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1 Introduction

Applied researchers often wish to analyze samples with few independent observations. The boot-

strap of Efron (1979) has become a standard tool for conducting inference in such settings. Among

the numerous variants of the original bootstrap, the so-called “wild” bootstrap of Wu (1986) and

Liu (1988) has been shown to yield dramatic improvements in the ability to control the size of

Wald tests of OLS regression coefficients in small samples (Mammen (1993), Horowitz (1997, 2001),

Cameron, Gelbach, and Miller (2008)).

Originally proposed as an alternative to the residual bootstrap of Freedman (1981), the wild

bootstrap has often been interpreted as a procedure that resamples residuals in a manner that

captures any heteroscedasticity in the underlying errors. Perhaps for this reason, the applications

and extensions of the wild bootstrap have largely been limited to linear models where residuals are

straightforward to obtain; see for example Hardle and Mammen (1993) for nonparametric regression,

You and Chen (2006) for the partially linear regression, Davidson and MacKinnon (2008) for IV

regression and Cavaliere and Taylor (2008) for unit root inference.

We propose a new bootstrap procedure (the “score” bootstrap) which perturbs the fitted scores

of an M-estimator conditional on a fixed Hessian. In the linear model, this procedure is numerically

equivalent to the conventional wild bootstrap for unstudentized statistics and higher order equivalent

for studentized ones. However, in contrast to the wild bootstrap, our approach is easily adapted to

estimators without conventional residuals and avoids recomputing the estimator in each bootstrap

iteration. As a result, the score bootstrap possesses an important advantage over existing bootstraps

in settings where the model is computationally expensive to estimate or poorly behaved in a subset

of the bootstrap draws. For example, computational problems often arise in small samples even in

simple probit or logit models where, for some bootstrap draws, the estimator cannot be computed.

We provide results establishing the consistency of the score bootstrap for a broad class of test

statistics under weak regularity conditions and in the presence of potential misspecification. Our

framework is shown to encompass Wald and Lagrange Multiplier (LM) tests as well as tests of

moment restrictions. We then examine the higher order properties of the proposed bootstrap in the

specific context of a linear model. There we derive the conditions under which a score bootstrapped

Wald statistic yields an Edgeworth refinement and find that the presence of a refinement is sensitive

to certain forms of misspecification. This conclusion holds true for the original wild bootstrap as

well and hence may be of independent interest.
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To assess the empirical relevance of these theoretical results, we conduct an extensive series of

Monte Carlo experiments comparing the performance of several different bootstrap procedures in

settings with clustered data. We find that variants of our proposed score based bootstrap substan-

tially outperform analytical cluster robust methods and in some cases outperform the traditional

block bootstrap even in the presence of misspecification. In line with our theoretical results, we

find negligible differences in the performance of the score and wild bootstraps despite their large

difference in computational cost.

The remainder of the paper is structured as follows: Section 2 reviews the wild bootstrap, while

Section 3 introduces the score bootstrap and establishes its higher order equivalence. In Section 4

we establish the consistency of the score bootstrap under weak regularity conditions and illustrate

its applicability to a variety of settings. Section 5 examines the conditions under which the score

bootstrap yields an Edgeworth refinement in the linear model. Our simulation study is contained

in Section 6, while Section 7 briefly concludes. All proofs are contained in the Appendix.

2 Wild Bootstrap Review

We begin by reviewing the wild bootstrap and the reasons for its consistency in the context of a

linear model. A careful examination of the arguments justifying its validity provides us with the

intuition necessary for developing the score bootstrap and its extension to M-estimation problems.

While there are multiple approaches to implementing the wild bootstrap, for expository purposes

we focus on the original methodology developed in Liu (1988). Suppose {Yi, Xi}ni=1 is an i.i.d.

sequence of random variables, with Yi ∈ R, Xi ∈ Rm and satisfying the linear relationship:

Yi = X ′iβ0 + εi . (1)

Letting β̂ denote the OLS estimate of β0 and ei ≡ (Yi−X ′iβ̂) the implied residual, the wild bootstrap

generates new residuals of the form ε∗i ≡ Wiei for some randomly generated i.i.d. sequence {Wi}ni=1

that is independent of {Yi, Xi}ni=1 and satisfies E[Wi] = 0 and E[W 2
i ] = 1. Under these conditions,

E[ε∗i |{Yi, Xi}ni=1] = 0 E[(ε∗i )
2|{Yi, Xi}ni=1] = e2

i , (2)

and hence ε∗i is mean independent of {Yi, Xi}ni=1 and in addition captures the pattern of heteroscedas-

ticity found in the original sample. This property, originally noted in Wu (1986), enables the wild

bootstrap to remain consistent even in the presence of heteroscedasticity or model misspecification.1

1We refer to misspecification in model (1) as E[εi|Xi] 6= 0 but E[εiXi] = 0.
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The wild bootstrap resampling scheme consists of generating dependent variables {Y ∗i }ni=1 by

Y ∗i ≡ X ′iβ̂ + ε∗i (3)

and then conducting OLS on the sample {Y ∗i , Xi}ni=1 in order to obtain a bootstrap estimate β̂∗.

The distribution of
√
n(β̂∗ − β̂) conditional on {Yi, Xi}ni=1 (but not on {Wi}ni=1) is then used as an

estimate of the unknown distribution of
√
n(β̂−β0). Since the former distribution can be computed

through simulation, the wild bootstrap provides a simple way to obtain critical values for inference.

We review why the wild bootstrap is consistent by drawing from arguments in Mammen (1993).

First, observe that standard OLS algebra and the relationships in (1) and (3) imply that:

√
n(β̂ − β0) = H−1

n

1√
n

n∑
i=1

Xiεi
√
n(β̂∗ − β̂) = H−1

n

1√
n

n∑
i=1

Xiε
∗
i , (4)

where Hn ≡ n−1
∑

iXiX
′
i. Since both the true and bootstrap scores are properly centered, both

expressions in (4) can be expected to converge to a normal limit. Therefore, consistency of the

wild bootstrap hinges on whether this limit is the same or, equivalently, whether the asymptotic

variances agree. However, as E[W 2
i ] = 1 and {Wi}ni=1 is independent of {Yi, Xi}ni=1, we obtain:

E[(
1√
n

n∑
i=1

Xiεi)(
1√
n

n∑
i=1

Xiεi)
′] = E[XiX

′
iε

2
i ] (5)

E[(
1√
n

n∑
i=1

Xiε
∗
i )(

1√
n

n∑
i=1

Xiε
∗
i )
′|{Yi, Xi}ni=1] =

1

n

n∑
i=1

XiX
′
ie

2
i (6)

and hence the second moments indeed agree asymptotically by standard arguments. As a result,
√
n(β̂ − β0) and

√
n(β̂∗ − β̂) converge in distribution to the same normal limit and the consistency

of the wild bootstrap is immediate.

While the ability of the wild bootstrap to asymptotically match the first two moments of the

scores provides the basis for establishing its validity, it does not elucidate why it often performs

better than a normal approximation. Improvements occur when the bootstrap is able to additionally

match higher moments of the statistics. If, for example, E[W 3
i ] = 1, then the third moments match

asymptotically and the wild bootstrap provides a refinement over the normal approximation to a

studentized statistic by providing a skewness correction (Liu (1988)). Alternatively, the Rademacher

distribution,2 which satisfies E[Wi] = E[W 3
i ] = 0 and E[W 2

i ] = E[W 4
i ] = 1, is able to match the first

four moments for symmetric distributions and can in such cases provide an additional refinement

(Liu (1988); Davidson and Flachaire (2008)).

2A Rademacher random variable puts probability one half on both one and negative one.
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3 The Score Bootstrap

The wild bootstrap resampling scheme is often interpreted as a means of generating a set of boot-

strap residuals mimicking the heteroscedastic nature of the true errors. An alternative interpretation

is that it creates a set of bootstrap scores mimicking the heteroscedastic nature of the true scores.

In this section, we develop the implications of this observation, which provides the basis for our

proposed procedure.

The relationship between the wild bootstrap and the scores is transparent from the discussion

of its consistency in Section 2. Since ε∗i = eiWi, we learn from (4) that the wild bootstrap may be

interpreted as a perturbation of the scores (Xi(Yi − X ′iβ)) evaluated at the estimated parameter

value (β̂) that leaves the Hessian (
∑

iXiX
′
i) unchanged.3 More precisely, a numerically equivalent

way to implement the wild bootstrap would be to employ the following algorithm:

Step 1: Obtain the OLS estimate β̂ and generate the fitted scores {Xi(Yi −X ′iβ̂)}ni=1.

Step 2: Using random weights {Wi}ni=1 independent of {Yi, Xi}ni=1 and satisfying E[Wi] = 0 and

E[W 2
i ] = 1, perturb the original fitted scores to obtain a new set of scores {Xi(Yi −X ′iβ̂)Wi}ni=1.

Step 3: Multiply the perturbed scores by the original Hessian to obtain H−1
n n−

1
2

∑
i(Yi−Xiβ̂)XiWi

and use its distribution conditional on {Yi, Xi}ni=1 as an estimate of the distribution of
√
n(β̂− β0).

Unlike the residual based view of the wild bootstrap, the score interpretation is easily generalized

to more complex nonlinear models. One may simply perturb the fitted scores of such a model while

keeping the Hessian unchanged and, provided the perturbations satisfy E[Wi] = 0 and E[W 2
i ] = 1,

the first two moments of the perturbed and true scores will match asymptotically. Under the ap-

propriate regularity conditions, this moment equivalence will suffice for establishing the consistency

of the proposed bootstrap. For obvious reasons, we term this approach a “score bootstrap.”

3.1 Higher Order Equivalence

In the linear model, the wild and score bootstrap statistics for
√
n(β̂−β0) are numerically equivalent.

However, in most instances the statistic of interest is studentized, since only in this context is a

refinement over an analytical approximation available (Liu (1988), Horowitz (2001)).

Because a bootstrap estimate β̂∗ is not computed under the score bootstrap, it is not practical

to studentize by following the exact analogue of the full sample computation. In fact, in accord

3This is in contrast to the weighted bootstrap which perturbs the score and the Hessian (Ma and Kosorok (2005)).
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with the perturbed score interpretation, it is more natural to simply employ the sample variance of

the perturbed scores for studentization. For this reason, we define the bootstrap statistics:

T ∗w,n ≡ (H−1
n Σ∗n(β̂∗)H−1

n )−
1
2
√
n(β̂∗ − β̂) T ∗s,n ≡ (H−1

n Σ∗n(β̂)H−1
n )−

1
2H−1

n

1√
n

n∑
i=1

Xiε
∗
i , (7)

where Σ∗n(β) ≡ n−1
∑

iXiX
′
i(Y

∗
i − X ′iβ)2 and T ∗w,n and T ∗s,n are the studentized wild and score

bootstrap statistics respectively. It is important to note that in the computation of T ∗s,n, the full

sample estimator β̂ is used in obtaining the standard errors, and hence calculation of β̂∗ remains

unnecessary. As a result, the score bootstrap is computationally simpler to implement than the

wild bootstrap which requires use of the bootstrap estimate β̂∗.

While for the statistics in (4) the wild and score bootstraps are numerically equivalent, such

a relationship fails to hold for the studentized versions. An important concern then is whether

the refinement of the wild bootstrap over a normal approximation (Liu (1988)) is lost due to this

difference. Somewhat surprisingly, the answer is negative. The score bootstrap not only remains

consistent despite not recomputing the estimator but can in addition be expected to obtain a

refinement over an analytical approximation in precisely the same instances as the wild bootstrap.

Such a result is the consequence of the wild and score bootstrap statistics being asymptotically

equivalent up to a higher order than the refinement over the normal approximation.

In order to establish the higher order equivalence of T ∗n,s and T ∗n,w, we impose the following:

Assumption 3.1. (i) {Yi, Xi}ni=1 are i.i.d. E[Xiεi] = 0, E[XiX
′
i] = I and E[XiX

′
iε

2
i ] is full rank;

(ii) The moments E[‖Xi‖9], E[ε9i ] and E[‖Xi‖9ε9i ] are finite; (iii) β0 ∈ Θ, where Θ ⊂ Rm is compact;

(iv) {Wi}ni=1 are i.i.d., independent of {Yi, Xi}ni=1 with E[Wi] = 0, E[W 2
i ] = 1 and E[W 9

i ] <∞.

The requirement that E[XiX
′
i] = I of Assumption 3.1(i) constitutes a notationally convenient

normalization for establishing the higher order expansions in Section 5. The existence of high

order moments, imposed in Assumption 3.1(ii) and 3.1(iv), is necessary for the computation of the

first three moments of t-statistics, but not for establishing the consistency of the procedure. The

bias, variance and skewness of the t-statistics are in turn needed to explore whether a bootstrap

procedure yields a refinement over an analytical approximation. In Section 4, where we establish

bootstrap consistency results for a general class of M-estimators, we only require existence of the

first two moments. As a special case those results imply the consistency of the score bootstrap in

the context of the linear model under weaker requirements than those in Assumption 3.1.

Let P ∗ and E∗ denote probability and expectation conditional on {Yi, Xi}ni=1 (but not {Wi}ni=1).

Under Assumption 3.1 we can then establish the higher order equivalence of T ∗w,n and T ∗s,n.
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Lemma 3.1. Under Assumption 3.1, T ∗w,n = T ∗s,n +Op∗(n−1) almost surely.

If the conditions for an Edgeworth expansion of the bootstrap statistics T ∗w,n and T ∗s,n are satisfied,

then Lemma 3.1 implies that they can be expected to disagree only in terms of order n−1 or

smaller; see Chapter 2.7 in Hall (1992) for such arguments. Therefore, in settings where the wild

bootstrap obtains the traditional Edgeworth refinement of order n−
1
2 over a normal approximation,

the score bootstrap should as well. The higher order equivalence of T ∗w,n and T ∗s,n is at first glance

unexpected since the score bootstrap appears to violate the usual plug-in approach of the standard

bootstrap. However, this only introduces a smaller order error due to the residuals {ε∗i }ni=1 being

mean independent of {Xi}ni=1 under the bootstrap distribution. Importantly, the higher order

equivalence would fail to hold if the residuals {ε∗i } were sampled in a manner under which they were

merely uncorrelated with {Xi}ni=1 under the bootstrap distribution.

4 Inference

We turn now to establishing the validity of a score bootstrap procedure for estimating the critical

values of a large class of tests. Building on our earlier discussion we consider test statistics based

upon the parametric scores of M-estimators, using perturbations of those scores to estimate their

sampling distribution. Since this approach does not depend upon resampling of residuals, we do

not distinguish between dependent and exogenous variables and instead consider a random vector

Zi ∈ Z ⊆ Rm which may contain both.

We focus on test statistics Gn that are quadratic forms of a vector valued statistic Tn:

Gn ≡ T ′nTn . (8)

Under the null hypothesis, the underlying statistic Tn is required to be asymptotically pivotal and

allow for a linear expansion. More precisely, we require that under the null hypothesis:

Tn = (An(θ0)Σn(θ0)An(θ0)′)−
1
2Sn(θ0) + op(1) Sn(θ) ≡ An(θ)

1√
n

n∑
i=1

s(Zi, θ) , (9)

where An(θ) is a r×k matrix, s(z, θ) is a k×1 vector, Σn(θ) is the sample covariance matrix of s(Zi, θ)

and θ0 is an unknown parameter vector. Under appropriate regularity conditions, Tn is therefore

asymptotically normally distributed with identity covariance matrix and hence Gn is asymptotically

Chi-squared distributed with degrees of freedom equal to the dimension of Tn. Though we only

consider asymptotically pivotal statistics, our results readily extend to unstudentized ones as well.
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The bootstrap statistics employed to estimate the distributions of Gn and Tn are given by:

G∗n ≡ T ∗′n T
∗
n T ∗n ≡ (An(θ̂)Σ∗n(θ̂)An(θ̂)′)−

1
2S∗n(θ̂) S∗n(θ) ≡ An(θ)

1√
n

n∑
i=1

s(Zi, θ)Wi (10)

where Σ∗n(θ) is the sample covariance matrix of s(Zi, θ)Wi and θ̂ is a consistent estimator for θ0. As

discussed in the previous section, implementation of the score bootstrap only requires calculation

of the full sample estimator θ̂ and no additional optimization is needed in each bootstrap iteration.

4.1 Bootstrap Consistency

We establish the consistency of the bootstrap under the following set of assumptions:

Assumption 4.1. (i) θ̂
p→ θ0 with θ̂, θ0 ∈ Θ ⊂ Rp and Θ a compact set; (ii) The limit point θ0

satisfies E[s(Zi, θ0)s(Zi, θ0)′] <∞ and the matrix A(θ0)E[s(Zi, θ0)s(Zi, θ0)′]A(θ0)′ is invertible.

Assumption 4.2. (i) Under the null hypothesis Tn satisfies (9) and θ0 is such that E[s(Zi, θ0)] = 0;

(ii) Under the alternative hypothesis Gn
p→∞.

Assumption 4.3. (i) {Zi}ni=1 is i.i.d. (ii) supθ∈Θ ‖An(θ)− A(θ)‖F = op(1) with A(θ) continuous.

Assumption 4.4. (i) {Wi}ni=1 is an i.i.d. sample, independent of {Zi}ni=1 satisfying E[Wi] = 0 and

E[W 2
i ] = 1; (ii) s(z, θ) is continuously differentiable in θ ∈ Θ and supθ∈conv(Θ) ‖∇s(z, θ)‖F ≤ F (z)

for some function F (z) with E[F 2(Zi)] <∞.

In Assumption 4.1 we require θ̂ to converge in probability to some parameter vector θ0 ∈ Θ

whose value may depend upon the distribution of Zi. The compactness of the parameter space Θ

is employed to verify the perturbed scores form a Donsker class. This restriction may be relaxed at

the expense of a more complicated argument that exploits the consistency of θ̂ for a local analysis.

Though in the notation we suppress such dependence, it is important to note that θ0 may take

different values under the null and alternative hypotheses. In Assumptions 4.3(ii) and 4.4(ii), ‖ · ‖F
denotes the Frobenius norm. Assumptions 4.2 and 4.3, in turn enable us to establish the asymp-

totic behavior of Gn under the null and alternative hypotheses; see Lemma 7.3 in the Appendix.

Assumption 4.4(i) imposes the only requirements on the random weights {Wi}ni=1, which are the

same conditions imposed for inference on the linear model in previous wild bootstrap studies. As-

sumption 4.4(ii) allows us to establish that the empirical process induced by functions of the form

ws(z, θ) is asymptotically tight. Differentiability is not necessary for this end, but we opt to impose

it due to its ease of verification and wide applicability.4

4For non-differentiable settings, the relevant condition is that F ≡ {ws(z, θ) : θ ∈ Θ} be a Donsker class.
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Assumptions 4.1-4.4 are sufficient for establishing the consistency of the proposed score bootstrap

procedure under the null hypothesis.

Theorem 4.1. Let Fn and F ∗n be the cdfs of Gn and of G∗n conditional on {Zi}ni=1 and suppose that

Assumptions 4.1, 4.2, 4.3 and 4.4 hold. If the null hypothesis is true, it then follows that:

sup
t∈R
|Fn(t)− F ∗n(t)| = op(1) .

Theorem 4.1 justifies the use of quantiles from the distribution of G∗n conditional on {Zi}ni=1 as

critical values. In order to control the size of the test at level α, we may employ:

ĉ1−α ≡ inf{t : P (G∗n ≥ t |{Zi}ni=1) ≥ 1− α} . (11)

While difficult to compute analytically, ĉ1−α may easily be calculated via simulation. Employing a

random number generator, B samples {{Wi1}ni=1, . . . , {WiB}ni=1} may be created independently of

the data and used to construct B statistics {G∗n1, . . . , G
∗
nB}. Provided B is sufficiently large, the

empirical 1− α quantile of {G∗n1, . . . , G
∗
nB} will yield an accurate approximation to ĉ1−α.

While Theorem 4.1 implies that the critical value ĉ1−α in conjunction with the test statistic Gn

delivers size control, it does not elucidate the behavior of the test under the alternative hypothesis.

As in other bootstrap procedures, the test is consistent due to the bootstrap statistic G∗n being

properly centered even under the alternative. As a result, ĉ1−α converges in probability to the

1−α quantile of a Chi-squared distribution with r degrees of freedom, while Gn diverges to infinity.

Therefore, under the alternative hypothesis, Gn is larger than ĉ1−α with probability tending to one

and the test rejects asymptotically. We summarize these findings in the following corollary:

Corollary 4.1. Under Assumptions 4.1, 4.2, 4.3 and 4.4, it follows that under the null hypothesis:

lim
n→∞

P (Gn ≥ ĉ1−α) = 1− α ,

for any 0 < α < 1. Under the same assumptions, if the alternative hypothesis is instead true, then:

lim
n→∞

P (Gn ≥ ĉ1−α) = 1 .

4.2 Parameter Tests

A principal application of the proposed bootstrap is in obtaining critical values for hypothesis tests

on parametric models. We consider a general M-estimation framework in which the parameter of

interest θM is the unique minimizer of some non-stochastic but unknown function Q : Θ→ R :

θM = arg min
θ∈Θ

Q(θ) . (12)
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We examine the classic problem of conducting inference on a function of θM . Specifically, for

some known and differentiable mapping c : Θ→ Rl with l ≤ p, the hypothesis we study is:

H0 : c(θM) = 0 H1 : c(θM) 6= 0 . (13)

Standard tests for this hypothesis include the Wald and Lagrange Multiplier (LM) tests. Intuitively,

the Wald test examines whether the value of the function c evaluated at an unrestricted estimator

θ̂M is statistically different from zero. In contrast, the LM test instead checks whether the first

order condition of an estimator θ̂M,R computed imposing the null hypothesis is statistically different

from zero. Therefore, in the nomenclature of Assumption 4.1(i), θ̂ equals θ̂M for the Wald test and

θ̂M,R for the LM test. Similarly, if θM,R denotes the minimizer of Q over Θ subject to c(θ) = 0, then

θ0 equals θM and θM,R under the Wald and LM test respectively.

We proceed to illustrate the details of the score bootstrap in this setting for both generalized

method of moments (GMM) and maximum likelihood (ML) estimators. We focus on the analytical

expressions An(θ) and s(z, θ) take in those specific settings and provide references for primitive

conditions that ensure Assumptions 4.1, 4.2, 4.3 and 4.4 hold.

4.2.1 ML Estimators

For an ML estimator, the criterion function Q and its sample analogue Qn are of the form:

Qn(θ) ≡ 1

n

n∑
i=1

q(Zi, θ) Q(θ) ≡ E[q(Zi, θ)] , (14)

where q : Z × Θ → R is the log-likelihood. If q is twice differentiable in θ, then we may define

the Hessian Hn(θ) ≡ n−1
∑

i∇2q(Zi, θ). For notational convenience, it is also helpful to denote the

gradient of the function c evaluated at θ by C(θ) ≡ ∇c(θ).

Example 4.1. (Wald) The relevant Wald statistic is the studentized quadratic form of
√
nc(θ̂M),

which under both the null and alternative hypothesis satisfies the asymptotic expansion:

√
n(c(θ̂M)− c(θM)) = −C(θM)H−1

n (θM)
1√
n

n∑
i=1

∇q(Zi, θM) + op(1) . (15)

Therefore, the Wald statistic fits the formulation in (9) with An(θ) = −C(θ)H−1
n (θ) and s(Zi, θ) =

∇q(Zi, θ). Under the alternative hypothesis, Gn diverges to infinity since c(θM) 6= 0. Refer to

Section 3.2 in Newey and McFadden (1994) for a formal justification of these arguments.
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Example 4.2. (LM) In this setting, the LM statistic is the normalized quadratic form of:

C(θ̂M,R)H−1
n (θ̂M,R)

1√
n

n∑
i=1

∇q(Zi, θ̂M,R) . (16)

Moreover, under conditions stated in Chapter 12.6.2 in Wooldridge (2002), we additionally have:

C(θ̂M,R)H−1
n (θ̂M,R)

1√
n

n∑
i=1

∇q(Zi, θ̂M,R) = C(θM,R)H−1
n (θM,R)

1√
n

n∑
i=1

∇q(Zi, θM,R) + op(1) , (17)

under the null hypothesis. Thus, the LM statistic also fits the general formulation in (9) with

An(θ) = C(θ)H−1
n (θ) and score s(z, θ) = ∇q(z, θ). Under the alternative, Gn

p→ ∞ provided θM,R

is not a local minimizer of Q, C(θM,R)E[∇2q(Zi, θM,R)] is full rank and Assumption 4.1(ii) holds.

4.2.2 GMM Estimators

In the context of GMM estimation, the criterion function Q and its sample analogue Qn are:

Qn(θ) ≡ [
1

n

n∑
i=1

q(Zi, θ)
′]Ωn[

1

n

n∑
i=1

q(Zi, θ)] Q(θ) ≡ E[q(Zi, θ)
′]ΩE[q(Zi, θ)] , (18)

where q : Z×Θ→ Rk is a known function and Ωn, Ω are positive definite matrices such that Ωn
p→

Ω. Assuming q is differentiable in θ, let Dn(θ) ≡ n−1
∑

i∇q(Zi, θ) and Bn(θ) ≡ Dn(θ)′ΩnDn(θ). As

in the discussion of ML estimators, we also denote C(θ) ≡ ∇c(θ).

Example 4.3. (Wald) The Wald statistic for the hypothesis in (13) is given by the studentized

quadratic form of
√
nc(θ̂M). In the present context we therefore obtain an expansion of the form:

√
n(c(θ̂M)− c(θM)) = −C(θM)B−1

n (θM)Dn(θM)′Ωn
1√
n

n∑
i=1

q(Zi, θM) + op(1) , (19)

which implies An(θ) = −C(θ)B−1
n (θ)Dn(θ)′Ωn and s(z, θ) = q(z, θ) and Assumption 4.2(i) is satis-

fied provided E[q(Zi, θM)] = 0.5 Primitive conditions under which Assumptions 4.1-4.4 hold in this

context can be found in Section 3.3 of Newey and McFadden (1994).

Example 4.4. (LM) In this setting, the LM test statistic is the studentized quadratic form of:

C(θ̂M,R)B−1
n (θ̂M,R)Dn(θ̂M,R)′Ωn

1√
n

n∑
i=1

q(Zi, θ̂M,R) , (20)

which, as shown in Section 9.1 of Newey and McFadden (1994), is asymptotically equivalent to:

C(θM,R)B−1
n (θM,R)Dn(θM,R)′Ωn

1√
n

n∑
i=1

q(Zi, θM,R) (21)

under the null hypothesis. Hence, An(θ) = C(θ)B−1
n (θ)Dn(θ)′Ωn and s(z, θ) = q(z, θ).

5Notice this is trivially satisfied in a just identified system. The extension to overidentified models in which

E[q(Zi, θM )] 6= 0 but E[∇q(Zi, θM )′]ΩE[q(Zi, θM )] = 0 can be accomplished by letting s(z, θ) depend on n and

setting sn(z, θ) = Dn(θ)′Ωng(z, θ). Though straightforward to establish, we do not pursue such an extension.
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4.3 Moment Restrictions

An additional application of the bootstrap procedure we consider is for testing the hypothesis:

H0 : E[m(Zi, θM)] = 0 H1 : E[m(Zi, θM)] 6= 0 , (22)

where m : Z × Θ → Rl is a known function and θM is the minimizer of some unknown non-

stochastic Q : Θ → R. Such restrictions arise, for example, in tests of proper model specification

and hypotheses regarding average marginal effects in nonlinear models. As in Section 4.2, the

specific nature of the bootstrap statistic is dependent on whether Q is as in (14) (ML) or as in (18)

(GMM). For brevity, we focus on the former, though the extension to GMM can be readily derived

following manipulations analogous to those in Example 4.3.

The Wald test statistic for the hypothesis in (22) is based on the studentized plug-in estimator:

1√
n

n∑
i=1

m(Zi, θ̂M) , (23)

where θ̂M is in this case the unconstrained minimizer of Qn on Θ. Hence, in this setting θ0 equals

θM and θ̂ equals θ̂M in the notation of Assumption 4.1(i). Obtaining an expansion for Tn as in (9)

is straightforward provided m and q are once and twice continuously differentiable in θ respectively.

Defining the gradient Mn(θ) ≡ n−1
∑

i∇m(Zi, θ) and Hessian Hn(θ) ≡ n−1
∑

i∇2q(Zi, θ), standard

arguments imply that under the null hypothesis:

1√
n

n∑
i=1

m(Zi, θ̂M) =
1√
n

n∑
i=1

m(Zi, θM)−Mn(θM)H−1
n (θM)

1√
n

∑
i=1

∇q(Zi, θM) + op(1) ; (24)

see Newey (1985a) for primitive conditions for (24). Thus, in this setting s(z, θ) and An(θ) are:

s(z, θ) =

 m(z, θ)

∇q(z, θ)

 An(θ) =

[
I

... −Mn(θ)H−1
n (θ)

]
. (25)

Moreover, if θM is an interior point of Θ, then E[∇q(Zi, θM)] = 0 because θM minimizes Q on Θ.

Therefore, Gn
p→∞ under the alternative hypothesis due to E[m(Zi, θM)] 6= 0.

4.3.1 ML Specification Tests

A prominent application of hypotheses as in (22) is in model specification testing. In particular,

this setting encompasses moment based specification tests (“m-tests”) for maximum likelihood

models, as considered in White (1982, 1994), Newey (1985b) and Tauchen (1985).6 Computations

6A bootstrap construction for the Information Matrix Equality test was also developed in Horowitz (1994).
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are significantly simplified for maximum likelihood models by the generalized information matrix

equality, which implies:

E[∇2q(Zi, θM)] = −E[∇q(Zi, θM)∇q(Zi, θM)′] E[∇m(Zi, θM)] = −E[m(Zi, θM)∇q(Zi, θM)′]

For example, as noted in Chesher (1984) and Newey (1985b), computation of the Wald test

statistic for the null hypothesis in (22) can be performed through the auxiliary regression:

1 = m(Zi, θ̂M)′δ +∇q(Zi, θ̂M)′γ + εi . (26)

If R2 is the uncentered R-squared of the regression in (26), then under the generalized information

matrix equality result in (26) the Wald test statistic is asymptotically equivalent to:7

Gn = nR2 . (27)

The calculation of the score bootstrap simplifies in an analogous fashion. Under a uniform law

of large numbers, we obtain that An(θ̂M) as defined in (24) satisfies,

An(θ̂M) =
[
I

... − 1

n

n∑
i=1

m(Zi, θ̂M)∇q(Zi, θ̂M)′×
[ 1

n

n∑
i=1

∇q(Zi, θ̂M)∇q(Zi, θ̂M)′
]−1]

+ op(1) , (28)

under the null hypothesis. As a result, the score bootstrap has a simple interpretation in terms of

the multivariate regression of the moments m(Zi, θ̂M) on the score ∇q(Zi, θ̂M):

m(1)(Zi, θ̂M) = ∇q(Zi, θ̂M)′β1 + ε1,i
... =

...

m(l)(Zi, θ̂M) = ∇q(Zi, θ̂M)′βl + εl,i

, (29)

where m(j)(Zi, θ̂M) is the jth component of m(Zi, θ̂M). Letting ej,i ≡ m(j)(Zi, θ̂M) −∇q(Zi, θ̂M)′β̂j

be the fitted residual of the jth regression and ei = (e1,i, . . . , el,i)
′, we obtain that:

S∗n(θ̂M) =
1√
n

n∑
i=1

eiWi . (30)

Therefore, G∗n is simply the Wald test for the null hypothesis that the mean of eiWi equals zero.

In summary, if the generalized information matrix equality holds, then in testing (22) we may

follow the simple algorithm:

Step 1: Run the regression in (26) and compute the uncentered R-squared to obtain Gn as in (27).

Step 2: Regress {m(Zi, θ̂M)}ni=1 on the scores {∇q(Zi, θ̂M)}ni=1 to generate residual vectors {ei}ni=1.

7See also Chapter 8.2.2 in Cameron and Trivedi (2005) for a summary of these results.
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Step 3: Using random weights {Wi}ni=1 independent of {Yi, Xi}ni=1 with E[Wi] = 0 and E[W 2
i ] = 1,

perturb the original residual vectors {ei}ni=1 to obtain a new set of residual vectors {eiWi}ni=1.

Step 4: Let G∗n be the Wald test statistic for the null that E[eiWi] = 0 calculated using {eiWi}ni=1.

To control size at level α, reject if Gn is larger than the 1−α quantile of G∗n conditional on {Zi}ni=1.

4.4 Clustered Data

Theorem 4.1 and Corollary 4.1 may be applied to clustered data provided all clusters have the same

number of observations. An extension to unbalanced clusters is feasible, essentially requiring an

extension of Theorem 4.1 to independent but not identically distributed observations.

Let Zic denote observation number i in cluster c, J be the total number of observations per

cluster, n be the total number of clusters and Zc = {Z1c, . . . , ZJc}. Following (9), we consider test

statistics of the general form G̃n ≡ T̃ ′nT̃n, where T̃n satisfies:

T̃n = (An(θ0)Σ̃n(θ0)An(θ0)′)−
1
2 S̃n(θ0) + op(1) S̃n(θ) ≡ An(θ)

1√
n

n∑
c=1

1√
J

J∑
i=1

s̃(Zic, θ) , (31)

where An(θ) is again a r ×m matrix, s̃(z, θ) maps each (Zic, θ) into a m × 1 vector and Σ̃n(θ) is

a robust covariance matrix that allows for arbitrary correlation within cluster. The Wald and LM

test statistics, as well as the moment restriction tests previously discussed all extend to this setting

when observations are allowed to be dependent within clusters.

The applicability of Theorem 4.1 and Corollary 4.1 to the present context is immediate once we

notice that we may define s(z, θ), mapping each (Zc, θ) into a m× 1 vector, to be given by:

s(Zc, θ) =
1√
J

J∑
i=1

s̃(Zic, θ) . (32)

The statistics T̃n and S̃n(θ) are then special cases of Tn and Sn(θ) as considered in (9) but with Zc

in place of Zi. Hence, equations (9) and (32) indicate that the relevant bootstrap statistic should

perturb the data at the cluster rather than at the individual observation level. We thus define:

G̃∗n ≡ T̃ ∗′n T̃
∗
n T̃ ∗n ≡ (An(θ̂)Σ̃∗n(θ̂)An(θ̂)′)−

1
2 S̃∗n(θ̂) S̃∗n(θ) ≡ An(θ)

1√
n

n∑
c=1

Wc√
J

J∑
i=1

s̃(Zic, θ)

where Σ̃∗n(θ) is a robust bootstrap covariance matrix for s(Zic, θ)Wc.

Given these definitions, it is readily apparent that G̃∗n, T̃ ∗n and S̃∗n(θ) are themselves special cases

of the bootstrap statistics G∗n, T ∗n and S∗n(θ). The consistency of the proposed score bootstrap then
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follows immediately provided the clusters are i.i.d., the number of clusters tends to infinity and

s(z, θ) as defined in (32) satisfies Assumption 4.1(ii), 4.2(i) and 4.4(ii).

Corollary 4.2. Under Assumptions 4.1, 4.2, 4.3 and 4.4, it follows that under the null hypothesis:

lim
n→∞

P (G̃n ≥ ĉ1−α) = 1− α ,

for any 0 < α < 1. Under the same assumptions, if the alternative hypothesis is instead true, then:

lim
n→∞

P (G̃n ≥ ĉ1−α) = 1 .

5 Higher Order Refinements

We conclude our theoretical discussion of the score bootstrap by returning to the linear model of

Sections 2 and 3 and conducting an analysis of the bootstrap higher order properties in the special

but important case of Wald tests. Specifically, for β̂ the OLS estimate of (1) and an arbitrary

λ ∈ Rm with λ 6= 0, we examine the studentized form of
√
nλ′(β̂−β0) and its bootstrap counterpart:

Tn =

√
nλ′

σ̂
(β̂ − β0) T ∗n =

√
nλ′

σ̂∗
H−1
n

1√
n

n∑
i=1

Xiε
∗
i , (33)

where recall that in the present context Hn = n−1
∑

iXiX
′
i and the perturbed score is given by

Xiε
∗
i = Xi(Yi −X ′iβ̂)Wi. The standard errors in (33) are therefore σ̂2 = λ′H−1

n Σn(β̂)H−1
n λ for the

full sample estimate, and (σ̂∗)2 = λ′H−1
n Σ∗n(β̂)H−1

n λ for the score bootstrap analogue.

We conduct our higher order analysis in two steps. First, we obtain stochastic expansions for

Tn and T ∗n in (33) up to a remainder term of order Op(n
−1) and Op∗(n−1) respectively. Second,

we compute and compare the first three moments of such expansions and provide conditions under

which they agree up to terms of order Op(n
−1). If Edgeworth expansions are valid, then under

appropriate regularity conditions the concordance of the first three moments is necessary and suf-

ficient to ensure a first order refinement over a normal approximation; see for example Hall (1992).

Because the score and wild bootstraps are equivalent to higher order as established in Lemma 3.1,

the conclusions of our analysis are relevant for both bootstrap procedures.

We first define three parameters that play an important role in the higher order analysis:

κ ≡ E[(λ′Xi)
3ε3i ] γ0 ≡ E[(λ′Xi)

2Xiεi] γ1 ≡ E[(λ′Xi)X
′
iXiεi] . (34)

The parameter κ may be interpreted as the third moment of the score, while γ0 and γ1 capture the

possible correlation of the error εi with higher moments of the regressor Xi. If the model is properly
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specified, so that εi is mean independent of Xi, then both γ0 and γ1 equal zero. However, as we

conduct our analysis under Assumption 3.1, which only requires that the regressor and error be

uncorrelated, both γ0 and γ1 may take nonzero values. The parameter κ may of course be nonzero

under both proper specification or misspecification.

Under Assumption 3.1, we establish the following asymptotic expansion for Tn and T ∗n :

Lemma 5.1. Suppose Assumption 3.1 holds, and for λ ∈ Rm define the following random variables:

Ln ≡ λ′{I + ∆n}
1√
nσ

n∑
i=1

Xiεi −
1

2σ3
√
n

n∑
i=1

(λ′Xi)εi{(σ̂2
R − σ2)− 2

n

n∑
i=1

γ′0Xiεi} (35)

L∗n ≡ λ′H−1
n

1√
n

∑
i=1

Xiε
∗
i {

1

σ̂
− 1

2σ̂3
((σ̂∗)2 − σ̂2)} (36)

where ∆n ≡ I − Hn, Σ(β0) = E[XiX
′
iε

2
i ], σ̂

2
R = λ′Σn(β0)λ + 2λ′∆nΣ(β0)λ and σ2 = λ′Σ(β0)λ. It

then follows that, Tn = Ln +Op(n
−1) and T ∗n = L∗n +Op∗(n−1) almost surely.

Recall that in Assumption 3.1(i) the covariance E[XiX
′
i] was normalized to equal the identity

matrix. Therefore ∆n ≡ I − Hn is the estimation error in the Hessian and the first term in (35)

captures the contribution to Tn of not knowing the true value of E[XiX
′
i]. Similarly, the contribution

of having to estimate the variance is divided into two parts: (i) 2n−1
∑

i γ
′
0Xiεi which reflects use of

β̂ rather than β0 in the sample variance calculations and (ii) σ̂2
R−σ2 which captures the randomness

that would be present in estimating σ2 if β0 were known.

Under proper specification, γ0 equals zero and as a result the contribution of employing β̂

rather than the true parameter β0 in estimating the variance is of smaller order than when the

model is misspecified. Since under the bootstrap distribution mean independence holds, there is

no term analogous to 2n−1
∑

i γ
′
0Xiεi in the bootstrap expansion (36). Finally, we also note that

the expansion under the bootstrap distribution lacks a term analogous to ∆n due to there being no

randomness present in the Hessian.

Our discussion thus far suggests a discordance between the moments of Ln and L∗n may emerge

when mean independence is violated. This is indeed the case, as we establish in Lemma 5.2.

Lemma 5.2. Suppose Assumption 3.1 holds. Then E[(L2
n)] = E∗[(L∗n)2]+Op(n

−1) and in addition:

E[Ln] = − κ

2σ3
√
n
− γ1

σ
√
n
− 2λ′Σ(β0)γ0

σ3
√
n

E∗[Ln] = −E[W 3
i ]κ̂

2σ̂3
√
n

E[(Ln)3] = − 7κ

2σ3
√
n
− 3γ1

σ
√
n
− 6λ′Σ(β0)γ0

σ3
√
n

+O(n−1) E∗[(L∗n)3] = −7E[W 3
i ]κ̂

2σ̂3
√
n

+Op(n
−1) ,

where Σ(β0) ≡ E[XiX
′
iε

2
i ], γ0, κ1 and κ2 are as defined in (34) and κ̂ ≡ n−1

∑
i(λ
′H−1

n Xi)
3e3
i .
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Observe first that unless the scores are symmetric (κ = 0), the score and wild bootstraps both fail

to correct the first term in the bias and skewness if E[W 3
i ] 6= 1. This property has already been noted

in Liu (1988) who advocates imposing E[W 3
i ] = 1 for precisely this reason. However, even with this

restriction, two additional terms in the bias and skewness of Ln remain. These terms capture (i) the

correlation between Hessian estimation error and the score, and (ii) the additional randomness of

employing β̂ rather than β0 in estimating σ2. Both these expressions are of smaller order under mean

independence, but may be present otherwise. Because the score and wild bootstraps impose mean

independence in the bootstrap distribution, both bootstraps fail to mimic these terms. However, it

is worth noting that if misspecification is local, then the wild bootstrap still provides a refinement

over the normal approximation.8 This suggests the wild bootstrap is likely to outperform a normal

approximation in datasets where misspecification is not too severe.

We conclude that under proper model specification both the score and wild bootstrap provide

a refinement over the normal approximation provided the restriction E[W 3
i ] = 1 is imposed on the

perturbation weights. However, if Xi and εi are only uncorrelated instead of mean independent,

then the availability of a refinement depends on whether the error is additionally uncorrelated with

the third moments of the regressor (i.e. whether the Hessian is correlated with the score). To the

best of our knowledge, this observation is novel to the literature on the wild bootstrap, which has

primarily focused on the case of fixed regressors (Wu (1986), Liu (1988)). A notable exception is

Mammen (1993), who allows for misspecification but is primarily concerned with the consistency

of the bootstrap under many regressors asymptotics.

6 Simulation Evidence

To assess the small sample performance of the score bootstrap we conduct a series of Monte Carlo

experiments examining the performance of bootstrap Wald and LM tests of hypotheses regarding

the parameters of a linear model estimated by OLS and a nonlinear probit model estimated by

maximum likelihood. We also examine the performance of a test for proper specification in the

probit model. Because small sample issues often arise in settings with dependent data we work

with hierarchical data generating processes (DGPs) exhibiting dependence of micro-units i within

independent clusters c. We consider balanced panels with 20 observations per cluster and sampling

8Misspecification is local if γ0 and γ1 are allowed to depend on n and satisfy γ0 = O(n−
1
2 ) and γ1 = O(n−

1
2 ).

Lemma 5.2 then implies E[Ln] = E∗[L∗n] +Op(n−1) and E[(Ln)2] = E∗[(L∗n)2] = Op(n−1) provided E[W 3
i ] = 1.
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designs ranging from 5 to 200 independent clusters.9

6.1 Designs

As pointed out by Chesher (1995), symmetric Monte Carlo designs are likely to yield an overly

optimistic assessment of the ability of testing procedures to control size. Moreover, our theoret-

ical analysis suggests that misspecification may impede the performance of the wild and score

bootstraps. For this reason we study the performance of the different bootstrap procedures in con-

ducting inference on a linear model under four different designs meant to reflect realistic features

of microeconomic datasets. Throughout, the linear model we examine is given by:

Yic = Xic +Dc + ηc + εic , (37)

where the regressors (Xic, Dc) and cluster level error (ηc) are generated according to:

Xic = Xc + ξic Dc = Xcωc ηc = (1 +Dc)υc . (38)

The regressor of interest is Dc, which varies only at the cluster level. Note that the cluster level

random effect ηc exhibits heteroscedasticity with respect to Dc. The designs are:

Design I: (baseline) We let (Xc, ξic, ωc, εic) be normally distributed with identity covariance ma-

trix, and υc independent of other variables with a t-distribution with six degrees of freedom.

Design II: (skewed regressor) Design I is modified to generate ωc according to a mixture between

a N(0, 1) with probability 0.9 and a N(2, 9) with probability 0.1 as in Horowitz (1997). This yields

a regressor with occasional “outliers” and substantial skew and kurtosis in its marginal distribution.

Design III: (misspecification) The model estimated is still (37), but the DGP is modified to:

Yic = Xic +Dc + .1D2
c + ηc + εic , (39)

and other features remain as in Design I. Hence, the quadratic term in the regressor of interest

is ignored in estimation which yields an asymmetric reduced form regression error. Note that

E[D3
c ] = E[XicD

2
c ] = 0 which ensures the population regression coefficient on Dc is still one.

Design IV: (skew and misspecification) Design III is modified so that ωc is as in Design II.

Our baseline design for the linear model exhibits fat tails in the random cluster effect but no

skew in the score. Design II introduces skewness into the experiment by modifying the regressor

9In unreported results we found our results to be insensitive to variation in the number of observations per cluster.
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(and hence the reduced form error) to contain outliers. Finally, in Designs III and IV, we explore

the effects of misspecification, which may be important in lieu of Lemma 5.2.

To study the performance of the score bootstrap in a nonlinear model we consider probit esti-

mation of the following DGP:

Yic = 1{Xic +Dc + ηc + εic ≥ 0} Xic = Xc + ξic Dc = Xcωc . (40)

This is essentially a latent variable representation of the model in (37) without heteroscedasticity

in the group error ηc. We consider the following two designs for our probit analysis:

Design V: (baseline probit) In (40), we let (Xic, ξic, ωc) ∼ N(0, I3) and (ηc, εic) ∼ N(0, I2/2).10

Design VI: (skew probit) We modify Design V by generating ωc according to a mixture distri-

bution as in Design III, so that the regressor of interest is heavily skewed.

Finally, we illustrate the methods of Section 4.3 by testing the following moment restrictions

implied by the probit model:

E[eicD
2
c ] = E[eicD

3
c ] = E[eicX

2
ic] = E[eicX

3
ic] = E[eicXicDc] = 0 (41)

where eic = [Yic − pic]φ(Xic + Dc)/[pic(1 − pic)] is a generalized residual and pic = Φ(Xic + Dc) is

the conditional probability that Yic equals one given Dc and Xic.
11 A test of these five moment

conditions examines the probit model for unmodeled nonlinearities in the response function.

6.2 Results

Table 1 provides empirical false rejection rates from 10,000 Monte Carlo repetitions of Wald and LM

tests of the null that the population least squares coefficient on Dc in (37) is one. All tests have a

nominal size of 5% and are studentized using a recentered variance matrix estimator.12 We consider

implementations of the score bootstrap using both Rademacher weights and the skew correcting

weights suggested by Mammen (1993).13 For comparison with the various score bootstraps we also

compute the empirical rejection rates of Wald and LM tests based upon analytical clustered standard

errors, the conventional wild bootstrap, and the pairs-based block bootstrap. All bootstrap tests

10Though the DGP contains a cluster level random effect, the marginal model for the outcome given covariates is

a standard probit ensuring that conventional maximum likelihood estimation is consistent.
11Note that the ML probit scores are of the form eic[1, Xic, Dc].
12We also make a finite sample degrees of freedom correction of n/(n− 1) to all variance estimators.
13Rademacher weights impose E[W 4

i ] = 1 while Mammen’s weights impose E[W 3
i ] = 1.
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Table 1: Empirical Rejection Rates, OLS (Properly Specified)

Normal Regressor Mixture Regressor

Wald Tests n = 5 n = 10 n = 20 n = 50 n = 200 n = 5 n = 10 n = 20 n = 50 n = 200

Analytical 0.442 0.328 0.240 0.153 0.083 0.467 0.398 0.317 0.240 0.140

Pairs 0.020 0.088 0.079 0.054 0.040 0.030 0.134 0.110 0.080 0.052

Wild Rademacher 0.243 0.185 0.128 0.078 0.052 0.273 0.250 0.193 0.127 0.075

Wild Mammen 0.252 0.187 0.146 0.105 0.060 0.282 0.240 0.187 0.138 0.094

Score Rademacher 0.263 0.194 0.142 0.091 0.048 0.270 0.223 0.188 0.142 0.091

Score Mammen 0.288 0.220 0.162 0.104 0.053 0.292 0.245 0.206 0.156 0.096

Normal Regressor Mixture Regressor

LM Tests n = 5 n = 10 n = 20 n = 50 n = 200 n = 5 n = 10 n = 20 n = 50 n = 200

Analytical 0.001 0.023 0.030 0.037 0.038 0.001 0.021 0.024 0.026 0.030

Pairs 0.051 0.061 0.051 0.043 0.039 0.054 0.057 0.047 0.045 0.035

Wild Rademacher 0.103 0.065 0.039 0.039 0.046 0.112 0.067 0.036 0.031 0.038

Wild Mammen 0.165 0.103 0.068 0.057 0.051 0.177 0.102 0.065 0.049 0.046

Score Rademacher 0.105 0.077 0.062 0.053 0.048 0.121 0.088 0.060 0.052 0.052

Score Mammen 0.084 0.034 0.026 0.026 0.033 0.097 0.036 0.024 0.017 0.026

were computed using 200 bootstrap repetitions. Stata code for our Monte Carlo experiments is

available online.

The standard clustered Wald test severely over-rejects in samples with few clusters, with perfor-

mance further degrading when the regressors are generated according to a mixture distribution. A

conventional pairs bootstrap of the Wald test yields dramatic improvements in size control though

its performance degrades somewhat when the regressor of interest exhibits outliers. Wild boot-

strapping the Wald test yields improvements over analytical methods but under performs relative

to pairs regardless of whether Mammen or Rademacher weights are used. As suggested by our

theoretical results, the score bootstrap yields results roughly in line with those of the corresponding

Wild bootstrap.

In contrast to the Wald tests, the clustered LM tests appear to perform well across a range

of sample sizes and regardless of the distribution of the regressors. While the analytical LM test

yields mild underrejection with few clusters, its Wild bootstrapped analogue actually yields slight

over-rejection.14 The score bootstrapped LM tests perform as well as or better than the wild

14We note that the wild bootstrapped LM test is similar to the Wild bootstrap procedure of Cameron, Gelbach,
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Table 2: Empirical Rejection Rates, OLS (Misspecified)

Normal Regressor Mixture Regressor

Wald Tests n = 5 n = 10 n = 20 n = 50 n = 200 n = 5 n = 10 n = 20 n = 50 n = 200

Analytical 0.448 0.333 0.248 0.162 0.086 0.473 0.411 0.331 0.262 0.157

Pairs 0.022 0.091 0.084 0.059 0.042 0.033 0.135 0.110 0.073 0.042

Wild Rademacher 0.249 0.192 0.135 0.078 0.051 0.278 0.257 0.198 0.135 0.068

Wild Mammen 0.254 0.195 0.150 0.105 0.060 0.286 0.247 0.191 0.146 0.090

Score Rademacher 0.253 0.184 0.135 0.087 0.045 0.259 0.214 0.185 0.144 0.101

Score Mammen 0.277 0.210 0.154 0.099 0.047 0.281 0.234 0.200 0.156 0.102

Normal Regressor Mixture Regressor

LM Tests n = 5 n = 10 n = 20 n = 50 n = 200 n = 5 n = 10 n = 20 n = 50 n = 200

Analytical 0.001 0.022 0.032 0.037 0.040 0.001 0.021 0.026 0.024 0.026

Pairs 0.051 0.062 0.053 0.045 0.040 0.055 0.062 0.049 0.039 0.031

Wild Rademacher 0.106 0.062 0.042 0.041 0.044 0.116 0.062 0.033 0.032 0.037

Wild Mammen 0.167 0.103 0.072 0.059 0.048 0.181 0.099 0.063 0.052 0.042

Score Rademacher 0.110 0.082 0.061 0.057 0.051 0.118 0.090 0.061 0.055 0.051

Score Mammen 0.094 0.033 0.026 0.027 0.034 0.094 0.038 0.025 0.021 0.024

bootstrapped LM tests under both regressor designs. They also perform comparably to the pairs

bootstrapped Wald tests. However the pairs bootstrapped LM tests yield the best performance of

the group, with coverage rates closest to nominal levels across a range of sample sizes.

Table 2 examines the performance of Wald and LM tests when the model is misspecified. Again

the performance of the analytical clustered Wald test appears to be very poor in small samples or

when the regressor of interest exhibits outliers. Correcting the critical values of the Wald test with

the pairs bootstrap yields much improved though still sometimes unsatisfactory performance. As

before, the Wild bootstrap improves on the performance of analytical Wald tests but still overrejects

substantially. Score bootstrapping the Wald statistic yields results mimicking those of the Wild

bootstrap.

With misspecification and an asymmetric regressor, the clustered LM test underrejects substan-

tially in small samples. Wild or score bootstrapping the LM test leads to slight overrejection in

small samples. The score bootstrap with Rademacher weights seems to perform particularly well.

and Miller (2008) who impose the null β̂ = β0 when generating the bootstrap distribution of outcomes as in (3). In

results not shown we found the results from this procedure (which is akin to comparing the bootstrap critical values

of an LM statistic to a full sample Wald) to be quite similar to those found in wild or score bootstrap LM tests.
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Table 3: Empirical Rejection Rates, Probit (Properly Specified)

Normal Regressor Mixture Regressor

Wald Tests n = 5 n = 10 n = 20 n = 50 n = 200 n = 5 n = 10 n = 20 n = 50 n = 200

Analytical 0.319 0.192 0.132 0.094 0.063 0.320 0.210 0.137 0.092 0.063

Pairs 0.032 0.065 0.073 0.064 0.053 0.037 0.062 0.075 0.064 0.052

Score Rademacher 0.272 0.153 0.097 0.064 0.037 0.283 0.174 0.102 0.062 0.039

Score Mammen 0.303 0.179 0.110 0.067 0.038 0.316 0.204 0.115 0.063 0.038

Normal Regressor Mixture Regressor

LM Tests n = 5 n = 10 n = 20 n = 50 n = 200 n = 5 n = 10 n = 20 n = 50 n = 200

Analytical 0.004 0.070 0.079 0.080 0.060 0.004 0.080 0.089 0.079 0.062

Pairs15 n.a. 0.140 0.125 0.096 0.065 n.a. 0.144 0.138 0.091 0.059

Score Rademacher 0.101 0.124 0.099 0.085 0.060 0.111 0.142 0.108 0.085 0.064

Score Mammen 0.079 0.054 0.077 0.081 0.063 0.089 0.063 0.085 0.082 0.061

Table 3 examines the performance of Wald and LM tests in the probit model. Here both

Wald and LM tests tend to overreject when asymptotic critical values are used. Use of the pairs

bootstrap corrects for this overrejection though in small samples we were sometimes unable to

compute the bootstrap distribution.16 Score bootstrapping the Wald test yields improvements over

analytical clustered standard errors but substantial overrejection remains in small samples. Score

bootstrapping the LM test with Mammen weights, on the other hand, yields size control roughly

on par with the pairs bootstrap.

Table 4: Empirical Rejection Rates, m-Test (Probit)

Normal Regressor Mixture Regressor

Wald Tests n = 5 n = 10 n = 20 n = 50 n = 200 n = 5 n = 10 n = 20 n = 50 n = 200

Analytical 0.766 0.593 0.341 0.190 0.130 0.776 0.584 0.348 0.208 0.131

Score Rademacher 0.067 0.135 0.174 0.159 0.138 0.068 0.129 0.180 0.177 0.142

Score Mammen 0.049 0.034 0.092 0.134 0.141 0.046 0.032 0.093 0.147 0.143

Finally, Table 4 examines the performance of tests for proper specification of the probit model

via the restrictions in (41). Because the information matrix equality holds under both DGPs

we use the outer product version of the test described in 4.3.1 generalized to allow for clustering

15We were unable to compute the LM statistic in the majority of pairs draws with 5 clusters.
16We discarded bootstrap draws for which we were unable to compute a maximum likelihood estimate.
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and a recentered variance matrix estimator. We see that the analytical m-test procedure overrejects

substantially in small samples and continues to exhibit poor control over size even with 200 clusters.

Surprisingly the score bootstrapped versions of the test work well in small samples, but appear to

degrade slightly as the number of clusters increase. With 200 clusters, the analytical and bootstrap

approaches appear to work equally well.

7 Conclusion

Score bootstrap tests provide a computational advantage over conventional wild and pairs boot-

straps and may easily be applied to estimators that lack conventional residuals. Both our theoretical

and Monte Carlo results suggest the wild bootstrap possesses no inferential advantage over the score

bootstrap despite the potentially significant increase in computational cost. And though our theo-

retical analysis indicates the performance of the score bootstrap may be sensitive to misspecification,

we found little effect of introducing mild specification errors into our Monte Carlo designs.

Like Moreira, Porter, and Suarez (2009) we find that bootstrapping Lagrange Multiplier type

tests yields improved small sample size control in a number of difficult testing environments of

substantial applied interest. Economists have typically shied away from bootstrap LM tests perhaps

due to the difficulty of constructing confidence intervals by test inversion. The score bootstrap

methods developed here substantially reduce the cost of such an exercise and may enable researchers

to conduct inference in a wider range of small sample environments than previously contemplated.

An interesting extension would be to consider a modification of the score bootstrap which addi-

tionally perturbs the Hessian with random weights. This may provide a refinement in models where

the Hessian and score are correlated either due to misspecification or nonlinearity. However, in non-

linear models such a perturbation would need to account for the influence of parameter uncertainty

in the Hessian which, if dealt with via an additional linearization, would require computation of

third derivatives. This would likely prove to be overly burdensome in all but a few special cases.
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Appendix

Proof of Lemma 3.1: First notice that by Markov’s inequality, E[W 2
i ] = 1 and the i.i.d. assumption

P ∗(‖ 1√
n

n∑
i=1

Xiε
∗
i ‖ > C) ≤ 1

nC2
E∗[(

n∑
i=1

Xiε
∗
i )
′(

n∑
i=1

Xiε
∗
i )] =

1

nC2

n∑
i=1

X ′iXie
2
i . (42)

Since n−1
∑

iX
′
iXie

2
i
a.s.→ E[X ′iXiε

2
i ] <∞ and Hn

a.s.→ I, we obtain from (42) that almost surely:

‖
√
n(β̂∗ − β̂)‖ ≤ ‖H−1

n ‖F × ‖
1√
n

n∑
i=1

Xiε
∗
i ‖ = Op∗(1) , (43)

where ‖ · ‖F denotes the Frobenius norm. Next observe that for ‖ · ‖o the operator norm, we have:

‖(H−1
n Σ∗n(β̂∗)H−1

n )−1 − (H−1
n Σ∗n(β̂)H−1

n )−1‖o

≤ ‖(H−1
n Σ∗n(β̂)H−1

n )−1‖o × ‖H−1
n (Σ∗n(β̂)− Σ∗n(β̂∗))H−1

n ‖o × ‖(H−1
n Σ∗n(β̂∗)H−1

n )−1‖o . (44)

Let X
(k)
i denote the kth element of the vector Xi. Arguing as in (42), it is straightforward to show that

n−
1
2
∑

iX
(k)
i X

(l)
i X

(s)
i ε∗i = Op∗(1) almost surely for any indices k, l, s. Therefore, since ‖ · ‖o ≤ ‖ · ‖F we

conclude from (43) and direct calculation that we must have:

‖Σ∗n(β̂)− Σ∗n(β̂∗)‖o ≤ ‖
1

n

n∑
i=1

XiX
′
i{(Y ∗i −X ′iβ̂)2 − (Y ∗i −X ′iβ̂∗)2}‖F

= ‖ 1

n

n∑
i=1

XiX
′
i{2ε∗i (X ′i(β̂ − β̂∗)) + (X ′i(β̂ − β̂∗))2}‖F = Op∗(n−1) a.s. (45)

Moreover, since E[(ε∗i )
k] = E[W k

i ]eki , we can also obtain from the i.i.d. assumption that:
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n

n∑
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XiX
′
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n
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n

n∑
i=1

(X
(l)
i X

(s)
i )2{(E[W 4

i ]− 1)e4
i } = oa.s.(1) . (46)

Therefore, since n−1
∑n

i=1XiX
′
ie

2
i
a.s.→ E[XiX

′
iε

2
i ] and H−1

n
a.s.→ I, results (45) and (46) establish:

‖H−1
n Σ∗n(β̂)H−1

n − E[XiX
′
iε

2
i ]‖F = op∗(1) ‖H−1

n Σ∗n(β̂∗)H−1
n − E[XiX

′
iε

2
i ]‖F = op∗(1) (47)

almost surely. Next, for any normal matrix A, let ξ(A) denote its smallest eigenvalue. Since |ξ(A)−ξ(B)| ≤

‖A−B‖F by Corollary III.2.6 in Bhatia (1997), it then follows from (47) that:

ξ(H−1
n Σ∗n(β̂)H−1

n ) = ξ(E[XiX
′
iε

2
i ]) + op∗(1) ξ(H−1

n Σ∗n(β̂∗)H−1
n ) = ξ(E[XiX

′
iε

2
i ]) + op∗(1) (48)

almost surely. However, since for any normal matrix A, we have ‖A−1‖o = ξ(A), result (48) and Assumption

3.1(i) imply ‖H−1
n Σ∗n(β̂∗)H−1

n ‖o = Op∗(1) and ‖H−1
n Σ∗n(β̂)H−1

n ‖o = Op∗(1) almost surely. The claim of the

Lemma then follows by combining results (43), (44) and (45).
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Proof of Theorem 4.1: Let Σ(θ) = E[s(Zi, θ)s(Zi, θ)
′]. As argued in (66), the matrix s(z, θ)s(z, θ)′ has

an integrable envelope. Hence, since s(z, θ)s(z, θ)′ is continuous in θ for all z by Assumption 4.4(ii), the

dominated convergence theorem implies Σ(θ) is continuous in θ. Therefore, by Lemma 7.1 and Assumption

4.1(i), we obtain Σ∗n(θ̂) = Σ(θ0) + op(1). In addition, An(θ̂) = A(θ0) + op(1) by Assumption 4.3(ii) and

hence Assumption 4.1(ii) and supθ∈Θ ‖n−
1
2
∑

i s(Zi, θ)Wi‖ = Op(1) by Lemma 7.2 imply:

(An(θ̂)Σ∗n(θ̂)An(θ̂)′)−
1
2An(θ̂)

1√
n

n∑
i=1

s(Zi, θ̂)Wi

= (A(θ0)Σ(θ0)A(θ0)′)−
1
2A(θ0)

1√
n

n∑
i=1

s(Zi, θ̂)Wi + op(1)

= (A(θ0)Σ(θ0)A(θ0)′)−
1
2A(θ0)

1√
n

n∑
i=1

s(Zi, θ0)Wi + op(1) , (49)

where the second equality follows by Assumption 4.1(i) and Lemma 7.2. Let BLc be the set of Lipschitz

real valued functions whose Lipschitz constant and level are less than c. For two random variables Y , V :

‖Y − V ‖BL1 ≡ sup
f∈BL1

|E[f(Y )]− E[f(V )]| , (50)

metrizes weak convergence, see for example Theorem 1.12.4 in van der Vaart and Wellner (1996). Define:

T̄ ∗n ≡ (A(θ0)Σ(θ0)A(θ0)′)−
1
2A(θ0)

1√
n

n∑
i=1

s(Zi, θ0)Wi . (51)

Using that all f ∈ BL1 are bounded in level and Lipschitz constant by one, we obtain for any η > 0:

sup
f∈BL1

|E[f(T̄ ∗n)|{Zi}ni=1]− E[f(T ∗n)|{Zi}ni=1]| ≤ ηP (|T̄ ∗n − T ∗n | ≤ η|{Zi}ni=1) + 2P (|T̄ ∗n − T ∗n | > η|{Zi}ni=1) .

(52)

However, by the law of iterated expectations and (49), we have that P (|T̄ ∗n − T ∗n | > η|{Zi}ni=1) converges

to zero in mean, and hence in probability. As a result, since η is arbitrary, result (52) in fact implies:

sup
f∈BL1

|E[f(T̄ ∗n)|{Zi}ni=1]− E[f(T ∗n)|{Zi}ni=1]| = op(1) . (53)

Let T ∗∞ ∼ N(0, I). Since ‖ · ‖BL1 metrizes weak convergence, Assumptions 4.3(i) and 4.4(i) together with

Lemma 2.9.5 in van der Vaart and Wellner (1996) in turn let us conclude that:

sup
f∈BL1

|E[f(T̄ ∗n)|{Zi}ni=1]− E[f(T ∗∞)]| = op(1) . (54)

For any M > 0, define the map gM : Rr → R to be given by gM (a) = min{a′a,M} and notice that

for any a, b ∈ Rr we have |gM (a) − gM (b)| ≤ 2
√
M‖a − b‖ and gM (a) ≤ M so that for M ≥ 4 we have

gM ∈ BLM . As a result, for any f ∈ BL1, f ◦ gM ∈ BLM and M−1f ◦ gM ∈ BL1, which implies:

sup
f∈BL1

|E[f(gM (T ∗n))|{Zi}ni=1]− E[f(gM (T ∗∞))]| ≤M sup
f∈BL1

|E[f(T ∗n)|{Zi}ni=1]− E[f(T ∗∞)]| = op(1) , (55)
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where the final result follows by (53) and (54). Since G∗n = T ∗′n T
∗
n and every f ∈ BL1 is bounded by one,

sup
f∈BL1

|E[f(G∗n)− f(gM (T ∗n))|{Zi}ni=1]| ≤ 2P (T ∗′n T
∗
n > M |{Zi}ni=1) . (56)

By (49) and the continuous mapping theorem, T ∗′n T
∗
n

L→ X 2
r unconditionally and hence is asymptotically

tight. For an arbitrary η > 0 it then follows by Markov’s inequality that for M sufficiently large:

lim sup
n→∞

P (2P (T ∗′n T
∗
n > M |{Zi}ni=1) > η) ≤ lim sup

n→∞

2

η
P (T ∗′n T

∗
n > M) < η . (57)

Similarly, let G∗∞ ∼ X 2
r and notice that by selecting M appropriately large we may also obtain:

sup
f∈BL1

|E[f(G∗∞)− f(gM (T ∗∞))]| ≤ 2P (T ∗′∞T
∗
∞ > M) < η . (58)

Since η is arbitrary, results (55), (56), (57) and (58) in turn allow us to conclude that:

sup
f∈BL1

|E[f(G∗n)|{Zi}ni=1]− E[f(G∗∞)]| = op(1) , (59)

which establishes the weak convergence of the distribution of G∗n conditional on {Zi}ni=1 to that of G∗∞ in

probability. Letting F be the cdf of G∗∞, we obtain by the Portmanteau theorem, G∗∞ having a continuous

distribution, result (59) and Lemma 7.3 that for any c ∈ R, F ∗n(c) = F (c) + op(1) and Fn(c) = F (c) + o(1).

To establish the Theorem observe that the convergence is in fact uniform in c ∈ R by Lemma 2.11 in

van der Vaart (1999).

Proof of Corollary 4.1: Let F denote the cdf of a X 2
r random variable and c1−α be its 1 − α

quantile. As argued following (59), supc |F ∗n(c) − F (c)| = op(1), and hence by Lemma 7.4 it follows that

ĉ1−α = c1−α + op(1) provided 0 < α < 1. The first claim of the Corollary then follows by Lemma 7.3 and

the continuous mapping theorem.

For the second claim of the Corollary, observe that the bootstrap statistic S∗n(θ̂) remains properly

centered. In fact, (59) was established without appealing to Assumption 4.2(i). Therefore, ĉ1−α = c1−α +

op(1) under the alternative hypothesis as well. However, under the alternative hypothesis Gn
p→ ∞ by

Lemma 7.3 and therefore the second claim of the Corollary follows.

Proof of Corollary 4.2: Given the definitions, this is a special case of Corollary 4.1.

Proof of Lemma 5.1: We first establish the expansion for the full sample statistic. Note that since

‖I −Hn‖ = op(1), we obtain that with probability tending to one ‖I −Hn‖ < 1 and hence we expand:

H−1
n

1√
n

n∑
i=1

Xiεi = {I + ∆n +
∑
k≥2

∆k
n}

1√
n

n∑
i=1

Xiεi (60)

For a symmetric matrix S, let ξ(S) denote its largest eigenvalue. Since E[XiX
′
i] = I and E[‖Xi‖2] < ∞,

‖∆n‖F = Op(n
− 1

2 ). Therefore, ξ(∆2
n) ≤ trace{∆2

n} = Op(n
−1) and ξ(Sk) = ξk(S) imply:
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×Op(1) = Op(n

−1) . (61)
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By standard arguments, Assumption 3.1(i)-(iii) imply Σn(β̂) = Σn(β0) +Op(n
− 1

2 ) = Σ(β0) +Op(n
− 1

2 ). As

the calculations in (60), (61) show H−1
n = I + ∆n +Op(n

−1), and ‖∆n‖F = Op(n
− 1

2 ) we obtain:

σ̂2 = λ′H−1
n Σn(β̂)H−1

n λ = λ′{I + ∆n}Σn(β̂){I + ∆n}λ+Op(n
−1) = λ′Σn(β̂)λ+ 2λ′∆nΣ(β0)λ+Op(n

−1) .

(62)

In turn, since H−1
n = I +Op(n

− 1
2 ) implies (β̂−β0) = n−1

∑n
i=1Xiεi +Op(n

−1), and n−1
∑

i εi(λ
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2Xi =

E[εi(λ
′Xi)

2Xi] +Op(n
− 1

2 ) by the central limit theorem, expanding the square we can then obtain that:
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1

n

n∑
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1

n

n∑
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(λ′Xi)
2{ε2i + 2εiX

′
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= λ′Σn(β0)λ− 2

n

n∑
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E[εi(λ
′Xi)

2X ′i]Xiεi +Op(n
−1) . (63)

The first claim of the Lemma then follows by a Taylor expansion and results (60), (61), (62) and (63):

√
nλ′

σ̂
(β̂ − β0) =

λ′√
n
H−1
n

n∑
i=1

Xiεi{
1

σ
− 1

2σ3
(σ̂2 − σ2)}+Op(n

−1) = Ln +Op(n
−1) . (64)

Next, for notational simplicity let Rin = λ′H−1
n Xi(Yi −X ′iβ̂) and apply Markov’s inequality to obtain:

P ∗(|(σ̂∗)2 − σ̂2| > C√
n

) = P ∗(| 1
n

n∑
i=1

R2
in(W 2

i − 1)| > C√
n

)

≤ n

C2
E∗[(

1

n

n∑
i=1

R2
in(W 2

i − 1))2] =
1

Cn

n∑
i=1

R4
inE[(W 2

i − 1)2] . (65)

However, under our moment assumptions, n−1
∑

iR
4
inE[(W 2

i −1)2]
a.s.→ E[(λ′Xi)

4ε4i ]E[(W 2
i −1)2] <∞, and

therefore from (65) it follows that (σ̂∗)2 = σ̂2 + Op∗(n−
1
2 ) almost surely. The second claim of the Lemma

then follows from a second order Taylor expansion of (σ̂∗)−1.

Proof of Lemma 5.2: Follows immediately from Lemmas 7.5, 7.6 and 7.7.

Lemma 7.1. Let {Wi}ni=1 be an i.i.d. sample independent of {Zi}ni=1 satisfying E[W 2
i ] = 1. If Assumptions

4.1, 4.3(i) and 4.4(ii) hold, then the class F = {s(z, θ)s(z, θ)′w2 : θ ∈ Θ} is Glivenko-Cantelli.

Proof: By Assumption 4.4(ii), s(z, θ)w is continuous in θ ∈ Θ, and hence so is s(z, θ)s(z, θ)′w2. Let

s(l)(z, θ) be the lth component of the vector s(z, θ). By the mean value theorem and Assumption 4.4(ii):

|s(l)(z, θ)| ≤ |s(l)(z, θ)− s(l)(z, θ0)|+ |s(l)(z, θ0)| ≤ F (z)‖θ − θ0‖+ |s(l)(z, θ0)| . (66)

Hence, for D = diam(Θ) we obtain |s(l)(z, θ)s(k)(z, θ)w2| ≤ w2(F (z)D+ |s(l)(z, θ0)|)(F (z)D+ |s(k)(z, θ0)|),

which is integrable for all 1 ≤ i ≤ j ≤ k due to Assumption 4.4(ii) and 4.1(ii). We conclude that F has an

integrable envelope, and the Lemma follows by Example 19.8 in van der Vaart (1999).

Lemma 7.2. Under Assumptions 4.1(i), 4.3(i) and 4.4(i)-(ii), F ≡ {ws(z, θ) : θ ∈ Θ} is Donsker.
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Proof: Let ‖ · ‖o and ‖ · ‖F denote the operator and Frobenious norms. Using ‖ · ‖o ≤ ‖ · ‖F , Assumption

4.4(ii) and the mean value theorem, we obtain that for some θ̄ a convex combination of θ1 and θ2:

‖ws(z, θ1)− ws(z, θ2)‖

= |w| × ‖∇s(z, θ̄)(θ1 − θ2)‖ ≤ |w| × ‖∇s(z, θ̄)‖o × ‖θ1 − θ2‖ ≤ |w| × F (z)× ‖θ1 − θ2‖ . (67)

Hence, the class F is Lipschitz in θ ∈ Θ, and by Theorem 2.7.11 in van der Vaart and Wellner (1996):

N[ ](2ε‖F̃‖L2 ,F , ‖ · ‖L2) ≤ N(ε,Θ, ‖ · ‖) , (68)

where F̃ (w, z) ≡ |w|F (z). Let D ≡ diam(Θ) and M2 ≡ E[F̃ 2(Wi, Zi)] and notice that Assumptions

4.4(i)-(ii) imply M <∞. Since by (67), the diameter of F under ‖ · ‖L2 is less than or equal to MD,∫ ∞
0

√
logN[ ](ε,F , ‖ · ‖L2)dε ≤

∫ MD

0

√
logN[ ](ε,F , ‖ · ‖L2)dε = 2M

∫ D
2

0

√
logN[ ](2Mu,F , ‖ · ‖L2)du

≤ 2M

∫ D
2

0

√
logN(u,Θ, ‖ · ‖)du ≤ 2M

∫ D
2

0

√
p log(D/u)du <∞ (69)

where in the first equality we made a change of variables u = ε/2M , the second inequality follows from

(68) and the third by N(u,Θ, ‖ · ‖) ≤ (diam(Θ)/u)p. The claim of the Lemma then follows from (69),

E[F̃ 2(Zi,Wi)] <∞ and Theorem 2.5.6 in van der Vaart and Wellner (1996).

Lemma 7.3. Suppose Assumptions 4.1, 4.2, 4.3 and 4.4(ii) hold. If the null hypothesis is true, it then

follows that Gn
L→ X 2

r . On the other hand, if the alternative hypothesis is true, then Gn
p→∞.

Proof: We first study the limiting behavior of Gn under the null hypothesis. For this purpose, notice

that Assumption 4.3(ii) implies that An(θ0) = A(θ0) + op(1). Therefore, by Assumptions 4.2(i), 4.1(ii),

4.3(i), the central limit theorem and the continuous mapping theorem, we conclude that:

Tn = An(θ0)
1√
n

n∑
i=1

s(Zi, θ0) + op(1)
L−→ N(0, A(θ0)Σ(θ0)A(θ0)′) , (70)

where Σ(θ) ≡ E[s(Zi, θ)s(Zi, θ)
′]. Lemma 7.1 applied to Wi = 1 with probability one in turn implies that

Σn(θ0) = Σ(θ0) + op(1). By Assumption 4.3(ii) and the continuous mapping theorem we obtain:

An(θ0)Σn(θ0)An(θ0)′ = A(θ0)Σ(θ0)A(θ0)′ + op(1) . (71)

It follows that An(θ0)Σn(θ0)An(θ0)′ is then invertible with probability tending to one by Assumption 4.1(ii)

and the first claim of the Lemma follows immediately from (70) and the continuous mapping theorem. The

second claim of the Lemma was assumed in Assumption 4.2(ii).

Lemma 7.4. Let Fn : R→ [0, 1], F : R→ [0, 1] be monotonic, supc∈R |Fn(c)− F (c)| = op(1) and define:

cα ≡ inf{c : F (c) ≥ α} cn,α ≡ inf{c : Fn(c) ≥ α} .

If F is strictly increasing at cα, it then follows that cn,α = cα + op(1).
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Proof: Fix ε > 0. Since by hypothesis F is strictly increasing at cα it follows by definition of cα:

F (cα − ε) < α < F (cα + ε) . (72)

Moreover, since Fn(cα + ε) > α implies that cn,α ≤ cα + ε and Fn(cα − ε) < α implies that cn,α > cα − ε,

lim
n→∞

P (|cα − cn,α| ≤ ε) ≥ lim
n→∞

P (Fn(cα − ε) < α < Fn(cα + ε)) = 1 (73)

where the final equality follows from (72) and supc |Fn(c)− F (c)| = op(1) by hypothesis.

Lemma 7.5. Let Σ(β0) ≡ E[XiX
′
iε

2
i ], γ0 ≡ E[(λ′Xi)

2Xiεi] and Assumption 3.1 hold. It then follows that:

E[Ln] = −E[(λ′Xi)
3ε3i ]

2σ3
√
n

− E[(λ′Xi)X
′
iXiεi]

σ
√
n

+
2λ′Σ(β0)γ0

σ3
√
n

E∗[L∗n] = −E[W 3
i ]

2σ̂3
√
n
× 1

n

n∑
i=1

(λ′H−1
n Xi)

3e3
i

Proof: We first derive an expression for E[Ln]. Note that E[XiX
′
i] = I and E[Xiεi] = 0 imply:

E[λ′∆n
1

σ
√
n

n∑
i=1

Xiεi] = λ′E[
1

n

n∑
i=1

(I −XiX
′
i)

1

σ
√
n

n∑
i=1

Xiεi] = − 1

σ
√
n
E[(λ′Xi)X

′
iXiεi] (74)

due to the i.i.d. assumption. Similarly, exploiting the i.i.d. assumption and E[(λ′Xi)εi] = E[∆n] = 0:

E[
1

2σ3
√
n

n∑
i=1

(λ′Xi)εi(σ̂
2
R − σ2)] = E[

1

2σ3
√
n

n∑
i=1

(λ′Xi)εi{λ′(Σn(β0)− Σ(β0))λ+ 2λ′∆nΣ(β0)λ}]

=
1

2σ3
√
n
{E[(λ′Xi)

3ε3i ]− 2E[εi(λ
′Xi)

2X ′i]Σ(β0)λ} . (75)

The expression for E[Ln] can then be obtained from (74), (75) and by analogous arguments concluding:

E[
1

2σ3
√
n

n∑
i=1

(λ′Xi)εi ×
2

n

n∑
i=1

γ′0Xiεi] =
λ′Σ(β0)γ0

σ3
√
n

. (76)

In order to compute E∗[L∗n], observe that Wi independent of (Yi, Xi) and E[W 2
i ] = 1 implies that:

E∗[L∗n] = − 1

2σ̂3
E∗[

λ′H−1
n√
n

n∑
i=1

Xiε
∗
i

1

n

n∑
i=1

λ′H−1
n XiX

′
iH
−1
n λe2

i (W
2
i − 1)] = −E[W 3

i ]

2σ̂3
√
n
× 1

n

n∑
i=1

(λ′H−1
n Xi)

3e3
i

(77)

which establishes the second claim of the Lemma.

Lemma 7.6. Under Assumption 3.1, the second moments of Ln and L∗n satisfy,

E[L2
n] = 1 +O(n−1) E∗[(L∗n)2] = 1 +Op(n

−1)

Proof: To calculate E[L2
n], first note that E[XiX

′
i] = I, E[Xiεi] = 0 and direct calculations yield:

E[(λ′∆n
1√
nσ

n∑
i=1

Xiεi)
2] = E[(

λ′

n

n∑
i=1

(I −XiX
′
i)

1√
nσ

n∑
i=1

Xiεi)
2] =

1

σ2n2
E[(λ′(I −XiX

′
i)(

n∑
k=1

Xkεk))
2]

+
(n− 1)

σ2n2
E[{λ′(I −XiXi)

n∑
k=1

Xkεk}{λ′(I −XjX
′
j)

n∑
k=1

Xkεk}] = O(n−1) . (78)
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Similarly, exploiting the i.i.d. assumption together with E[Xiεi] = 0 and E[I −XiX
′
i] = 0 we obtain:

E[(
1√
nσ

n∑
i=1

λ′Xiεi)(λ
′∆n

1√
nσ

n∑
i=1

Xiεi)] =
1

n2σ2
E[(

n∑
i=1

λ′Xiεi)(λ
′
n∑
i=1

(I −XiX
′
i))(

n∑
i=1

Xiεi)]

=
1

nσ2
E[(λ′Xiεi)(λ

′Xiεi − λ′XiX
′
iXiεi)] = O(n−1) . (79)

Exploiting identical arguments to (78) on the squares of the remaining terms of Ln and the Cauchy-

Schwarz inequality and arguments identical to those in (79) to address cross terms arising from expanding

the square, it is then straightforward to establish that:

E[L2
n] = E[(

1

σ
√
n

n∑
i=1

λ′Xiεi)
2] +O(n−1) =

λ′E[XiX
′
iε

2
i ]λ

σ2
+O(n−1) = 1 +O(n−1) . (80)

For notational simplicity, let Rin = λ′H−1
n Xi. To compute E∗[(L∗n)2], first note that the i.i.d. assump-

tion together with E∗[(ε∗i )
4] = e4

iE[W 4
i ], E∗[(ε∗i )

2] = e2
i and E∗[ε∗i ] = 0 imply that:

1

σ̂4n2
E∗[(

n∑
i=1

Rinε
∗
i )

2(

n∑
i=1

R2
in{(ε∗i )2 − e2

i })] =
1

σ̂4n2

n∑
i=1

R4
ine

4
i (E[W 4

i ]− 1) = Op(n
−1) . (81)

Next, also note that by direct calculations, {Wi}ni=1 being i.i.d. and E[(ε∗i )
3] = e3

iE[W 3
i ] we may establish:

1

4σ̂6n3
E∗[(

n∑
i=1

Rinε
∗
i )

2(
n∑
i=1

R2
in{(ε∗i )2 − e2

i })2]

=
1

4σ̂6n3
{
n∑
i=1

E∗[R2
in(ε∗i )

2(
n∑
k=1

R2
kn{(ε∗k)2 − e2

k})2] +
n∑
i=1

∑
j 6=i

E∗[(Rinε
∗
i )(Rjnε

∗
j )(

n∑
k=1

R2
kn{(ε∗k)2 − e2

k})2]}

=
1

4σ̂6n3
{
n∑
i=1

n∑
k=1

R2
inR

4
knE

∗[(ε∗i )
2{(ε∗k)2 − e2

k}2] + 2

n∑
i=1

∑
j 6=i

R3
ine

3
iR

3
jne

3
j (E[W 3

i ])2} . (82)

Therefore, expanding the square, noting that n−1
∑n

i=1R
2
ine

2
i = σ̂2 and exploiting (81) and (82):

E∗[(L∗n)2] =
1

nσ̂2
E∗[(

n∑
i=1

Rinε
∗
i )

2] +Op(n
−1) = 1 +Op(n

−1) , (83)

which establishes the second and final claim of the Lemma.

Lemma 7.7. Let Σ(β0) ≡ E[XiX
′
iε

2
i ], γ0 ≡ E[(λ′Xi)

2Xiεi] and Assumption 3.1 hold. It then follows that:

E[(Ln)3] = − 7

2σ3
√
n
E[(λ′Xi)

3ε3i ]−
3

σ
√
n
E[(λ′Xi)(X

′
iXi)εi]−

6λ′Σ(β0)γ0

σ3
√
n

+O(n−1)

E∗[(L∗n)3] = −7E[W 3
i ]

2σ̂3
√
n
× 1

n

n∑
i=1

(λ′H−1
n Xi)

3e3
i +Op(n

−1)

Proof: The calculations are cumbersome and for brevity we provide only the essential steps. Define:

Γn ≡ λ′∆n
1

σ
√
n

n∑
i=1

Xiεi −
1

2σ3
√
n

n∑
i=1

(λ′Xi)εi{(σ̂2
R − σ2)− 2

n

n∑
i=1

γ′0Xiεi} . (84)
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Notice that Ln = σ−1n−
1
2λ′
∑

iXiεi + Γn. Under Assumption 3.1(ii), it is possible to establish E[Γ3
n] =

O(n−
3
2 ) and E[(n−

1
2
∑

i λ
′Xiεi)

3] = O(n−
1
2 ). Therefore, by direct calculation and Holder’s inequality:

E[(Ln)3] = E[(
1

σ
√
n

n∑
i=1

(λ′Xi)εi)
3] + 3E[(

1

σ
√
n

n∑
i=1

(λ′Xi)εi)
2Γn] + 3E[(

1

σ
√
n

n∑
i=1

(λ′Xi)εi)Γ
2
n] + E[Γ3

n]

≤ E[(
1

σ
√
n

n∑
i=1

(λ′Xi)εi)
3] + 3E[(

1

σ
√
n

n∑
i=1

(λ′Xi)εi)
2Γn] +O(n−1) . (85)

Hence, we can establish the first claim of the Lemma by analyzing the remaining terms in (85). Note that

E[(
1

σ
√
n

n∑
i=1

(λ′Xi)εi)
3] =

1

σ3
√
n
E[(λ′Xi)

3ε3i ] , (86)

by the i.i.d. assumption and E[Xiεi] = 0. Similarly, by direct calculation we can also obtain the expression:

E[(
1

σ
√
n

n∑
i=1

(λ′Xi)εi)
2λ
′∆n√
nσ

n∑
i=1

Xiεi]

=
1

σ3n
5
2

E[{
n∑
i=1

(λ′Xi)
2ε2i +

n∑
i=1

(λ′Xi)εi
∑
j 6=i

(λ′Xj)εj}
n∑
k=1

λ′(I −XkX
′
k)

n∑
l=1

Xlεl]

= −λ
′Σ(β0)λ

σ3
√
n

E[(λ′Xi)(X
′
iXi)εi]−

2

σ3
√
n
E[(λ′Xi)(γ

′
0Xi)ε

2
i ] +O(n−

3
2 ) . (87)

By analogous arguments we can compute the remaining terms in E[(σ−1n−
1
2
∑

i λ
′Xiεi)

2Γn] and obtain:

1

2σ5
E[(

1√
n

n∑
i=1

(λ′Xi)εi)
3λ′{Σn(β0)− Σ(β0)}λ] =

3λ′Σ(β0)λ

2σ5
√
n

E[(λ′Xi)
3ε3i ] +O(n−

3
2 ) (88)

1

σ5
E[(

1√
n

n∑
i=1

(λ′Xi)εi)
3{λ′∆nΣ(β0)λ}] = −3λ′Σ(β0)λ

σ5
√
n

γ′0Σ(β0)λ+O(n−
3
2 ) (89)

1

σ5
E[(

1√
n

n∑
i=1

(λ′Xi)εi)
3{ 1

n

n∑
i=1

γ′0Xiεi}] =
3λ′Σ(β0)λ

σ5
√
n

λ′Σ(β0)γ0 +O(n−
3
2 ) . (90)

The first claim of the Lemma then follows by combining the results from (85)-(90).

Letting Rin = λ′H−1
n Xi and employing Assumption 3.1(ii), it can then be shown that:

E∗[(
1√
n

n∑
i=1

Rinε
∗
i )

3(
1

2σ̂3
{(σ̂∗)2−σ̂2})2] = Op(n

− 3
2 ) E∗[(

1√
n

n∑
i=1

Rinε
∗
i )

3(
1

2σ̂3
{(σ̂∗)2−σ̂2})3] = Op(n

− 3
2 )

Therefore, expanding the cube and exploiting that Wi ⊥ (Yi, Xi) and E[(ε∗i )
k] = E[W k

i ]eki , it follows that:

E∗[(L∗n)3] = E∗[(
1√
n

n∑
i=1

Rinε
∗
i )

3{ 1

σ̂3
− 3((σ̂∗)2 − σ̂2)

2σ̂5
+

3((σ̂∗)2 − σ̂2)2

4σ̂7
− ((σ̂∗)2 − σ̂2)3

8σ̂9
}]

=
E[W 3

i ]

σ̂3
√
n
× 1

n

n∑
i=1

R3
ine

3
i −

3

2σ̂5
E∗[(

1√
n

n∑
i=1

Rinε
∗
i )

3{(σ̂∗)2 − σ̂2}] +Op(n
− 3

2 ) . (91)
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Moreover, also note that by analogous arguments and direct calculations we further obtain:

E∗[(
1√
n

n∑
i=1

Rinε
∗
i )

3{ 3

2σ̂5n

n∑
i=1

R2
in{(ε∗i )2 − e2

i }}]

=
3

2σ̂5n
3
2

× 1

n

n∑
i=1

R5
inE

∗[(ε∗i )
3{(ε∗i )2 − e2

i }] +
9

2σ̂5n
5
2

E∗[{
n∑
i=1

Rin(ε∗i )
∑
j 6=i

R2
jn(ε∗j )

2}
n∑
k=1

R2
kn{(ε∗k)2 − e2

k}]

=
9

2σ̂5
√
n
× 1

n

n∑
i=1

R2
ine

2
i ×

E[W 3
i ]

n

n∑
i=1

R3
ine

3
i +Op(n

− 3
2 ) . (92)

The second claim of the Lemma is then established by (91) and (92).
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