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1 Introduction

The inflation objectives of virtually all central banks around the world are significantly

above zero. Among monetary authorities in industrial countries that self-classify as inflation

targeters, for example, inflation targets are concentrated at a level of two percent per year

(table 1). Inflation objectives are about one percentage point higher in inflation-targeting

emerging countries. The central goal of this chapter is to investigate the extent to which

the observed magnitudes of inflation targets are consistent with the optimal rate of inflation

predicted by leading theories of monetary nonneutrality. We find that consistently those

theories imply that the optimal rate of inflation ranges from minus the real rate of interest

to numbers insignificantly above zero. Our findings suggest that the empirical regularity

regarding the size of inflation targets cannot be reconciled with the optimal long-run inflation

rates predicted by existing theories. In this sense, the observed inflation objectives of central

banks pose a puzzle for monetary theory.

In the existing literature, two major sources of monetary nonneutrality govern the deter-

mination of the optimal long-run rate of inflation. One source is a nominal friction stemming

from a demand for fiat money. The second source is given by the assumption of price stick-

iness.

In monetary models in which the only nominal friction takes the form of a demand

for fiat money for transaction purposes, optimal monetary policy calls for minimizing the

opportunity cost of holding money by setting the nominal interest rate to zero. This policy,

also known as the Friedman rule, implies an optimal rate of inflation that is negative and

equal in absolute value to the real rate of interest. If the long-run real rate of interest lies,

say, between two and four percent, the optimal rate of inflation predicted by this class of

models would lie between minus two and minus four percent. This prediction is clearly at

odds with observed inflation targets. A second important result that emerges in this class of

models is that the Friedman rule is optimal regardless of whether the government is assumed

to finance its budget via lump-sum taxes or via distortionary income taxes. This result has

been given considerable attention in the literature because it runs against the conventional

wisdom that in a second-best world all goods, including money holdings, should be subject

to taxation.

One way to induce optimal policy to deviate from the Friedman rule in this type of model

is to assume that the tax system is incomplete. We study three sources of tax incomplete-

ness that give rise to optimal inflation rates above the one consistent with the Friedman

rule: untaxed profits due to decreasing returns to scale with perfect competition in product

markets, untaxed profits due to monopolistic competition in product markets, and untaxed
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Table 1: Inflation Targets Around the World

Inflation Target
Country (percent)
Industrial Countries
New Zealand 1-3
Canada 1-3
United Kingdom 2
Australia 2-3
Sweden 2 ±1
Switzerland < 2
Iceland 2.5
Norway 2.5
Emerging Countries
Israel 1-3
Czech Republic 3 ±1
Korea 2.5-3.5
Poland 2.5 ±1
Brazil 4.5 ± 2.5
Chile 2-4
Colombia 5 ± 1.5
South Africa 3-6
Thailand 0-3.5
Mexico 3± 1
Hungary 3.5 ± 1
Peru 2.5 ±1
Philippines 5-6

Source: World Economic Outlook 2005.

income due to tax evasion. These three cases have in common that the monetary authority

finds it optimal to use inflation as an indirect levy on pure rents that would otherwise re-

main untaxed. We evaluate these three avenues for rationalizing optimal deviations from the

Friedman rule both analytically and quantitatively. We find that in all three cases the share

of untaxed income required to justify an optimal inflation rate of about two percent, which

would be in line with observed inflation targets, is unreasonably large (above 30 percent).

We conclude that tax incompleteness is an unlikely candidate for explaining the magnitude

of actual inflation targets.

Countries whose currency is used abroad may have incentives to deviate from the Fried-

man rule as a way to collect resources from foreign residents. This rationale for a positive

inflation target is potentially important for the United States, the bulk of whose currency

circulates abroad. Motivated by these observations, we characterize the optimal rate of infla-
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tion in an economy with a foreign demand for its currency in the context of a model in which

in the absence of such foreign demand the Friedman rule would be optimal. We show analyt-

ically that once a foreign demand for domestic currency is taken into account, the Friedman

rule ceases to be Ramsey optimal. Calibrated versions of the model that match the range of

empirical estimates of the size of foreign demand for U.S. currency deliver Ramsey optimal

rates of inflation between 2 and 10 percent per annum. The fact that developed countries

whose currency is hardly demanded abroad, such as Canada, New Zealand, and Australia,

set inflation targets similar to those that have been estimated for the United States, sug-

gests that although the United States does have incentives to tax foreign dollar holdings via

inflation, it must not be acting on such incentives. The question of why the United States

appears to leave this margin unexploited deserves further study.

Overall, our examination of models in which a transactional demand for money is the

sole source of nominal friction leads us to conclude that this class of models fails to provide

a compelling explanation for the magnitude of observed inflation targets.

The second major source of monetary nonneutrality studied in the literature is given

by nominal rigidities in the form of sluggish price adjustment. Models that incorporate

this type of friction as the sole source of monetary nonneutrality predict that the optimal

rate of inflation is zero. This prediction of the sticky-price model is robust to assuming

that nominal prices are partially indexed to past inflation. The reason for the optimality

of price stability is that it eliminates the inefficiencies brought about by the presence of

price-adjustment costs. Clearly, the sticky-price friction brings the optimal rate of inflation

much closer to observed inflation targets than does the money-demand friction. However,

the predictions of the sticky-price model for the optimal rate of inflation still fall short of the

two percent inflation target prevailing in developed economies and the three percent inflation

target prevailing in developing countries.

One might be led to believe that the problem of explaining observed inflation targets is

more difficult than the predictions of the sticky-price model suggest. For a realistic model

of the monetary transmission mechanism must incorporate both major sources of monetary

nonneutrality, price stickiness and a transactional demand for fiat money. Indeed, in such a

model the optimal rate of inflation falls in between the one called for by the money demand

friction—deflation at the real rate of interest—and the one called for by the sticky price

friction—zero inflation. The intuition behind this result is straightforward. The benevolent

government faces a tradeoff between minimizing price adjustment costs and minimizing the

opportunity cost of holding money. Quantitative analysis of this tradeoff, however, suggests

that under plausible model parameterizations, this tradeoff is resolved in favor of price

stability.
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The theoretical arguments considered thus far leave the predicted optimal inflation target

at least two percentage points below its empirical counterpart. We therefore consider three

additional arguments that have been proposed as possible explanations of this gap: the zero

bound on nominal interest rates, downward nominal rigidities in factor prices, and a quality

bias in the measurement of inflation.

It is often argued in policy circles that at zero or negative rates of inflation the risk of

hitting the zero lower bound on nominal interest rates would severely restrict the central

bank’s ability to conduct successful stabilization policy. The validity of this argument de-

pends critically on the predicted volatility of the nominal interest rate under the optimal

monetary policy regime. To investigate the plausibility of this explanation of positive in-

flation targets, we characterize optimal monetary policy in the context of a medium-scale

macroeconomic model estimated to fit business-cycles in the postwar United States. We find

that under the optimal monetary policy the inflation rate has a mean of -0.4 percent. More

importantly, the optimal nominal interest rate has a mean of 4.4 percent and a standard

deviation of 0.9 percent. This finding implies that hitting the zero bound would require

a decline in the equilibrium nominal interest rate of more than four standard deviations.

We regard such event as highly unlikely. This statement ought not to be misinterpreted as

meaning that given an inflation target of -0.4 percent the economy would face a negligible

chance of hitting the zero bound under any monetary policy. The correct interpretation is

more narrow, namely that such event would be improbable under the optimal policy regime.

The second additional rational for targeting positive inflation that we address is the

presence of downward nominal rigidities. When nominal prices are downwardly rigid, then

any relative price change must be associated with an increase in the nominal price level.

It follows that to the extent that over the business cycle variations in relative prices are

efficient, a positive rate of inflation, aimed at accommodating such changes may be welfare

improving. Perhaps the most prominent example of a downwardly rigid price is the nominal

wage. A natural question, therefore, is how much inflation is necessary to ‘grease the wheel

of the labor market.’ The answer appears to be not much. An incipient literature using

estimated macroeconomic models with downwardly rigid nominal wages finds optimal rates

of inflation below 50 basis points.

The final argument for setting inflation targets significantly above zero that we consider

is the well known fact that due to unmeasured quality improvements in consumption goods

the consumer price index overstates the true rate of inflation. For example, in the United

States a Senate appointed commission of prominent academic economists established that

in the year 1995-1996 the quality bias in CPI inflation was about 0.6 percent per year. We

therefore analyze whether the central bank should adjust its inflation target to account for
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the systematic upward bias in measured inflation. We show that the answer to this question

depends crucially on what prices are assumed to be sticky. Specifically, if nonquality-adjusted

prices are sticky, then the inflation target should not be corrected. If, on the other hand,

quality-adjusted (or hedonic) prices are sticky, then the inflation target should be raised

by the magnitude of the bias. Ultimately, it is an empirical question whether non-quality

adjusted or hedonic prices are more sticky. This question is yet to be addressed by the

empirical literature on price rigidities.

Throughout this chapter, we refer to the optimal rate of inflation as the one that maxi-

mizes the welfare of the representative consumer. We limit attention to Ramsey optimality.

That is, the government is assumed to be able to commit to its policy announcements. Fi-

nally, in all of the models considered, households and firms are assumed to be optimizing

agents with rational expectations.

2 Money Demand and the Optimal Rate of Inflation

When the central nominal friction in the economy originates in the need of economic agents to

use money to perform transactions, under quite general conditions, optimal monetary policy

calls for a zero opportunity cost of holding money, a result known as the Friedman rule. In

fiat money economies in which assets used for transactions purposes do not earn interest,

the opportunity cost of holding money equals the nominal interest rate. Therefore, in the

class of models in which the demand for money is the central nominal friction, the optimal

monetary policy prescribes that the risk-less nominal interest rate—the return on Federal

funds, say—be set at zero at all times. Because in the long run inflationary expectations

are linked to the differential between nominal and real rates of interest, the Friedman rule

ultimately leads to deflation at the real rate of interest.

A money demand friction can be motivated in a variety of ways, including a cash-in-

advance constraint (Lucas, 1982), money in the utility function (Sidrauski, 1967), a shopping-

time technology (Kimbrough, 1986), or a transactions-cost technology (Feenstra, 1986). Re-

gardless of how a demand for money is introduced, the intuition for why the Friedman rule

is optimal when the single nominal friction stems from the demand for money is straight-

forward: real money balances provide valuable transaction services to households and firms.

At the same time, the cost of printing money is negligible. Therefore, it is efficient to set the

opportunity cost of holding money, given by the nominal interest rate, as low as possible. A

further reason why the Friedman rule is optimal is that a positive interest rate can distort the

efficient allocation of resources. For instance, in the cash-in-advance model with cash and

credit goods, a positive interest rate distorts the allocation of private spending across these
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two types of goods. In models in which money ameliorates transaction costs or decreases

shopping time, a positive interest rate introduces a wedge in the consumption-leisure choice.

To illustrate the optimality of the Friedman rule, consider augmenting a neoclassical

model with a transaction cost that is decreasing in real money holdings and increasing in

consumption spending. Specifically, consider an economy populated by a large number of

identical households. Each household has preferences defined over sequences of consumption

and leisure and described by the utility function

∞∑
t=0

βtU(ct, ht), (1)

where ct denotes consumption, ht denotes labor effort, and β ∈ (0, 1) denotes the subjec-

tive discount factor. The single period utility function U is assumed to be increasing in

consumption, decreasing in effort, and strictly concave.

A demand for real balances is introduced into the model by assuming that nominal money

holdings, denoted Mt, facilitate consumption purchases. Specifically, consumption purchases

are subject to a proportional transaction cost s(vt) that is decreasing in the household’s

money-to-consumption ratio, or consumption-based money velocity,

vt =
Ptct
Mt

, (2)

where Pt denotes the nominal price of the consumption good in period t. The transaction

cost function, s(v), satisfies the following assumptions: (a) s(v) is nonnegative and twice

continuously differentiable; (b) There exists a level of velocity v > 0, to which we refer as

the satiation level of money, such that s(v) = s′(v) = 0; (c) (v − v)s′(v) > 0 for v �= v;

and (d) 2s′(v) + vs′′(v) > 0 for all v ≥ v. Assumption (b) ensures that the Friedman rule,

i.e., a zero nominal interest rate, need not be associated with an infinite demand for money.

It also implies that both the transaction cost and the distortion it introduces vanish when

the nominal interest rate is zero. Assumption (c) guarantees that in equilibrium money

velocity is always greater than or equal to the satiation level. Assumption (d) ensures that

the demand for money is a decreasing function of the nominal interest rate.

Households are assumed have access to one-period nominal bonds, denoted Bt, which

carry a gross nominal interest rate of Rt when held from period t to period t+1. Households

supply labor services to competitive labor markets at the real wage rate wt. In addition,

households receive profit income in the amount Πt from the ownership of firms. The flow
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budget constraint of the household in period t is then given by:

Ptct[1 + s(vt)] + Ptτt +Mt +Bt = Mt−1 +Rt−1Bt−1 + Pt(wtht + Πt), (3)

where τt denotes real taxes paid in period t. In addition, it is assumed that the household

is subject to the following borrowing limit that prevents it from engaging in Ponzi-type

schemes:

lim
j→∞

Mt+j +Rt+jBt+j∏j
s=0 Rt+s

≥ 0. (4)

This restriction states that in the long run the household’s net nominal liabilities must grow

at a rate smaller than the nominal interest rate. It rules out, for example, schemes in which

households roll over their net debts forever.

The household chooses sequences {ct, ht, vt,Mt, Bt}∞t=0 to maximize (1) subject to (2)-(4),

taking as given the sequences {Pt, τt, Rt, wt,Πt}∞t=0 and the initial condition M−1 +R−1B−1.

The first-order conditions associated with the household’s maximization problem are (2),

(3), (4) holding with equality, and

v2
t s

′(vt) =
Rt − 1

Rt
(5)

− Uh(ct, ht)

Uc(ct, ht)
=

wt

1 + s(vt) + vts′(vt)
(6)

Uc(ct, ht)

1 + s(vt) + vts′(vt)
= β

Rt

πt+1

Uc(ct+1, ht+1)

[1 + s(vt+1) + vt+1s′(vt+1)]
, (7)

where πt ≡ Pt/Pt−1 denotes the gross rate of price inflation in period t. Optimality condi-

tion (5) can be interpreted as a demand for money or liquidity preference function. Given our

maintained assumptions about the transactions technology s(vt), the implied money demand

function is decreasing in the gross nominal interest rate Rt. Further, our assumptions imply

that as the interest rate vanishes, or Rt approaches unity, the demand for money reaches a

finite maximum level given by ct/v. At this level of money demand, households are able to

perform transactions costlessly, as the transactions cost, s(vt), becomes nil. Optimality con-

dition (6) shows that a level of money velocity above the satiation level v, or, equivalently,

an interest rate greater than zero, introduces a wedge, given by 1 + s(vt) + vts
′(vt), between

the marginal rate of substitution of consumption for leisure and the real wage rate. This

wedge induces households to move to an inefficient allocation featuring too much leisure and

too little consumption. The wedge is increasing in the nominal interest rate, implying that

the larger is the nominal interest rate, the more distorted is the consumption-leisure choice.

Optimality condition (7) is a Fisher equation stating that the nominal interest rate must be
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equal to the sum of the expected rate of inflation and the real rate of interest. It is clear

from the Fisher equation that intertemporal movements in the nominal interest rate create

a distortion in the real interest rate perceived by households.

Final goods are produced by competitive firms using the technology F (ht) that takes

labor as the only factor input. The production function F is assumed to be increasing and

concave. Firms choose labor input to maximize profits, which are given by

Πt = F (ht) −wtht.

The first-order condition associated with the firm’s profit maximization problem gives rise

to the following demand for labor

F ′(ht) = wt. (8)

The government prints money, issues nominal, one-period bonds, and levies taxes to

finance an exogenous stream of public consumption, denoted gt and interest obligations on

the outstanding public debt. Accordingly, the government’s sequential budget constraint is

given by

Bt +Mt + Ptτt = Rt−1Bt−1 +Mt−1 + Ptgt.

In this section, the government is assumed to follow a fiscal policy whereby taxes are lump

sum and government spending and public debt are nil at all times. In addition, the initial

amount of public debt outstanding, B−1, is assumed to be zero. These assumptions imply

that the government budget constraint simplifies to

Ptτ
L
t +Mt −Mt−1 = 0,

where τL
t denotes real lump-sum taxes. According to this expression, the government rebates

all seignorage income to households in a lump-sum fashion.

A competitive equilibrium is a set of sequences {ct, ht, vt} satisfying (5) and

− Uh(ct, ht)

Uc(ct, ht)
=

F ′(ht)

1 + s(vt) + vts′(vt)
(9)

[1 + s(vt)]ct = F (ht), (10)

Rt ≥ 1, (11)

lim
j→∞

βj Uc(ct+j, ht+j)

1 + s(vt+j) + vt+js′(vt+j)

ct+j

vt+j
= 0, (12)

given some monetary policy. Equilibrium condition (9) states that the monetary friction
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places a wedge between the supply of labor and the demand for labor. Equilibrium condi-

tion (10) states that a positive interest rate entails a resource loss in the amount of s(vt)ct.

This resource loss is increasing in the interest rate and vanishes only when the nominal inter-

est rate equals zero. Equilibrium condition (11) imposes a zero lower bound on the nominal

interest rate. Such a bound is required to prevent the possibility of unbounded arbitrage

profits created by taking short positions in nominal bonds and long positions in nominal

fiat money, which would result in ill-defined demands for consumption goods by households.

Equilibrium condition (12) results from combining the no-Ponzi-game constraint (4) holding

with equality with equations (2) and (7).

2.1 Optimality of the Friedman Rule with Lump-Sum Taxation

We wish to characterize optimal monetary policy under the assumption that the government

has the ability to commit to policy announcements. This policy optimality concept is known

as Ramsey optimality. In the context of the present model, the Ramsey optimal monetary

policy problem consists in choosing the path of the nominal interest rate that is associated

with the competitive equilibrium that yields the highest level of welfare to households. For-

mally, the Ramsey problem consists in choosing sequences Rt, ct, ht, and vt, to maximize

the household’s utility function given in equation (1) subject to equations (5) and (9)-(12).

As a preliminary step, before addressing the optimality of the Friedman rule, let us

consider whether the Friedman rule, that is,

Rt = 1, ∀t

can be supported as a competitive equilibrium outcome. This task involves finding sequences

ct, ht, and vt that, together with Rt = 1, satisfy the equilibrium conditions (5) and (9)-(12).

Clearly, equation (11) is satisfied by the sequence Rt = 1. Equation (5) and the assumptions

made about the transactions cost function s(v) imply that when Rt equals unity, money

velocity is at the satiation level,

vt = v.

This result implies that when the Friedman rule holds the transactions cost s(vt) vanishes.

Then equations (9) and (10) simplify to the two static equations:1

−Uh(ct, ht)

Uc(ct, ht)
= F ′(ht)

1Sufficient, but not necessary, conditions for a unique, positive solution of these two equations are that
−Uh(c, h)/Uc(c, h) be positive and increasing in c and h and that F (h) be positive, strictly increasing and
that it satisfy the Inada conditions.

9



and

ct = F (ht),

which jointly determine constant equilibrium levels of consumption and hours. Finally,

because the levels of velocity, consumption and hours are constant over time, and because

the subjective discount factor is less than unity, the transversality condition (12) is also

satisfied. We have therefore established that there exists a competitive equilibrium in which

the Friedman rule holds at all times.

Next, we show that this competitive equilibrium is indeed Ramsey optimal. To see this,

consider the solution to the social planner’s problem

max
{ct,ht,vt}

∞∑
t=0

βtU(ct, ht)

subject to the feasibility constraint (10), which we repeat here for convenience:

[1 + s(vt)]ct = F (ht).

The reason why this social planner’s problem is of interest for establishing the optimality of

the Friedman rule is that its solution must deliver a level of welfare that is at least as high as

the level of welfare associated with the Ramsey optimal allocation. This is because both the

social planner’s problem and the Ramsey problem share the objective function (1) and the

feasibility constraint (10), but the Ramsey problem is subject to four additional constraints,

namely (5), (9), (11), and (12). Consider first the social planner’s choice of money velocity,

vt. Money velocity enters only in the feasibility constraint but not in the planner’s objective

function. Because the transaction cost function s(v) has a global minimum at v, the social

planner will set vt = v. At the satiation level of velocity v the transaction cost vanishes, so

it follows that the feasibility constraint simplifies to ct = F (ht). The optimal choice of the

pair (ct, ht) is then given by the solution to ct = F (ht) and −Uh(ct, ht)/Uc(ct, ht) = F ′(ht).

But this real allocation is precisely the one associated with the competitive equilibrium in

which the Friedman rule holds at all times. We have therefore established that the Friedman

rule is Ramsey optimal.

An important consequence of optimal monetary policy in the context of the present model

is that prices are expected to decline over time. In effect, by equation (7) and taking into

account that in the Ramsey equilibrium consumption and leisure are constant over time,

expected inflation is given by πt+1 = β < 1, for all t ≥ 0. Existing macroeconomic models of

the business cycle typically assign a value to the subjective discount factor of around 0.96

per annum. Under this calibration, the present model would imply that the average optimal
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rate of inflation is -4 percent per year.

It is important to highlight that the Friedman rule has fiscal consequences and requires

coordination between the monetary and fiscal authorities. In effect, an implication of the

Friedman rule is that nominal money balances shrink at the same rate as prices. The policy

authority finances this continuous shrinkage of the money supply by levying lump-sum taxes

on households each period. In the present model, the amount of taxes necessary to cover

the seignorage losses created by the Friedman rule is given by τL
t = (1/β − 1)(Mt/Pt).

2 For

instance, under a real interest rate of 4 percent (1/β−1) = 0.04), and a level of real balances

of 20 percent of GDP, the required level of taxes would be about 0.8 percent of GDP. The

fiscal authority would have to transfer this amount of resources to the central bank each year

in order for the latter to be able to absorb the amount of nominal money balances necessary

to keep the money supply at the desired level. Suppose the fiscal authority was unwilling

to subsidize the central bank in this fashion. Then the optimal-monetary-policy problem

would be like the one discussed thus far, but with the additional constraint that the growth

rate of the nominal money supply cannot be negative, Mt ≥ Mt−1. This restriction would

force the central bank to deviate from the Friedman rule, potentially in significant ways. For

instance, if in the deterministic model discussed thus far, one restricts attention to equilibria

in which the nominal interest rate is constant and preferences are log-linear in consumption

and leisure, then the restricted Ramsey policy would call for price stability, Pt = Pt−1, and

a positive interest rate equal to the real rate of interest, Rt = 1/β.

The optimality of negative inflation at a rate close to the real rate of interest is robust

to adopting any of the alternative motives for holding money discussed at the beginning of

this section. It is also robust to the introduction of uncertainty in various forms, including

stochastic variations in total factor productivity, preference shocks, and government spending

shocks. However, the desirability of sizable average deflation is at odds with the inflation

objective of virtually every central bank. It follows that the money demand friction must

not be the main factor shaping policymakers’ views regarding the optimal level of inflation.

For this reason, we now turn to analyzing alternative theories of the cost and benefits of

price inflation.

2In a growing economy the Friedman rule is associated with deflation as long as the real interest rate
is positive (just as in the nongrowing economy) and with seignorage losses as long as the real interest rate
exceeds the growth rate, which is the case of greatest interest. For example, with CRRA preferences, the
gross real interest rate, r, would equal gσ/β, the inflation rate would equal 1/r, and seignorage losses would
equal [r/g − 1](Mt/Pt), where g is the growth rate of output and σ is the inverse of the intertemporal
elasticity of substitution.
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3 Money Demand, Fiscal Policy and the Optimal Rate

of Inflation

Thus far, we have studied an economy in which the fiscal authority has access to lump-

sum taxes. In this section, we drop the assumption of lump-sum taxation and replace

it with the, perhaps more realistic, assumption of distortionary income taxation. In this

environment, the policymaker potentially faces a tradeoff between using regular taxes and

printing money to finance public outlays. In a provoking paper, Phelps (1973) suggested

that when the government does not have access to lump-sum taxes but only to distortionary

tax instruments, then the inflation tax should also be used as part of an optimal taxation

scheme. The central result reviewed in this section is that, contrary to Phelps’ conjecture,

the optimality of negative inflation is unaltered by the introduction of public spending and

distortionary income taxation.

The optimality of the Friedman rule (and thus of negative inflation) in the context of

an optimal fiscal and monetary policy problem has been intensively studied. It was derived

by Kimbrough (1986), Guidotti and Végh (1993), and Correia and Teles (1996,1999) in a

shopping time economy, by Chari, Christiano, and Kehoe (1991) in a model with a cash-in-

advance constraint, by Chari, Christiano and Kehoe (1996) in a money-in-the-utility function

model, and by Schmitt-Grohé and Uribe (2004b) in a model with a consumption-based

transactions cost technology like the one considered here.

The setup of this section deviates from the one considered in the previous section in

three dimensions: First, the government no longer has access to lump-sum taxes. Instead,

we assume that taxes are proportional to labor income. Formally,

τt = τh
t wtht,

where τh
t denotes the labor income tax rate. With this type of distortionary taxes, the labor

supply equation (6) changes to

− Uh(ct, ht)

Uc(ct, ht)
=

(1 − τh
t )wt

1 + s(vt) + vts′(vt)
. (13)

According to this expression, increases in the labor income tax rate and in velocity distort

the labor supply decision of households in the same way, by inducing them to demand more

leisure and less consumption.

A second departure from the model presented in the previous section is that government

purchases are positive. Specifically, we assume that the government faces an exogenous
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sequence of public spending {gt}∞t=0. As a result, the aggregate resource constraint becomes

[1 + s(vt)]ct + gt = F (ht). (14)

Implicit in this specification is the assumption that the government’s consumption transac-

tions are not subject to a monetary friction like the one imposed on private purchases of

goods. Finally, unlike the model in the previous section, we now assume that public debt is

not restricted to be zero at all times. The government’s sequential budget constraint now

takes the form

Mt +Bt = Mt−1 +Rt−1Bt−1 + Ptgt − Ptτ
h
t wtht. (15)

A competitive equilibrium is a set of sequences {vt, ct, ht, Mt, Bt, Pt}∞t=0 satisfying (2),

(4) holding with equality, (5), (7), (8), (11), and (13)-(15), given policies {Rt, τ
h
t }∞t=0, the

exogenous process {gt}∞t=0, and the initial condition M−1 +R−1B−1.

As in the previous section, our primary goal is to characterize the Ramsey optimal rate of

inflation. To this end, we begin by deriving the primal form of the competitive equilibrium.

Then we state the Ramsey problem. And finally we characterize optimal fiscal and monetary

policy.

3.1 The Primal Form of the Competitive Equilibrium

Following a long-standing tradition in Public Finance, we study optimal policy using the

primal-form representation of the competitive equilibrium. Finding the primal form involves

the elimination of all prices and tax rates from the equilibrium conditions, so that the re-

sulting reduced form involves only real variables. In our economy, the real variables that

appear in the primal form are consumption, hours, and money velocity. The primal form of

the equilibrium conditions consists of two equations. One equation is a feasibility constraint,

given by the resource constraint (14), which must hold at every date. The other equation

is a single, present-value constraint known as the implementability constraint. The imple-

mentability constraint guarantees that at the prices and quantities associated with every

possible competitive equilibrium, the present discounted value of consolidated government

surpluses equals the government’s total initial liabilities.

Formally, sequences {ct, ht, vt}∞t=0 satisfying the feasibility condition (14), which we repeat

here for convenience,

[1 + s(vt)]ct + gt = F (ht),
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and the implementability constraint

∞∑
t=0

βt

{
Uc(ct, ht)ct + Uh(ct, ht)ht +

Uc(ct, ht)[F
′(ht)ht − F (ht)]

1 + s(vt) + vts′(vt)

}
=

Uc(c0, h0)

1 + s(v0) + v0s′(v0)

R−1B−1 +M−1

P0
,

(16)

vt ≥ v and v2
t s

′(vt) < 1,

given (R−1B−1 + M−1) and P0, are the same as those satisfying the set of equilibrium

conditions (2), (4) holding with equality, (5), (7), (8), (11), and (13)-(15). Appendix 12.1

presents the proof of this statement.

3.2 Optimality of the Friedman Rule with Distortionary Taxation

The Ramsey problem consists in choosing a set of strictly positive sequences {ct, ht, vt}∞t=0

to maximize the utility function (1) subject to (14), (16), vt ≥ v, and v2
t s

′(vt) < 1, given

R−1B−1 + M−1 > 0 and P0. We fix the initial price level arbitrarily to keep the Ramsey

planner from engineering a large unexpected initial inflation aimed at reducing the real value

of predetermined nominal government liabilities. This assumption is regularly maintained

in the literature on optimal monetary and fiscal policy.

We now establish that the Friedman rule is optimal (and hence the optimal rate of in-

flation is negative) under the assumption that the production technology is linear in hours,

that is, F (ht) = Aht, where A > 0 is a parameter. In this case, wage payments exhaust

output and firms make zero profits. This is the case typically studied in the related literature

(e.g., Chari, Christiano, and Kehoe, 1991). With linear production, the implementability

constraint (16) becomes independent of money velocity, vt, for all t > 0. Our strategy to

characterize optimal monetary policy is to consider first the solution to a less constrained

problem that ignores the requirement v2
t s

′(vt) < 1, and then to verify that the obtained solu-

tion indeed satisfies this requirement. Accordingly, letting ψt denote the Lagrange multiplier

on the feasibility constraint (14), the first-order condition of the (less constrained) Ramsey

problem with respect to vt for any t > 0 is

ψtcts
′(vt)(vt − v) = 0; vt ≥ v; ψtcts

′(vt) ≥ 0. (17)

Recalling that, by our maintained assumptions regarding the form of the transactions cost

technology, s′(v) vanishes at v = v, it follows immediately that vt = v solves this optimality

condition. The omitted constraint v2
t s

′(vt) < 1 is also clearly satisfied at vt = v, since

s′(v) = 0.

From the liquidity preference function (5), it then follows that Rt = 1 for all dates t > 0.
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Finally, because the Ramsey optimality conditions are static and because our economy is

deterministic, the Ramsey-optimal sequences of consumption and hours are constant. It

then follows from the Fisher equation (7) that the inflation rate πt − 1 is negative and equal

to β − 1 for all t > 1.

Taking stock, in this section we set out to study the robustness of the optimality of

negative inflation to the introduction of a fiscal motive for inflationary finance. We did so by

assuming that the government must finance an exogenous stream of government spending

with distortionary taxes. The main result of this section is that, in contrast to Phelps’s

conjecture, negative inflation emerges as optimal even in an environment in which the only

source of revenue available to the government, other than seignorage revenue, is distortionary

income taxation. Remarkably, the optimality of the Friedman rule obtains independently of

the financing needs of the government, embodied in the size of government spending, gt, and

of initial liabilities of the government, (R−1B−1 +M−1)/P0.

A key characteristic of the economic environment studied here that is responsible for

the finding that an inflation tax is suboptimal is the absence of untaxed income. In the

present framework, with linear production and perfect competition, a labor income tax is

equivalent to a tax on the entire gross domestic product. The next section shows, by means

of three examples, that when income taxation is incomplete in the sense that it fails to

apply uniformly to all sources of income, positive inflation may become optimal as a way to

partially restore complete taxation.

4 Failure of the Friedman Rule Due to Untaxed In-

come: Three Examples

When the government is unable to optimally tax all sources of income, positive inflation may

be a desirable instrument to tax the part of income that is suboptimally taxed. The reason

is that because at some point all types of private income are devoted to consumption, and

because inflation acts as a tax on consumption, a positive nominal interest rate represents

an indirect way to tax all sources of income. We illustrate this principle by means of three

examples. In two examples firms make pure profits. In one case, pure profits emerge because

of decreasing returns to scale in production, and in the other case they are the result of im-

perfect competition in product markets. In both cases, there is incomplete taxation because

the government cannot tax profits at the optimal rate. In the third example, untaxed income

stems from tax evasion. In this case, a deviation from the Friedman rule emerges as optimal

because, unlike regular taxes, the inflation tax cannot be evaded.
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4.1 Decreasing Returns to Scale

In the model analyzed thus far, suppose that the production technology F (h) exhibits de-

creasing returns to scale, that is, F ′′(h) < 0. In this case, the first-order condition of the

Ramsey problem with respect to vt for any t > 0 is given by

μt(vt − v) = 0; vt ≥ v; μt ≥ 0; ξt(1 − v2
t s

′(vt)) = 0; v2
t s

′(vt) < 1; ξt ≥ 0,

where

μt ≡ ψtcts
′(vt) + λUc(ct, ht)[F

′(ht)ht − F (ht)]
2s′(vt) + vts

′′(vt)

[1 + s(vt) + vts′(vt)]2
+ ξt[2vts

′(vt) + v2
t s

′′(vt)].

As before, ψt denotes the Lagrange multiplier associated with the feasibility constraint (14),

λ > 0 denotes the Lagrange multiplier associated with the implementability constraint (16),

and ξt denotes the Lagrange multiplier associated with the constraint v2
t s

′(vt) < 1. The

satiation level of velocity, v, does not represent a solution of this optimality condition. The

reason is that at vt = v the variable μt is negative, violating the optimality condition μt ≥ 0.

To see this, note that μt is the sum of three terms. The first term of μt, ψtcts
′(vt), is zero

at vt = v because s′(v) = 0. Similarly, the third term of μt, ξt[2vts
′(vt) + v2

t s
′′(vt)], is zero

because ξt is zero, as the constraint 1 − v2
t s

′(vt) does not bind at v. Finally, the second

term of μt, λUc(ct, ht)[F
′(ht)ht − F (ht)]

2s′(vt)+vts′′(vt)
[1+s(vt)+vts′(vt)]2

, is negative. This is because under

decreasing returns to scale F ′(ht)ht − F (ht) is negative, and because under the maintained

assumptions regarding the form of the transactions technology s′′(v) is strictly positive at v.3

As a consequence, the Friedman rule fails to be Ramsey optimal, and the Ramsey equilibrium

features a positive nominal interest rate and inflation exceeding β.

The factor F (h)−F ′(h)h, which is in part responsible for the failure of the Friedman rule,

represents pure profits accruing to the owners of firms. These profits are not taxed under the

assumed labor income tax regime. We interpret the finding of a positive opportunity cost of

holding money under the Ramsey optimal policy as an indirect way for the government to tax

profits. One can show that if the government were able to tax profits either at the same rate

as labor income or at a hundred percent—which is indeed the Ramsey optimal rate—then

the Friedman rule would reemerge as the optimal monetary policy (see Schmitt-Grohé and

Uribe, 2004b). Similarly, the Friedman rule is optimal if one assumes that, in addition to

3One may argue that the assumption 2s′(v) + vs′′(v) > 0 for all v ≥ v, which implies that the nominal
interest rate is a strictly increasing function of v for all v ≥ v and, in particular, that the elasticity of the
liquidity preference function at a zero nominal interest rate is finite, is too restrictive. Suppose instead that
the assumption in question is relaxed by assuming that it must hold only for v > v but not at v = v. In
this case, a potential solution to the first-order condition of the Ramsey problem with respect to vt is v = v
provided s′′(v) = 0.
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labor income taxes, the government has access to consumption taxes (see Correia, Nicolini,

and Teles, 2008).

As an illustration of the inflation bias introduced by the assumption of decreasing returns

to scale, we numerically solve for the Ramsey allocation in a parameterized, calibrated

version of the model. We adopt the numerical solution method developed in Schmitt-Grohé

and Uribe (2004b), which delivers an exact numerical solution to the Ramsey problem. We

adopt the following forms for the period utility function, the production function, and the

transactions cost technology:

U(c, h) = ln(c) + θ ln(1 − h); θ > 0, (18)

F (h) = hα; α ∈ (0, 1], (19)

and

s(v) = Av +B/v − 2
√
AB. (20)

The assumed transactions cost function implies that the satiation level of velocity is v =√
B/A and a demand for money of the form

Mt

Pt

=
ct√

B
A

+ 1
A

Rt−1
Rt

.

We set β = 1/1.04, θ = 2.90, A = 0.0111, B = 0.07524, gt = 0.04 for all t, which implies

a share of government spending of about 20 percent prior to the adoption of the Ramsey

policy, and (M−1 +R−1B−1)/P0 = 0.13, which amounts to about 62 percent of GDP prior to

the adoption of the Ramsey policy. For more details of the calibration strategy see Schmitt-

Grohé and Uribe (2004b).

Table 2 displays the Ramsey optimal levels of inflation and the labor-income tax rate for

a range of values of α between 0.7 and 1. When α equals unity, the production function

exhibits constant returns to scale and the entire output is taxed at the rate τh. This is

the case most commonly studied in the literature. The table shows that in this case, the

Friedman rule is optimal and implies deflation at 3.85 percent. As the curvature of the

production function increases, the untaxed fraction of GDP, given by 1 − α, also increases,

inducing the Ramsey planner to use inflation as an indirect tax on this portion of output.

The table shows that as the untaxed fraction of output increases from 0 (α = 1) to 30 percent

(α = 0.7), the Ramsey-optimal rate of inflation rises from -3.85 percent to -2.6 percent.

If one believes that at most 10 percent of the GDP of developed economies goes untaxed,

then the value of α that is reasonable for the question being analyzed here, would be about
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Table 2: Decreasing Return to Scale, Imperfect Competition, Tax Evasion and Deviations
from the Friedman Rule

Decreasing Returns Monopolistic Competition Tax Evasion
Labor Share Markup Underground

α π τh η
1+η

π τh Share, ū
y

π τh

1.00 -3.85 17.99 1.00 -3.85 17.99 0.00 -3.85 17.99
0.99 -3.82 18.08 1.05 -3.65 19.74 0.06 -3.65 19.21
0.95 -3.70 18.42 1.10 -3.32 21.55 0.12 -3.37 20.62
0.90 -3.53 18.87 1.15 -2.83 23.42 0.18 -2.94 22.28
0.85 -3.33 19.34 1.20 -2.12 25.36 0.24 -2.20 24.29
0.80 -3.11 19.84 1.25 -1.11 27.35 0.31 -0.71 26.74
0.75 -2.86 20.36 1.30 0.40 29.38 0.38 3.31 29.60
0.70 -2.58 20.91 1.35 2.71 31.41 0.46 20.02 31.38

Note: π and R denote, respectively the net rates of inflation and interest rate
expressed in percent per annum.

0.9. This value of α implies an inflation bias of about 30 basis points. We interpret this

finding as suggesting that the inflation bias introduced by the presence of untaxed output

in the decreasing-returns model provides a poor explanation for the actual inflation targets,

of 2 percent or higher, adopted by central banks around the world.

4.2 Imperfect Competition

Even if the production technologies available to firms exhibit constant returns to scale, pure

profits may result in equilibrium if product markets are imperfectly competitive. If, in

addition, the government is unable to fully tax pure monopoly profits or unable tax them

at the same rate as it taxes labor income, then deviating from the Friedman rule may be

desirable. This case is analyzed in Schmitt-Grohé and Uribe (2004b).

To introduce imperfect competition, we modify the model studied in subsection 4.1 by

assuming that consumption is a composite good made from a continuum of differentiated

intermediate goods via a Dixit-Stiglitz aggregator. Each intermediate good is produced by

a monopolistically competitive firm that operates a linear technology, F (h) = h, and that

faces a demand function with constant price elasticity η < −1. It can be shown that the

only equilibrium condition that changes vis-à-vis the model developed earlier in this section

is the labor demand function (8), that now becomes

F ′(ht) =
η

1 + η
wt, (21)
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where η/(1 + η) > 1 denotes the gross markup of prices over marginal cost.

A competitive equilibrium in the imperfect-competition economy is a set of sequences

{vt, ct, ht, Mt, Bt, Pt}∞t=0 satisfying (2), (4) holding with equality, (5), (7), (11), (13)-(15),

and (21), given policies {Rt, τ
h
t }∞t=0, the exogenous process {gt}∞t=0, and the initial condition

M−1 +R−1B−1.

The primal form of the competitive equilibrium is identical to the one given in section

3.1, with the implementability constraint (16) replaced by:4

∞∑
t=0

βt

{
Uc(ct, ht)ct + Uh(ct, ht)ht +

Uc(ct, ht)

1 + s(vt) + vts′(vt)

ht

η

}
=

Uc(c0, h0)

1 + s(v0) + v0s′(v0)

R−1B−1 +M−1

P0
.

(22)

This implementability constraint is closely related to the one that results in the case of

decreasing returns to scale. In effect, the factor ht/(−η), which appears in the above ex-

pression, represents pure profits accruing to the monopolists in the present economy. In the

economy with decreasing returns, profits also appear in the implementability constraint in

the form F (ht) − F ′(ht)ht. It should therefore come at no surprise that under imperfect

competition the Ramsey planner will have an incentive to inflate above the level called for

by the Friedman rule as a way to levy an indirect tax on pure profits. To see this more

formally, we present the first-order condition of the Ramsey problem with respect to money

velocity for any t > 0, which is given by

μt(vt − v) = 0; vt ≥ v; μt ≥ 0; ξt(1 − v2
t s

′(vt)) = 0; v2
t s

′(vt) < 1; ξt ≥ 0,

where

μt ≡ ψtcts
′(vt) + λ

Uc(ct, ht)

η

2s′(vt) + vts
′′(vt)

[1 + s(vt) + vts′(vt)]2
+ ξt[2vts

′(vt) + v2
t s

′′(vt)].

Noting that η < 0, it follows by the same arguments presented in the case of decreasing

returns to scale that the satiation level of velocity, v, does not represent a solution to this

first-order condition. The Friedman rule fails to be Ramsey optimal and the optimal rate of

inflation exceeds β.

The middle panel of table 2 presents the Ramsey optimal policy choices for inflation

and the labor tax rate in the imperfectly competitive model for different values of the gross

markup of prices over marginal cost, η/(1 + η). All other structural parameters take the

same value as before. The case of perfect competition corresponds to a markup of unity. In

4The proof of this statement is similar to the one presented in appendix 12.1. For a detailed derivation
see Schmitt-Grohé and Uribe (2004b).
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this case, the Friedman rule is optimal and the associated inflation rate is -3.85 percent. For

positive values of the markup, the optimal interest rate increases and so does the optimal

level of inflation. Empirical studies, for example, Basu and Fernald (1997), indicate that in

postwar U.S. data value-added markups are at most 25 percent—which according to table 2

would be associated with an optimal inflation rate of only -1.11 percent. This inflation rate

is far below the inflation targets of 2 percent or higher maintained by central banks. To

obtain an optimal rate of inflation that is in line with observed central bank targets our

calibrated model would require a markup exceeding 30 percent, which is on high end of

empirical estimates.

The reason why in this model a high level of markup induces a high optimal rate of infla-

tion is that a high markup generates large profits that the Ramsey planner taxes indirectly

with the inflation tax. For instance a markup of 35 percent is associated with a profit share

of 25 percent of GDP. Again this number seems unrealistically high. Any mechanism that

would either reduce the size of the profit share, such as fixed costs of production, or reduce

the amount of profits distributed to households, such as profit taxes, would result in lower

optimal rates of inflation. For instance, if profits were taxed at a 100% rate, or if the profit

tax rate were set equal to the labor income tax rate, τh
t , (i.e., if the tax system consisted

in a proportional income tax rate), the Friedman rule would reemerge as Ramsey optimal.

(See Schmitt-Grohé and Uribe, 2004b.)

4.3 Tax Evasion

Our third example of how the Friedman rule breaks in the presence of an incomplete tax

system is perhaps the most direct illustration of this principle. In this example, there is

an underground economy in which firms evade income taxes. The failure of the Friedman

due to tax evasion is studied in Nicolini (1998) in the context of a cash in advance model

with consumption taxes. To maintain continuity with our previous analysis, here we embed

an underground sector in our transaction cost model with income taxation. Specifically,

we modify the model of section 3 by assuming that firms can hide an amount ut of output

from the tax authority, which implies that the income tax rate applies only to the amount

F (ht)− ut. Thus, the variable ut is a measure of the size of the underground economy. The

maximization problem of the firm is then given by

F (ht) − wtht − τt[F (ht) − ut].
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We allow the size of the underground economy to vary with the level of aggregate activity

by assuming that ut is the following function of ht

ut = u(ht).

The first-order condition associated with the firm’s profit maximization problem is

F ′(ht) = wt + τt[F
′(ht) − u′(ht)]

This expression shows that the presence of the underground economy makes the labor input

marginally cheaper in the amount τtu
′(ht).

All other aspects of the economy are assumed to be identical to those of the economy of

section 3 without income taxation at the level of the household. We restrict attention to the

case of a linearly homogeneous production technology of the form F (h) = h. It follows that

when the size of the underground economy is zero (ut = 0 for all t), the economy collapses

to that of section 3 and the optimal inflation rate is the one associated with the Friedman

rule.

When the size of the underground economy is not zero, one can show that the Ramsey

problem consists in maximizing the lifetime utility function (1) subject to the feasibility

constraint

[1 + s(vt)]ct + gt = ht,

the implementability constraint

∞∑
t=0

βt

{
Uc(ct, ht)ct + Uh(ct, ht)ht − u(ht) − u′(ht)ht

1 − u′(ht)

[
Uc(ct, ht)

1 + s(vt) + vts′(vt)
+ Uh(ct, ht)

]}
=

Uc(c0, h0)

1 + s(v0) + v0s′(v0)

R−1B−1 +M−1

P0

and the following familiar restrictions on money velocity

vt ≥ v and v2
t s

′(vt) < 1,

given (R−1B−1 +M−1) and P0.

Letting ψt > 0 denote the Lagrange multiplier on the feasibility constraint, λ > 0 the

Lagrange multiplier on the implementability constraint, and μt the Lagrange multiplier on

the constraint vt ≥ v, the first-order condition of the Ramsey problem with respect to vt is
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given by

μt = ψts
′(vt)ct − λ

u(ht) − u′(ht)ht

1 − u′(ht)

Uc(ct, ht)

[1 + s(vt) + vts′(vt)]2
[2s′(vt) + vts

′′(vt)], (23)

where μt satisfies

μt ≥ 0, and μt(vt − v) = 0. (24)

In deriving these conditions, we do not include in the Lagrangean the constraint vts
′(vt) < 1,

so one must verify its satisfaction separately.

Consider two polar cases regarding the form of the function u, linking the level of ag-

gregate activity and the size of the underground economy. One case assumes that u is

homogeneous of degree one. In this case, we have that u(h) − u′(h)h = 0 and the above

optimality conditions collapse to

ψts
′(vt)ct(vt − v) = 0, vt ≥ v, ψtcts

′(vt) ≥ 0.

This expression is identical to (17). We have established that, given our assumption regarding

the form of the transaction cost technology s, optimality condition (17) can only be satisfied

if vt = v. That is, the only solution to the Ramsey problem is the Friedman rule. The

intuition for this result is that when the underground economy is proportional to the above-

ground economy, a proportional tax on the above-ground output is also a proportional tax

on total output. Thus, from a fiscal point of view, it is as if there was no untaxed income.

The second polar case assumes that the size of the underground economy is independent

of the level of aggregate activity, that is, u(ht) = ū, where ū > 0 is a parameter. In this

case, when vt equals v, optimality condition (23) implies that μt = −λūUc(ct, ht)vs
′′(v) < 0,

violating optimality condition (24). It follows that the Friedman rule ceases to be Ramsey

optimal. The intuition behind this result is that in this case firms operating in the under-

ground economy enjoy a pure rent given by the amount of taxes that they manage to evade.

The base of the evaded taxes is perfectly inelastic with respect to both the tax rate and

inflation, and given by ū. The government attempts to indirectly tax these pure rents by

imposing an inflation tax on consumption.

The failure of the Friedman rule in the presence of an underground sector holds more

generally. For instance, the result obtains when the function u is homogeneous of any degree

φ less than unity. To see this note that in this case, when vt = v, equation (23) becomes

μt = −λ u(ht)(1−φ)
1−φu(ht)/ht

Uc(ct, ht)vs
′′(v) < 0. In turn, the negativity of μt contradicts optimality

condition (24). Consequently, vt must be larger than v and the Friedman rule fails to hold.

The right panel of table 2 present the Ramsey optimal inflation rate and labor income tax
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rate as a function of share of the underground sector in total output. In these calculations

we assume that the size of the underground economy is insensitive to changes in output

(u′(h) = 0). All other functional forms and parameter values are as assumed in section 4.1.

Nicolini (1998) reports estimates for the size of the underground economy in the U.S. of

at most 10 percent. The table shows that for a share of underground economy of this

magnitude the optimal rate of inflation is only 50 basis points above the one associated with

the Friedman rule. This implies that in the context of this model tax evasion provides little

incentives for the monetary authority to inflate.

The conclusion we derive from the analysis of these three examples is that it is difficult, if

not impossible, to explain observed inflation targets as the outcome of an optimal monetary

and fiscal policy problem through the lens of a model in which the incentives to inflate stem

from the desire to mend an ill conceived tax system.

In the next section we present an example in which the Ramsey planner has an incentive

to inflate that is purely monetary in nature and unrelated to fiscal policy considerations.

5 A Foreign Demand For Domestic Currency and the

Optimal Rate of Inflation

More than half of U.S. currency circulates abroad. Porter and Judson (1996), for instance,

estimate that at the end of 1995 $200 to $250 billion of the $375 billion of U.S. currency

in circulation outside of banks was held abroad. The foreign demand for U.S. currency

has remained strong across time. The 2006 Treasury, Federal Reserve, and Secret Service

report on the use of U.S. currency abroad, issued a decade after the publication of Porter

and Judson, estimates that as of December 2005 about $450 billion of the $760 billion of

circulated U.S. banknotes are held in other countries.

The estimated size of the foreign demand for U.S. currency suggests that much of the

seignorage income of the United States is generated outside of its borders. A natural question

is therefore whether a country’s optimal rate of inflation is influenced by the presence of a

foreign demand for its currency. In this section we address this issue within the context

of a dynamic Ramsey problem. We show that the mere existence of a foreign demand for

domestic money can, under plausible parameterizations, justify sizable deviations from the

rate of inflation associated with the Friedman rule. The basic intuition behind this finding

is that adherence to the negative rate of inflation associated with the Friedman rule would

represent a welfare-decreasing transfer of real resources by the domestic economy to the

rest of the world, as nominal money balances held abroad increase in real terms at the rate
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of deflation. A benevolent government weighs this cost against the benefit of keeping the

opportunity cost of holding money low to reduce transactions costs for domestic agents. Our

analytical results show that this tradeoff is resolved in favor of deviating from the Friedman

rule. Indeed, our quantitative analysis suggests that for plausible calibrations the optimal

rate of inflation is positive. The question of how a foreign demand for money affects the

optimal rate of inflation is studied in Schmitt-Grohé and Uribe, 2009a. We follow this paper

closely in this section.

5.1 The Model

We consider a variation of the constant-returns-to-scale, perfectly-competitive, monetary

economy of section 3 augmented with a foreign demand for domestic currency. Specifically,

assume that the foreign demand for real domestic currency, Mf
t /Pt, is a function of the level

of foreign aggregate activity, denoted yf
t , and the domestic nominal interest rate. Formally,

the foreign demand for domestic currency is implicitly given by

(vf
t )2s̃′(vf

t ) =
Rt − 1

Rt

, (25)

where vf
t is defined as

vf
t =

Pty
f
t

Mf
t

. (26)

The transactions cost technology s̃ is assumed to satisfy the same properties as the domestic

transactions cost function s.

As in previous sections, we assume that the government prints money, issues nominal, one-

period bonds, and levies taxes to finance an exogenous stream of public consumption, denoted

gt, and interest obligations on the outstanding public debt. Accordingly, the government’s

sequential budget constraint is given by

Mt +Mf
t +Bt = Mt−1 +Mf

t−1 +Rt−1Bt−1 + Ptgt − Ptτ
h
t wtht, (27)

where Mt now denotes the stock of money held domestically. Combining this expression

with the the household’s sequential budget constraint, given by Ptct[1 + s(vt)] + Mt +Bt =

Mt−1 +Rt−1Bt−1 + Pt(1 − τh
t )wtht yields the following aggregate resource constraint

[1 + s(vt)]ct + gt = F (ht) +
Mf

t −Mf
t−1

Pt
, (28)

where we are using the fact that with perfect competition in product markets and a constant
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returns to scale production function wtht = F (ht). It is clear from this resource constraint

that the domestic economy collects seignorage revenue from foreigners whenever nominal

money balances held by foreigners increase, that is, whenever Mf
t > Mf

t−1. This would hap-

pen in an inflationary environment characterized by a constant foreign demand for domestic

real balances. Conversely, the domestic economy transfers real resources to the rest of the

world whenever the foreign demand for domestic currency shrinks (Mf
t < Mf

t−1), as would

be the case in a deflationary economy facing a constant foreign demand for domestic real

balances.

A competitive equilibrium is a set of sequences {vt, wt, v
f
t , ct, ht, Mt, M

f
t , Bt, Pt}∞t=0

satisfying (2), (4) holding with equality, (5), (7), (8), (11), (13), and (25)-(28), given policies

{Rt, τ
h
t }∞t=0, the exogenous sequences {gt, y

f
t }∞t=0, and the initial conditionsM−1+R−1B−1 > 0

and Mf
−1.

To characterize the optimal rate of inflation it is convenient to first derive the primal

form of the competitive equilibrium. Given the initial conditions (R−1B−1 +M−1) and Mf
−1

and the initial price level P0, sequences {ct, ht, vt}∞t=0 satisfy the feasibility condition

[1 + s(v0)]c0 + g0 = F (h0) +
yf

0

χ(v0)
− Mf

−1

P0
(29)

in period 0 and

[1+ s(vt)]ct + gt = F (ht)+
yf

t

χ(vt)
− yf

t−1

χ(vt−1)

(
1 − v2

t−1s
′(vt−1)

) Uc(ct−1, ht−1)

γ(vt−1)

γ(vt)

βUc(ct, ht)
, (30)

for all t > 0, the implementability constraint

∞∑
t=0

βt {Uc(ct, ht)ct + Uh(ct, ht)ht} =
Uc(c0, h0)

1 + s(v0) + v0s′(v0)

R−1B−1 +M−1

P0
, (31)

and

vt ≥ v and v2
t s

′(vt) < 1,

if and only if they also satisfy the set of equilibrium conditions (2), (4) holding with equality,

(5), (7), (8), (11), (13), and (25)-(28), where the function

vf
t = χ(vt) (32)

is implicitly defined by v2s′(v) − (vf)2s̃′(vf) = 0. Appendix 12.2 presents the proof of this

statement of the primal form of the competitive equilibrium.
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5.2 Failure of the Friedman Rule

The government is assumed to be benevolent towards domestic residents. This means that

the welfare function of the government coincides with the lifetime utility of the domestic

representative agent, and that it is independent of the level of utility of foreign residents. The

Ramsey problem then consists in choosing a set of strictly positive sequences {ct, ht, vt}∞t=0

to maximize the utility function (1) subject to (29)-(31), vt ≥ v, and v2
t s

′(vt) < 1, given

R−1B−1 +M−1, M
f
−1, and P0.

To simplify notation express the feasibility constraint (30) asH(ct, ct−1, ht, ht−1, vt, vt−1) =

0 and the implementability constraint (31) as
∑∞

t=0 β
tK(ct, ht) = A(c0, h0, v0). Let the La-

grange multiplier on the feasibility constraint (30) be denoted by ψt, the Lagrange multiplier

on the implementability constraint (31) be denoted by λ, and the Lagrange multiplier on

the constraint vt ≥ v be denoted by μt. Then, for any t > 0, the first-order conditions of the

Ramsey problem are

Uc(ct, ht)+λKc(ct, ht)+ψtH1(ct, ct−1, ht, ht−1, vt, vt−1)+βψt+1H2(ct+1, ct, ht+1, ht, vt+1, vt) = 0

(33)

Uh(ct, ht)+λKh(ct, ht)+ψtH3(ct, ct−1, ht, ht−1, vt, vt−1)+βψt+1H4(ct+1, ct, ht+1, ht, vt+1, vt) = 0

(34)

ψtH5(ct, ct−1, ht, ht−1, vt, vt−1) + βψt+1H6(ct+1, ct, ht+1, ht, vt+1, vt) + μt = 0, (35)

(vt − v)μt = 0; μt ≥ 0; vt ≥ v. (36)

We do not include the constraint v2
t s

′(vt) < 1 in the Lagrangean. Therefore, we must check

that the solution to the above system satisfies this constraint.

Because this economy collapses to the one studied in section 3 when the foreign demand

for domestic currency is nil, i.e., when yf
t = 0, it follows immediately that in this case the

Friedman rule is Ramsey optimal. We first establish analytically that the Friedman rule

ceases to be Ramsey optimal in the presence of a foreign demand for domestic currency, i.e.,

when yf
t > 0. To facilitate the exposition, as in previous sections, we restrict attention to

the steady state of the Ramsey equilibrium. That is, we restrict attention to solutions to

(30) and (33)-(36) in which the endogenous variables ct, ht, vt, ψt and μt are constant given

constant levels for the exogenous variables gt and yf
t . Further, absent an estimate of the

foreign demand for domestic currency, throughout this section, we assume that χ(v) = v,

which implies identical relationships between the nominal interest rate and domestic-money

velocity in the domestic and the foreign economies. To establish the failure of the Friedman

rule when yf
t > 0, we show that a Ramsey equilibrium in which vt equals v is impossible. In
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the steady state, the optimality condition (35) when evaluated at vt = v becomes:

ψ
yf

χ(v)
s′′(v)v

(
1 − 1

β
+ v

)
+ μ = 0.

For the reasons given in section 3 the Lagrange multiplier ψ is positive. Under our main-

tained assumptions regarding the transactions cost technology, s′′(v) is also positive.5 Under

reasonable calibrations, the constant 1/β−1, which equals the steady-state real interest rate,

is smaller than the velocity level v. Then, the first term in the above sum is positive. This

implies that the multiplier μ must be negative, which violates optimality condition (36).

We conclude that in the presence of a foreign demand for domestic currency, if a Ramsey

equilibrium exists, it involves a deviation from the Friedman rule.

The intuition behind this result is that the presence of a foreign demand for domestic

currency introduces an incentive for the fiscal authority to inflate in order to extract re-

sources, in the form of seignorage, from the rest of the world (whose welfare does not enter

the domestic planner’s objective function). Indeed, at any negative inflation rate (and, most

so at the level of inflation consistent with the Friedman rule), the domestic country actually

derives negative seignorage income from the rest of the world, because foreign money hold-

ings increase in real value as the price level falls. On the other hand, levying an inflation

tax on foreign money holdings comes at the cost of taxing domestic money holdings as well.

In turn, the domestic inflation tax entails a welfare loss, because domestic households must

pay elevated transaction costs as they are forced to economize on real balances. Thus, the

Ramsey planner faces a tradeoff between taxing foreign money holdings and imposing trans-

action costs on domestic residents. We have demonstrated analytically that the resolution

of this tradeoff leads to an inflation rate above the one called for by Friedman’s rule. We

now turn to the question of how large the optimal deviation from the Friedman rule is under

a plausible calibration of our model.

5.3 Quantifying the Optimal Deviation from the Friedman Rule

To gauge the quantitative implications of a foreign demand for money for the optimal rate

of inflation, we parameterize the model and solve numerically for the steady state of the

Ramsey equilibrium. We adopt the functional form given in equation (18) for the period

utility function and the functional form given in equation (20) for the transactions cost

technology. As in section 3, we set β = 1/1.04, θ = 2.90, B = 0.07524, and gt = 0.04 for

all t. We set yf = 0.06 and A = 0.0056 to match the empirical regularities that about 50

5But see the discussion in footnote 3.
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Table 3: Ramsey Policy with Foreign Demand for Domestic Currency
Mf

Mf+M
Mf+M

Pc
π R τh

No Foreign Demand: yf = 0 0.00 0.27 -3.85 0.00 17.56
Baseline Calibration: yf = 0.06 0.22 0.26 2.10 6.18 16.15
Higher Foreign Demand: yf = 0.1 0.32 0.24 10.52 14.94 14.64
Low Domestic Demand: A = 0.0014 0.22 0.13 2.11 6.19 16.33
High Interest Elasticity: B = 0.0376 0.22 0.37 -0.96 3.00 16.95
High Debt-to-Output Ratio: B

Py
= 0.50 0.22 0.26 2.21 6.30 17.50

Lump-Sum Taxes 0.20 0.27 0.85 4.88 0.00
Lump-Sum Taxes and gt = 0 0.19 0.27 0.59 4.62 —

Note: The baseline calibration is: A=0.0056, B=0.07524, B
Py

= 0.2, yf = 0.06.
The interest rate, R, and the inflation rate, π, are expressed in percent per
annum, and the income tax rate, τh, is expressed in percent.

percent of U.S. currency (or about 26 percent of M1) is held outside of the United States

and that the M1-to-consumption ratio is about 29 percent. Finally, to make the Ramsey

steady state in the absence of a foreign demand for money approximately equal to the one

of the economy considered in section 3, we set the level of debt in the Ramsey steady state

to 20 percent of GDP. This debt level implies that the pre-Ramsey reform debt-to-output

ratio in the economy without a foreign demand for domestic currency and with a pre-reform

inflation rate of 4.2 percent is about 44 percent. The reason why the Ramsey steady-state

level of debt is much lower than the pre-Ramsey-reform level is that the reform induces a

drop in expected inflation of about 8 percent, which causes a large asset substitution away

from government bonds and toward real money balances. The overall level of government

liabilities (money plus bonds) is relatively unaffected by the Ramsey reform.

We develop a numerical algorithm that delivers the exact solution to the steady state of

the Ramsey equilibrium. The mechanics of the algorithm are as follows: (1) Pick a positive

value of λ. (2) Given this value of λ solve the nonlinear system (30) and (33)-(36) for c, h,

v, ψ, and μ. (3) Calculate w from (8), τh from (13), R from (5), π from (7), vf from (32),

Mt/Pt from (2), and Mf
t /Pt from (26). (4) Calculate the steady-state debt-to-output ratio,

which we denote by sd ≡ Bt/(Ptyt), from (27), taking into account that y = h. (5) If sd is

larger than the calibrated value of 0.2, lower λ. If, instead, sd is smaller than the calibrated

value of 0.2, then increase the value of λ. (6) Repeat steps (1)-(5) until sd has converged to

its calibrated value.

Table 3 presents our numerical results. The first line of the table shows that when foreign

demand for domestic currency is nil, which we capture by setting yf = 0, then as we have

28



shown analytically in section 3, the Friedman rule is Ramsey optimal, that is, the nominal

interest rate is zero in the steady state of the Ramsey equilibrium. The inflation rate is -3.85

percent and the income tax rate is about 18 percent. In this case, because the foreign demand

for domestic currency is nil, the domestic government has no incentives to levy an inflation

tax, as it would generate no revenues from the rest of the world but would hurt domestic

residents by elevating the opportunity costs of holding money. The second row of the table

considers the case that the foreign demand for domestic currency is positive. In particular,

we set yf = 0.06 and obtain that in the Ramsey steady state the ratio of foreign currency

to total money is 22 percent and that total money holdings are 26 percent of consumption.

Both figures are broadly in line with observations in the U.S. economy. The table shows,

in line with the analytical results obtained above, that the Ramsey optimal rate of interest

is positive, that is, the Friedman rule is no longer optimal. Of greater interest however is

the size of the deviation from the Friedman rule. The table shows that the Ramsey optimal

inflation rate is 2.10 percent per year about 6 percentage points higher than the value that

obtains in the absence of a foreign demand for domestic currency. The optimal rate of

interest now is 6.2 percent. When we increase foreign demand for domestic currency by

assuming a larger value of foreign activity, yf = 0.1, then the share of foreign holdings of

domestic currency in total money increases by 10 percentage points to 0.32 and the Ramsey

optimal inflation rate is more than 10 percent per year. In this calibration, the benefit from

collecting an inflation tax from foreign holdings of currency appears to strongly dominate

the costs that such a high inflation tax represents for domestic agents in terms of a more

distorted consumption-leisure choice and elevated transaction costs. The larger inflation tax

revenues relax the budget constraint of the government allowing for a decline in the Ramsey

optimal tax rate of about 1.5 percentage points.

Line 4 of table 3 considers a calibration that implies a weaker demand for money both

domestically and abroad. Specifically, we lower the coefficient A in the transactions cost

function by a factor of 4. Because the demand for money is proportional to the square root

of A, this parameter change implies that the ratio of money to consumption falls by a factor

of two. In the Ramsey steady state, the money-to-consumption ratio falls from 26 to 13

percent. The relative importance of foreign demand for money is unchanged. It continues to

account for 22 percent of total money demand. The optimal rate of inflation is virtually the

same as in the baseline case. The reason why the inflation tax is virtually unchanged in this

case is that the reduction in A induces proportional declines in both the domestic and the

foreign demands for domestic currency. The decline in foreign money demand is equivalent

to a decline in yf , and therefore induces the Ramsey planner to lower the rate of inflation.

At the same time, the decline in the domestic demand for money reduces the cost of inflation
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for domestic agents, inducing the Ramsey planner to inflate more. In our parameterization,

these two opposing effects happen to offset each other almost exactly.

Line 5 of table 3 analyzes the sensitivity of our results to raising the interest elasticity

of money demand, which we capture by reducing the parameter B of the transaction cost

function to half its baseline value. Under a higher interest elasticity the Ramsey optimal rate

of interest and inflation are lower than in the baseline case. The nominal interest rate falls

from 6 to 3 percent and the inflation rate falls from about 2 percent to negative 1 percent. In

this case while the Ramsey policy deviates from the Friedman rule, the deviation is not large

enough to render positive inflation Ramsey optimal. The last line of the table shows that

our results are very little changed when we increase the steady state debt level. We conclude

from the results presented in table 3 that the tradeoff between collecting seignorage from

foreign holders of domestic currency and keeping the opportunity cost of holding money low

for domestic agents is resolved in favor of collecting seignorage income from foreign holdings

of domestic currency.

5.4 Lump-Sum Taxation

The reason why the benevolent government finds it desirable to deviate from the Friedman

rule in the presence of a foreign demand for currency is not entirely to finance its budget

with seignorage revenue extracted from foreign residents. Rather, the government imposes

an inflation tax on foreign residents to increase the total amount of resources available to

domestic residents for consumption. To show that this is indeed the correct interpretation

of our results, we now consider a variation of the model in which the government can levy

lump-sum taxes on domestic residents. Specifically, we assume that the labor income tax

rate τh
t is zero at all times, and that the government sets lump-sum taxes to ensure fiscal

solvency. A competitive equilibrium in the economy with lump-sum taxes is then given by

sequences {vt, v
f
t , ct, ht, Mt, M

f
t , Pt, wt}∞t=0 satisfying (2), (5), (6), (7), (8), (11), (25), (26),

and (28), given an interest rate sequence {Rt}∞t=0, and the exogenous sequences {yf
t , gt}∞t=0.

One can show that, given the initial conditionMf
−1 and the initial price level P0, sequences

{ct, ht, vt}∞t=0 satisfy the feasibility conditions (29) and (30), the labor supply equation

− Uh(ct, ht)

Uc(ct, ht)
=

1

1 + s(vt) + vts′(vt)
(37)

and

vt ≥ v and v2
t s

′(vt) < 1,

if and only if they also satisfy the set of equilibrium conditions (2), (5), (6), (7), (8), (11),
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(25), (26), and (28). This primal form of the equilibrium conditions is essentially the same

as the one associated with the economy with distortionary taxes and government spending

except that the implementability constraint is replaced by equation (37), which states that

in equilibrium labor demand must equal labor supply. Noting that equation (37) appears in

both the standard and the primal forms of the competitive equilibrium, it follows that the

proof of the above statement is a simplified version of the one presented in appendix 12.2.

The Ramsey problem then consists in maximizing the utility function (1) subject to the

feasibility constraints (29) and (30), the labor market condition (37) and the restrictions

vt ≥ v and v2
t s

′(vt) < 1, given P0 and Mf
−1.

Line 7 of table 3 presents the steady state of the Ramsey equilibrium in the economy

with lump-sum taxes. All parameters of the model are calibrated as in the economy with

distortionary taxes. The table shows that the optimal rate of inflation equals 0.85 percent per

year. This means that the presence of a foreign demand for money gives rise to an optimal

inflation bias of about 5 percentage points above the level of inflation called for by the

Friedman rule. This inflation bias emerges even though the government can resort to lump-

sum taxes to finance its budget. The optimal inflation bias is smaller than in the case with

distortionary taxes. This is because distortionary taxes, through their depressing effect on

employment and output, make the pre-foreign-seignorage level of consumption lower, raising

the marginal utility of wealth, and as a result provide bigger incentives for the extraction of

real resources from the rest of the world.

The last row of table 3 displays the steady state of the Ramsey equilibrium in the case

in which government consumption equals zero at all times (gt = 0 for all t). All other things

equal, the domestic economy has access to a larger amount of resources than the economy

with positive government consumption. As a result, the government has less incentives to

collect seignorage income from the rest of the world. This is reflected in a smaller optimal

rate of inflation of 0.59 percent. It is remarkable, however, that even in the absence of

distortionary taxation and in the absence of public expenditures, the government finds it

optimal to deviate from the Friedman rule. Notice that in the absence of a foreign demand

for money, this economy is identical to the one analyzed in section 2. It follows that in the

absence of a foreign demand for money the Friedman rule would be Ramsey optimal and

the optimal inflation rate would be negative 3.8 percent. The finding that optimal inflation

is indeed positive when a foreign demand for money is added to this simple model therefore

clearly shows that fiscal considerations play no role in determining that the optimal rate

of inflation is positive. The ultimate purpose of positive interest rates in the presence of a

foreign demand for money is the extraction of real resources from the rest of the world for

private domestic consumption.
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The numerical results of this section suggest that an inflation target of about 2 percent

per annum may be rationalized on the basis of an incentive to tax foreign holdings of domestic

currency. This argument could in principle be raised to explain inflation targets observed

in countries whose currencies circulate widely outside of their borders, such as the United

States and the Euro area. However, the fact that a number of developed countries whose

currencies are not used outside of their geographic borders, such as Australia, Canada, and

New Zealand, also maintain inflation targets of about two percent per year, indicates that

the reason why inflation targets in the developed world are as high as observed may not

originate from the desire to extract seignorage revenue from foreigners.

The family of models we have analyzed up to this point have two common characteristics:

one is that a transactions demand for money represents the only source of monetary nonneu-

trality. The second characteristic is full flexibility of nominal prices. We have demonstrated,

through a number of examples, that within the limits imposed by these two theoretical

features it is difficult to rationalize why most central banks in the developed world have ex-

plicitly or implicitly set for themselves inflation targets significantly above zero. We therefore

turn next to an alternative class of monetary models in which additional costs of inflation

arise from the presence of sluggish price adjustment. As we will see in this class of model

quite different tradeoffs than the ones introduces thus far shape the choice of the optimal

rate of inflation.

6 Sticky Prices and the Optimal Rate of Inflation

At the heart of modern models of monetary nonneutrality is the new Keynesian Phillips

curve, which defines a dynamic tradeoff between inflation and marginal costs that arises in

dynamic general equilibrium model economies populated by utility-maximizing households

and profit-maximizing firms augmented with some kind of rigidity in the adjustment of

nominal product prices. The foundations of the new Keynesian Phillips curve were laid by

Calvo (1983) and Rotemberg (1982). Woodford (1996, 2003) and Yun (1996) completed the

development of the new Keynesian Phillips curve by introducing optimizing behavior on the

part of firms facing Calvo-type dynamic nominal rigidities.

The most important policy implication of models featuring a new Keynesian Phillips

curve is the optimality of price stability. Goodfriend and King (1997) provide an early

presentation of this result. This policy implication introduces a sharp departure from the

flexible-price models discussed in previous sections, in which optimal monetary policy grav-

itates not toward price stability, but toward price deflation at the real rate of interest.

We start by analyzing a simple framework within which the price-stability result can be
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obtained analytically. To this end, we remove the money demand friction from the model of

section 2 and instead introduce costs of adjusting nominal product prices. In the resulting

model, sticky prices represent the sole source of nominal friction. The model incorporates

capital accumulation and uncertainty both to stress the generality of the price stability result

and because these two features will be of use later in this chapter.

6.1 A Sticky-Price Model with Capital Accumulation

Consider an economy populated by a large number of households with preferences described

by the utility function

E0

∞∑
t=0

βtU(ct, ht), (38)

where Et denotes the expectations operator conditional on information available at time t.

Other variables and symbols are as defined earlier. Households collect income from supplying

labor and capital services to the market and from the ownership of firms. Labor income is

given by wtht, and income from renting capital services is given by rk
t kt, where rk

t and kt

denote the rental rate of capital and the capital stock, respectively. Households have access to

complete contingent claims markets. Specifically, in every period t households can purchase

nominal state-contingent assets. The period-t price of a stochastic payment Dt+1 is given

by Etrt,t+1Dt+1, where rt,s is a nominal stochastic discount factor such that the period-t

value of a state-contingent payment Ds occurring in period s is Etrt,sDs. The household’s

period-by-period budget constraint takes the form

ct + it + Etrt,t+1
Dt+1

Pt
=
Dt

Pt
+ (1 − τD

t )[wtht + rk
t kt] + φt − τL

t (39)

Here, it denotes gross investment, φt denotes profits received from the ownership of firms, τD
t

denotes the income tax rate, and τL
t denotes lump-sum taxes. The capital stock is assumed

to depreciate at the constant rate δ. The evolution of capital is given by

kt+1 = (1 − δ)kt + it. (40)

Households are also assumed to be subject to a borrowing limit of the form lims→∞ Etrt,sDs ≥
0, which prevents them from engaging in Ponzi schemes.

The household’s problem consists in maximizing the utility function (38) subject to (39),

(40), and the no-Ponzi-game borrowing limit. The first-order conditions associated with the
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household’s problem are

−Uh(ct, ht)

Uc(ct, ht)
= (1 − τD

t )wt,

Uc(ct, ht) = βEtUc(ct+1, ht+1)
[
(1 − τD

t+1)r
k
t+1 + (1 − δ)

]
Uc(ct, ht)rt,t+1 = β

Uc(ct+1, ht+1)

πt+1
. (41)

Final goods, denoted at ≡ ct + it, are assumed to be a composite of a continuum of differen-

tiated intermediate goods, ait, i ∈ [0, 1], produced via the aggregator function

at =

[∫ 1

0

ait
1−1/ηdi

]1/(1−1/η)

,

where the parameter η > 1 denotes the intratemporal elasticity of substitution across dif-

ferent varieties of intermediate goods. The demand for intermediate good ait is then given

by

ait =

(
Pit

Pt

)−η

at,

where Pt is a nominal price index defined as

Pt =

[∫ 1

0

P 1−η
it di

] 1

1−η

. (42)

Each good’s variety i ∈ [0, 1] is produced by a single firm in a monopolistically competitive

environment. Each firm i produces output using as factor inputs capital services, kit, and

labor services, hit, both of which are supplied by households in a perfectly competitive

fashion. The production technology is given by

ztF (kit, hit) − χ,

where the function F is assumed to be homogeneous of degree one, concave, and strictly

increasing in both arguments. The variable zt denotes an exogenous, aggregate productivity

shock. The parameter χ introduces fixed costs of production. Firms are assumed to satisfy

demand at the posted price, that is,

ztF (kit, hit) − χ ≥
(
Pit

Pt

)−η

at. (43)
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Profits of firm i at date t are given by:

Pit

Pt
ait − rk

t kit − wthit.

The objective of the firm is to choose contingent plans for Pit, hit, and kit to maximize the

present discounted value of profits, given by

Et

∞∑
s=t

rt,sPs

[
Pis

Ps
ais − rk

skis −wshis,

]

subject to constraint (43). Then, letting rt,sPsmcis be the Lagrange multiplier associated

with constraint (43), the first-order conditions of the firm’s maximization problem with

respect to labor and capital services are, respectively,

mcitztFh(kit, hit) = wt

and

mcitztFk(kit, hit) = rk
t .

It is clear from these expressions that the Lagrange multiplier mcit reflects the marginal cost

of production of variety i in period t. Notice that because all firms face the same factor prices

and because they all have access to the same production technology with F homogeneous of

degree one, the capital-labor ratio, kit/hit and marginal cost, mcit, are identical across firms.

Therefore, we will drop the subscript i from mcit.

Prices are assumed to be sticky à la Calvo (1983), Woodford (1996) and Yun (1996).

Specifically, each period a fraction α ∈ [0, 1) of randomly picked firms is not allowed to

change the nominal price of the good it produces, that is, each period, a fraction α of firms

must charge the same price as in the previous period. The remaining (1 − α) firms choose

prices optimally. Suppose firm i gets to pick its price in period t, and let P̃it denote the

chosen price. This price is set to maximize the expected present discounted value of profits.

That is, P̃it maximizes

Et

∞∑
s=t

rt,sPsα
s−t

⎧⎨
⎩
⎡
⎣
(
P̃it

Ps

)1−η

as − rk
skis − wshis

⎤
⎦ + mcs

[
zsF (kis, his) − χ−

(
P̃it

Ps

)−η

as

]⎫⎬
⎭ .
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The first-order condition associated with this maximization problem is

Et

∞∑
s=t

rt,sα
s−t

(
P̃it

Ps

)−1−η

as

[
mcs − η − 1

η

P̃it

Ps

]
= 0.

According to this expression, firms whose price is free to adjust in the current period, pick a

price level such that a weighted average of current and future expected differences between

marginal costs and marginal revenue equals zero. Moreover, it is clear from this optimality

condition that the chosen price P̃it is the same for all firms that can reoptimize their price

in period t. We can therefore drop the subscript i from P̃it. We link the aggregate price

level Pt to the price level chosen by the (1−α) firms that reoptimize their price in period t,

P̃t. To this end, we write the definition of the aggregate price level given in equation (42) as

follows

P 1−η
t = αP 1−η

t−1 + (1 − α)P̃ 1−η
t .

Letting p̃t ≡ P̃t

Pt
denote the relative price of goods produced by firms that reoptimize their

price in period t and πt ≡ Pt/Pt−1 denote the gross rate of inflation in period t, the above

expression can be written as

1 = απη−1
t + (1 − α)p̃1−η

t .

We derive an aggregate resource constraint for the economy by imposing market clearing at

the level of intermediate goods. Specifically, the market clearing condition in the market for

intermediate good i is given by

ztF (kit, hit) − χ = ait.

Taking into account that ait = at

(
Pit

Pt

)−η

, that the capital labor ratio kit/hit is independent

of i, and that the function F is homogeneous of degree of one, we can integrate the above

market clearing condition over all goods i to obtain

htztF

(
kt

ht
, 1

)
− χ = stat,

where ht ≡ ∫ 1

0
hitdi and kt ≡ ∫ 1

0
kitdi denote the aggregate levels of labor and capital

services in period t and st ≡
∫ 1

0

(
Pit

Pt

)−η

di is a measure of price dispersion. To complete the
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aggregation of the model we express the variable st recursively as follows

st =

∫ 1

0

(
Pit

Pt

)−η

di

=

∫
1−α

(
P̃t

Pt

)−η

di+

∫
α

(
Pit−1

Pt

)−η

di

= (1 − α)p̃−η
t +

(
Pt−1

Pt

)−η ∫
α

(
Pit−1

Pt−1

)−η

di

= (1 − α)p̃−η
t + απη

t st−1.

The state variable st measures the resource costs induced by the inefficient price dispersion

present in the Calvo-Woodford-Yun model in equilibrium. Two observations are in order

about the dispersion measure st. First, st is bounded below by 1. Second, in an economy

where the non-stochastic level of inflation is nil, i.e., when π = 1, there is no price dispersion

in the long-run. That is, s = 1 in the deterministic steady state. This completes the

aggregation of the model.

The fiscal authority can levy lump-sum taxes/subsidies, τL
t , as well as distortionary

income taxes/subsidies, τD
t . Assume that fiscal policy is passive in the sense that the gov-

ernment’s intertemporal budget constraint is satisfied independently of the value of the price

level.

A competitive equilibrium is a set of processes ct, ht, mct, kt+1, it, st, and p̃t that satisfy

− Uh(ct, ht)

Uc(ct, ht)
= (1 − τD

t )mctztFh(kt, ht), (44)

Uc(ct, ht) = βEtUc(ct+1, ht+1)
[
(1 − τD

t+1)mct+1zt+1Fk(kt+1, ht+1) + (1 − δ)
]
, (45)

kt+1 = (1 − δ)kt + it, (46)

1

st
[ztF (kt, ht) − χ] = ct + it, (47)

st = (1 − α)p̃−η
t + απη

t st−1, (48)

1 = απη−1
t + (1 − α)p̃1−η

t , (49)

and

Et

∞∑
s=t

(αβ)sUc(cs, hs)

Uc(ct, ht)

(
s∏

k=t+1

π−1
k

)−η

(cs + is)

[
mcs −

(
η − 1

η

)(
p̃t

s∏
k=t+1

π−1
k

)]
= 0, (50)
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given the policy processes τD
t and πt, the exogenous process zt, and the initial conditions k0

and s−1. We assume that s−1 = 1.6

6.2 Optimality of Zero Inflation with Production Subsidies

We now show that the optimal monetary policy calls for price stability at all times. To see

this, set πt = 1 and τD
t = − 1

η−1
for all t ≥ 0. It follows from equilibrium condition (49)

that p̃t = 1 at all times and from (48) that st = 1 for all t ≥ 0 as well. Now consider the

conjecture mct = (η− 1)/η for all t ≥ 0. Under this conjecture equilibrium condition (50) is

satisfied for all t. The remaining equilibrium conditions, (44)-(47), then simplify to

−Uh(ct, ht)

Uc(ct, ht)
= ztFh(kt, ht),

Uc(ct, ht) = βEtUc(ct+1, ht+1) [zt+1Fk(kt+1, ht+1) + (1 − δ)] ,

ztF (kt, ht) − χ = ct + kt+1 − (1 − δ)kt.

This is a system of three equations in the three unknowns, ct, ht, kt+1. Note that these

equations are identical to the optimality conditions of the social planner problem

maxE0

∞∑
t=0

βtU(ct, ht)

subject to

ztF (kt, ht) − χ = ct + kt+1 − (1 − δ)kt.

We have therefore demonstrated that the policy πt = 1 and (1 − τD
t ) = η/(η − 1) induces a

competitive-equilibrium real allocation that is identical to the real allocation associated with

the social planner’s problem. Therefore the proposed policy is not only Ramsey optimal but

also Pareto optimal.

It is remarkable that eventhough this economy is stochastic, the optimal policy regime

calls for deterministic paths of the aggregate price level Pt and the income tax rate τD
t .

The reason why zero inflation is the optimal monetary policy in the context of this model

is that it eliminates the relative price dispersion that arises when firms change prices in a

staggered fashion. The proposed policy creates an environment in which firms never wish

(even in the presence of uncertainty) to change the nominal price of the good they sell. We

note that under the optimal policy τD
t is time invariant and negative (recall that η > 1).

6This assumption eliminates transitional dynamics in the Ramsey equilibrium. For a study of optimal
policy in the case that this assumption is not satisfied see Yun (2005).
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The negativity of τD
t implies that the Ramsey government subsidizes the use of capital and

labor services to raise output above the level associated with the imperfectly competitive

equilibrium and up to the level that would arise in a perfectly competitive equilibrium in

which each intermediate goods producing firm is compensated in a lump-sum fashion for its

sunk cost χ.

The assumption that the government can subsidize factor inputs and finance such sub-

sidies with lump-sum taxation is perhaps not the most compelling one. And it is therefore

of interest to ask whether the optimality of zero inflation at all times continues to be true

when it is assumed that the government does not have access to a subsidy. We consider this

case in the next subsection.

6.3 Optimality of Zero Inflation without Production Subsidies

In this subsection, we investigate whether the optimality of zero inflation is robust to as-

suming that the government lacks access to the subsidy τD
t . We show analytically that in

the Ramsey steady state the inflation rate is zero. That is, the Ramsey planner does not

use inflation to correct distortions stemming from monopolistic competition. Although the

proof of this result is somewhat tedious, we provide it here because to our knowledge it does

not exist elsewhere in the literature.7

We begin by writing the first-order condition (50) recursively. To this end we introduce

two auxiliary variables, x1
t and x2

t , which denote an output weighted present discounted value

of marginal revenues and marginal costs, respectively. Formally, we write equation (50) as

x1
t = x2

t (51)

where

x1
t ≡ Et

∞∑
s=t

(αβ)s−tUc(cs, hs)

Uc(ct, ht)
p̃1−η

t

(
Pt

Ps

)1−η

(cs + is)

(
η − 1

η

)

and

x2
t ≡ Et

∞∑
s=t

(αβ)s−tUc(cs, hs)

Uc(ct, ht)
p̃−η

t

(
Pt

Ps

)−η

(cs + is)mcs.

7Benigno and Woodford (2005) prove the optimality of zero steady state inflation in the context a of
Calvo-Yun-type sticky-price model without capital, with particular functional forms for the production and
the utility functions, and with firm-specific labor. King and Wolman (1999) show the optimality of zero
steady-state inflation in the context of a sticky-price model with two-period Taylor-type price staggering, no
capital, linear technology, and a specific period utility function.
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The variables x1
t and x2

t can be written recursively as

x1
t = p̃1−η

t (ct + it)

(
η − 1

η

)
+ αβEt

(
p̃t

p̃t+1

)1−η

πη−1
t+1

Uc(ct+1, ht+1)

Uc(ct, ht)
x1

t+1 (52)

and

x2
t = p̃−η

t (ct + it)mct + αβEt
Uc(ct+1, ht+1)

Uc(ct, ht)

(
p̃t

p̃t+1

)−η

πη
t+1x

2
t+1. (53)

The Ramsey planner then chooses ct, ht, mct, kt+1, it, st, πt, x
1
t , x

2
t , and p̃t to maximize

(1) subject to (40), (44), (45), (47), (48), (49), (51), (52), and (53) with τD
t = 0 at all times

and given the exogenous process zt and the initial conditions k0 and s−1.

We are particularly interested in deriving the first-order conditions of the Ramsey problem

with respect to πt, p̃t, and x1
t . Letting λ1

t denote the Lagrange multiplier on (52), λ2
t the

multiplier on (53), λ3
t the multiplier on (49), and λ4

t the multiplier on (48), the part of the

Lagrangian of the Ramsey problem that is relevant for our purpose (that is, the part that

contains πt, p̃t, and x1
t ) is the following

L =

∞∑
t=0

βt

{
· · · + λ1

t

[
p̃1−η

t (ct + it)

(
η − 1

η

)
+ αβEt

(
p̃t

p̃t+1

)1−η

πη−1
t+1

Uc(ct+1, ht+1)

Uc(ct, ht)
x1

t+1 − x1
t

]

+λ2
t

[
p̃−η

t (ct + it)mct + αβEt
Uc(ct+1, ht+1)

Uc(ct, ht)

(
p̃t

p̃t+1

)−η

πη
t+1x

1
t+1 − x1

t

]

+λ3
t

[
απη−1

t + (1 − α)p̃1−η
t − 1

]
+λ4

t

[
(1 − α)p̃−η

t + απη
t st−1 − st

]
+ . . . }

where we have replaced x2
t with x1

t . The first-order conditions with respect to πt, p̃t, and x1
t ,

in that order, are:

λ1
t−1

[
α

(
p̃t−1

p̃t

)1−η

πη−2
t (η − 1)

Uc(ct, ht)

Uc(ct−1, ht−1)
x1

t

]
+ λ2

t−1

[
ηα

Uc(ct, ht)

Uc(ct−1, ht−1)

(
p̃t−1

p̃t

)−η

πη−1
t x1

t

]

+λ3
t

[
(η − 1)απη−2

t

]
+ λ4

t

[
ηαπη−1

t st−1

]
= 0
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λ1
t (1 − η)p̃−η

t (ct + it)

(
η − 1

η

)

+λ1
t−1α(η − 1)(1/p̃t)

(
p̃t−1

p̃t

)1−η

πη−1
t

Uc(ct, ht)

Uc(ct−1, ht−1)
x1

t

+λ1
t

[
+αβ(1 − η)(1/p̃t)

(
p̃t

p̃t+1

)1−η

πη−1
t+1

Uc(ct+1, ht+1)

Uc(ct, ht)
x1

t+1

]

λ2
t (−η)p̃−η−1

t (ct + it)mct

+λ2
t−1α(η)(1/p̃t)

(
p̃t−1

p̃t

)−η

πη
t

Uc(ct, ht)

Uc(ct−1, ht−1)
x1

t

+λ2
t

[
+αβ(−η)(1/p̃t)

(
p̃t

p̃t+1

)−η

πη
t+1

Uc(ct+1, ht+1)

Uc(ct, ht)
x1

t+1

]

+λ3
t (1 − α)(1 − η)p̃−η

t + λ4
t (1 − α)(−η)p̃−η−1

t = 0

−λ1
t + λ1

t−1α

(
p̃t−1

p̃t

)1−η

πη−1
t

Uc(ct, ht)

Uc(ct−1, ht−1)
− λ2

t + λ2
t−1α

(
p̃t−1

p̃t

)−η

πη
t

Uc(ct, ht)

Uc(ct−1, ht−1)
= 0

We restrict attention to the Ramsey steady state and thus can drop all time subscripts.

We want to check whether a Ramsey steady state with π = 1 exists. Given a value for π, we

can find p̃, k, c, h, i, x1, s, and mc from the competitive equilibrium conditions (40), (44),

(45), (47), (48), (49), (51), (52), and (53) and imposing τD
t = 0. Specifically, when π = 1 by

equation (49) we have that p̃ = 1, by equation (48) that s = 1, and by equations (51), (52),

and (53) that (η−1)/η = mc. We can then write the steady-state version of the above three

first-order conditions as

λ1
[
α(η − 1)x1

]
+ λ2

[
ηαx1

]
+ λ3(η − 1)α+ λ4ηα = 0 (54)

λ1(1 − η)(1 − α)x1 − ηλ2(1 − α)x1 + λ3(1 − α)(1 − η) + λ4(1 − α)(−η) = 0 (55)

and

λ1 + λ2 = 0.

Replacing λ2 by −λ1 and collecting terms, equations (54) and (55) become the same expres-
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sion, namely,

−λ1x1 + λ3(η − 1) + λ4η = 0.

At this point, under the proposed solution π = 1, we have in hand steady state values for π,

p̃, s, mc, x1, k, i, c, h, and two restrictions on Lagrange multipliers, namely, λ2 = −λ1 and

λ1 = (ηλ4 + (η − 1)λ3)/x1. This leaves six Lagrange multipliers, which are λ3 through λ8,

to be determined. We have not used yet the first-order conditions with respect to st, mct,

kt+1, it, ct, and ht, which are six linear equations in the remaining six Lagrange multipliers.

We therefore have shown that π = 1 is a solution to the first-order conditions of the Ramsey

problem in steady state. The key step in this proof was to show that when π = 1, first-order

conditions (54) and (55) are not independent equations.

The optimality of zero inflation in the absence of production subsidies extends to the case

with uncertainty. In Schmitt-Grohé and Uribe (2007a), we show numerically in the context

of a production economy with capital accumulation like the one presented here, that even

outside of the steady state the inflation rate is for all practical purposes equal to zero at all

times. Specifically, Schmitt-Grohé and Uribe (2007a) find that for plausible calibrations the

Ramsey optimal standard deviation of inflation is only 3 basis points at an annual rate.

6.4 Indexation

Thus far, we have assumed that firms that cannot reoptimize their prices in any given

period simply maintain the price charged in the previous period. We now analyze whether

the optimal rate of inflation would be affected if one assumed instead that firms follow some

indexation scheme in their pricing behavior. A commonly studied indexation scheme is one

whereby nonreoptimized prices increase mechanically at a rate proportional to the economy-

wide lagged rate of inflation. Formally, under this indexation mechanism, any firm i that

cannot reoptimize its price in period t sets Pit = Pit−1π
ι
t−1, where ι ∈ [0, 1], is a parameter

measuring the degree of indexation. When ι equals zero, the economy exhibits no indexation,

which is the case we have studied thus far. When ι equals unity, prices are fully indexed to

past inflation. And in the intermediate case in which ι lies strictly between zero and one,

the economy is characterized by partial price indexation.

Consider the sticky-price economy with a production subsidy studied in section 6.1 aug-

mented with an indexation scheme like the one described in the previous paragraph. The

set of equilibrium conditions associated with the indexed economy is identical to that of the

economy of section 6.1, with the exception that equations (48)-(50) are replaced by

st = (1 − α)p̃−η
t + α

(
πt

πι
t−1

)η

st−1, (56)
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1 = α

(
πt

πι
t−1

)η−1

+ (1 − α)p̃1−η
t , (57)

and

Et

∞∑
s=t

(αβ)sUc(cs, hs)

Uc(ct, ht)
(cs + is)

(
s∏

k=t+1

πk

πι
k−1

)η [
mcs −

(
η − 1

η

)(
p̃t

s∏
k=t+1

πι
k−1

πk

)]
= 0. (58)

We continue to assume that s−1 = 1. Note that when ι = 0, these three expressions collapse

to equations (48)-(50). This means that the model with indexation nests the model without

indexation as a special case. For any ι ∈ [0, 1], the Ramsey optimal policy is to set πt = πι
t−1

for all t ≥ 0. To see this, note that under this policy the solution to the above three

equilibrium conditions is given by p̃t = 1, st = 1 and mct = (η − 1)/η for all t ≥ 0. Then,

recalling that we are assuming the existence of a production subsidy τD
t equal to −1/(η− 1)

at all times and by the same logic applied in section 6.2, the remaining equilibrium conditions

of the model, given by (44)-(47), collapse to the optimality conditions of an economy with

perfect competition and flexible prices. It follows that the proposed policy is both Ramsey

optimal and Pareto efficient. The intuition behind this result is simple. By inducing firms

that can reoptimize prices to voluntarily mimic the price adjustment of firms that cannot

reoptimize, the policymaker ensures the absence of price dispersion across firms.

In the case of partial indexation, i.e., when ι < 1, the Ramsey optimal rate of inflation

converges to zero. That is, under partial indexation, just as in the case of no indexation

studied in previous sections, the Ramsey steady state features zero inflation. When the

inherited inflation rate is different from zero (π−1 �= 1), the convergence of inflation to

zero is gradual under the optimal policy. The speed of convergence to price stability is

governed by the parameter ι. This feature of optimal policy has an important implication

for the design of inflation stabilization strategies in countries in which the regulatory system

imposes an exogenous indexation mechanism on prices (such as Chile in the 1970s and Brazil

in the 1980s). For the results derived here suggest that in exogenously indexed economies

it would be suboptimal to follow a cold turkey approach to inflation stabilization. Instead,

in this type of economies, policymakers are better advised to follow a gradualist approach

to inflation stabilization, or, alternatively, to dismantle the built-in indexation mechanism

before engaging in radical inflation reduction efforts. A different situation arises when the

indexation mechanism is endogenous, as opposed to imposed by regulation. Endogenous

indexation naturally arises in economies undergoing high or hyperinflation. In this case, a

cold turkey approach to disinflation is viable because agents will relinquish their indexation

schemes as inflationary expectations drop.

Consider now the polar case of full indexation, or ι = 1. In this case the monetary
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policy that is both Ramsey optimal and Pareto efficient is to set πt equal to π−1 at all times.

That is, under full indexation, the optimal monetary policy in the short and the long runs

is determined by the country’s inflationary history. Empirical studies of the degree of price

indexation for the United States do not support the assumption of full indexation however.

For example, the econometric estimates of the degree of price indexation reported by Cogley

and Sbordone (2008) and Levin et al. (2006), in the context of models exhibiting Calvo-

Yun price staggering, concentrate around zero. We therefore conclude that for plausible

parameterizations of the Calvo-Yun sticky-price model, the Ramsey optimal inflation rate

in the steady state is zero.

7 The Friedman Rule versus Price-Stability Tradeoff

We have established thus far that in an economy in which the only nominal friction is a

demand for fiat money, deflation at the real rate of interest (the Friedman rule) is optimal.

We have also shown that when the only nominal friction is the presence of nominal-price-

adjustment costs, zero inflation emerges as the Ramsey optimal monetary policy. A realistic

economic model, however, should incorporate both a money demand and price stickiness. In

such environment, the Ramsey planner faces a tension between minimizing the opportunity

cost of holding money and minimizing the cost of price adjustments. One would naturally

expect, therefore, that when both the money demand and the sticky-price frictions are

present, the optimal rate of inflation falls between zero and the one called for by the Friedman

rule. The question of interest, however, is where exactly in this interval the optimal inflation

rate lies. No analytical results are available on the resolution of this tradeoff. We therefore

carry out a numerical analysis of this issue. The resolution of the Friedman-rule-versus-price-

stability tradeoff has been studied in Khan, King, and Wolman (2003) and in Schmitt-Grohé

and Uribe (2004a, 2007b).

To analyze the Friedman-rule-versus-price-stability tradeoff, we augment the sticky-price

model of section 6 with a demand for money like the one introduced in section 2. That is,

in the model of the previous section we now assume that consumers face a transaction cost

s(vt) per unit of consumption, where vt ≡ ctPt/Mt denotes the consumption-based velocity

of money. A competitive equilibrium in the economy with sticky prices and a demand for

money is a set of processes ct, vt, ht, mct, kt+1, it, st, p̃t, and πt that satisfy

−Uh(ct, ht)

Uc(ct, ht)
=

(1 − τD
t )mctztFh(kt, ht)

1 + s(vt) + vts′(vt)
,
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Uc(ct, ht)

1 + s(vt) + vts′(vt)
= βEt

Uc(ct+1, ht+1)

1 + s(vt+1) + vt+1s′(vt+1)

[
(1 − τD

t+1)mct+1zt+1Fk(kt+1, ht+1) + 1 − δ(1 − τD
t+1)

]
,

(59)

kt+1 = (1 − δ)kt + it, (60)

1

st
[ztF (kt, ht) − χ] = ct[1 + s(vt)] + it, (61)

st = (1 − α)p̃−η
t + απη

t st−1, (62)

1 = απη−1
t + (1 − α)p̃1−η

t , (63)

Et

∞∑
s=t

(αβ)sUc(cs, hs)

Uc(ct, ht)

(
s∏

k=t+1

π−1
k

)−η

{cs[1 + s(vs)] + is}
[
mcs −

(
η − 1

η

)(
p̃t

s∏
k=t+1

π−1
k

)]
= 0,

(64)

v2
t s

′(vt) =
Rt − 1

Rt
,

and
Uc(ct, ht)

1 + s(vt) + vts′(vt)
= βRtEt

Uc(ct+1, ht+1)

1 + s(vt+1) + vt+1s′(vt+1)

1

πt+1
,

given the policy processes τD
t and Rt, the exogenous process zt, and the initial conditions k0

and s−1.

We begin by considering the case in which the government has access to lump-sum taxes.

Therefore, we set τD
t equal to zero for all t. We assume that the utility function is of the form

given in equation (18) and that the production technology is of the from F (k, h) = kωh1−ω,

with ω ∈ (0, 1). The transaction cost technology takes the form given in equation (20). We

assume that the time unit is a quarter and calibrate the structural parameters of the model

as follows: A = 0.22, B = 0.13, θ = 1.1, ω = 0.36, δ = 0.025, β = 0.9926, η = 6, χ = 0.287,

and α = 0.8. We set the parameter χ so that profits are zero. The calibrated values of

A and B imply that at a nominal interest rate of 5.5 percent per year, which is the mean

3-month Treasury Bill rate observed in the United States between 1966:Q1 and 2006:Q4,

the implied money-to-consumption ratio is 31 percent per year, which is in line with the

average M1-to-consumption ratio observed in the United States over the same period. The

calibrated value of α of 0.8 implies that prices have an average duration of 5 quarters. We

focus on the steady state of the Ramsey optimal competitive equilibrium.

Note that the Ramsey steady state is in general different from the allocation/policy that

maximizes welfare in the steady state of a competitive equilibrium. We apply the numerical

algorithm developed in Schmitt-Grohé and Uribe (2006) and explained in detail in Schmitt-

Grohé and Uribe (2009c) which calculates the exact value of the Ramsey steady state. We

find that the optimal rate of inflation is -0.57 per cent per year. As one would expect, the
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Ramsey optimal inflation rate falls between the one called for by the Friedman rule, which

under our calibration is -2.91 percent per year, and the one that is optimal when the only

nominal friction is price stickiness, which is an inflation rate of zero percent. Our calculations

show, however, that the optimal rate of inflation falls much closer to the inflation rate that

is optimal in a cashless economy with sticky prices than to the inflation rate that is optimal

in a monetary economy with flexible prices. This finding suggests that in our calibrated

model the Friedman rule versus sticky-price tradeoff is resolved in favor of price stability.

We now study the sensitivity of this finding to changes in three key structural parameters

of the model. One parameter is α, which determines the degree of price stickiness. The

second parameter is B, which pertains to the transactions cost technology and determines

the interest elasticity of money demand. The third parameter is A, which also belongs to

the transaction cost function and governs the share of money in output

7.1 Sensitivity of the Optimal Rate of Inflation to the Degree of

Price Stickiness

Schmitt-Grohé and Uribe (2007b) find that a striking characteristic of the optimal monetary

regime is the high sensitivity of the welfare-maximizing rate of inflation with respect to the

parameter α, governing the degree of price stickiness, for the range of values of this parameter

that is empirically relevant.

The parameter α measures the probability that a firm is not able to optimally set the

price it charges in a particular quarter. The average number of periods elapsed between two

consecutive optimal price adjustments is given by 1/(1 − α). Available empirical estimates

of the degree of price rigidity using macroeconomic data vary from 2 to 6.5 quarters, or

α ∈ [0.5, 0.85]. For example, Christiano, Eichenbaum, and Evans (2005) estimate α to be

0.6. By contrast, Altig, Christiano, Eichenbaum, and Lindé (2005) estimate a marginal-cost-

gap coefficient in the Phillips curve that is consistent with a value of α of around 0.8. Both

Christiano, Eichenbaum and Evans and Altig, Christiano, Eichenbaum, and Lindé use an

impulse-response matching technique to estimate the price-stickiness parameter α. Bayesian

estimates of this parameter include Del Negro, Schorfheide, Smets, and Wouters (2004),

Levin, Onatski, Williams, and Williams (2005), and Smets and Wouters (2007) who report

posterior means of 0.67, 0.83, and 0.66, respectively, and 90-percent posterior probability

intervals of (0.51,0.83), (0.81,0.86), and (0.56,0.74), respectively.

Recent empirical studies have documented the frequency of price changes using micro

data underlying the construction of the U.S. consumer price index. These studies differ in

the sample period considered, in the disaggregation of the price data, and in the treatment
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Figure 1: Price Stickiness, Fiscal Policy, and Optimal Inflation
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of sales and stockouts. The median frequency of price changes reported by Bils and Klenow

(2004) is 4 to 5 months, the one reported by Klenow and Kryvtsov (2005) is 4 to 7 months,

and the one reported by Nakamura and Steinsson (2007) is 8 to 11 months. However, there

is no immediate translation of these frequency estimates to the parameter α governing the

degree of price stickiness in Calvo-style models of price staggering. Consider, for instance,

the case of indexation. In the presence of indexation, even though firms change prices every

period—implying the highest possible frequency of price changes—prices themselves may be

highly sticky for they may only be reoptimized at much lower frequencies.

Figure 1 displays with a solid line the relationship between the degree of price stickiness,

α, and the optimal rate of inflation in percent per year, π, implied by the model under study.

When α equals 0.5, the lower range of the available empirical evidence using macro data, the

optimal rate of inflation is -2.9 percent, which is the level called for by the Friedman rule.

For a value of α of 0.85, which is near the upper range of the available empirical evidence

using macro data, the optimal level of inflation rises to -0.3 percent, which is close to price

stability.

This finding suggest that given the uncertainty surrounding the empirical estimates of

the degree of price stickiness, the neo Keynesian model studied here does not deliver a clear

47



recommendation regarding the level of inflation that a benevolent central bank should target.

This difficulty is related to the shape of the relationship linking the degree of price stickiness

to the optimal level of inflation. The problem resides in the fact that, as is evident from

figure 1, this relationship becomes significantly steep precisely for the range of values of α

that is empirically most compelling.

It turns out that an important factor determining the shape of the function relating the

optimal level of inflation to the degree of price stickiness is the underlying fiscal policy regime.

Schmitt-Grohé and Uribe (2007b) show that fiscal considerations fundamentally change the

long-run tradeoff between price stability and the Friedman rule. To see this, we now consider

an economy where lump-sum taxes are unavailable. Instead, the fiscal authority must finance

its budget by means of proportional income taxes. Formally, in this specification of the model

the Ramsey planner sets optimally not only the monetary policy instrument, Rt, but also

the fiscal policy instrument, τD
t . Figure 1 displays with a dash-circled line the relationship

between the degree of price stickiness, α, and the optimal rate of inflation, π, in the economy

with optimally chosen fiscal and monetary policy. In stark contrast to what happens under

lump-sum taxation, under optimal distortionary income taxation the function linking π and

α is flat and close to zero for the entire range of macro-data-based empirically plausible

values of α, namely 0.5 to 0.85. In other words, when taxes are distortionary and optimally

determined, price stability emerges as a prediction that is robust to the existing uncertainty

about the exact degree of price stickiness.

Our intuition for why price stability arises as a robust policy recommendation in the

economy with optimally set distortionary taxation runs as follows. Consider the economy

with lump-sum taxation. Deviating from the Friedman rule (by raising the inflation rate)

has the benefit of reducing price adjustment costs. Consider next the economy with op-

timally chosen income taxation and no lump-sum taxes. In this economy, deviating from

the Friedman rule still provides the benefit of reducing price adjustment costs. However, in

this economy increasing inflation has the additional benefit of increasing seignorage revenue

thereby allowing the social planner to lower distortionary income tax rates. Therefore, the

Friedman-rule versus price-stability tradeoff is tilted in favor of price stability.

It follows from this intuition that what is essential in inducing the optimality of price

stability is that on the margin the fiscal authority trades off the inflation tax for regular

taxation. Indeed, it can be shown that if distortionary tax rates are fixed, even if they are

fixed at the level that is optimal in a world without lump-sum taxes, and the fiscal authority

has access to lump-sum taxes on the margin, the optimal rate of inflation is much closer to

the Friedman rule than to zero. In this case, increasing inflation no longer has the benefit of

reducing distortionary taxes. As a result, the Ramsey planner has less incentives to inflate
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(see Schmitt-Grohé and Uribe, 2007b).

It is remarkable that in a flexible-price, monetary economy the optimal rate of inflation is

insensitive to whether the government has access to distortionary taxation or not. In effect,

we have seen that in a flexible-price environment with a demand for money it is always

optimal to set the inflation rate at the level called for by the Friedman rule. Indeed, this

characteristic of optimal policy in the flexible price model led an entire literature in the 1990s

to dismiss Phelps’ (1973) conjecture that the presence of distortionary taxes should induce

a departure from the Friedman rule. Phelps’ conjecture, however, regains validity when

evaluated in the context of models with price rigidities. As is evident from our discussion of

figure 1 in a monetary economy with price stickiness, the optimal rate of inflation is highly

sensitive to the type of fiscal instrument available to the government.

7.2 Sensitivity of the Optimal Rate of Inflation to the Size and

Elasticity of Money Demand

Figure 2 displays the steady-state Ramsey optimal rate of inflation as a function of the

share of money in output in the model with lump-sum taxes. The range of money-to-output

ratios on the horizontal axis of the figure is generated by varying the parameter A in the

transactions cost function from 0 to 0.3. The special case of a cashless economy corresponds

to the point in the figure in which the share of money in output equals zero (that is, A = 0).

The figure shows that at this point the Ramsey optimal rate of inflation is equal to zero. This

result demonstrates that even in the absence of production subsidies aimed at eliminating

the inefficiency associated with imperfect competition in product markets (recall that we are

assuming that τD
t = 0), the optimal rate of inflation is zero when the only source of nominal

frictions is the presence of sluggish price adjustment. The result illustrates numerically the

one obtained analytically in section 6.3.

The figure shows that as the value of the parameter A increases, the money-to-output

share rises and the Ramsey optimal rate of inflation falls. This is because when the demand

for money is nonzero, the social planner must compromise between price stability (which

minimizes the costs of nominal price dispersion across intermediate-good producing firms)

and deflation at the real rate of interest (which minimizes the opportunity cost of holding

money). The figure shows that even at money-to-output ratios as high as 25 percent, the

optimal rate of inflation is far above the one called for by the Friedman rule (-0.65 percent

versus -2.9 percent, respectively).

Under our baseline calibration the implied money demand elasticity is low. At a nominal

interest rate of 0, the money-to-consumption ratio is only 2 percentage points higher than
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Figure 2: The Optimal Inflation Rate As A Function Of The Money-to-Output Share In
The Sticky-Price Model
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0.3 and keeping all other parameters of the model constant.
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at a nominal interest rate of 5.5 percent. For this reason, we also consider a calibration in

which the parameter B of the transaction cost function is five times smaller and adjust the

parameter A so that money demand continues to be 31 percent of consumption at an annual

interest rate of 5.5 percent. Under this alternative calibration, money demand increases from

31 to 40 percent as the interest rate falls from the average U.S. value of 5.5 percent to 0

percent. The relationship between the share of money in output and the optimal rate of

inflation in the economy with the high interest elasticity of money demand is shown with a

circled line in figure 2. The figure shows that even when the interest elasticity is five times

higher than in the baseline case, the optimal rate of inflation remains near zero. Specifically,

the largest decline in the optimal rate of inflation occurs at the high end of money-to-output

ratios considered and is only 15 basis points. We conclude that for plausible calibrations the

price-stickiness friction dominates the optimal choice of long-run inflation.

We wish to close this section by drawing attention to the fact that, quite independently

of the precise degree of price stickiness or the size and elasticity of money demand, the

optimal inflation target is at most zero. In light of this robust result, it remains hard to

rationalize why countries that self-classify as inflation targeters set inflation targets that are

positive. An argument often raised in defense of positive inflation targets is that negative

inflation targets imply nominal interest rates that are dangerously close to the zero lower

bound on nominal interest rates and hence may impair the central bank’s ability to conduct

stabilization policy. We will evaluate the merits of this argument in the following section.

8 Does the Zero Bound Provide a Rationale for Posi-

tive Inflation Targets?

One popular argument against setting a zero or negative inflation target is that at zero or

negative rates of inflation the risk of hitting the zero lower bound on nominal interest rates

would severely restrict the central bank’s ability to conduct successful stabilization policy.

This argument is made explicit, for example, in Summers (1991). The evaluation of this

argument hinges critically on assessing how frequently the zero bound would be hit under

optimal policy. It is therefore a question that depends primarily on the size of exogenous

shocks the economy is subject to and on the real and nominal frictions that govern the

transmission of such shocks. We believe therefore that this argument is best evaluated in the

context of an empirically realistic quantitative model of the business cycle. In Schmitt-Grohé

and Uribe (2007b) we study Ramsey optimal monetary policy in an estimated medium-scale

model of the macroeconomy. The theoretical framework employed there emphasizes the
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importance of combining nominal as well as real rigidities in explaining the propagation of

macroeconomic shocks. Specifically, the model features four nominal frictions, sticky prices,

sticky wages, a transactional demand for money by households, and a cash-in-advance con-

straint on the wage bill of firms, and four sources of real rigidities, investment adjustment

costs, variable capacity utilization, habit formation, and imperfect competition in product

and factor markets. Aggregate fluctuations are driven by three shocks: a permanent neutral

labor-augmenting technology shock, a permanent investment-specific technology shock, and

temporary variations in government spending. Altig et al. (2005) and Christiano, Eichen-

baum, and Evans (2005), using a limited information econometric approach, argue that the

model economy for which we seek to design optimal monetary policy can indeed explain the

observed responses of inflation, real wages, nominal interest rates, money growth, output,

investment, consumption, labor productivity, and real profits to neutral and investment-

specific productivity shocks and monetary shocks in the postwar United States. Smets and

Wouters (2003, 2007) also conclude, on the basis of a full information Bayesian econometric

estimation, that the medium-scale neo Keynesian framework provides an adequate frame-

work for understanding business cycles in the postwar United States and Europe.

In the simulations reported in this section, we calibrate the three structural shocks as

follows. We construct a time series of the relative price of investment in the United States for

the period 1955Q1 to 2006Q4. We then use this time series to estimate an AR(1) process for

the growth rate of the relative price of investment. The estimated serial correlation is 0.45

and the estimated standard deviation of the innovation of the process is 0.0037. These two

figures imply that the growth rate of the price of investment has an unconditional standard

deviation of 0.0042. Ravn (2005) estimates an AR(1) process for the detrended level of

government purchases in the context of a model similar to the one we are studying and finds

a serial correlation of 0.9 and a standard deviation of the innovation to the AR(1) process

of 0.008. Finally, we assume that the permanent neutral labor-augmenting technology shock

follows a random walk with a drift. We set the standard deviation of the innovation to

this process at 0.0188, to match the observed volatility of per capita output growth of 0.91

percent per quarter in the United States over the period 1955Q1 to 2006Q4. For the purpose

of calibrating this standard deviation, we assume that monetary policy takes the form of

a Taylor-type interest rate feedback rule with an inflation coefficient of 1.5 and an output

coefficient of 0.125. We note that in the context of our model an output coefficient of

0.125 in the interest rate feedback rule corresponds to the 0.5 output coefficient estimated

by Taylor (1993). This is because Taylor estimates the interest rate feedback rule using

annualized rates of interest and inflation whereas in our model these two rates are expressed

in quarterly terms. All other parameters of the model are calibrated as in Schmitt-Grohé
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and Uribe (2007b). In particular, the subjective discount rate is set at 3 percent per year

and the average growth rate of per-capita output at 1.8 percent per year. This means that in

the deterministic steady state the real rate of interest equals 4.8 percent, a value commonly

used in business-cycle studies. After completing the calibration of the model, we drop the

assumption that the monetary authority follows an interest rate feedback rule and proceed to

characterize Ramsey optimal monetary policy ignoring the occasionally binding constraint

implied by the zero bound.

The Ramsey optimal policy implies a mean inflation rate of -0.4 percent per year. This

slightly negative inflation target is in line with the quantitative results we obtain in section 7

using a much simpler model of the monetary transmission mechanism. More importantly

for our purposes however are the predictions of the model for the Ramsey optimal level and

volatility of the nominal rate of interest. Under the Ramsey optimal monetary policy, the

standard deviation of the nominal interest rate is only 0.9 percentage points at an annual

rate. At the same time, the mean of the Ramsey optimal level of the nominal interest rate

is 4.4 percent. These two figures taken together imply that for the nominal interest rate to

violate the zero bound, it must fall more than 4 standard deviations below its target level.

This finding suggests that in the context of the model analyzed here, the probability that the

Ramsey optimal nominal interest rate violates the zero bound is practically nil. This result

is robust to lowering the deterministic real rate of interest. Lowering the subjective discount

factor from its baseline value of 3 to 1 percent per year, results in a Ramsey-optimal nominal

interest rate process that has a mean of 2.4 percent per year and a standard deviation of 0.9

percent per year. This means that under this calibration the nominal interest rate must still

fall by almost three standard deviations below its mean for the zero bound to be violated.

Some have argue, however, that a realistic value of the subjective discount factor is likely to

be higher and not lower than the value of 3 percent used in our baseline calibration. This

argument arises typically from studies that set the discount factor to match the average

risk-free interest rate in a nonlinear stochastic environment rather than simply to match

the deterministic steady-state real interest rate (see, for instance, Campbell and Cochrane,

1999).

It is worth stressing that our analysis abstracted from the occasionally binding constraint

imposed by the zero bound. However, the fact that in the Ramsey equilibrium the zero bound

is violated so rarely leads us to conjecture that in an augmented version of the model that

explicitly imposes the zero bound constraint, the optimal inflation target would be similar

to the value of -0.4 percent per year that is optimal in the current model. This conjecture

is supported by the work of Adam and Billi (2006). These authors compute the optimal

monetary policy in a simpler version of the new Keynesian model considered in this section.
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An advantage of their approach is that they take explicitly into account the zero bound

restriction in computing the optimal policy regime. They find that the optimal monetary

policy does not imply positive inflation on average and that the zero bound binds infrequently.

Their finding of a nonpositive average optimal rate of inflation is furthermore of interest in

light of the fact that their model does not incorporate a demand for money. We conjecture,

based on the results reported in this section, that should a money demand be added to their

framework, the average optimal rate of inflation would indeed be negative.

Reifschneider and Williams (2000) also consider the question of the optimal rate of in-

flation in the presence of the zero-lower-bound restriction on nominal rates. Their analysis

is conducted within the context of the large-scale FRB/US model. In their exercise, the

objective function of the central bank is to minimize a weighted sum of inflation and output

square deviations from targets. They find that under optimized simple interest-rate feedback

rules (which take the form of Taylor rules modified to past policy constraints or of Taylor

rules that respond to the cumulative deviation of inflation from target) the zero bound has

on average negligible effects on the central bank’s ability to stabilize the economy. Further,

these authors find that under optimized rules episodes in which the zero bound is binding

are rare even at a low target rate of inflation of zero.

9 Downward Nominal Rigidity

One rational for pursuing a positive inflation target that surfaces often in the academic and

policy debate is the existence of asymmetries in nominal factor- or product-price rigidity. For

instance, there is ample evidence suggesting that nominal wages are more rigid downward

than upward (see, for instance, McLaughlin, 1994; Akerlof et al., 1996; and Card and Hyslop,

1997).

The idea that downward nominal price rigidity can make positive inflation desirable goes

back at least to Olivera (1964), who refers to this phenomenon as structural inflation. The

starting point of Olivera’s analysis is a situation in which equilibrium relative prices are

changed by an exogenous shock. In this context, and assuming that the monetary authority

passively accommodates the required relative price change, Olivera explains the inflationary

mechanism invoked by downward rigidity in nominal prices as follows:8

[A] clear-cut case is that in which money prices are only responsive to either pos-

itive or negative excess demand (unidirectional flexibility). Then every relative

8The model described in this passage is, as Olivera (1964) points out, essentially the same presented in
his presidential address to the Argentine Association of Political Economy on October 8, 1959 and later
published in Olivera (1960).
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price adjustment gives rise to a variation of the price level, upward if there exists

downward inflexibility of money prices, downward if there is upward inflexibil-

ity. Thus, in a medium of downward inflexible money prices any adjustment of

price-ratios reverberates as an increase of the money price-level. (p. 323.)

As for the desirability of inflation in the presence of nominal downward rigidities, Olivera

(1964) writes

As to the money supply, [. . . ] the full-employment goal can be construed as

requiring a pari passu adaptation of the financial base to the rise of the price-

level [. . . ]. (p. 326)

Clearly, Olivera’s notion of ‘structural inflation’ is tantamount to the metaphor of ‘inflation

greasing the wheels of markets,’ employed in more recent expositions of the real effects of

nominal downward rigidities. Tobin (1972) similarly argues that a positive rate of inflation

may be necessary to avoid unemployment when nominal wages are downwardly rigid.

Kim and Ruge-Murcia (2009) quantify the effect of downward nominal wage rigidity

on the optimal rate of inflation. They embed downward nominal rigidity into a dynamic

stochastic neo-Keynesian model with price stickiness and no capital accumulation. They

model price and wage stickiness à la Rotemberg (1982). The novel element of their analysis

is that wage adjustment costs are asymmetric. Specifically, the suppliers of differentiated

labor inputs are assumed to be subject to wage adjustment costs, Φ(W j
t /W

j
t−1), that take

the form of a linex function in wage inflation:

Φ

(
W j

t

W j
t−1

)
≡ φ

[
exp

(−ψ(W j
t /W

j
t−1 − 1)

)
+ ψ(W j

t /W
j
t−1 − 1) − 1

ψ2

]
,

where W j
t denotes the nominal wage charged by supplier j in period t and φ and ψ are

positive parameters. The wage-adjustment-cost function Φ(·) is positive, strictly convex, and

has a minimum of 0 at zero wage inflation (W j
t = W j

t−1). More importantly, this function

is asymmetric around zero wage inflation. Its slope is larger in absolute value for negative

wage inflation rates than for positive ones. In this way, it captures the notion that nominal

wages are more rigid downward than upward. As the parameter ψ approaches infinity, the

function becomes L-shaped, corresponding to the limit case of full downward inflexibility

and full upward flexibility. When ψ approaches zero, the adjustment cost function becomes

quadratic, corresponding to the standard case of symmetric wage adjustment costs. Kim

and Ruge-Murcia estimate the structural parameters of the model using a simulated method

of moments technique and a second-order-accurate approximation of the model. They find

a point estimate of the asymmetry parameter ψ of 3,844.4 with a standard error of 1,186.7.
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The key result reported by Kim and Ruge-Murcia is that under the Ramsey optimal

monetary policy the unconditional mean of the inflation rate is 0.35 percent per year. This

figure is too small to explain the inflation targets of two percent observed in the industrial

world. Moreover, this figure is likely to be an upper bound for the size of the inflation bias

introduced by downward nominal rigidities in wages for the following two reasons. First,

their model abstracts from a money-demand friction. One would expect that should such

a friction be included in the model, the optimal rate of inflation would be smaller than the

reported 35 basis points, as the policymaker would find it costly from the Friedman rule.

Second, Kim and Ruge-Murcia’s analysis abstracts from long-run growth in real wages. As

these authors acknowledge, in a model driven only by aggregate disturbances, the larger is

the average growth rate of the economy, the less likely it is that real wages experience a

decline over the business cycle and hence that inflation is needed to facilitate the efficient

adjustment of the real price of labor.

10 Quality Bias and the Optimal Rate of Inflation

In June 1995, the Senate Finance Committee appointed an advisory commission composed of

five prominent economists (Michael Boskin, Ellen Dulberger, Robert Gordon, Zvi Griliches,

and Dale Jorgenson) to study the magnitude of the measurement error in the consumer

price index. The commission concluded that over the period 1995-1996, the U.S. CPI had

an upward bias of 1.1 percent per year. Of the total bias, 0.6 percent was ascribed to

unmeasured quality improvements. To illustrate the nature of the quality bias, consider the

case of a personal computer. Suppose that between 1995 and 1996 the nominal price of a

computer increased by 2 percent. Assume also that during this period the quality of personal

computers, measured by attributes such as memory, processing speed, and video capabilities,

increased significantly. If the statistical office in charge of producing the consumer price index

did not adjust the price index for quality improvement, then it would report two percent

inflation in personal computers. However, because a personal computer in 1996 provides

more services than does a personal computer in 1995, the quality-adjusted rate of inflation

in personal computers should be recorded as lower than two percent. The difference between

the reported rate of inflation and the quality-adjusted rate of inflation is called the quality

bias in measured inflation.

The existence of a positive quality bias has led some to argue that an inflation target

equal in size to the bias would be appropriate if the ultimate objective of the central bank

is price stability. In this section, we critically evaluate this argument. Specifically, we study

whether the central bank should adjust its inflation target to account for the systematic
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upward bias in measured inflation due to quality improvements in consumption goods. We

show that the answer to this question depends critically on what prices are assumed to

be sticky. If nonquality-adjusted prices are sticky, then the inflation target should not be

corrected. If, on the other hand, quality-adjusted (or hedonic) prices are sticky, then the

inflation target must be raised by the magnitude of the bias. Our analysis follows closely

Schmitt-Grohé and Uribe (2009b).

10.1 A Simple Model of Quality Bias

We analyze the relationship between a quality bias in measured inflation and the optimal

rate of inflation in the context of the neo-Keynesian model of section 6.1 without capital.

The key modification we introduce to that framework is that the quality of consumption

goods is assumed to increase over time. This modification gives rise to an inflation bias if

the statistical agency in charge of constructing the consumer price index fails to take quality

improvements into account. The central question we entertain here is whether the inflation

target should be adjusted by the presence of this bias.

The economy is populated by a large number of households with preferences defined over

a continuum of goods of measure one indexed by i ∈ [0, 1]. Each unit of good i sells for

Pit dollars in period t. We denote the quantity of good i purchased by the representative

consumer in period t by cit. The quality of good i is denoted by xit and is assumed to evolve

exogenously and to satisfy xit > xit−1. The household cares about a composite good given

by [∫ 1

0

(xitcit)
1−1/ηdi

]1/(1−1/η)

,

where η > 1 denotes the elasticity of substitution across different good varieties. Note that

the utility of the household increases with the quality content of each good. Let at denote

the amount of the composite good the household wishes to consume in period t. Then, the

demand for goods of variety i is the solution to the following cost-minimization problem

min
{cit}

∫ 1

0

Pitcitdi

subject to [∫ 1

0

(xitcit)
1−1/ηdi

]1/(1−1/η)

≥ at.
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The demand for good i is then given by

cit =

(
Qit

Qt

)−η
at

xit
,

where

Qit ≡ Pit/xit

denotes the quality-adjusted (or hedonic) price of good i, and Qt is a quality-adjusted (or

hedonic) price index given by

Qt =

[∫ 1

0

Q1−η
it di

]1/(1−η)

.

The price index Qt has the property that the total cost of at units of composite good is given

by Qtat, that is,
∫ 1

0
Pitcitdi = Qtat. Because at is the object from which households derive

utility, it follows from this property that Qt, the unit price of at, represents the appropriate

measure of the cost of living.

Households supply labor effort to the market for a nominal wage rateWt and are assumed

to have access to a complete set of financial assets. Their budget constraint is given by

Qtat + Etrt,t+1Dt+1 + Tt = Dt +Wtht + Φt,

where rt,t+j is a discount factor defined so that the dollar price in period t of any random

nominal payment Dt+j in period t + j is given by Etrt,t+jDt+j . The variable Φt denotes

nominal profits received from the ownership of firms, and the variable Tt denotes lump-sum

taxes.

The lifetime utility function of the representative household is given by

E0

∞∑
t=0

βtU(at, ht),

where the period utility function U is assumed to be strictly increasing and strictly concave

and β ∈ (0, 1). The household chooses processes {at, ht, Dt+1} to maximize this utility func-

tion subject to the sequential budget constraint and a no-Ponzi-game restriction of the form

limj→∞Etrt,t+jDt+j ≥ 0. The optimality conditions associated with the household’s problem

are the sequential budget constraint, the no-Ponzi-game restriction holding with equality,

and

−U2(at, ht)

U1(at, ht)
=
Wt

Qt
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and
U1(at, ht)

Qt
rt,t+1 = β

U1(at+1, ht+1)

Qt+1
.

Each intermediate consumption good i ∈ [0, 1] is produced by a monopolistically com-

petitive firm via a linear production function zthit, where hit denotes labor input used in the

production of good i, and zt is an aggregate productivity shock. Profits of firm i in period t

are given by

Pitcit −Wthit(1 − τ ),

where τ denotes a subsidy per unit of labor received from the government. This subsidy is

introduced so that under flexible prices the monopolistic firm would produce the competitive

level of output. In this way, the only distortion remaining in the model is the one associated

with sluggish price adjustment. While this assumption, which is customary in the neo-

Keynesian literature, greatly facilitates the characterization of optimal monetary policy, it

is not crucial in deriving the main results of this section.

The firm must satisfy demand at posted prices. Formally, this requirement gives rise to

the restriction

zthit ≥ cit,

where, as derived earlier, cit is given by cit =
(

Qit

Qt

)−η
at

xit
. Let MCit denote the Lagrange

multiplier on the above constraint. Then, the optimality condition of the firm’s problem

with respect to labor is given by

(1 − τ )Wt = MCitzt.

It is clear from this first-order condition that MCit must be identical across firms. We

therefore drop the subscript i from this variable.

Consider now the price setting problem of the monopolistically competitive firm. For

the purpose of determining the optimal inflation target, it is crucial to be precise in regard

to what prices are assumed to be costly to adjust. We distinguish two cases. In one case

we assume that nonquality-adjusted prices, Pit, are sticky. In the second case, we assume

that quality-adjusted (or hedonic) prices, Qit, are sticky. Using again the example of the

personal computer, the case of stickiness in nonquality-adjusted prices would correspond to

a situation in which the price of the personal computer is costly to adjust. The case of

stickiness in quality-adjusted prices results when the price of a computer per unit of quality

is sticky, where in our example quality would be measured by an index capturing attributes

such as memory, processing speed, video capabilities, etc.. We consider first the case in

which stickiness occurs at the level of nonquality-adjusted prices.
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10.2 Stickiness in Nonquality-Adjusted Prices

Suppose that with probability α firm i ∈ [0, 1] cannot reoptimize its price, Pit, in a given

period. Consider the price-setting problem of a firm that has the chance to reoptimize its

price in period t. Let P̃it be the price chosen by such firm. The portion of the Lagrangian as-

sociated with the firm’s optimization problem that is relevant for the purpose of determining

P̃it is given by

L = Et

∞∑
j=0

rt,t+jα
j
[
P̃it −MCt+j

]( P̃it

xit+jQt+j

)−η
at+j

xit+j
.

The first-order condition with respect to P̃it is given by

Et

∞∑
j=0

rt,t+jα
j

[(
η − 1

η

)
P̃it −MCt+j

](
P̃it

xit+jQt+j

)−η
at+j

xit+j
= 0.

Although we believe that the case of greatest empirical interest is one in which quality

varies across goods, maintaining such assumption complicates the aggregation of the model,

as it adds another source of heterogeneity in addition to the familiar price dispersion stem-

ming from Calvo-Yun staggering. Consequently, to facilitate aggregation, we assume that all

goods are of the same quality, that is, we assume that xit = xt for all i. We further simplify

the exposition by assuming that xt grows at the constant rate κ > 0, that is,

xt = (1 + κ)xt−1.

In this case, the above first-order condition simplifies to

Et

∞∑
j=0

rt,t+jα
j

[(
η − 1

η

)
P̃it −MCt+j

](
P̃it

Pt+j

)−η

ct+j = 0,

where

ct ≡
[∫ 1

0

c
1−1/η
it di

]1/(1−1/η)

and

Pt ≡
[∫ 1

0

P 1−η
it di

]1/(1−η)

.

It is clear from these expressions that all firms that have the chance to reoptimize their price

in a given period will choose the same price. We therefore drop the subscript i from the
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variable P̃it. We also note that the definitions of Pt and ct imply that Ptct =
∫ 1

0
Pitcitdi. Thus

Pt can be interpreted as the consumer price index unadjusted for quality improvements.

The aggregate price level Pt is related to the reoptimized price P̃t by the following familiar

expression in the Calvo-Yun framework:

P 1−η
t = αP 1−η

t−1 + (1 − α)P̃ 1−η
t .

Market clearing for good i requires that

zthit =

(
Pit

Pt

)−η

ct.

Integrating over i ∈ [0, 1] yields

ztht = ct

∫ 1

0

(
Pit

Pt

)−η

di,

where ht ≡ ∫ 1

0
hitdi. Letting st ≡ ∫ 1

0

(
Pit

Pt

)−η

di, we can write the aggregate resource con-

straint as

ztht = stct,

where, as shown earlier in section 6, st measures the degree of price dispersion in the economy

and obeys the law of motion

st = (1 − α)p̃−η
t + απη

t st−1,

where p̃t ≡ P̃t/Pt denotes the relative price of goods whose price was reoptimized in period

t, and πt ≡ Pt/Pt−1 denotes the gross rate of inflation in period t not adjusted for quality

improvements.

A competitive equilibrium is a set of processes ct, ht, mct, st, and p̃t satisfying

−U2(xtct, ht)

U1(xtct, ht)
=

mctztxt

1 − τ
,

ztht = stct,

st = (1 − α)p̃−η
t + απη

t st−1,

1 = απη−1
t + (1 − α)p̃1−η

t ,
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and

Et

∞∑
s=t

(αβ)sU1(xscs, hs)

U1(xtct, ht)

(
s∏

k=t+1

π−1
k

)−η

xscs

[
mcs −

(
η − 1

η

)
p̃t

(
s∏

k=t+1

π−1
k

)]
= 0,

given exogenous processes zt and xt and a policy regime πt. The variable mct ≡ MCt/Pt

denotes the marginal cost of production in terms of the composite good ct.

We now establish that when nonquality-adjusted prices are sticky, the Ramsey optimal

monetary policy calls for not incorporating the quality bias into the inflation target. That

is, the optimal monetary policy consists in constant nonquality-adjusted prices. To this end,

as in previous sections, we assume that s−1 = 1, so that there is no inherited price dispersion

in period 0. Set πt = 1 for all t and 1 − τ = (η − 1)/η. By the same arguments given

in section 6.2, the above equilibrium conditions become identical to those associated with

the problem of maximizing E0

∑∞
t=0 β

tU(xtct, ht), subject to ztht = ct. We have therefore

demonstrated that setting πt equal to unity is not only Ramsey optimal but also Pareto

efficient.

Importantly, πt is the rate of inflation that results from measuring prices without ad-

justing for quality improvement. The inflation rate that takes into account improvements

in the quality of goods is given by Qt/Qt−1, which equals πt/(1 + κ) and is less than πt by

our maintained assumption that quality improves over time at the rate κ > 0. Therefore,

although there is a quality bias in the measurement of inflation, given by the rate of quality

improvement κ, the central bank should not target a positive rate of inflation.

This result runs contrary to the usual argument that in the presence of a quality bias in

the aggregate price level, the central bank should adjust its inflation target upwards by the

magnitude of the quality bias. For instance, suppose that, in line with the findings of the

Boskin Commission, the quality bias in the rate of inflation was 0.6 percent (or κ = 0.006).

Then, the conventional wisdom would suggest that the central bank of the economy analyzed

in this section target a rate of inflation of about 0.6 percent. We have shown, however, that

such policy would be suboptimal. Rather, optimal policy calls for a zero inflation target.

The key to understanding this result is to identify exactly which prices are sticky. For

optimal policy aims at keeping the price of goods that are sticky constant over time to avoid

inefficient price dispersion. Here we are assuming that stickiness originates in non-quality

adjusted prices. Therefore, optimal policy consists in keeping these prices constant over time.

At the same time, because quality-adjusted (or hedonic) prices are flexible, the monetary

authority can let them decline at the rate κ without creating distortions.

Suppose now that the statistical agency responsible for constructing the consumer price

index decided to correct the index to reflect quality improvements. For example, in response
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Table 4: The Optimal Rate of Inflation under Quality Bias

Statistical Agency
Corrects Quality Bias

Stickiness in No Yes
Nonquality-Adjusted Prices 0 −κ
Quality-Adjusted (or Hedonic) Prices κ 0

Note. The parameter κ > 0 denotes the rate of quality improvement.

to the publication of the Boskin Commission report, the U.S. Bureau of Labor Statistics

reinforced its use of hedonic prices in the construction of the CPI. In the ideal case in which

all of the quality bias is eliminated from the CPI, the statistical agency would publish data

on Qt rather than on Pt. How should the central bank adjust its inflation target in response

to this methodological advancement? The goal of the central bank continues to be the

complete stabilization of the nonquality-adjusted price, Pt, for this is the price that suffers

from stickiness. To achieve this goal, the published price index, Qt, would have to be falling

at the rate of quality improvement, κ. This means that the central bank would have to

target deflation at the rate κ.

To summarize, when nonquality-adjusted prices are sticky, the optimal inflation target

of the central bank is either zero (when the statistical agency does not correct the price

index for quality improvements) or negative at the rate of quality improvement (when the

statistical agency does correct the price index for quality improvements). See table 4.

10.3 Stickiness in Quality-Adjusted Prices

Assume now that quality-adjusted (or hedonic) prices, Qit, are costly to adjust. Consider

the price-setting problem of a firm, i say, that has the chance to reoptimize Qit in period t.

Let Q̃it be the quality-adjusted price chosen by such firm. The portion of the Lagrangian

associated with the firm’s profit maximization problem that is relevant for the purpose of

determining the optimal level of Q̃it is given by

L = Et

∞∑
j=0

rt,t+jα
j
[
Q̃itxt+j −MCt+j

]( Q̃it

Qt+j

)−η

ct+j.

The first order condition with respect to Q̃it is given by

Et

∞∑
j=0

rt,t+jα
j

[(
η − 1

η

)
Q̃itxt+j −MCt+j

](
Q̃it

Qt+j

)−η

ct+j = 0.

63



A competitive equilibrium in the economy with stickiness in quality-adjusted prices is a

set of processes ct, ht, mct, st, and p̃t that satisfy

−U2(xtct, ht)

U1(xtct, ht)
=

mctztxt

1 − τ

ztht = stct

st = (1 − α)(p̃t)
−η + α

(
πt
xt−1

xt

)η

st−1,

1 = απη−1
t

(
xt

xt−1

)1−η

+ (1 − α)(p̃t)
1−η,

and

Et

∞∑
s=t

(αβ)sU1(xscs, hs)

U1(xtct, ht)

(
s∏

k=t+1

π−1
k

)−η

xscs

[
mcs −

(
η − 1

η

)
p̃t

(
s∏

k=t+1

π−1
k

)
xs

xt

]
= 0,

given exogenous processes zt and xt and a policy regime πt.

We wish to demonstrate that when quality-adjusted prices are sticky, the optimal rate of

inflation is positive and equal to the rate of quality improvement, κ. Again assume no initial

dispersion of relative prices by setting s−1 = 1. Then, setting πt = xt/xt−1, we have that

in the competitive equilibrium p̃t = 1 and st = 1 for all t. Assuming further that the fiscal

authority sets 1− τ = (η − 1)/η, we have that the set of competitive equilibrium conditions

becomes identical to the set of optimality conditions associated with the social planner’s

problem of maximizing E0

∑∞
t=0 β

tU(xtct, ht), subject to ztht = ct.

We have therefore proven that when quality-adjusted prices are sticky, a positive inflation

target equal to the rate of quality improvement (πt = 1 + κ) is Ramsey optimal and Pareto

efficient. In this case, the optimal adjustment in the inflation target conforms to the con-

ventional wisdom, according to which the quality bias in inflation measurement justifies an

upward correction of the inflation target equal in size to the bias itself. The intuition behind

this result is that in order to avoid relative price dispersion, the monetary authority must

engineer a policy whereby firms have no incentives to change prices that are sticky. In the

case considered here the prices that are sticky happen to be the quality-adjusted prices. At

the same time, non-quality adjusted prices are fully flexible and therefore under the optimal

policy they are allowed to grow at the rate κ without creating inefficiencies.

Finally, suppose that the statistical agency in charge of preparing the consumer price

index decided to correct the quality bias built into the price index. In this case, the central

bank should revise its inflation target downward to zero in order to accomplish its goal of
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price stability in (sticky) quality-adjusted prices. Table 4 summarizes the results of this

section.

We interpret the results derived in this section as suggesting that if the case of greatest

empirical relevance is one in which nonquality-adjusted prices (the price of the personal

computer in the example we have been using throughout) is sticky, then the conventional

wisdom that quality bias justifies an upward adjustment in the inflation target is misplaced.

Applying this conclusion to the case of the United States, it would imply that no fraction of

the 2 percent inflation target implicit in Fed policy is justifiable on the basis of the quality

bias in the U.S. consumer price index. Moreover, the corrective actions taken by the Bureau

of Labor Statistics in response to the findings of the Boskin commission, including new

hedonic indexes for television sets and personal computers as well as an improved treatment-

based methodology for measuring medical care prices, would actually justify setting negative

inflation targets. If, on the other hand, the more empirically relevant case is the one in which

hedonic prices are sticky, then the conventional view that the optimal inflation target should

be adjusted upward by the size of the quality bias is indeed consistent with the predictions

of our model. The central empirical question raised by the theoretical analysis presented

in this section is therefore whether regular or hedonic prices are more sticky. The existing

empirical literature on nominal price rigidities has yet to address this matter.

11 Conclusion

This chapter addresses the question whether observed inflation targets around the world,

ranging from two percent in developed countries to three and a half percent in developing

countries, can be justified on welfare-theoretic grounds. The two leading sources of monetary

nonneutrality in modern models of the monetary transmission mechanism—the demand for

money and sluggish price adjustment—jointly predict optimal inflation targets of at most

zero percent per year.

Additional reasons frequently put forward in explaining the desirability of inflation targets

of the magnitude observed in the real world—including incomplete taxation, the zero lower

bound on nominal interest rates, downward rigidity in nominal wages, and a quality bias

in measured inflation—are shown to deliver optimal rates of inflation insignificantly above

zero.

Our analysis left out three potentially relevant theoretical considerations bearing on the

optimal rate of inflation. One is heterogeneity in income across economic agents. To the

extent that the income elasticity of money demand is less than unity, lower income agents

will hold a larger fraction of their income in money than high income agents. As a result,

65



under these circumstances the inflation rate acts as a regressive tax. This channel, therefore,

is likely to put downward pressure on the optimal rate of inflation, insofar as the objective

function of the policymaker is egalitarian.

A second theoretical omission in our analysis concerns heterogeneity in consumption

growth rates across regions in a monetary union. To the extent that the central bank of

the monetary union is concerned with avoiding deflation, possibly because of downward

nominal rigidities, it will engineer a monetary policy consistent with price stability in the

fastest growing region. This policy implies that all other regions of the union will experience

inflation until differentials in consumption growth rates have disappeared. To our knowledge,

this argument has not yet been evaluated in the context of an estimated dynamic model of

a monetary union. But perhaps more importantly, this channel would not be useful to

explain why small, relatively homogeneous countries, such as New Zealand, Sweden, or

Switzerland, have chosen inflation targets similar in magnitude to those observed in larger,

less homogeneous, currency areas such as the United States or the Euro area. Here one might

object that the small countries are simply following the leadership of the large countries.

However, the pioneers in setting inflation targets of 2 percent were indeed small countries

like New Zealand, Canada, and Sweden.

A third theoretical channel left out from our investigation is time inconsistency on the part

of the monetary policy authority. Throughout our analysis, we assume that the policymaker

has access to a commitment technology that ensures that all policy announcements are

honored. Our decision to restrict attention to the commitment case is twofold: First, the

commitment case provides the optimum optimarum inflation target, which serves as an

important benchmark. Second, it is our belief that political and economic institutions in

industrial countries have reached a level of development at which central bankers find it in

their own interest to honor past promises. In other words, we believe that it is realistic

to model central bankers as having access to some commitment technology, or, as Blinder

(1999) has it, that ‘enlightened discretion is the rule.’
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12 Appendix

12.1 Derivation of the Primal Form of the Model with a Demand

for Money and Fiscal Policy of section 3

We first show that plans {ct, ht, vt} satisfying the equilibrium conditions (2), (4) holding with

equality, (5), (7), (8), (11), and (13)-(15) also satisfy (14), (16), vt ≥ v, and v2
t s

′(vt) < 1. Let

γ(vt) ≡ 1 + s(vt) + vts
′(vt). Note that (5), (11), and our maintained assumptions regarding

s(v) together imply that vt ≥ v and v2
t s

′(vt) < 1. Let Wt+1 = RtBt +Mt. Use this expression

to eliminate Bt from (15) and multiply by qt ≡
∏t−1

s=0 R
−1
s to obtain

qtMt(1 − R−1
t ) + qt+1Wt+1 − qtWt = qt[Ptgt − τh

t Ptwtht].

Sum for t = 0 to t = T to obtain

T∑
t=0

[
qtMt(1 − R−1

t ) − qt(Ptgt − τh
t Ptwtht)

]
= −qT+1WT+1 +W0.

In writing this expression, we define q0 = 1.

Take limits for T → ∞. By (4) holding with equality the limit of the right hand side is

well defined and equal to W0. Thus, the limit of the left-hand side exists. This yields:

∞∑
t=0

[
qtMt(1 − R−1

t ) − qt(Ptgt − τh
t Ptwtht)

]
= W0

By (7) we have that Ptqt = βtUc(ct, ht)/γ(vt)P0/Uc(c0, h0)γ(v0). Use this expression to

eliminate Ptqt from the above equation. Also, use (2) to eliminate Mt/Pt to obtain

∞∑
t=0

βtUc(ct, ht)

γ(vt)

[
ct
vt

(1 − R−1
t ) − (gt − τh

t wtht)

]
=
W0

P0

Uc(c0, h0)

γ(v0)

Solve (13) for τh
t and (8) for wt to obtain τh

t wtht = F ′(ht)ht + γ(vt)/Uc(ct, ht)Uh(ct, ht)ht.

Use this expression to eliminate τh
t wtht from the above equation. Also use (5) to replace

(1 − R−1
t )/vt with vts

′(vt), and replace gt with (14). This yields

∞∑
t=0

βt

[
Uc(ct, ht)ct + Uh(ct, ht)ht +

Uc(ct, ht)

γ(vt)
[F ′(ht)ht − F (ht)]

]
=
W0

P0

Uc(c0, h0)

γ(v0)
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Finally, use W0 = R−1B−1 +M−1 to obtain

∞∑
t=0

βt

[
Uc(ct, ht)ct + Uh(ct, ht)ht + [F ′(ht)ht − F (ht)]

Uc(ct, ht)

γ(vt)

]
=

(
R−1B−1 +M−1

P0

)(
Uc(c0, h0)

γ(v0)

)

which is (16).

Now we show that plans {ct, ht, vt} that satisfy vt ≥ v, v2
t s

′(vt) < 1, (14), and (16) also

satisfy (2), (4) holding with equality, (5), (7), (8), (11), and (13)-(15) at all dates.

Given a plan {ct, ht, vt} proceed as follows. Use (5) to construct Rt as 1/[1 − v2
t s

′(vt)].

Note that under the maintained assumptions on s(v), the constraints vt ≥ v and v2
t s

′(vt) < 1

ensure that Rt ≥ 1. Let wt be given by (8) and τh
t by (13). To construct plans for Mt, Pt+1,

and Bt, for t ≥ 0, use the following iterative procedure: (a) Set t = 0; (b) Use equation (2)

to construct Mt (one can do this for t = 0 because P0 is given); (c) Set Bt so as to satisfy

equation (15); (d) Set Pt+1 to satisfy (7); (e) Increase t by 1 and repeat steps (b) to (e). This

procedure yields plans for Pt and thus for the gross inflation rate πt ≡ Pt/Pt−1. It remains to

be shown that (4) holds with equality. Sum (15) for t = 0 to t = T , which as shown above,

yields:

T∑
t=0

βt

[
Uc(ct, ht)ct + Uh(ct, ht)ht + [F ′(ht)ht − F (ht)]

Uc(ct, ht)

γ(vt)

]
=

(−qT+1WT+1 +R−1B−1 +M−1

P0

)
Uc(c0, h0)

γ(v0)

By (16) the limit of the left-hand side of this expression as T → ∞ exists and is equal to
R−1B−1+M−1

P0

Uc(c0,h0)
γ(v0)

. Thus the limit of the right-hand side also exists and we have:

lim
T→∞

qT+1WT+1 = 0

which is (4). This completes the proof.

12.2 Derivation of the Primal Form in the Model with a Foreign

Demand for Domestic Currency of section 5

We first show that plans {ct, ht, vt} satisfying the equilibrium conditions (2), (4) holding

with equality, (5), (7), (8), (11), (13), and (25)-(28) also satisfy (29), (30), (31), vt ≥ v, and

v2
t s

′(vt) < 1. Note that, as in the case without a foreign demand for currency, (5), (11), and

our maintained assumptions regarding s(v) together imply that vt ≥ v and v2
t s

′(vt) < 1.

Let Wt+1 = RtBt +Mt +Mf
t . Use this expression to eliminate Bt from (27) and multiply
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by qt ≡
∏t−1

s=0R
−1
s to obtain

qt(Mt +Mf
t )(1 − R−1

t ) + qt+1Wt+1 − qtWt = qt[Ptgt − τh
t PtF (ht)].

Sum for t = 0 to t = T to obtain

T∑
t=0

[
qt(Mt +Mf

t )(1 − R−1
t ) − qt(Ptgt − τh

t PtF (ht))
]

= −qT+1WT+1 +W0.

In writing this expression, we define q0 = 1. Solve (13) for τh
t and (8) for wt and use F (h) = h

to obtain τh
t F (ht) = ht + Uh(ct,ht)

Uc(ct,ht)
γ(vt)ht. Use this expression to eliminate τh

t F (ht) from the

above equation, which yields

T∑
t=0

{
qt(Mt +Mf

t )(1 − R−1
t ) − qtPt

[
gt −

[
ht +

Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht

]]}
= −qT+1WT+1 +W0.

Use the feasibility constraint (28) to replace ht − gt with [1 + s(vt)]ct − Mf
t −Mf

t−1

Pt
.

T∑
t=0

qtPt

{
Mt +Mf

t

Pt
(1 − R−1

t ) + [1 + s(vt)]ct − Mf
t −Mf

t−1

Pt
+
Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht

}
= −qT+1WT+1+W0.

Use (2) and (5) to replace Mt

Pt
(1 − R−1

t ) with vts
′(vt)ct

T∑
t=0

qtPt

{
vts

′(vt)ct − Mf
t

PtRt
+ [1 + s(vt)]ct +

Mf
t−1

Pt
+
Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht

}
= −qT+1WT+1 +W0.

Collect terms in ct and replace 1 + s(vt) + vts
′(vt) with γ(vt) and rearrange

T∑
t=0

qtPt

{
γ(vt)ct +

Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht − Mf

t

PtRt
+
Mf

t−1

Pt

}
= −qT+1WT+1 +W0.

Noting that by definition qt/Rt = qt+1 write the above expression as

T∑
t=0

qtPt

{
γ(vt)ct +

Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht

}
+

T∑
t=0

(
Mf

t−1qt −Mf
t qt+1

)
= −qT+1WT+1 +W0.
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Evaluate the second sum on the left-hand side and recall that by definition q0 = 1 to obtain

T∑
t=0

qtPt

{
γ(vt)ct +

Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht

}
+Mf

−1 −Mf
T qT+1 = −qT+1WT+1 +W0.

Using the definition of Wt we can write the above expression as:

T∑
t=0

qtPt

{
γ(vt)ct +

Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht

}
= −qT+1 (RTBT +MT ) +R−1B−1 +M−1. (65)

Take limits for T → ∞. Then by (4) holding with equality the limit of the right hand side is

well defined and equal to R−1B−1 +M−1. Thus, the limit of the left-hand side exists. This

yields:
∞∑

t=0

qtPt

{
γ(vt)ct +

Uh(ct, ht)

Uc(ct, ht)
γ(vt)ht

}
= R−1B−1 +M−1.

By (7) we have that Ptqt = βtUc(ct, ht)/γ(vt)P0/Uc(c0, h0)γ(v0). Use this expression to

eliminate Ptqt from the above equation to obtain

∞∑
t=0

βt [Uc(ct, ht)ct + Uh(ct, ht)ht] =

(
Uc(c0, h0)

γ(v0)

)(
R−1B−1 +M−1

P0

)
,

which is (31).

We next show that the competitive equilibrium conditions imply (29) and (30). Equation

(29) follows directly from (26) and the definition of χ(vt) given in (32). For t > 0, use (26)

to eliminate Mf
t and Mf

t−1 from (28) to obtain:

[1 + s(vt)]ct + gt = F (ht) +
yf

t

vf
t

− yf
t−1

vf
t−1

1

πt
.

Now use (7) to eliminate πt. This yields:

[1 + s(vt)]ct + gt = F (ht) +
yf

t

χ(vt)
− yf

t−1

χ(vt−1)

Uc(ct−1, ht−1)

Rt−1γ(vt−1)

γ(vt)

βUc(ct, ht)
,

Using (5) to replace Rt−1 yields (30). This completes the proof that the competitive equi-

librium conditions imply the primal form conditions.

We now show that plans {ct, ht, vt} satisfying (29), (30), (31), vt ≥ v, and v2
t s

′(vt) < 1

also satisfy the equilibrium conditions (2), (4) holding with equality, (5), (7), (8), (11), (13),
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and (25)-(28). Given a plan {ct, ht, vt} proceed as follows. Use (5) to construct Rt and (25)

to construct vf
t . Note that under the maintained assumptions on s(v), the constraints vt ≥ v

and v2
t s

′(vt) < 1 ensure that Rt ≥ 1. Let wt be given by (8) and τh
t by (13).

To construct plans for Mt, M
f
t , Pt+1, and Bt, for t ≥ 0, use the following iterative

procedure: (a) Set t = 0; (b) Use equation (2) to constructMt and equation (26) to construct

Mf
t (recall that P0 is given); (c) Set Bt so as to satisfy equation (27); (d) Set Pt+1 to satisfy

(7); (e) Increase t by 1 and repeat steps (b) to (e). Next we want to show that (28) holds.

First we want to show that it holds for t = 0. Combining (26) and (32) with (29) it is

obvious that (28) holds for t = 0. To show that it also holds for t > 0, combine (26), (32),

and (30) to obtain:

[1 + s(vt)]ct + gt = F (ht) +
Mf

t

Pt
− Mf

t−1

Pt−1

(
1 − v2

t−1s
′(vt−1)

) Uc(ct−1, ht−1)

γ(vt−1)

γ(vt)

βUc(ct, ht)
,

Using (5) one can write this expression as:

[1 + s(vt)]ct + gt = F (ht) +
Mf

t

Pt

− Mf
t−1

Pt−1

(1/Rt−1)
Uc(ct−1, ht−1)

γ(vt−1)

γ(vt)

βUc(ct, ht)
,

Finally, combining this expression with (7) yields (28).

It remains to be shown that (4) holds with equality. Follow the steps shown above to

arrive at equation (65). Notice that these steps make use only of equilibrium conditions that

we have already shown are implied by the primal form. Now use (7) (which we have already

shown to hold) to replace Ptqt with βtUc(ct, ht)/γ(vt)P0/Uc(c0, h0)γ(v0) to obtain

T∑
t=0

βt [Uc(ct, ht)ct + Uh(ct, ht)ht] = −qT+1(RTBT+MT )

(
Uc(c0, h0)

P0γ(v0)

)
+

(
Uc(c0, h0)

γ(v0)

)(
R−1B−1 +M−1

P0

)
.

Taking limit for T → ∞, recalling the definition of qt, and using (31) yields (4) holding with

equality. This completes the proof.
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Schmitt-Grohé, Stephanie, and Mart́ın Uribe, “Optimal Fiscal and Monetary Policy under

Sticky Prices,” Journal of Economic Theory 114, February 2004a, 198-230.
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Schmitt-Grohé, Stephanie and Mart́ın Uribe, “On Quality Bias and Inflation Targets,”

NBER working paper 15505, November 2009b.
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