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“The crisis has shown that interest rates can actually hit the zero level, and when this happens it is a 
severe constraint on monetary policy that ties your hands during times of trouble. As a matter of logic, 
higher average inflation and thus higher average nominal interest rates before the crisis would have 
given more room for monetary policy to be eased during the crisis and would have resulted in less 
deterioration of fiscal positions. What we need to think about now is whether this could justify setting a 
higher inflation target in the future.” 

Olivier Blanchard, February 12th, 2010 

 
I Introduction 

One of the defining features of the current economic crisis has been the zero bound on nominal interest 

rates.  With standard monetary policy running out of ammunition in the midst of one of the sharpest 

downturns in post-World War II economic history, some have suggested that central banks should 

consider allowing for higher target inflation rates than would have been considered reasonable just a few 

years ago.  We contribute to this question by explicitly incorporating positive steady-state inflation in a 

New Keynesian model.  We derive the loss function and characterize the effects of non-zero steady-state 

inflation on welfare.  In particular, we show that steady-state inflation affects welfare through three 

distinct channels: steady-state effects, the magnitude of the coefficients in the utility-function 

approximation, and the dynamics of the model.  By incorporating the zero bound on nominal interest 

rates, we then solve for the optimal rate of inflation.  Our baseline finding is that the optimal rate of 

inflation is low, less than two percent a year, even when we allow for a variety of features that would tend 

to lower the costs of positive steady-state inflation. 

Modern monetary models of the business cycle are almost exclusively based on the assumption of 

zero steady-state inflation.  However, recent work has emphasized that allowing for positive steady-state 

inflation is both qualitatively and quantitatively important.  For example, Cogley and Sbordone (2008) 

show that accounting for positive steady-state inflation significantly affects empirical estimates of the 

New Keynesian Phillips Curve.  Kiley (2007) and Ascari and Ropele (2009) show that the Taylor 

principle is not sufficient to guarantee a unique rational expectations equilibrium in New Keynesian 

models for even moderate levels of inflation.  Coibion and Gorodnichenko (2009) show that once one 

incorporates this feature of New Keynesian models into historical monetary policy analysis, the pre-

Volcker monetary policy rule ensured the presence of self-fulfilling expectational fluctuations despite 

likely satisfying the Taylor principle, a reflection of the high target rate of inflation over this time period.  

This paper builds on this literature by explicitly incorporating positive steady-state inflation into welfare 

calculations, so that one can more precisely measure the costs and benefits of steady-state inflation in a 

fully micro-founded model. 
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Our first contribution is thus to solve for the loss function in an otherwise standard New 

Keynesian model with labor as the only factor of production under positive steady-state inflation, thereby 

laying the groundwork for welfare analysis.  We show that allowing for positive steady-state inflation has 

several effects on the loss function.  First, there are important steady-state effects as, with sticky prices, 

positive inflation leads to first-order price dispersion which causes an inefficient reallocation of resources 

among firms, thereby lowering aggregate welfare.  Second, positive steady-state inflation raises the 

welfare cost of a given amount of inflation volatility.  Third, incorporating positive steady-state inflation 

leads to the appearance of new terms in the utility-approximation, such as the variance of price dispersion 

and covariance of price dispersion with output and inflation, although these effects are quantitatively 

small when steady-state inflation is low.   

Our second contribution is to integrate the zero bound on nominal interest rates into our welfare 

analysis of New Keynesian models with positive steady-state inflation.  Our approach for modeling the 

zero bound follows Bodenstein et al (2009).  This approach, unlike that in Christiano et al (2009) or 

Eggertsson and Woodford (2004), solves for the duration of the zero bound endogenously, whereas the 

latter impose an exogenous probability of exiting the zero bound.  This is important because the welfare 

costs of inflation are a function of the variance of inflation and output, which themselves depend on the 

frequency at which the zero bound is reached as well as the duration of zero bound episodes.  We find, for 

example, that the variance of the output gap is rapidly falling with positive steady-state inflation because 

the zero-bound on interest rates generates disproportionately large fluctuations in the gap which become 

less prevalent as steady-state inflation rises.  In addition, the interaction of the zero-lower bound with 

positive steady-state inflation leads to a U-shape in the relationship between inflation variance and the 

steady-state level of inflation: at low levels of inflation, the variance of inflation falls as steady-state 

inflation rises because of the zero-bound effect, but at higher levels of inflation, the relationship is 

reversed as the increased forward-looking behavior of price setting decisions under positive steady-state 

inflation dominates the zero-bound effect.  In short, when the zero lower bound is hit, the standard policy 

tools of the central bank lose their ability to stabilize the economy and, as a result, macroeconomic 

volatility rises.1  This plays a critical role in determining the optimal level of inflation in the model.   

Our third contribution is then to solve for the rate of inflation that maximizes welfare in the 

presence of the zero bound on nominal interest rates.  We show numerically that the welfare loss function 

with respect to aggregate inflation is generally concave with respect to steady-state inflation, such that the 

optimal rate of inflation is positive, reflecting the effects of the zero bound.  However, for plausible 

                                                      
1 Note that we assume that monetary policy-makers are indeed constrained by the zero-bound on interest rates, in the 
sense that we do not allow for non-standard monetary policy actions.  Allowing for such additional policy tools 
would lead to even lower optimal rates of inflation if such tools are effective in stabilizing the economy during zero-
bound episodes. 
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calibrations of the structural parameters of the model and the properties of the shocks driving the 

economy, the optimal inflation rate is quite low: less than two percent per year.   

We show that this result is robust to a vast set of alternative parameter calibrations as well as the 

inclusion of capital in the model.  We also extend our baseline model to consider several mechanisms 

which might raise the optimal rate of inflation.  For example, in the presence of uncertainty about the true 

parameter values, policy-makers might want to ensure against parameter values that would imply larger 

costs of hitting the zero bound by choosing a higher steady-state inflation rate.  We address this 

possibility in two ways.  First, we calculate the optimal inflation rate taking into account the uncertainty 

about parameter values and find that this raises the optimal inflation rate only modestly, from 1.2% to 

1.4% per year.  Second, we repeatedly draw from the distribution of parameters and calculate the optimal 

inflation rate for each draw.  We find that the 90% confidence interval of optimal inflation rates ranges 

from 0.4% to 2.1% a year, which closely mirrors the target range for inflation of most modern central 

banks.   

Similarly, one might be concerned that our findings hinge on modeling price stickiness as in 

Calvo (1983).  We address this concern in two ways.  First, we allow for the possibility that the degree of 

price rigidity varies systematically with the steady state level of inflation but find that this modification 

does not change the optimal inflation rate.  Secondly, we replace the Calvo assumption with prices of 

fixed durations, as in Taylor (1977).  Using this alternative pricing structure has no significant impact on 

the optimal inflation rate. 

Tobin (1972) suggests an additional factor which might push the optimal inflation rate higher: 

downward nominal wage rigidity.  By facilitating the downward adjustment of real wages in the presence 

of downward wage rigidity, positive inflation can be desirable.  We incorporate this “greasing the wheels” 

effect by imposing downward nominal wage rigidity in our model.  Strikingly, this addition significantly 

lowers the optimal inflation rate.  The intuition for this somewhat surprising finding is that downward 

wage rigidity lowers the volatility of marginal costs and therefore of inflation.  In addition, in the face of a 

negative demand shock, marginal costs decline by less in the presence of downward-wage rigidity, 

leading to a smaller decline in inflation and hence, via the Taylor rule, a smaller change of interest rates.  

Thus, the zero-lower bound binds less frequently which further reduces the benefits of positive inflation.  

The optimal rate of inflation has long been a source of interest for macroeconomists and a variety 

of costs have been proposed.  The key cost of inflation in our baseline model is the price dispersion 

associated with sticky prices.  Because not all firms change prices every period, inflation leads to 

differences in prices across firms even in the non-stochastic steady state which induce an inefficient 

reallocation of resources across firms.  Other potential costs of inflation are likely to be quantitatively 

small (such as shoe-leather and menu costs) or to be associated with unanticipated inflation (such as 
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uncertainty risks from redistribution among lenders and borrowers) rather than anticipated inflation, 

which is the focus of our analysis.  Of course, there could be a stronger link between the level of inflation 

and the volatility of inflation than implied by our model, in which case our findings would tend to 

underestimate the costs of inflation.  For example, if positive steady-state inflation is more likely to lead 

to indeterminacy as suggested by Kiley (2007), Ascari and Ropele (2009) and Coibion and 

Gorodnichenko (2009), then an additional cost of inflation would be the increase in the probability of 

moving into a state where sunspot shocks could generate further volatility.  Because our baseline results 

point to optimal levels of inflation well below the indeterminacy region, incorporating this mechanism 

would likely lead to only minor downward revisions in our estimates of the optimal rate of inflation. 

Friedman (1969) argued that the optimal rate of inflation must be negative to equalize the 

marginal cost and benefit of holding money.  Because our model is that of a cashless economy, this cost 

of inflation is not present in our model, but would tend to lower the optimal rate of inflation even further, 

as emphasized by Khan, King and Wolman (2003), Schmitt-Grohe and Uribe (2007, 2010) and Aruoba 

and Schorfheide (2009).  Similarly, a long literature has studied the costs and benefits of the seignorage 

revenue to policymakers associated with positive inflation, a feature which we also abstract from since 

seignorage revenues for countries like the U.S. are quite small, as are the deadweight losses associated 

with it.2  More recent work has increasingly emphasized the effects of the zero bound on interest rates, 

such as Walsh (2009), Billi (2009), and Williams (2009).  A key difference between the approach taken in 

this paper and such previous work is that we explicitly model the effects of positive steady-state inflation 

on the steady-state, dynamics, and loss function of the model whereas previous work has instead relied on 

New Keynesian models linearized around a zero steady-state level of inflation, as in Billi (2009) or Walsh 

(2009), or on non-microfounded models such as Williams (2009).  Also, these papers do not explicitly 

take into account the effects of positive steady-state inflation on the approximation to the utility function.3 

One of the most significant advantages of working with a micro-founded model and its implied 

welfare function is the ability to engage in normative analysis.  In addition to studying the optimal 

inflation rate in the model, we are also able to study the welfare effects of the systematic response of 

policy-makers to endogenous fluctuations (i.e. the coefficients of the Taylor rule) in conjunction with the 

optimal steady-state rate of inflation.  The most striking finding from this analysis is that even modest 

price-level targeting would raise welfare by non-trivial amounts for any steady-state inflation rate.  In 

addition, by reducing the volatility of inflation and output, and therefore the frequency of being at the 

                                                      
2 See for example Cooley and Hansen (1991) and Summers (1991). 
3 Fuchi et al (2008) study the optimal inflation rate for Japan allowing for the zero-lower bound on interest rates, 
price stickiness, nominal wage rigidity and the opportunity cost of holding money and find a range between 0.5% 
and 2%.  However, they also do not explicitly take into account the effects of positive steady-state inflation on the 
dynamics of the model nor on the utility function approximation. 
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zero lower bound on interest rates, price-level targeting leads to much lower optimal rates of inflation 

than in our baseline findings.  In short, the optimal policy rule for the model can closely be characterized 

by the name of “price stability” as typically stated in the legal mandates of most central banks.  

 Section 2 presents the baseline New Keynesian model and derivations when allowing for positive 

steady-state inflation, including the associated loss function.  Section 3 includes our baseline calibration 

of the model as well as the results for the optimal rate of inflation while section 4 investigates the 

robustness of our baseline results to parameter values.  Section 5 then considers extensions of the baseline 

model which could potentially lead to higher estimates of steady-state inflation.  Section 6 considers 

additional normative implications of the model while section 7 concludes. 

II A New Keynesian Model with Positive Steady-State Inflation 

We consider a standard New Keynesian model with a representative consumer, a continuum of 

monopolistic producers of intermediate goods, a fiscal authority and a central bank. 

2.1 Model 

The representative consumer aims to maximize the present discount value of the utility stream from 

consumption and leisure  

11
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where C is consumption of the final good, Nt(i) is labor supplied to individual industry i, h is the degree of 

external habit formation, η is the Frisch labor supply elasticity and βt is the time-varying discount factor.  

The budget constraint each period is given by  
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where S is the stock of one-period bonds held by the consumer, R is the gross nominal interest rate, P is 

the price of the final good, W(i) is the nominal wage earned from labor in industry i, T is transfers and 

profits from ownership of firms, and  is the shadow value of wealth.  The first order conditions from this 

utility-maximization problem are then: 
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Production of the final good is done by a perfectly competitive sector which combines a continuum of 

intermediate goods into a final good per the following aggregator 
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where Yt is the final good and Y(i) is intermediate good i, while θ denotes the elasticity of substitution 

across intermediate goods, yielding the following demand curve for goods of intermediate sector i 

( ) ( ( ) )t t t tY i Y P i P    (7) 

and the following expression for the aggregate price level 
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The production of each intermediate good is done by a monopolist facing a production function 

linear in labor  

( ) ( )t t ti AY N i  (9) 

where A denotes the level of technology, common across firms.  Each intermediate good producer has 

sticky prices, modeled as in Calvo (1983) where 1 െ  is the probability that each firm will be able to ߣ

reoptimize its price each period.  We allow for indexation of prices to steady-state inflation by firms who 

do not reoptimize their prices each period, with ω representing the degree of indexation (0 for no 

indexation to 1 for full indexation).  Denoting the optimal reset price of firm i by B(i), re-optimizing firms 

solve the following profit-maximization problem  
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where Q is the stochastic discount factor and ߎഥ is the gross steady-state level of inflation.   The optimal 

relative reset price is then given by 
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where firm-specific marginal costs can be related to aggregate variables using 
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Given these price-setting assumptions, the dynamics of the price level are governed by 

1 1 1 (1 )

1(1 )t t tBP P        
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We allow for government consumption of final goods (Gt), so the goods market clearing condition for the 

economy is  

.t t tY C G    (14) 

We define the aggregate labor input as 
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2.2 Steady-state and log-linearization 

Following Coibion and Gorodnichenko (2009), we log-linearize the model around the steady-state in 

which inflation need not be zero. Since positive trend inflation may imply that the steady state and the 

flexible price level of output differ, we adopt the following notational convention. Variables with a bar 

denote steady state values, e.g. തܻ௧ is the steady state level of output. We assume that technology is a 

random walk and hence we normalize all non-stationary real variables by the level of technology. Lower-

case letters denote the log of a variable, e.g.  ݕ௧ ൌ ሺ݈݃ ௧ܻሻ is the log of current output. We let hats on lower 

case letters denote deviations from steady state, e.g. ݕො௧ ൌ ௧ݕ െ ത௧ݕ  is the approximate percentage deviation 

of output from steady state. Since we define the steady state as embodying the current level of 

technology, deviations from steady state are stationary. Finally, we denote deviations from the flexible 

price level steady state with a tilde, e.g. ݕ௧ ൌ ௧ݕ െ ത௧ݕ
ி is the approximate percentage deviation of output 

from its flexible price steady state, where the superscript F denotes a flexible price level quantity. Define 

the net steady state level of inflation as ߨത ൌ log ሺߎഥሻ. The log-linearized consumption Euler equation is 

1 1 1 21 1
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and the goods market clearing condition becomes 

ˆ ˆ ˆ
t y t y ty c c g g   (17) 

where ܿҧ௬  and ҧ݃௬ are the steady-state ratios of consumption and government to output respectively.  Also, 

integrating over firm-specific production functions and log-linearizing yields 

ˆ ˆ
t ty n   (18) 

Allowing for positive steady-state inflation primarily affects the price-setting component of the model.  

For example, the steady-state level of the output gap (which is defined as the deviation of steady state 

output from its flexible price level counterpart തܺ௧ ൌ തܻ௧/ തܻ௧
ி) is given by 
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Note that the steady-state level of the gap is equal to one when steady-state inflation is zero (i.e., 1  ) 

or when the degree of price indexation is exactly equal to one.  As emphasized by Ascari and Ropele 

(2007), there is a non-linear relationship between the steady-state levels of inflation and output.  For very 

low but positive levels of inflation, the steady-state output gap is increasing in steady-state inflation but 

the sign is quickly reversed so that the output gap is expanding with steady-state inflation for most 

positive levels of inflation.   
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Secondly, positive steady-state inflation affects the relationship between aggregate inflation and 

the re-optimizing price. Specifically, the relationship between the two in the steady state is now given by 
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and the log-linearized equation is described by 
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which implies that inflation is less sensitive to changes in the re-optimizing price as steady-state inflation 

rises.  This effect reflects the fact that, with positive steady-state inflation, firms which reset prices have 

higher prices than others and receive a smaller share of expenditures, thereby reducing the sensitivity of 

inflation to these price changes.  Indexation of prices works to offset this effect however, with full-

indexation completely restoring the usual relationship between reset prices and inflation. 

 

Similarly, positive steady-state inflation has important effects for the log-linearized reset price 

equation, which is given by 
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where mt is the cost-push shock, ߛଵ ൌ ଶߛ ഥሺଵିఠሻሺఏିଵሻ  andߎଵିߚߣ ൌ  ഥሺଵିఠሻఏሻ so that without steady-stateߎଵିߚߣ

inflation or full indexation we have ߛଵ ൌ  ଶ.  Consider how positive steady-state inflation affects theߛ

relative reset price bt.  First, higher steady-state inflation raises ߛଶ, so that the weights in the output gap 

term shift away from the current gap and more towards future output gaps.  This reflects the fact that as 

the relative reset price falls over time, the firm’s future losses will tend to grow very rapidly.  Thus, a 

sticky-price firm must be relatively more concerned with marginal costs far in the future when steady-

state inflation is positive.  Second, the relative reset price now depends on the discounted sum of future 

differences between output growth and interest rates.  Note that this term disappears when steady-state 

inflation is zero.  This factor captures the scale effect of aggregate demand in the future.  The higher 

aggregate demand is expected to be in the future, the bigger the firm’s losses will be from having a 

deflated price.  The interest rate captures the discounting of future gains.  When  ߎഥ ൌ 1, steady-state 

inflation is zero, these two factors cancel out on average.  Positive steady-state inflation, however, 

induces the potential for much bigger losses in the future which makes these effects first-order.  Thus, as 

with the output gap, positive steady-state inflation induces more forward-looking behavior on the part of 

firms.  Third, positive steady-state inflation raises the coefficient on expected inflation.  This reflects the 

fact that the higher is expected inflation, the more rapidly the firm’s price will depreciate, the higher it 

must set its reset price.  Thus, positive steady-state inflation makes firms more forward-looking in their 

price-setting decisions by raising the importance of future marginal costs and inflation, as well as by 
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inducing them to also pay attention to future output growth and interest rates.  Finally, note that with full-

indexation of prices, the effects of steady-state inflation on the reset price equation are completely 

eliminated, while partial indexation mitigates some of the effects of positive steady-state inflation. In 

summary, the properties of the Philips curve, which is the bridge between nominal and real quantities, 

depend on the level of steady-state inflation.  

 To close the model, we assume that the log deviation of the desired gross interest rate from its 

steady state value, *

tr  follows a Taylor rule  

* * *

2

* * * *

1 1 2 1 2(1 ) ( ) (ˆ ˆ ˆ ) ( )) (t t t t

r

y t tt gy t p tr r r yy gy gy p p                         (23) 

where ߶గ, ߶௬, ߶௬, ߶ capture the strength of the policy response to deviations of inflation, the output gap, 

the output growth rate and the price level from their respective targets, parameters ߩଵ and ߩଶ reflect 

interest rate smoothing, while ߝ௧
 is a policy shock. We set כߨ ൌ ,തߨ ௧

כ ൌ ݐכߨ ൌ כݕ݃ and ݐതߨ ൌ  തതതത  whichݕ݃

means that the central bank has no inflationary or output bias. The growth rate of output is related to the 

output gap by  

1 1
ˆ .ˆ ( )t t t t tg y a ay y       (24) 

Since the actual level of the net interest rate is bounded by zero, the log deviation of the gross 

interest rate is bounded by ̂ݎ௧ ൌ logሺܴ௧ሻ െ logሺ തܴሻ  െ logሺ തܴሻ ൌ െݎҧ  and the dynamics of the actual interest 

rate are given by  

*ˆ ˆmax{ , }.t tr r r   (25) 

2.3 Shocks 

We assume that technology follows a random walk process with drift: 

1 .a

t t ta a       (26) 

Each of the discount factor, government, and Phillips Curve shocks follow AR(1) processes 

1
ˆ ˆ ,t t t
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1
ˆ ,ˆ g

t g t tg g    (28) 

1
ˆ .ˆ m

t m t tm m     (29) 

We assume that ߝ௧
, ௧ߝ

ఉ, ௧ߝ
, ௧ߝ

, ௧ߝ
 are mutually and serially uncorrelated.  

2.4 Welfare function 

To quantify welfare for different levels of steady-state inflation, we use a second-order approximation to 

the household utility function as in Woodford (2003). We show our main results in a series of lemmas 

culminating in Proposition 1. All proofs are in Appendix A.  

First of all, we decompose utility described in equation (1) into utility due to consumption and 

(dis)utility due to labor supply. Lemmas 1 and 2 provide second order approximations for each 

component.  
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Lemma 1. Utility from consumption in equation (1) is given by  

1 1) (( . .) .t t t thu C c cu C h h o t        (30) 

where ܿ̃௧ ൌ log ሺܥ௧/ܥ௧
ிሻ is the percent deviation of consumption from its flexible-price level and h.o.t. 

means higher order terms.  

Lemma 2. Using production function (9), define ߭ሺ ௧ܻሺ݅ሻሻ ؠ ߭ሺ ௧ܰሺ݅ሻሻ ؠ ௧ܰሺ݅ሻଵାଵ/ఎ. Then  
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where ݕ௧ሺ݅ሻ ൌ log ሺ ௧ܻሺ݅ሻ/ തܻ௧
ிሻ is the deviation of firm i’s output from flexible-price level of output തܻ௧

ி, η is 

the Frisch elasticity of labor supply, t.i.p. stands for terms independent from policy, h.o.t. means higher 

order terms. Correspondingly, the total disutility from labor supply is  
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      (32) 

Proof: See Proposition 6.3 in Woodford (2003).  

 

The key insight from Lemmas 1 and 2 is that welfare is diminished when consumption is low 

relative to its flexible-price level and when the cross-sectional dispersion of output is large. Equation (19)

provides a sense of how the deviation of output (and consumption) is affected by steady-state inflation on 

average. To understand and assess the implications of cross-sectional output dispersion, we need to 

examine the cross-sectional dispersion of prices.  

Denote the cross-sectional dispersion of prices at time t with ∆௧ൌ varሺlog ሺ ௧ܲሺ݅ሻሻሻ and let ∆ത be 

the cross-sectional dispersion of prices in the non-stochastic steady state. It is straightforward to show  

that ∆തൌ തଶഊሺభషഘሻమߨ

ሺభషഊሻమ  where ∆ത is increasing in price stickiness λ and steady-state inflation ߨത and decreasing in 

the degree of indexation .  Define തܲ௧ ൌ logܧ ௧ܲሺ݅ሻ as the average (across firms) log price of goods.  

Lemma 3. The difference between the log price index Pt and the average log price across firms തܲ௧ is 

given by  

0 11
2 )ln ( . . .t t p p tP P Q Q h o t      (33) 

where  0
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.  

 

Lemma 3 is a manifestation of Jensen’s inequality. Note that since ∆ത is quadratic in ߨത, the 

dispersion of prices ∆ത is approximately zero when ߨത ൎ 0 and therefore ܳ
 ൎ 0, ܳ

ଵ ൎ 1 so that ݈݊ ௧ܲ െ
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തܲ௧ ൎ భషഇ
మ

∆௧, which is the standard result. Again, since ∆ത is quadratic in ߨത, one can show that ߲ܳ
/߲ߨത ൎ 0, 

߲ܳ
ଵ/߲ߨത ൎ 0 when ߨത ൎ 0.      

Using Lemma 3, we describe the dynamic properties of the price dispersion in Lemma 4.  

Lemma 4. Let tt      be the deviation of cross-section price dispersion from its non-stochastic 

steady state level ∆ത. Then  
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(34) 

where 
1 1

0

01) [(1 )( (1 ){1 ( ]})p pQ Qb            , (35) 
1

1 01 ( 1)(1 )[ ]pQ        , (36) 

 0

2 02 (1 ) ( ) (1 )pM Qb          , (37) 

തܾ is the log of the optimal reset price in the non-stochastic steady state.  

This lemma shows that the cross-sectional price dispersion is a function of its past values as well as the 

deviation of inflation from its steady state level. In the vicinity of ߨത ൌ 0, Γ ൎ 1, Γଵ ൎ 1, Γଶ ൎ 0 and thus 

cross-sectional price dispersion varies very little over time.  This is because it no longer depends on the 

first-order deviations of inflation from its steady state value but rather is a function only of second-order 

terms and thus can be ignored as negligible. This is the standard result for welfare calculations in a zero 

steady state inflation environment (see e.g. Proposition 6.3 in Woodford (2003)). However, ߲Γ/߲ߨത 

0, ߲Γଵ/߲ߨത ൏ 0, ߲Γଶ/߲ߨത  0 locally at ߨത ൎ 0. Hence, deviations of inflation from its steady state level 

have an increasingly strong effect on the cross-sectional price dispersion as ߨത rises. Also observe that for 

തߨ ൎ 0 only the first and second terms in the right hand side of (34) are non-negligible. However, as one 

moves away from ߨത ൎ 0, other terms become important too.  

Using the demand condition (7), we can link the cross-sectional dispersion of output to the cross-

sectional dispersion of prices:  

( ) log ( ) log log log {log ( ) log }F F

t t t t t t ti Y i Yy Y PY i P        (38) 

and hence 
2 2var ( ) var ( ) var (log( ( ))) .ˆ

t i t i t i t ti iy y P i        (39) 

Let Υഥ be the cross-sectional dispersion of output in the non-stochastic steady state. The remaining piece in 

the second-order approximation of household’s utility is ܧݕො௧ሺ݅ሻ, which is the average deviation of output 
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from flexible price level at the firm level. Using the insight of Lemma 3, we can relate ܧݕො௧ሺ݅ሻ to the 

deviation of output from its flexible-price level at the aggregate level.  

Lemma 5. If the deviation of output from its flexible-price level at the aggregate level is defined as 

௧ݕ ൌ log ሺ ௧ܻ/ തܻ௧
ிሻ, then 

0 111
2( ) ( ) . . .i t t y y tE i Q Q h oy ty 
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Similar to the cross-sectional price dispersion, one can show that, since Υഥ is quadratic in ߨത, ܳ௬
 ൎ 0, 

ܳ௬
ଵ ൎ 1 and ߲ܳ௬

/߲ߨത ൎ 0,  ߲ܳ௬
ଵ/߲ߨത ൎ 0 when ߨത ൎ 0.  

The central result can be summarized with the following proposition 

 

Proposition 1. Given Lemmas 1-5, the second order approximation to per period utility in eq. (1) is  

0 1 4 52 3 1var( cov( , var( ) var(ˆ ˆ ˆ ˆ) ) ,) cov( )t tt t t t ty y             (41) 

where t  is the deviation of price dispersion from non-stochastic steady state and parameters 

, 0,...,5i i   depend on the steady state inflation ߨത and are given by  

1

01

0 2 1 0(1 )(1 ) 11 1 1
(1 ) 2

(1 )(1 )(1 ) 1 1 0 1(1 ) 11 1 1 1
2 (1 ) 2

2

(1

0

)

0

2

1 (1 )(1 )(1 (1 ) )

(1 )[ ] [ (1 ) ]

[

[ ]lo

l

g( )

og( [ ( 1) (1 )(1 ))] ] ,

y

y y

y

h

y y yg

h h

y y y yg g

y

h h Q

Q Q Q Q

Q Q Q

X

QX



 
  

  
  





  


    
 

     

      

      

 



     (42) 

1(1 )(

1

1 )
1
2 (1 ) ,

y

h

g


 

   (43) 
1(1 )(1 ) 1 2

2
11

2 (1 ) ,
y

h

yg Q
 

 
 


    (44) 

 

1
2

3

2

5

(1 )(1 ) 2 1 411
8 (1 )

1 0 1 1(1 ) 1 11 1 1 1
2 (1 )

( ) [ ]

[ ( 1) (1 )(1 )] (1 ) log( )

y

y

h

yg

h

y y y yg

Q

Q Q Q Q X


 



  
    





 




  






 

      
 (45) 

 2 11 0 1 1(1 ) 1 11 1 1
2 (1 )4 3 [ ( 1) (1 )(1 )] (1 ) log( ) ,

y

h

y y y yg Q Q Q Q X  
      


           (46) 

 2 11 0 1 1(1 ) 1 11 1 1
2 (1 )5 4 [ ( 1) (1 )(1 )] (1 ) log( ) ,

y

h

y y y yg Q Q Q Q X  
      


           (47) 

 2 22 1 1 1(1 )

4

20
3 2 2 2

1

(1 ) [ ] (1 ) (1 )(1 ) ,
(1 )

p p pM QMQ Q    



         


 (48) 

  2 1 2(1 )

2

10
4 1 1 2 1

1

(1 )(1 (1 [ ] ( ) ,
1

) 1) pp QQ M     


  


        
 

 (49) 



14 
 

 2 1 2 2(1 )0
5 1 1

1

4 [ ] [( ) (1 2 )] ,
1

pQ  


  


  


  (50) 

1log( ).

    (50) 

Although the complexity of equation (45) may seem daunting, it illustrates the three mechanisms via 

which inflation affects welfare: the steady-state effects, the effects on the coefficients of the utility-

function approximation, and the dynamics of the economy via the second moments of macroeconomic 

variables.  First, the term Θ captures the steady-state effects from positive steady-state inflation, which 

hinge on the increase in the cross-sectional steady-state dispersion in prices (and therefore in inefficient 

reallocations of resources across sectors) associated with positive steady-state inflation.4 Note that as ߨത 

approaches zero, Θ converges to zero. For positive ߨത, Θ is strictly negative. Furthermore, one can show 

that in the vicinity of ߨത ൎ 0, ߲Θ/߲ߨത ൏ 0 that is the welfare loss from steady-state effects is increasing in 

the steady-state level of inflation. This is intuitive since, except for very small levels of inflation, the 

steady state level of output declines with higher trend inflation because the steady state cross-sectional 

price dispersion rises.  Consistent with this effect being driven by the increase in dispersion, one can show 

that the steady-state effect is eliminated with full indexation of prices and mitigated with partial 

indexation.  

Second, the coefficient on the variance of output around its steady state Θଵ ൏ 0 does not depend 

on the steady-state level of inflation. This term is directly related to the disutility of cross-sectional 

dispersion of labor supply. A part of this disutility is brought about by the variance of output around its 

steady state which is not a direct function of steady-state inflation.  However, this does not imply that 

positive trend inflation does not impose any output cost. Rather, trend inflation reduces the steady state 

level of output, which is already captured by Θ. Once this is taken into account, then log utility implies 

that a given level of output variance around the (new) steady state is as costly as it was before. 

Furthermore, the variance of output around its steady state depends on the dynamic properties of the 

model which are affected by the level of steady-state inflation.   

The coefficient on the variance of inflation Θସ ൏ 0 captures the sensitivity of the welfare loss due 

to the cross-sectional dispersion of prices. One can also show analytically that for ߨത ൎ 0, ߲Θସ/߲ߨത ൏ 0 so 

that  the cross-sectional dispersion of prices becomes ceteris paribus costlier in terms of welfare. This 

result reflects the fact that firms who have not adjusted their prices for long periods have very low relative 

prices and therefore high relative production levels.  Since higher production requires higher levels of 

employment and the marginal disutility of sector-specific labor is increasing in labor input, it becomes 

                                                      
4 The parameter Ф measures the deviation of the flexible-price level of output from the flexible-price perfect-
competition level of output. See Woodford (2003) for derivation. 
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more costly to produce a given level of output as the steady-state level of inflation rises. Furthermore, Θସ 

decreases in the elasticity of substitution across goods, the Frisch labor supply elasticity, and the Calvo 

parameter λ which governs the stickiness of prices. 

Although Θଶ  0, Θଷ ൏ 0, Θହ  0 are not negligible when ߨത ൎ 0, the terms multiplied by these 

coefficients are negligible when steady-state level of inflation is approximately zero5. As ߨത rises, the 

importance of these terms increases and we keep track of these terms to have a better approximation to 

the utility function. Again, one can show that ߲Θଶ/߲ߨത ൎ 0 (this is because Υഥ is quadratic in ߨത), ߲Θଷ/

തߨ߲  0 and ߲Θହ/߲ߨത  0 in the neighborhood of ߨത ൌ 0.  

The coefficient on the variance of price dispersion Θଷ captures the welfare loss from variations in 

the average cross-sectional labor input. We already know that when price dispersion is high, then the 

dispersion in labor input is also high. Since the marginal disutility of labor is increasing, a higher 

dispersion in labor input will increase the average cost of production across industries thereby raising the 

price and reducing the average labor input. The variation in price dispersion therefore induces additional 

variation in the cross-sectional average of labor input which lowers welfare because of increasing 

marginal disutility of labor. When ߨത ൌ 0 this effect is small and can be ignored. However, with positive 

trend inflation the variation in price dispersion is much larger as firms with fixed prices face consistently 

falling relative prices and firms that can reset prices will set it above the prevailing average price. This 

implies that variations in average labor input are much larger with positive trend inflation and have to be 

included in the welfare analysis. Θଷ is decreasing in trend inflation, since with higher trend inflation firms 

pay more attention to future economic variables than the current level of price dispersion when setting 

their reset prices and so the effect of price dispersion on today’s average labor input is less pronounced. 

Since the covariance of the deviation of output from steady state and the cross-sectional 

dispersion of prices and the covariance of inflation and the cross-sectional dispersion of prices are 

positive, parameters Θଶ  0 and Θହ  0 help us avoid double counting of the welfare effects from the 

increased variability of output, inflation and the cross-sectional price dispersion.  

Note that when ߨത ൌ 0, equation (45) reduces to the standard second-order approximation of the 

utility function as in Proposition 6.4 of Woodford (2003).6 
 

III Calibration and Optimal Inflation 

Having derived the approximation to the utility function, we now turn to solving for the optimal inflation 

rate.  Because utility depends on the variance and covariance of macroeconomic variables, this will be a 

function of the structural parameters and shock processes.  Therefore, we first discuss our parameter 

                                                      
5 When ߨത ൌ 0, the terms covሺݕො௧, Ξ௧ሻ, varሺݕො௧, Ξ௧ሻ, covሺߨො௧, Ξ௧ିଵሻ are of third order or higher. 
6 There is a slight difference between our approximation and the approximation in Woodford (2003) since we focus 
on the per period utility while Woodford calculated the present value.  
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selection, then consider the implications for the optimal inflation rate in the model.  We investigate the 

robustness of our results to parameter values in a later section. 

3.1 Parameters 

Our baseline parameter values are illustrated in Table 1.  For the utility function, we set η, the Frisch labor 

supply elasticity, equal to one and the degree of external habit formation h to 0.  The steady-state discount 

factor β is set to 0.993 to match the real rate of 2.2% per year on 6-month commercial paper or assets with 

similar short-term maturities.  We set the elasticity of substitution across intermediate goods θ to 10, so 

that steady-state markups are equal to 11%. This size of the markup is consistent with estimates presented 

in Burnside (1996) and Basu and Fernald (1997).  The degree of price stickiness (ߣ) is set to 0.55, which 

amounts to firms resetting prices approximately every 7 months on average.  This is midway between the 

micro estimates of Bils and Klenow (2004), who find that firms change prices every 4 to 5 months, and 

those of Nakamura and Steinsson (2008), who find that firms change prices every 9 to 11 months.   

The degree of price indexation is assumed to be zero in the baseline for three reasons.  First, the 

workhorse New Keynesian model is based only on price stickiness, making this the most natural 

benchmark (Clarida et al (1999), Woodford (2003), and Gali (2008)).  Second, any price indexation 

implies that firms are constantly changing prices, a feature strongly at odds with the empirical findings of 

Bils and Klenow (2004) and more recently Nakamura and Steinsson (2008), among many others.  Third, 

while indexation is often included to replicate the apparent role for lagged inflation in empirical estimates 

of the NKPC (see Gali and Gertler 1999), Cogley and Sbordone (2008) show that once one controls for 

steady-state inflation, estimates of the NKPC reject the presence of indexation in price setting decisions.  

However, we relax the assumption of no indexation in section 4.1. 

 The coefficients for the Taylor rule are taken from Coibion and Gorodnichenko (2009).  These 

estimates point to strong long-run responses by the central bank to inflation and output growth (2.5 and 

1.5 respectively) and a moderate response to the output gap (0.43).  We set the steady-state growth rate of 

real GDP per capita to be 1.5% per year (ܻܩതതതത ൌ 1.015.ଶହ), as in Coibion and Gorodnichenko (2009).  The 

steady-state share of consumption is set to 0.80 and therefore the share of government spending is twenty 

percent.  The calibration of the shocks is primarily taken from the estimated DSGE model of Smets and 

Wouters (2007), with the exception of the discount factor shocks which are taken from Justiniano and 

Primiceri (2008) which provides better identification of these shocks.  We investigate the sensitivity of 

our results to many of these parameter choices in subsequent sections. 

 In our baseline model, positive steady-state inflation is costly primarily because it leads to more 

price dispersion and therefore less efficient allocations.  On the other hand, positive steady-state inflation 

gives policy-makers more room to avoid the zero lower bound (ZLB) on interest rates.  Therefore, a key 

determinant of the tradeoff between the two depends on how frequently the ZLB is binding for different 
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steady-state rates of inflation.  To illustrate the implications of our parameter calibration for how often we 

hit the ZLB, Figure 1 plots the fraction of time spent at the ZLB from simulating our model for different 

steady-state levels of the inflation rate.  In addition, we plot the steady-state level of the nominal interest 

rate associated with each inflation rate, where the steady-state nominal rate in the model is determined by 

തܴ ൌ ഥߎ ·  ҧ.  Our calibration implies that with a steady-state inflation rate of approximately 3.5%, theߚ/തതതതܻܩ

average rate for the U.S. since the early 1950’s, the economy should be at the ZLB approximately 4 

percent of the time.  With U.S. interest rates at the ZLB since late 2008 and expected to remain so until at 

least the end of 2010, this yields a historical frequency of being at the ZLB of approximately 3-4 percent 

(i.e. around 2 years out of 60).   

 In addition, this calibration agrees with the historical changes in interest rates associated with 

post-WWII U.S. recessions.  For example, starting with the 1958 recession and excluding the current 

recession, the average decline in the Federal Funds Rate during a recession has been 4.76 percentage 

points.7  The model predicts that the average nominal interest rate with 3.5% steady-state inflation is 

around 8%, so the ZLB would not have been binding during the average recession, consistent with the 

historical experience.  Only the 1981-82 recession led to a decline in nominal interest rates that would 

have been sufficiently large to reach the ZLB (8.66% drop in interest rates), but did not because nominal 

interest rates and estimates of steady-state inflation over this period were much higher than their average 

values.  Thus, with 3-3.5% inflation, our calibration implies that it would take unusually large recessions 

for the ZLB to become binding.  In addition, Figure 1 indicates that at much lower levels of steady-state 

inflation, the ZLB would be binding much more frequently.  For example, at a zero steady-state inflation 

rate, the ZLB would be binding nearly 17% of the time.  Given the historical experience of the U.S., this 

also seems reasonable.  The model predicts a steady-state level of interest rates of less than 4.5% when 

steady-state inflation is zero, and five out the last eight recessions (again excluding the current episode) 

were associated with decreases in interest rates that exceeded this value (specifically the 1969, 1973, 

1982, 1990 and 2001 recessions).  Thus, we interpret our parameterization as providing a reasonable 

representation of the likelihood of hitting the ZLB for different inflation rates given the historical 

experience of the U.S. 

3.2 Optimal Inflation 

Having derived the dynamics of the model, parameterized the shocks, and obtained the second-order 

approximation to the utility function, we now simulate the model for different levels of steady-state 

inflation and compute expected utility across steady-state inflation rates.  The results are plotted in Figure 

                                                      
7 This magnitude is calculated by taking the average level of the fed funds rate (FFR) over the last 6 months prior to 
the start of each recession as defined by the NBER and subtracting the minimum level of the FFR reached in the 
aftermath of that recession. 
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2.  Note first that utility is increasing at very low levels of inflations, which reflects the fact that zero 

inflation is not optimal when the zero bound is present.  Second, the peak level of utility is reached when 

the inflation rate is 1.2% at an annualized rate.  This is at the bottom end of the target range of most 

central banks, which commonly ranges from 1-3%.  Thus, our baseline results imply that taking into 

account the zero bound on interest rates raises the optimal level of inflation, but with no additional 

benefits to inflation included in the model, the optimal inflation rate is within the standard range of 

inflation targets.  Third, inflation rates above the optimal level monotonically lower utility.  Fourth, the 

costs of even moderate inflation are nontrivial.  For example, a 4% annualized inflation rate would lower 

utility by 2% relative to the optimal level, which given log utility in consumption could be interpreted as 

equivalent to a permanent 2% decrease in the level of consumption.   

In addition, Figure 2 illustrates the importance of taking into account the fact that positive steady-

state inflation alters both the number of terms that appear in the utility-function approximation as well as 

their coefficients.  For example, if we replicate our simulations but approximate utility via the standard 

approximation, both in terms of coefficients and terms included (i.e. use the approximation in Woodford 

(2003, page 403)), the optimal inflation rate would be 3.4%.  If we allowed for all of the terms to appear 

in the utility function but did not take into account the effects of positive steady-state inflation on the 

coefficients, the optimal level of inflation would rise to 5.2%.  Thus, the full characterization of the 

effects of steady-state inflation on the utility function approximation is a quantitatively important 

component of the optimal inflation rate derived here.  

To get a sense of which factors drive these results, Figure 3 plots the coefficients of the second-

order approximation to the utility function from Proposition 1.  In short, the results confirm the analytical 

derivatives of the coefficients from section 2.4 around ߨത ൎ 0.  First, rising inflation has important 

negative steady-state effects on utility, as the increasing price dispersion inefficiently lowers the steady-

state level of production and consumption.  For example, 6% inflation lowers utility by 4% relative to 

zero inflation via the steady-state effects.  Second, the coefficient on the variance of output around its 

steady state is independent of ߨത even though the new steady state level of output is lower. This reflects 

our assumption of log-utility in consumption.  Third, the coefficient on the inflation variance is becoming 

increasingly negative. This reflects the fact that when the steady state level of price dispersion is already 

high (and steady-state output correspondingly low) then a temporary increase in price dispersion due to 

higher or lower inflation is even more costly. Moving from zero inflation to six percent inflation raises the 

coefficient on inflation variance by 40% in absolute value.  This illustrates the importance of taking into 

account the effects of ߨത on the coefficients of the utility function approximation.  Ignoring this effect 

would thus tend to understate the costs of higher inflation by ignoring the fact that, holding the inflation 

variance constant, higher ߨത raises the utility cost of the variance in inflation.    
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Figure 4 plots the effects of steady-state inflation on the moments of the macroeconomic 

variables that directly affect utility, i.e. the dynamic effects of steady-state inflation and the zero bound on 

interest rates.  In addition, we plot the corresponding moments in the absence of the zero-bound on 

interest rates to characterize the contribution of the zero-bound on macroeconomic dynamics.  A notable 

feature of the figure is that output volatility rises much more rapidly as ߨത falls when the zero bound on 

interest rates is present. Intuitively, with low ߨത the ZLB is hit more often. With the nominal rate fixed at 

zero the central bank cannot stabilize the economy by cutting interest rates further and thus 

macroeconomic volatility increases. As we increase ߨത, the macroeconomic volatility (especially for 

output) diminishes.  

The effect of changes in ߨത, however, is non-linear for the variance of inflation when we take into 

account the zero-bound on interest rates. At low levels of inflation, higher levels of ߨത reduce the volatility 

in inflation for the same reason as for output: the reduced frequency of hitting the zero bound.  On the 

other hand, higher steady-state inflation also tends to make price-setting decisions more forward-looking, 

so that inflation volatility will tend to rise with ߨത.  When steady-state inflation rises past a specific value, 

the latter effect starts to dominate and the variance of inflation begins to rise with steady-state inflation.  

Given our baseline values, this switch occurs at an annualized steady-state inflation rate of approximately 

3.5%.  In the absence of the zero-bound, the variance of inflation would be monotonically increasing with 

 ത on theߨ ത.  These results indicate the importance of modeling both the zero-bound and the effects ofߨ

dynamics of the model.  

Figure 5 plots the contribution of these different effects on the welfare costs of inflation, i.e. each 

of the terms in Proposition 1.  These include the steady-state effects of ߨത as well as the interaction of the 

effects of ߨത on the coefficients of the utility function approximation and the dynamics of the economy.  

The most striking result is that the welfare costs and benefits of positive ߨത are essentially driven by two 

components: the steady-state effect and the contribution of inflation variance to utility.  All of the other 

effects are much smaller quantitatively.  The contribution of the inflation variance is an inverted U, which 

reflects the U-shape pattern of inflation variance with respect to steady-state inflation as well as the 

negative and declining coefficient on the inflation variance in the utility function approximation.  

IV Robustness of the Optimal Inflation Rate to Alternative Parameter Values 

In this section, we investigate the robustness of the optimal inflation rate to our parameterization of the 

model.  We focus particularly on the pricing and time preference parameters.8   

                                                      
8 We investigated the sensitivity of our results to habit formation, the Frisch labor supply elasticity and other 
parameters.  These had minor quantitative effects on our results; we omit them from the text in the interest of space. 
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4.1 Pricing Parameters 

Figure 6 plots the utility-approximation for different levels of ߨത for alternative pricing parameters, as well 

as the optimal inflation rates associated with these parameter values.  First, we consider the role of the 

elasticity of substitution θ.  Note that the welfare costs of inflation are larger when θ is high.  This result 

captures the fact that a higher elasticity of substitution generates more real rigidity and therefore more 

persistence in fluctuations, thereby raising the welfare cost of fluctuations for any ߨത.  However, the 

effects of this parameter on the optimal ߨത are relatively small: using a value of θ of 5, half of our baseline 

and an upper bound on how big markups are in the economy, raises the optimal ߨത to about 1.7% from our 

baseline of 1.2%.  This is well within the range of inflation targets employed by modern central banks. 

 We also investigate the role of price indexation.  In our baseline, we assumed ω=0, based on the 

fact that firms do not change prices every period in the data, as documented by Bils and Klenow (2004) 

and Nakamura and Steinsson (2008), as well as the results of Cogley and Sbordone (2008) who argue that 

once one controls for time-varying steady-state inflation, we cannot reject the null that ω=0 for the US.  

However, because price-indexation is such a common component of New Keynesian models, we consider 

the effects of price indexation on our results.  In general, price indexation has two effects. First, it leads to 

more inertia in inflation, which should tend to make business cycles more costly. On the other hand, it 

reduces the dispersion of prices, which offsets some of the costs of positive ߨത. The results in Figure 6 

indicate that the latter effect is quantitatively more important: higher levels of indexation lead to higher 

optimal rates of inflation. With ω=0.5, which is most likely an upper bound for empirically plausible 

degree of indexation in low-inflation economies like the US, the optimal ߨത marginally exceeds 2%. 

 Third, we investigate the effects of price stickiness.  Our baseline calibration, λ=0.55, is midway 

between the findings of Bils and Klenow (2004) of median price durations of 4-5 months and those of 

Nakamura and Steinsson (2008) of median price durations of 9-11 months.  We now consider values of λ 

ranging from 0.50 to 0.65.  There is little impact on welfare for very low levels of inflation, but as the 

steady state inflation rate rises past 3%, higher degrees of price stickiness are associated with much larger 

welfare losses than the baseline.9  This reflects the fact that with more price stickiness, price dispersion is 

greater, and this effect is amplified at higher levels of steady-state inflation, thereby generating much 

larger welfare losses.  Nonetheless, this has only minor effects on the optimal inflation rate. 

4.2 Time Preference Parameters 

We also consider the sensitivity of our results to time-preference parameters.  First, we reproduce our 

baseline welfare figure for different levels of the persistence to discount factor shocks.  The results are 

                                                      
9 In fact, if we increase λ above 0.75 the model starts to run into indeterminacy regions which are potentially 
associated with unbounded volatility.  
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quite sensitive to this parameter, which reflects the fact that these shocks play a crucial role in hitting the 

zero lower bound.  For example, Figure 7 illustrates that when we raise the persistence of the shock from 

0.95 to 0.96, the optimal inflation rate rises from 1.2% to 2.3% because this increase in the persistence of 

the shock has a large effect on the frequency of hitting the ZLB.  At 3.5% inflation, the frequency of 

being at the lower bound doubles relative to our baseline scenario, thereby raising the benefit of higher 

steady-state inflation.  The reverse occurs with lower persistence of discount factor shocks: the frequency 

of being at the ZLB declines sharply as does the optimal inflation rate. Similar results obtain when we 

vary the volatility of the discount factor shock.  When we increase the standard deviation of these shocks 

to 0.004 from our baseline of 0.0031, the optimal inflation rate rises to slightly over two percent.  Again, 

this is driven by a higher frequency of being at the ZLB: at 3.5% inflation, this alternative shock volatility 

implies the economy would be at the ZLB twice as often as under our baseline calibration. 

 Third, we consider the sensitivity of our results to the steady-state level of the discount factor β.  

This parameter is also important in determining the frequency at which the economy is at the ZLB since it 

affects the steady-state level of nominal interest rates.  This is particularly important at low levels of 

steady-state inflation.  As with the discount factor shock variables, a higher value of β is associated with a 

lower steady-state level of nominal interest rates, so that the ZLB will be binding more frequently.  For 

example, with β=0.9975 (which corresponds to a real rate of 1.75% per year), the ZLB is binding nearly 

10% of the time when steady-state inflation is 3.5%.  This leads to higher optimal levels of inflation than 

implied by our baseline results.  These robustness checks clearly illustrate how important the frequency at 

which the economy hits the ZLB is in terms of our results.  Naturally, parameter changes which make the 

ZLB binding more often raise the optimal rate of inflation because higher ߨത lowers the frequency of 

hitting the ZLB.  Thus, the key point is not the specific values chosen for these parameters but rather 

having a combination of them that closely reproduces the historical frequency of hitting the ZLB for the 

U.S.  In any case, even if we consider parameter values that double the frequency of hitting the ZLB at 

the historical average rate of inflation for the U.S., the optimal inflation rate rises only to about 2%, which 

is the center of inflation targets for most central banks.

 
V What Could Raise the Optimal Inflation Rate? 

While our baseline model emphasizes the tradeoff between higher inflation to ensure against the zero-

bound on interest rates versus the utility costs of associated with larger price dispersion, previous research 

has identified additional factors beyond the lower-bound on nominal interest rates which might lead to 

higher levels of optimal inflation.  In this section, we extend our analysis to assess their quantitative 

importance.  First, we include capital formation in the model.  Second, we allow for uncertainty about 

parameter values on the part of policy-makers. Third, we consider the possibility that the degree of price 
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stickiness varies with ߨത.  Fourth, we explore whether our results are sensitive to using Taylor pricing. 

Fifth, we integrate downward nominal wage rigidity, i.e. “greasing the wheels,” into the model. 

5.1 Capital 

We consider how sensitive our results are to the introduction of capital. We present a detailed model in 

Appendix B and only provide a verbal description in this section. In this model, firms produce output with 

a Cobb-Douglas technology with capital share ߙ ൌ 0.33. We assume that all capital goods are 

homogeneous and can be equally well employed by all firms. Capital is accumulated by the representative 

consumer subject to a quadratic adjustment cost to capital and rented out in a perfectly competitive rental 

market. The aggregate capital stock depreciates at rate ߜ ൌ 0.02 per quarter.  We calculate the new steady 

state level of output relative to the flexible price level output and derive the analogue of Proposition 1 in 

Appendix B. 

By allowing capital to freely move between firms we reduce the steady state welfare cost from 

trend inflation. Now firms that have a relatively low price can hire additional capital rather than sector-

specific workers to boost their output. Thus the disutility of labor does not increase by as much as it did in 

the labor-only model and this will be a force to raise the optimal inflation level. However, capital also 

reduces the likelihood of hitting the ZLB. Unlike the labor-only model, including capital permits positive 

savings and so we are less likely to be in a situation where an increase in the desire to save pushes interest 

rates all the way to zero. This channel will lower the optimal inflation rate in the capital model relative to 

the labor model. We now consider both these channels together. 

In Figure 8 we plot utility for various steady-state inflation rates when we impose a moderate 

adjustment cost to capital (߰ ൌ 3). Utility again peaks at a trend inflation rate of 1.4% per annum 

suggesting that capital reduces the costs and benefits of inflation in equal amounts. While steady state 

output is higher with capital, Figure 8 also reveals that we hit the ZLB much less frequently, which makes 

higher trend inflation less attractive. 

5.2 Model Uncertainty 

An additional feature that could potentially lead to higher rates of optimal inflation is uncertainty about 

the model on the part of policy-makers.  If some plausible parameter values lead to much higher 

frequencies of hitting the zero-bound on interest rates or raise the output costs of being at the zero-bound, 

then policy-makers might want to insure against these outcomes by allowing for a higher steady-state 

inflation rate.  To quantify this notion, we consider two exercises.  First, we identify the inflation rate that 

maximizes expected utility taking into account parameter uncertainty.  Second, we generate a distribution 

of optimal inflation rates from the distribution of parameters. 
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Our starting point for both exercises is uncertainty about the parameters of the model.  We 

characterize this uncertainty via the variance-covariance matrix of the estimated parameters from Smets 

and Wouters (2007).10 We place an upper bound of 0.975 on the persistence of the discount factor shock 

and raise its covariance with the discount factor shock by a factor of 1.25. This eliminates draws where 

the ZLB binds unrealistically often, in excess of 10% at 6% annual trend inflation. We then use the delta 

method to adjust the standard errors on the autoregressive parameters and the Frisch elasticity to reflect 

their bounded parameter space. To assess the optimal inflation rate given uncertainty about parameter 

values, we compute the expected utility associated with each level of steady-state inflation by repeatedly 

drawing from the distribution of parameter values.11  Figure 9 (Panel A) plots the levels of implied levels 

of expected utility associated with each steady-state level of inflation.  Maximum utility is achieved with 

an inflation rate of 1.4% per year.  As expected, this is higher than our baseline result, which reflects the 

fact that some parameter draws lead to much larger costs of being at the zero-bound, a feature which also 

leads to a much more pronounced inverted U-shape.  Nonetheless, this optimal rate of inflation remains 

well within the bounds of current inflation targets of modern central banks. 

Secondly, for each draw from the parameter space, we solve for the optimal inflation rate, thereby 

allowing us to characterize the uncertainty associated with our baseline results.  Figure 9 (Panel B) plots 

the distribution function of these inflation rates.  The 90% confidence interval of optimal inflation rates 

ranges from 0.4% to 2.1% per year, which again is very close to the target range for inflation of most 

central banks.  In short, incorporating model uncertainty confirms our baseline finding that, even after 

taking into account the zero-bound on interest rates, the optimal inflation rate is low and close to current 

targeted levels. 

5.3 Endogenous Price Stickiness 

In our baseline analysis, we treat the degree of price rigidity as a structural parameter.  However, theory 

implies that the cost to firms of not changing prices should rise as steady state inflation rises (Romer 

1990).  Higher levels of inflation should therefore tend to be associated with lower levels of price 

stickiness, which would tend to lower the welfare costs of business cycles.  Thus, by ignoring this 

endogeneity, we might be overstating the costs of positive inflation and thereby underestimating the 

optimal rate of inflation. 

The empirical evidence on the sensitivity of price rigidity to the inflation rate is mixed.  Gagnon 

(2009), for example, finds a statistically significant relationship between the inflation rate and the 

                                                      
10 Although we take estimates and variances for σb and ρb from Justiano and Primiceri (2008) and for parameters in 
the policy reaction function from Coibion and Gorodnichenko (2009), we preserve correlations between parameter 
estimates in the covariance matrix reported in Smets and Wounters (2007).  
11 Note that some parameter draws yield an indeterminate solution.  In this case, we solve for the dynamics using the 
“continuous” solution as in Lubik and Schorfheide (2003). 
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frequency of price changes for Mexico, but only when the inflation rate exceeds 10% per year.  Dhyne et 

al (2005) find a positive relationship between the two for a cross-section of European countries, but the 

relationship is not statistically significantly different from zero once they control for a variety of other 

factors.  Nakamura and Steinsson (2008) similarly estimate the relationship between annual inflation and 

the frequency of price changes using micro-level US data and find only mixed evidence of a statistically 

significant link between the two.   

Despite the absence of a strong empirical link between price stickiness and the steady state level 

of inflation (at least for plausible US levels of inflation), we consider the sensitivity of our baseline results 

to a possible systematic link between the two.  Specifically, we follow Nakamura and Steinsson’s 

empirical approach and posit a linear relationship between the (monthly) frequency of price changes and 

the steady state annual rate of inflation, with the coefficient on inflation denoted by βπ.  The average 

estimate of Nakamura and Steinsson across price measures and time periods is approximately βπ = 0.5, 

and the upper bound of their confidence intervals is approximately 1.  We reproduce our analysis using 

these values, as well as our baseline assumption of βπ = 0, and plot the results in Figure 10.12  In each 

case, we calibrate the degree of price rigidity such that λ=0.55 (our baseline value) at a steady-state level 

of annual inflation of 3.5%. 

Panel A shows the implied variation in the degree of price stickiness.  For the mean estimated 

degree of endogeneity from Nakamura and Steinsson (2008), the average duration between price changes 

varies from eight months to six months, while the upper bound on endogeneity of price stickiness yields 

durations ranging from nine months to five and a half months.  Panel B shows that the frequency of 

hitting the zero-bound on interest rates is essentially unchanged across specifications: this reflects the fact 

that, for a given inflation rate, a higher frequency of price changes is associated with larger movements in 

inflation (and therefore hitting the zero bound more frequently) but these changes are less persistent (so 

the economy exits the zero-bound more rapidly), leaving the overall frequency of being at the zero bound 

largely unchanged across specifications.  Panels C-F demonstrate the effects of endogeneity on the 

optimal inflation rate and the utility associated with different levels of steady-state inflation.   

Hence, we have two key findings.  First, the optimal inflation rate is unchanged with endogenous 

price stickiness, but the welfare costs of inflation at the optimal rate are rising with endogenous price 

setting.  This reflects the fact that, given the same low optimal rate of inflation, more endogeneity is 

                                                      
12 To be clear, we allow the degree of price stickiness to vary with the steady-state rate of inflation, but not with 
fluctuations in the inflation rate around its steady-state value.  An alternative approach would be to model 
endogenous price setting via “menu” costs.  Although we do not consider this approach explicitly here, one would 
expect two opposing effects on the optimal inflation rate from such an extension.  First, paying the fixed costs of 
changing prices would lower welfare, and this cost would be rising with steady-state inflation as firms would reset 
their prices more often.  On the other hand, because of selection effects, price dispersion should rise less rapidly 
with inflation than under time-dependent pricing models.  It is unclear, ex ante, which effect would dominate. 
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associated with higher degrees of price stickiness and therefore a higher cost of inflation.  Second, despite 

the fact that the optimal rate of inflation is the same with endogenous price stickiness, the costs of much 

higher inflation are lower relative to our baseline, because higher inflation leads to more frequent price 

changes and therefore less costly fluctuations.   

5.4 Taylor pricing 

An alternative approach to Calvo pricing is the staggered contracts approach of Taylor (1977) in which 

firms set prices for a pre-determined duration of time. This pricing assumption can loosely be thought of 

as a lower bound on forward-looking behavior (conditional on price durations) since it imposes zero 

weight on expected profits beyond those of the contract length in the firm’s reset price optimization. The 

derivation of the utility approximation as well as the structural log-linearized equations of the model is 

similar to Calvo pricing (Appendix D contains details for the utility approximation when the duration of 

price spells is equal to three quarters). 

Figure 11 compares the results for the Taylor pricing (duration of price contracts equal to 3 and 4 

quarters) with the results for the Calvo pricing. The optimal inflation rate for the Taylor model is 1.6 and 

1.4 percent per year for price duration of 3 and 4 quarter respectively, which is close to the 1.2 percent per 

year found for the baseline Calvo model. Note also that the volatility of inflation and output gap (Panels C 

and D) as well as the frequency of hitting zero lower bound (Panel B) are approximately the same in all 

models. However, the Taylor model has smaller losses in welfare as the steady state level of inflation 

increases above 2 percent per year. For example, the welfare loss at the steady state inflation of 6 percent 

per year relative to the minimum loss is about 4 percent in the Calvo model but only about 1 percent in 

the Taylor model (Panel A). The key source of this difference is that the Taylor model assigns smaller 

steady state effects (Panel E) and a lower weight on inflation variability (Panel F) than the Calvo model 

does.13  Intuitively, since firms in the Calvo pricing may be stuck with a suboptimal price for a long time, 

the cost of positive steady state inflation is larger than in the Taylor model where firms are guaranteed to 

change the price in a fixed number of periods. In summary, although both the Taylor and Calvo models 

yield similar optimal inflation rates, these models provide different estimates of welfare gains from low 

steady state inflation.
 

5.5 Downward Wage Rigidity 

A common motivation for positive steady-state inflation rates, beside the zero-lower bound and 

seigniorage, is the “greasing the wheels” effect raised by Tobin (1972).  If wages are downwardly rigid, 

as usually found in the data (e.g., Dickens et al 2007), then positive steady-state inflation will facilitate 

the downward-adjustment of real wages required to adjust to negative shocks.  To quantify the effects of 

                                                      
13 The coefficient on the output variability is the same in the Taylor and Calvo models.  
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downward nominal wage rigidity in our model, we integrate it in a manner analogous to the zero-bound 

on interest rates by imposing that changes in the aggregate nominal wage index be above a minimum 

bound 

ෝ௧ݓ∆ ൌ max ሼ∆ݓෝ௧
, ෝ௧ݓ∆

 ሽכ

where ∆ݓ௧
 is the change in wages that would occur in the absence of the zero-bound on nominal wages כ

and ∆ݓෝ௧
 is the lower-bound on nominal wage changes.  Note that even with zero steady-state inflation, 

steady-state nominal wages grow at the rate of technological progress.  Thus, we set ∆ݓෝ௧
  to be equal to 

minus the sum of the growth rate of technology and the steady state rate of inflation.   

Figure 12 presents the utility associated with different steady-state inflation rates under both the 

zero-bound on interest rates and downward-wage rigidity.  The result is striking: the optimal inflation rate 

falls to practically zero with downward wage rigidity.  Rather than pushing the optimal inflation rate 

higher, accounting for downward nominal wage rigidity actually lowers the optimal rate.  The reason for 

this counterintuitive finding is illustrated in Panel B of Figure 12.  With downward wage rigidity, 

marginal costs are much less volatile, so the variance of inflation is substantially reduced relative to the 

case with flexible wages.  In addition, the fact that marginal costs are downwardly rigid means that, in the 

face of a negative demand shock, inflation will decline by less and therefore interest rates will fall less, 

making the zero bound bind less often.  With ߨത ൌ 0, the zero bound binds approximately 6 percent of the 

time with downward wage rigidity but over 16 percent of the time with flexible wages.  This decrease in 

the frequency at which the zero bound binds at low inflation rates reduces the benefit of higher trend 

inflation and leads to lower estimates of the optimal inflation rate.14

 

VI Normative Implications 

We have so far been treating the question of the optimal inflation rate independently of the systematic 

response of the central bank to macroeconomic fluctuations.  In this section, we consider the sensitivity of 

our baseline results to alternative coefficients for the central bank’s response function as well as the 

normative question of how the central bank can optimize over both optimal inflation and its systematic 

response to the economy. 

6.1 Taylor Rule Parameters 

Our baseline Taylor rule parameters are taken from Coibion and Gorodnichenko (2009) based on the 

post-1982 era.  However, as has been emphasized in the empirical literature on central banks’ reaction 

functions, there is robust evidence of time-variation in the Federal Reserve’s systematic response to 

                                                      
14 Kim and Ruge-Marcia (2009) similarly find that downward wage rigidity, by itself, has little positive effect on the 
optimal inflation rate in an estimated DSGE model.   
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economic fluctuations.15  In addition, like the steady-state inflation rate, the reaction function is under the 

control of policymakers so we are interested in studying the interaction of these policy variables on 

welfare.  Thus, we consider the implications of alternative parameter values in the Taylor rule, illustrated 

in Figure 13.  First, we consider long-run responses to inflation by the central bank ranging from 2 to 5.  

The effects on welfare are unambiguous: stronger long-run responses to inflation raise welfare in the 

model for all inflation rates.  Intuitively, this stronger systematic response reduces inflation and output 

volatility, thereby leading to a lower frequency of being at the ZLB and higher utility.  However, this has 

little effect on the optimal inflation rate, which ranges from 1.3% when ߶గ ൌ 2 to 0.8% when ߶గ ൌ 5. 

We also investigate the sensitivity to the central bank’s response to the real side of the economy 

via output growth or the deviation of output from its steady state value.  We find that stronger responses 

to output growth generally lower welfare while higher responses to output are welfare-improving.  This 

finding is interesting for two reasons.  First, Orphanides (2003) and Coibion and Gorodnichenko (2009) 

emphasize that one of the primary changes in U.S. monetary policy around the time of the Volcker 

disinflation was the switch from responding aggressively to the gap toward responding more aggressively 

to the growth rate of output.  One advantage of the latter is that output growth is readily observable 

whereas the output gap is likely to be subject to much more real-time measurement error, as documented 

in Orphanides and van Nordern (2002).  However, our results indicate that responding strongly to output 

growth actually reduces welfare in a New Keynesian model.  Second, Coibion and Gorodnichenko (2009) 

show that responding to the output gap can be destabilizing in New Keynesian models under positive 

steady-state inflation because it can lead to indeterminacy.  Responding to output growth, on the other 

hand, helps achieve determinacy for smaller responses to inflation when steady-state inflation is positive. 

Figure 13 indicates that conditional on staying in the determinacy region the welfare results go in the 

other direction.  Hence, there is a tradeoff between the two measures in terms of stabilization: responding 

to the (properly measured) gap is welfare improving as long as the economy remains in the determinacy 

region, but increases the likelihood of switching to an indeterminate equilibrium with the possibility of 

sunspot fluctuations.  Responding to the growth rate of output moves the economy away from the 

indeterminacy region but leads to lower welfare within the indeterminacy region.  However, in terms of 

the optimal inflation rate, the distinction is minor and neither measure has much quantitative importance 

in determining the optimal inflation rate within the determinacy region of the parameter space.
 

6.2 Price-Level Targeting, the Zero Bound, and the Optimal Inflation Rate 

While our baseline specification of the Taylor rule restricts the endogenous response of the central bank 

to inflation and the real side of the economy, an additional factor sometimes included is price-level 

                                                      
15 See Clarida et al (2000), Orphanides (2003), Boivin (2006), and Coibion and Gorodnichenko (2009) for examples. 
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targeting (PLT).  While the evidence for central banks actually following price-level targeting remains 

scarce, PLT has nonetheless received substantial attention in the literature for several reasons.  First, as 

emphasized in Woodford (2003), price-level targeting ensures determinacy under zero steady state 

inflation for any positive response to the price level gap.  Second, Coibion and Gorodnichenko (2009) 

show that price-level targeting ensures determinacy for positive steady-state inflation rates as well, and is 

not subject to the deterioration of the Taylor principle as a result of positive steady-state inflation which 

occurs when the central bank responds only to inflation.  Third, Gorodnichenko and Shapiro (2007) show 

that price-level targeting helps stabilizes inflation expectations, thereby yielding much smaller inflation 

and output volatility than would occur in inflation-targeting regimes. 

We extend our baseline model to include price-level targeting in the central bank’s reaction 

function (߶  0) in  Figure 14 which shows the effects of PLT on welfare for different levels of steady-

state inflation as well as its implications for the optimal rate of inflation.  The results are quite dramatic.  

First, PLT strictly increases welfare for any level of steady-state inflation.  Second, PLT leads to much 

lower levels of optimal inflation than inflation-targeting regimes.  Even for moderate responses to the 

price level gap, the optimal level of inflation is approximately 0.5 percent per year. This magnitude 

practically means price level stability (rather than inflation stability) which is, in fact, the mandated 

objective for most central banks.  

The intuition for why PLT delivers such a small optimal inflation rate is straightforward.  First, as 

observed in Gorodnichenko and Shapiro (2007), PLT stabilizes expectations and has a profound effect on 

output and inflation volatility.  In our simulations, the reduction in inflation and output volatility is so 

substantial that the welfare costs of inflation are almost exclusively driven by the steady-state effects. As 

a result of reduced volatility, the ZLB almost never binds.  For example, with ߶ ൌ 0.3, the ZLB binds 

less than two percent of the time at a steady-state level of inflation of 3.5%.  Second, even if the nominal 

rate hits zero, the policy rule remains a potent factor in stimulating the economy despite the ZLB because 

agents know that the deflationary pressures during the ZLB will have to be offset by above-average 

inflation in the future.  This limits the downward movement in inflationary expectations and therefore the 

associated increase in real interest rates.  In short, PLT limits the extent of deflationary spirals so that the 

exit from a binding ZLB occurs more rapidly and the welfare costs of the ZLB are substantially reduced. 

To give a sense of the magnitude of the associated welfare change, we note that by increasing ߶ from 

zero to 0.25 (combined with the appropriate change in the optimal rate of inflation), a policymaker could 

raise steady-state consumption by nearly two percent. Thus, these results provide a new justification for 

the consideration of PLT by monetary policymakers. 

In addition, we consider a closely related issue: the degree of interest smoothing.  Coibion and 

Gorodnichenko (2009) observe that PLT is very similar to a policy rule with high inertia, i.e., ߩଵ   ଶߩ



29 
 

close to one.16  For simplicity, we abstract from the AR(2) interest-smoothing commonly found in 

empirical studies and instead restrict our attention to AR(1) interest smoothing: i.e. we set the AR(1) 

coefficient in the interest rate smoothing polynomial equal to ߩଵ   .ଶ and the AR(2) coefficient to zeroߩ

Figure 14 confirms that, like PLT, higher interest rate smoothing leads to lower levels of optimal steady-

state inflation.17  However, unlike PLT, this decrease in the optimal inflation rate is associated with lower 

welfare after ߩଵ   ଶ passes 0.91. The inverted U-shape of the welfare results from the tradeoff betweenߩ

strong short-run and strong long-run responses to endogenous variables implied by our Taylor rule 

specification (26) since we hold the long-run responses to inflation, output gap and output growth rate 

constant in this experiment but, by raising ߩଵ   .ଶ, decrease the short run responseߩ
 

VI Concluding remarks 

If nothing else, the Great Recession has taught monetary

 

economists

 

one lesson: the zero bound is not a 

theoretical curiosity of interest only to historians of the Great Depression or as a precautionary tale 

against overly cautious policy-makers such as the Japanese monetary and fiscal authorities in the early 

1990s.  Instead, the pervasiveness of the zero bound constraint among major industrial countries has 

demonstrated the necessity of incorporating this issue into modern macroeconomic models.  Indeed, the 

recent interest in raising the inflation targets of central banks has resurrected a basic question for 

macroeconomists: what is the optimal inflation rate?  Strikingly, New Keynesian models, with their 

pervasive reliance on the assumption of zero steady-state inflation, have been ill-equipped to answer this 

key question for central bankers.

 

 

We provide an integrated treatment of the effects of non-zero steady-state inflation in New 

Keynesian models.  Most importantly, we derive an approximation to the utility function of the 

representative agent which incorporates the various dimensions along which steady-state inflation 

matters: the steady-state, the dynamics of the model, and the coefficients of the utility-function 

approximation.  This allows us to study the optimal rate of inflation using a welfare criterion derived 

explicitly from the microfoundations of the model.  Combining this with the zero-bound on nominal 

interest rates, we are then able to study the costs and benefits of steady-state inflation and quantify the 

optimal rate of inflation in the model. The optimal inflation that emerges from the models we consider is 

fairly low: less than two percent a year.  We show that this result is robust to a variety of parameter 

specifications and modifications of the model.

 
  
                                                      
16 Specifically, a Taylor rule with only PLT is observationally equivalent to a super-inertial Taylor rule that responds 
to contemporaneous inflation.  More generally, a Taylor rule with “partial” PLT in which the central bank pushes 
prices only partly back to the initial target path is observationally equivalent to a Taylor rule with interest smoothing 
and a contemporaneous response to inflation.  See Coibion and Gorodnichenko (2009) for more details. 
17 Billi (2009) similarly finds that higher interest smoothing lowers the optimal rate of inflation. 
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The results from our models suggest optimal inflation rates in the range the most central banks 

currently target - between 1% and 3% a year.  The analysis indicates that the welfare gains from raising 

these targets to provide additional insurance against the zero-bound constraint on interest rates are likely 

to be small.  Our analysis also suggests potential welfare gains from introducing price-level targeting.  

The latter helps stabilize economic fluctuations and significantly reduces the probability of hitting the 

zero-lower bound.  As a result, the optimal inflation rate under a price-level targeting regime would be 

close to zero.  In other words, our model implies that optimal monetary policy is characterized as a 

combination of an inflation target and a systematic response to deviations of the price-level from its 

target.  This policy can be interpreted as being very close to the “price stability” enshrined in the legal 

mandates of most central banks. 
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Table 1:  Baseline Parameter Values 
 

  
Parameters of Utility Function Steady-State Values 

      η: Frisch Labor Elasticity 1.00       ݃ݕതതതത: Growth Rate of RGDP/cap %1.5 p.a. 
      β: Steady-State Discount factor 0.993       ܿ௬തതത: Consumption Share of GDP 0.80 
      h: External Habit Formation 0.00       ݃௬തതതത: Government Share of GDP 0.20 

Pricing Parameters Shock Persistence 
      θ: Elasticity of substitution  10       ρg: Government Spending Shocks 0.97 
      λ: Degree of Price Stickiness 0.55       ρm: Cost-Push Shocks 0.90 
      ω: Price indexation 0.00       ρb: Discount Factor Shocks 0.95 

Taylor Rule Parameters Shock Volatility 
      ߶గ: LR response to inflation 2.50       σg: Government Spending Shocks 0.0052 
      ߶௬: LR response to output growth 1.50       σm: Cost-Push Shocks 0.0024 
      ߶௫: LR response to output gap 0.43       σb: Discount Factor Shocks 0.0031 
      ρ1: Interest smoothing  1.05       σa: Technology Shocks 0.0090 
      ρ2: Interest smoothing -0.13       σr: Monetary Policy Shocks 0.0043 
    
 
 
Note: The table presents the baseline parameter values assigned to the model in section 3.1 and used for solving for 
the optimal inflation rate in section 3.2.  “p.a.” means per annum.  
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Figure 1. Frequency of being in the Zero Lower Bound and Steady-State Nominal Interest Rate 

 
Note: The figure plots the steady-state level of the annualized nominal interest rate (right axis) implied by the 
baseline model of section 3 for different steady-state inflation rates.  In addition, the figure plots the frequency of 
hitting the zero bound on nominal interest rates (left axis) from simulating the baseline model at different steady-
state inflation rates.  See section 3.2 for details. 
 
 

Figure 2. Utility at Different Levels of Steady-State Inflation 

 
Note: The figure plots the approximation to the utility function in Proposition 1 from simulating the model subject to 
the zero bound on nominal interest rates for different levels of steady-state inflation using the baseline parameter 
values of the model.  In addition, the figure plot levels of utility which include only the terms that apply under zero 
trend inflation (“standard terms”) and levels of utility based on the coefficients evaluated only at zero steady-state 
inflation (“Fixed coefficients”).  See section 3.2 for details. 
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Figure 3. The Effect of steady-state Inflation on the Coefficients of the Utility Function Approximation 

 
Note: The figure plots the coefficients of the approximation to the utility function from Proposition 1 for different levels of trend inflation using the baseline 
parameter values of the model.  See section 3.2 for details. 
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Figure 4. The Effect of steady-state Inflation on the Moments of Macroeconomic Variables 

 
Note: The figure plots the variance and covariances of macroeconomic variables that enter the approximation to the utility function in Proposition 1 from 
simulating the model subject to the zero bound on nominal interest rates for different levels of steady-state inflation using the baseline parameter values of the 
model.  The dashed black lines are the corresponding moments without the zero-bound on nominal interest rates.  See section 3.2 for details.   
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Figure 5. The Sources of Utility Costs of Inflation 

 
Note: The figure plots the contribution of the different components of the approximation to the utility function in Proposition 1 from simulating the model subject 
to the zero bound on interest rates for different levels of steady-state inflation using the baseline parameter values of the model.  See section 3.2 for details. 
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Figure 6. Robustness check: price setting parameters. 

 

 
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of structural 
parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right column plot the optimal 
level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of a structural 
parameter.  
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Figure 7. Robustness checks: Time preference parameters. 

 
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of structural 
parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right column plot the optimal 
level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of a structural 
parameter.  
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Figure 8. Sensitivity Analysis: Capital 
 Panel A: Welfare loss    Panel B: Zero lower bound and nominal rate  

 
Note: Panel A plots the approximation to the utility function in Proposition 2 from simulating the model subject to 
the zero bound on nominal interest rates for different levels of steady-state inflation using the baseline parameter 
values of the model with capital.  See section 5.1 for details. Panel B plots the frequency of hitting the zero bound on 
nominal interest rates (left axis) from simulating the baseline model with capital at different steady-state inflation 
rates.  See section 5.1 for details. 
 

Figure 9.  Model Uncertainty 
 Panel A: Optimal Inflation Rate Panel  B: Distribution of Optimal Inflation Rates 

 
 
Note: Panel A plots the expected utility for different steady-state inflation rates under baseline parameter values as 
well as under model-uncertainty.   Panel B plots the distribution of optimal inflation rates associated with different 
draws from the distribution of parameter values.  See section 5.2 for details.  
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Figure 10. Sensitivity Analysis: Endogenous Price Stickiness 

 

   
 
Note: The figures plot the implications of endogenous price stickiness on the model.  βπ is the effect of steady state 
inflation on the frequency of price changes, with βπ = 0 being our baseline case of exogenous price stickiness. See 
section 5.3 for details.  
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Figure 11. Sensitivity Analysis: Taylor pricing 

 
Note: The figures plot the implications of Calvo vs. Taylor price setting for welfare and optimal inflation.  Taylor, X quarters 
corresponds to the duration of price contracts equal to X quarters.  See section 5.4 for details. 
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Figure 12.  Downward Wage Rigidity 
 

Panel A: Optimal Inflation Rate 

  
 

Panel B: Effects of Downward-Wage Rigidity 

  
 

Note: Panel A plots the utility associated with different steady-state inflation rates under the baseline model as well 
as the model with downward nominal wage rigidity.  Panel B figures plot the variance of inflation and the frequency 
of hitting the zero-bound on interest rates for different steady-state inflation rates using our baseline model and the 
model with downward nominal wage rigidity.  See section 5.5 for details.  
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Figure 13. Positive implication: parameters in the Taylor rule. 

 
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of the 
monetary policy rule parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right 
column plot the optimal level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a 
function of the monetary policy rule parameters.  ߶గ  is the long-run response of interest rates to inflation, ߶ is the response to 
output growth, and ߶௬  is the response to the output gap.  See section 6.1 for details. 
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Figure 14. Positive implications: price level targeting and interest rate smoothing. 

 
 

 
 

Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of the 
monetary rule parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right column 
plot the optimal level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of 
the monetary policy rule parameters.  ߶ is the response to the price-level gap while ρr1 is the degree of interest smoothing.  See 
section 6.2 for details. 
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Appendix A. Proofs for section 2.4.  
 
 
Lemma 1. 
The expansion of the utility derived from consumption around flexible price steady state is  
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where σ is the intertemporal elasticity of substitution for consumption,  is the elasticity of real marginal 
cost with respect to own output, ܥҧ௧ிis the flexible price level of consumption in the steady state. Tildes 
denote percent deviations from the flexible price level, tip stands for terms independent from policy, hot 

means higher order terms. We assume that utility is logarithmic, o( ) l gt tu C C , 1F
tC

F

t uC    and σ =1 so 

that the expression becomes 1 1) ( )( t t t tu hu C hc cC      . ■ 
 
Lemma 3. 
Note that  
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By the delta method, we have  
1

2 2

2 2

var ( ( )) var (exp{(1 ) log ( )})

(1 ) [exp{(1 ) log ( )}] var (log ( ))

(1 ) [exp{(1 ) }]

i t i t

t i t

t t

P i P i

E P i P i

P

 

 

 

  

  

   

 (A.2) 

Now observe that  
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Hence it follows that  
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Lemma 5. 
Consider the term ˆ ( )i tE y i .  From the Dixit-Stiglitz aggregator we have  
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 (A.6) 

Using the delta method, we have  
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Also observe that  
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 (A.8) 

Combine (A.7) and (A.8) to re-write (A.6) as follows 
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Lemma 4. 
Recall that log( / )t t tb B P  (note that in our notation bt is the price relative to current price level) and 

log ( ),t i tP E P i  and 
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0
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So that  
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From Lemma 3 we have  
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While solving for the dispersion of prices, we need to be mindful that steady-state inflation generates 
price dispersion of first order. We use a guess and verify procedure to address this issue. In particular, we 

posit that if the deviation of cross-sectional price dispersion from its non-stochastic steady state level   
is tt     then 

2
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11 1 1( ) ( ) ( )t Q t Q t Q t Q t tt QK Z F G H                 (A.13) 

Note that the first term on the right hand side is of first order. Plug (A.12) and (A.11) into (A.10) and 
using the guess (A.13) yields, 
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The non-stochastic steady state value is given by 
22 2 2 2 2 21 )

0 0 0

(

(1 )(1 ) 2(1 ) (1 ) 1[ )] ( ( ) .p p pb bQ Q b Q 
      
            (A.14) 

So we can solve for deviations from steady state dispersion tt      
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  (A.15) 

Note that the form of (A.15) is the same as the form of our guess in (A.13). Let 
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coefficients with the guess and verify equation (A.13), we have 
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 which completes the proof. ■ 
 
Corollary 1. 
Up to a first order approximation, the deviation of price dispersion from its steady state evolves according 
to 2 1 1( )t t t       , which reduces to Proposition 6.3 in Woodford (2003) when 0  .  

 
Proposition 1.  

From  Lemma 5, we have  0 111
2( ) var )ˆ (i t t y ty iE i Q Qy hy oty i


       . Therefore, we can express 

the approximation from the disutility of labor supply given in Lemma 2 as follows:  
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 (A.16) 

As Woodford (2003) shows, (1 ) (1 )F F
t tY C

h u     , where (with log utility) 1Φ ln( ) 
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follows from the intra-temporal condition for labor supply. Hence,  

1 1 1

ˆ

1
0 21

2

0

( ( )) (1 )(1 ) (1 ) (1 (1 ) )ˆ ) (1F
t

F

t y t yC t tY i di h uC y yg Q                   (A.17) 



50 
 



1 1 1 0 111
2

1 2 1 2 11 11 1
2 4

1 0 2 0 1 1 01 1
2

1[ (1 )(1 )]var ( )

(1 )( ( ) [ (var ( ) )] [var ( ) ])

(1 )[ ] [ (1 ) ]

ˆ

ˆ ˆ

y y y y i t

y i t t y i t

y y y y

Q Q Q Q i

Q i x Q i

Q Q

y

y y

Q Q hot tip




 
 








 

 

  



 

    

      

        

 

As in Lemma 1, 
ˆ

ˆ 1F
tC

F

tC u  . Using equation (39) from the derivations in the paper and Lemma 4, we 

replace the cross-section dispersion of output in (A.17) with the cross-sectional dispersion of prices.  
 
Using Corollary 1 and ( ) 0tE    , we compute the expected value of t : 
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Note that from the definition of t , we have  
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Since all variables are stationary and ˆ log( )t ty y X  , we can compute the expected per period 

utility as follows 
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After using (A.18) and (A.22) and collecting terms, one arrives at equation  (41). ■  
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Appendix B: Model with Capital 
The representative consumer aims to maximize the present discount value of the utility stream from 
consumption and leisure  
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max ln[ ]{ln ( })
1

j

t t s t j t j t j
j s

C iE h C N di






    

 




     (B.1) 

where C is consumption of the final good, Nt(i) is labor supplied to individual industry i, h is the degree of 
external habit formation, η is the Frisch labor supply elasticity and βt is the time-varying discount factor.  
The budget constraint each period is given by  
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  (B.2) 

where S is the stock of one-period bonds held by the consumer, R is the gross nominal interest rate, P is 
the price of the final good, W(i) is the nominal wage earned from labor in industry i, K is capital owned 
by the representative consumer, Rk is the nominal rental rate on capital, T is transfers and profits from 
ownership of firms, and   is the shadow value of wealth. The fourth term on the left hand side is a 

quadratic adjustment cost to the stock of capital held by the consumer, where  measures the strength of 
the adjustment cost.  Capital can be accumulated according to the law of motion 
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The first order conditions from this utility-maximization problem are then: 
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 (B.8) 

where /t t j t jq     is Tobin’s q and /k k
t j t j t jR R P   is the real rental rate of capital. 

Production of the final good is done by a perfectly competitive sector which combines a continuum of 

intermediate goods into a final good per the following aggregator 
111

0
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        (B.9) 

where Yt is the final good and Y(i) is intermediate good i, while θ denotes the elasticity of substitution 
across intermediate goods, yielding the following demand curve for goods of intermediate sector i 

( ) ( ( ) )t t t tY i Y P i P    (B.10) 
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and the following expression for the aggregate price level 
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        (B.11) 

The production of each intermediate good is done by a monopolist facing a Cobb-Douglas production 
function with capital share   

1
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     (B.12) 

where A denotes the level of technology, common across firms.  We assume that capital is perfectly 
mobile across firms, 
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Each intermediate good producer has sticky prices, modeled as in Calvo (1983) where 1-λ is the 
probability that each firm will be able to reoptimize its price each period.  We allow for indexation of 
prices to steady-state inflation by firms who do not reoptimize their prices each period, with ω 
representing the degree of indexation (0 for no indexation to 1 for full indexation).  Denoting the optimal 
reset price of firm i by B(i), re-optimizing firms solve the following profit-maximization problem  
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where Q is the stochastic discount factor and   is the gross steady-state level of inflation.   The optimal 
relative reset price is then given by 
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 (B.15) 

where firm-specific marginal costs can be related to aggregate variables using 
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 (B.16) 

Firm-specific marginal cost remain a function of aggregate variables and the reset price only because full 
capital mobility implies that all firms have the same (adjusted) capital labor ratio. The first order 
condition for the firms’ input usage is 
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which we combine with the first order condition for labor supply to get 
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Since the right hand side consists of aggregate variables only, the left hand side must be identical across 
firms. 
Give these price-setting assumptions, the dynamics of the price level are governed by 

1 1 1 (1 )
1(1 )t t tBP P        
     (B.19) 

We allow for government consumption of final goods (Gt), so the goods market clearing condition for the 
economy is  
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.t t ttY C G I     (B.20) 

We define the aggregate labor input as 
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Note that this definition of labor input differs from the labor only model. We make different assumptions 
to simplify our aggregation problems. 
 
Log-linearization 
In the model with capital the goods market clearing condition becomes 
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where yc , yg , and yi are the steady-state ratios of consumption, government and investment to output 

respectively.  
 
Lemma 6. Let yc , yg , and yi be the steady-state ratios of consumption, government and investment to 

output respectively. Then  
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Proof: See Appendix C. 
 
 
 Also, integrating over firm-specific production functions and log-linearizing yields the aggregate 
production function: 
 
Lemma 7. Let lower case letters denote the deviations from steady state values. Then the aggregate 

production function up to a first order approximation is given by 

(1 )t t t ty k n     , (B.25)  
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Proof: See Appendix C. 
 
Allowing for capital also changes the steady state effects of positive trend inflation.  For example, the 

steady-state level of the output gap (which is defined as the deviation of output from its flexible price 

level counterpart) is given by 
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  (B.27) 

Note that the steady-state level of the gap is again equal to one when steady-state inflation is zero (i.e., 

1  ) or when the degree of price indexation is exactly equal to one.   
 
Lemma 8. The expansion of the utility part that corresponds to disutility from labor supply in the capital 
model is given by 
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 and  is the steady state dispersion of 

labor supply. 
Proof: See Appendix C. 
 
 
Lemma 9. The cross sectional variations in labor input and prices are proportional, 
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Proof: See Appendix C. 
 
 
Before we proceed with Proposition 2 we write the inter-temporal condition for labor supply as, 
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The right hand side of this expression is simply total labor income. Because of the distortion due to 
monopolistic competition it is equal to 
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 where 1 ( 1) /    . Since we assume log utility this expression further simplifies to 

 1(1 )(1 )( )(1 )F
t

F
t

F
yN

N ch        

where F
yc is the share of consumption in output at the flexible price steady state. 

Woodford argues that Φ is of the same order as the shocks and thus can be ignored on second 
order terms. However, as we show in appendix G, trend inflation generates first order cross sectional 
dispersion in output and prices. We therefore cannot yet ignore  in any terms in Lemma 8 so that 
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Proposition 2. In the model for capital, the second order approximation to utility (1) is  
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where t  is the deviation of price dispersion from non-stochastic steady state and parameters 

, 0,...,5i i   depend on the steady state inflation ߨത and are given by  

2

1 2

2

1 2

0 2 0 1 01 1 11 1
2 2 (

1

1 )

1 0 11 11
2

1

(1

0

)

(1 (1 )( (1 ) [ ] [ ( ) ]

(1 )

) l

( (1 )[( )(1 )] ,

og( ) )

)

n n n n

n

y

y n n

h X c

c

Q Q Q Q

Q Q Q

   
   

  
  









   





 



      

      

         

21
111 ( ) (1 )(1 ),y hc       

2

1 2

111
2 (1

1 2

2 )
(1 )( ( )) ,y nc Q 

 
 

       
2

1 2

1 0 11 11
2 (

1

3 1 ) 5(1 )( [( )(1 )] ,) n

F

n nyc Q Q Q  
  

 





         
2 2

1 2 1 2

1 0 1 3 11 1 11 1
32 8(1 )

2

)

1

(

2

1

1

4 (1 )( [( )(1 )] () 1 )( ( ) [ ] ( ) ,)n n n n

F F

y yc Q Q Q c Q   
   

  

 



  


          

2

1 2

1 0 11 11
2 (

1

5 1 ) 4(1 )( [( )(1 )] ,) n

F

n nyc Q Q Q  
  

 





          

211
21

3211
2

1 ( )

1 ( )
nQ











 


   
   

0 11
2 2211

21 ( )
nQ 

 









   
   

2

1( )
     

(1 )
(1 )( 1) ( )( 1)

1 (1 )
(1 )( 1)

(1 ) ( 1)

1

[ ]
1

1 1
1

X

   
    

 
 

 
  

 








  
   

 
 


 

 


 

  




 
 
     

1.   

 

Proof: See Appendix C. 
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Appendix C: Proofs for model with capital 
 
Lemma 6 
From the first order condition for the use of capital we know that capital for a firm that reset its price at 
time t  evolves as follows 
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 (C.1) 

where R
tk  is the optimal reset stock of capital at time t . Due to Calvo pricing the aggregate capital stock 

today is an aggregate of an infinite sum of past capital stocks, adjusted for their growth rate in the interim  
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Thus, the ratio of capital to output yk . From the capital accumulation equation we know that in the steady 

state the share of output going to investment is equal to 
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The conclusion for yc then follows directly from the resource constraint. ■ 

 
Lemma 7 
We first rewrite the individual production function as 
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From the first order condition for labor supply and the optimal capital labor ratio, we know that the term 
in parentheses is the same across firms. Integrating this equation then yields, 
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We then take logs of this expression and consider a first order approximation to the integral, 
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where the last line follows from Corollary 1 (Appendix A). ■ 
 
Lemma 8 
Note that 
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where ( ) log( ( ) / )ˆ F
t t ti n in N  is the deviation of firm i’s labor input from flexible price level of labor 

input  F
tN and   is the Frisch elasticity of labor supply. Because of our definition of labor input in the 

capital model the flexible price steady state labor input and the Calvo-pricing steady state labor input are 
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Consider the first term ( )ˆi tE n i .  We define aggregate labor input as  
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Note that  
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Using the delta method, we have  
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Combine (C.11) and (C.12) to re-write (C.10) as follows 
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We use Taylor series expansion of the second term, 
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It then follows from (C.14), 
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which implies that the first order term in (C.8) is equal to 
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Now consider the second term in (C.8): 
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Using (C.16), we can re-write (C.17) as follows 
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 (C.18) 

Now we combine (C.18) and (C.16) to finally get the part which corresponds to the second-order 
approximation of utility due to the disutility of labor supply (C.8): 
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Lemma 9 
We first note that, 
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To replace variability of log labor with variability of log prices we will use the market firms’ first order 
conditions for inputs and combine it with the agents first order condition for labor supply, 
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This implies that the idiosyncrasy in the capital-labor ratio is proportional to log labor input across firms, 
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This then allows us to calculate the cross sectional variation in output, 
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Finally, using the demand curve for each variety, we have 

     2var ln ( ) var ln ln ( ) ln ) var ln ( )(i i t t tt ity i Y p i P p i       (C.20) 

and it follows that the cross-sectional variation in labor input is proportional to the cross-sectional 
variation in prices. 
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Proposition 2.  
Combine Lemmas 8-9 with Lemma 1 and Lemma 4 to get 
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Appendix C: Taylor-pricing model with 3-quarter length contracts 
 
In the Taylor-pricing model with 3-quarter length contracts, in each period one third of all firms can 
change their price. This price will then have to last for 3 quarters before it can be reset. The model is 
otherwise identical to the baseline model. 
 
The firms maximization problem is now given by 
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since the price is only fixed for 3 quarters. The first order condition from this optimization problem is 
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Substituting the equations for the discount factor and the firm-specific marginal cost from the baseline 
model yields, 
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Given these price-setting assumptions, the dynamics of the price level are governed by 
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The remaining equations are as in the baseline model. 
 
Steady State: 
 
The steady state real reset price is then equal to 
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which is greater than one for positive trend inflation. This implies that the output gap is equal to 
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In the steady state, the cross sectional mean of prices is given by 
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This implies that the cross sectional variance of prices in the steady state is equal to 

 2 2 21 1
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3 3 3

2
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Dynamic Equations: 
 
With staggered pricing the log-linearized equations are now as follows. For equation (D.4), 
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and for equation (D.3) 
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where 
11 1 2 2

1 2 1 2 2 2 1 1 1, , 1 ,  1R GY G G       
           . 

 
Lemma 4 in Taylor model: 
In the baseline model, we derived the cross-sectional price dispersion up to a second order approximation. 
Because, the pricing contracts are different in the Taylor model, this section derives an equivalent Lemma 
for the Taylor model. 
 
Lemma 4 (Taylor): 
Let tt      be the deviation of cross-section price dispersion from its non-stochastic steady state 

level  . Then 
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where 

 1 0 1
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Proof: 
At any given time the cross sectional dispersion is given by 
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The deviation from the steady state is then equal to 

 

 

2

1

2 2

1 1 1

2 2 2

2 1 2 2 1

1 2

2

( ) ( ) 2( )(

1
[( ) ( )

3

) 2( )( 2( )(

( ) ( ) ( ) 2( )( ) 2( )( )

2( )( ) 2( )( ( )(

) )

) 2 ) 2(

t t t

t t t t t t

t t t t t t t

t t t t t

b b b b b

b b b b b b b b

b b b b b b

b b b b

       

       

        

  

    

  

   

  

 

   

         

           

      

2

1

0

1 1 2 1

1 1

1 1 2 1 2

(1

4

) 1 2 2

1

)

[( ) ) ) 2(
3

[( )

)( ]

2
( ( ) ( )][ ]

2
( () ) 2 ) ( )][ (

]

)

)(

( ]

[

3

t t t t t p

t t t t t p t

p t

b

b b b b b b

b b b b b b

Q

Q

Q





 

   

   

  


  





  

     





       

      

  





(D.14) 



63 
 

where 

 1 0 1

1 [1 ( ( ]1) ) .p pQ b Q       (D.15) 

Corollary 1 (Taylor). 
Up to a first order approximation, the deviation of price dispersion from its steady state evolves according 

to 
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Proposition 2 (Taylor) in the Taylor model 

Given Lemmas 1-5 for the Taylor model, the second order approximation to utility is  
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where t  is the deviation of price dispersion from non-stochastic steady state and parameters 

, 0,...,5i i   depend on the steady state inflation   and are given by  
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Proof:  

From  Lemma 5, we have  0 111
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     . Therefore, we can express the 

approximation from the disutility of labor supply given in Lemma 2 as follows:  
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As Woodford (2003) shows, (1 ) (1 )F F
t tY C

h u     , where (with log utility) 1Φ ln( ) 

  which 

follows from the intra-temporal condition for labor supply. Hence,  
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As in Lemma 1, 
ˆ

ˆ 1F
tC

F

tC u  . Using equation (42) and Lemma 4 (Taylor) we replace the cross-section 

dispersion of output in (A.17) with the cross-sectional dispersion of prices.  
Using ( ) 0tE    , we compute the expected value of t : 
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where 
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Note that from the definition of t , we have  

( ) ( )t tE E     .  (D.36) 

Since all variables are stationary and ˆ log( )t ty X X  , we can compute the expected per period 

utility as follows 
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After using (A.18) and (A.22) and collecting terms, one arrives at equation (D.16).■ 
 
  

 
 




