
NBER WORKING PAPER SERIES

OPTIMAL MONETARY STABILIZATION POLICY

Michael Woodford

Working Paper 16095
http://www.nber.org/papers/w16095

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2010

Prepared for the Handbook of Monetary Economics, edited by Benjamin M. Friedman and Michael
Woodford, Elsevier Press, forthcoming. I would like to thank Ozge Akinci, Ryan Chahrour, V.V. Chari
and Marc Giannoni for comments, Luminita Stevens for research assistance, and the National Science
Foundation for research support under grant SES-0820438. Copyright Elsevier Press, 2010. The views
expressed herein are those of the author and do not necessarily reflect the views of the National Bureau
of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by Michael Woodford. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Optimal Monetary Stabilization Policy
Michael Woodford
NBER Working Paper No. 16095
June 2010
JEL No. E52,E61

ABSTRACT

This paper reviews the theory of optimal monetary stabilization policy, with an emphasis on developments
since the publication of Woodford (2003). The structure of optimal policy commitments is considered,
both when the objective of stabilization policy is defined by an arbitrarily specified quadratic loss
function, and when the objective of policy is taken to be the maximization of expected utility. Issues
treated include the time inconsistency of optimal policies and the need for commitment; the relation
of optimal policy from a “timeless perspective” to the Ramsey conception of optimal policy; and the
advantages of forecast targeting procedures as an approach to the implementation of optimal stabilization
policy. The usefulness of characterizing optimal policy in terms of a target criterion is illustrated in
a range of examples. These include models with a variety of assumptions about the nature of price
and wage adjustment; models that allow for sectoral heterogeneity; cases in which policy must be
conducted on the basis of imperfect information; and cases in which the zero lower bound on the policy
rate constrains the conduct of policy.

Michael Woodford
Department of Economics
Columbia University
420 W. 118th Street
New York, NY 10027
and NBER
michael.woodford@columbia.edu



Contents

1 Optimal Policy in a Canonical New Keynesian Model . . . . . . . . . . . . 3
1.1 The Problem Posed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Optimal Equilibrium Dynamics . . . . . . . . . . . . . . . . . . . . . 7
1.3 The Value of Commitment . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Implementing Optimal Policy through Forecast Targeting . . . . . . . 17
1.5 Optimality from a “Timeless Perspective” . . . . . . . . . . . . . . . 24
1.6 Consequences of the Interest-Rate Lower Bound . . . . . . . . . . . . 31
1.7 Optimal Policy Under Imperfect Information . . . . . . . . . . . . . . 40

2 Stabilization and Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1 Microfoundations of the Basic New Keynesian Model . . . . . . . . . 44
2.2 Welfare and the Optimal Policy Problem . . . . . . . . . . . . . . . . 50
2.3 Local Characterization of Optimal Dynamics . . . . . . . . . . . . . . 54
2.4 A Welfare-Based Quadratic Objective . . . . . . . . . . . . . . . . . . 63

2.4.1 The Case of an Efficient Steady State . . . . . . . . . . . . . . 64
2.4.2 The Case of Small Steady-State Distortions . . . . . . . . . . 69
2.4.3 The Case of Large Steady-State Distortions . . . . . . . . . . 71

2.5 Second-Order Conditions for Optimality . . . . . . . . . . . . . . . . 74
2.6 When is Price Stability Optimal? . . . . . . . . . . . . . . . . . . . . 76

3 Generalizations of the Basic Model . . . . . . . . . . . . . . . . . . . . . . 79
3.1 Alternative Models of Price Adjustment . . . . . . . . . . . . . . . . 79

3.1.1 Structural Inflation Inertia . . . . . . . . . . . . . . . . . . . . 81
3.1.2 Sticky Information . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Which Price Index to Stabilize? . . . . . . . . . . . . . . . . . . . . . 92
3.2.1 Sectoral Heterogeneity and Asymmetric Disturbances . . . . . 93
3.2.2 Sticky Wages as Well as Prices . . . . . . . . . . . . . . . . . 107

4 Research Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



This chapter reviews the theory of optimal monetary stabilization policy in New

Keynesian models, with particular emphasis on developments since the treatment of

this topic in Woodford (2003). The primary emphasis of the chapter is on methods

of analysis that are useful in this area, rather than on final conclusions about the

ideal conduct of policy (that are obviously model-dependent, and hence dependent

on the stand that one might take on many issues that remain controversial), and

on general themes that have been found to be important under a range of possible

model specifications.1 With regard to methodology, some of the central themes of

this review will be the application of the method of Ramsey policy analysis to the

problem of the optimal conduct of monetary policy, and the connection that can be

established between utility maximization and linear-quadratic policy problems of the

sort often considered in the central banking literature. With regard to the structure

of a desirable decision framework for monetary policy deliberations, some of the

central themes will be the importance of commitment for a superior stabilization

outcome, and more generally, the importance of advance signals about the future

conduct of policy; the advantages of history-dependent policies over purely forward-

looking approaches; and the usefulness of a target criterion as a way of characterizing

a central bank’s policy commitment.

In this chapter, the question of monetary stabilization policy — i.e., the proper

monetary policy response to the various types of disturbances to which an economy

may be subject — is somewhat artificially distinguished from the question of the

optimal long-run inflation target, which is the topic of another chapter (Schmitt-

Grohé and Uribe, 2010). This does not mean (except in section 1) that I simply take

as given the desirability of stabilizing inflation around a long-run target that has been

determined elsewhere; the kind of utility-based analysis of optimal policy expounded

in section 2 has implications for the optimal long-run inflation rate as much as for the

optimal response to disturbances, though it is the latter issue that is the focus of the

discussion here. (The question of the optimal long-run inflation target is not entirely

independent of the way in which one expects that policy should respond to shocks,

either.) It is nonetheless reasonable to consider the two aspects of optimal policy

in separate chapters, insofar as the aspects of the structure of the economy that are

of greatest significance for the answer to one question are not entirely the same as

those that matter most for the other. For example, the consequences of inflation for

1Practical lessons of the modern literature on monetary stabilization policy are developed in more
detail in the chapters by Taylor and Williams (2010) and by Svensson (2010) in this Handbook.
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people’s incentive to economize on cash balances by conducting transactions in less

convenient ways has been a central issue in the scholarly literature on the optimal

long-run inflation target, and so must be discussed in detail by Schmitt-Grohé and

Uribe (2010), whereas this particular type of friction has not played a central role in

discussions of optimal monetary stabilization policy, and is abstracted from entirely

in this chapter.2

Monetary stabilization policy is also analyzed here under the assumption (made

explicit in the welfare-based analysis introduced in section 2) that a non-distorting

source of government revenue exists, so that stabilization policy can be considered in

abstraction from the state of the government’s budget and from the choice of fiscal

policy. This is again a respect in which the scope of the present chapter has been

deliberately restricted, because the question of the interaction between optimal mone-

tary stabilization policy and optimal state-contingent tax policy is treated in another

chapter of the Handbook, by Canzoneri et al. (2010). While the “special” case in

which lump-sum taxation is possible might seem of little practical interest, I believe

that an understanding of the principles of optimal monetary stabilization policy in

the simpler setting considered in this chapter provides an important starting point

for understanding the more complex problems considered in the literature reviewed

by Canzoneri et al. (2010).3

In section 1, I introduce a number of central methodological issues and key themes

of the theory of optimal stabilization policy, in the context of a familiar textbook ex-

ample, in which the central bank’s objective is assumed to be the minimization of

a conventional quadratic objective (sometimes identified with “flexible inflation tar-

geting”), subject to the constraints implied by certain log-linear structural equations

(sometimes called “the basic New Keynesian model”). In section 2, I then consider

the connection between this kind of analysis and expected-utility-maximizing policy

2This does not mean that transactions frictions that result in a demand for money have no
consequences for optimal stabilization policy; see e.g., Woodford (2003, chap. 6, sec. 4.1) or Khan
et al. (2003) for treatment of this issue. This is one of many possible extensions of the basic analysis
presented here that are not taken up in this chapter, for reasons of space.

3From a practical standpoint, it is important not only to understand optimal monetary policy
in an economy where only distorting sources of government revenue exist, but taxes are adjusted
optimally, as in the literature reviewed by Canzoneri et al. (2010), but also when fiscal policy is
sub-optimal owing to practical and/or political constraints. Benigno and Woodford (2007) offer a
preliminary analysis of this less-explored topic.
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in a New Keynesian model with explicit microfoundations. Methods that are useful

in analyzing Ramsey policy and in characterizing the optimal policy commitment in

microfounded models are illustrated in section 2 in the context of a relatively simple

model that yields policy recommendations that are closely related to the conclusions

obtained in section 1, so that the results of section 2 can be viewed as providing

welfare-theoretic foundations for the more conventional analysis in section 1. How-

ever, once the association of these results with very specific assumptions about the

model of the economy has been made, an obvious question is the extent to which sim-

ilar conclusions would be obtained under alternative assumptions. Section 3 shows

how similar methods can be used to provide a welfare-based analysis of optimal policy

in several alternative classes of models, that introduce a variety of complications that

are often present in empirical DSGE models of the monetary transmission mechanism.

Section 4 concludes with a much briefer discussion of other important directions in

which the analysis of optimal monetary stabilization policy can or should be extended.

1 Optimal Policy in a Canonical New Keynesian

Model

In this section, I illustrate a number of fundamental insights from the literature on

the optimal conduct of monetary policy, in the context of a simple but extremely

influential example. In particular, this section shows how taking account of the way

in which the effects of monetary policy depend on expectations regarding the future

conduct of policy affects the problem of policy design. The general issues that arise as

a result of forward-looking private-sector behavior can be illustrated in the context of

a simple model in which the structural relations that determine inflation and output

under given policy on the part of the central bank involve expectations regarding

future inflation and output, for reasons that are not discussed until section 2. Here

I shall simply take as given both the form of the model structural relations and the

assumed objectives of stabilization policy, to illustrate the complications that arise

as a result from forward-looking behavior, especially (in this section) the dependence

of the aggregate-supply tradeoff at a point in time on the expected rate of inflation.

I shall offer comments along the way about the extent to which the issues that arise

in the analysis of this example are ones that occur in broader classes of stabilization
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policy problems as well. The extent to which specific conclusions from this simple

example can be obtained in a model with explicit microfoundations is then taken up

in section 2.

1.1 The Problem Posed

I shall begin by recapitulating the analysis of optimal policy in the linear-quadratic

problem considered by Clarida et al. (1999), among others.4 In a log-linear version

of what is sometimes called the “basic New Keynesian model,” inflation πt and (log)

output yt are determined by an aggregate-supply relation (often called the “New

Keynesian Phillips curve”)

πt = κ(yt − yn
t ) + βEtπt+1 + ut (1.1)

and an aggregate-demand relation (sometimes called the “intertemporal IS relation”)

yt = Etyt+1 − σ(it − Etπt+1 − ρt). (1.2)

Here it is a short-term nominal interest rate; yn
t , ut, and ρt are each exogenous

disturbances; and the coefficients of the structural relations satisfy κ, σ > 0 and 0 <

β < 1. It may be wondered why there are two distinct exogenous disturbance terms

in the aggregate-supply relation (the “cost-push shock” ut in addition to allowance

for shifts in the “natural rate of output” yn
t ); the answer is that the distinction

between these two possible sources of shifts in the inflation-output tradeoff matters

for the assumed stabilization objective of the monetary authority (as specified in (1.6)

below).

The analysis of optimal policy is simplest if we treat the nominal interest rate

as being directly under the control of the central bank, in which case equations

(1.1)–(1.2) suffice to indicate the paths for inflation and output that can be achieved

through alternative interest-rate policies. However, if one wishes to treat the central

bank’s instrument as some measure of the money supply (perhaps the quantity of

base money), with the interest rate being determined by the market given the cen-

tral bank’s control of the money supply, one can do so by adjoining an additional

equilibrium relation,

mt − pt = ηyyt − ηiit + εm
t , (1.3)

4The notation used here follows the treatment of this model in Woodford (2003).
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where mt is the log money supply (or monetary base), pt is the log price level, εm
t is

an exogenous money-demand disturbance, ηy > 0 is the income elasticity of money

demand, and ηi > 0 is the interest-rate semi-elasticity of money demand. Combining

this with the identity

πt ≡ pt − pt−1,

one then has a system of four equations per period to determine the evolution of the

four endogenous variables {yt, pt, πt, it} given the central bank’s control of the path

of the money supply.

In fact, the equilibrium relation (1.3) between the monetary base and the other

variables should more correctly be written as a pair of inequalities,

mt − pt ≥ ηyyt − ηiit + εm
t , (1.4)

it ≥ 0, (1.5)

together with the complementary slackness requirement that at least one of the two

inequalities must hold with equality at any point in time. Thus it is possible to

have an equilibrium in which it = 0 (so that money is no longer dominated in rate

of return5), but in which (log) real money balances exceed the quantity ηyyt + εm
t

required for the satiation of private parties in money balances — households or firms

should be willing to freely hold the additional cash balances as long as they have a

zero opportunity cost.

One observes that (1.5) represents an additional constraint on the possible paths

for the variables {πt, yt, it} beyond those reflected by the equations (1.1)–(1.2). How-

ever, if one assumes that the constraint (1.5) happens never to bind in the optimal

policy problem, as in the treatment by Clarida et al. (1999),6 then one can not only

replace the pair of relations (1.4)–(1.5) by the simple equality (1.3), one can further-

more neglect this subsystem altogether in characterizing optimal policy, and simply

5For simplicity, I assume here that money earns a zero nominal return. See, for example, Wood-
ford, 2003, chaps. 2,4, for extension of the theory to the case in which the monetary base can earn
interest. This elaboration of the theory has no consequences for the issues taken up in this section:
it simply complicates the description of the possible actions that a central bank may take in order
to implement a particular interest-rate policy.

6This is also true in the micro-founded policy problem treated in section 2, in the case that
all stochastic disturbances are small enough in amplitude. See, however, section 1.6 below for an
extension of the present analysis to the case in which the zero lower bound may temporarily be a
binding constraint.
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analyze the set of paths for {πt, yt, it} consistent with conditions (1.1)–(1.2). Indeed,

one can even dispense with condition (1.2), and simply analyze the set of paths for

the variables {πt, yt} consistent with the condition (1.1). Assuming an objective for

policy that involves only the paths of these variables (as assumed in (1.6) below), such

an analysis would suffice to determine the optimal state-contingent evolution of infla-

tion and output. Given a solution for the desired evolution of the variables {πt, yt},
equations (1.2) and (1.3) can then be used to determine the required state-contingent

evolution of the variables {it,mt} in order for monetary policy to be consistent with

the desired paths of inflation and output.

Let us suppose that the goal of policy is to minimize a discounted loss function

of the form

Et0

∞∑
t=t0

βt−t0 [π2
t + λ(xt − x∗)2], (1.6)

where xt ≡ yt − yn
t is the “output gap”, x∗ is a target level for the output gap

(positive, in the case of greatest practical relevance), and λ > 0 measures the relative

importance assigned to output-gap stabilization as opposed to inflation stabilization.

Here (1.6) is simply assumed as a simple representation of conventional central-bank

objectives; but a welfare-theoretic foundation for an objective of precisely this form

is given in section 2. It should be noted that the discount factor β in (1.6) is the same

as the coefficient on inflation expectations in (1.1). This is not accidental; it is shown

in section 2 that when microfoundations are provided for both the aggregate-supply

tradeoff and the stabilization objective, the same factor β (indicating the rate of time

preference of the representative household) appears in both expressions.7

Given the objective (1.6), it is convenient to write the model structural relations

in terms of the same two variables (inflation and the output gap) that appear in the

policymaker’s objective function. Thus we rewrite (1.1)–(1.2) as

πt = κxt + βEtπt+1 + ut, (1.7)

xt = Etxt+1 − σ(it − Etπt+1 − rn
t ), (1.8)

7If one takes (1.6) to simply represent central-bank preferences (or perhaps the bank’s legislative
mandate), that need not coincide with the interests of the representative household, the discount
factor in (1.6) need not be the same as the coefficient in (1.1). The consequences of assuming
different discount factors in the two places are considered by Kirsanova et al. (2009).

6



where

rn
t ≡ ρt + σ−1[Ety

n
t+1 − yn

t ]

is the “natural rate of interest,” i.e., the (generally time-varying) real rate of interest

required each period in order to keep output equal to its natural rate at all times.8

Our problem is then to determine the state-contingent evolution of the variables

{πt, xt, it} consistent with structural relations (1.7)–(1.8) that will minimize the loss

function (1.6).

Supposing that there is no constraint on the ability of the central bank to adjust

the level of the short-term interest rate it as necessary to satisfy it, then the optimal

paths of {πt, xt} are simply those paths that minimize (1.6) subject to the constraint

(1.7). The form of this problem immediately allows some important conclusions to

be reached. The solution for the optimal state-contingent paths of inflation and

the output gap depends only on the evolution of the exogenous disturbance process

{ut} and not on the evolution of the disturbances {yn
t , ρt, ε

m
t }, to the extent that

disturbances of these latter types have no consequences for the path of {ut}. One can

further distinguish between shocks of the latter three types in that disturbances to

the path of {yn
t } should affect the path of output (though not the output gap), while

disturbances to the path of {ρt} (again, to the extent that these are independent

of the expected paths of {yn
t , ut}) should be allowed to affect neither inflation nor

output, but only the path of (both nominal and real) interest rates and the money

supply, and disturbances to the path of {εm
t } (if without consequences for the other

disturbance terms) should not be allowed to affect inflation, output, or interest rates,

but only the path of the money supply (which should be adjusted to completely

accommodate these shocks). The effects of disturbances to the path of {yn
t } on the

path of {yt} should also be of an especially simple form under optimal policy: actual

output should respond one-for-one to variations in the natural rate of output, so that

such variations have no effect on the path of the output gap.

1.2 Optimal Equilibrium Dynamics

The characterization of optimal equilibrium dynamics is simple in the case that only

disturbances of the two types {yn
t , ρt} occur, given the remarks at the end of the

previous section. However, the existence of “cost-push shocks” ut creates a tension

8For further discussion of this concept, see Woodford (2003, chap. 4).
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between the goals of inflation and output stabilization, 9 in which case the problem is

less trivial; an optimal policy must balance the two goals, neither of which can be given

absolute priority. This case is of particular interest, since it also introduces dynamic

considerations — a difference between optimal policy under commitment from the

outcome of discretionary optimization, superiority of history-dependent policy over

purely forward-looking policy — that are in fact quite pervasive in contexts where

private-sector behavior is forward-looking, and can occur for reasons having nothing

to do with “cost-push shocks,” even though in the present (very simple) model they

arise only when we assume that the {ut} terms have non-zero variance.

It suffices, as discussed in the previous section, to consider the state-contingent

paths {πt, xt} that minimize (1.6) subject to the constraint that condition (1.7) be

satisfied for each t ≥ t0. We can write a Lagrangian for this problem

Lt0 = Et0

∞∑
t=0

βt−t0

{
1

2
[π2

t + λ(xt − x∗)2] + ϕt[πt − κxt − βEtπt+1]

}

= Et0

∞∑
t=0

βt−t0

{
1

2
[π2

t + λ(xt − x∗)2] + ϕt[πt − κxt − βπt+1]

}
,

where ϕt is a Lagrange multiplier associated with constraint (1.7), and hence a func-

tion of the state of the world in period t (since there is a distinct constraint of this

form for each possible state of the world at that date). The second line has been

simplified using the law of iterated expectations to observe that

Et0ϕtEt[πt+1] = Et0Et[ϕtπt+1] = Et0 [ϕtπt+1].

Differentiation of the Lagrangian then yields first-order conditions

πt + ϕt − ϕt−1 = 0, (1.9)

λ(xt − x∗)− κϕt = 0, (1.10)

for each t ≥ t0, where in (1.9) for t = t0 we substitute the value

ϕt0−1 = 0, (1.11)

9The economic interpretation of this residual in the aggregate-supply relation (1.7) is discussed
further in section 2.
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as there is in fact no constraint required for consistency with a period t0−1 aggregate-

supply relation if the policy is being chosen after period t0− 1 private decisions have

already been made.

Using (1.9) and (1.10) to substitute for πt and xt respectively in (1.7), we obtain

a stochastic difference equation for the evolution of the multipliers,

Et

[
βϕt+1 −

(
1 + β +

κ2

λ

)
ϕt + ϕt−1

]
= κx∗ + ut, (1.12)

that must hold for all t ≥ 0, along with the initial condition (1.11).

The characteristic equation

βµ2 −
(

1 + β +
κ2

λ

)
µ + 1 = 0 (1.13)

has two real roots

0 < µ1 < 1 < µ2,

as a result of which (1.12) has a unique bounded solution in the case of any bounded

process for the disturbances {ut}. Writing (1.12) in the alternative form

Et[β(1− µ1L)(1− µ2L)ϕt+1] = κx∗ + ut,

standard methods easily show that the unique bounded solution is of the form

(1− µ1L)ϕt = −β−1µ−1
2 Et[(1− µ−1

2 L−1)−1(κx∗ + ut)],

or alternatively,

ϕt = µϕt−1 − µ

∞∑
j=0

βjµj[κx∗ + Etut+j], (1.14)

where I now simply write µ for the smaller root (µ1) and use the fact that µ2 = β−1µ−1
1

to eliminate µ2 from the equation.

This is an equation that can be solved each period for ϕt given the previous pe-

riod’s value of the multiplier and current expectations regarding current and future

“cost-push” terms. Starting from the initial condition (1.11), and given a law of mo-

tion for {ut} that allows the conditional expectations to be computed, it is possible

to solve (1.14) iteratively for the complete state-contingent evolution of the multipli-

ers. Substitution of this solution into (1.9)–(1.10) allows one to solve for the implied

9



state-contingent evolution of inflation and output. Substitution of these solutions in

turn into (1.8) then yields the implied evolution of the nominal interest rate, and

substitution of all of these solutions into (1.3) yields the implied evolution of the

money supply.

The solution for the optimal path of each variable can be decomposed into a

deterministic part — representing the expected path of the variable before anything

is learned about the realizations of the disturbances {ut}, including the value of ut0

— and a sum of additional terms indicating the perturbations of the variable’s value

in any period t due to the shocks realized in each of periods t0 through t. Here the

relevant shocks include all events that change the expected path of the disturbances

{ut}, including “news shocks” at date t or earlier that only convey information about

cost-push terms at dates later than t; but they do not include events that change

the value of our convey information about the variables {yn
t , ρt, ε

m
t }, without any

consequences for the expected path of {ut}.
If we assume that the unconditional (or ex ante) expected value of each of the

cost-push terms is zero, then the deterministic part of the solution for {ϕt} is given

by

ϕ̄t = −λ

κ
x∗(1− µt−t0+1)

for all t ≥ t0. The implied deterministic part of the solution for the path of inflation

is given by

π̄t = (1− µ)
λ

κ
x∗µt−t0 (1.15)

for all t ≥ t0.

An interesting feature of this solution is that the optimal long-run average rate

of inflation should be zero, regardless of the size of x∗ and of the relative weight

λ attached to output-gap stabilization. It should not surprise anyone to find that

the optimal average inflation rate is zero if x∗ = 0, so that a zero average inflation

rate implies xt = x∗ on average; but it might have been expected that when a zero

average inflation rate implies xt < x∗ on average, an inflation rate that is above zero

on average forever would be preferable. This turns out not to be the case, despite

the fact that the New Keynesian Phillips curve (1.7) implies that a higher average

inflation rate would indeed result in at least slightly higher average output forever.

The reason is that an increase in the inflation rate aimed at (and anticipated) for

some period t > t0 lowers average output in period t−1 in addition to raising average

10



output in period t, as a result of the effect of the higher expected inflation on the

Phillips-curve tradeoff in period t− 1. And even though the factor β in (1.7) implies

the reduction of output in period t− 1 is not quite as large as the increase in output

in period t (this is the reason that permanently higher average inflation would imply

permanently higher average output), the discounting in the objective function (1.6)

implies that the policymaker’s objective is harmed as much (to first order) by the

output loss in period t−1 as it is helped by the output gain in period t. The first-order

effects on the objective therefore cancel; the second-order effects make a departure

from the path specified in (1.15) strictly worse.

Another interesting feature of our solution for the optimal state-contingent path

of inflation is that the price level pt should be stationary: while cost-push shocks are

allowed to affect the inflation rate under an optimal policy, any increase in the price

level as a consequence of a positive cost-push shock must subsequently be undone

(through lower-than-average inflation after the shock), so that the expected long-run

price level is unaffected by the occurrence of the shock. This can be seen by observing

that (1.9) can alternatively be written

pt + ϕt = pt−1 + ϕt−1, (1.16)

which implies that the cumulative change in the (log) price level over any horizon

must be the additive inverse of the cumulative change in the Lagrange multiplier

over the same horizon. Since (1.14) implies that the expected value of the Lagrange

multiplier far in the future never changes (assuming that {ut} is a stationary, and

hence mean-reverting, process), it follows that the expected price level far in the

future can never change, either. This suggests that a version of price-level targeting

may be a convenient way of bringing about inflation dynamics of the desired sort, as

is discussed further below in section 1.4.

As a concrete example, suppose that ut is an i.i.d., mean-zero random variable,

the value of which is learned only at date t. In this case, (1.14) reduces to

ϕ̃t = µϕ̃t−1 − µut,

where ϕ̃t ≡ ϕt − ϕ̄t is the non-deterministic component of the path of the multiplier.

Hence a positive cost-push shock at some date temporarily makes ϕt more negative,

after which the multiplier returns (at an exponentially decaying rate) to the path

it had previously been expected to follow. This impulse response of the multiplier
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Figure 1: Impulse responses to a transitory cost-push shock under an optimal policy

commitment, and in the Markov-perfect equilibrium with discretionary policy.

to the shock implies impulse responses for the inflation rate, output (and similarly

the output gap), and the log price level of the kind shown in Figure 1.10 (Here

the solid line in each panel represents the impulse response under an optimal policy

commitment.) Note that both output and the log price level return to the paths that

would have been expected in the absence of the shock at the same exponential rate

as does the multiplier.

10The figure reproduces Figure 7.3 from Woodford (2003), where the numerical parameter values
used are discussed. The alternative assumption of discretionary policy is discussed in the next
section.

12



1.3 The Value of Commitment

An important general observation about this characterization of the optimal equilib-

rium dynamics is that they do not correspond to the equilibrium outcome in the case

of an optimizing central bank that chooses its policy each period without making any

commitments about future policy decisions. Sequential decisionmaking of that sort

is not equivalent to the implementation of an optimal plan chosen once and for all,

even when each of the sequential policy decisions is made with a view to achievement

of the same policy objective (1.6). The reason is that in the case of what is often

called discretionary policy,11 a policymaker has no reason, when making a decision at

a given point in time, to take into account the consequences for her own success in

achieving her objectives at an earlier time of people’s having been able to anticipate

a different decision at the present time. And yet, if the outcomes achieved by policy

depend not only on the current policy decision but also on expectations about future

policy, it will quite generally be the case that outcomes can be improved, at least

to some extent, through strategic use of the tool of modifying intended later actions

precisely for the sake of inducing different expectations at an earlier time. For this

reason, implementation of an optimal policy requires advance commitment regarding

policy decisions, in the sense that one must not imagine that it is proper to optimize

afresh each time a choice among alternative actions must be taken. Some procedure

must be adopted that internalizes the effects of predictable patterns in policy on ex-

pectations; what sort of procedure this might be in practice is discussed further in

section 1.4.

The difference that can be made by a proper form of commitment can be illus-

trated by comparing the optimal dynamics, characterized in the previous section,

with the equilibrium dynamics in the same model if policy is made through a process

of discretionary (sequential) optimization. Here I shall assume that in the case of

11It is worth noting that the critique of “discretion” offered here has nothing to do with what that
word often means, namely, the use of judgment about the nature of a particular situation of a kind
that cannot easily be reduced to a mechanical function of a small number of objectively measurable
quantities. Policy can often be improved by the use of more information, including information
that may not be easily quantified or agreed upon. If one thinks that such information can only be
used by a policymaker that optimizes afresh at each date, then there may be a close connection
between the two concepts of “discretion,” but this is not obviously true. On the use of judgment in
implementing optimal policy, see Svensson (2003, 2005).
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discretion, the outcome is the one that represents a Markov perfect equilibrium of

the non-cooperative “game” among successive decisionmakers.12 This means that I

shall assume that equilibrium play at any date is a function only of states that are

relevant for determining the decisionmakers’ success at achieving their goals from

that date onward.13

Let st be a state vector that includes all information available at date t about

the path {ut+j} for j ≥ 0.14 Then since the objectives of policymakers from date

t onward depend only on inflation and output-gap outcomes from date t onward,

in a way that is independent of outcomes prior to date t (owing to the additive

separability of the loss function (1.6)), and since the possible rational-expectations

equilibrium evolutions of inflation and output from date t onward depend only on the

cost-push shocks from date t onward, independently of the economy’s history prior to

date t (owing to the absence of any lagged variables in the aggregate-supply relation

(1.7)), in a Markov perfect equilibrium both πt and xt should depend only on the

current state vector st. Moreover, since both policymakers and the public should

understand that inflation and the output gap at any time are determined purely by

factors independent of past monetary policy, the policymaker at date t should not

believe that her period t decision has any consequences for the probability distribution

of inflation or the output gap in periods later than t, and private parties should have

expectations regarding inflation in periods later than t that are unaffected by policy

decisions in period t.

It follows that the discretionary policymaker in period t expects her decision to

12In the case of optimization without commitment, one can equivalently suppose that there is not
a single decisionmaker, but a sequence of decisionmakers, each of whom chooses policy for only one
period. This makes it clear that even though each decision results from optimization, an individual
decision may not be made in a way that takes account of the consequences of the decision for the
success of the “other” decisionmakers.

13There can be other equilibria of this “game” as well, but I shall not seek to characterize them
here. Apart from the appeal of this refinement of Nash equilibrium, I would assert that even the
possibility of a bad equilibrium as a result of discretionary optimization is a reason to try to design
a procedure that would exclude such an outcome; it is not necessary to argue that this particular
equilibrium is the inevitable outcome.

14In the case of the i.i.d. cost-push shocks considered above, st consists solely of the current value
of ut. But if ut follows an AR(k) process, st consists of (ut, ut−1, . . . , ut−(k−1)), and so on.
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affect only the values of the terms

π2
t + λ(xt − x∗)2 (1.17)

in the loss function (1.6); all other terms are either already given by the time of

the decision or expected to be determined by factors that will not be changed by the

current period’s decision. Inflation expectations Etπt+1 will be given by some quantity

πe
t that depends on the economy’s state in period t but that can be taken as given by

the policymaker. Hence the discretionary policymaker (correctly) understands that

she faces a tradeoff of the form

πt = κxt + βπe
t + ut (1.18)

between the achievable values of the two variables that can be affected by current

policy. The policymaker’s problem in period t is therefore simply to choose values

(πt, xt) that minimize (1.17) subject to the constraint (1.18). (The required choices

for it or mt in order to achieve this outcome are then implied by the other model

equations.) The solution to this problem is easily seen to be

πt =
λ

κ2 + λ
[κx∗ + βπe

t + ut]. (1.19)

A (Markov-perfect) rational-expectations equilibrium is then a pair of functions

π(st), π
e(st) such that (i) π(st) is the solution to (1.19) if one substitutes πe

t = πe(st),

and (ii) πe(st) = E(π(st+1)|st), given the law of motion for the exogenous state {st}.
The solution is easily seen to be

πt = π(st) ≡ µ̃

∞∑
j=0

βjµ̃j[κx∗ + Etut+j], (1.20)

where

µ̃ ≡ λ

κ2 + λ
.

One can show that µ < µ̃ < 1, where µ is the coefficient that appears in the optimal

policy equation (1.14).

There are a number of important differences between the evolution of inflation

chosen by the discretionary policymaker and the optimal commitment characterized

in the previous section. The deterministic component of the solution (1.20) is a

constant positive inflation rate (in the case that x∗ > 0). This is not only obviously
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Figure 2: The paths of inflation under discretionary policy, under unconstrained

Ramsey policy (the “time-zero-optimal” policy), and under a policy that is “optimal

from a timeless perspective.”

higher than the average inflation rate implied by (1.15) in the long run (which is

zero); one can show that it is higher than the inflation rate that is chosen under the

optimal commitment even initially. (Figure 2 illustrates the difference between the

time paths of the deterministic component of inflation under the two policies, in a

numerical example.15) This is the much-discussed “inflationary bias” of discretionary

monetary policy.

The outcome of discretionary optimization differs from optimal policy also with

regard to the response to cost-push shocks; and this second difference exists regardless

of the value of x∗. Equation (1.20) implies that under discretion, inflation at any date

t depends only on current and expected future cost-push shocks at that time. This

15This reproduces Figure 7.1 from Woodford (2003); the numerical assumptions are discussed
there. The figure also shows the path of inflation under a third alternative, optimal policy from a
“timeless perspective,” discussed in section 1.5.
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means that there is no correction for the effects of past shocks on the price level —

the rate of inflation at any point in time is independent of the past history of shocks

(except insofar as they may be reflected in current or expected future cost-push terms)

— as a consequence of which there will be a unit root in the path of the price level.

For example, in the case of i.i.d. cost-push shocks, (1.20) reduces to

πt = π̄ + µ̃ut,

where the average inflation rate is π̄ = µ̃κx∗ > 0. In this case, a transitory cost-

push shock immediately increases the log price level by more than under the optimal

commitment (by µ̃ut rather than only by µut), and the increase in the price level is

permanent, rather than being subsequently undone. (See Figure 1 for a comparison

between the responses under discretionary policy and those under optimal policy in

the numerical example; the discretionary responses are shown by the dashed line.)

These differences both follow from a single principle: the discretionary policy-

maker does not taken into account the consequences of (predictably) choosing a

higher inflation rate in the current period on expected inflation, and hence upon

the location of the Phillips-curve tradeoff, in the previous period. Because the ne-

glected effect of higher inflation on previous expected inflation is an adverse one, in

the case that x∗ > 0 (so that the policymaker would wish to shift the Phillips curve

down if possible), neglect of this effect leads the discretionary policymaker to choose

a higher inflation rate at all times than would be chosen under an optimal commit-

ment. And because this neglected effect is especially strong immediately following a

positive cost-push shock, the gap between the inflation rate chosen under discretion

and the one that would be chosen under an optimal policy is even larger than average

at such a time.

1.4 Implementing Optimal Policy through Forecast Target-

ing

Thus far, I have discussed the optimal policy commitment as if the policy authority

should solve a problem of the kind considered above at some initial date to deter-

mine the optimal state-contingent evolution of the various endogenous variables, and

then commit itself to follow those instructions forever after, simply looking up the

calculated optimal quantities for whatever state of the world it finds itself in at any
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later date. Such a thought experiment is useful for making clear the reason why a

policy authority should wish to arrange to behave in a different way than the one

that would result from discretionary optimization. But such an approach to policy is

not feasible in practice.

Actual policy deliberations are conducted sequentially, rather than once and for

all, for a simple reason: policymakers have a great deal of fine-grained information

about the specific situation that has arisen, once it arises, without having any corre-

sponding ability to list all of the situations that may arise very far in advance. Thus

it is desirable to be able to implement the optimal policy through a procedure that

only requires that the economy’s current state — including the expected future paths

of the relevant disturbances, conditional upon the state that has been reached — be

recognized once it has been reached, that allows a correct decision about the current

action to be reached based on this information. A view of the expected forward path

of policy, conditional upon current information, may also be reached, and in general

this will necessary in order to determine the right current action; but this need not

involve formulating a definite intention in advance about the responses to all of the

unexpected developments that may arise at future dates. At the same time, if it is

to implement the optimal policy, the sequential procedure must not be the kind of

sequential optimization that has been described above as “discretionary policy.”

An example of a suitable sequential procedure is similar to forecast targeting as

practiced by a number of central banks. In this approach, a contemplated forward

path for policy is judged correct to the extent that quantitative projections for one or

more economic variables, conditional on the contemplated policy, conform to a target

criterion.16 The optimal policy computed in section 1.2 can easily be described in

terms of the fulfillment of a target criterion. One easily sees that conditions (1.9)–

(1.11) imply that the joint evolution of inflation and the output gap must satisfy

πt + φ(xt − xt−1) = 0 (1.21)

for all t > t0, and

πt0 + φ(xt0 − x∗) = 0 (1.22)

in period t0, where φ ≡ λ/κ > 0. Conversely, in the case of any paths {πt, xt} sat-

isfying (1.21)–(1.22), there will exist a Lagrange multiplier process {ϕt} (suitably

16See, e.g., Svensson (1997, 2005), Svensson and Woodford (2005) and Woodford (2007).
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bounded if the inflation and output-gap processes are) such that the first-order con-

ditions (1.9)–(1.11) are satisfied in all periods. Hence verification that a particular

contemplated state-contingent evolution of inflation and output from period t0 on-

ward satisfy the target criteria (1.21)–(1.22) at all times, in addition to satisfying

certain bounds and being consistent with the structural relation (1.7) at all times

(and therefore representing a feasible equilibrium path for the economy), suffices to

ensure that the evolution in question is the optimal one.

The target criterion can furthermore be used as the basis for a sequential procedure

for policy deliberations. Suppose that at each date t at which another policy action

must be taken, the policy authority verifies the state of the economy at that time —

which in the present example means evaluating the state st that determines the set of

feasible forward paths for inflation and the output gap, and the value of xt−1, that is

needed to evaluate the target criterion for period t — and seeks to determine forward

paths for inflation and output (namely, the conditional expectations {Etπt+j, Etxt+j}
for all j ≥ 0) that are feasible and that would satisfy the target criterion at all

horizons. Assuming that t > t0, the latter requirement would mean that

Etπt+j + φ(Etxt+j − Etxt+j−1) = 0

at all horizons j ≥ 0. One can easily show that there is a unique bounded solution

for the forward paths of inflation and the output gap consistent with these require-

ments, for an arbitrary initial condition xt−1 and an arbitrary bounded forward path

{Etut+j} for the cost-push disturbance.17 This means that a commitment to organize

policy deliberations around the search for a forward path that conforms to the target

criterion is both feasible, and sufficient to determine the forward path and hence the

appropriate current action. (Associated with the unique forward paths for inflation

and the output gap there will also be unique forward paths for the nominal interest

rate and the money supply, so that the appropriate policy action will be determined,

regardless of which variable is considered to be the policy instrument.)

By proceeding in this way, the policy authority’s action at each date will be pre-

cisely the same as in the optimal equilibrium dynamics computed in section 1.2. Yet

17The calculation required to show this is exactly the same as the one used in section 1.2 to
compute the unique bounded evolution for the Lagrange multipliers consistent with the first-order
conditions. The conjunction of the target criterion with the structural equation (1.7) gives rise to a
stochastic difference equation for the evolution of the output gap that is of exactly the same form
as (1.12).
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it is never necessary to calculate anything but the conditional expectation of the

economy’s optimal forward path, looking forward from the particular state that has

been reached at a given point in time. Moreover, the target criterion provides a useful

way of communicating about the authority’s policy commitment, both internally and

with the public, since it can be stated in a way that does not involve any reference

to the economy’s state at the time of application of the rule: it simply states a rela-

tionship that the authority wishes to maintain between the paths of two endogenous

variables, the form of which will remain the same regardless of the disturbances that

may have affected the economy. This robustness of the optimal target criterion to

alternative views of the types of disturbances that have affected the economy in the

past or that are expected to affect it in the future is a particular advantage of this

way of describing a policy commitment.18

The possibility of describing optimal policy in terms of the fulfillment of a target

criterion is not special to the simple example treated above. Giannoni and Wood-

ford (2010) establish for a very general class of optimal stabilization policy problems,

including both backward-looking and forward-looking constraints, that it is possible

to choose a target criterion — which, as here, is a linear relation between a small

number of “target variables” that should be projected to hold at all future horizons

— with the properties that (i) there exists a unique forward path that fulfills the

target criterion, looking forward from any initial conditions (or at least from any

initial conditions close enough to the economy’s steady state, in the case of a nonlin-

ear model), and (ii) the state-contingent evolution so determined coincides with an

optimal policy commitment (or at least, coincides with it up to a linear approxima-

tion, in the case of a nonlinear model). In the case that the objective of policy is

given by (1.6), the optimal target criterion always involves only the projected paths

of inflation and the output gap, regardless of the complexity of the structural model

of inflation and output determination.19 When the model’s constraints are purely

forward-looking — by which I mean that past states have no consequences for the set

18For further comparison of this way of formulating a policy rule with other possibilities, see
Woodford (2007).

19More generally, if the objective of policy is a quadratic loss function, the optimal target criterion
involves only the paths of the “target variables” that appear in the loss function. The results of
Giannoni and Woodford (2010) also apply, however, to problems in which the objective of policy
is not given by a quadratic loss function; it may correspond, for example, to expected household
utility, as in the problem treated in section 2.
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of possible forward paths for the variables that matter to the policymaker’s objective

function, as in the case considered here — the optimal target criterion is necessarily

purely backward-looking, i.e., it is a linear relation between current and past values of

the target variables, as in equation (1.21). If, instead (as is more generally the case),

lagged variables enter the structural equations, the optimal target criterion involves

forecasts as well, for a finite number of periods into the future. (In the less relevant

case that the model’s constraints are purely backward-looking — i.e., they do not

involve expectations — then the optimal target criterion is purely forward-looking,

in the sense that it involves only the projected paths of the target variables in current

and future periods.) Examples of optimal target criteria for more complex models

are discussed below, and in Giannoni and Woodford (2005).

The targeting procedure described above can be viewed as a form of “flexible in-

flation targeting.”20 It is a form of inflation targeting because the target criterion to

which the policy authority commits itself, and that is to structure all policy deliber-

ations, implies that the projected rate of inflation, looking far enough in the future,

will never vary from a specific numerical value (namely, zero). This obviously follows

from the requirement that (1.21) be projected to hold at all horizons, as long as the

projected output gap is the same in all periods far enough in the future. Yet it is a

form of flexible inflation targeting because the long-run inflation target is not required

to hold at all times, nor is it even necessary for the central bank to do all in its power

to bring the inflation rate as close as possible to the long-run target as soon as possi-

ble; instead, temporary departures of the inflation rate from the long-run target are

tolerated to the extent that they are justified by projected near-term changes in the

output gap. The conception of “flexible inflation targeting” advocated here differs,

however, from the view that is popular at some central banks, according to which it

suffices to specify a particular future horizon at which the long-run inflation target

should be reached, without any need to specify what kinds of nearer-term projected

paths for the economy are acceptable. The optimal target criterion derived here de-

mands that a specific linear relation be verified both for nearer-term projections and

for projections farther in the future; and it is the requirement that this linear rela-

tionship between the inflation projection and the output-gap projection be satisfied

that determines how rapidly the inflation projection should converge to the long-run

inflation target. (The optimal rate of convergence will not in fact be the same regard-

20On the concept of flexible inflation targeting, see generally Svensson (2010).
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less of the nature of the cost-push disturbance. Thus a fixed-horizon commitment

to an inflation target will in general be simultaneously too vague a commitment to

uniquely determine an appropriate forward path (and in particular to determine the

appropriate current action), and too specific a commitment to be consistent with

optimal policy.)

While the optimal target criterion has been expressed in (1.21)–(1.22) as a flexible

inflation target, it can alternatively be expressed as a form of price level target. Note

that (1.21) can alternatively be written as p̃t = p̃t−1, where p̃t ≡ pt + φxt is an

“output-gap-adjusted price level.” Conditions (1.21)–(1.22) together can be seen to

hold if and only if

p̃t = p∗ (1.23)

for all t ≥ t0, where p∗ ≡ pt0−1 + φx∗. This is an example of the kind of policy rule

that Hall (1984) has called an “elastic price standard.” A target criterion of this form

makes it clear that the regime is one under which a rational long-run forecast of the

price level never changes (it is always equal to p∗).

Which way of expressing the optimal target criterion is better? A commitment to

the criterion (1.21)–(1.22) and a commitment to the criterion (1.23) are completely

equivalent to one another, under the assumption that the central bank will be able to

ensure that its target criterion is precisely fulfilled at all times. But this will surely

not be true in practice, for a variety of reasons; and in that case, it makes a difference

which criterion the central bank seeks to fulfill each time the decision process is

repeated. With target misses, the criterion (1.23) incorporates a commitment to

error correction — to aim at a lower rate of growth of the output-gap-adjusted price

level following a target overshoot, or a higher rate following a target undershoot, so

that over longer periods of time the cumulative growth is precisely the targeted rate

despite the target misses — while the criterion (1.21) instead allows target misses to

permanently shift the absolute level of prices.

A commitment to error-correction has important advantages from the standpoint

of robustness to possible errors in real-time policy judgments. For example, Gorod-

nichenko and Shapiro (2006) note that commitment to a price-level target reduces

the harm done by a poor real-time estimate of productivity (and hence of the natural

rate of output) by a central bank. If the private sector expects that inflation greater

than the central bank intended (owing to a failure to recognize how stimulative policy

really was, on account of an overly optimistic estimate of the natural rate of output)
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will cause the central bank to aim for lower inflation later, this will restrain wage

and price increases during the period when policy is overly stimulative. Hence a

commitment to error-correction would not only ensure that the central bank does not

exceed its long-run inflation target in the same way for many years in a row; in the

case of a forward-looking aggregate-supply tradeoff of the kind implied by (1.7), it

would also result in less excess inflation in the first place, for any given magnitude of

mis-estimate of the natural rate of output.21

Similarly, Aoki and Nikolov (2005) show that a price-level rule for monetary policy

is more robust to possible errors in the central bank’s economic model. They assume

that the central seeks to implement a target criterion — either (1.21) or (1.23) —

using a quantitative model to determine the level of the short-term nominal interest

rate that will result in inflation and output growth satisfying the criterion. They find

that the price-level target criterion leads to much better outcomes when the central

bank starts with initially incorrect coefficient estimates in the quantitative model

that it uses to calculate its policy, again because the commitment to error-correction

that is implied by the price-level target leads price-setters to behave in a way that

ameliorates the consequences of central-bank errors in its choice of the interest rate.

Eggertsson and Woodford (2003) reach a similar conclusion (as discussed further

in section 1.6) in the case that the lower bound on nominal interest rates sometimes

prevents the central bank from achieving its target. A central bank that is committed

to fulfill the criterion (1.21) whenever it can — and to simply keep interest rates as

low as possible if the target is undershot even with interest rates at the lower bound

— has very different consequences from a commitment to fulfill the criterion (1.23)

whenever possible. Following a period in which the lower bound has required a central

bank to undershoot its target, leading to both deflation and a negative output gap,

continued pursuit of (1.23) will require a period of “reflation” in which policy is more

inflationary than on average until the absolute level of the gap-adjusted price level

again catches up to the target level, whereas pursuit of (1.21) would actually require

policy to be more deflationary than average in the period just after the lower bound

ceases to bind, owing to the negative lagged output gap as a legacy of the period

21In section 1.7, I characterize optimal policy in the case of imperfect information about the
current state of the economy, including uncertainty about the current natural rate of output, and
show that optimal policy does indeed involve error-correction — in fact, a somewhat stronger form
of error-correction than even that implied by a simple price-level target.
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in the “liquidity trap.” A commitment to reflation is in fact highly desirable, and if

credible should go a long way toward mitigation of the effects of the binding lower

bound. Hence while neither (1.21) nor (1.23) is a fully optimal rule in the case that

the lower bound is sometimes a binding constraint, the latter rule provides a much

better approximation to optimal policy in this case.

1.5 Optimality from a “Timeless Perspective”

In the previous section I have described a sequential procedure that can be used to

bring about an optimal state-contingent evolution for the economy, assuming that the

central bank succeeds in conducting policy so that the target criterion is perfectly

fulfilled and that private agents have rational expectations. This requires, evidently,

that the sequential procedure is not equivalent to the “discretionary” approach in

which the policy committee seeks each period to determine the forward path for the

economy that minimizes (1.6). Yet the target criterion that is the focus of policy

deliberations under the recommended procedure can be viewed as a first-order con-

dition for the optimality of policy, so that the search for a forward path consistent

with the target criterion amounts to the solution of an optimization problem; it is

simply not the same optimization problem as the one assumed in our account of dis-

cretionary policy in section 1.3. Instead, the target criterion (1.21) that is required

to be satisfied at each horizon in the case of the decision process in any period t > t0

can be viewed as a sequence of first-order conditions that characterize the solution

to a problem which has been modified in order to internalize the consequences for

expectations prior to date t of the systematic character of the policy decision at date

t.

One way to modify the optimization problem in a way that makes the solution

to an optimization problem in period t coincide with the continuation of the optimal

state-contingent plan that would have been chosen in period t0 (assuming that a

once-and-for-all decision had been made then about the economy’s state-contingent

evolution forever after) is to add an additional constraint of the form

πt = π̄(xt−1; st), (1.24)

where

π̄(xt−1; st) ≡ (1− µ)
λ

κ
(xt−1 − x∗) + µ

∞∑
j=0

βjµj[κx∗ + Etut+j].
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Note that (1.24) is a condition that holds under the optimal state-contingent evo-

lution characterized earlier in every period t > t0.
22 If at date t one solves for the

forward paths for inflation and output from date t onward that minimize (1.6), sub-

ject to the constraint that one can only consider paths consistent with the initial

pre-commitment (1.24), then the solution to this problem will be precisely the for-

ward paths that conform to the target criterion (1.21) from date t onward. It will also

coincide with the continuation from date t onward of the state-contingent evolution

that would have been chosen at date t0 as the solution to the unconstrained Ramsey

policy problem.

I have elsewhere (Woodford, 1999) referred to policies that solve this kind of

modified optimization problem from some date forward as being “optimal from a

timeless perspective,” rather than from the perspective of the particular time at

which the policy is actually chosen. The idea is that such a policy, even if not what

the policy authority would choose if optimizing afresh at date t, represents a policy

that it should have been willing to commit itself to follow from date t onward if

the choice had been made at some indeterminate point in the past, when its choice

would have internalized the consequences of the policy for expectations prior to date

t. Policies can be shown to have this property without actually solving for an optimal

commitment at some earlier date, by looking for a policy that is optimal subject to

an initial pre-commitment that has the property of self-consistency, by which I mean

that the condition in question is one that a policymaker would choose to comply with

each period under the constrained-optimal policy. Condition (1.24) is an example of

a self-consistent initial pre-commitment, because in the solution to the constrained

optimization problem stated above, the inflation rate in each period from t onward

satisfies condition (1.24).23

The study of policies that are optimal in this modified sense is of possible interest

for several reasons. First of all, while the unconstrained Ramsey policy (as charac-

terized in section 1.2 above) involves different behavior initially than the rule that

the authority commits to follow later (illustrated by the difference between the target

criterion (1.22) for period t0 and the target criterion (1.21) for periods t > t0), the

policy that is optimal from a timeless perspective corresponds to a time-invariant

22The condition can be derived from (1.9), using (1.14) to substitute for ϕt and then using (1.10)
for period t− 1 to substitute for ϕt−1.

23For further discussion and additional examples, see Woodford (2003, chap. 7).
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policy rule (fulfillment of the target criterion (1.21) each period). This means that

policies that are optimal from a timeless perspective are easier to describe.24

This increase in the simplicity of the description of the optimal policy is especially

great in the case of a nonlinear structural model of the kind considered in section

2. Also in an exact nonlinear model, the unconstrained Ramsey policy will involve

an evolution of the kind shown in Figure 2 if every disturbance term takes its un-

conditional mean value: the initial inflation rate will be higher than the long-run

value, in order to exploit the Phillips curve initially (given that inflation expectations

prior to t0 cannot be affected by the policy chosen), while also obtaining the bene-

fits from a commitment to low inflation in later periods (when the consequences of

expected inflation must also be taken into account). But this means that even in a

local linear approximation to the optimal response of inflation and output to random

disturbances, the linear approximation would have to be taken not around a deter-

ministic steady state, but around this time-varying path, so that the derivatives that

provide the coefficients of the linear approximation would be slightly different at each

date. In the case of optimization subject to a self-consistent initial pre-commitment,

instead, the optimal policy will involve constant values of all endogenous variables in

the case that the exogenous disturbances take their mean values forever, and we can

compute a local linear approximation to the optimal policy through a perturbation

analysis conducted in the neighborhood of this deterministic steady state. This ap-

proach considerably simplifies the calculations involved in characterizing the optimal

policy, even if now the characterization only describes the asymptotic nature of the

unconstrained Ramsey policy, long enough after the initial date at which the optimal

commitment was originally chosen. It is for the sake of this computational advantage

that this approach is adopted in section 2, as in other studies of optimal policy in

microfounded models such as King et al. (2003).

Consideration of policies that are optimal from a timeless perspective also provides

a solution to an important conundrum for the theory of optimal stabilization policy.

If achievement of the benefits of commitment explained in section 1.3 requires that

a policy authority commit to a particular state-contingent policy for the indefinite

future at the initial date t0, what should happen if the policy authority learns at

24For example, in the deterministic case considered in Figure 2, an initial pre-commitment of the
form π0 = π̄ is self-consistent if and only if π̄ = 0. In this case, the constrained-optimal policy is
simply πt = 0 for all t ≥ 0, as shown in the figure.
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some later date that the model of the economy on the basis of which it calculated

the optimal policy commitment at date t0 is no longer accurate (if, indeed, it ever

was)? It is absurd to suppose that commitment should be possible because a policy

authority should have complete knowledge of the true model of the economy and this

truth should never change.

Yet it is also unsatisfactory to suppose that a commitment should be made that

applies only as long as the authority’s model of the economy does not change, with

an optimal commitment to be chosen afresh as the solution to an unconstrained

Ramsey problem whenever a new model is adopted. For even if it is not predictable

in advance exactly how one’s view of the truth will change, it is predictable that it

will change, if only because additional data should allow more precise estimation of

unknown structural parameters, even in a world without structural change. And if

it is known that re-optimization will occur periodically, and that an initial burst of

inflation will be chosen each time that it does — on the ground that in the “new”

optimization at some date t, inflation expectations prior to date t are taken as given

— then the inflation that occurs initially following a re-optimization should not in

fact be entirely unexpected. Thus the benefits from a commitment to low inflation

will not be fully achieved, nor will the assumptions made in the calculation of the

original Ramsey policy be correct. (Similarly, the benefits from a commitment to

subsequently reversing the price-level effects of cost-push shocks will not be fully

achieved, owing to the recognition that the follow-through on this commitment will

be truncated in the event that the central bank reconsiders its model.) The problem

is especially severe if one recognizes that new information about model parameters

will be received continually. If a central bank is authorized to re-optimize whenever

it changes its model, it would have a motive to re-optimize each period (using as

justification some small changes in model parameters) — in the absence, that is, of

a commitment not to behave in this way. But a “model-contingent commitment” of

this kind would be indistinguishable from discretion.

This problem can be solved if the central bank commits itself to select a new policy

that is again optimal from a timeless perspective each time it revises its model of the

economy. Under this principle, it would not matter if the central bank announces

an inconsequential “revision” of its model each period: assuming no material change

in the bank’s model of the economy, choice of a rule that is optimal from a timeless

perspective according to that model should lead it to choose a continuation of the
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same policy commitment each period, so that the outcome would be the same (and

should be forecasted to be the same) as if a policy commitment had simply been made

at an initial date with no allowance for subsequent reconsideration. On the other

hand, in the event of a genuine change in the bank’s model of the economy, a policy

rule (say, a new target criterion) appropriate to the new model could be adopted.

The expectation that this will happen from time to time should not undermine the

expectations that the policy commitment chosen under the original model was trying

to create, given that people should have no reason to expect the new policy rule to

differ in any particular direction from the one that is expected to be followed if there

is no model change.

This proposal leads us to be interested in the problem of finding a time-invariant

policy that is “optimal from a timeless perspective,” in the case of any given model of

the economy. Some have, however, objected to the selection of a policy rule according

to this criterion, on the ground that, even one wishes to choose a time-invariant policy

rule (unlike the unconstrained Ramsey policy), there will in general be other time-

invariant policy rules that would be superior in the sense of implying a lower expected

value of the loss function (1.6) at the time that the policy rule is chosen. For example,

in the case of a loss function with x∗ = 0, Blake (2001) and McCallum and Jensen

(2002) argue that even if one restricts one’s attention to policies described by time-

invariant linear target criteria linking πt, xt and xt−1, one can achieve a lower expected

value of (1.6) by requiring that

πt + φ(xt − βxt−1) = 0 (1.25)

hold each period, rather than (1.21).25 (Here φ ≡ λ/κ, just as in (1.21).) By com-

parison with a policy that requires that (1.21) hold for each t ≥ t0, the alternative

policy does not require inflation and the output gap to depart as far from their opti-

mal values in period t0 simply because the initial lagged output gap xt0−1 happens to

have been nonzero. (Recall that under the unconstrained Ramsey policy, the value

of xt0−1 would have no effect on policy from t0 onward at all.) The fact that criterion

(1.25) rather than (1.21) is applied in periods t > t0 increases expected losses (that

is why (1.21) holds for all t > t0 under the Ramsey policy), but given the constraint

25Under the criterion proposed by these authors, one would presumably also choose a long-run
inflation target slightly higher than zero, in the case that x∗ > 0; but I here consider only the case
in which x∗ = 0, following their exposition.
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that one must put the same coefficient on xt−1 in all periods, one can nonetheless

reduce the overall discounted sum of losses by using a coefficient slightly smaller than

the one in (1.21).

This result does not contradict any of our analysis above; the claim that a policy

under which (1.21) is required to hold in all periods is “optimal from a timeless

perspective” implies only that it minimizes (1.6) among the class of policies that

also conform to the additional constraint (1.24) — or alternatively, that it minimizes

a modified loss function, with an additional term added to impose a penalty for

violations of this initial pre-commitment — and not that it must minimize (1.6)

within a class of policies that do not all satisfy the initial pre-commitment. But does

the proposal of Blake, Jensen and McCallum provide a more attractive solution to

the problem of making continuation of the recommended policy rule time-consistent,

in the sense that a reconsideration at a later date should lead the policy authority to

choose precisely the same rule again, in the absence of any change in its model of the

economy?

In fact it does not. If one imagines that at any date t0, the authority may re-

consider its policy rule, and choose a new target criterion from among the general

family

πt + φ1xt − φ2xt−1 = 0 (1.26)

to apply for all t ≥ t0 so as to minimize (1.6) looking forward from that date, then if

the objective (1.6) is computed, for each candidate rule, conditional upon the current

values of (xt0−1, ut0),
26 then the values of the coefficients φ1, φ2 that solve this problem

will depend on the values of (xt0−1, ut0). (As explained above, there will be a tradeoff

between the choice of values that make policy closer to the Ramsey policy in periods

t > t0, and the choice of values that make policy closer to the Ramsey policy in period

t0. But the degree to which given coefficients make policy in period t0 different from

the Ramsey policy will depend on the value of xt0−1, and so the optimal balance to

strike in order to minimize (1.6) will depend on this.) This means that if one chooses

a policy at one date (based on the lagged output gap at that particular time), and

then reconsiders policy at some later date (when the lagged output gap will almost

surely be different, given that the policy rule does not fully stabilize the output gap),

26Here I follow Blake, Jensen and McCallum in assuming that {ut} is Markovian, so that the
value of ut0 contains all information available at date t0 about the future evolution of the cost-push
disturbance.
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one will not choose the same coefficients on the second occasion as on the first —

that is, one will not choose to continue following the policy rule chosen on the earlier

occasion.

Blake, Jensen and McCallum instead argue for a specific linear target criterion

(1.25), with coefficients that are independent of the initial conditions, because they

do not evaluate (1.6) conditional upon the actual initial conditions at the time of

the policy choice. Instead, they propose that in the case of each candidate policy

rule, the unconditional expectation of (1.6) should be evaluated, integrating over all

possible initial conditions (xt0−1, ut0) using the ergodic distribution associated with

the stationary rational-expectations equilibrium implied by the time-invariant policy

rule in question. This is a criterion that allows a particular policy rule to be chosen

simply on the basis of one’s model of the economy (including the stochastic process

for the exogenous disturbances), and independently of the actual state of the world in

which the choice is made. But note that a time-independent outcome is achieved only

by specifying that each time policy is reconsidered, (1.6) must be evaluated under

fictitious initial conditions — a sort of “veil of ignorance” in the terminology of Rawls

(1971) — rather than under the conditions that actually prevail at the time that the

policy is reconsidered. If one is willing to posit that candidate policies should be

evaluated from the standpoint of fictitious initial conditions, then the choice of (1.21)

can also be justified in that way: one would choose to conform to the target criterion

(1.21) for all t ≥ t0, if one evaluates this rule (relative to other possibilities) under

the fictitious initial condition xt0−1 = 0,27 regardless of what the actual value of xt0−1

may have been. (Note that if xt0−1 = 0, Ramsey policy requires precisely that (1.21)

hold for all t ≥ t0.)

Thus the preference of Blake, Jensen and McCallum for the alternative rule (1.25)

depends on their preferring to evaluate the loss function under alternative (but equally

fictitious) initial conditions. While they might argue that the choice of the ergodic

distribution is a reasonable choice, it has unappealing aspects. In particular, the

probability distribution over initial conditions that is assumed is different in the case

of each of the candidate rules that are to be evaluated, since they imply different

ergodic distributions for (xt−1, ut), so that a given rule might be judged best simply

because more favorable initial conditions are assumed when evaluating that rule.28

27More generally, if x∗ 6= 0, the required fictitious initial condition is that xt0−1 = x∗.
28Benigno and Woodford (2008) propose a solution to the problem of choosing an optimal policy
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Moreover, the criterion proposed by Blake, Jensen and McCallum leads to the choice

of a different rule than does “optimality from a timeless perspective” (as defined

above) only to the extent that the discount factor β is different from 1. (Note that as

β → 1, the criteria (1.21) and (1.25) become identical.) Since the empirically realistic

value of β will surely be quite close to 1, it is not obvious that the alternative criterion

would lead to policies that are very different, quantitatively.

1.6 Consequences of the Interest-Rate Lower Bound

In the above characterization of optimal policy, it has been taken for granted that

the evolution of the nominal interest rate required in order for the joint evolution

of inflation and output computed above to be consistent with equilibrium relation

(1.8) involves a non-negative nominal interest rate at all times, and hence that there

exists a path for the monetary base (and the interest rate paid on base money) that

can implement the required path of short-term nominal interest rates. But there

is no reason, in terms of the logic of New Keynesian model, why there cannot be

disturbances under which the optimal commitment characterized above would require

nominal interest rates to be negative. As a simple example, suppose that there are

no cost-push disturbances {ut}, but that the natural rate of interest rn
t is negative in

some periods.29 In the absence of cost-push shocks, the characterization of optimal

policy given above would require zero inflation (and a zero output gap) at all times.

But this will require a real interest rate equal to the natural rate at all times, and

hence sometimes negative; and it will also require that expected inflation be zero at

all times, so that a negative real interest rate is possible only if the nominal interest

rate is negative. But in any economy in which people have the option of holding

currency that earns a zero nominal return, there will be no monetary policy under

rule within some class of “simple” rules, under which the same probability distribution over initial
conditions is used to evaluate all rules within the candidate family of rules.

29Our assumptions above imply that in the steady state the natural rate of interest is positive,
so this problem can arise only in the case of disturbances that are sufficiently large. The economic
plausibility of disturbances of a magnitude sufficient for this to be true is discussed by Christiano
(2004). In practice, central banks have found themselves constrained by the zero lower bound only
in the aftermath of serious financial crises, as during the Great Depression, in Japan beginning in the
late 1990s, and during the current Great Recession. The way in which a sufficiently large financial
disturbance can cause the zero lower bound to become a binding constraint is discussed in C’urdia
and Woodford (2009b).
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which the nominal interest rate can be negative, so the “optimal” policy characterized

above would in this case be infeasible.

To treat such cases, it is necessary to add the zero bound (1.5) to the set of

constraints on feasible state-contingent evolutions of the variables {πt, xt, it}. The

constraint (1.8) also becomes a relevant (i.e., sometimes binding) constraint in this

case as well. The more general statement of the optimal policy problem is then

to find the state-contingent evolution {πt, xt, it} that minimizes (1.6) subject to the

constraints that (1.5), (1.7), and (1.8) be satisfied each period. Alternatively, the

problem can be stated as the choice of a state-contingent evolution {πt, xt} each

period that minimizes (1.6) subject to the constraints that (1.7) and

xt ≤ Etxt+1 + σ(Etπt+1 + rn
t ) (1.27)

be satisfied each period. Note that (1.27) suffices for it to be possible to find a

non-negative value of it each period that satisfies (1.8).

This problem is analyzed by Eggertsson and Woodford (2003).30 One can again

form a Lagrangian, and derive first-order conditions of the form

πt + ϕ1,t − ϕ1,t−1 − β−1σϕ2,t−1 = 0 (1.28)

λ(xt − x∗) + ϕ2,t − β−1ϕ2,t−1 − κϕ1,t = 0 (1.29)

ϕ2,t ≥ 0 (1.30)

for each t ≥ t0, together with the complementary slackness condition that at each

point in time, at least one of the conditions (1.27) and (1.30) must hold with equality.

Here ϕ1,t is the Lagrange multiplier associated with constraint (1.7), called simply

ϕt earlier; ϕ2t is the multiplier associated with constraint (1.27), which must ac-

cordingly equal zero except when this constraint binds; and in the case of Ramsey

policy (i.e., optimal policy under no initial pre-commitments), one substitutes the

initial values ϕ1,t0−1 = ϕ2,t0−1 = 0. Optimal policy is then characterized by the state-

contingent evolution for the variables {πt, xt, ϕ1,t, ϕ2,t} that satisfy conditions (1.7),

(1.27), (1.28)–(1.30) and the complementary slackness condition for all t ≥ t0.

30The treatment in that paper further develops the discussion in Woodford (1999) of the way in
which a binding zero lower bound changes the analysis of optimal policy in the basic New Keynesian
model.

32



Because of the inequality constraints and the complementary slackness condition,

these conditions are nonlinear, and so cannot be solved for the evolution of inflation

and output as linear functions of the disturbances, as in section 1.2.31 Nonetheless,

some general observations about the nature of optimal policy are possible. One is

that, as discussed above, optimal policy will generally be history-dependent, and

hence not implementable by any procedure which takes account only of the projected

future paths of inflation, output and the nominal interest rate in a purely forward-

looking way. In particular, the outcomes associated with Markov-perfect equilibrium

under a discretionary approach to policy will be sub-optimal, as this is an exam-

ple of a purely forward-looking procedure; instead, an optimal outcome will require

commitment. These features of optimal policy follow directly from the presence of

the lagged Lagrange multipliers associated with the forward-looking constraints in

the FOCs (1.28)–(1.30). (The fact that the multipliers are not always zero implies

that commitment is necessary; the fact that they are not constant, but necessarily

depend on the economy’s past state rather than on its current state, implies that

optimal policy must be history-dependent.) The fact that the zero lower bound can

sometimes bind introduces an additional non-zero lagged Lagrange multiplier into the

FOCs, relative to those discussed in section 1.2; hence there is an additional reason

for commitment and history-dependence to be important for optimal policy.

Indeed, the zero lower bound can make commitment and history-dependence im-

portant, even when they otherwise would not be. This can usefully be illustrated

by considering a simple case analyzed by Eggertsson and Woodford (2003). Suppose

that there are no cost-push shocks (ut = 0 at all times) and that the natural rate

of interest {rn
t } evolves in accordance with a two-state Markov process. Specifically,

suppose that rn
t is always equal to one of two possible values, a “normal” level r̄ > 0

and a “crisis” level r < 0.32 Suppose furthermore that when the economy is in the

“normal” state, the probability of a transition to the “crisis” state is vanishingly

small, but that when it is in the “crisis” state, there is only a probability 0 < ρ < 1

each period of remaining in that state in the following period. Finally, suppose that

the central bank’s objective is given by (1.6), but with x∗ = 0. The case in which

31Numerical solutions of these equations for particular illustrative cases are offered by Jung et al.

(2005), Eggertsson and Woodford (2003), Sugo and Teranishi (2005), and Adam and Billi (2006).
32The way in which a temporary disruption of credit markets can result in a temporarily negative

value of this state variable is discussed in Cúrdia and Woodford (2009b).
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x∗ = 0 is considered because in this case there would be no difference between the

outcomes under discretionary policy and under an optimal commitment — and there

would accordingly be no need for policy to be history-dependent — if the natural

rate of interest were to evolve according to some process under which rn
t were always

non-negative, so that the zero lower bound would not bind under optimal policy.

Even in this case, we shall see that discretionary policy is sub-optimal and optimal

policy is history-dependent, if a state exists in which the zero lower bound is a binding

constraint.

Let us first consider the Markov-perfect equilibrium under discretionary policy.

When the economy is in the “normal” state, it is expected to remain there with

(essentially) probability one from then on, and so discretionary policymaking leads

to the choice of a policy under which inflation is zero and is expected to equal zero

(essentially with probability one) from then on; this equilibrium involves a zero out-

put gap and a nominal interest rate each period equal to r̄ > 0, so that the zero

lower bound does not bind in this state. Let us now consider the discretionary pol-

icymaker’s choice in the “crisis” state (supposing that such a state occurs, despite

having been considered very unlikely ex ante), taking as given that once reversion to

the “normal” state occurs, policy will be conducted in the way just described: there

will be immediate reversion to the optimal (zero-inflation) steady state. Looking for-

ward from some date t at which the economy is in the “crisis” state, let the sequences

{πc
j, x

c
j, i

c
j} indicate the anticipated values of the variables (πt+j, xt+j, it+j) at each fu-

ture date conditional upon the economy still being in the “crisis” state at that date.

Then any feasible policy during the “crisis”, consistent with rational expectations

and with our above assumption about discretionary policy in the event of reversion

to the “normal” state corresponds to sequences that satisfy the conditions

πc
j = κxc

j + βρπc
j+1, (1.31)

xc
j = ρxc

j+1 − σ(icj − ρπc
j+1 − r), (1.32)

icj ≥ 0 (1.33)

for all j ≥ 0.

The system of difference equations (1.31)–(1.32) has a determinate solution (i.e., a

unique bounded solution) for the sequences {πc
j, x

c
j} corresponding to any anticipated

forward path for policy specified by a bounded sequence {icj} if and only if the model
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parameters satisfy the inequality

ρ

(1− ρ)(1− βρ)
< κ−1σ−1, (1.34)

which implies that the “crisis” state is not expected to be too persistent. I shall

assume that (1.34) holds in the subsequent discussion, so that there is a determinate

outcome associated with any given path of the policy rate during the “crisis,” and in

particular with the assumption that the policy rate remains pinned at the zero lower

bound for as long as the crisis persists.

The unique bounded outcome associated with the expectation that icj = 0 for all

j will then be one under which πc
j = πc, xc

j = xc for all j, where the constant values

are given by

πc =

[
(1− βρ)(1− ρ)

κσ
− ρ

]−1

r < 0,

xc =
1− βρ

κ
πc < 0.

(The signs given here follow from assumption (1.34).) Moreover, one can show under

assumption (1.34) that any forward path {icj} in which icj > 0 for some j must involve

even greater deflation and even greater negative output gap than in this solution;

hence under the assumed policy objective, this outcome is the best feasible outcome,

given the assumption of immediate reversion to the zero-inflation steady state upon

the economy’s reversion to its “normal” state. In fact, since the solution paths {πc
j, x

c
j}

are monotonic functions of each of the elements in the assumed path {icj} for policy,

it follows that under any assumption about policy for j > k, the optimal policy for

j ≤ k will be to choose icj = 0 for all periods j ≤ k. Hence under our Markovian

assumption about discretionary policy after reversion to the “normal” state, there

is a unique solution for discretionary policy in the “crisis” state (even without the

restriction to Markovian policies), which is for the policy rate to equal zero as long

as the economy remains in the “crisis” state.

In this model, discretionary policy results in both deflation and a negative output

gap, that persist as long as the “crisis” state persists. Moreover, it is possible to

find parameter values under which the predicted output collapse and deflation are

quite severe, even if the negative value of r is quite modest.33 Indeed, one observes

33Denes and Eggertsson (2009) discuss parameter values under which a two-state model similar to
this one can predict an output collapse and decline in prices of the magnitudes observed in the US
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that as ρ approaches the upper bound defined by (1.34), the predicted values of πc

and xc approach −∞, for fixed values of r and the other model parameters.34 This

may make it plausible that the Markov-perfect discretionary outcome is not in fact

the best possible outcome achievable (under rational expectations) by an appropriate

monetary policy. However, the discussion above makes it clear that the achievement

of any better outcome must involve an anticipation of a different approach to policy

after the economy permanently reverts to the “normal” state. Such a commitment

to a history-dependent policy can be especially welfare-enhancing in a situation like

the one just considered, because the central bank is so severely constrained in what

it can achieve by varying current policy while at the zero lower bound.

The kind of commitment that improves welfare (if credible) is one that implies

that inflation will be allowed to temporarily exceed its long-run target, and that

a temporary output boom will accordingly be created through monetary policy, in

the period immediately following the economy’s reversion to the “normal” state of

fundamentals. Both a higher expected inflation rate post-reversion and a higher ex-

pected level of output post-reversion (implying a lower marginal utility of income

post-reversion) will reduce incentives for saving while the economy remains in the

“crisis” state, leading to greater capacity utilization and less incentives to cut prices;

less pessimism about the degree of deflation and output collapse in the case that the

“crisis” state persists then becomes a further reason for less deflation and output col-

lapse, in a “virtuous circle.” It is possible for a substantial improvement in economic

conditions during the “crisis” to occur as a result of a credible commitment to even a

modest boom and period of reflation following the economy’s reversion to “normal”

fundamentals, as illustrated by Figure 3, reproduced from Eggertsson and Woodford

(2003).35

Here the equilibrium outcomes under the optimal policy commitment (the solid

lines, indicating the solution to equations (1.28)–(1.30) together with the comple-

mentary slackness condition) are compared to those under the Markov-perfect discre-

during the Great Depression. Under their modal parameter values, the value of r is only -4 percent
per annum.

34Of course, the log-linear approximations assumed in the New Keynesian model of this section will
surely become highly inaccurate before that limit is reached. Hence we cannot really say exactly
what should happen in equilibrium in this limit on the basis of the calculations reported in this
section.

35The numerical parameter values assumed in this calculation are discussed there.
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Figure 3: Dynamics under an optimal policy commitment compared with the equilib-

rium outcome under discretionary policy (or commitment to a strict inflation target

π∗ = 0), for the case in which the disturbance lasts for exactly 15 quarters.

tionary equilibrium (the dashed lines, corresponding to a policy that can equivalently

be described as a forward-looking inflation targeting regime with a zero inflation tar-

get); the outcomes are plotted for the case in which the random realization of the

length of the crisis is 15 quarters (though this is not assumed to have been known

ex ante by either the private sector or the central bank). Under the optimal com-

mitment, the policy rate is kept at zero for another year, even though it would have

been possible to return immediately to the zero-inflation steady state in quarter 15,

as occurs under the discretionary policy. This results in a brief period in which infla-

tion exceeds its long-run value and output exceeds the natural rate, but inflation is

stabilized at zero fairly soon; nonetheless, the commitment not to return immediately

to the zero-inflation steady state as soon as this is possible dramatically reduces the

degree to which either prices or output fall during the years of the crisis. The dra-
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matic results in Figure 3 depend on parameter values, of course: in particular, they

depend on assuming that the persistence of the “crisis” state is not too far below

the upper bound specified in (1.34). But it is worth noting that according to this

analysis, the efficacy of such a commitment to reflationary policy is greatest precisely

in those cases in which the risk of a severe crisis is greatest, that is, in which even a

modest decline in rn
t can trigger a severe output collapse and deflation.

Once again, the optimal policy commitment can usefully be formulated in terms

of a target criterion. Eggertsson and Woodford (2003) show that under quite general

assumptions about the exogenous disturbance processes {rn
t , ut} — and not just in

the highly specific example discussed above — the optimal policy commitment can be

expressed in the following way. The central bank commits itself to use its interest-rate

instrument each period so as to cause the output-gap-adjusted price level p̃t (again

defined as in (1.23)) to achieve a target p∗t that can be announced in advance on the

basis of outcomes in period t − 1, if this is achievable with a non-negative level of

the policy rate; if the zero lower bound makes achievement of the target infeasible,

the interest rate should at any rate be set to zero. The price-level target for the next

period is then adjusted based on the degree to which the target has been achieved in

the current period, in accordance with the formula

p∗t+1 = p∗t + β−1(1 + κσ)∆t − β−1∆t−1, (1.35)

where ∆t ≡ p∗t − p̃t is the (absolute value of the) period t target shortfall. (If the

central bank behaves in this way each period, then it can be shown that there exist

Lagrange multipliers {ϕ1,t, ϕ2,t} such that the FOCs (1.28)–(1.30) and the comple-

mentary slackness condition are satisfied in all periods.) Under this rule, a period

in which the zero lower bound prevents achievement of the target for a time results

in the price-level target (and hence the economy’s long-run price level) being ratch-

eted up to a permanently higher level, to an extent that is greater the greater the

target shortfall and the longer the period for which the target shortfalls persist; but

over a period in which the zero lower bound never binds, the target is not adjusted.

In particular, if the zero lower bound never binds, as assumed in section 1.2, then

the optimal target criterion reduces once again to the simple requirement (1.23), as

derived above.

I have noted in section 1.4 that in the case that the zero lower bound never binds,

the optimal policy commitment in the basic New Keynesian model can equivalently
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be expressed either by a “flexible inflation target” (1.21) or by a “price-level target”

(1.23). In the case that the target in question can always be achieved, these two

commitments have identical implications. But if the zero lower bound sometimes

requires undershooting of the target, they are not equivalent, and in this case their

welfare consequences are quite different. Neither, of course, is precisely optimal in the

more general case. But the pursuit of an inflation target of the form (1.21) whenever

it is possible to hit the target, with no corrections for past target misses, is a much

worse policy than the pursuit of a fixed price-level target (1.23) whenever it is possible

to hit the target, again without any correction for past target misses. In the two-state

Markov chain example discussed above, the simple inflation targeting policy would be

even worse than the discretionary policy discussed above (which is equivalent to the

pursuit of a strict inflation target, with no adjustment for the change in the output

gap); for at the time of the reversion to the “normal” state, this policy would require

even tighter policy than the “π∗ = 0” policy shown in Figure 3, as the fact that the

output gap has been negative during the crisis would require the central bank to aim

for negative inflation and/or a negative output gap immediately following reversion

as well. A commitment to this kind of “gradualism” would create exactly the kind

of expectations that make the crisis even worse.36

Instead, while the simple price-level target criterion (1.23) is not fully optimal in

the more general case considered in this section, it represents a great improvement

upon discretionary policy, since it incorporates the type of history-dependence that is

desirable: a commitment to compensate for any target undershooting required by the

zero lower bound by subsequently pursuing more inflation than would otherwise be

desirable, in order to return the gap-adjusted price level to its previous target. Ideally,

the price-level target would even be ratcheted up slightly owing to the target shortfall;

but what it is most important is that it not be reduced simply as a consequence

of having undershot the target in the past. Such accommodation of past target

36A commitment to satisfy the target criterion (1.21) is optimal in the case discussed in section
1.4 because a negative past output gap will have occurred in equilibrium only because of an adverse
cost-push shock in the recent past, and it will have been beneficial in that situation to have had
people expect that subsequent expenditure growth will be restrained, in order to reduce the extent
to which output had to be contracted in order to contain inflation. But if the negative output
gap in the past occurred owing to a target shortfall required by the zero lower bound, the kind of
expectations regarding subsequent policy that one would have wished to create in order to mitigate
the distortion are exactly the opposite.
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shortfalls creates expectations of the type that make the distortions resulting from

the zero lower bound much more severe. At least in the numerical example considered

by Eggertsson and Woodford (2003), a simple price-level target of the form (1.23)

achieves nearly all of the welfare gains that are possible in principle under policy

commitment.37 Thus while it is not true in the more general case considered in this

section that the long-run price level is constant under optimal policy, it remains true

that a shift from a forward-looking inflation target to a price-level target introduces

history-dependence of a highly desirable kind. Indeed, the advantages of a price-level

target are particularly great in the case that the possibility of an occasionally binding

zero lower bound is a serious concern.

1.7 Optimal Policy Under Imperfect Information

In the characterization of optimal policy given above, I have assumed that the central

bank is fully aware of the state of the economy at each time that it makes a policy

decision. This has simplified the analysis, as it was possible simply to choose the

best among all possible rational-expectations equilibria, taking it for granted that

the central bank possesses the information necessary to adjust its instrument in the

way required in order to implement any given equilibrium. But in practice, while

central banks devote considerable resources to obtaining precise information about

current economic conditions, they cannot be assumed to be perfectly informed about

the values of all of the state variables that are relevant according to theory of optimal

policy — for example, not only about how much the aggregate-supply curve has been

shifted by a given disturbance, but about how persistent people are expecting the shift

to be — and the necessity to make policy decisions before the correct values of state

variables can be known with certainty is an important consideration in the choice

of a desirable approach to the conduct of policy. However, the methods illustrated

37Levin et al. (2009) consider an alternative parameterization — in particular, an alternative
parameterization of the disturbance process — under which a simple price-level target is not as
close an approximation to fully optimal policy. Note that their parameterization is again one in
which there are substantial welfare gains from commitment to a history-dependent policy, and the
kind of commitment that is needed is commitment to a temporary period of reflation following a
crisis in which the zero lower bound constrains policy. But in their example, optimal policy must
permanently raise the price level in compensation for the earlier target shortfalls to a greater extent
than is true in the case shown in Figure 3.
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above have direct extensions to the case of imperfect information, at the cost of some

additional complexity.

Here I shall illustrate how the form of an optimal policy rule is affected by assump-

tions about the central bank’s information set by reconsidering the policy problem

treated in section 1.2 under an alternative information assumption. Let us suppose

that all private agents share a common information set, that we shall consider to

represent “full information” (since the central bank’s information set at each point in

time is a subset of this private information set), and for any random variable zτ , let

Etzτ denote the conditional expectation of this variable with respect to the private

information set in period t. Let us further suppose that the central bank must choose

it, the period t value of its policy instrument, on the basis of an information set

that includes full awareness of the economy’s state in period t − 1, but only partial

information (if any) about those random shocks that are realized in period t; and

let zτ |t be the conditional expectation of the variable zτ with respect to the central

bank’s information when choosing the value of it. Thus if we let It denote the private

sector’s information set in period t and Icb
t the central bank’s information set when

setting it, then there is a strict nesting of the sequence of information sets

. . . ⊂ Icb
t−1 ⊂ It−1 ⊂ Icb

t ⊂ It ⊂ Icb
t+1 ⊂ It+1 ⊂ . . .

which implies that [Etzτ ]|t = zτ |t, Et[zτ |t+1] = Etzτ , and so on.

Let us consider the problem of adjusting the path of {it} on the basis of the

central bank’s partial information38 so as to minimize the objective (1.6),39 given

that the paths of inflation and output will be determined by the structural relations

(1.7)–(1.8). As discussed by Svensson and Woodford (2003, 2004) in the context of a

more general class of problems of this kind, we can compute FOCs for optimal policy

using a Lagrangian of the form

Lt0 = Et0

∞∑
t=0

βt−t0

{
1

2
[π2

t + λ(xt − x∗)2] + ϕ1,t[πt − κxt − βπt+1]

+ϕ2,t[xt − xt+1 + σ(it − πt+1)]
}

,

38Contrary to our conclusion in the full-information case, it now matters what we assume the
central bank’s policy instrument to be; in general, we will not obtain the same optimal equilibrium
evolution for the economy if the central bank must set the nominal interest rate on the basis of its
information set as if it must set the money supply on the basis of its information set.

39The expectation in the objective must now be understood to be conditional upon the central
bank’s information set at the time of choice of the policy commitment.
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where ϕ1,t, ϕ2,t are now Lagrange multipliers associated with the two constraints, as

in the previous section.

The FOCs (obtained by differentiating the Lagrangian with respect to πt, xt and

it respectively are again of the form (1.28)–(1.29), but with (1.30) replaced in this

case by

ϕ2,t|t = 0. (1.36)

Here (1.36) need hold only conditional upon the central bank’s period t information

set, because the central bank can only adjust the value of it separately across states

that it is able to distinguish using that information. Note that if the central bank

has full information, condition (1.36) becomes simply ϕ2,t = 0, and the FOCs reduce

to the system (1.9)–(1.10) obtained in section 1.2. But in the case of imperfect

information, the multiplier ϕ2,t is in general not equal to zero, as the constraint

associated with the “intertemporal IS relation” owing to the constraints on the central

bank’s ability to adjust its instrument as flexibly as it would under the full-information

optimal policy.

The state-contingent evolution of the endogenous variables (including the central

bank’s instrument) can be determined by solving for processes {πt, xt, it, ϕ1,t, ϕ2,t}
that satisfy conditions (1.7)–(1.8), (1.28)–(1.29) and (1.36) each period, subject to

the requirements that (πt, xt, ϕ1,t, ϕ2,t) depend only on It, and that it depends only

on Icb
t , for some specification of the exogenous disturbance processes and of the way

in which the indicator variables observed by the central bank (that may include

noisy observations of current-period endogenous or exogenous variables) depend on

the economy’s state. Svensson and Woodford (2004) present a general method that

can be used to calculate such an equilibrium, if the central bank’s indicators are

linear functions of the state variables plus Gaussian measurement error, so that the

Kalman filter can be used to calculate the central bank’s conditional expectations as

linear functions of the indicators; Aoki (2006) illustrates its application to the model

described in this section, under a particular assumption about the central bank’s

information set.40

Rather than discuss these calculations further, I shall simply observe that once

again, it is possible to describe optimal policy in terms of a target criterion, and once

40In Aoki’s model, the central bank’s information set when choosing it consists of complete knowl-
edge of the period t−1 state of the economy, plus noisy observations of πt and xt. The central bank
is assumed not to directly observe any of the period t exogenous disturbances, even imprecisely.
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again the form of the optimal target criterion does not depend on the specification

of the disturbance processes. In the present case, the optimal target criterion is also

independent of the specification of the central bank’s information set. The targeting

rule can be expressed in the following way: in any period t, the central bank should

choose the value of it so as to ensure that

p̃t|t = p∗t (1.37)

conditional upon its own expectations, where p̃t is again the same output-gap-adjusted

price level as in (1.23). The target p∗t is a function solely of the economy’s state at

t− 1, and evolves according the same law of motion (1.35) as in the previous section,

where ∆t is again the period t target shortfall (p∗t − p̃t), observed by the central bank

by the time that it chooses the value of it+1. If the variables {p̃t, p̃t|t, p∗t} evolve over

time in accordance with (1.35) and (1.37), then it is possible to define multipliers

{ϕ1,t, ϕ2,t} such that the FOCs (1.28)–(1.29) and (1.36) are satisfied each period;

hence non-explosive dynamics consistent with the target criterion will necessarily

correspond to the optimal equilibrium.

It is worth noting that the fact that the central bank will generally fail to precisely

achieve its target for the gap-adjusted price level owing to the incompleteness of its

information about the current state is not a reason for a central bank to choose a

forward-looking inflation target (and “let bygones be bygones”) rather than a price-

level target. In fact, the optimal response to this problem is for the central bank to

commit not only to subsequently correct past target misses (by continuing to aim

at the same price-level target as before), but actually to over-correct for them —

permanently reducing its price-level target as a result of having allowed the gap-

adjusted price level to overshoot the target, and permanently increasing it as a result

of allowing it to be undershot.

It is interesting to note that the optimal target criterion has exactly the same

form in the case that the central bank can fail to hit its target owing to imperfect

information as in the case where it can fail to hit its target due to the zero lower

bound. Thus we have a single target criterion that is optimal in both cases, and

that also reduces (in the case of full information and shocks small enough for the

zero lower bound never to be a problem) to the simpler target criterion discussed in

section 1.4. Hence description of policy in terms of a target criterion allows a unified

characterization of optimal policy in all of these cases. In section 3, it is shown that
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the same target criterion is optimal in an even broader class of cases.

2 Stabilization and Welfare

In the previous section, I have simply assumed a quadratic objective for stabilization

policy, that incorporates concerns that are clearly at the forefront of many policy de-

liberations inside central banks. In this section, I instead consider how the normative

theory of monetary stabilization can be developed if one takes the objective to be

the maximization of the average expected utility of households — that is, the private

objectives that are assumed in deriving the behavioral relations that determine the

effects of alternative monetary policies — as is done in the modern theory of public

finance. This discussion requires a more explicit treatment of the microfoundations of

the basic New Keynesian model, which then provide the basis for a welfare-theoretic

treatment of the optimal policy problem as well.

2.1 Microfoundations of the Basic New Keynesian Model

I shall begin by deriving exact structural relations for the basic New Keynesian model.

(As discussed further below, the structural relations assumed in section 1 represent a

log-linearization of these relations, around a zero-inflation steady state; but the log-

linearized equations alone do not suffice for welfare analysis of alternative stabilization

policies, which requires at least a second-order approximation.) The exposition here

follows Benigno and Woodford (2005a), who write the exact structural relations in a

recursive form (with only one-period-ahead expectations of a finite number of suffi-

cient statistics mattering for equilibrium determination each period) that facilitates

the definition of optimal policy from a timeless perspective, and perturbation analysis

of the system of equations that characterize optimal policy.41

The economy is made up of identical infinite-lived households, each of which seeks

to maximize

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj

]
, (2.1)

41The model presented here is a variant of the monetary DSGE model originally proposed by
Yun (1996). Goodfriend and King (1997) is an important early discussion of optimal policy in the
context of this model.
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where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum of

differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
θ−1

θ di

] θ
θ−1

, (2.2)

with an elasticity of substitution equal to θ > 1, Ht(j) is the quantity supplied of

labor of type j, and ξt is a vector of exogenous disturbances, which may include

random shifts of either of the functions ũ or ṽ.

Each differentiated good is supplied by a single monopolistically competitive pro-

ducer. There are assumed to be many goods in each of an infinite number of “in-

dustries”; the goods in each industry j are produced using a type of labor that is

specific to that industry, and suppliers in the same industry also change their prices

at the same time.42 The representative household supplies all types of labor as well

as consuming all types of goods. To simplify the algebraic form of the results, it is

convenient to assume isoelastic functional forms,43

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1 , (2.3)

ṽ(Ht; ξt) ≡
λ

1 + ν
H1+ν

t H̄−ν
t , (2.4)

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes. (Here C̄t

and H̄t are both among the exogenous disturbances included in the vector ξt.)

I assume a common technology for the production of all goods, in which (industry-

specific) labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/φ, (2.5)

where At is an exogenously varying technology factor, and φ > 1. The Dixit-Stiglitz

preferences (2.2)44 imply that the quantity demanded of each individual good i will

42The assumption of segmented factor markets for different “industries” is inessential to the results
obtained here, but allows a numerical calibration of the model that implies a speed of adjustment
of the general price level more in line with aggregate time series evidence. For further discussion,
see Woodford (2003, chap. 3).

43Benigno and Woodford (2004) extend the results of this section to the case of more general
preferences and production technologies.

44In addition to assuming that household utility depends only on the quantity obtained of Ct,

I assume that the government also cares only about the quantity obtained of the composite good
defined by (2.2), and that it seeks to obtain this good through a minimum-cost combination of
purchases of individual goods.

45



equal

yt(i) = Yt

(
pt(i)

Pt

)−θ

, (2.6)

where Yt is the total demand for the composite good defined in (2.2), pt(i) is the

(money) price of the individual good, and Pt is the price index,

Pt ≡
[∫ 1

0

pt(i)
1−θdi

] 1
1−θ

, (2.7)

corresponding to the minimum cost for which a unit of the composite good can be

purchased in period t. Total demand is given by

Yt = Ct + Gt, (2.8)

where Gt is the quantity of the composite good purchased by the government, treated

here as an exogenous disturbance process.

The producers in each industry fix the prices of their goods in monetary units for

a random interval of time, as in the model of staggered pricing introduced by Calvo

(1983). Let 0 ≤ α < 1 be the fraction of prices that remain unchanged in any period.

A supplier that changes its price in period t chooses its new price pt(i) to maximize

Et

∞∑
T=t

αT−tQt,T Π(pt(i), p
j
T , PT ; YT , ξT ), (2.9)

where Qt,T is the stochastic discount factor by which financial markets discount ran-

dom nominal income in period T to determine the nominal value of a claim to such

income in period t, and αT−t is the probability that a price chosen in period t will

not have been revised by period T . In equilibrium, this discount factor is given by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

. (2.10)

Profits are equal to after-tax sales revenues net of the wage bill. Sales revenues

are determined by the demand function (2.6), so that (nominal) after-tax revenue

equals

(1− τ t)pt(i)Yt

(
pt(i)

Pt

)−θ

.
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Here τ t is a proportional tax on sales revenues in period t; {τ t} is treated as an

exogenous disturbance process, taken as given by the monetary policymaker.45 I

assume that τ t fluctuates over a small interval around a non-zero steady-state level

τ̄ . The real wage demanded for labor of type j is assumed to be given by

wt(j) = µw
t

ṽh(Ht(j); ξt)

ũc(Ct; ξt)
, (2.11)

where µw
t ≥ 1 is an exogenous markup factor in the labor market (allowed to vary

over time, but assumed common to all labor markets),46 and firms are assumed to

be wage-takers. I allow for exogenous variations in both the tax rate and the wage

markup in order to include the possibility of “pure cost-push shocks” that affect

equilibrium pricing behavior while implying no change in the efficient allocation of

resources.47

Substituting the assumed functional forms for preferences and technology, the

function

Π(p, pj, P ; Y, ξ) ≡ (1− τ)pY (p/P )−θ

−λµwP

(
pj

P

)−θ(1+ω)

H̄−ν

(
Y

A

)1+ω (
Y −G

C̄

)σ̃−1

(2.12)

then describes the after-tax nominal profits of a supplier with price p, in an industry

with common price pj, when the aggregate price index is equal to P and aggregate

demand is equal to Y . Here ω ≡ φ(1+ν)−1 > 0 is the elasticity of real marginal cost

in an industry with respect to industry output. The vector of exogenous disturbances

ξt now includes At, Gt, τ t and µw
t , in addition to the preference shocks.

Each of the suppliers that revise their prices in period t chooses the same new

price p∗t , that maximizes (2.9). Note that supplier i’s profits are a concave function of

the quantity sold yt(i), since revenues are proportional to yt(i)
θ−1

θ and hence concave

in yt(i), while costs are convex in yt(i). Moreover, since yt(i) is proportional to

45The case in which the tax rate is also chosen optimally in response to other shocks is treated in
Benigno and Woodford (2003). See also Canzoneri et al. (2010).

46In the case that we assume that µw
t = 1 at all times, our model is one in which both households

and firms are wage-takers, or there is efficient contracting between them. Note that apart from the
markup factor, the right-hand side of (2.11) represents the representative household’s marginal rate
of substitution between labor of type j and consumption of the composite good.

47It is shown below, however, that these two disturbances are not, in general, the only reasons for
the existence of a “cost-push” term in the aggregate-supply relation (1.7).
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pt(i)
−θ, the profit function is also concave in pt(i)

−θ. The first-order condition for the

optimal choice of the price pt(i) is the same as the one with respect to pt(i)
−θ; hence

the first-order condition with respect to pt(i),

Et

∞∑
T=t

αT−tQt,T Π1(pt(i), p
j
T , PT ; YT , ξT ) = 0,

is both necessary and sufficient for an optimum. The equilibrium choice p∗t (which

is the same for each firm in industry j) is the solution to the equation obtained by

substituting pt(i) = pj
t = p∗t into the above first-order condition.

Under the assumed isoelastic functional forms, the optimal choice has a closed-

form solution
p∗t
Pt

=

(
Kt

Ft

) 1
1+ωθ

, (2.13)

where Ft and Kt are functions of current aggregate output Yt, the current exogenous

state ξt, and the expected future evolution of inflation, output, and disturbances,

defined by

Ft ≡ Et

∞∑
T=t

(αβ)T−tf(YT ; ξT )

(
PT

Pt

)θ−1

, (2.14)

Kt ≡ Et

∞∑
T=t

(αβ)T−tk(YT ; ξT )

(
PT

Pt

)θ(1+ω)

, (2.15)

in which expressions48

f(Y ; ξ) ≡ (1− τ)C̄ σ̃−1

(Y −G)−σ̃−1

Y, (2.16)

k(Y ; ξ) ≡ θ

θ − 1
λφ

µw

A1+ωH̄ν
Y 1+ω. (2.17)

Relations (2.14)–(2.15) can instead be written in the recursive form

Ft = f(Yt; ξt) + αβEt[Π
θ−1
t+1Ft+1], (2.18)

Kt = k(Yt; ξt) + αβEt[Π
θ(1+ω)
t+1 Kt+1], (2.19)

48Note that the definition of the function f(Y ; ξ) here differs from that in Benigno and Woodford
(2005a). There, the function here called f(Y ; ξ) is written as (1− τ)f(Y ; ξ), following the notation
in Benigno and Woodford (2003), where the tax rate τ t is a policy choice rather than an exogenous
disturbance. Here τ t is included in the vector ξt.
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where Πt ≡ Pt/Pt−1. It is evident that (2.14) implies (2.18); but one can also show

that processes that satisfy (2.18) each period, together with certain bounds, must

satisfy (2.14). Since we are interested below only in the characterization of bounded

equilibria, we can omit the statement of the bounds that are implied by the existence

of well-behaved expressions on the right-hand sides of (2.14) and (2.15), and treat

(2.18)–(2.19) as necessary and sufficient for processes {Ft, Kt} to measure the relevant

marginal conditions for optimal price-setting.

The price index then evolves according to a law of motion

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ , (2.20)

as a consequence of (2.7). Substitution of (2.13) into (2.20) implies that equilibrium

inflation in any period is given by

1− αΠθ−1
t

1− α
=

(
Ft

Kt

) θ−1
1+ωθ

, (2.21)

where Πt ≡ Pt/Pt−1. This defines a short-run aggregate supply relation between infla-

tion and output, given the current disturbances ξt, and expectations regarding future

inflation, output, and disturbances. Condition (2.21), together with (2.18)–(2.19),

represents a nonlinear version of the relation (1.1) in the log-linear New Keynesian

model of section 1; and indeed, it reduces to (1.1) when log-linearized, as discussed

further below.

It remains to explain the connection between monetary policy and private-sector

decisions. I abstract here from any monetary frictions that would account for a

demand for central-bank liabilities that earn a substandard rate of return; but I

nonetheless assume that the central bank can control the riskless short-term nominal

interest rate it,
49 which is in turn related to other financial asset prices through the

arbitrage relation

1 + it = [EtQt,t+1]
−1. (2.22)

If we use (2.10) to substitute for the stochastic discount factor in this expression,

we obtain an equilibrium relation between it and the path of expenditure by the

representative household. Using (2.8) to substitute for Ct, we obtain a relation that

49For discussion of how this is possible even in a “cashless” economy of the kind assumed here,
see Woodford (2003, chapter 2).
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links it, Yt, expected future output, expected inflation, and exogenous disturbances;

this is a nonlinear version of the “intertemporal IS relation” (1.2) assumed in the

log-linear New Keynesian model of section 1, and it reduces precisely to (1.2) when

log-linearized.

I shall assume that the zero lower bound on nominal interest rates never binds in

the policy problem considered in this section,50 so that one need not introduce any

additional constraint on the possible paths of output and prices associated with a

need for the chosen evolution of prices to be consistent with a non-negative nominal

interest rate. In this case, one can determine the optimal state-contingent evolution

of inflation and real activity without any reference to the constraint implied by the

“IS relation,” and without having to solve explicitly for the implied path of interest

rates, as in the treatment of optimal policy in section 1. Once one has solved for

the optimal state-contingent paths for inflation and output, these solutions can be

substituted into (2.22) to determine the implied state-contingent evolution of the

policy. (The implied equilibrium paths of other asset prices can similarly be solved

for.)

Finally, I shall assume the existence of a lump-sum source of government revenue

(in addition to the fixed tax rate τ), and assume that the fiscal authority ensures

intertemporal government solvency regardless of what monetary policy may be chosen

by the monetary authority.51 This allows us to abstract from the fiscal consequences of

alternative monetary policies in our consideration of optimal monetary stabilization

policy, as is implicitly done in Clarida et al. (1999), and much of the literature

on monetary policy rules. An extension of the analysis to the case in which only

distorting taxes exist is given in Benigno and Woodford (2003).

2.2 Welfare and the Optimal Policy Problem

The goal of policy is assumed to be the maximization of the level of expected utility

of a representative household, given by (2.1). Inverting the production function (2.5)

50This can be shown to be true in the case of small enough disturbances, given that the nominal
interest rate is equal to r̄ = β−1 − 1 > 0 under the optimal policy in the absence of disturbances.

51Thus I assume that fiscal policy is “Ricardian,” in the terminology of Woodford (2001). A non-
Ricardian fiscal policy would imply the existence of an additional constraint on the set of equilibria
that could be achieved through monetary policy. The consequences of such a constraint for the
character of optimal monetary policy are discussed in Benigno and Woodford (2007).
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to write the demand for each type of labor as a function of the quantities produced

of the various differentiated goods, and using the identity (2.8) to substitute for Ct,

where Gt is treated as exogenous, it is possible to write the utility of the representative

household as a function of the expected production plan {yt(i)}. One obtains

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
u(Yt; ξt)−

∫ 1

0

v(yj
t ; ξt)dj

]
, (2.23)

where

u(Yt; ξt) ≡ ũ(Yt −Gt; ξt),

v(yj
t ; ξt) ≡ ṽ(f−1(yj

t /At); ξt).

In this last expression I make use of the fact that the quantity produced of each good

in industry j will be the same, and hence can be denoted yj
t ; and that the quantity

of labor hired by each of these firms will also be the same, so that the total demand

for labor of type j is proportional to the demand of any one of these firms.

One can furthermore express the relative quantities demanded of the differentiated

goods each period as a function of their relative prices, using (2.6). This allows us to

write the utility flow to the representative household in the form

U(Yt, ∆t; ξt) ≡ u(Yt; ξt)− v(Yt; ξt)∆t,

where

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−θ(1+ω)

di ≥ 1 (2.24)

is a measure of price dispersion at date t, and the vector ξt now includes the exogenous

disturbances Gt and At as well as the preference shocks. Hence we can write our

objective (2.23) as

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆t; ξt). (2.25)

Here U(Y, ∆; ξ) is a strictly concave function of Y for given ∆ and ξ, and a mono-

tonically decreasing function of ∆ given Y and ξ.

Because the relative prices of the industries that do not change their prices in

period t remain the same, one can use (2.20) to derive a law of motion of the form

∆t = h(∆t−1, Πt) (2.26)
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for the dispersion measure defined in (2.24), where

h(∆, Π) ≡ α∆Πθ(1+ω) + (1− α)

(
1− αΠθ−1

1− α

) θ(1+ω)
θ−1

.

This is the source of welfare losses from inflation or deflation.

The only relevant constraint on the monetary authority’s ability to simultaneously

stabilize inflation and output in this model is the aggregate-supply relation defined

by (2.21), together with the definitions (2.14)–(2.17).52 The ability of the central

bank to control it in each period gives it one degree of freedom each period (in each

possible state of the world) with which to determine equilibrium outcomes. Because

of the existence of the aggregate-supply relation (2.21) as a necessary constraint on

the joint evolution of inflation and output, there is exactly one degree of freedom to be

determined each period, in order to determine particular stochastic processes {Πt, Yt}
from among the set of possible rational-expectations equilibria. Hence I shall suppose

that the monetary authority can choose from among the possible processes {Πt, Yt}
that constitute rational-expectations equilibria, and consider which equilibrium it is

optimal to bring about; the detail that policy is implemented through the control of

a short-term nominal interest rate will not actually matter to our calculations.

The Ramsey policy problem can then be defined as the choice of processes {Yt, Πt, Ft, Kt, ∆t}
for dates t ≥ t0 that satisfy conditions (2.18)–(2.19), (2.21) and (2.26) for all t ≥ t0

given the initial condition ∆t0−1, so as to maximize (2.25). Because the conditions

(2.18)–(2.19) are forward-looking, however, the solution to this problem will not in-

volve constant values of the endogenous variables (i.e., a steady state) for any value of

the initial price dispersion ∆t0−1, even in the absence of any random variation in the

exogenous variables. This would prevent us from linearizing around a steady state

solution — and from obtaining a solution for optimal stabilization policy that can be

described by time-invariant coefficients, even if we are content with an approximate

solution that is linear in the (small) disturbances. We can instead use local analysis

in the neighborhood of a steady state, and obtain policy prescriptions with a time-

invariant form, if we focus on the asymptotic character of optimal policy, once an

optimal commitment (chosen at some earlier date) has converged to the neighbor-

hood of a steady state. As in section 1, this amounts to analyzing a particular kind

52This statement assumes that the zero lower bound on nominal interest rates never binds, as
discussed above.
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of constrained optimization problem, where policy from date t0 onward is taken to be

subject to a set of initial precommitments, chosen so that the policy that is optimal

from t0 onward subject to those constraints corresponds to the continuation of an

optimal commitment that could have been chosen at an earlier date.

The state space required to state this problem can be further reduced by using

(2.21) to substitute for the variable Πt in equations (2.18)–(2.19) and in (2.26). We

then obtain a set of equilibrium relations of the form

Ft = f(Yt; ξt) + αβEtφF (Kt+1, Ft+1), (2.27)

Kt = k(Yt; ξt) + αβEtφK(Kt+1, Ft+1), (2.28)

∆t = h̃(∆t−1, Kt/Ft) (2.29)

for each period t ≥ t0, where the functions φF , φK are both homogeneous degree

1 functions of K and F . These constraints involve only the paths of the variables

{Yt, Ft, Kt, ∆t}, and since the objective has also been stated in terms of these vari-

ables, we can state the optimal policy problem in terms of the evolution of these

variables alone. (A solution for the paths of these variables immediately implies a

solution for inflation, using (2.21)).

The kind of initial pre-commitments that are required to create a modified problem

with a time-invariant solution are of the form

φF (Kt0 , Ft0) = φ̄F , φK(Kt0 , Ft0) = φ̄K , (2.30)

where the values φ̄F , φ̄K are chosen as functions of the economy’s initial state in a

“self-consistent” way, i.e., according to formulas that also hold in all later periods in

the constrained-optimal equilibrium.53 Alternatively, there must be precommitments

to particular values for Ft0 and Kt0 .

The problem of maximizing (2.25) subject to the constraints (2.27)–(2.29) in each

period and the initial pre-commitments (2.30) has associated with it a Lagrangian of

the form

Lt0 = Et0

∞∑
t=t0

βt−t0L(Yt, Zt, ∆t, ∆t−1; θt, Θt, Θt−1; ξt). (2.31)

53See Benigno and Woodford (2005a, 2008) or Giannoni and Woodford (2010) for more precise
statements of this condition.
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Here θt is a Lagrange multiplier associated with the backward-looking constraint

(2.29), Θt is a vector of two Lagrange multipliers associated with the two forward-

looking constraints (2.27)–(2.28), for each t ≥ t0, Θt0−1 is a corresponding vector of

multipliers associated with the two initial pre-commitments (2.30), and

L(Y, Z, ∆, ∆−; θ, Θ, Θ−; ξ) ≡ U(Y, ∆; ξ) + θ[h̃(∆−, K/F )−∆]

+Θ′[z(Y ; ξ)− Z] + αΘ′
−Φ(Z), (2.32)

where I use the shorthand

Zt ≡
[

Ft

Kt

]
, z(Y ; ξ) ≡

[
f(Y ; ξ)

k(Y ; ξ)

]
, Φ(Z) ≡

[
φF (K, F )

φK(K,F )

]
.

Note that the inclusion of the initial pre-commitments makes the Lagrangian a sum

of terms of the same form for each period t ≥ t0, which results in a system of time-

invariant first-order conditions.

The Lagrangian is the same as for the problem of maximizing the modified objec-

tive

Ut0 + αΘ′
t0−1Φ(Zt0) (2.33)

subject only to constraints (2.27)–(2.29) for periods t ≥ t0. Here the vector of initial

multipliers Θt0−1 is part of the definition of the problem; the solution to this problem

can represent the continuation of a prior optimal commitment if these multipliers are

chosen as a function of the economy’s initial state in a self-consistent way. This is

an equivalent formulation of what it means for policy to be optimal from a timeless

perspective.54

2.3 Local Characterization of Optimal Dynamics

Differentiating the Lagrangian (2.31) with respect to each of the four endogenous

variables yields a system of nonlinear first-order necessary conditions (FOCs) for

optimality,

UY (Yt, ∆t; ξt) + Θ′
tzY (Yt; ξt) = 0, (2.34)

−θth̃2(∆t−1, Kt/Ft)
Kt

F 2
t

−Θ1t + αΘ′
t−1D1(Kt/Ft) = 0, (2.35)

54This is the approach used in the numerical analysis of optimal policy in a related New Keynesian
DSGE model by Khan et al. (2003).
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θth̃2(∆t−1, Kt/Ft)
1

Ft

−Θ2t + αΘ′
t−1D2(Kt/Ft) = 0, (2.36)

U∆(Yt, ∆t; ξt)− θt + βEt[θt+1h̃1(∆t, Kt+1/Ft+1)] = 0, (2.37)

each of which must hold for all t ≥ t0, where h̃i(∆, K/F ) denotes the partial derivative

of h̃(∆, K/F ) with respect to its ith argument, and Di(K/F ) is the ith column of

the matrix

D(Z) ≡
[

∂F φF (Z) ∂KφF (Z)

∂F φK(Z) ∂KφK(Z)

]
.

(Note that because the elements of Φ(Z) are homogeneous degree 1 functions of Z, the

elements of D(Z) are all homogenous degree 0 functions of Z, and hence functions

of K/F only. Thus we can alternatively write D(K/F ).) The functions UY , U∆,

and zY denote partial derivatives of the corresponding functions with respect to the

argument indicated by the subscript. An optimal policy involves processes for the

variables {Yt, Zt, ∆t, θt, Θt} that satisfy both the structural equations (2.27)–(2.29)

and the FOCs (2.34)–(2.37) for all t ≥ t0, given the initial values ∆t0−1 and Θt0−1.

(Alternatively, we may require the additional conditions (2.30) to be satisfied as well,

and solve for the elements of Θt0−1 as additional endogenous variables.)

Here I shall be concerned solely with the optimal equilibria that involve small

fluctuations around a deterministic steady state. (This requires, of course, that the

exogenous disturbances be small enough, and that the initial conditions be near

enough to consistency with the optimal steady state.) An optimal steady state is a

set of constant values (Ȳ , Z̄, ∆̄, θ̄, Θ̄) that solve all seven of the equations just listed in

the case that ξt = ξ̄ at all times and initial conditions consistent with the steady state

are assumed. One can show (Benigno and Woodford, 2005a; Giannoni and Woodford,

2010) that an optimal steady state exists in which the inflation rate is zero (Π̄ = 1),

which means that F̄ = K̄ and ∆̄ = 1 (zero price dispersion in the steady state).

Briefly, conditions (2.27)–(2.29) are all satisfied as long as Ȳ is the output level

implicitly defined by

f(Ȳ ; ξ̄) = k(Ȳ ; ξ̄),

and F̄ = K̄ = (1 − αβ)−1k(Ȳ ; ξ̄). Because h̃2(1, 1) = 0 (the effects of a small non-

zero inflation rate on the measure of price dispersion are of second order, as shown

by equation (2.59) below), conditions (2.35)–(2.36) reduce in the steady state to the

eigenvector condition

Θ̄′ = αΘ̄′D(1). (2.38)
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Moreover, since when evaluated at a point where F = K,

∂ log(φK/φF )

∂ log K
= −∂ log(φK/φF )

∂ log F
=

1

α
,

we observe that D(1) has a left eigenvector [1 − 1], with eigenvalue 1/α; hence

(2.38) is satisfied if and only if Θ̄2 = −Θ̄1. Condition (2.34) provides one additional

condition to determine the magnitude of the elements of Θ̄, and condition (2.37)

provides one condition to determine the value of θ̄. In this way, one computes a

steady-state solution to the FOCs.55

I wish now to compute a local linear approximation to the optimal dynamics,

in the case of equilibria in which all variables remain forever near these steady-state

values. This can be obtained by linearizing both the structural relations (2.27)–(2.29)

and the FOCs (2.34)–(2.37) around the steady-state values of all variables, and finding

a bounded solution of the resulting system of linear equations.56 Let us begin with

the implications of the linearized structural relations.

Log-linearizing (2.29) around the steady-state values ∆̄ = 1, K̄/F̄ = 1, we obtain

∆̂t = α∆̂t−1, (2.39)

where ∆̂t ≡ log ∆t. Thus (to first order) the price dispersion evolves deterministically,

regardless of monetary policy, and converges asymptotically to zero.

Log-linearizing (2.27)–(2.28), we obtain

F̂t = (1− αβ)[fyŶt + f ′ξ ξ̃t] + αβEt[(θ − 1)πt+1 + F̂t+1],

K̂t = (1− αβ)[kyŶt + k′ξ ξ̃t] + αβEt[θ(1 + ω)πt+1 + K̂t+1],

using the notation

F̂t ≡ log(Ft/F̄ ), fy ≡ ∂ log f

∂ log Y
, f ′ξ ≡

∂ log f

∂ξ

55The second-order conditions that must be satisfied in order for the steady state to represent
a local maximum of the Lagrangian rather than some other kind of critical point are discussed in
section 2.5 below. Benigno and Woodford (2005a) show that these are satisfied as long as the model
parameters satisfy a certain inequality, discussed further below.

56Essentially, this amounts to using the implicit function theorem to compute a local linear ap-
proximation to the solution that is implicitly defined by the FOCs and structural relations. For
further discussion, see Woodford, (2003, appendix A.3).
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and corresponding definitions when K replaces F ; ξ̃t for ξt − ξ̄; and πt ≡ log Πt for

the rate of inflation. Subtracting the first of these equations from the second, one

obtains an equation that involves only the variables K̂t − F̂t, πt, Ŷt, and the vector of

disturbances ξt. Log-linearization of (2.21) yields

πt =
1− α

α

1

1 + ωθ
(K̂t − F̂t); (2.40)

using this to substitute for K̂t − F̂t in the relation just mentioned, we obtain

πt = κ[Ŷt + u′ξ ξ̃t] + βEtπt+1 (2.41)

as an implication of the log-linearized structural equations, where

κ ≡ (1− α)(1− αβ)

α

ω + σ−1

1 + ωθ
> 0, σ ≡ σ̃

C̄

Ȳ
> 0, (2.42)

and

u′ξ ≡
k′ξ − f ′ξ
ky − fy

.

(This last expression is well-defined, since ky − fy = ω + σ−1 > 0.)

Equation (2.41), which must hold for each t ≥ t0, is an important restriction upon

the joint paths of inflation and output that can be achieved by monetary policy; note

that it has precisely the form of the aggregate supply relation assumed in section

1. The composite exogenous disturbance term u′ξξt includes both the disturbances

represented by the “cost-push” term in (1.1) and time variation in the level of output

(“natural” or “potential” output) yn
t relative to which the “output gap” is measured

in (1.1); for the moment, it is not necessary to choose how to decompose the term

into those two parts. (The distinction between the two types of terms only becomes

meaningful when one considers the conditions for optimal stabilization.) Note that

equation (2.41) is the only constraint on the bounded paths for inflation and aggregate

output that can be achieved by an appropriate monetary policy;57 for in the case of

any bounded processes {πt, Ŷt}, one can solve the log-linear equations stated above

for bounded processes {F̂t, K̂t} consistent with the model structural equations. One

can similarly solve for the implied evolution of nominal interest rates and so on.

57It is important that here I am considering only fluctuations within a sufficiently small neigh-
borhood of the steady-state values for variables such as Πt and Yt; hence the constraint associated
with the zero lower bound for nominal interest rates is not an issue.
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Let us next log-linearize the FOCs (2.34)–(2.37) around the steady-state values.

Log-linearizing (2.35)–(2.36) yields the vector equation

− θ̄

K̄

1− α

α

θ(1 + ω)

1 + ωθ
[(K̂t−F̂t)+α∆̂t−1]

[
1

−1

]
−Θ̃t+αD(1)′Θ̃t−1+αMẐt = 0, (2.43)

where Θ̃t ≡ Θt − Θ̄, Ẑ ′
t ≡ [F̂t K̂t]

′, and M is K̄ times the Hessian matrix of second

partial derivatives of the function Φ̄(Z) ≡ Θ̄′Φ(Z). The fact that Φ̄(Z) is homoge-

neous of degree 1 implies that its derivatives are homogeneous of degree 0, and hence

functions only of K/F ; it follows that the matrix M is of the form

M = m

[
1 −1

−1 1

]
, (2.44)

where m is a scalar. Similarly, the fact that each element of Φ(Z) is homogeneous of

degree 1 implies that

D(1) e = e,

where e′ ≡ [1 1].

Pre-multiplying (2.43) by e′ therefore yields

e′Θ̃t = αe′Θ̃t−1 (2.45)

for all t ≥ t0. This implies that e′Θ̃t converges to zero with probability 1, regard-

less of the realizations of the disturbances; hence under the optimal dynamics, the

asymptotic fluctuations in the endogenous variables are such that

Θ̃2,t = −Θ̃1,t (2.46)

at all times. And if we assume initial Lagrange multipliers such that (2.46) is satisfied

for t = t0−1 (or initial pre-commitments with that implication), then (2.46) will hold

for all t ≥ t0. In fact, I shall assume initial pre-commitments of this kind; note that

this is an example of a “self-consistent” principle for selection of the initial pre-

commitments, since under the constrained-optimal policy (2.46) will indeed hold in

all subsequent periods.58 Hence the optimal dynamics satisfy (2.46) at all times.

58It is also worth noting that if at some date torig in the past, the policymaker has made a
commitment to an unconstrained Ramsey policy, then at that initial date the lagged Lagrange
multipliers would have satisfied (2.46), because both elements of Θtorig−1 would have been equal to
zero.
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There must also exist a vector v such that v2 6= v1 and such that D(1)v = α−1v,

since we have already observed above that 1/α is one of the eigenvalues of the matrix.

(The vector v must also not be a multiple of e, as e is the other right eigenvector,

with associated eigenvalue 1.) Pre-multiplying (2.43) by v′ then yields

− θ̄

K̄

1− α

α

θ(1 + ω)

1 + ωθ
[(K̂t − F̂t) + α∆̂t−1]− Θ̃1,t + Θ̃1,t−1 − αm (K̂t − F̂t) = 0. (2.47)

Here the common factor v1 − v2 6= 0 has been divided out from all terms, and Θ̃2,t

has been eliminated using (2.46). Note that conditions (2.45) and (2.47) exhaust the

implications of (2.43), and hence of conditions (2.35)–(2.36). We can again use (2.40)

to substitute for K̂t−F̂t in condition (2.47), in order to express the condition in terms

of its implications for optimal inflation dynamics. We thus obtain a relation of the

form

ξππt + ξ∆∆̂t−1 = Θ̃1,t − Θ̃1,t−1. (2.48)

Condition (2.34) can similarly be log-linearized to yield

Ȳ [UY Y + Θ̄′zY Y ]Ŷt + [U ′
Y ξ + Θ̄′zY ξ]ξ̃t + UY ∆∆̂t − K̄

Ȳ
(ky − fy)Θ̃1,t = 0,

again using (2.46) to eliminate Θ̃2,t. We can equivalently write this as

Ȳ [UY Y + Θ̄′zY Y ](Ŷt − Ŷ ∗
t ) + UY ∆∆̂t − K̄

Ȳ
(ky − fy)Θ̃1,t = 0, (2.49)

where Ŷ ∗
t ≡ log(Y ∗

t /Ȳ ), and Y ∗
t is a function of the exogenous disturbances, implicitly

defined by the equation

UY (Y ∗
t , 1; ξt) + Θ̄′zY (Y ∗

t ; ξt) = 0. (2.50)

This “target level of output” (introduced by Benigno and Woodford, 2005a) is related

to, but not the same as, the efficient level of output Y e
t (i.e., the quantity that would

be produced of each good in order to maximize expected utility, subject only to the

constraints imposed by technology), implicitly defined by the equation

UY (Y e
t , 1; ξt) = 0. (2.51)

One observes that in the case that the zero-inflation steady-state level of output Ȳ

(which would also be the steady-state level of output under flexible prices) is efficient
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(in the case that ξt = ξ̄ at all times), so that UY (Ȳ , 1; ξ̄) = 0, we have Θ̄ = 0, and Y ∗
t

and Y e
t will coincide. More generally, when Θ̄ 6= 0, the target level Y ∗

t differs from

Y e
t in that it is equal on average (to a first-order approximation) to Ȳ , which differs

from the average level of Y e
t : in the case of empirical interest, Y ∗

t is lower than Y e
t

on average, because keeping Yt as high as Y e
t on average is not consistent with stable

prices (even on average), if it is possible at all. The way in which Y ∗
t responds to

shocks can also be different from the way that Y e
t responds, again to mitigate the

degree to which the output variations would otherwise require instability of prices.

Solving (2.49) for Θ̃1,t, and using this to substitute for Θ̃1,t in (2.48), we obtain a

relation of the form

ξππt + λx(xt − xt−1) + λ∆(∆̂t − ∆̂t−1) + ξ∆∆̂t−1 = 0, (2.52)

that must hold for all t > t0, where the “output gap” xt ≡ Ŷt − Ŷ ∗
t . If we select

Θ̃1,t0−1 to be the value required in order for (2.49) to hold for t = t0 − 1 as well,59

then (2.52) must be hold for t = t0 as well. Condition (2.52) represents a restriction

on the path of the endogenous variables that is required for consistency with the

FOCs. Moreover, it is the only restriction required for consistency with the FOCs.

For in the case of any bounded processes {πt, Ŷt, ∆̂t} consistent with (2.52) for all

t ≥ t0, one can construct an implied process {Θ̃t} using (2.49) to solve for Θ̃1,t and

(2.46) to solve for Θ̃2,t. The linearized version of (2.37), which is of the form

θ̃t = αβEtθ̃t+1 + Et[g(Ŷt, ∆̂t, πt+1)]

for a certain linear function g(·), can then be “solved forward” to obtain a bounded

process {θ̃}. Thus one can construct bounded processes for the Lagrange multipliers

that satisfy each of the linearized FOCs by construction.

We thus conclude that a state-contingent evolution of the economy remaining

forever near enough to the optimal steady state is both feasible and an optimal

plan (in the case of initial Lagrange multipliers selected as described above) if and

only if the bounded processes {πt, Ŷt, ∆̂t} satisfy (2.39), (2.41), and (2.52) for all

t ≥ t0. It is easily seen that these equations determine unique bounded processes

for these variables, given initial conditions (Ŷt0−1, ∆̂t0−1) and a bounded process for

59Note that this would be a self-consistent principle for selecting the initial Lagrange multipliers,
since under the optimal plan for this modified problem, (2.49) will indeed hold in all periods t ≥ t0.
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the exogenous disturbances {ξ̃t}. We can express all three equations in terms of the

variables {πt, xt, ∆̂t} if we rewrite (2.41) as

πt = κxt + βEtπt+1 + ut, (2.53)

where

ut ≡ κ[Ŷ ∗
t + u′ξ ξ̃t]. (2.54)

Moreover, (2.39) obviously has a unique bounded solution for {∆̂t}, given the ini-

tial condition; treating this sequence {∆̂t} as exogenously given, there remain two

stochastic difference equations per period to determine the two “endogenous” vari-

ables {πt, xt}. Moreover, equations (2.52) and (2.53) are of exactly the same form as

equations (1.7) and (1.21) in the model of section 1, except that (2.52) contains ad-

ditional (bounded) “exogenous disturbance” terms. The presence of these additional

terms does not affect the conditions for determinacy of the solution, and so one can

show that there exists a unique bounded solution for any given initial conditions,

using the same argument as in section 1.

This allows us to characterize (to a linear approximation) the equilibrium dynam-

ics of all endogenous variables under an optimal policy. In the case of initial conditions

such that ∆̂t0−1 = 0 (to first order), as assumed in Benigno and Woodford (2005a),

the optimal equilibrium dynamics are of exactly the sort calculated in section 1, ex-

cept that the micro-founded model gives specific answers about two important issues:

(i) it explains to what extent various types of “fundamental” economic disturbances

(changes in technology, preferences, or fiscal policy) should change the target level of

output (and hence one’s measure of the “output gap”), contribute to the “cost-push”

term ut, or both; and (ii) it gives a specific value for the coefficient φ in the optimal

target criterion (1.21), as a function of underlying model parameters, rather than

making it a function of an arbitrary weight λ in the policymaker’s objective. (The

answers to these questions are discussed further in sections 2.4 and 2.6 below.)

The welfare-based analysis yields another result not obtained in section 1: it

explains how the optimal dynamics of inflation and output should be affected by a

substantial initial level of price dispersion. (Under an optimal policy, of course, the

policymaker should eventually never face a situation in which the existing level of

price dispersion is large; but one might wish to consider the transitional dynamics

that should be chosen under a newly chosen optimal policy commitment, when actual

policy in the recent past has been quite bad.) Equation (2.52) indicates that the
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central bank’s target for growth of the output-gap-adjusted price level should be

different depending on the inherited level of price dispersion; a larger initial price

dispersion reduces the optimal target rate of growth in the gap-adjusted price level,

as first shown by Yun (2005) in a special case that allowed an analytical solution.

We again find that optimal policy can be described by fulfillment of a target

criterion that can be described as a “flexible inflation target”; in the case that the

initial level of price dispersion is zero to first order (as it will then continue to be

under optimal policy, and indeed under any policy under which the departures of the

inflation rate from zero are of only first order), the optimal target criterion is again

of precisely the form (1.21) derived in section 1. Moreover, the result that optimal

policy in a microfounded model can be characterized by a target criterion of this

general form does not depend on the multitude of special assumptions made in this

example. Giannoni and Woodford (2010) show, for a very broad class of stabilization

problems in which welfare is measured by the expected discounted value of some

function of a vector of endogenous variables, and the paths for those variables that

are consistent with equilibrium (under some suitable choice of policy) are defined

by a system of nonlinear stochastic difference equations that include both backward-

looking elements (like the dependence of (2.29) on ∆t−1) and forward-looking elements

(like the dependence of (2.27)–(2.28) on the expectations of variables in period t+1),

that it is possible to find a linear target criterion the fulfillment of which is necessary

and sufficient for policy to coincide (at least to a linear approximation) with an

optimal policy commitment.

The particular endogenous variables that the target criterion involves depends, of

course, on the structure of one’s model. However, in a broad range of models with

some basic features in common with the one just analyzed, some measure of inflation

and some measure of the output gap will again be key variables in the optimal target

criterion. This can be made clearer through a further discussion of the reason why

the optimal target criterion can be expressed in terms of those two variables in the

case just treated.60

60Examples of optimal target criteria for models that generalize the one assumed in this section
are presented below in section 3.
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2.4 A Welfare-Based Quadratic Objective

It may be considered surprising that the FOCs that characterize optimal policy in

the microfounded model end up being equivalent to the same form of target criterion

as in the case of the linear-quadratic policy problem discussed in section 1. As shown

in the previous section, a log-linear approximation to the structural equations of the

microfounded model implies precisely the same restriction upon the joint paths of in-

flation and output as the “New Keynesian Phillips curve” assumed in section 1. But

even so, the assumed objective of policy in the welfare-based analysis — the max-

imization of expected utility, that depends on consumption and labor effort, rather

than output and inflation — might seem quite different than in the earlier analysis.

This section seeks to provide insight into the source of the result, by showing that one

can write a quadratic approximation to the expected utility objective assumed above

— a degree of approximation that suffices for a derivation of a linear approximation

to the optimal dynamics, of the kind discussed in the previous subsection — that

takes exactly the form (1.6) assumed in section 1, under a suitable definition of the

“output gap” in that objective and for a suitable specification of the relative weight

λ assigned to the output-gap stabilization objective. (The analysis follows that in

Woodford, 2003, chap. 6, and Benigno and Woodford, 2005a.)

I have already shown that in the above model, it is possible to write the utility

of the representative household as a function of the evolution of two endogenous

variables {Yt, ∆t}. Let us consider a disturbance process under which ξt remains in

a bounded neighborhood of ξ̄ for all t, and plans in which Yt remains in a bounded

neighborhood of Ȳ and ∆t remains in a bounded neighborhood of 1 for all t,61 and

compute a second-order Taylor series expansion of (2.25) in terms of Ŷt, ∆̂t, and ξ̃t.

For the contribution to utility in any period, we obtain

U(Yt, ∆t; ξt) = Ȳ UY Ŷt + U∆ ∆̂t +
1

2
(Ȳ UY + Ȳ 2UY Y ) Ŷ 2

t

+Ȳ UY ∆Ŷt∆̂t + Ȳ U ′
Y ξ ξ̃tŶt + t.i.p. +O(||ξ||3), (2.55)

where all derivatives are evaluated at the steady state; “t.i.p.” refers to terms the

value of which is independent of policy (i.e., that do not involve endogenous variables),

and that can therefore be ignored for purposes of the welfare ranking of alternative

61Essentially, this requires that we restrict attention to policies in which inflation never deviates
too far from zero.
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policies; and ||ξ|| is a bound on the amplitude of the exogenous disturbances (i.e.,

on the elements of ξ̃t). Here it is assumed that the only policies considered are

ones in which Ŷt and ∆̂t are of order O(||ξ||) as well (so that, for example, a term

proportional to Ŷ 2
t ξ̃t must be of order O(||ξ||3)). Furthermore, I have used the fact

that the evolution of ∆̂t is independent of policy to first order (i.e., up to a residual of

order O(||ξ||2)), because of equation (2.39), to show that terms proportional to ∆̂tξ̃t

or to ∆̂2
t are independent of policy, to second order (i.e., up to a residual of order

O(||ξ||3), allowing these terms to be included in the final two catch-all terms.

While the substitution of (2.55) into (2.25) would yield a discounted quadratic

objective for policy, it is not necessarily true that the use of this quadratic objec-

tive together with a log-linear approximation to the model structural equations, as

in section 1, would yield a correct log-linear approximation to the dynamics under

optimal policy. A correct welfare comparison among rules, even to this order of ac-

curacy, would depend on evaluation of the objective to second order under each of

the different contemplated policies, and a term such as Ȳ UY Ŷt cannot (in general) be

evaluated to second order in accuracy using an approximate solution for the path of

Ŷt under a given policy that is only accurate to first order.62 This issue can be dealt

with in various ways, some more generally applicable than others.

2.4.1 The Case of an Efficient Steady State

The analysis is simplified if we assume that the steady state level of output Ȳ is

optimal in the case that ξt = ξ̄ at all times; here I mean not just among the outcomes

achievable by monetary policy (which it is, as discussed above), but among all allo-

cations that are technologically possible (i.e., that Y e
t = Ȳ ). This will be true if and

only if Ψ = 0, where the steady-state inefficiency measure Ψ is defined by

1−Ψ ≡ 1− τ̄

µ̄pµ̄w
=

1− τ̄

µ̄w

θ − 1

θ
> 0.

Since we assume that θ > 1 (implying that the desired markup of prices relative to

marginal cost µp > 1) and µw ≥ 1, this requires that τ̄ < 0, so that there is at least a

mild subsidy to production and/or sales to offset the distortion resulting from firms’

62For further discussion of this issue, see Woodford (2003, chap. 6), Kim and Kim (2003), or
Benigno and Woodford (2008).
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market power.63

In this case, UY = 0 (evaluated at the efficient steady state), eliminating two of

the terms in (2.55). Most crucially for our discussion, there is no longer a linear

term in Ŷt, which was problematic for the reason just discussed. The term that is

proportional to ξ̃tŶt can also be given a simple interpretation in this case. Recall

that the efficient rate of output Y e
t is implicitly defined by the equation (2.51). Total

differentiation of this equation yields

Ȳ UY Y Ŷ e
t + U ′

Y ξ ξ̃t = 0, (2.56)

where Ŷ e
t ≡ log(Y e

t /Ȳ ). Using this to substitute for the factor U ′
Y ξ ξ̃t in (2.55), and

completing the square, we obtain

U(Yt, ∆t; ξt) =
1

2
(Ȳ 2UY Y ) (Ŷt − Ŷ e

t )2 + U∆ ∆̂t + Ȳ UY ∆Ŷt∆̂t

+t.i.p. +O(||ξ||3). (2.57)

If we further assume an initial condition under which ∆̂t0−1 = O(||ξ||2) (a con-

dition that will hold, at least asymptotically, under any “near-steady-state” policy

in the class that we are considering), then we will have ∆̂t = O(||ξ||2) for all t as a

consequence of (2.39).64 We can then include the term proportional to Ŷt∆̂t among

the terms of order O(||ξ||3), and write

U(Yt, ∆t; ξt) =
1

2
(Ȳ 2UY Y ) (Ŷt − Ŷ e

t )2 − v̄ ∆̂t

+t.i.p. +O(||ξ||3), (2.58)

where v̄ ≡ v(Ȳ ; ξ̄) > 0.

63This is obviously a special case and counter-factual as well, but there are various reasons to
consider it. One is that it provides insight into the kind of results that will also be obtained (at
least approximately) in economies where steady-state distortions are not too large (Ψ is small),
and has the advantage of making the calculations simple. Another might be that, as suggested by
Rotemberg and Woodford (1997), it should be considered the task of other aspects of policy to cure
structural distortions that make the steady-state level of economic activity inefficient, so that one
might wish to design monetary policy for an environment in which this problem has been solved
by other means, rather than assuming that monetary policy rules should be judged on the basis of
their ability to mitigate distortions in the average level of output.

64Recall that (2.39) is an equation that holds up to a residual of order O(||ξ||2). A second-order
approximation is instead given by equation (2.59).
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This is still not an objective that can be evaluated to second order using only

a first-order solution for the paths of the endogenous variables {Ŷt, ∆̂t}, because of

the presence of the terms that is linear in ∆̂t. This can be cured, however, by using

a second-order approximation to (2.26) to replace the ∆̂t terms by purely quadratic

terms. A Taylor expansion of the function h(∆, Π) yields

∆̂t = α∆̂t−1 +
1

2
hπππ2

t +O(||ξ||3). (2.59)

where

hππ =
α

1− α
θ(1 + ω)(1 + ωθ) > 0,

and again I have specialized to the case in which ∆t0−1 is of order O(||ξ||2). It then

follows that
∞∑

t=t0

βt−t0∆̂t =
1

2

hππ

1− αβ

∞∑
t=t0

βt−t0π2
t + t.i.p. +O(||ξ||3), (2.60)

where the terms proportional to ∆̂t0−1 are included in the term “t.i.p.” Substituting

the approximation (2.58) into (2.25), and using (2.60) to substitute for the sum of ∆̂t

terms, we obtain

Ut0 =
1

2
Et0

∞∑
t=t0

βt−t0
[
Ȳ 2UY Y (Ŷt − Ŷ e

t )2 − (1− αβ)−1v̄hππ π2
t

]
+ t.i.p. +O(||ξ||3).

(2.61)

This is equal to a negative constant times a discounted loss function of the form (1.6),

where the welfare-relevant output gap is defined as xt ≡ Ŷt − Ŷ e
t , x∗ = 0, and the

relative weight on the output-gap stabilization objective is

λ = −(1− αβ)Ȳ 2UY Y

v̄hππ

=
κ

θ
> 0, (2.62)

where κ is the same coefficient as in (2.41).

The log-linearized aggregate supply relation (2.41) can also be written in the form

(1.7) assumed in section 1, where xt is the welfare-relevant output gap just defined,

for an appropriate definition of the “cost-push” term ut. Note that since

k(Y ; ξ) = µpµwvy(Y ; ξ)Y, f(Y ; ξ) = (1− τ)uy(Y ; ξ)Y,

we have

(k′ξ − f ′ξ)ξ̃t = u−1
y (v′yξ − u′yξ)ξ̃t + µ̂w

t + τ̂ t,
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where

µ̂w
t ≡ log(µw

t /µ̄w), τ̂ t ≡ − log(1− τ t/1− τ̄).

From this it follows that

u′ξ ξ̃t = −Ŷ e
t + (ω + σ−1)−1(µ̂w

t + τ̂ t). (2.63)

Substitution into (2.41) yields an aggregate-supply relation of the form (1.7), where

xt ≡ Ŷt − Ŷ e
t , and ut is a positive multiple of µ̂w

t + τ̂ t.

Hence in this case we obtain a linear-quadratic policy problem of exactly the

form considered in section 1, except that proceeding from explicit microfoundations

provides a precise interpretation for the output gap xt, a precise value for the target

x∗ (here equal to zero, because the steady state is efficient), a precise value for the

relative weight λ in the loss function (1.6) as a function of the model structural

parameters, and a precise interpretation of the “cost-push” term ut. An implication

of these identifications is that the optimal target criterion (1.21) takes the more

specific form

πt + θ−1(xt − xt−1) = 0. (2.64)

As in section 1, the target criterion can equivalently be expressed in the form (1.23),

where the “output-gap-adjusted price level” is now defined as

p̃t ≡ pt + θ−1xt, (2.65)

where pt ≡ log Pt.

Of course, these results are obtained under a number of simplifying assumptions.

If we do not assume that the initial dispersion of prices is small (so that ∆̂t0−1 is

non-zero to first order), then several terms omitted in the derivation of (2.61) must

be restored. However, as long as ∆̂t0−1 = O(||ξ||), we can write

∆̂tπt = ∆̄tπt +O(||ξ||3),

∆̂tŶt = ∆̄tŶt +O(||ξ||3),
∆̂2

t = ∆̄2
t +O(||ξ||3),

where

∆̄t = ∆̂t0−1 αt−t0+1
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is a deterministic sequence (depending only on the initial condition). (Here I again

rely on the fact that (2.39) holds up to a residual of order O(||ξ||2).)
With these substitutions, (2.61) becomes takes the more general form

Ut0 =
1

2
Et0

∞∑
t=t0

βt−t0
{

Ȳ 2UY Y (Ŷt − Ŷ e
t )2 − (1− αβ)−1v̄hππ π2

t

+2Ȳ UY ∆ ∆̄t(Ŷt − Ŷ n
t )− 2(1− αβ)−1v̄hπ∆ ∆̄tπt

}

+t.i.p. +O(||ξ||3). (2.66)

This is equal to a negative multiple of a discounted quadratic loss function of the

form

Et0

∞∑
t=t0

βt−t0 [π2
t + λx2

t + γπ∆̄tπt + γx∆̄txt], (2.67)

where xt and λ are defined as above, and

γπ ≡ 2(1− α)

1 + ωθ
> 0,

γx ≡ 2(1− α)(1− αβ)

α

1

θ(1 + ωθ)
> 0.

As a consequence of the additional terms in the loss function, the optimal target

criterion (generalizing (1.21)) contains additional terms proportional to ∆̄t and ∆̄t−1,

or equivalently (to a linear approximation) ∆̂t and ∆̂t−1, as shown in section 2.3.

Because ∆̄t is exponentially decreasing in t, the additional terms can alternatively

be combined into a single term proportional to ∆̄t, ∆̄t−1, or ∆̄t − ∆̄t−1. Similarly,

because (2.39) holds to first order, the additional terms in the target criterion can

be reduced to a single term proportional to ∆̂t, ∆̂t−1, or ∆̂t − ∆̂t−1. In this last

representation, the modified target criterion is of the form

πt + θ−1(xt − xt−1) + γ log(∆t/∆t−1) = 0,

which is equivalent to requiring that

pt + γ log ∆t + θ−1xt = p∗

for some constant p∗. This last criterion is again an output-gap adjusted price level

target. It differs from (1.23) only in that the price index that is used is not pt but
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rather pt + γ log ∆t; this latter quantity is just another price index (i.e., the log of

another homogeneous degree 1 function of the individual prices).65

Another aspect in which the analysis in this section is special is in the assumption

that the zero-inflation steady state is efficient. I next consider the consequences of

relaxing this assumption.

2.4.2 The Case of Small Steady-State Distortions

The previous analysis requires only a small modification in the case that Ψ (the

measure of the degree of inefficiency of the steady-state level of output) is non-zero,

if Ψ is only of the order O(||ξ||), as assumed in Woodford (2003, chap. 6).66 In this

case, computing a solution that is accurate “to first order” means that the optimal

equilibrium dynamics

πt = π(ξt, . . . ; Ψ)

of a variable such as πt, in the case of any given small enough value of Ψ, can be

approximated by a linear function

πt = αΨ Ψ + α′ξ,0ξ̃t + . . .

up to an error that is of order O(||ξ||2).
Here the coefficients αξ,0 represent partial derivatives of the function π(·) with

respect to the elements of ξt, evaluated at the steady state with ξt = ξ̄ for all t

and Ψ = 0, while the coefficient αΨ represents the partial derivative of the function

with respect to Ψ, evaluated at the same steady state. It follows that the coefficients

αξ,0 are the same as in the calculation where it was assumed that Ψ = 0. Thus the

extension proposed here does not consider the consequences of a distorted steady

state for the optimal responses to shocks (this would depend on terms higher than

“first order”), but only the effects of the distortions on the average values of variables

such as the inflation rate. However, the latter question is of interest, for example, in

65In the case that ∆̂t0−1 = O(||ξ||2), all price indices are the same, to first order, and it does not
matter which one is used in the target criterion. In general, when there are non-trivial relative-price
differences, it will matter which price index is targeted; this issue is discussed further in section 3.2
below.

66Technically, this means that in order to ensure a certain degree of accuracy in our approximate
characterization of the optimal dynamics, it is necessary to make the value of Ψ sufficiently small,
in addition to making the amplitude of the exogenous disturbances sufficiently small.
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considering whether inefficiency of the zero-inflation steady state is a reason for the

optimal steady-state inflation rate to differ from zero.

In this case, UY = Ψ uy = O(||ξ||), and as a consequence, the Ȳ UY Ŷt term in

(2.55) can still be evaluated to second order using a solution for Ŷt that is accurate

only to first order.67 The method used above to substitute for the U∆∆̂t terms then

suffices once again to yield a quadratic welfare objective that can be evaluated to

second order using only the log-linearized structural relations to solve for the paths

of the endogenous variables. We can no longer neglect the Ȳ UY Ŷt term in (2.55), but

the Ȳ UY Ŷ 2
t can still be neglected, as it is of order O(||ξ||3). Finally, in substituting

for the Ȳ U ′
Y ξ ξ̃tŶt term in (2.55), it is important to note that (2.56) now takes the

more general form

Ȳ UY Y Ŷ e
t + U ′

Y ξ ξ̃t = −UY = −Ψuy. (2.68)

Making these substitutions, we once again obtain (2.57), even though UY 6= 0. If

we again simplify by restricting attention to initial conditions under which ∆̂t0−1 =

O(||ξ||2), we again obtain (2.61) as an approximate quadratic loss function.

However, it is no longer appropriate to define the “output gap” as Ŷt − Ŷ e
t , if we

want the gap to be a variable that is equal to zero in the zero-inflation steady state

(as in the analysis of Clarida et al., 1999). If we define68 the “natural rate of output”

Y n
t as the flexible-price equilibrium level of output (common equilibrium quantity

produced of each good) in the case that τ t and µw
t take their steady-state values, but

all other disturbances take the (time-varying) values specified by the vector ξt, then

Y n
t is implicitly defined by

(1− τ̄)uy(Y
n
t ; ξt) = µpµ̄wvy(Y

n
t ; ξt). (2.69)

We observe that Y n
t = Ȳ in the zero-inflation steady state, so that the output gap

definition

xt ≡ Ŷt − Ŷ n
t (2.70)

67It is important to note that in all of the Taylor expansions discussed in this section, expansions
are around the zero-inflation steady state, not the efficient steady-state allocation; Ȳ refers to the
zero-inflation steady-state output level, not the efficient steady-state output level; and variables such
as Ŷt and Ŷ e

t are defined relative to Ȳ , not relative to the steady-state value of Y e
t . When Ψ = 0,

it is not necessary to distinguish between the two possible definitions of the steady-state level of
output.

68See Woodford (2003, chap. 6), for further discussion.
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has the desired property. Moreover, total differentiation of (2.69) and comparison

with (2.68) indicates that

Ŷ e
t = Ŷ n

t + (−Ȳ UY Y )−1Ψuy +O(||ξ||2).

Hence

Ŷt − Ŷ e
t = xt − x∗,

up to an error of order O(||ξ||2), where

x∗ ≡ − UY

Ȳ UY Y

=
Ψ

ω + σ−1
+O(||ξ||2). (2.71)

Using this to substitute for Ŷt− Ŷ e
t in (2.61), we obtain a quadratic objective that

is a negative multiple of a loss function of the form (1.6), where now xt is defined by

(2.70) and x∗ is defined by (2.71). Note that x∗ has the same sign as Ψ (positive, in

the case of empirical relevance), and is larger the larger is Ψ. Moreover, repeating

the derivation of (2.63), we find that when Ψ = O(||ξ||), equation (2.63) continues

to hold, but with Ŷ e
t replaced by Ŷ n

t . Hence (2.41) again reduces to an aggregate-

supply relation of the form (1.7), with the output gap xt now defined by (2.70) and

the cost-push term ut again defined as in section 2.4.1.

In this case, as shown in section 1, the optimal long-run inflation rate is zero,

and optimal policy is again characterized by a target criterion of the form (1.21), the

coefficients of which do not depend on x∗. Hence the optimal target criterion is again

given by (2.64), regardless of the (small) value of Ψ. The value of Ψ does matter,

instead, for a calculation of the inflationary bias resulting from discretionary policy;

it follows from our results in section 1 that the average inflation bias is (to first order)

proportional to Ψ and with the same sign as Ψ.

2.4.3 The Case of Large Steady-State Distortions

If the degree of inefficiency of the zero-inflation steady-state level of output (measured

by Ψ) is instead substantial, the analysis of the previous section cannot be used. In

order to obtain a quadratic objective that can be evaluated to second order using a

solution for the endogenous variables that need only be accurate to first order, it is

necessary to replace the terms of the form Ȳ UY Ŷt with purely quadratic functions

of the endogenous variables (plus a residual that may include terms independent of
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policy and/or terms of order O(||ξ||3)), using second-order approximations to one or

more of the model’s structural relations — just as was done above to eliminate the

linear terms of the form U∆∆̂t. This can in fact be done, not just in the present

model but quite generally (as shown by Benigno and Woodford, 2008), by computing

a second-order Taylor expansion of the Lagrangian (2.31) rather than of the expected

utility of the representative household. Specifically, for an arbitrary evolution of the

endogenous variables {Yt, Zt, ∆t} in which these variables remain forever close enough

to their steady-state values, we wish to compute a second-order approximation to

(2.31) under the assumption that the Lagrange multipliers are at all times equal to

their steady-state values (θ̄, Θ̄).

Note that in the case of any evolution of the endogenous variables that is consistent

with the structural relations, the Lagrangian is equal to expected utility. Hence a

quadratic approximation to the Lagrangian represents a quadratic function of the

endogenous variables that will equal expected utility, up to an error of order O(||ξ||3),
in the case of any feasible policy. It is thus an equally suitable quadratic objective as is

the one obtained above from a Taylor expansion of the expected utility objective; but

it will have the advantage that there are no non-zero linear terms, precisely because

(as discussed above) the zero-inflation steady state satisfies the steady-state version

of the FOCs obtained by differentiating (2.31). This approach simultaneously solves

the problem of the U∆∆̂t terms (in a way that is equivalent to the one used above)

and the problem of the Ȳ UY Ŷt terms.

Under this approach, the quadratic objective that we seek is an expected dis-

counted sum of quadratic terms, where the contribution each period is given by the

quadratic terms in a second-order Taylor series expansion of the function

L(Yt, Zt, ∆t, ∆t−1; θ̄, Θ̄, Θ̄; ξt).

Moreover, in the case that we assume that ∆̂t0−1 = O(||ξ||2), all of the quadratic terms

that involve ∆̂t or ∆̂t−1 will be of order O(||ξ||3), and can thus be neglected. Hence

in this case it suffices to compute the quadratic terms in a Taylor series expansion of

the function

L̂(Yt, Zt; ξt) ≡ L(Yt, Zt, 1, 1; θ̄, Θ̄, Θ̄; ξt),

where L(·) is the function defined in (2.32), and (θ̄, Θ̄) are the steady-state multipliers

characterized in section 2.3 above.
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Note that we can write

L̂(Y, Z; ξ) = L̂1(Y ; ξ) + L̂2(Z),

where

L̂1(Y ; ξ) ≡ U(Y, 1; ξ) + Θ̄′z(Y ; ξ),

L̂2(Z) ≡ θ̄[h̃(1, K/F )− 1]− Θ̄′Z + αΘ̄′Φ(Z).

It follows from our previous definition (2.50) that for any vector of disturbances ξt,

the function L̂1(Y ; ξt) has a critical point at Y = Y ∗
t . Hence the quadratic terms in

a Taylor expansion of L̂1(Yt; ξt) are equal to

1

2
(Ȳ )2[UY Y + Θ̄′zY Y ](Ŷt − Ŷ ∗

t )2.

The quadratic terms in a Taylor expansion of L̂2(Zt) are instead given by

1

2
θ̄h̃22(K̂t − F̂t)

2 +
α

2K̄
Ẑ ′

tMẐt

=
1

2
θ̄h̃22(K̂t − F̂t)

2 +
αm

2K̄
(K̂t − F̂t)

2,

where h̃22 is the second partial derivative of h̃ with respect to its second argument

(evaluated at the steady-state values (1, 1)), M is the same matrix as in (2.43), and

the second line uses (2.44). Using (2.40), the above expression can be written (up to

an error of order O(||ξ||3)) as a negative multiple69 of π2
t . Combining the results from

our Taylor expansions of L̂1(Yt; ξt) and L̂2(Zt), we obtain a quadratic objective equal

to a negative multiple of (1.6), where the output gap is now defined as xt ≡ Ŷt − Ŷ ∗
t ,

and x∗ = 0.70

Benigno and Woodford (2005a) show that the relative weight on the output-gap

stabilization objective is given by

λ ≡ κ

θ

{
1− Ψσ−1(sG/1− sG)

(ω + σ−1)[ω + σ−1 + Ψ(1− σ−1)]

}
, (2.72)

69See Benigno and Woodford (2005a) for demonstration that this coefficient is negative.
70It may be wondered why x∗ = 0, even though the steady-state level of output is inefficient.

Since Y ∗
t = Ȳ in the zero-inflation steady state, there is no need to correct the definition of the

output gap by a constant in order to obtain an output gap that is zero on average if an average
inflation rate of zero is maintained, as in our treatment of the small-Ψ case. Because Y ∗

t maximizes
the Lagrangian (for a given vector ξt) rather than the utility function, the target level of output is
lower, on average, than the efficient level of output Y e

t .
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where sG ≡ Ḡ/Ȳ is the fraction of steady-state output that is consumed by the

government. Note that this reduces to the same value (2.62) found above, in the

case that either Ψ = 0 (the steady-state level of output is efficient) or sG = 0 (no

government purchases in steady state). Also, in the case that Ψ = O(||ξ||), λ is

equal to the value given in (2.62) to first order (which is all that is relevant for a

welfare ranking of equilibria that is accurate to second order), in accordance with our

conclusions in section 2.4.2.

With this definition of the output gap, (2.41) again takes the form (2.53), where

the cost-push term ut is defined in (2.54). Thus both the quadratic loss function

and the log-linear aggregate supply relation take the forms assumed in section 1. It

follows that optimal policy is characterized by a target criterion of the form (1.21),

where xt ≡ Ŷt − Ŷ ∗
t , and φ = λ/κ, where κ is defined in (2.42) and λ is defined in

(2.72). This is again the form of target criterion shown to characterize optimal policy

in section 2.3 above. Note that φ = θ−1, as concluded in section 2.4.1 above, only

in the case that either Ψ = 0 (as assumed earlier) or sG = 0. If 0 < Ψ < 1 and

0 < sG < 1, then if follows from (2.72) that φ < θ−1 in the optimal target criterion;

and in fact, it is even possible for φ to be negative (as discussed in the next section),

though this requires parameter values that are not too realistic.

2.5 Second-Order Conditions for Optimality

In the analysis above, it has been assumed that a solution to the FOCs corresponds

to an optimal evolution for the economy. In order for such a solution to represent an

optimum, it must maximize the Lagrangian, which requires that the Lagrangian be

locally concave — more precisely, it must be locally concave on the set of paths for the

endogenous variables that are consistent with the structural equations (though not

necessarily concave outside this set). This can be checked using a second-order Taylor

series expansion of the Lagrangian, which involves precisely the same coefficients as

already appear in our linear approximation to the FOCs.71

Benigno and Woodford (2005a) show that for the model considered here, the

Lagrangian (2.31) is locally concave (on the set of paths consistent with the model

71Algebraic conditions for local concavity of the Lagrangian for a more general class of opti-
mal policy problems, to which the problem considered here belongs, are presented in Benigno and
Woodford (2008) and in Giannoni and Woodford (2010).
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structural relations) near the optimal steady state if and only if the model parameters

are such that

λ > − κ2

(1 + β1/2)2
, (2.73)

where λ is defined by (2.72). In the case that λ > 0, the quadratic approximation to

the Lagrangian derived in the previous section is obviously concave (up to a constant,

it is a negative multiple of a function that is convex because it is a sum of squares);

but even if λ < 0, the Lagrangian continues to be concave as long as λ is not too

large a negative quantity. This is because it is not possible to vary the path of

the output gap without also varying the path of inflation (if we consider only paths

consistent with the aggregate-supply relation); if λ is only modestly negative, the

convexity of the loss function (1.6) in inflation will suffice to insure that the entire

function is convex (so that the quadratic approximation to the Lagrangian is concave,

and the Lagrangian itself is locally concave) on the set of paths consistent with the

aggregate-supply relation.

Since (2.72) implies that λ is positive unless both Ψ and sG are substantial frac-

tions of 1, and the second-order condition (2.73) is not violated unless λ is sufficiently

negative, the Lagrangian will be at least locally concave, except in the case of rela-

tively extreme parameter values. (For example, as long as sG < 1/2, one can show

that λ > 0, for any values of the other parameters.) Hence failure of the second-order

conditions is unlikely to arise in the case of an empirically realistic calibration of this

particular model. Nonetheless, it is worth noting that such a failure can occur under

parameter values consistent with our general assumptions.72

When (2.73) is not satisfied, the solution to the FOCs is not actually the optimal

equilibrium evolution; for example, the steady state is not the optimal equilibrium,

even in the absence of stochastic disturbances. It is not possible using the purely

local methods illustrated here to say what the optimal equilibrium is like; but local

analysis suffices to show, for example, that arbitrary randomization (of small enough

amplitude) of the paths of output and inflation can be introduced in a way that in-

creases expected utility, as first shown by Dupor (2003) in a simpler New Keynesian

model. This occurs because under certain circumstances, firms facing a more uncer-

tain demand for their products will prefer to set prices that are lower, relative to

72Fixing the values of α, β, ω, σ, θ and any value 0 < Ψ < 1, one can show that any value of sG

close enough to 1 will imply a value of λ sufficiently negative to violate (2.73).
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their expected marginal cost of supplying their customers, than they would if their

sales were more predictable.73 This in turn leads to a higher average level of output

in equilibrium; and in the case that the steady state level of output is sufficiently

inefficient (Ψ is sufficiently large), increasing the average level of output can matter

more for welfare than the losses resulting from more variable output and greater price

dispersion. Nonetheless, while technically possible, this case seems unlikely to be of

practical relevance.

2.6 When is Price Stability Optimal?

In general, the model presented in section 1 implies that there is a tradeoff between

inflation stabilization and output-gap stabilization, as a consequence of which an

optimal policy will not completely stabilize the rate of inflation; instead, modest (and

relatively transitory) variations in the rate of inflation should be accepted for the sake

of increased stability of the output gap. However, the degree to which actual economic

disturbances give rise to a tension between the goals of inflation stabilization and

output-gap stabilization depends on the nature of the disturbance. In the notation

used in section 1 (following Clarida et al., 1999), an exogenous disturbance should

be allowed to affect the rate of inflation only to the extent that it represents a “cost-

push disturbance” of the kind denoted by the term ut in (1.7). It is therefore of some

importance to have a theory of the extent to which actual disturbances should affect

the value of this term.

In the case of our analysis under the assumption that the steady-state level of

output is efficient, we were able to obtain a strong conclusion: the term ut in (1.7) is

a positive multiple of µ̂w
t + τ̂ t. In the absence of fluctuations in either the wage markup

or the tax rate, zero inflation is optimal, as a policy that achieves zero inflation at

all times would also achieve Ŷt = Ŷ e
t at all times, and hence a zero output gap (in

the welfare-relevant sense) at all times. This is only exactly true, however, on the

73This requires that firms care more about selling too little in low-demand states than about
selling too much in high-demand states. This will be the case if sG is sufficiently close to 1, since in
this case, there will be a large elasticity of private consumption Yt − Gt with respect to variations
in aggregate demand Yt, and as a consequence a large elasticity of the representative household’s
marginal utility of income with respect to variations in aggregate demand. The fact that the firm’s
shareholders value additional income so much in the lowest-demand states motivates firms to be
take care not to set prices that are too high relative to wages and other prices in the economy.
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assumption that Ψ = 0. In the more realistic case where we assume Ψ > 0, most

real disturbances have some non-zero “cost-push” effect, as shown by Benigno and

Woodford (2005a).

Even when Ψ > 0, there is a special case in which complete price stability continues

to be optimal. Suppose that there are no government purchases (Ḡ = 0, in addition

to no variation in government purchases), and that the distortion factors µw
t and τ t

remain forever at their steady-state values. In this case,74

fY (Y ; ξ) = (1− σ−1)(1− τ̄)uy(Y ; ξ), kY (Y ; ξ) = (1 + ω)µpµ̄wvy(Y ; ξ),

and condition (2.50) reduces to

[1 + Θ̄1(1− σ−1)(1− τ̄)]uy(Y
∗
t ; ξt) = [1 + Θ̄1(1 + ω)µpµ̄w]vy(Y

∗
t ; ξt). (2.74)

Then since

Θ̄1 =
Ψ

(σ−1 + ω)(1− τ̄)
= −Θ̄2,

the condition defining Y ∗
t simplifies to

(1−Ψ)uc(Y
∗
t ; ξt) = vy(Y

∗
t ; ξt). (2.75)

A comparison of this equation with (2.69) indicates that Y ∗
t = Y n

t . (Both Y ∗
t and

Y n
t move exactly in proportion to the variations in Y e

t , and both are smaller than Y e
t

by precisely the same percentage.) It follows that ut = 0, and again complete price

stability will be optimal. This explains the numerical results of Khan et al. (2003),

according to which it is optimal to use monetary policy to prevent technology shocks

from having any effect on the path of the price level.75

However, once we allow for non-zero government purchases, fY (Y ; ξ) is no longer

a constant multiple of uy(Y ; ξ). We must then write condition (2.50) as

uy(Y
∗
t ; ξt) + Θ̄1fY (Y ∗

t ; ξt) = [1 + Θ̄1(1 + ω)µpµ̄w]vy(Y
∗
t ; ξt), (2.76)

74Note that this derivation relies on the special isoelastic functional forms assumed for the utility
and production functions. More generally, the equivalence between Y ∗

t and Y n
t derived here will not

hold when Ψ > 0, even if Gt = 0 at all times, and all of the real disturbances will have “cost-push”
effects, making strict price stability sub-optimal.

75The result is derived here under the assumption of Calvo-style staggered price adjustment, but
can be shown to hold under more general assumptions about the way in which the probability of
price review varies with the duration since the last review (Benigno and Woodford, 2004), of the
kind made by Khan et al. (2003). See also section 3.1.1 below for discussion of optimal policy when
the Calvo assumption is relaxed.
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which no longer reduces to (2.74) and hence to (2.75). An exogenous increase in

Gt raises fY by a smaller proportion than the increase in uy. As a consequence, Y ∗
t

increases less with government purchases than does Y n
t , and ut ≡ κ(Ŷ ∗

t − Ŷ n
t ) falls

when government purchases rise. Government purchases have a negative (favorable)

“cost-push” effect in this case, as a result of which it is optimal for inflation to be

reduced slightly in response to the shock, in order to keep output from expanding as

much as it would under a policy consistent with price stability. (This again explains

the numerical results of Khan et al., (2003).)

If we start from a steady state in which Ḡ > 0 (certainly the more realistic case),

then other real disturbances have “cost-push” effects as well. If Ḡ > 0, an increase in

Yt does not reduce fY in proportion to the decline in uy. Hence the left-hand side of

(2.76) is not as sharply decreasing a function of Y as is the left-hand side of (2.74). It

follows that in the case of a productivity disturbance At, which shifts vy(Y ) without

affecting uy(Y ) or fY (Y ), the solution to (2.76), which is to say Y ∗
t , shifts by more

than does the solution to (2.74), which is equal to Y n
t as explained above. Thus a

positive technology shock increases Y ∗
t more than it does Y n

t , and consequently such

a shock has a positive “cost-push” effect, making a transitory increase in inflation

in response to the shock desirable. A similar conclusion holds in the case of shocks

to the preference factors H̄t or C̄t. Of course, these effects can only be substantial,

as a quantitative matter, in the case that government purchases are a substantial

share of output (so that the elasticities of fY and uy differ substantially) and steady-

state distortions are substantial (so that Θ̄1 is significantly non-zero and hence the

difference between the left-hand sides of (2.74) and (2.76) is non-trivial).

Of course, there are many other reasons why complete stabilization of a general

price index is unlikely to represent an optimal policy, that have been abstracted from

in the model treated in this section. In particular, once we allow wages as well as

prices to be sticky, or allow for asymmetries between different sectors, it is unlikely to

be optimal to fully stabilize an index that involves only prices (rather than wages) and

that weights prices in all sectors equally. Some of the consequences of complications

of these kinds are discussed in section 3.
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3 Generalizations of the Basic Model

There are many special features of the basic New Keynesian model, used in the

previous section to illustrate some basic methods of analysis and to introduce certain

themes of broader importance. This section considers the extent to which the specific

results obtained for the basic model extend to more general classes of models.

3.1 Alternative Models of Price Adjustment

Among the special features of the model treated in section 2 is the Calvo-Yun model

of staggered price adjustment. There are two aspects of this model that one may

wish to generalize: first, it assumes that the probability of a firm’s reconsidering its

pricing strategy in any period is independent of the time since the pricing of that

good was last reviewed; and second, it assumes that each supplier charges a fixed

nominal price between those occasions on which the pricing policy is reviewed, rather

than choosing some more complex strategy (such as a non-constant price path, or an

indexation rule) that is periodically revised in the light of market conditions. Here I

review available results on the consequences of relaxing both of these assumptions.

I shall focus on the question of how a welfare-based analysis of optimal policy

changes as a result of an alternative specification of the mechanism of price adjust-

ment, continuing to assume that the goal of policy is to maximize the expected

utility of the representative household, rather than assuming an ad hoc stabilization

objective such as (1.7) that stays the same when one changes one’s model of the

Phillips-curve tradeoff.76 One reason for taking up the topic is precisely to show

that the welfare-theoretic justification for a loss function of the form (1.6) provided

in section 2 does not equally extend to variant aggregate-supply specifications that

may be more empirically realistic. But another important theme of this section is

that some conclusions about the character of optimal policy can be robust to changes

in the specification of the dynamics of price adjustment. In several cases discussed

below, the form of the optimal target criterion — including the precise numerical

coefficients involved as well as the relevant definition of the “output gap” — remains

invariant under changes in the parameterization of the model of price adjustment.

76Exercises of the latter kind are fairly common, especially in work at policy institutions, but do
not raise new issues of method, and I shall not attempt to survey the various results that may be
obtained from varying combinations of the possible specifications of objectives and constraints.
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This provides a further argument for the desirability of formulating a central bank’s

policy commitment in terms of a target criterion, rather than through some other

possible description of intended future policy.

In the present section, I simplify the analysis by considering only the case in

which the steady-state level of output is efficient, as in section 2.4.1., and in which

∆̂t0−1 = O(||ξ||2), so that (2.58) holds. If one further assumes that each relative price

log(pt(i)/Pt) is of order O(||ξ||),77 then we can use the approximation

∆̂t =
1

2
θ(1 + ω)(1 + ωθ)vari log pt(i) +O(||ξ||3)

to show that

U(Yt, ∆t; ξt) =
1

2
(1 + ωθ)Ȳ uy[ζ x2

t + θvari log pt(i)]

+t.i.p. +O(||ξ||3),

where xt ≡ Ŷt − Ŷ e
t and

ζ ≡ σ−1 + ω

1 + ωθ
> 0

is a measure of the degree of “real rigidities.” Note that the price popt
t implicitly

defined by the relation78

Π1(p
opt
t , popt

t , Pt; Yt, ξt) = 0

or alternatively

popt
t

Pt

=

(
k(Yt; ξt)

f(Yt; ξt)

) 1
1+ωθ

can be approximated to first order by

log popt
t = pt + ζxt + µ̂t, (3.1)

where

µ̂t ≡ (1 + ωθ)−1(µ̂w
t + τ̂ t)

77If we consider only policies under which πt = O(||ξ||) for all t, relative prices will indeed be of
order O(||ξ||) for all t, assuming that one starts from an initial condition in which this is true. In
each of the exercises considered below, the optimal steady-state inflation rate continues to be zero,
so that under the optimal policy, πt = O(||ξ||) for all t.

78This relation defines the industry equilibrium price at time t for a (hypothetical) sector with
perfectly flexible prices. See Woodford (2003, chap. 3) for further discussion of the interpretation
and significance of the parameter ζ. Note that it is a feature of the economy that is independent of
any assumptions about the degree or nature of nominal rigidities.
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is a composite distortion factor. This explains the significance of the coefficient ζ.

It follows that welfare is maximized (to a second-order approximation) by mini-

mizing a quadratic loss function of the form

Et0

∞∑
t=t0

βt−t0 [ζ x2
t + θvari log pt(i)]. (3.2)

In the case of Calvo pricing, this loss function is proportional to (1.6); but under alter-

native assumptions about the dynamics of price adjustment, the connection between

price dispersion and inflation is different, and so the way in which the welfare-based

loss function will depend on inflation is different.

3.1.1 Structural Inflation Inertia

The Calvo-Yun model of price adjustment makes the model dynamics in section 2

highly tractable, but has some implications that are arguably unappealing. In partic-

ular, it results in a log-linear aggregate supply relation (2.41) that is purely forward-

looking: neither past inflation nor past real activity have any consequences for the

inflation-output tradeoff that exists at a given point in time. Empirical aggregate

supply relations often instead involve some degree of structural inflation inertia, in

the sense that a higher level of inflation in the recent past makes the inflation rate

associated with a given path for real activity from now on higher.79

In fact, as Wolman (1999), Dotsey (2002) and Sheedy (2007) note, a model of

optimal price-setting of the kind considered above can imply inflation inertia, if one

abandons the Calvo assumption of duration-independence of the probability of price

review. If, as is arguably more plausible,80 one instead assumes that prices are more

likely to be reviewed the older they are, then when inflation has been higher than

average in the recent past, old prices will be especially low relative to prices on

average, and as a consequence the average percentage increase in the prices that are

adjusted will be greater. This mechanism makes the overall rate of inflation higher

when past inflation has been higher, for any given assumption about where newly

revised prices will be set relative to the average level of current prices (which depends

79See Fuhrer (2010) for a review of the literature on this issue.
80Wolman (1999) argues for this kind of model as an approximation to the dynamics implied by

a state-dependent pricing model of the kind analyzed by Dotsey et al. (1999).
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on real marginal costs — and hence on the output gap — and on expected inflation

from now on).

As an example (taken from Sheedy, 2007) in which the state space required to

describe aggregate dynamics remains relatively small, consider a generalization of the

Calvo model in which at each point in time, the fraction θj of all prices that were

chosen j periods ago is given by

θj =
(1− α1)(1− α2)

α1 − α2

[αj+1
1 − αj+1

2 ] (3.3)

for any integer j ≥ 0, where

0 ≤ α2 < min(α1, 1− α1) < 1.

Conditional on a price having already been charged for j periods, the probability

that it will continue to be charged for another period, θj/θj−1, is less than 1, and

non-increasing in j. The Calvo case is nested within this family as the case in which

α2 = 0, in which case the probability of non-review each period, θj/θj−1 = α1, is

independent of j. When α2 > 0, instead, the probability of a price review each

period is an increasing function of j. As in the model of section 2, let us suppose

that the same price is charged until the random date at which the price of that good

is again reviewed.

If we continue to maintain all of the other assumptions of section 2, each firm

that reviews its price in period t faces the same optimization problem and chooses

the same price p∗t . The optimal choice is again given by (2.13), where we now define

Ft ≡ Et

∞∑
T=t

βT−tθT−tf(YT ; ξT )

(
PT

Pt

)θ−1

,

Kt ≡ Et

∞∑
T=t

βT−tθT−tk(YT ; ξT )

(
PT

Pt

)θ(1+ω)

,

generalizing the previous forms (2.14)–(2.15). Log-linearizing this relation around the

zero-inflation steady state (that continues to be the optimal steady state, regardless

of the values of α1, α2), we obtain

log p∗t =
∞∑

j=0

ωjEt[log popt
t+j], (3.4)
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where

ωj ≡ βjθj∑∞
i=0 βiθi

for each j ≥ 0. The log of the Dixit-Stiglitz price index is in turn given (to first order)

by

pt =
∞∑

j=0

θj log p∗t−j. (3.5)

When the sequence {θj} is given by (3.3), (3.5) implies that the price index must

satisfy a difference equation of the form

(1− α1L)(1− α2L)pt = (1− α1)(1− α2) log p∗t , (3.6)

and (3.4) implies that {p∗t} must satisfy the expectational difference equation

Et[(1− α1βL−1)(1− α2βL−1) log p∗t ] = (1− α1β)(1− α2β) log popt
t . (3.7)

Substituting (3.6) for log p∗t and (3.1) for log popt
t in (3.7), one can show that the

inflation rate must satisfy an aggregate-supply relation of the form

πt − γ−1πt−1 = κxt + γ1Etπt+1 + γ2Etπt+2 + ut, (3.8)

where the exogenous disturbance ut is a positive multiple of µ̂t, and the coefficients

satisfy κ > 0, γ−1 + γ1 + γ2 = β as in the model of section 2, but now

γ−1 =
α1α2

(1 + α1α2β)(α1 + α2)− α1α2

≥ 0

is a positive coefficient (indicating structural inflation inertia) if α2 > 0 (so that the

probability of price adjustment is increasing in duration).81

Let us now consider the consequences of this generalization for optimal policy.

Modification of the model of price adjustment implies that the welfare-based stabi-

lization objective also changes, if written as a function of the evolution of the general

price index (rather than in terms of the dispersion of individual prices). The quadratic

approximation δt ≡ vari log pt(i) to the index of price dispersion evolves according to

a law of motion

(1− α1L)(1− α2L)δt = (1− α1)(1− α2)(log p∗t )
2 − (1− α1L)(1− α2L) p2

t

81Sheedy (2007) finds that estimation of the model using U.S. data yields a significantly positive
coefficient.
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as a consequence of our assumption about the probability of revision of prices of

differing durations.

Multiplying by βt−t0 and summing, one finds that

∞∑
t=t0

βt−t0δt = Γ
∞∑

t=t0

βt−t0(log p∗t )
2 −

∞∑
t=t0

βt−t0 p2
t + t.i.p. +O(||ξ||3), (3.9)

where

Γ ≡ (1− α1)(1− α2)

(1− α1β)(1− α2β)
.

(Note that 0 < Γ < 1.). This result can be used to substitute for the discounted sum

of δt terms in (3.2), yielding a quadratic objective of the form

Et0

∞∑
t=t0

βt−t0 [ζ x2
t + θΓ(log p∗t )

2 − θp2
t ]. (3.10)

This involves only the paths of the variables {xt, p
∗
t , pt}. Moreover, the evolution

of {p∗t} depends purely on the paths of the variables {xt, pt} and the exogenous

disturbances, because of equations (3.1) and (3.4). Thus the stabilization objective

can again be expressed as a quadratic function of the paths of the variables {xt, pt}
and no other endogenous variables.

If we write a Lagrangian for the problem of minimizing (3.10) subject to the

constraints (3.6) and (3.7), we obtain a system of FOCs

xt − (1− α1β)(1− α2β)ϕt = 0, (3.11)

θpt + (1− α1β)(1− α2β)ϕt + Et[γ(βL−1)ψt] = 0, (3.12)

θΓ log p∗t + (1− α1)(1− α2)ψt + γ(L)ϕt = 0, (3.13)

where ψt is a Lagrange multiplier associated with constraint (3.6), ϕt is a multiplier

associated with constraint (3.7), and

γ(L) ≡ (1− α1L)(1− α2L).

Each of constraints (3.11)–(3.13) must hold for each t ≥ t0, if we adjoin to this system

the initial conditions

ϕt0−1 = ϕt0−2 = 0. (3.14)
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If we solve (3.13) for ψt, and use (3.7) to substitute for p∗t in this expression, we

obtain

ψt = − θγ(L)

γ(1)γ(β)
p̂t,

where

p̂t ≡ pt − θ−1γ(1)ϕt.

Using this to substitute for ψt in (3.12), we obtain

Et[A(L)p̂t+2] = 0, (3.15)

where A(L) is a quartic polynomial. Because the factors of A(L) are of the form

A(L) = (1− L)(1− β−1L)(1− λ1L)(1− λ2L),

where 0 < λ1 < 1 < λ2, it follows that in any non-explosive solution (for example,

any solution in which the inflation rate and output gap are forever bounded), we

must have

(1− λ1L)(1− L)p̂t = 0

for each t ≥ t0. Because this equation is purely backward-looking, the path {p̂t}
is uniquely determined by the initial conditions (pt0−1, pt0−2) and conditions (3.14).

Note that {p̂t} is a deterministic sequence that converges asymptotically to some

constant value p∗ (a homogeneous degree 1 function of (pt0−1, pt0−2)).

Finally, (3.11) implies that p̃t = p̂t for all t ≥ t0, where p̃t is again the output-

gap-adjusted price level defined in (2.65). Hence we have also solved for a uniquely

determined optimal path {p̃t}, with the properties just discussed. Thus, as in the

basic New Keynesian model, it is possible to verify whether the economy’s projected

evolution is consistent with the optimal equilibrium simply by verifying that the

projected paths for {pt} and {xt} satisfy a certain linear relationship. Moreover,

optimal policy again requires that the path of the output-gap-adjusted price level be

completely unaffected by any random shocks that occur from date t0 onward. As

an example, Figure 4 shows the impulse responses of inflation, output and the price

level to a transitory positive “cost-push” shock under an optimal policy commitment,

using again the format of Figure 1. However, whereas Figure 1 corresponds to a
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Figure 4: Impulse responses to a transitory cost-push shock under an optimal policy

commitment, in the case of structural inflation inertia.

parameterization in which α1 = 0.66, α2 = 0, it is now assumed that α1 = α2 = 0.5.82

As a consequence, γ−1 = 0.251, and there is structural inflation inertia. Even though

the shock has a “cost-push” effect in period zero only, optimal policy now allows the

price level to continue to increase (by a small amount) in period one as well; owing to

the structural inflation inertia, it would be too costly to reduce the inflation rate more

suddenly. Nonetheless, under the optimal policy commitment, the impulse response

of the price level is the mirror image of the impulse response of the output gap, just

as in Figure 1. The difference is simply that it is necessary for the deviations of both

82As in Figure 1, the shock is a one-period increase in µ̂0 by 5.61 (which under the parameterization
used in Figure 1 corresponds to a cost-push shock that would raise the log price level by 1 in the
absence of any change in the output gap or in expected inflation). Also as in Figure 1, it is assumed
that β = 0.99 and ζ = 0.134. The value of θ used here is 6, a slightly smaller value than the one
(taken from Rotemberg and Woodford, 1997) used in Figure 1. This is because the lower value of
θ increases the degree of structural inflation inertia, making more visible the contrast between the
two figures.
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the price level and of the output gap from their long-run values to be more persistent

when inflation is inertial.

One difference from the results obtained earlier is that in the basic New Keynesian

model, optimal policy required that the target for p̃t be the same for all t ≥ t0, while

in the more general case, the targets for p̃t form a deterministic sequence, but equal

the constant p∗ only asymptotically. When α2 > 0, the optimal sequence {p̃t} is

monotonically increasing if πt0−1 > 0 and monotonically decreasing if πt0−1 < 0; and

both the initial rate of increase of p̃t and the cumulative increase in p̃t over the long

run should be proportional to the initial inflation rate πt0−1. Thus in the presence

of structural inflation inertia, the fact that the economy starts out from a positive

inflation rate has implications for the rate of inflation that should initially be targeted

after the optimal policy is adopted. However, shocks that occur after the adoption

of the optimal policy commitment should never be allowed to alter the targeted path

for the output-gap-adjusted price level, which should eventually be held constant

regardless of the disturbances to which the economy may recently have been subject.

Sheedy (2008) shows that this result holds not only for the particular parametric

family of sequences {θj} defined in (3.3), but for any sequence {θj} that corresponds

to the solution to a linear difference equation of arbitrary (finite) order. In any

such case, under an optimal policy commitment, the path of the output-gap-adjusted

price level must evolve deterministically, and converge asymptotically to a constant.

Moreover, it must satisfy a time-invariant target criterion of the form

δ(L)p̃t = p∗ (3.16)

for all t after some date T , where δ(L) is a finite-order lag polynomial all of the

roots of which lie outside the unit circle (so that the sequence {p̃t} must converge).83

Hence the result that optimal policy requires the central bank to target a deter-

ministic path for the output-gap adjusted price level is independent of the assumed

duration-dependence of the probability of price review; the definition of the output-

gap-adjusted price level in this target criterion is also independent of those details.

This provides a further example of how the description of optimal policy in terms of

a target criterion that must be fulfilled is more robust to alternative model parame-

terizations than other levels of description, that would be equivalent in the context

of a particular quantitative specification.

83In the class of examples defined by (3.3), δ(L) ≡ (1−λ1L), and (3.16) must hold for all t ≥ t0+1.
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3.1.2 Sticky Information

Another model of price adjustment treats the delays in adjustment of prices to current

market conditions as resulting from infrequent updating of price-setters’ information,

rather than from any delays in adjustment of prices to what price-setters currently

understand to be optimal, owing to costs of changing prices from what they have

been in the past. In the “sticky information” model of Mankiw and Reis (2002),

price-setters update their information sets only at certain dates, though they obtain

full information about the current state of the world each time that they obtain any

new information at all; and they continually adjust the price that they charge, to

reflect what they believe to be the currently optimal price, on the basis of the most

recent information available.

Suppose, following Mankiw and Reis, that the probability that a firm (the monopoly

producer of a single differentiated product) updates its information is a function only

of the time that has elapsed since it has last done so.84 For any integer j ≥ 0, let θj

be the fraction of the population of firms at any date that have last updated their

information j periods earlier, where {θj} is a non-increasing sequence of non-negative

quantities that sum to 1, as in the previous section. In Mankiw and Reis (2002) and

in Ball et al. (2005), it is assumed that the probability of updating is independent of

the time since the firm last updated its information, so that θj = (1− α)αj for some

0 < α < 1; but here I shall allow for duration-dependence of a fairly general sort. I

shall let J denote the largest integer j such that θj > 0; this may be infinite (as in

the case assumed by Mankiw and Reis, 2002), but I shall also allow for the possibil-

ity that there is a finite maximum duration between dates at which information is

updated (as, for example, in Koenig, 2004).

In any period t, a firm that last updated its information in period t − j chooses

its price p to maximize Et−jΠ(p, pj
t , Pt; Yt, ξt). Let the solution to this problem be

denoted p∗t,t−j; to a log-linear approximation, it is given by

log p∗t,t−j = Et−j log popt
t , (3.17)

where popt
t will again be given (to a log-linear approximation) by (3.1). To a similar

84This probability is taken here, as in the original paper of Mankiw and Reis (2002), to be
exogenously given, and to be the same for all firms. Reis (2006) considers instead the endogenous
determination of the time interval between information acquisitions. The consequences of such
endogeneity for optimal policy have not yet been addressed.
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log-linear approximation, the log general price index pt will be given by

pt =
∞∑

j=0

θj log p∗t,t−j. (3.18)

Combining these equations, we find that the model implies an aggregate-supply rela-

tion of the form ∞∑
j=0

θj[pt − Et−jpt] =
∞∑

j=0

θjEt−j[ζxt + µ̂t].

This is a form of expectations-augmented Phillips curve, which provides a possible

explanation for apparently inertial inflation (even if it is not true structural inflation

inertia): a higher than usual inflation rate is associated with a given output gap if the

inflation rate was expected at some past date to be higher than usual, which tends

to have been the case when actual inflation was higher than usual at that past date.

This model of pricing similarly implies that

vari log pt(i) =
∞∑

j=0

θj(log p∗t,t−j)
2 − (

∞∑
j=0

θj log p∗t,t−j)
2

=
∞∑

j=0

θj(log p∗t,t−j)
2 − p2

t . (3.19)

Our problem is then to find a state-contingent evolution for the variables {pt, xt, p
∗
t,t−j}

for all t ≥ t0 (and for each such t, all 0 ≤ j ≤ t − t0) so as to minimize (3.2), in

which we substitute (3.19) for the price dispersion terms, subject to the constraints

that (3.17) must hold for each (t, t− j) and (3.18) must hold for each t.

We can write a Lagrangian for this problem of the form

Lt0 = Et0

∞∑
t=t0

βt−t0

{
ζ

2
x2

t +
θ

2

[ ∞∑
j=0

θj(log p∗t,t−j)
2 − p2

t

]

+

t−t0∑
j=0

ψt,t−j[log p∗t,t−j − pt − ζxt − µ̂t]

+ϕt

[
pt −

∞∑
j=0

θj log p∗t,t−j

]}
, (3.20)

where ψt,t−j is a Lagrange multiplier associated with constraint (3.17) and ϕt is a

multiplier associated with constraint (3.18). Differentiation yields FOCs

θjθ log p∗t,t−j + ψt,t−j − θjϕt = 0 (3.21)

89



for each 0 ≤ j ≤ t− t0 and each t ≥ t0; and

θ pt +

t−t0∑
j=0

ψt,t−j − ϕt = 0, (3.22)

ζ xt − ζ

t−t0∑
j=0

ψt,t−j = 0 (3.23)

for all t ≥ t0.

Since ψt,t−j must be measurable with respect to period t − j information (note

that there is only one constraint (3.17) for each possible state of the world at date

t − j, and not a separate constraint for each state that may be reached at date t),

condition (3.21) implies that ϕt must be measurable with respect to period t − j

information, so that

ϕt = Et−jϕt (3.24)

for all j such that θj > 0, which is to say, for all j ≤ min J, t− t0.

Solving (3.21) for ψt,t−j and substituting for these multipliers in (3.22) and (3.23)

yields

σt−t0ϕt = θp̂t,t0−1, (3.25)

xt = (1− σt−t0)ϕt + θ[p̂t,t0−1 − pt], (3.26)

where

σj ≡
∑
i>j

θi

is the probability of a firm’s having information more than j periods old, and

p̂t,t0−1 ≡
∞∑
i=1

θt−t0+i log p∗t,t0−i

is the contribution to pt from prices set on the basis of information dating from prior

to date t0.

In the case of any t < t0 + J, one has σt−t0 > 0, and (3.25) can be solved for ϕt.

Substituting this value into (3.26), we find that the FOCs require that

p̃t = σ−1
t−t0

p̂t,t0−1 (3.27)

90



for all t < t0 + J . If J = ∞, as in the case assumed by Mankiw and Reis (2002) and

Ball et al. (2005), we once again find that optimal policy requires that the output-

gap-adjusted price level follow a deterministic path for all t ≥ t0. (This path is not,

however, necessarily constant even in the long run: if prior to date t0, the public has

expected prices to increase over the long run at a steady rate of two percent per year,

then under the optimal Ramsey policy from date t0 onward, p̃t should increase at two

percent per year in the long run.)

This result differs from the one obtained by Ball et al., because they assume

that monetary policy must be determined on the basis of the economy’s state in

the previous period, rather than its current state. Under this information constraint

on the central bank, they find that optimal policy requires that Et−1p̃t must evolve

according to a deterministic path, though shocks in period t can still cause surprise

variations in p̃t relative to what was expected a period in advance. In a sense, this

result provides an even stronger argument for price-level targeting: for while the

optimal target criterion for the full-information case can equivalently be stated as a

requirement that π̃t ≡ πt +θ−1(xt−xt−1) follow a deterministic path, in the case that

the central bank must make its policy decision a period in advance, it is not optimal

for the projection Et−1π̃t to evolve deterministically. (It should instead depend on

the error that was made in period t− 2 in forecasting π̃t−1.)

Returning to the case of full information on the part of the central bank, it is

possible to generalize our result to specifications under which J < ∞. In this case,

(3.25) places no restriction on ϕt for any t ≥ t0 + J. However, in such a case, (3.26)

implies that p̃t = ϕt. It then follows from (3.24) that

p̃t = Et−J p̃t

for all t ≥ t0 + J.85 Hence the more general result is that under an optimal policy,

p̃t must follow a deterministic path for the first J periods after the adoption of

the optimal policy, and thereafter must always be perfectly predictable J periods in

advance. However, the path of {Et−J p̃t} can be completely arbitrary for t ≥ t0+J, and

can depend in an arbitrary way upon shocks occurring between period t0 and period

t − J. Thus while a policy rule that ensures that {p̃t} follows a deterministic target

path is among the optimal policies even when J is finite, this strong requirement is

85See Koenig (2004) for a similar result in a model where nominal wages are set on the basis of
sticky information.
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no longer necessary for optimality.

The finding that it is optimal for the output-gap adjusted price level defined in

(2.65) to follow a deterministic target path in this general class of sticky-information

models as well as in the general class of sticky-price models considered in the previous

section suggests that the result holds under quite weak assumptions about the timing

of price adjustments and the information upon which they are based. Indeed, Kita-

mura (2008) analyzes optimal policy in a model of price adjustment that combines

stickiness of prices with stickiness of information, and finds that it is again optimal

for the output-gap-adjusted price level to evolve deterministically, regardless of the

values assigned the parameters specifying either the degree of price stickiness or the

degree of stickiness of information.

Of course, one cannot conclude that it is universally true that optimal policy

requires that the output-gap-adjusted price level defined in (2.65) evolve determinis-

tically. While we have obtained this result under a variety of assumptions about price

adjustment, each of the models considered shares a large number of common features

— we have in each case assumed the same specification of the demand side of the

model, the same structure of production costs, and full information on the part of the

central bank. Varying these assumptions can change the form of the optimal target

criterion. Nonetheless, it does seem that a description of optimal policy in terms of

a target criterion is more robust than other levels of description.

3.2 Which Price Index to Stabilize?

In the basic New Keynesian model of section 2 (as well as the generalizations just

considered), the differentiated goods enter the model in a completely symmetric way,

and furthermore only aggregate disturbances are considered, that affect the supply

and demand for each good in an identical way. In such a model, there is a single

obvious way to measure “the general level” of prices, an index in which each goods

price enters with an identical weight. We have written the model structural equa-

tions in terms of their implications for the evolution of this symmetric price index,

and derived optimal target criterion that involve the path of inflation, measured by

changes in the log of this price index.

In actual economies, however, there are many reasons for the prices of different

goods not to perfectly co-move with one another, apart from the differences in the
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timing of price reviews or differences in the information sets of price-setters considered

above, and the question as to which measure of inflation (or of the price level) should

be targeted by a central bank is an important practical question for the theory of

monetary policy. It would not be correct to say that the theory expounded above

implies that an equally-weighted price index (or alternatively, one in which all goods

are weighted by their long-run average expenditure shares) should be used in the

target criterion; in fact, the models considered above are ones in which there is

no relevant difference among alternative possible price indices. (Any price index

that averages a large enough number of different prices for sampling error to be

minimal — assuming that the criterion for selection of prices to include in the index is

uncorrelated with any systematic differences in the timing of price reviews or updating

of information sets by suppliers of the particular goods — will evolve in essentially

the same way in response to aggregate disturbances.)

It is therefore important to extend the theory developed above to deal with en-

vironments in which the factors that determine prices can differ across sectors of

the economy. It is important to consider the consequences of disturbances that have

asymmetric effects on different sectors of the economy, and also to allow for different

structural parameters in the case of different sectors. Below, I give particular atten-

tion to heterogeneity in the degree to which prices are sticky in different sectors of

the economy.86 The model sketched here is still a highly stylized one, with only two

sectors and only a few types of heterogeneity. But it will illustrate how the methods

introduced above can also be applied to a multi-sector model, and may also provide

some insight into which of the conclusions obtained above in the case of the basic

New Keynesian model are more likely to be apply to more general settings.

3.2.1 Sectoral Heterogeneity and Asymmetric Disturbances

Let us consider a slightly more general version of the two-sector model proposed by

Aoki (2001).87 Instead of assuming that the consumption index Ct that enters the

utility function of the representative household is defined by the CES index (2.2), let

86For evidence both on the degree of heterogeneity across sectors of the U.S. economy, and on the
degree to which this heterogeneity matters for quantitative predictions about aggregate dynamics,
see, e.g., Carvalho (2006) and Nakamura and Steinsson (2010).

87The two-sector model presented here also closely resembles the treatment of a two-country
monetary union in Benigno (2004).
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us suppose that it is a CES aggregate of two sub-indices,

Ct ≡
[
(n1ϕ1t)

1
η C

η−1
η

1t + (n2ϕ2t)
1
η C

η−1
η

2t

] η
η−1

, (3.28)

for some elasticity of substitution η > 0. The sub-indices are in turn CES aggregates

of the quantities purchased of the continuum of differentiated goods in each of the

two sectors,

Cjt ≡
[∫

Nj

ct(i)
θ−1

θ di

] θ
θ−1

,

for j = 1, 2, where the intervals of goods belonging to the two sectors are respectively

N1 ≡ [0, n1] and N2 ≡ (n1, 1], and once again θ > 1.88 In the aggregator (3.28), nj is

the number of goods of each type (n2 ≡ 1− n1), and the random coefficients ϕjt are

at all times positive and satisfy the identity n1ϕ1t + n2ϕ2t = 1. (The variation in the

ϕjt thus represents a single disturbance each period, a shift in the relative demand

for the two sectors’ products.)

It follows from this specification of preferences that the minimum cost of obtaining

a unit of the sectoral composite good Cjt will be given by the sectoral price index

Pjt ≡
[∫

Nj

pt(i)
1−θdi

] 1
1−θ

(3.29)

for j = 1, 2, and that the minimum cost of obtaining a unit of Ct will correspondingly

be given by the overall price index

Pt ≡
[
n1ϕ1tP

1−η
1t + n2ϕ2tP

1−η
2t

] 1
1−η .

Assuming that both households and the government care only about achieving as

large as possible a number of units of the aggregate composite good at minimum

cost, the demand function for any individual good i in sector j will be of the form

yt(i) = Yjt (pt(i)/Pjt)
−θ,

where the demand for the sectoral composite good is given by

Yjt = njϕjt Yt (Pjt/Pt)
−η

88We need not assume that η > 1 in order for there to be a well-behaved equilibrium of the
two-sector model under monopolistic competition. In fact, the limiting case in which η → 1 and the
aggregator (3.28) becomes Cobb-Douglas is frequently assumed; see, e.g., Benigno (2004).
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for each sector j. Note that the random factors ϕjt appear as multiplicative dis-

turbances in the sectoral demand functions; this is one of the types of asymmetric

disturbance that we wish to consider.

A common production technology of the form (2.5) is again assumed for each good,

with the exception that the multiplicative productivity factor At is now allowed to be

sector-specific. (That is, there is an exogenous factor A1t for each of the firms in sector

1, and another factor A2t for each of the firms in sector 2.) This allowance for sector-

specific productivity variation is another form of asymmetric disturbance. There is

similarly assumed as above to be a common disutility of labor function for each of

the types of labor, except that now the preference shock H̄t is allowed to be sector-

specific as well. The model thus allows for three types of asymmetric disturbances:

variation in relative demands for the goods produced in the two sectors; variation

in the relative productivity of labor in the two sectors; and variation in the relative

willingness of households to supply labor to the two sectors. Each of these three types

of asymmetric disturbances would result in variation in the relative quantity supplied

of goods in the two sectors, and in the relative price of goods in the two sectors, even

in the case of complete price flexibility (with full information). If we allow for time

variation in a wage markup µw
t or in a proportional tax rate τ t on sales revenues,

these can be sector-specific as well. The latter types of asymmetric disturbances do

not result in any asymmetry of the efficient allocation of resources, but would again

be sources of asymmetry in both prices and quantities in a flexible-price equilibrium.

As in the basic New Keynesian model, I shall assume Calvo pricing by each firm;

but the probability α that a firm fails to reconsider its price in a given period is now

allowed to depend on the sector j. Again it is useful to derive a log-linear approxi-

mation to the model dynamics, near a long-run steady state with zero inflation. The

calculations are also simplest if I assume that in this steady state, all sector-specific

disturbances have common values in the two sectors: ϕ̄1 = ϕ̄2, Ā1 = Ā2, and so on. In

this case, the prices of all goods are the same in the steady state (as before), and the

steady-state allocation of resources is the same as in the one-sector model. I allow,

however, for (small) asymmetric departures from the symmetric steady state.

Using the same methods as in section 2, one can show89 that to a log-linear

approximation, the dynamics of the two sectoral price indices are given by a pair of

89See Woodford (2003, chap. 3, sec. 2.5) for details of the calculation.
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sector-specific Phillips curves

πjt = κj(Ŷt − Ŷ n
t ) + γj(pRt − pn

Rt) + βEtπj,t+1 + ujt, (3.30)

for j = 1, 2. Here πjt ≡ ∆ log Pjt is the sectoral inflation rate for sector j; Ŷt is

the percentage deviation of production of the aggregate composite good (not the

sectoral composite good!) from its steady-state level, as before; Ŷ n
t is the flexible-

price equilibrium level of production of the aggregate composite good, when the wage

markups and the tax rates are held fixed at their (common) steady-state levels, as

in section 2.4.2; pRt ≡ log(P2t/P1t) is a measure of the relative price of the two

sectoral composite goods; pn
Rt is the flexible-price equilibrium relative price, again

with the wage markups and tax rates fixed at their steady-state levels; and ujt is

a sector-specific “cost-push” disturbance that depends only on the deviations of µw
jt

and τ jt from their steady-state levels. To this log-linear approximation, Ŷ n
t depends

only on the “aggregate” disturbances, defined as at ≡
∑

j njajt (where ajt ≡ log Ajt

for j = 1, 2), and so on, and is the same function of these disturbances as in the

one-sector model;90 while p̂n
Rt depends only on the “relative” disturbances, defined as

aRt ≡ a2t − a1t, and so on.

The coefficients of equation (3.30) are given by

κj ≡ (1− αj)(1− αjβ)

αj

ω + σ−1

1 + ωθ
> 0

for j = 1, 2, and

γ1 ≡ n2
(1− α1)(1− α1β)

α1

1 + ωη

1 + ωθ
> 0, γ2 ≡ −n1

(1− α2)(1− α2β)

α2

1 + ωη

1 + ωθ
< 0,

where 0 < nj < 1 is the number of goods in sector j. Because the only kind of “struc-

tural” asymmetry allowed for here is heterogeneity in the degree of price stickiness,

the slope coefficients κj differ across the two sectors if and only the αj are different:

κ1 < κ2 if and only if α2 < α1. The coefficients γj instead have opposite signs, owing

to the asymmetry in the way each sector’s price index enters the definition of pRt.

Optimal policy is particularly easy to characterize using the method of linear-

quadratic approximation explained in section 2.4, and if we restrict ourselves to the

case of “small steady-state distortions,” as in section 2.4.2. In this case one can

show91 that the expected utility of the representative household varies inversely (to

90This is one of the simplifications that results from log-linearizing around a symmetric steady
state.

91For details of the calculations, see Woodford (2003, chap. 6, sec. 4.3).
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a second-order approximation) with a discounted loss function of the form

Et0

∞∑
t=t0

βt−t0

[∑
j

wjπ
2
jt + λx(xt − x∗)2 + λR(pRt − pn

Rt)
2

]
, (3.31)

where xt ≡ Ŷt − Ŷ n
t denotes the output gap; the relative weights on the two inflation

objectives (normalized to sum to 1) are given by

wj ≡ njκ

κj

> 0,

in which expression the “average” Phillips curve slope is defined as

κ ≡ (n1κ
−1
1 + n2κ

−1
2 )−1 > 0;

and the other two relative weights are given by

λx ≡ κ

θ
> 0, λR ≡ n1n2

η(1 + ωη)

ω + σ−1
λx > 0.

The optimal level of the output gap x∗ is again the same function of the steady-state

distortions as in the one-sector model.

Each of the terms in (3.31) has a simple interpretation. As usual, deviations

of aggregate output from the efficient level (given the “aggregate” technology and

preference shocks) — or equivalently, deviations of the output gap from the opti-

mal level x∗ — lower welfare. But even given an efficient level of production of the

aggregate composite good, a non-zero “relative price gap” pRt − pn
Rt will imply an

inefficient relative level of production of the two sectoral composite goods, so varia-

tions in the relative price gap lower welfare as well. And finally, instability of either

sectoral price level leads to relative-price distortions within that sector, and hence

an inefficient composition of sectoral output, even if the quantity supplied of the sec-

toral composite good is efficient. Elimination of all of these sources of inefficiency

in the equilibrium allocation of resources would require simultaneous stabilization

of all four of the variables appearing in separate quadratic terms of (3.31). But in

general, monetary policy cannot simultaneously stabilize all four variables, even in

the absence of variation in the cost-push terms, if there is exogenous variation in the

“natural relative price” pn
Rt, as there almost inevitably will be if there are asymmet-

ric disturbances to technology and/or preferences. This means that the conditions
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required for complete price stability to be fully optimal are even more stringent (and

implausible) in a multi-sector economy.92

As in section 2.4.2, a log-linear approximation to the optimal evolution of the

endogenous variables can be obtained by finding the state-contingent paths of the

variables {P1t, P2t, Yt} that minimize (3.31) subject to the constraints (3.30). The

FOCs for this problem can be written as

wjπjt + ϕjt − ϕj,t−1 + (−1)j−1ψt = 0, (3.32)

λx(xt − x∗)−
∑

j

κjϕjt = 0, (3.33)

λR(pRt − pn
Rt)−

∑
j

γjϕjt + ψt − βEtψt+1 = 0, (3.34)

where (3.32) must hold for j = 1, 2. Here ϕjt is the Lagrange multiplier associated

with constraint (3.30) (for j = 1, 2), and ψt is the Lagrange multiplier associated

with the identity

pRt = pR,t−1 + π2t − π1t.

The optimal state-contingent dynamics are then obtained by solving the four FOCs

(3.32)–(3.34) and the three structural equations (equations (3.30) plus the identity)

each period for the paths of the seven endogenous variables {πjt, pRt, xt, ϕjt, ψt}, given

stochastic processes for the composite exogenous disturbances {pn
Rt, ujt}.

Figure 5 illustrates the kind of solution implied by these equations in a numerical

example. In this example, the two sectors are assumed to be of equal size (n1 =

n2 = 0.5), but prices in sector 2 are assumed to be more flexible; specifically, while

the overall frequency of price change is assumed to be the same as in the example

considered in Figure 1 (where α = 0.66 for all firms), the model is now parameterized

so that prices adjust roughly twice as often in sector 2 as in sector 1 (α1 = 0.77, α2 =

0.55). In other respects, the model is parameterized as in Figure 1.93 The disturbance

92It can be shown, however, that even in the presence of asymmetric disturbances to technology
and preferences, if the degree of price stickiness is the same in both sectors (α1 = α2) and there
are no cost-push disturbances, it is optimal to completely stabilize an equally-weighted price index;
and just as in the one-sector model, this policy will completely stabilize the output gap xt. (See
Woodford, 2003, chap. 6, sec. 4.3.) However, this result no longer holds if α1 6= α2.

93The parameter values assumed for β, ζ, ω, and θ, as well as for the average frequency of price
adjustment, are taken from Woodford (2003, Table 5.1). In addition, it is assumed that η = 1, so
that the expenditure shares of the two sectors remain constant over time, despite permanent shifts
in the relative price pRt.
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Figure 5: Impulse responses of the output gap and of the two log sectoral price indices

under an optimal policy commitment, in the case of an asymmetric real disturbance

that permanently increases the natural relative price of sector-2 goods.

assumed is one that immediately and permanently increases the (log) natural relative

price pn
Rt of the flexible-price sector by one percentage point; note that it does not

matter for the calculations reported here whether this is due to a shift in relative

demand or a shift in relative costs of production. (All quantities on the vertical axis

are in percentage points.) The figure shows that under an optimal policy, the long-run

increase in the relative price of sector-2 goods results from an increase in the sector-2

price index of about 84 basis points and a decrease in the sector-1 price index of about

16 basis points. While this means that an equally-weighted (or expenditure-weighted)

price index increases in response to the shock, one observes that the output gap is

temporarily reduced during the period that prices are adjusting. Hence this type of

disturbance gives rise to phenomena of the sort captured by a “cost-push shock” in

a one-sector model like that of section 1, though in the present case no variations in

the degree of market power or in tax distortions are needed to cause such an effect
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(and the terms ujt are both equal to zero in this example).

While the optimal dynamics are generally more complex than in the one-sector

model, one important conclusion of the analysis in sections 1 and 2 remains valid:

under optimal policy, no disturbances should be allowed to permanently shift a (suit-

ably defined) measure of the general price level. In the case that the exogenous

process {pn
Rt} is stationary, so that there are no permanent shifts in the natural rela-

tive price, this will be true regardless of the price index used to measure the general

level of prices. If, instead, we suppose that the process {pn
Rt} has a unit root, so that

permanent shifts occur in the natural relative price, then there will be no possibil-

ity of using monetary policy to stabilize all prices, and one can at most maintain a

constant long-run level for some particular price index; but once again, there exists

a price index for which a constant long-run price level target remains optimal. This

price index is defined (to a log-linear approximation) by

p̄t ≡
∑

j

wj log Pjt.

Note that in the numerical example of Figure 5, w1 = 0.84, w2 = 0.16, so that the

responses shown in the figure imply no long-run change in p̄t.

The optimality of maintaining a constant long-run expected value for p̄t can be

demonstrated from the form of the FOCs as follows. Let us suppose that the cost-

push disturbances {ujt} are stationary processes with means equal to zero, and that

while {pn
Rt} may have a unit root, its first difference ∆pn

Rt is stationary with mean

zero, so that at each point in time, there is a well-defined long-run expected value

pn∞
Rt ≡ lim

j→∞
Etp

n
R,t+j

for the natural relative price. One can show that there exists a solution to the FOCs

together with the structural equations in which each of the endogenous variables

{πjt, pRt, xt, ϕjt, ψt} is also difference-stationary (if not actually stationary), and so

has a well-defined long-run expected value at all times; and this is the solution cor-

responding to the optimal equilibrium. Here I shall confine myself to arguing that

in any difference-stationary solution, p̄t must be a stationary variable, so that its

long-run expected value is some constant p∗.

It follows from the FOCs (3.32) that at any time, the long-run expected values of

the two sectoral inflation rates must satisfy

w1π
∞
1t = −ψ∞t , w2π

∞
2t = ψ∞t .
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But in order for pRt to have a well-defined long-run expected value, the long-run

expected values of the two sectoral inflation rates must be identical. It then follows

that the FOCs can be satisfied only if π∞jt = 0 for j = 1, 2, and that ψ∞t = 0 as well.

Thus one finds as in the one-sector model that the optimal long-run average inflation

rate is zero, and that this is equally true in both sectors, so that it is true regardless

of the price index used to measure an overall inflation rate.

It then follows from the sectoral Phillips curves (3.30) that in order for both of

the long-run expected sectoral inflation rates to be zero the long-run expected values

of the output gap and of the relative price gap must satisfy

κjx
∞
t + γj(p

∞
Rt − pn∞

Rt ) = 0 (3.35)

at all times, for j = 1, 2. But it is not possible for (3.35) to be simultaneously satisfied

for both j unless

x∞t = 0, p∞Rt = pn∞
Rt

at all times. And if these conditions hold at all times, the FOCs (3.33)–(3.34) respec-

tively require that ∑
j

κjϕ
∞
jt = λxx

∗,
∑

j

γjϕ
∞
jt = 0

at all times. But these conditions cannot be jointly satisfied unless the ϕ∞jt take

certain constant values ϕ∗j at all times.

Finally, summing the two FOCs (3.30), one obtains

∑
j

wjπjt +
∑

j

ϕjt −
∑

j

ϕj,t−1 = 0,

which can be alternatively written in the form

∆p̄t +
∑

j

ϕjt −
∑

j

ϕj,t−1 = 0.

This implies that the quantity p̄t +
∑

j ϕjt must remain constant over time, regardless

of the disturbances affecting the economy. If we let the amount by which the constant

equilibrium value of this quantity exceeds
∑

j ϕ∗j be denoted p∗, then it follows that

lim
j→∞

Etp̄t+j = p∗

at all times. Hence, as noted above, optimal policy requires complete stabilization of

the expected long-run value of the log price index p̄t.

101



The occurrence of real disturbances that permanently shift equilibrium relative

prices is often thought to provide an important argument against the desirability of

price-level targeting. It is commonly argued that it is appropriate to allow a one-time

(permanent) shift in the general level of prices in response to such a shock, though

this should not be allowed to give rise to expectations of ongoing inflation; hence

a constant long-run target for inflation is appropriate, but not a constant long-run

target for the price level. But I have shown in the present model that, while it is

true that under an optimal policy, the long-run expected value of all measures of

the inflation rate should remain constant, and the long-run expected values of most

measures of the general price level should not remain constant, in the case of a shock

to the natural relative price, there is nonetheless a particular price index that long-

run value of which should remain constant, even in the case of real disturbances of

this kind. Moreover, a description of optimal policy in terms of the long-run price-

level target is superior to a description in terms of the long-run inflation target alone

(or even long-run targets for each of the sectoral inflation rates); for the long-run

inflation target alone would not tell the public what to expect about the cumulative

increase in prices in each of the two sectors during the period of adjustment to the

new long-run relative price. A commitment to a fixed long-run value for p̄t instead

suffices to clarify what long-run values should be expected for each of the sectoral

price indices at any point in time, given current long-run relative-price expectations.

It therefore specifies the precise extent to which a given increase in the relative price

of sector 2 goods should occur through inflation in sector 2 as opposed to deflation

in sector 1.94

One observes from the definition of the coefficients wj that, for any given degree

of price stickiness in the two sectors, the coefficient wj is proportional to the size nj

(or the expenditure share) of each sector. One may also observe that, for any given

relative sizes of the two sectors, and fixing the degree of price flexibility in the other

94It is also sometimes argued that an increase in the general level of prices is desirable in response
to a relative-price shock, in order to ensure that there is never deflation in any sector. But the reason
for avoiding deflation is that expected declines in all prices can easily create a situation in which the
zero lower bound on nominal interest rates becomes a binding constraint. Deflation in one sector
only, when coupled with higher than average inflation in other sectors so that there is no decline in
the expected overall inflation rate, does not imply that unusually low nominal interest rates will be
required to achieve the desired path of prices. Hence there is no reason to regard temporary sectoral
deflation as particularly problematic.
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sector (at some value 0 < α−j < 1), wj is a monotonically increasing function of

αj, ranging from 0 when αj = 0 (the case of completely flexible prices in sector j,

to precisely the fraction nj when αj is equal to α−j, to a limiting value of 1 as αj

approaches 1. Thus the long-run price level target should be defined in terms of a

price index that is weighted by expenditure only in the case that the degree of price

stickiness in both sectors is the same.95

In the case that prices are sticky only in one sector, and completely flexible in the

other, the price-level target should be defined purely in terms of an index of prices in

the sticky-price sector, as shown by Aoki (2001). This provides a theoretical justifi-

cation for a long-run target for a “core” price index, which omits extremely flexible

prices such as those of food and energy. However, in general, the optimal price-level

target will involve an index that puts weights on prices in different sectors that differ

from their expenditure shares, even among those prices that are not excluded from

the index altogether. In the present model, if 0 < αj < 1 in both sectors, the optimal

price index will put some weight on prices in each sector; but the relative weights will

not generally equal the relative expenditure shares. In particular, w1/w2 > n1/n2 if

and only if α1 > α2, as in the example considered in Figure 5; the sector in which

prices are more flexible should receive a lower weight, relative to its share in total

expenditure.

While the price index p̄t should have a constant long-run level, it is not generally

optimal in a multi-sector model for even this measure of the price level to be held

constant at all times; and (contrary to the result obtained in sections 1 and 2 for

the one-sector model) this is true even when there are no “cost-push” disturbances

{ujt}.96 One can, however, fully characterize optimal policy, even in the short run, by

95This agrees with the conclusion of Benigno (2004) regarding the optimal weights on regional
inflation rates in the inflation target for a monetary union. Benigno assumes, however, that some
price index is to be stabilized at all times, rather than only in the long run, and optimizes over
policies in that restricted class.

96Complete stability of the price index p̄t is optimal in two special cases: if there are no cost-
push disturbances, and (i) one of the sectors has completely flexible prices, or (ii) prices are equally
flexible in the two sectors. In the first case, it is optimal to completely stabilize the price index
for the sticky-price sector, as shown by Aoki (2001), as this achieves the flexible-price allocation of
resources. In the second case, it is optimal to completely stabilize the expenditure-weighted price
index, as shown in Woodford (2003, chap. 6, sec. 4.3); in this case, the evolution of the relative
price pRt is independent of monetary policy, and an analysis similar to that for the one-sector model
continues to apply.
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a time-invariant target criterion. One can show that there exist Lagrange multipliers

such that all of the FOCs (3.32)–(3.34) are satisfied each period, if and only if the

target criterion

∆p̃t − βEt∆p̃t+1 = −Γ[(p̄t − p∗) + φxxt + φR(pRt − pn
Rt)] (3.36)

is satisfied each period, where p∗ is the long-run price-level target discussed above;

p̃t is the output-gap-adjusted price level defined in (2.65), again using pt to denote

log Pt;
97 and the coefficients are given by

Γ ≡ κ1κ2

κ

1 + ωη

ω + σ−1
> 0, φx ≡ θ−1, φR ≡ n1n2

η

θ
(κ−1

1 − κ−1
2 )κ.

Note that φR is positive if and only if prices in sector 2 are more flexible than those

in sector 1 (α1 > α2). Hence the term in the square brackets in (3.36) is a greater

positive quantity the greater the extent to which the price index p̄t exceeds its long-

run target value p∗, output exceeds the natural rate, or the relative price of the goods

with more flexible prices exceeds its natural value.

Since each of the terms in (3.36) other than the price-level gap term (p̄t − p∗)

is necessarily stationary (under the maintained assumption of a difference-stationary

solution), it follows that a policy that conforms to this target criterion will make the

price-level gap stationary as well. This implies a long-run average inflation rate of

zero, and this, as explained above, requires that the output gap and relative-price gap

each have long-run average values of zero as well. Hence each of the terms in (3.36)

other than the price-level gap term has a long-run average value of zero. It then

follows that the long-run average value of the price-level gap must be zero as well,

so that conformity to the target criterion (3.36) implies that the long-run average

value of p̄t will equal p∗. Thus this target criterion does indeed guarantee consistency

with the long-run price-level target. At the same time, it specifies the precise rate of

short-term adjustment of prices that should be targeted under an optimal policy.

Figure 6 illustrates how the optimal responses to a permanent relative-price shock

shown in Figure 5 conform to this target criterion. The figure plots the responses

under optimal policy of the variables p̄t, xt and pRt − pn
Rt, the projections of which

appear on the right-hand side of (3.36). (Note that the path of {p̄t} converges asymp-

totically to the same level, denoted zero on the vertical axis, as it would have had in

97In deriving (3.36) from the FOCs, I use the fact that to a log-linear approximation, pt =∑
j nj log Pjt.
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Figure 6: Impulse responses of the variables referred to in the target criterion (3.36),

for the same numerical example as in Figure 5. Here the “price level” plotted is the

asymmetrically weighted price index p̄t.

the absence of the shock, while the relative price converges asymptotically to the nat-

ural relative price, and output converges asymptotically to the natural rate of output.

The path of the output gap shown here is the same as in Figure 5.) The line labeled

“target” plots the response of the composite target variable (a linear combination of

the three variables just mentioned) that appears inside the square brackets on the

right-hand side of (3.36). The line labeled “adjustment” is equal to Γ−1 times the

price-adjustment terms on the left-hand side of (3.36). The fact that the “adjust-

ment” response and the “target” response are mirror images of one another shows

that the criterion (3.36) is fulfilled at all horizons.

Integrating forward in time, the optimal target criterion can alternatively be writ-

ten in the form

∆p̃t = −Γ
∞∑

j=0

βjEtgt+j, (3.37)

where gt is the composite target variable plotted in Figure 6. This version of the
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criterion suggests an approach to the implementation of optimal policy through a

forecast-targeting procedure. At each decision point, the central bank would com-

pute projections of the forward paths of the price level gap, the output gap, and the

relative-price gap, under a contemplated forward path for policy, and also a projection

for path of the rate of growth of the output-gap-adjusted price level. It would then

judge whether the contemplated path for policy is appropriate by checking whether

the growth in the gap-adjusted price level is justified by the projected levels (specif-

ically, by a forward-looking moving average of the levels) of the three gap variables,

in the way specified by equation (3.37).

A simpler target criterion can be proposed that, while not precisely optimal in

general, captures the main features of optimal policy. This is the simple proposal

that policy be used to ensure that the composite gap gt follow a deterministic path,

converging asymptotically to zero. This simpler target criterion approximates optimal

policy for the following reason. If the degree of price flexibility in the two sectors is

quite asymmetric, then Γ is a large positive quantity, and (3.36) essentially requires

that the value of gt be near zero at all times. On the other hand, if the degree of

price flexibility in the two sectors is nearly the same, then φR is near zero, and p̄t is

nearly the same price index as pt, so that gt is approximately equal to p̃t− p∗.98 The

criterion (3.36) can then be approximated by the criterion

Et[A(L)gt+1] = 0, (3.38)

where A(L) ≡ β − (1 + β + Γ)L + L2. Factoring A(L) as β(1 − µL)(1 − β−1µ−1L),

where 0 < µ < 1, one can show that (3.36) holds if and only if

(1− µL)gt = 0. (3.39)

Condition (3.39) is equivalent to (3.36) in the case that α1 = α2, and will have

similar implications as long as α1 and α2 are not too dissimilar. But (3.39) is also

equivalent to (3.36) in the case that αj = 0 in one sector (but not both); note

that in this case µ = 0, and (3.39) reduces to the requirement that gt = 0. And

the implications of (3.39) will also be approximately the same as those of (3.36) in

any case in which αj is small enough in one sector. Hence (3.39) has implications

somewhat similar to those of (3.36) over the entire range of possible assumptions

98These two quantities are exactly equal in the case that α1 = α2 exactly.

106



about the relative degree of price stickiness in the two sectors.99 And (3.39) implies

that {gt} must evolve deterministically, converging asymptotically to zero. Note

that this approximate target criterion is a very close cousin to the one shown to be

optimal in a variety of one-sector models. Again it can be viewed as stating that a gap-

adjusted price level must evolve deterministically, and be asymptotically constant; the

only difference is that now the price level is not necessarily an expenditure-weighted

index of prices, and the gap adjustment includes an adjustment for the relative-price

gap.

3.2.2 Sticky Wages as Well as Prices

Similar complications arise if we assume that wages are sticky, and not just the prices

of produced goods. In the models considered above, wages are assumed to be perfectly

flexible (or equivalently, efficient contracting in the labor market is assumed); this

makes it possible for a policy that stabilizes the general price level to eliminate all

distortions resulting from nominal rigidities, at least in one-sector models. If wages are

also sticky, this will not be case. Moreover, if both wages and prices are sticky, there

will in general be no monetary policy that eliminates all distortions resulting from

nominal rigidities. The existence of random shifts in the “natural real wage” (the one

that would result in equilibrium with complete flexibility of both wages and prices,

with the distortion factors held at their steady-state values) requires adjustments in

wages, prices, or both to occur, which will necessarily create inefficiencies owing to

the mis-alignment of wages or prices that are set at different times, if the adjustments

of both wages and prices are staggered rather than synchronous.

Erceg et al. (2000) introduce wage stickiness in a manner closely analogous to

the Calvo model of price adjustment.100 They assume that firms each hire labor of

a large number of distinct types, with a production technology that makes output

an increasing concave function of a CES aggregate of the distinct labor inputs; this

results in a downward-sloping demand curve for each type of labor, the location of

99The case shown in Figures 5 and 6 is not one in which it is optimal for gt to be held precisely
constant in response to the shock; nonetheless, the optimal change in the path of gt is not large and
is quite smooth.

100More complex versions of their model of wage and price adjustment are at the heart of most
current-vintage empirical DSGE models, such as the models of Christiano et al. (2005) and Smets
and Wouters (2007).
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which is independent of the wage demands of the suppliers of that type of labor.

Wages are assumed to be set for each type of labor by a single (monopolistically

competitive) representative of the suppliers of that type of labor, acting in their joint

interest, and to be fixed in terms of money for a random time interval. The probability

that the wage for a given type of labor is reconsidered in any given period is assumed

to be independent of both the time since the last reconsideration of the wage and of

the relation between the existing wage and current market conditions.

Under these assumptions, the joint dynamics of wage and price adjustment satisfy

(to a log-linear approximation) the following pair of coupled equations:101

πt = κp(Ŷt − Ŷ n
t ) + ξp(wt − wn

t ) + βEtπt+1 + upt, (3.40)

πwt = κw(Ŷt − Ŷ n
t )− ξw(wt − wn

t ) + βEtπw,t+1 + uwt, (3.41)

where πwt ≡ ∆ log Wt is the rate of wage inflation (rate of change of the Dixit-Stiglitz

index of wages Wt); wt ≡ log(Wt/Pt) is the log real wage; wn
t (the “natural real

wage”) is a function of exogenous disturbances that indicates the equilibrium real

wage under flexible wages and prices, in the case that all distortion factors are fixed

at their steady-state values; upt is an exogenous cost-push factor for price dynamics

given wages (reflecting variations in VAT or payroll tax rates paid by firms, or in

the market power of the suppliers of individual goods); and uwt is an exogenous cost-

push factor for wage dynamics given prices (reflecting variations in a wage income

tax rate or a sales tax rate paid by consumers in addition to the sticky goods price,

or in the market power of the suppliers of individual types of labor). The coefficient

ξp is a positive factor that is larger the more frequently prices are adjusted, and

ξw is correspondingly a positive factor that is larger the more frequently wages are

adjusted. The output-gap response coefficients are defined as

κp ≡ ξpεmc,p > 0, κw ≡ ξwεmc,w > 0,

where the elasticity of average real marginal cost with respect to increases in aggregate

output, εmc ≡ ω + σ−1, has been decomposed into the sum of two parts: the part

εmc,w ≡ νφ + σ−1 due to the increase in the average real wage when output increases,

101See Erceg et al. (2000) or the exposition in Woodford (2003, chap. 3, sec. 4.1) for the derivation.
The notation used here follows Woodford (2003), except for the inclusion here of the possibility of
the cost-push terms.
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and the part εmc,p ≡ φ − 1 due to the increase in real marginal cost relative to the

real wage (owing to diminishing returns to labor).

Again the analysis of optimal policy is simplest if we restrict ourselves to the

case of “small steady-state distortions,” as in section 2.4.2.102 In this case one can

show103 that the expected utility of the representative household varies inversely (to

a second-order approximation) with a discounted loss function of the form

Et0

∞∑
t=t0

βt−t0
[
λpπ

2
t + λwπ2

wt + λx(xt − x∗)2
]
, (3.42)

where xt ≡ Ŷt − Ŷ n
t again denotes the output gap; the weights on the two infla-

tion measures are two positive coefficients (normalized to sum to 1) with relative

magnitude
λw

λp

=
θw

θpφ

ξp

ξw

,

where θw, θp are the elasticities of substitution among different types of labor and

among different goods, respectively; and the relative weight on the output-gap objec-

tive is

λx ≡ εmc

θpξ
−1
p + θwφ−1ξ−1

w

> 0.

Thus when wages and prices are both sticky, variability of either wage or price inflation

distorts the allocation of resources and reduces welfare; the relative weight on wage

inflation in the quadratic loss function is greater the stickier are wages (or the more

flexible are prices), and greater the more substitutable are the different types of labor

(or the less substitutable are the different goods).

One observes that there is a precise analogy between the form of this linear-

quadratic policy problem and the one considered in the previous section, if we iden-

tify goods price inflation here with “sector 1 inflation” in the previous model, wage

inflation with “sector 2 inflation,” and the real wage with the sector 2 relative price.

102Benigno and Woodford (2005b) generalize the analysis to the case of large steady-state distor-
tions, using the method explained in section 2.4.3. They derive a quadratic loss function of the same
form as in (3.42) for this more general case, except that the output gap must be defined relative
to a more complex function of the exogenous disturbances, and the coefficients λw, λp, λx are more
complex functions of the model parameters, involving in particular the degree of inefficiency of the
steady-state level of output.

103For details of the calculations, see Woodford (2003, chap. 6, sec. 4.4).
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(The only difference is that in the case of the Erceg et al. model, there is no term

proportional to the squared “relative price gap” in the quadratic loss function; the

present model corresponds to the special case λR = 0 of the model considered earlier.)

Hence the calculations discussed in the previous section have immediate implications

for this model as well.

It follows that under optimal policy, there is a “price index” p̄t the long-run value

of which should be unaffected by disturbances, even when those disturbances have

permanent effects on output or the real wage; the only difference between this case

and the ones discussed previously is that the “price index” in question is an index of

both goods prices and wages, specifically

p̄t ≡ λp log Pt + λw log Wt.

Of course, it follows from this that if there are disturbances that permanently shift

the natural real wage wn
t , then there will exist no index of goods prices alone that

is stationary under optimal policy; but the principle that it is desirable to maintain

long-run stability of the price level remains valid, under the understanding that the

correct definition of “price stability” should be stability of p̄t.
104

Similarly, it follows from the same arguments as in the previous section that

optimal policy can be characterized by a target criterion of the form

∆[p̂t + θ̂
−1

xt] = −Γ
∞∑

j=0

βjEt[(p̄t+j − p∗) + θ̄
−1

xt+j], (3.43)

where p̂t is another (differently weighted) index of both prices and wages,

p̂t ≡ κpλp log Pt + κwλw log Wt

κpλp + κwλw

;

the coefficients θ̄ and θ̂ are two different weighted averages of θp and φ−1θw,

θ̄ ≡ ξ−1
p θp + ξ−1

w φ−1θw

ξ−1
p + ξ−1

w

,

θ̂ ≡ εmc,pθp + εmc,wφ−1θw

εmc

;

104If the natural real wage is a stationary random variable, then the result just mentioned implies
that the long-run expected value of log Pt should also be constant. However, if there is a unit root
in productivity, as is often argued, then the natural real wage should possess a unit root as well.
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and

Γ ≡ ξpξwεmc

κpλp + κwλw

> 0.

Hence optimal policy can be implemented through a forecast-targeting procedure

under which it is necessary at each decision point to compute projected future paths

of the general level of prices, the general level of wages, and the output gap, in order

to verify that (3.43) is satisfied under the intended forward path of policy.

4 Research Agenda

This chapter has shown how it is possible to analyze monetary stabilization policy

using techniques similar to those used in the modern theory of public finance, in

particular the Ramsey theory of dynamic optimal taxation. The methods and some

characteristic issues that arise in this project have been illustrated using a particular

class of relative simple models of the monetary transmission mechanism. Several key

themes that have emerged are nonetheless likely to be of broad applicability to more

complex (and more realistic) models. These include the advantages of a suitably

chosen policy commitment (assuming that commitment is possible and can be made

credible to the public) over the outcome associated with discretionary policymaking,

and the convenience of formulating a desirable policy commitment in terms of a target

criterion that the central bank should seek to fulfill through adjustment of its policy

instrument or instruments.

The degree to which other, more specific results generalize to more realistic set-

tings deserves further investigation. In a range of different models, I have shown that

optimal policy requires not merely that there be a well-defined long-run inflation rate

that remains invariant in the face of economic disturbances, but that there be a well-

defined long-run price level that is unaffected by shocks, if the price level is measured

by a suitably defined index of the prices of different goods. I have given examples (in

sections 1.6 and 1.7) where it is not quite true that the long-run forecast of the price

level should remain unchanged by all shocks; but even in these cases, optimal policy

is characterized by error correction, in the sense that when a disturbance deflects

the output-gap-adjusted price level from the path that it would otherwise have been

expected to take, the gap-adjusted price level should subsequently be brought back

to that path and even somewhat beyond it — this over-correction being the reason
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why the price level is not actually stationary under the optimal commitment. Thus

it is quite generally desirable, in the settings considered here, for a central bank to

commit itself to error-correction of the sort implied by a price-level target.

Another recurrent theme has been the desirability, in the shorter run, of main-

taining a deterministic path for an output-gap-adjusted price level, rather than for

a measure of the price level itself. A range of models has been discussed in each of

which this very simple target criterion represents an optimal commitment, and the

appropriate relative weight on the output gap has been the same (i.e., equal to the

reciprocal of the elasticity of substitution between differentiated goods) in many of

these cases.105 In the more complex models considered in section 3.2, the optimal

target criterion is in general no longer so simple, yet it continues to be the case that

temporary departures of the (appropriately defined) price level from its long-run tar-

get should be proportional to certain measures of temporary real distortions, with a

gap between the level of aggregate output and a time-varying “natural rate” appear-

ing as at least one important aspect of the real distortions that justify such temporary

variations in the price level.

While we have thus obtained quite consistent results across a range of specifica-

tions, that incorporate (at least in simple ways) a number of key elements of empirical

models of the monetary transmission mechanism, it must nonetheless be admitted

that all of the models considered in this chapter are simple in some of the same ways.

Not only are they all representative-household models, but they all assume that all

goods are final goods produced using labor as the only variable factor of produc-

tion, and they treat all private expenditure as indistinguishable from non-durable

consumer expenditure (that is, there is no allowance for endogenous variation in rate

of growth of productive capacity).106 They are also all closed economies, and I have

105Giannoni and Woodford (2005) show that the same result obtains in yet another case, a model
that incorporates habit-formation in private expenditure, as do many empirical New Keynesian
DSGE models.

106The literature that evaluates particular parametric families of simple policy rules in the context
of a particular quantitative model frequently does allow for more complex technologies and endoge-
nous capital accumulation (e.g., Schmitt-Grohé and Uribe, 2004, 2007). (This literature is reviewed
in another chapter of this Handbook (Taylor and Williams, 2010), and so is not reviewed here.)
Often studies of this kind find that optimal simple rules are fairly similar to those that would be
optimal (within the same parametric family) in the case of a simpler model, without endogenous
capital accumulation. But it is not clear how dependent these results may be on other restrictive
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tacitly assumed throughout that lump-sum taxes exist and that the fiscal authority

can be expected to adjust them so as to ensure intertemporal solvency of the govern-

ment, regardless of the monetary policy chosen by the central bank, so that it has

been possible to consider alternative monetary policies while abstracting from any

consequences for the government’s budget.107 Finally, the models in this chapter all

abstract from the kinds of labor-market frictions that have been important not only

in real models of unemployment dynamics, but in some of the more recent monetary

DSGE models.108 Analysis of the form of optimal policy commitments in settings

that are more complex in these respects is highly desirable, and these represent im-

portant directions for further development of the literature. Such developments are

clearly possible in principle, since the general methods used to characterize optimal

policy commitments in this chapter have been shown to be applicable to quite general

classes of nonlinear policy problems, with state spaces of arbitrary (finite) size, by

Benigno and Woodford (2008) and Giannoni and Woodford (2010).

Among the respects in which the models considered here omit the complexity of

actual economies is their complete neglect of the role of financial intermediaries in the

monetary transmission mechanism. This means that the analyses of optimal policy

above have abstracted entirely from a set of considerations that have played a very

large role in monetary policy deliberations in the recent past (most notably in 2008),

namely, the degree to which monetary policy should take account of variations in

financial conditions, such as changes in spreads between the interest rates paid by

different borrowers. Extension of the theory of monetary stabilization policy to deal

with questions of this kind is of particular importance at present.

While work of this kind remains relatively preliminary at the time of writing, it

should be possible to apply the general methods explained in this chapter to models

that incorporate both a non-trivial role for financial intermediation and the possi-

bility of disturbances to the efficiency of private intermediation. Cúrdia and Wood-

ford (2009a) provide one example of how this can be done. They consider a model

aspects of the specifications within which the welfare comparisons are made, such as the assumption
that the only disturbances that ever occur are of a few simple kinds.

107Extensions of the theory of optimal monetary stabilization policy to deal with these latter two
issues are fairly well developed, but I omit discussion of them here because these are the topics of two
other chapters of this Handbook; see Corsetti et al. (2010) for open-economy issues and Canzoneri
et al. (2010) for the interaction between monetary and fiscal policies.

108See, for example, the chapters in this Handbook by Gali (2010) and Christiano et al. (2010).
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in which infinite-lived households differ in their opportunities for productive (i.e.,

utility-producing, since again the model is one that abstracts from effects of private

expenditure on productive capacity) expenditure, so that financial intermediation can

improve the allocation of resources; and they allow for two reasons why a positive

spread between the interest rate at which intermediaries lend to borrowers and the

rate at which they themselves are financed by savers can persist in equilibrium. (On

the one hand, loan origination may require the consumption of real resources that

increase with the bank’s scale of operation; and on the other hand, banks may be

unable to discriminate between borrowers who can be forced to repay their debts

and others who will be able to avoid repayment, so that all borrowers will have to

be charged an interest rate higher than the bank’s cost of funds to reflect expected

losses on bad loans.) Random variation in either of these aspects of the lending

“technology” can cause equilibrium credit spreads to vary for reasons that originate

in the financial sector. Cúrdia and Woodford also allow for endogenous variation in

credit spreads due to changes in the volume of lending, in response to disturbances

to preferences, technology or fiscal policy.

Methods similar to those expounded above can be used to characterize an optimal

policy commitment, if we take the average expected utility of the households of the

different types (weighting the utility of each type by its population fraction) as the

objective of policy. Cúrdia and Woodford (2009a) obtain an especially simple charac-

terization of optimal interest-rate policy in the special case that (i) no resources are

consumed by intermediaries, (ii) the fraction of loans that are bad is an exogenously

varying quantity that is independent of an intermediary’s scale of operation, and (iii)

the steady state is undistorted, as in section 2.4.1. In this case (in which intermedia-

tion is still essential, owing to the heterogeneity, and credit spreads can be non-zero,

as a result of shocks to the fraction of loans that are bad), a linear approximation

to the optimal policy commitment is again obtained by committing to the fulfillment

at all times of a target criterion of the form (1.21) — or alternatively, of the form

(1.23).109

Thus it continues in this case to be possible to characterize optimal policy purely in

terms of the projected evolution of inflation (or the price level) and of the output gap.

109For the reasons discussed in section 1, the latter formulation of the optimal target criterion is
once again more robust. In particular, the problem of a sometimes binding zero lower bound on the
policy rate is more likely to arise as a result of disturbances to the size of equilibrium credit spreads.
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Financial conditions are relevant to the central bank’s deliberations, but because they

must be monitored in order to determine the path of the policy rate that is required

in order to achieve paths for the price level and for the output gap consistent with

the target criterion, and not (at least in this special case) because they influence the

form of the target criterion itself. This result is obtained as an exact analytical result

only in a fairly special case; but Cúrdia and Woodford also find that under a variety

of calibrations of the model that are intended to be more realistic, a commitment

to the “flexible inflation targeting” criterion continues to provide a reasonably close

approximation to optimal interest-rate policy, even if it is no longer precisely the

optimal policy.110

This chapter has discussed the character of fully optimal policy in a variety of fairly

simple models, for which it is possible to obtain analytical solutions for the optimal

equilibrium dynamics and for the target criteria that can implement these equilibria.

While the methods illustrated here can be applied much more generally, the resulting

characterization of optimal policy can rapidly become more complex, as the discussion

in section 3 has already indicated. In particular, even in the case of a fairly small

macroeconomic model (that necessarily abstracts from a great deal of the richness of

available economic data), the optimal target criterion may be much too complex to

be useful as a public expression of a central bank’s policy commitment — at least,

to the extent that the point of such a commitment is to allow public understanding

of what it should expect future policy to be like. As a practical matter, then, it is

important to formulate recommendations for relatively simple target criteria, that,

while not expected to be fully optimal, nonetheless approximate optimal policy to a

reasonable extent.

Analysis of the properties of simple policy rules — both calculations of the optimal

rule within some parametric family of simple rules, and analysis of the robustness of

particular rules to alternative model specifications — has been extensive in the case

of simple interest-rate reaction functions such as the “Taylor rule.”111 A similar anal-

110The introduction of credit frictions also allows, at least in principle, for additional dimensions
of central-bank policy in addition to the traditional tool of influencing the level of money-market
interest rates; it now becomes relevant whether the central bank purchases only Treasury securities
for its balance sheet, or instead extends credit in various forms to the private sector as well. Meth-
ods similar to those discussed above can be used to analyze optimal policy along these additional
dimensions as well, as discussed in Cúrdia and Woodford (2009b).

111This literature is reviewed in this Handbook by Taylor and Williams (2010).
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ysis of the performance of simple target criteria in quantitative models with some

claim to empirical realism still needs to be undertaken, and this is an important area

for future research. While any target criterion must be implemented by adjustment

of a policy instrument (that for most central banks, under current institutional ar-

rangements, will be an operating target for an overnight interest rate such as the

federal funds rate), it is far from obvious that a description of the central bank’s pol-

icy commitment in terms of an interest-rate reaction function is more desirable than

a “higher-level” description of the policy commitment in terms of a target criterion

that the central bank seeks to fulfill.112 In particular, while there has thus far been

a larger literature assessing the robustness of simple reaction functions to alternative

model specifications, it is far from obvious that policy rules specified at that level

are more robust than equally simple target criteria. The results of this chapter have

shown that in the case of models with simple structural equations, but that may be

subject to many different types of stochastic disturbances (with potentially complex

dynamics), simple target criteria can be found that are fully optimal across a wide

range of specifications of the stochastic disturbance processes, whereas no interest-

rate rule can be formulated in these examples that is equally robust to alternative

disturbance processes. While this is only one of the kinds of robustness with which

central banks must be concerned, and while the “robustly optimal” target criteria

that are shown quite generally to exist in Giannoni and Woodford (2010) are only

simple in the case of models with simple structural equations, these results suggest

that further exploration of the robustness of simple target criteria are well worth

undertaking.

Moreover, while the results of this chapter pertain only to fully optimal target

criteria for simple models, I believe that the theory of optimal target criteria is likely

to prove useful in the design of simple (and only approximately optimal) target criteria

for more complex economies. A theoretical understanding of which types of target

criteria are superior, at least in cases that are simple enough to be fully understood,

is likely to provide guidance as to which simple criteria are plausible candidates to

be approximately optimal in a broader range of circumstances. (This is illustrated

by the result of Cúrdia and Woodford, 2009a, discussed above, in which the target

criterion that would be optimal in a simpler case was found still to be approximately

optimal under a range of alternative parameterizations of a more complex model.)

112See Svensson (2003) and Woodford (2007) for further discussion of this issue.
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And knowing the form of a fully optimal target criterion in a model of interest, even

when that criterion is too complex to be proposed as a practical policy commitment,

may be useful in suggesting simpler target criteria, that continue to capture key

features of the optimal criterion, and that may provide useful approximations to an

optimal policy. (This is illustrated by the discussion in section 3.2.1 above of a simpler

version of the optimal target criterion.)

Another important limitation of all of the analyses of optimal policy in this chapter

has been the assumption that the policy rule that is adopted will be fully credible to

the private sector, and that the outcome that is realized will be a rational-expectations

equilibrium consistent with the central bank’s policy commitment. Given that the

target criteria discussed in this chapter each determine a unique non-explosive equi-

librium, the central bank is assumed to be able to confidently predict the equilibrium

implied by its policy commitment, and the choice of a policy commitment has accord-

ingly been treated as equivalent to the choice of the most preferred among all possible

rational-expectations equilibria of the model in question. But in practice, it is an im-

portant question whether a central bank can assume that a policy commitment about

which it is quite serious will necessarily be fully credible with or correctly understood

by the private sector; and even granting that the commitment itself is understood and

believed, it is an important question whether private decision-makers will all under-

stand why the economy should evolve in the way required by the rational-expectations

equilibrium, and will necessarily have the expectations required for that evolution to

be the one that actually occurs. And to the extent that it is unclear whether the out-

come actually realized must be precisely the one predicted by rational-expectations

equilibrium analysis, it is unclear whether a policy commitment that would be op-

timal in that case should actually be considered desirable. For example, a rule that

would be sub-optimal under the assumption of rational expectations might be prefer-

able on the ground that performance under this rule will not deteriorate as greatly

under plausible departures from rational expectations as would occur in the case of

a rule that would be better under the hypothesis of rational expectations.

This is another aspect of the broader question of the robustness of policy rules

— just as one should be concerned about whether a rule that might be predicted to

lead to a good outcome under a particular model of the economy will also lead to

outcomes that are reasonably good if the correct model of the economy is somewhat

different than had been assumed, one should be concerned about whether a rile that
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is predicted to lead to a good outcome under the assumption of rational expectations

will also lead to outcomes that are reasonably good in the case of expectations that

fail to precisely conform to this assumption. One approach to this question is to model

expectations as being formed in accordance with some explicit statistical model of

learning from the data observed up to some point in time, and continuing to evolve

as new data are observed.

One can analyze the optimal conduct of policy under a particular model of adap-

tive learning (assumed to be understood by the policymaker), and one can also ana-

lyze the robustness of particular policy proposals to alternative specifications of the

learning process. Among other questions, one can consider the degree to which pol-

icy recommendations that would be optimal under rational expectations continue to

lead to at least nearly-optimal outcomes under learning processes that are not too

different from rational expectations, in the sense that the learning algorithm implies

that forecasts should eventually converge to the rational-expectations forecasts once

enough data have been observed, or that they should fluctuate around the rational-

expectations forecasts without departing too far from them most of the time. While

the literature addressing issues of this kind is still fairly new, some suggestive results

exist, as summarized by Evans and Honkapohja (2009) and Gaspar et al. (2010).

The results that exist suggest that some of the important themes of the literature on

optimal policy under rational expectations continue to apply when adaptive learning

is assumed instead; for example, a number of studies have found that it continues to

be important to pursue a policy that stabilizes inflation expectations in response to

cost-push disturbances to a greater extent than would occur under a discretionary

policy that takes inflation expectations to be independent of policy — though if a

mechanical model of adaptive learning is taken to be strictly correct, the stability of

expectations must be maintained entirely through constraining the variability of the

observed inflation rate, and not through any public announcements of policy targets

or commitments.

Woodford (2010) illustrates an alternative approach to the problem of robustness

of policy to departures from rational expectations. Rather than assuming a particu-

lar model of expectation formation that is known to the policymaker, it is assumed

that private-sector expectations may differ in arbitrary ways from the forecasts that

would represent rational expectations according to the central bank’s model, but it

is assumed that private-sector expectations will not be too far from being correct,
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where the distance between private-sector expectations and those that the central

bank regards as correct is measured using a relative-entropy criterion.113 A policy is

then sought that will be ensure as good as possible an outcome in the case of any

private-sector forecasts that do not depart from correct expectations (according to

the central bank’s model) by more than a certain amount. In the case of the baseline

policy problem considered above in section 1, “robustly optimal” policy is character-

ized as a function of the size of possible departures from rational expectations that

are contemplated; and while the “robustly optimal” policy is not precisely like the

optimal policy commitment characterized in section 1 (except when the contemplated

departures are of size zero), it has many of the qualitative features of that policy. For

example, it continues to be the case that commitment can achieve a much better

worst-case outcome than discretionary policymaking (assuming either that x∗ > 0 or

a positive variance for cost-push shocks); that the robustly optimal long-run infla-

tion target is zero even when x∗ > 0; that the robustly optimal commitment allows

inflation to respond less to cost-push shocks than would occur under discretionary

policy; and that the robustly optimal commitment implies that following an increase

in prices due to a cost-push shock, the central bank should plan to undo the increase

in the level of prices by keeping inflation lower than its long-run value for a period

of time. The reasons for the desirability of each of these elements of the robustly

optimal policy are essentially the same as in section 1.

Further work on optimal (and robust) policy design when plausible departures

from rational expectations are allowed for should be a high priority. Among the goals

of such an inquiry should be the clarification not only of the appropriate targets

for monetary policy, but of the way in which it makes sense for a central bank to

respond to observed private-sector expectations that differ from its own forecasts.

The latter issue, which is one of great practical importance for central bankers, is

plainly one that cannot be analyzed within a framework that simply assumes rational

expectations.114 While the results of such analysis cannot be anticipated before they

113A similar criterion has been extensively used in the literature on the design of policies that are
robust to model mis-specification, as discussed by Hansen and Sargent (2010).

114It is unlikely that the most robust approach to policy will be one under which the central bank
simply ignores any evidence of private-sector forecasts that depart from its own. See, e.g., Evans and
Honkapohja (2006) and Preston (2008) for analyses of policy under adaptive learning dynamics in
which policies that respond to observed private-sector forecasts are more robust to alternative speci-
fications of the learning dynamics than policies (that would be optimal under rational expectations)
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have been obtained, a clear understanding of the policy that would be optimal in the

case that it were correctly understood is likely to be a useful starting point for the

analysis of the subtler problems raised by diversity of opinions.

that ignore private-sector forecasts.
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