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1 Introduction

U.S. real GDP has grown significantly over time, today standing at a level more than seven times

that seen in 1947 (see Figure 1). Economists broadly agree on the three factors responsible

for that long-run growth. First, the population has increased over time, and more people can

produce a greater quantity of goods and services. Second, the stock of equipment and facilities

that people have to work with has also increased more than six-fold over this period. And third,

the techniques of production, such as higher-yielding crops, faster computers, and more efficient

management have all produced tremendous improvements in productivity. These three factors—

population, capital stock, and technology— are widely regarded to be the main drivers of long-run

growth.

But GDP does not increase every single year, and it is of substantial interest to understand

why. None of these three factors offer very appealing explanations for downturns. In a recession,

we do not lose population; rather, an ever-growing number of people report they are unable to

find jobs. Capital stock is not destroyed, but instead sits idle. And although the hypothesis

that recessions may be caused by an exogenous decline in productivity has been popular with

real business cycle theorists, many of us do not find that account compelling. Something other

than these three factors seems to be governing aggregate economic behavior during particular

identifiable episodes. These episodes are referred to as economic recessions, indicated by the

shaded regions in Figure 1.

The importance of recessions is even more dramatic when we consider a series such as the

U.S. unemployment rate in Figure 2. There is no clear trend in this series over the last half

century. But there is a quite dramatic tendency for unemployment to rise sharply during periods

characterized as economic recession. The habit of accompanying graphs like Figures 1 and 2 with

recessions indicated as shaded regions is quite ingrained in the economics profession, and with

good reason. One of the first things we want to know about any series is how its fluctuations are
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related to movements in and out of economic recession.

The question discussed in this paper is, where should those shaded regions be drawn, that

is, when did each particular recession begin and end? The conventional answer for U.S. data is

to use the dates determined by the Business Cycle Dating Committee of the National Bureau of

Economic Research. This is a group of distinguished scholars who meet periodically to discuss

recent data, and from time to time issue a proclamation that a recession began or ended at a

particular date in the past. Typically, once the Committee makes a pronouncement, that date is

not subsequently revised.

That is a fine approach to use, and this paper does not advocate abandoning it. I nevertheless

investigate whether it is possible to supplement the deliberations of the Committee with mechan-

ical algorithms that could process incoming data in real time and issue a judgment on a purely

objective basis. There are three potential benefits to doing so. The first is timeliness. The

bottom panel of Figure 3 notes the particular dates at which the Business Cycle Dating Commit-

tee issued its most recent announcements. These announcements often came long after the fact.

For example, the NBER dated the 1990-91 recession as beginning in August 1990 and ending in

March 1991. It made the announcement that the recession had begun in April 1991— one month

after the NBER later decided that the recession was already over. The end of the 2001 recession

was announced in July 2003, which is 28 months after the recession is now deemed to have ended.

A second benefit of a purely objective algorithm for making these determinations in real time

is that it would ensure that the process is completely apolitical. Although no one has accused

the NBER of altering its announcements on the basis of political considerations, the pressure

is undeniably present to delay the announcement that a recession has begun or accelerate the

announcement that a recovery has begun if one’s goal were to help the incumbent. In the

October 13, 1992 debates, then vice-presidential-candidate Al Gore referred to the “worst economic

performance since the Great Depression.” Although the recession of 1990-91 is now seen as one

of the shortest and mildest of the postwar recessions, it was not until December 22, 1992— after
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the presidential elections— that the NBER announced that the recession had actually ended in

March of 1991. If it had been the case that the recession that began in August 1990 was still

ongoing as of October 1992, Gore’s statement would have factual support in the sense that the

ongoing recession would have been the longest on record since 1933. Being able to issue these

announcements on the basis of a pre-determined, purely mechanical algorithm would insulate the

procedure from any possible charges of partisanship.

Third, coming up with a mechanical means to recognize business cycle turning points offers

further elucidation of what we actually mean when we say that the economy is in a recession. If

the dates assigned by the NBER represent the answer, what is the question? The whole process

seems to presuppose that there are some very different factors operating on the economy at some

times relative to others, and that these changes have observable implications. Mechanization of

the dating procedure can help clarify exactly how and why we assign the dates that we do.

In this paper I survey some of the approaches to dating business cycle turning points, with

a focus on algorithms that various analysts have publicly relied on with real-time data. I begin

in Section 2 with a review of some early efforts and why the task might be harder than it looks.

Section 3 describes in detail a procedure that I have been relying on for the last five years. A

number of alternative approaches are discussed in Section 4.

2 What’s so hard?

One’s first thought might be that it shouldn’t be too hard to do better than the multi-year lags

sometimes associated with NBER announcements, and indeed the really exciting thing would be

to predict business cycle turning points before they occur. What’s so hard about that?

The first answer is that if people could have predicted the recession, it probably wouldn’t have

happened. Firms would not have been stuck with inventories, labor, and capital they turned

out not to need, and the Federal Reserve probably would have chosen to ease its policy stance

4



sooner. Economists are used to viewing magnitudes such as stock prices as difficult or impossible

to predict if the market is functioning properly. It may be that economic recessions by their

nature imply similar fundamental limitations for forecasting.

Second, the data available at the time are often sending a different signal from what one sees

once the data are subsequently revised. For example, the top panel of Figure 4 displays real GDP

growth rates for each quarter of 2001 as they were reported at the end of 2002. This vintage

of data shows 3 successive quarters of declining real GDP, which certainly sounds unambiguously

like a recession. On the other hand, the bottom panel shows data for the same quarters as they

were actually reported on January 30, 2002. At that date the recession was already over, but

recognizing those GDP numbers available at the time as signalling a recession is obviously a much

bigger challenge.

A third factor making it difficult to recognize business cycle turning points in real time is the

fact that key economic relations are continually changing over time. I illustrate these difficulties

by reviewing the real-time track record of two prominent efforts to predict business cycle turning

points.

2.1 Stock and Watson’s original business cycle index model.

One of the impressive early efforts along these lines came from the business cycle indicators devel-

oped by James Stock and Mark Watson (1989, 1991). Their coincident index model postulated

that an observed vector of monthly indicators yt was related to an unobserved scalar ct thought

to represent the business cycle according to

yt = k+ γ(L)ct + ut

D(L)ut = εt
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φ(L)ct = δ + ηt.

The observed variables in yt consisted of growth rates of industrial production, personal income,

sales, and employment. White noise disturbances εrt and ηt were taken to be mutually uncorre-

lated and D(L) is a diagonal matrix in the lag operator L. Thus the model postulated that the

observed dynamics of each yrt could be explained in terms of idiosyncratic autoregressive terms

urt and common dependence on the business cycle ct. This will be recognized as a state-space

model with state vector (u
0
t, ct)

0 and observation vector yt, for which algorithms for estimating

the unknown parameters by maximum likelihood and forming an optimal inference about the

unobserved state of the business cycle ct are well known. Stock and Watson further defined an

unobserved variable St to be unity if the economy was in recession at date t. They interpreted a

recession to be a particular pattern followed by ct,

St = 1 if {ct−j}8j=0 ∈ Bt,

with the set Bt designed so as to best mimic historically-assigned NBER recession dates. The

basic Kalman filter algorithms allow one to form an inference about current or past recessions

P (St−h = 1|yt,yt−1, ...,y1; θ̂) (1)

for h = 0, 1, 2, ..., or forecast of future recessions

P (St+h = 1|yt,yt−1, ...,y1; θ̂). (2)

For the latter purpose Stock and Watson also developed a leading-indicator generalization of

the model of the form

yt = k+ γ(L)ct−1 + Γ(L)yt−1 + εt
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ct = δ + α(L)ct−1 + β(L)0yt−1 + ηt

for yt now a vector based on levels or growth rates of some conventional leading indicators along

with a few new indicators proposed by Stock and Watson.

The in-sample performance of their model is summarized in Figure 5. The top panel gives the

contemporaneous inferences (h = 0 in equation (2)), which looked quite good. The model might

seem to have produced a “false positive” in 1967, though this was a widely recognized economic

slowdown which perhaps could reasonably have been categorized as an economic recession. The

3- and 6-month ahead forecasts (lower panels in Figure 5) also looked extremely promising.

Encouraged by these in-sample results, Stock and Watson began in 1988 to report updated

probabilities of recession each month using the latest data. Initially these were distributed by

FAX and mail to assorted researchers and members of the press, and later were posted on the

web.1

Figure 6 displays the model’s real-time track record over the 1990-91 recession as described

by Stock and Watson (1993). The leading index proved to be a disappointment— the recession of

1990 came and went, with the model always predicting that no recession was coming (see bottom

panels of Figure 6). The contemporaneous index in fact did by November of 1990 signal that a

recession had started (top panel), but the model thought it was going to be sufficiently short-lived

that the 3- and 6-month-ahead probabilities always remained below 50% even though ex-post

probabilities eventually recognized that a recession had arrived at some earlier date.

What went wrong? One of the intriguing new leading indicators that Stock and Watson

discovered was the spread between the yield on commercial paper and Treasury bills. Figure 7

shows that this spread had spiked up dramatically prior to each of the recessions in their original

sample, but did very little out of the ordinary in the 1990-91 recession for which their model was

1 An archive of releases for 1999 to 2003 is available at http://www.economics.harvard.edu/faculty/stock/files/xri.zip.
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on real-time display.2

Stock and Watson subsequently released probabilities from both their original leading index

and an alternative leading index that did not make use of interest rates or interest rate spreads.

The models’ performance over the 2001 recession was similar to that for the 1990-91 downturn.

The alternative leading index calculated a 6-month-ahead probability of recession P (t+ 6|t) that

remained below 20% throughout 2001, while P (t + 6|t) as calculated from the original leading

index peaked at 35% for t = October 2001. Nonetheless, inferences from the coincident index

again did reasonably well. On July 3, 2001, Stock and Watson reported P (t|t) = 76% for t =

May 2001, and the value reached 97% for t = October 2001. In retrospect, if Stock and Watson

had emphasized using their approach to recognize a turning point some time after it had been

crossed— that is, having most faith in the historical inferences (1)— its record would have looked

pretty good. But the goal of forecasting the moves in advance proved too ambitious.

2.2 Using the yield curve to predict turning points.

Many of the subsequent academic papers in this area have focused on procedures that might be

simpler and more robust. Quite a few academic studies have suggested that the slope of the

yield curve— for example, the spread between yields on a 10-year Treasury bond and a 3-month

Treasury bill shown in the top panel of Figure 8— seems to be extremely promising as a predictor

of recessions; see among others Estrella and Mishkin (1998), Chauvet and Potter (2005), Kauppi

and Saikkonen (2008), and Katayama (2009). As the yield curve again became inverted in August

of 2006, many observers began to wonder whether this meant another recession would soon arrive.

One aspect of the situation that made this a difficult call at the time was the fact that although

the 3-month rate was above the 10-year rate, the overall level of the 3-month rate was lower than

it had been prior to any recession since 1960 (see the bottom panel of Figure 8). Many observers

argued that the low overall level of interest rates mitigated somewhat the recessionary signal given

2 Notwithstanding, credit spread indicators remain a very promising variable for forecasting real economic
activity, as demonstrated by the recent analysis by King, Perlie and Levin (2007) and Gilchrist, Yankov, and
Zakrajšek (2009).
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by the inverted yield curve.

One specification that came to be used in ongoing real-time announcements was one developed

by Jonathan Wright (2006). Wright defined a historical indicator Ht to be unity if it subsequently

proved to be the case that NBER would declare any of the following four quarters to have been

characterized by an economic recession:

Ht =


1 if St+1 = 1, St+2 = 1, St+3 = 1, or St+4 = 1

0 otherwise
.

His model then calculated the probability of a recession occurring some time over the next year

from

P (Ht = 1|i10y,t, i3m,t, ift) = Φ(−2.17− 0.76(i10y,t − i3m,t) + 0.35ift)

for Φ(.) the N(0, 1) cumulative distribution function, i10y,t the 10-year Treasury yield, i3m,t the

3-month Treasury yield, and ift the fed funds rate.

The website Political Calculations reported weekly updates of the predictions of this model

between April 2006 and August 2008 (see Figure 9). The highest this probability ever reached

was 50% on April 4, 2007, after which the probability monotonically declined. It stood at only

10% on August 20, 2008, right before one of the worst 6 months that the economy has experienced

over the last half century.

These two examples illustrate that a good in-sample fit is no guarantee of out-of-sample real-

time performance. As Yogi Berra observed, it’s tough to make predictions, especially about the

future. In this paper I instead pursue the more modest goal of trying to recognize a turning point

soon after it occurred using algorithms that would be robust with respect to data revisions and

out-of-sample structural change. The next section describes one very simple approach that so far

seems to have a reasonable track record.
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3 Real-time inference based on GDP alone

Consider the following formulation of the fundamental question: what is different about the be-

havior of GDP during quarters that the NBER characterized as recession compared with those

characterized as expansion? Chauvet and Hamilton (2006) answered this by collecting U.S. GDP

growth rates from the 45 quarters between 1947:Q2 and 2004:Q2 that the NBER ended up de-

scribing as part of an economic recession. This subsample of 45 observations has a mean growth

rate of -1.2% (expressed at an annual rate) and standard deviation of 3.5 The top panel of Fig-

ure 10 plots a nonparametric estimate of the density of this subsample3 . The remaining 184

expansion quarters had a mean of 4.5 and standard deviation of 3.2, with density given by the

middle panel. The observed sample of 225 observations can be viewed as a mixture of these two

distributions, with 20% coming from the recession distribution and the remaining 80% from the

expansion distribution, as shown in the bottom panel of Figure 10.

Suppose we are given only the value for a given quarter’s GDP growth, and aren’t told how

the NBER is eventually going to characterize that quarter. Can we infer from which of the two

distributions it is most likely to have been drawn? Let St = 1 if quarter t is eventually declared by

the NBER to be part of a recession, St = 2 if it is eventually declared to be part of an expansion,

and let yt denote the observed GDP growth. Let P (St = 1, yt) denote the joint probability that

quarter t is a recession and has GDP growth given by yt,

P (St = 1, yt) = f(yt|St = 1)P (St = 1),

which is found by multiplying the height of the curve in the top panel of Figure 10 by 0.2.

Likewise P (St = 2, yt) is obtained by multiplying the height of the middle curve by 0.8. The

optimal inference,

P (St = 1|yt) = P (St = 1, yt)

P (St = 1, yt) + P (St = 2, yt)
,

3 This was calculated using the DENSITY command in RATS with a Gaussian kernel and bandwidth of 3.
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will then be recognized as simply the ratio of the height of the green curve to the height of the

black curve in the bottom panel of Figure 10. For example, if we observe GDP growth of yt = −6

we could be quite confident this would be characterized as a recession, whereas if we observe

yt = +6, it will almost surely be classified as an expansion.

Such a rule seems to satisfy the requirements of being extremely simple and robust. But

unfortunately, it is not terribly helpful, because the vast majority of observations will fall in a

range where they don’t send a very clear signal. But there is a second feature of the NBER dates

that can be quite helpful— the value of St is pretty likely to be the same as St−1. Ninety-five

percent of the observations for which St−1 = 2 it was the case that St also equalled two, whereas

78% of the observations for which St−1 = 1 were followed again by St = 1. Thus, even if yt alone

does not give us much of a useful signal, the value of yt−1 can help us refine it. For example,

an observed value of yt = 1.0 tells us very little, implying (by calculating the ratio of heights just

described) a probability of recession P (St = 1|yt = 1.0) = 0.21 that is little different from the

unconditional odds. But suppose this follows after a quarter of strong growth, yt−1 = 6.0, from

which the height ratio calculation yields a very low probability of having been in recession the

previous quarter: P (St−1 = 1|yt−1 = 6.0) = 0.074. Before seeing the quarter t GDP numbers, we

would accordingly have known that the probability of a recession observation in period t is only

10% rather than the unconditional probability of 20%:

P (St = 1|yt−1 = 6.0) = 0.074(0.78) + (1− 0.074)(1− 0.95) = 0.10.

Having observed yt−1 = 6.0, to use the period t value for yt we’d then want to weight the blue curve

in the top panel by 0.1 rather than by 0.2 to arrive at the appropriate conditional probability:

P (St = 1|yt, yt−1) = f(yt|St = 1, yt−1)P (St = 1|yt−1)
f(yt|St = 1, yt−1)P (St = 1|yt−1) + f(yt|St = 2, yt−1)P (St = 2|yt−1) .

From this calculation it turns out P (St = 1|yt = 1.0, yt−1 = 6.0) = 0.11; having seen strong

growth the preceding quarter, we’d be reasonably confident that the expansion is continuing this

quarter despite the weak GDP report. We can of course extend such calculations, doing better
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yet using the whole history of observations up to the present to calculate P (St = 1|yt, yt−1, ...., y1).

For that matter, the same principles allow us to use observations on yt+1, yt+2, ....yT to refine our

assessment of where the economy was at some date t, which we refer to as a full-sample smoothed

probability:

P (St = 1|yT , yT−1, ..., y1).

I described above how such an inference could be implemented nonparametrically with little

assumed structure other than some very broad features of the NBER dating record. But there’s

little reason we need to be nonparametric, since the distribution in the top panel of Figure 10

could clearly be well approximated with a Gaussian density. Also, little is lost by assuming that

the variance of the distributions in the top two panels is the same. In other words, we could

parameterize the top two panels of Figure 10 as

yt|St = 1 ∼ N(µ1, σ
2)

yt|St = 2 ∼ N(µ2, σ
2),

expecting to use µ1 = −1.2, µ2 = 4.5, and σ = 3.4. If we let π denote the unconditional probability

that a given quarter will be characterized by recession (expecting π = 0.2), we can characterize

the height of the black curve in the bottom panel of Figure 10 for observation t = 1 as

f(y1;µ1, µ2, σ, π) = πφ(y1;µ1, σ) + (1− π)φ(y1;µ2, σ)

for φ(.) the Normal density, with the proposed inference given by

P (S1 = 1|y1) = πφ(y1;µ1, σ)

πφ(y1;µ1, σ) + (1− π)φ(y1;µ2, σ)
.

For observation t = 2 we were proposing to calculate

P (S2 = 1|y2, y1) = ξ2φ(y2;µ1, σ)

ξ2φ(y2;µ1, σ) + (1− ξ2)φ(y2;µ2, σ)

for

ξ2 = p11P (S1 = 1|y1) + (1− p22)P (S1 = 2|y1)
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with p11 denoting the probability of a recession continuing, p11 = P (St = 1|St−1 = 1), and p22

the probability of an expansion continuing. Iterating for t = 3, 4, ..., we have

P (St = 1|yt, yt−1, ..., y1) = ξtφ(yt;µ1, σ)

ξtφ(yt;µ1, σ) + (1− ξt)φ(yt;µ2, σ)
(3)

for

ξt = p11P (St−1 = 1|yt−1, yt−2, ..., y1) + (1− p22)P (St−1 = 2|yt−1, yt−2, ..., y1).

If we interpreted the persistence of recessions and expansions as the sole source of serial de-

pendence in observed GDP growth rates, we could also use the above recursion to calculate a

conditional likelihood function for the tth observation:

f(yt|yt−1, yt−2, ..., y1) =
2X

j=1

f(yt|St = j)P (St = j|yt−1, yt−2, ..., y1)

= ξtφ(yt;µ1, σ) + (1− ξt)φ(yt;µ2, σ).

Using the unconditional probability given by π = (1 − p22)/(1 − p22 + 1 − p11), we could then

calculate the sample log likelihood as

TX
t=1

log f(yt|yt−1, yt−2, ..., y1;θ) (4)

solely as a function of observed GDP growth rates and the assumed parameter vector θ = (µ1, µ2, σ,

p00, p11)
0, and maximize this log likelihood with respect to θ.

Chauvet and Hamilton (2006) used data on GDP growth rates over 1947:Q2 to 2004:Q2 to

maximize (4) with respect to θ. The maximum likelihood estimates are reported in the last

column of Table 1. Note that these estimates θ̂ are based solely on observed GDP and make

no use of the historical NBER classifications. It is therefore of considerable interest that the

MLE θ̂ turns out to be quite close to what we would have expected based on the discussion above

of NBER classifications. The exercise suggests that the separation of the historical record into

periods of expansion and contraction is not just an artifact created by the NBER Business Cycle

Dating Committee, but instead is exactly the same kind of classification one would see in the GDP
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data themselves if one took the perspective that they come from an mixture of two distributions

with different means and transitions between the two regimes governed by an unobserved Markov

chain.4

The top panel of Figure 11 plots the filter inference (3) for each date t in the 1947:Q2-2004:Q2

sample, along with NBER-determined recession dates. The correspondence with the NBER dates

is quite close, suggesting that this algorithm offers a promising alternative for recognizing business

cycle turning points. However, although the formula (3) only makes use of data through date t,

it would be a mistake to suppose that it would do as well in a real-time setting, for two reasons.

First, the value used for the parameter vector θ̂ was in fact based on the full sample of observations

through 2004:Q2. Second and more importantly, the value one would be using for any historical

observation yt in that sample was the number reported in the 2004:Q2 vintage set, which could

differ substantially from the number as initially released. To try to gauge the usefulness as a real-

time tool, for each date t, Chauvet and Hamilton (2006) used a data set for GDP as it would have

been reported at that date (obtained from the Croushore and Stark (2003) data base maintained

by the Federal Reserve Bank of Philadelphia) both to estimate the parameter vector θ as well

as to form an inference. Use of data as actually available at the time resulted in a considerable

deterioration of reliability. We therefore recommended waiting one quarter for data to be revised

and to be able to use the added precision afforded by one-quarter smoothing before making a

declaration, so that one only tries to form an inference about St when the GDP growth rate for

the next quarter, yt+1, is first released. This real-time one-quarter-smoothed inference is plotted

in the lower panel of Figure 11. This exercise suggested that such an inference might indeed offer

a useful method for recognizing business cycle turning points.

In our 2006 paper we recommended the following decision rule. When the one-quarter

4 One could of course propose a more elaborate parametric model, such as allowing further dynamics in GDP
growth beyond those induced by the business cycle, as in the original specification of Hamilton (1989). However,
even as fundamental an indicator as GDP has had changing business-cycle behavior over time (e.g., McConnell and
Perez-Quiros, 2000). The extreme simplicity of the model described here may give it more robustness with respect
to these changes than more detailed specifications.
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smoothed inference P (St = 1|yt+1, yt, ..., y1; θ̂t+1) first exceeds 0.65, declare that a recession has

started, and at that time assign a probable starting point for the recession as the beginning of

the most recent set of observations for which P (St−j = 1|yt+1, yt, ..., y1; θ̂t+1) exceeds 1/2. The

recession call would remain in effect until P (St = 1|yt+1, yt, ..., y1; θ̂t+1) falls below 0.35, and at

that time assign a probable ending point for the recession as the beginning of the most recent set

of observations for which P (St−j = 1|yt+1, yt, ..., y1; θ̂t+1) is less than 1/2.

The starred entries in Table 2 summarize the simulated real-time performance of this algorithm.

The dates assigned to historical recessions are quite close to those determined by the NBER, and

would typically be announced at about the same time as the NBER announcements. On the basis

of these results, I was persuaded that this approach offered a promising alternative for categorizing

business-cycle turning points on a real-time basis. Since July of 2005, I have been regularly

reporting at the website www.econbrowser.com the value of P (St = 1|yt+1, yt, ..., y1; θ̂t+1) each

quarter when the advance GDP numbers are first released. Figure 12 plots these values as a

function of t. To the left of the vertical line are what I call “simulated real-time calculations”—

for each t, the value plotted is the number one would have calculated with the release of quarter

t+1 GDP numbers as they were initially released at the time. To the right of the vertical line are

what I call “actual real time”, meaning that the number plotted for each quarter t is exactly the

value that was publicly reported on the day that the t+1 numbers were first released. The index

has continued to perform well in terms of its true out-of-sample track record. The algorithm

calculated that the 11th postwar U.S. recession began in the fourth quarter of 2007, agreeing

with the NBER’s determination that 2007:Q4 marked the business cycle peak. The algorithm’s

announcement came in January 2009, one month later than the NBER’s declaration in December

2008. The algorithm determined in April 2010 that the recession ended in 2009:Q2. As of the

time of this writing, the NBER has not yet declared an end to the most recent recession.

Although the algorithm has so far proved to be robust in terms of its out-of-sample perfor-

mance, it was not particularly timely in making the call that the recession had started, coming
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one month later than the NBER’s declaration, and much later than all observers understood that

a powerful economic downturn was underway. Why was the signal from GDP indecisive until

January of 2009? Figure 13 shows that the GDP numbers available at the time showed slightly

negative growth for 2007:Q4 and 2008:Q3, +0.9% growth for 2008:Q1, and +2.8% for 2008:Q2.

Is that convincing evidence that a recession had begun? The probability generated in October

2008 (following release of the 2008:Q3 advance estimate) was 46.9%, consistent with a suspicion

that a recession could well have begun, but not definitive. It was not until the 3.9% GDP drop

in 2008:Q4 that the index climbed to 88.4%, at which time the benefit of the smoothed inference

raised the likelihood above 50% for observations going back to 2007:Q4. Hence the algorithm was

unable to declare until January 2009 that a recession had likely started in 2007:Q4.

Given what we were attempting to do with this procedure— form an inference based solely on

GDP growth— it is hard to dispute that this was the correct call given the data at the time, and I

feel that the procedure performed well in terms of that objective. But it is clearly worth taking a

look at the real-time performance of various other procedures that were making use of alternative

economic indicators.

4 Real-time track record of models based on other indica-
tors

I motivated the calculations above as an essentially model-free robust inference, while noting

that the calculations could alternatively be derived as the optimal statistical inference about an

unobserved recession variable St that takes on the value of 1 or 2 according to the outcome of

a Markov chain and with GDP growth yt conditional on St coming from one of two Normal

distributions. As described in Hamilton (1994, Chapter 22), one can also conduct similar infer-

ence on much more elaborate parametric formulations by postulating that the history of being

in recessions affects the conditional density of some observed vector of indicators yt according to

f(yt|yt−1,yt−2, ...,y1, St, St−1, ..., S1;θ) for f(.) an arbitrary density governed by unknown pa-
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rameters θ. This section reviews the real-time experience with inferring business cycle turning

points based on different indicators and alternative Markov-switching time series models.

4.1 Gross domestic income.

The national income accounting convention is that every dollar of value added by definition gener-

ates a dollar in income for somebody. We could measure GDP either by looking at expenditures

or by looking at income, and should in principle get exactly the same number either way. The Bu-

reau of Economic Analysis does indeed make calculations based on both methods, but in practice

the number obtained is not exactly the same, and the difference between gross domestic product

and gross domestic income is officially reported by the BEA as a “statistical discrepancy.” If the

BEA measurements were all correct, that discrepancy would be zero.

Jeremy Nalewaik (2007, 2010) has argued that GDI may provide helpful information in addition

to GDP, particularly for purposes of recognizing business-cycle turning points. The top panel of

Figure 14 plots the growth rates of GDP and GDI; note that GDI was sending a significantly more

pessimistic signal than GDP during 2007 and 2008. Nalewaik (2007) developed a generalization of

the model discussed in the previous section in which GDI and GDP are treated jointly as a bivariate

vector indicator. He has been distributing the probabilities calculated by that model the third

month of each quarter since 2006:Q3 as part of internal Federal Reserve Board communications.

The bottom panel of Figure 14 plots his simulated and actual real-time experience with this

method. Nalewaik provided me with these values in September of 2008, at which point his

algorithm had generated a strong recession signal for 2007:Q4 through 2008:Q2.

Does this mean that we should base an inference on GDI rather than GDP? By definition,

we do not have a good understanding of what the statistical discrepancy may represent, and the

conventional view is that GDP may be the slightly more reliable indicator. Certainly for the most

recent recession, GDI would have provided a more timely signal, but for some earlier episodes,

the GDI-based inference from the bottom panel of Figure 14 is less reliable than the GDP-based
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inference in Figure 12. If we have to rely on just one for future unknown incoming data, I am

more comfortable sticking with GDP, even though GDI did better last time. It might be possible

to try to combine the information from the two series in a more parsimonious way, for example,

using a weighted average of the two measures.

4.2 Unemployment rate.

The dramatic cyclical behavior of unemployment seen in Figure 2 suggests we might have better

success with a measure based on the unemployment rate rather than GDP, with sharp and rapid

increases in unemployment being perhaps a defining characteristic of an economic recession. My

2005 paper proposed the following model for yt the monthly unemployment rate,

yt = cst + φ1yt−1 + φ2yt−2 + ut (5)

where ut is distributed Student t with estimated degrees of freedom and St is assumed to follow

an unobserved 3-state Markov chain. This specification will be recognized as a generalization of

the parametric interpretation of the approach to GDP above, in allowing for additional dynamics

beyond shifts in the business-cycle phases (as represented by nonzero values for φ1 and φ2) and

allowing for three rather than two business cycle states (as represented by the three possible values

for the intercept, c1, c2, and c3). The three business cycle phases might be interpreted as normal

growth (St = 1), mild recession (St = 2), and severe recession (St = 3).

Figure 15 shows the smoothed probability that the U.S. economy was in either the mild or

severe recession phase calculated from this model as of early September of 2008. At that point the

model was declaring with 95% confidence that a recession had started. The parameter estimates

θ̂ were taken from Hamilton (2005) and I publicized this particular graph on September 5, 2008.

Does that qualify as out-of-sample, actual real time? Although I (and most other observers) were

persuaded that the U.S. had entered a recession at this time, I would be uncomfortable using

this model (even though it’s my own!) as a basis for issuing a fully automated announcement for

purposes of the next cycle. The reason is that although (5) seems to capture nicely the timing
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of historical business cycles, it is harder to motivate as a primitive, first-order description of what

we mean by a recession in the same way as the GDP-based inference discussed in the previous

section. The unemployment rate exhibits changes in cyclical behavior over time, as demographic

and other variables evolve significantly. Hence, even though it’s worked historically, I’d have less

confidence that such a rule will work as well on the next out-of-sample recession. Even so, this

kind of inference, like the GDI inference just discussed, offers a very useful supplement to the

inference from GDP.

4.3 Multiple monthly indicators.

Chauvet (1998) and Kim and Nelson (1998) proposed incorporating business-cycle shifts directly

into a model like that in Stock and Watson (1989). The unobserved state of the business cycle is

represented by a scalar ct that is subject to regime shifts,

ct = αSt + φct−1 + ηt (6)

where ηt ∼ N(0, σ2η) and αSt = α1 when the economy overall is in a recession (St = 1) and

αSt = α2 in expansion, with transitions between St = 1 and 2 again governed by a Markov chain.

Each of 4 indicators is presumed related to the business cycle according to

yrt = λrct + vrt for r = 1, 2, 3, 4 (7)

with the idiosyncratic factor vrt itself exhibiting AR(1) dynamics:

vrt = θrvr,t−1 + εrt. (8)

Variants of the same four indicators used by Stock and Watson— growth rates of industrial pro-

duction, personal income, sales, and employment— can also be used here. Chauvet and Hamilton

(2006) and Chauvet and Piger (2008) conducted simulated real-time exercises on these type of

models suggesting that they could perform well in real time.
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Since August 2006, Piger has been posting the probabilities calculated by this model almost

every month on a publicly available web page.5 The actual real-time filter inferences for

each month, P (St = 1|yt,yt−1, ...,y1; θ̂t) are plotted in the top panel of Figure 16. This filter

probability first moved above 50% in Piger’s November 1, 2008 report which was based on data

describing August. The probability moved to 99.2% when the September data became available

but fell back to 16.1% with the next month’s data which showed industrial production and real

personal income less transfers to be growing again in October. Chauvet and Piger (2008) had

recommended an inference rule of declaring a recession as soon as three consecutive values of

P (St−k = 1|yt,yt−1, ...,y1; θ̂t) were all above 80%. This threshold was passed with the release of

the October data, for although P (St = 1|yt,yt−1, ...,y1; θ̂t) was only 16.1% based on t = October

2008 data, Pr(St−k = 1|yt,yt−1, ...,y1; θ̂t) was above 80% for k = 1, 2, and 3 (see the bottom

panel of Figure 16). Chauvet and Piger’s (2008) announced rule would then date the start of

the recession as the earliest k for which this probability was above 50%, which turned out to be

February 2008. Thus their approach would have announced on January 1, 2009 that a recession

had started in February 2008, although the filter probabilities available in January 2009 raised

the possibility that the recession could already have been over by October. Subsequent data

confirmed the downturn was ongoing (panels 2 and 3 of Figure 16). The Chauvet-Piger rule of

waiting for a reading of 3 consecutive months below 20% would have resulted in a declaration in

January 2010 that a recovery likely began in July of 2009.

Marcelle Chauvet has periodically posted6 real-time assessments from a closely related speci-

fication adapted from Chauvet and Hamilton (2006). One important difference from the specifi-

cation of Chauvet and Piger is the reliance on the BLS household survey for the measure of em-

ployment rather than the establishment payroll data. Figure 17 shows the sequence of smoothed

probabilities associated with different vintages of data. This model would have sent a signal in

5 Apparently the January 1, 2009 posting was missed due to a holiday data release and personal commitments.
I am most grateful to Jeremy Piger for providing me with these data.

6 See http://sites.google.com/site/marcellechauvet/probabilities-of-recession.
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August 2008 that a recession had begun in December 2007. Like Piger’s calculations, it showed a

temporary hope of an end when only data through October 2008 were available. Chauvet used

this model to announce on her website in October of 2009 that the recession ended in June or

July of 2009.7

This actual real-time experience confirms that there is useful additional information in the

monthly indicators, though some caution is necessary before trying to use this framework as an

actual real-time basis for recognizing business cycle turning points. Chauvet and Potter (2010)

also emphasize the need to allow for instability over time of monthly indicator models.

4.4 Inference from panel data.

Hamilton and Owyang (2009) proposed a method for forming an inference based on data on

employment growth for each of the separate 48 contiguous U.S. states. The assumption is that

each state n might be in recession or not for any given quarter t (Snt = 1 or 2 for n = 1, ..., 48)

with the quarterly employment growth rate for state n and quarter t, ynt, governed by ynt|Snt ∼

N(µSnt , σ
2
n). Our hypothesis was that certain clusters of states might be in recession together and

that the determination of which cluster is in recession at any given date was governed by a larger

Markov chain. The smoothed probability of each cluster being in recession at any given date is

reported in Figure 18. Of particular interest is the blue line, which tracks the probability that

we were at that date experiencing a national recession in which every state participated. These

track closely the NBER dates, though assign a much longer duration to the recession of 2001 on

the basis of its “jobless recovery.”

What is perhaps remarkable is that the model concluded that, with virtual certainty, the U.S.

economy had entered a national recession as of 2007:Q2. I publicized this particular graph and its

implication that we were well into another recession on Econbrowser on April 3, 2008. Although

7 Chauvet has also been calculating probabilities using the payroll employment figures instead of the household
survey, and feels that the payroll numbers might better recognize a peak while the household numbers are better
for the trough. Based on the payroll numbers, she announced in April 2008 that the recession had started in
December.

21



the inference proved to be prescient, it is again one I wouldn’t trust out of sample. For one thing,

the model attributed all the comovement between states to these recession clusters, an assumption

that was necessary given our estimation algorithm but that is clearly implausible. If you really

think you’re getting 48 independent observations on something, it’s correct that you could be

virtually certain of your inference, but this is an artifact of assuming independence rather than a

correct assessment of the uncertainty. The fact that employment growth behaved so differently

for the 2001 recession as in previous recessions is another reason to be queasy about relying on

such a model. It nevertheless again illustrates the potential gains from using multiple indicators,

in this case employment data at the level of individual states.

4.5 Mixed-frequency inference.

Camacho and Perez-Quiros (2010) showed how data of different frequencies can be combined in a

linear state-space framework. Their model uses observations on Euro-area GDP and employment

together with monthly observations on industrial production, retail sales, exports, industrial new

orders, Euro-zone Economic Sentiment Indicator, German business climate index, Belgian overall

business indicator, and both services and manufacturing purchasing managers indexes for the Euro

area. One of the nice contributions of their paper is a very convenient algorithm for processing

an unbalanced panel on a real-time daily basis as different data releases or revisions to past data

get announced on different days. The forecasts from this model are now being used inside the

Eurosystem and so far have an excellent actual real-time track record.

Camacho, Perez-Quiros, and Poncela (2010) adapted the same idea to a latent business-cycle

regime model based on a similar set of observed mixed-frequency indicators. Figure 19 reports

the probabilities of a Euro-area recession that would have been calculated by their approach based

on the actual data available as of each day during 2008 and 2009. The model yields a remarkably

sharp and stable inference over this period, with the probability jumping from 3.8% on June 24,

2008 to 98.1% by July 24, 2008. The probability remained above 69% until April 23, 2009, at
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which point it fell to 6%. Based on these results, the approach appears extremely promising.

There is again of course the concern that with so many estimated parameters, the subsequent

out-of-sample real-time performance may deteriorate.

5 Other approaches

I have focused in the last two sections exclusively on Markov-switching time series models, in

part because this is the approach with the most clearly established out-of-sample real-time track

record. But there are a number of promising ideas from alternative perspectives. Here I very

briefly mention a few.

One can think of any probit prediction of NBER classifications, such as that by Wright dis-

cussed in Section 2, as being driven by an unobserved latent Gaussian variable z∗t governed by

z∗t = α+ β0yt−1 + εt (9)

with NBER recession classifications St characterized by

St = 1 if z∗t > 0

and therefore optimally forecast using the formula

P (St = 1|yt−1) = Φ(α+ β0yt−1).

Dueker (2005) proposed to think of z∗t as part of a VAR8 including also the observed variables

yt and used Bayesian methods to infer parameters based on historical observations of y1, ...,yT

and NBER classifications S1, ..., ST , which he called a qual-VAR specification. Given the model

8 That is, (9) is generalized to

z∗t = α+ β01yt−1 + β
0
2yt−2 + · · ·+ β

0
pyt−p

+γ1z
∗
t−1 + γ2z

∗
t−2 + · · ·+ γpz

∗
t−p + εt

yt = c+Φ0
1yt−1 +Φ

0
2yt−2 + · · ·+Φ

0
pyt−p

+ξ1z
∗
t−1 + ξ2z

∗
t−2 + · · ·+ ξpz

∗
t−p + ut.
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parameters, one can then calculate an optimal forecast of future business cycle phases conditional

on whatever is actually known as of some out-of-sample date τ :

P (Sτ+k = 1|yτ ,yτ−1, ...,y1, Sτ−r, Sτ−r−1, ..., S1; θ̂)

for Sτ−r the most recent NBER classification known with certainty as of date τ . Dueker (2008)

used this model on December 9, 2008 to predict (quite successfully, as it turned out) that the

recession would end in July or August of 2009 but that employment growth would not resume

until March of 2010.

Leamer (2008) considered instead simple rules of the form

St = 1 if yrt < cr

for yrt some indicator and cr a threshold chosen to capture historical NBER dates. Leamer

proposed using 6-month changes in employment (from both the establishment and household

survey), industrial production, and the unemployment rate. In August of 2008 he concluded on

the basis of such calculations that:

this algorithm indicates that the data through June 2008 do not yet exceed the

recession thresholds, and will do so only if things get much worse.

Subsequent data unfortunately were indeed much worse, and Leamer’s indicators produced a

clear recession call by October 19 (Hamilton, 2008b).

Berge and Jordà (2009) proposed using the receiver operating characteristic curve as a basis

for systematically selecting such indicators yrt, and concluded that the national activity index

developed by Stock and Watson (1999) and regularly updated by the Federal Reserve Bank of

Chicago is a particularly promising indicator.

Harding and Pagan (2006) formalized the traditional Burns and Mitchell (1946) approach

of identifying local peaks and troughs in a series and then looking for maximal correspondence

between the inference from individual series to identify an aggregate recession. Chauvet and Piger
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(2008) found this approach performed reasonably well with simulated real-time data, though it

appeared to be dominated by their 4-indicator Markov-switching specification.

6 Conclusion

This paper discussed approaches to recognizing business cycle turning points using a variety of

data sets and specifications. There is a trade-off between parsimony and making full use of all

available information. A very simple model based on GDP alone appears reasonably robust to

data revisions and structural change and so far has a good real-time out-of-sample track record, but

could clearly be improved upon. Averaging the inference from alternative specifications or using

Bayesian approaches to constrain more richly parameterized specifications are worth exploring.

A particularly promising approach is to combine data of different frequencies.
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Table 1

Parameter estimates based on (1) characteristics of expansions and recessions as classified by

NBER, and (2) values that maximize the observed sample log likelihood of postwar GDP growth

rates over 1947:Q2 to 2004:Q2.

–––––––––––––––––––––––––––––––––––––––

Parameter Interpretation
Value from NBER

classifications
Value from GDP alone

µ1 average growth in expansion 4.5 4.62

µ2 average growth in recession −1.2 −0.48

σ standard deviation of growth 3.4 3.34

p11 prob. expansion continues 0.95 0.92

p22 prob. recession continues 0.78 0.74

–––––––––––––––––––––––––––––––––––––––—

Notes to Table 1: Reproduced from Chauvet and Hamilton (2006).
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Table 2 

Business cycle turning points and dates at which announcements were issued by NBER and the 
GDP-based algorithm. 

 
Start of recessions 

Peak as 
determined by 
NBER 

Date NBER 
made 
declaration 

Recession start 
as determined 
by algorithm 

Date algorithm 
made 
declaration 

Algorithm 
announcement 
lead (-) or lag 
(+) in months 

1969:Q4 N.A. 1969:Q2 May 1970* N.A. 
1973:Q4 N.A. 1973:Q4 May 1974* N.A. 
1980:Q1 Jun 1980 1979:Q2 Nov 1979* -7 
1981:Q3 Jan 1982 1981:Q2 Feb 1982* +1 
1990:Q3 Apr 1991 1989:Q4 Feb 1991* -2 
2001:Q1 Nov 2001 2001:Q1 Feb 2002* +3 
2007:Q4 Dec 2008 2007:Q4 Jan 2009 +1 
 

Start of expansions 
Trough as 
determined by 
NBER 

Date NBER 
made 
declaration 

Recession end 
as determined 
by algorithm 

Date algorithm 
made 
declaration 

Algorithm 
announcement  
lead (-) or lag 
(+) in months 

1970:Q4 N.A. 1970:Q4 Aug 1971* N.A. 
1975:Q1 N.A. 1975:Q1 Feb 1976* N.A. 
1980:Q3 Jul 1981 1980:Q2 May 1981* -2 
1982:Q4 Jul 1983 1982:Q4 Aug 1983* +1 
1991:Q1 Dec 1992 1991:Q4 Feb 1993* +2 
2001:Q4 Jul 2003 2001:Q3 Aug 2002* -12 
N.A. N.A. 2009:Q2 Apr 2010 N.A. 
 
Notes to Table 2. Starred entries denote simulated real-time declarations, unstarred are actual 
real-time delarations.  N.A. indicates information  is not available. 
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Figure 1. One hundred times the natural logarithm of U.S. real GDP, 1947:Q1-2010:Q1.  
Last shaded region covers 2007:Q4-2009:Q2; other shaded regions correspond to NBER 
recession dates.
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Figure 2. Civilian unemployment rate, 1948:M1 to 2010:M3. Seasonally adjusted, from 
Bureau of Labor Statistics.  Last shaded region covers 2007:M12 to 2009:M6; other 
shaded regions correspond to NBER recession dates. 
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Figure 3. Unemployment, recessions, and dates of NBER announcements. Top panel: 
same as Figure 2 for 1981:M8 to 2010:M3.  Bottom panel: dates at which the NBER 
announced the business cycle turning points indicated in the top panel. 
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Figure 4. Quarterly growth of real GDP for 2001, quoted at an annual rate.  Top panel: as 
reported on October 31, 2002.  Bottom panel: as reported on January 30,  Data source: 
historical data archive of the Federal Reserve Bank of Philadelphia. 
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Figure 5. In-sample values for probability of recession from Stock-Watson business cycle 
model.  Top panel: contemporaneous probability.  Middle panel: 3-month-ahead forecast.  
Bottom panel: 6-month-ahead forecast.  Adapted from Figure 2.1 in Stock and Watson 
(1993), using code provided by Mark Watson 
(http://www.princeton.edu/~mwatson/ddisk/pr.zip). 
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Figure 6. Out-of-sample values for probability of recession from Stock-Watson business 
cycle model.  Vertical line drawn for July 1990, which NBER subsequently declared to 
have been the business cycle peak.  Top panel: contemporaneous probability.  Middle 
panel: 3-month-ahead forecast.  Bottom panel: 6-month-ahead forecast.  Adapted from 
Figure 2.1 in Stock and Watson (1993), using code provided by Mark Watson 
(http://www.princeton.edu/~mwatson/ddisk/pr.zip). 
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Figure 7. 6-month commercial paper rate minus 6-month Treasury bill rate, 1970:M1 to 
1997:M8. 
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Figure 8. Yield spread and short rate.  Top panel: Yield on 10-year Treasury bonds minus 
that on 3-month T-bills.  Bottom panel: level of 3-month T-bill rate. 
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Figure 9. Real-time implications of Wright’s probit model.  Horizontal axis: average fed 
funds rate over the preceding 90 days.  Vertical axis: average 10 year minus 3 month 
yield over preceding 90 days.  Iso-probability implications of the model shown as 
upward-sloping dashed lines, with circles denoting observed values for each week 
between August 2004 and August 2008.  Source: politicalcalculations.blogspot.com. 
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Figure 10. Density of GDP growth in contractions, expansions and overall.  Top panel: 
Density of GDP for quarters characterized by NBER as part of a recession.  Middle 
panel: density for quarters characterized as expansion.  Bottom panel: 0.2 times entry in 
top panel (green) , 0.8 times entry in middle panel (blue), and sum of the two products 
(black).  Adapted from Chauvet and Hamilton (2006, Figures 2 and 3). 
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Figure 11. Model-derived recession probabilities.  Top panel: filter probability on revised 
data; plotted series for date t is , 1, 1,( 1 | , ,..., ; )Tt t T t T TP S y y y−= θ  where ,t Ty denotes GDP 

growth for quarter t as reported in vintage released T = 2004:Q2, and Tθ  is the MLE 
based on 1, 2, ,( , ,..., )T T T Ty y y .  Bottom panel: one-quarter smoothed probability based on 

real-time data; plotted series for date t is 11, 1 , 1 1, 1( 1 | , ,..., ; )tt t t t t tP S y y y ++ + + += θ  where 1t+θ  is 
the MLE based on 1, 1 2, 1 1, 1( , ,..., )t t t ty y y+ + + + .  NBER-determined recession dates (which were 
not used in any way to calculate either of the plotted series) are indicated as shaded 
regions on both graphs.  Adapted from Figures 6 and 7 in Chauvet and Hamilton (2006). 
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Figure 12.  GDP-based recession indicator index, 1967:Q4-2009:Q4.  Last shaded region 
covers 2007:Q4-2009:Q2; other shaded regions correspond to NBER recession dates.  
Prior to 2005, each point on the graph corresponds to a simulated real-time inference that 
was constructed from a data set as it would have been available four months after the 
indicated date.  After 2005, points on the graph correspond to actual announcements that 
were publicly released four months after the indicated date. 



44 

-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0

20
07
:Q
1

20
07
:Q
2

20
07
:Q
3

20
07
:Q
4

20
08
:Q
1

20
08
:Q
2

20
08
:Q
3

20
08
:Q
4

 
 
Figure 13. Quarterly real GDP growth rates for 2007-2008.  Quoted at an annual rate, as 
reported in January 2009. 
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Figure 14.Real gross domestic product, gross domestic income, and probabilities inferred 
from joint behavior of GDP and GDP, 1978:Q2 to 2008:Q2.  Real GDI calculated as 
nominal GDP minus statistical discrepancy (BEA Table 1.7.5) divided by implicit GDP 
deflator.  Top panel: black line is quarterly growth rate of real GDP (annual rate), blue 
line is quarterly growth rate of real GDI.  Bottom panel: vertical line at 2006:Q2; values 
for 2006:Q2 and earlier correspond to simulated real-time probabilities; values for 
2006:Q3 and later represent actual real-time probabilities.  Source: Jeremy Nalewaik 
(personal correspondence). 
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Figure 15. Inference from 3-phase model of unemployment as published on September 5, 
2008.  Graph shows 1 1P( 1 | , ,...., ; )Tt T TS y y y−> θ  for each t and is reproduced from 
www.econbrowser.com/archives/2008/09/rising_unemploy.html. 
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Figure 16. Actual Real-time probabilities from the Chauvet and Piger (2008) 4-indicator 
model as reported each month at www.uoregon.edu/~jpiger/us_recession_probs.htm.  
Top panel: filter probability that month t (plotted on horizontal axis) is characterized by 
recession based on initial release of data describing month t; value shown would have 
been actually reported two months after the indicated date.  Middle panel: one-month 
smoothed probability that month t (plotted on horizontal axis) is characterized by 
recession allowing for 1-month revisions and smoothing; value shown would have been 
reported three months after the indicated date.  Third panel: two-month smoothed 
probabilities; value shown would have been reported four months after the indicated date.  
Bottom panel: full sample of smoothed probabilities as of January 2009; values shown 
would have all been reported on January 1, 2009.  Vertical lines drawn at 2007:M12, 
which NBER declared on December 1, 2008 to have been the business cycle peak. 
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Figure 17. Full sample of smoothed probabilities available for indicated vintage of data as 
calculated by Chauvet’s 4-indicator model.  Source: Chauvet (2010). 
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Figure 18.  Full-sample smoothed probabilities from the Owyang-Hamilton model of 
different clusters being in recession, 1956:Q2 to 2007:Q4.  Blue lines indicate probability 
that all states are in recession together, other colors denote conditions when only a subset 
of U.S. states were in recession.  Reproduced from Hamilton (2008a). 
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Figure 19. Simulated real-time probabilities of Euro-area recession, Jan 1, 2008 to Jan 15, 
2010.  Value shown for each day is based solely on data actually available as of that day.  
Source: Camacho, Perez-Quiros, and Poncela (2010). 


