activities are in

different but close technology or product markets). It might therefore be fruitful to modify

the product and technology proximity measures to incorporate nontrivial C functions.

Moreover, the construction of SICs and technology classes, which involves classification

into n–digit groups, gives us a natural distance metric.

31



References Cited

Ackerberg, Daniel, Caves, Kevin and Garth Frazer (2007) “Structural Identification of Pro-

duction Functions,” UCLA mimeo.

Acs, Z., Audretsch, D., and Feldman, M. (1992) “Real Effects of Academic Research: A

Comment,” American Economic Review, 82: 363–367.

Adams, J.D. (1990) “Fundamental Stocks of Knowledge and Productivity Growth,” Journal
of Political Economy, 98: 673–702.

Arellano, Manuel and Stephen Bond (1991) “Some Tests of Specification for Panel Data:

Monte Carlo Evidence and an Application to Employment Equations,” Review of
Economic Studies 58: 277–297.

Arellano, Manuel and Olympia Bover (1995) “Another look at the instrumental variable

estimation of error-components models,” Journal of Econometrics 68–1: 29–52.

Belenzon, Sharon and Mark Schankerman (2010) “Spreading the Word: Geography, Pol-

icy and University Knowledge,” LSE/Duke mimeo

Bernstein, J.I. (1988) “Costs of Production, Intra– and Interindustry R&D Spillovers: Cana-

dian Evidence,” Canadian Journal of Economics, 21: 324–347.

Bernstein, J.I. and Nadiri, M.I. (1989) “Research and Development and Interindustry Spillovers:

An Empirical Application of Dynamic Duality,” Review of Economic Studies, 56: 249–

269.

Bloom, N., Schankerman, M., and Van Reenen, J. (2008) “Identifying Technology Spillovers

and Product Market Rivalry,” CEP mimeo.

Blundell, R. and Bond, S. (2000) “GMM Estimation with Persistent Panel Data: An Appli-

cation to Production Functions,” Econometric Reviews, 19: 321–340.

Chen, X. (2007) “Large Sample Sieve Estimation of Semi-nonparametric Models, chapter

76 in Handbook of Econometrics, Vol. 6B, James J. Heckman and Edward E. Leamer

eds., North-Holland.

Dechevsky, L. and S. Penev (1997) “On Shape–Preserving Probabilistic Wavelet Approxi-

mators,” Stochastic Analysis and Applications, 15, 187–215.

Eaton, J. and Kortum, S. (1996) ” Trade in Ideas: Patenting and Productivity in the OECD,”

Journal of International Economics, 40: 251–278.

32



Eaton, J. and Kortum, S. (1999) “International Technology Diffusion: Theory and Mea-

surement,” International Economic Review, 40: 537–570.

Goto, A. and Suzuki, K. (1989) “R&D Capital, Rate of Return on R&D Investment, and

Spillovers of R&D in Japanese Manufacturing Industries,” Review of Economics and
Statistics, 71: 555–564.

Greenstone, Michael, Rick Hornbeck and Enrico Moretti (2010) “Identifying agglomeration

spillovers: Evidence from winners and losers of large plant openings,” forthcoming

in the Journal of Political Economy.

Griffith, Rachel, Harrison, Rupert and John Van Reenen (2006) “How Special Is the Spe-

cial Relationship? Using the Impact of U.S. R&D Spillovers on U.K. Firms as a Test

of Technology Sourcing,” American Economic Review, 96–5: 1859–1875.

Grilliches, Z. (1979) “Issues in Assessing the Contributions of Research and Development

to Productivity Growth,” Bell Journal of Economics, 10: 92–116.

Grilliches, Z. and Lichtenberg, F. (1984) “Interindustry Technology Flows and Productiv-

ity Growth: A Reexamination,” Review of Economics and Statistics, 66: 324–329.

Grilliches, Z. (1991) “The Search for R&D Spillovers,” Scandinavian Journal of Economics,

94: 29–47.

Hall, Bronwyn, Jaffe, Adam, and Manuel Trajtenberg (2001) “The NBER Patent Citations

Data File: Lessons, Insights, and Methodological Tools,” NBER Working Paper 8498.

Hall, Bronwyn, Adam Jaffe and Manuel Trajtenberg (2005) “Market Value and Patent Ci-

tations: A First Look,” RAND Journal of Economics, 36: 16–38

Jaffe, A.B. (1986) “Technological Opportunity and Spillovers of R&D: Evidence from Firms’

Patents, Profits, and Market Value,” American Economic Review, 76: 984–1001.

Jaffe, A.B. (1989) “Real Effects of Academic Research,” American Economic Review, 79:

957–970.

Jaffe, A.B., Trajtenberg, M., and Henderson, R. (1993) “Geographic Localization of Knowl-

edge Spillovers as Evidenced by Patent Citations,” Quarterly Journal of Economics, 108:

577–598.

Jaffe, Adam and Manuel Trajtenberg. (2002) Citations and Innovations: A Window on the
Knowledge Economy, Cambridge: MIT Press

33



Keller, W. (2002) “Geographic Localization of International Technology Diffusion,” Ameri-
can Economic Review, 92: 120–142.

Levin, R.C. and Reiss, P.C. 1988) “Cost–Reducing and Demand–Creating R&D with Spillovers,”

RAND Journal of Economics, 19: 538–556.

Levinsohn, J. and Petrin, A. (2003) “Estimating Production Functions Using Inputs to Con-

trol for Unobservables,” Review of Economic Studies, 70: 317–341. 60: 531–542.

Marschak, J. and Andrews, W.H. (1944) “Random Simultaneous Equations and the The-

ory of Production,” Econometrica, 12: 143–205.

Olley, S. and Pakes, A. (1996) “The Dynamics of Productivity in the Telecommunications

Equipment Industry,” Econometrica, 64: 1263–1298.

Orlando, M.T. (2004) “Measuring Spillovers from Industrial R&D: On the Importance of

Geographic and Technological Proximity,” RAND Journal of Economics, 35: 777–786.

Ornaghi, C. (2006) “Spillovers in Product and Process Innovation: Evidence from Manu-

facuring Firms,” International Journal of Industrial Organization, 24: 349–380.

Pinkse, J., Slade, M.E., and Brett, C. (2002) “Spatial Price Competition: A Semiparametric

Approach,” Econometrica, 70: 1111–1155.

Pinkse, J. and Slade, M.E. (2004) “Mergers, Brand Competition, and the Price of a Pint,”

European Economic Review, 48: 617–643.

Pinkse, J. and M.E. Slade (2010) “The Future of Spatial Econometrics,” Journal of Regional
Science, 50: 103–117.

Politis, Dimitris N., Romano, Joseph P., and Michael Wolf (1999) Subsampling, New York:

Springer.

Scherer, F.M. (1982) “Inter–Industry Technology Flows and Productivity Growth,” Review
of Economics and Statistics, 64: 627–634.

Spence, M. (1984) “Cost Reduction, Competition, and Industry Performance,” Economet-
rica, 52: 101–121.

Stock, J. and M. Watson, (2008) “Heteroskedasticity-Robust Standard Errors for Fixed Ef-

fect Panel Data Regression,” Econometrica 76, 155–174.

Villalonga, B. (2004) “Diversification Discount or Premium? New Evidence from the

Business Information Tracking Series,” Journal of Finance 59–2, 479–506.

34



Wilson, Daniel J. (2009) “Beggar thy Neighbor? The In–State, Out–of–State and Aggregate

Effects of R&D Tax Credits,” Review of Economics and Statistics 91: 431–436.

35



A Data Appendix

A.1 The patents and Compustat databases

The NBER patents database provides detailed patenting and citation information for

around 2,500 firms (as described in Hall, Jaffe and Trajtenberg (2005) and Jaffe and

Trajtenberg (2002)). We started by using the NBER’s match of the Compustat accounting

data to the USPTO data between 1970 to 2000
17, and kept only patenting firms. These

firms were then matched into the Compustat Segment (“line of business”) Dataset keeping

only the 817 firms with data on both sales by four digit industry and patents, although

these need not be concurrent. For example, a firm which patented in 1985, 1988 and 1989,

had Segment data from 1993 to 1997, and accounting data from 1980 to 1997 would be

kept in our dataset for the period 1980 to 1997. The Compustat Segment Database allocates

firm sales into four digit industries each year using firm’s descriptions of their sales by

lines of business. See Villalonga (2004) for a more detailed description.

The output of each firm is deflated by the PPI for the primary industry of that firm.

When PPI data are unavailable (about a third of the firm–year pairs in our sample) we use

the aggregate Manufacturing PPI for those sectors.

This dataset was cleaned to remove accounting years with extremely large jumps in

sales, employment or capital signalling merger and acquisition activity. When we removed

a year we treat the firm as a new entity and give it a new identifier (and therefore a new

fixed effect) even if the firm identifier (CUSIP reference) in Compustat remained the same.

This is more general than including a full set of firm fixed effects as we are allowing

the fixed effect to change over time. We also removed firms with less than four years of

non-missing accounting data.

This left a final sample of 812 firms to estimate the model on with accounting data for

at least some of the period 1980 to 2000 and patenting data for at least some of the period

between 1970 and 1999. The panel is unbalanced as we keep new entrants and exitors in

the sample.

A.2 Geographic coordinates

We obtain the geographic coordinates of inventors by merging the patents data and the

extract from the Geographic Names Information System (GNIS) provided by the US

Geological Survey. All inventor records contain address information, in most cases the

names of the home state and the city. The GNIS records provide coordinates for all

established geographic names.

17We dropped pre-1970 data as being too outdated for our 1980s and 1990s accounts data.
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Most of the time city and state names are not sufficient to uniquely identify a geographic

place: a typical city name has a number of duplicates within its state. If these duplicates

are located in the same county or within 0.1 degrees of latitude and longitude, we treat

them as one entity.

If the duplicated names are located far apart, we give preference to incorporated places.

Names of incorporated places are usually more permanent and stable, they are more likely

to be used by the U.S. Postal Service. In turn, inventors are more likely to indicate a

USPS-preferred city name when they are asked to provide their home address.

Following these rules, we are able to match 98.25% of inventor records that are related

to the firms in our sample. To reduce computational burden, we aggregate all geographic

data to the county level. For example, we assign identical coordinates to inventors from

Long Beach CA and Los Angeles CA: both cities are located in Los Angeles County.

A.3 Variables

The book value of capital is the net stock of property, plant and equipment (Compustat

Mnemonic PPENT); Employment is the number of employees (EMP). R&D expenditure

(XRD) is used to create R&D capital stocks calculated using a perpetual inventory method

with a 15% depreciation rate. We use sales as our output measure (SALE). Industry price

deflators were taken from the U.S. Bureau of Labor Statistics PPI Database.

The construction of the spillover variables is described in Section (3) above in detail.

About 95% of the variance of the spillover measures, SpillSIC, SpillTech and SpillGeog

is between firm and 5% is within firm. When we include fixed effects we are, of course,

relying on the time series variation for identification. lnSpillGeog is normalized to have

mean zero and variance one to facilitate comparisons of coefficients. In particular, when

we compare the explanatory power of different measures of match and distance, we use

the fact that when two variables have the same variance, the variation that they contribute

is measured by the absolute values of their coefficients.

Industry sales are constructed in exactly the same way as SpillSIC, with the only

exception that the market proximity measure wP is weighted with the firm’s sales instead

of the R&D stock.
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