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1 Introduction

The rising return to schooling and growing evidence in support of education as a

primary determinant of economic growth has elevated the importance and visibility

of research on human capital formation including both the determinants of enrolment

and attainment and the determinants of education quality. Such research must address

complications introduced by the myriad and inter-related decision making processes of

families, teachers, administrators and policy makers. A variety of methods have been

used to identify causal relationships, ranging from structural models based on utility

maximisation to experimental and quasi-experimental approaches, yielding a growing

body of often contradictory evidence.

Although the various approaches differ in the degree to which theoretical models of

decision-making underlay the empirical specifications, the simple dichotomy between

structural approaches on the one hand and experimental or quasi-experimental on the

other does not hold up in most applications. As we highlight throughout the chapter,

the interpretation, the usefulness and even the identification of estimates typically relies

implicitly if not explicitly on a set of assumptions about underlying behaviour. Import-

antly, the introduction of heterogeneity in treatment effects magnifies the importance

of such assumptions.

Rather than dividing this chapter by methods, we divide it into two parts largely

in parallel to the division of research on human capital formation into quantity (years

of schooling) and quality. The first part focuses on the estimation of wage equations

and the return to schooling, framed by a Roy Model of education decision-making,

originally suggested by Willis and Rosen (1979), that incorporates heterogeneity in re-

turns to schooling across both individuals and three levels of schooling and allows for

comparative advantage in the sense that individuals need not be best at both education

and the labour market. This model not only provides a flexible description of the pro-

cess through which human capital is acquired through schooling, but it also provides a
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framework for discussing the identification issues that arise when estimating education

effects on wages with empirical methods not based directly on models that articulate

the full structure of the process of human capital acquisition.

We then turn to the various methods used to estimate education effects on wages,

highlighting the restrictions that must be fulfilled in order to generate consistent estim-

ates of the return to schooling. The natural starting point is the estimation of the full

structural model. We describe its estimation based both on maximum likelihood and

on newly developed simulation methods.

Next we describe methods that can be used to estimate Mincer wage equations in

which education is taken to be a continuous variable. First, we discuss approaches to

identification under the assumption that the return to schooling is constant both with

respect to the years of education and across individuals. We then permit the wage return

to schooling to vary with the level of education and discuss the use of non-parametric

IV estimators when the shape of the relationship between wages and years of education

is not known. Next we allow for heterogeneity across individuals and consider general

non-separable models with respect to years of education and unobserved heterogeneity.

This takes us to the frontier of research as far as this class of models is concerned.

Importantly, it becomes clear that identification and interpretation of results depends on

the nature of schooling choice. Indeed the implied restrictions on economic behaviour,

required for identification are quite stringent and can be interpreted as restrictions on

the information possessed by the individual when making education choices.

Following discussion of the Mincer wage equation we return to the Roy model with

potentially unordered schooling choices and discuss approaches to identification of the

effects of education on wages. There we discuss conditions that allow identification

“at infinity”, an argument which depends on the availability of enough continuous in-

struments, such that there are sets of values of these instruments where the individuals

facing such values make a choice of a particular education level with probability one.
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In such sets there is no selection. If the instruments are independent of the unobserv-

ables in the wage equation and under some further conditions identification is achieved.

However, it is unlikely that such an identification strategy has much empirical signi-

ficance. At this point we either need to acknowledge the need for further parametric

assumptions, beyond those implied from theory and beyond the standard IV assump-

tions or we need to resort to set identification. In this case we focus on bounding the

distribution of wages for each education group, rather than attempting to obtain point

estimates. The various assumptions used in the point identification approach, such as

instrument exclusion can be used here; some can even be relaxed to allow for instru-

ments to shift the distribution of wages in one direction (monotonicity).1 The approach

can be very fruitful, because it provides an intermediate position where a number of

theoretical restrictions are used, making the estimates interpretable within a broad the-

oretical framework, while not using auxiliary assumptions that are both controversial

and do not obtain from theory.

The final section of Part I discusses the problem introduced by missing wages for

labour force nonparticipants. We compare a fully structural approach that in practice

will have to rely on assumptions beyond those implied by theory and an approach

based on bounds.2 Allowing for both endogenous education choice and endogenous

labour force participation does make identification more stringent. At the same time

bounds are also less informative. Of course ignoring these issues poses serious prob-

lems with interpretation. Identification will have to rely on exploiting the restrictions

from theory as well as further assumptions, such as those specifying the distribution of

unobservables. Despite the shortcomings of having to make assumptions that do not

relate directly to theory, the approach that ignores these issues leads to results that have

limited interpretation. Moreover, while most identification theorems proposed hitherto

rely on identification at infinity arguments, it is possible that further progress can be
1See Manski (1994)
2See Blundell, Gosling, Ichimura and Meghir (2007)

6



made by exploiting further restrictions from theory; one possibility is to explore the

use of restrictions from other related decisions. The potential for this can be seen when

comparing the identification of pure discrete choice models with those who combine

discrete choice with continuous outcome variables, such as the education and wages

model we discuss.3 Moreover when considering bounds it is clear that identification

can obtain without an “identification at infinity” argument. Characterising the underly-

ing behavioural conditions for this would be an important advance.

We start the section below by justifying the idea of a Roy model of education and

wages by suggesting that each education level may correspond to a different input in

production, these inputs not being perfectly substitutable for each other. We argued

that in an economy with changing supply of educated workers of differing levels, the

relative wages and the returns to education will change over time. We also refer to

evidence that demonstrates the importance of such considerations. In view of this, we

close this section by discussing the implications or policy of placing education choice

and wages within a general equilibrium framework. A number of authors have shown

that without such a framework it is very difficult to design and think of policy.4 This

again emphasises the need for a model not only for the interpretation of the estimates

but also for understanding what the estimates imply for policy.

Part 2 turns to empirical methods used in research on school and teacher quality.

Although Part 2 begins with the presentation of an education production function model

and discussion of the multiple levels of choices that determine the matching of students,

teachers, and schools, this model does not provide the unifying framework of the Roy

Model in Part 1. Given the range of issues covered in research on education quality, we

believe it to be more productive to focus on conceptual frameworks tailored to specific

issues. We do, however, begin Part 2 with general discussions of the housing choice

and the dynamics of the process of knowledge acquisition.
3Contrast Magnac and Thesmar (2002) with Heckman and Navarro (2007) for example.
4See Heckman, Lochner and Taber (1998), Lee (2005), Lee and Wolpin (2006) and Gallipoli, Meghir and

Violante (2008).
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We divide Part 2 into four sections corresponding to different research areas that

have received substantial attention in recent years, and within each we juxtapose vari-

ous empirical to estimation. Specifically, we focus on a small number of papers on

class size, teacher quality, competition and accountability, and capitalisation of school

quality into house prices. The proliferation of administrative and survey data in recent

years has facilitated research on these and other education topics, and we have selected

papers that vary by both type of data and empirical method. The methods include con-

trols for observables, instrumental variables, regression discontinuity as a special case

of IV, use of random lotteries as a special case of IV, difference-in-differences, fixed ef-

fects with large administrative data sets, and the use of data generated by experiments.

As in the first section we highlight the inter-relationship among the structure of

underlying choices, treatment effects, identification conditions, and meaning of the es-

timates. Estimators differ according to the assumptions required for identification and

assumptions concerning the distribution of treatment effects along various dimensions,

though most of these estimators do not come from behavioural models that predict the

structure of treatment effects. Nonetheless, we focus on the inter-dependencies among

underlying behaviour, identification conditions and interpretation throughout this dis-

cussion.

In the case of research on class size, we first present a model of education pro-

duction based on Lazear (1999) that highlights potential dimensions over which the

benefits of smaller classes might vary and then evaluate a series of different estim-

ators with that framework as a backdrop. In addition to describing the methods and

identifying assumptions, this compares estimators according to the degree to which

they capture class size related general equilibrium effects on the quality of instruction;

some estimators capture cross-sectional differences in teacher quality associated with

smaller classes, some capture changes over time in state average teacher quality, while

others isolate the ceteris paribus effect of smaller classes.
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The description of research on the semi-parametric estimation of the variance in

teacher quality begins with a discussion of the behavioural responses of families, teach-

ers, and administrators that complicate estimation. It then describes different ap-

proaches to estimation of the variance and to accounting for sorting both between and

within schools.

The discussion of research on housing market capitalisation focuses narrowly on

boundary fixed effects estimators (see Chapter # for a comprehensive treatment of this

issue). Two of the three papers adopt reduced form approaches, while the third develops

a discreet choice framework with which to model housing choice and heterogeneity in

the preferences for both school quality and peer characteristics.

The papers on choice and accountability examine different types of incentives in-

cluding competition from public and private schools and state accountability systems.

Non-random family take-up of choice options complicates estimation of choice effects,

while the non-random distribution of accountability system adoption date and charac-

ter complicate efforts to identify accountability system impacts. Each paper takes a

different approach to account for unobserved differences across families and states.

The chapter concludes with a synthesis of the key commonalities and differences

between work on the return to schooling and on school quality and the ways in which

the proliferation of administrative and survey data affect the structure of empirical ana-

lyses. It highlights remaining challenges and areas for additional work.

2 Wage equations and the returns to education

The aim of this section is to discuss the estimation of the returns to education. We place

wages and education choice within a simple competitive general equilibrium frame-

work. In this model forward looking individuals choose an education level; each level

is associated with its own wage process. The allows us to clarify the notion of returns

to education and to discuss clearly identification issues. Once we have defined the
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model of education choice and wages we digress to the simpler world of Mincer wage

equations and discuss identification issues within that context. In a simple version of

that model, as shown by Mincer (1958, 1974), the returns to education can be estim-

ated directly from the relationship of wages and education, because the only cost to

education is the opportunity cost - there are no direct costs such as fees. Moreover in

many contexts we may be interested in the impact of education on wages in and of it-

self. Following the discussion of identification of Mincer type models we return to the

identification issues of the dynamic model we originally introduced. One of the main

themes of this section will be the extent to which we can interpret estimates on the

wage returns to education without saying much about the process of education choice.

2.1 Pricing of human capital

Our starting point is that production involves k types of human capital; the type of

human capital that an individual possesses is determined by the level of education they

have attained. Here the levels considered will be statutory schooling, high school and

college. The wage received by an individual will we the product of the aggregate

price of her type of human capital (Wkt ) with the amount she brings to the market

(hkit ), say wkit = Wkthkit , where k denotes the type of human capital and hkit is the

amount in efficiency units that individual i possesses in time period t.5 The literature on

modelling wages concentrates on understanding how to model the constituents of hkit ,

which will be a function of education, ability and possibly experience, age and other

factors that enhance individual productivity and skills. Thus the returns to education in

a competitive economy will depend both on how each education level is priced in the

market (i.e. how Wkt is determined) and how education contributes to the formation of

hkit . The way pricing may change in the future is a source of aggregate uncertainty,
5See for example Heckman, Layne-Farrar and Todd (1996).
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while possible future shocks to human capital hkit will be a source of idiosyncratic

uncertainty.

Consider first pricing in a competitive market. Suppose there are three levels of

education: less than high school (SL), high school (SH ) and college (SC). Now suppose

we can represent aggregate production by the function

Qt = At
�
δSHρ

St +δHHρ
Ht +δCHρ

Ct
�α/ρ K1−α

t

with δi > 0, δC + δH + δS = 1, ρ ≤ 1, 0 ≤ α ≤ 1 and Hjt is the sum of total human

capital employed of type j in period t. In efficiency units this is Hjt = ∑N
i=1 hkit , where

hkit is the human capital of type k supplied by individual i in period t. In a competitive

equilibrium prices satisfy
Wjt

WSt
=

δ j

δS

�
Hjt

HSt

�ρ−1
(1)

Thus the relative prices of the two types of human capital will vary depending on the

ratio of demands Hj
HS

, so long as ρ < 1. The source of aggregate uncertainty are changes

in the relative value of the δ s, such as skill biased technical change. When ρ = 1

the inputs are perfectly substitutable and the relative prices are invariant to changes

in Hj
HS

. The relative pay can change however in response to changes in technology

as expressed by changes in δ j
δk
. The resulting wage equation for individual i who has

obtained educational level k can then be represented as

lnwkit = lnWkt + lnhkit (2)

When ρ = 1, and with no changes in technology this simplifies to

lnwit = lnWt + lnhit (3)

which is now common across education groups. Wage equations based on years of

11



education only, without regard to the type of education received can be interpreted

through, and is inspired by the work of Mincer.

One way of estimating the parameters is to use 1 and write

log
Wjt

WSt
= log

�
δ j

δS

�
+(ρ −1) log

�
Hjt

HSt

�
+ ε jS (4)

To implement this we need measures of Wjt
Wst

and of Hjt
Hst

. These can be obtained as fol-

lows. First we estimate wage equations for each level of schooling. The time dummies

in the equations for level S is a measure (up to an additive constant) of logWSt . an

estimate of individual human capital can then be obtained by using the relationship

hkit = exp(logwkit − logWkt)

Aggregating the estimate of this quantity and assuming the sample is representative (or

grossing it up with the sample weights) allows us to construct log
�

Hjt
Hst

�
. If the errors

in 4 relate to changes in technology then human capital is endogenous. One strategy is

to instrument log
�

Hjt
Hst

�
by the total number of people of these two skill levels, whether

they are working or not. This uses the medium term availability of the resource as the

instrument. An alternative would be to use dynamics, i.e. lags in human capital as

instruments.

The empirical evidence suggests that ρ < 1 and hence that different levels of human

capital are not perfectly substitutable. Katz and Murphy (1992) and Heckman, Lochner

and Taber (1998) both estimate the elasticity of substitution ( 1
1−ρ ) between unskilled

and skilled workers to be about 1.4, although alternative estimates suggest even lower

values. Gallipoli, Meghir and Violante (2008) estimate the elasticity of substitution

between statutory schooling, high school and college for the US using instrumental

variables. They find that the same elasticity of substitution can be imposed across all
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pairwise comparisons; they estimate this to be between 1.5 and 2.6. It is safe to say that

the consensus in the literature is that different types of human capital are not perfectly

substitutable for each other.

2.2 A model of education choice and wages

Given the discussion above it follows that we should model education as choosing a

specific level; we should then estimate lifecycle wage profiles within each sector. This

is similar to the Roy (1951) model and the empirical basis for this has been formulated

by Willis and Rosen (1979). Keane and Wolpin (1997) have taken this further, allowing

also for occupational choice and modelling the entire career.7

This model provides a framework for estimating the returns to education and dis-

cussing the identification issues that arise when we attempt to estimate the wage returns

with simpler methods and without articulating the entire structure of the model. Indeed

we will argue that the identification of wage returns to education are intricately linked

with the underlying model of education choice and that in most cases these cannot be

separated.

Consider an individual who has just completed statutory schooling and will decide

on completing high school and then on whether to complete college. We will take

these as two sequential decisions, to which the individual needs to commit success-

ively. Once schooling is over the individual works and earns depending on the level of
6They consider less than high school, high school, some college and college. They could not reject the

restriction of one elasticity of substitution.
7Variations of this model have been used by Attanasio, Meghir and Santiago (2009) where only the

discrete education choice is modelled and Gallipoli, Meghir and Violante (2008) who model educational
choice, wages, labour supply and intergenerational transfers. Heckman and Navarro (2007) use a version of
this model to analyse identifiability of returns to education and of the dynamic discrete choice models.
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schooling received. The earnings function for each level of education is given by

logwS
i = mS(age,Xi)+ τS

i + εS
it Statutory Schooling

logwH
i = mH(age− eH ,Xi)+ τH

i + εH
it High School

logwC
i = mC(age− eC,Xi)+ τC

i + εC
it College

(5)

where eH and eC represent the additional years of schooling, over and above the stat-

utory ones needed to obtain a high school and college degree respectively and where Xi

are observable characteristics that influence individual earnings. It would be straight-

forward to include age and other time varying characteristics so long as we made the

assumption of perfect foresight. At a later section we show how the model can be

generalised to include endogenous experience and nonparticipation. We have abstrac-

ted from the aggregate fluctuations in the prices of human capital, but in this simple

environment allowing for aggregate shocks is relatively straightforward.

These earnings functions include a number of important features: first earnings

growth with respect to potential experience, i.e. age minus years of education differ

depending on the level of education, allowing for the possibility of complementarity

between education level and age. Second each individual has a sector specific level

of ability (τ0
i , τH

i , τC
i ). This implies heterogeneous returns to education, with respect

to unobservables (as well as possibly through observables). We will assume here that

this heterogeneity is in the individual’s information set when making the education

choice. This assumption is not innocuous and does affect the way we estimate the

model. Third, the stochastic structure of earnings will differ across groups. For ex-

ample the variance or persistence of shocks may differ depending on the chosen sector.

This is particularly important when considering models that allow for risk aversion.

The model has abstracted from other important issues, such as endogenous experience
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and non-participation.

Now consider the flow of utility. We assume that individuals incur observable mon-

etary costs κH(ZH) and κC(ZC) for high school and college, respectively. These will

include fees, cost of books, transport costs etc. and may depend on observable charac-

teristics Zi = {ZH
i ,ZC

i }. Individuals will also incur unobservable costs per unit of time

spent in education, which we can interpreted as effort. These we will assume are het-

erogeneous and we denote them by Fi. Taking all this into account the flow utility for

high school and for college is respectively

uH
i = κH(ZH

i )+Fi +νH
i High School

uC
i = κC(ZC

i )+αFi +νC
i College

(6)

where the coefficient α reflects the fact that effort and time spent in college can be

different than in high school and where the vH and vC represent random shocks to the

costs of education. The high school utility vH
i shock is revealed when the individual

needs to decide to go to high school or start working. Similarly the college shock is

revealed after high school when the college decision needs to be made. The assumed

timing of such shocks is critical for the model: the fact they are revealed sequentially,

implies that the decision to continue to the next level will include an option value to

continue further; thus as we shall see, attending high school has value for the earnings

that are expected and because of the option of attending college, whose value will

depend on the shock that has not been realised yet. We will simplify the model further

by assuming that once the individual has dropped out of the formal education system

they no longer can return and they work until a fixed retirement age of say 60. In a more

detailed model we would allow for endogenous retirement or at least the recognition

that retirement age differs by education group and is probably higher for the more

educated. The expected utility from working having achieved education level S, H or
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C respectively, as viewed at the time the decision will be made is

VWS
i = wS

i0 +E
60
∑

t=eS+1
β twS

it = exp(τS
i )A

S(Xi) Statutory School Earnings

VWH
i = wH

ieH +E
60
∑

t=eH+1
β twH

it = exp(τH
i )AH(Xi) High School Earnings

VWC
i = wC

ieC +E
60
∑

t=eC+1
β twC

it = exp(τC
i )A

C(Xi) College Earnings

(7)

where β is the personal discount and AJ(X) =
40
∑

t=eJ+1
β t exp

�
mH(t − eJ ,Xi)

�
, J = S, H,

C, with ei being the age at which education level i is completed. The expectation is

taken over future wage shocks. Now consider the decision process for someone who

just completed statutory schooling. The value of attending high school will be given

by the sum of the current costs of schooling (uH
i ) and the option value of either going

to college or starting work as a high school graduate. Thus the value of attending high

school is given by

V H
i = κH(ZH

i ),+Fi +νH
it +βE max

�
VC

i ,VWH
i

�

= Ṽ H
i +νH

i

where the expectation is over all future wage shocks and the shock to the cost of at-

tending college vC
i . The value of attending college is given by

VC
i = κC(ZC

i )+αFi +νC
i +βEVWC

i

= ṼC
i +νC

i
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The first decision is to attend high school or not. The decision rule is

Attend High School ⇐⇒V H
i >V S

i (8)

If the individual does not attend high school then they enter the labour market until

retirement. If they do attend, in the next period they need to decide whether to continue

with college. The decision rule is again

Attend College ⇐⇒VC
i >VWH

i . (9)

At the point of making the education decision the individual is assumed to know the

experience profiles of each education sector as well as the permanent heterogeneity

components τC
i , τH

i and τS
i . They also know the costs of education (both direct and

effort costs). Interestingly, this model allows for comparative advantage (as in Willis

and Rosen, 1979)) in the sense that individuals need not be best at both education and

the labour market: they may be very good at the medium skill labour market (high τH
i )

and not so good at education (low Fi) or perhaps a negative αFi. Thus both the mech-

anism of selection into different education levels and the resulting relationship between

education and unobserved components of wages are complex and not necessarily in an

easy to predict direction.

To estimate the model or use it for simulations we must first solve it, i.e. compute

expressions for the value functions that will allow us to implement the decision rules 8

and 9. In the context of this particularly simple model this is easy to do, but in more

complex models it can be computationally time consuming.

Given a set of parameters and given the distribution of unobserved heterogeneity

the discounted value of further schooling and/or work can be computed by projecting
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earnings forward based on the wage equation for the relevant education sector. Thus

for example

VWS
i = wS

i0 +E
60

∑
t=eS+1

β twS
it

The next step involves a conditional expectation with respect to the distribution of the

shocks. Here we either need to make an explicit distributional assumption about the

shocks νC
i −νH

i or we need to see if such a distribution can be identified nonparametrically.

In a parametric context these could be assumed normal for example; since the decision

is discrete we normalise the variance to be one. The distribution is first needed to write

down the expected value function for the next period, which involves the future optimal

decision to continue schooling:

E max
�

VC
i ,VWH

i
�
= E(VC

i |νC
i −νH

i > ṼWH
i −ṼC

i )Pr
�
νC

i −νH
i > ṼWH

i −ṼC
i
�
+

+E(VWH
i |νC

i −νH
i < ṼWH

i −ṼC
i )Pr

�
νC

i −νH
i < ṼWH

i −ṼC
i
�

The missing components to evaluate this expression are ṼWH
i = E

60
∑

t=eH+1
β twH

it and ṼC
i .

Given a wage equation and a discount factor we can easily compute ṼWH
i , which is the

present discounted value of mean earnings.

In a model that is linear in earnings the value beyond working life can be set to zero,

without loss of generality. However, a practical difficulty is that we may be missing

wages for older individuals, during working life and this needs to be accounted for.

Suppose we observe individuals up to some age (it could differ across individuals).

Then we either need to assume how earnings will evolve beyond that age or we need

to introduce a terminal value function whose parameters will be estimated alongside

the remaining parameters of the model. If we have enough data to estimate the age-

earnings profile only up to a specific age T the terminal value function will be a function

of the state variables at that age as well as of observed Xi and unobserved characteristics
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unobserved heterogeneity. In our simple model the state is just the education level .

Thus we can specify

V JT
i = exp(γJ

0 (Xi)+ γJ
1 (Xi)τJ

i ) for J = S,H,C (10)

where we have used the exponential to restrict the function to be positive. Then we can

compute ṼWJ
i as follows

ṼWJ
i =

Ti

∑
t=s+1

β t ŵJ
it +β Ti+1V JT

i

where ŵJ
it is the expected wage conditional on unobserved heterogeneity τJ . Thus now

for a given set of parameters, we can compute all future values required to construct

the probability of attaining a particular level of education, conditional on τ .

The average lifecycle returns to college vis a vis high school from the perspective

of someone who has just completed high school is

∆C/H = E
�

VC −VWH

VWH

�

where the expectation is taken with respect to the unobservables. This measure includes

both the wage gains of going to college over the lifecycle as well as accounting for the

individual direct and opportunity costs of education. This measure will allow for the

effects of education on other dimensions of behaviour, such as expected endogenous

and exogenous spells out of work, which can be elements of more complex models.8

In this model the returns to education are heterogeneous, depending on the unob-

served components of wages and educational costs. The individual wage returns to
8see for example Adda, Dustmann, Meghir and Robin (2009)
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college, at any specific point in the lifecycle take the form

∆WC/H
i = mC(age− eC)−mH(age− eH)+ τC

i − τH
i + εC

it − εH
it

Since the wage returns9 to education are heterogeneous in this model there are

many different concepts of such returns.10 The average wage return to one level of

education L relative to another L� (Average Treatment Effect) at a specific age is given

by

∆L/L�
AT E (age,Xi,L,L�)≡

E(lnwL
i − lnwL�

i |Xi) = mL(age− eL,Xi)−mL�(age− eL� ,Xi)

The return relative to L� for those who chose J = L (Average Treatment on the Treated)

is given by

∆L/L�
AT T (age,Zi,Xi,L,L�)≡ E(lnwL

i − lnwL�
i |Xi,J = L)

= mL(age− eL,Xi)−mL�(age− eL� ,Xi)+

�
E(τL

i |age,Zi,Xi,Ji = L)−E(τL�
i |age,Zi,Xi,Ji = L)

�

(11)

Note that in 11 the last expression is the average labour market ability relating to high

school education for those who chose to attend college. In all cases, estimation of the

returns of interest (e.g. ATE or ATT or the entire distribution) will require estimating

some aspect at least of the distribution of the τJ . Just to emphasise this point, if we

ignore this issue and we just compare wages across sectors the estimate of the returns
9Henceforth we will refer loosely to the "returns to education" as the effect of education on wages.

10See Heckman, LaLonde and Smith (1999)
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we will obtain will have the form

DL/L� =
�
mL(age− eL,Xi)−mL�(age− eL� ,Xi)

�
+

+
�

E(τL
i |age,Zi,Xi,Ji = L)−E(τL�

i |age,Zi,Xi,Ji = L�)
�
.

While the first term in square brackets is indeed ∆L/L�
AT E (age) and reflects the gains ob-

tained as a result of attending college over high school, the term in {} brackets rep-

resents the differences in composition between the two groups. This differs from the

expression is the square brackets in 11, which represents the average ability for edu-

cation level L of those who chose L minus the average ability for level L� of the same

group of individuals, i.e. those who chose L.

2.3 Estimation

The model described above has left a number of objects unspecified. These include

the functional forms for the direct costs of schooling κJ(ZJ
i ), J = H,C, the functional

form for the wage equations and the distribution of preferences and wages induced

by the random vector (Fi,τ0
i , τH

i , τC
i ,v

H ,vC,ε0
i , εH

i , ). The identifiability of such a

model is an important point of discussion. Indeed Magnac and Thesmar (2002) have

shown that the discrete choice model, without any direct link to outcomes such as

wages is underidentified.11 In their context they prove that we can identify the static

utilities (here direct costs of education) if we fix the discount rate, the distribution of

preferences and the utility of a reference choice. The implication is that in a discrete

choice model forward looking dynamics have little empirical content; for example we

cannot distinguish nonparametrically between a forward looking model and a static one

(discount rate zero) without further restrictions. However, this framework is perhaps
11See also Rust (1994)
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asking too much from the data and it is perhaps not too surprising that with just discrete

decisions and no other restrictions we cannot identify much. Heckman and Navarro

(2007) argue that using the cross equation restrictions between educational choice and

wages, as implied by a model where educational choices depend on labour market

gains, and putting some (factor) structure on the distribution of unobservables is crucial

for identification, although not sufficient. We discuss these identification issues below.

Here we address estimation in a fully parametric context. That is we specify all missing

functional forms, including the distribution of unobservables, up to an unknown finite

set parameters.

There are numerous ways to implement estimation; for particularly complex mod-

els a number of simulation approaches have been developed, including simulated method

of moments and indirect inference.12 Here we describe maximum likelihood because

the model we presented is relatively simple. We briefly discuss the implementation of

simulation estimators for this type of model below.

The estimation approach suggested by Rust (1987), known as Nested Fixed Point

(NFP) algorithm involves starting at some initial parameter vector; solving the model

to obtain the future value functions VC,VWH
i at all possible values of observables and

unobservables; followed by the evaluation of the the likelihood function. Once this is

evaluated at the parameter vector an update of the parameters can be found based on

a suitable optimisation algorithm, such as Gauss-Newton; when the updated parameter

vector has been obtained the process starts again with the solution of the model and

so on until convergence. The model will also have to be solved in intermediate steps

so as to be able to compute the derivatives of the likelihood during the Gauss Newton

iterative process or other derivative based method. It is thus crucial to solve the model

in a computationally efficient way.

Su and Judd (2008) note than in many cases the NFP algorithm can become ex-
12See McFadden (1989), Pakes and Pollard (1989) and Gourieroux, Monfort and Renault (1993) amongst

others.
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tremely time consuming and possibly infeasible because of the huge number of times

it needs to solve the full dynamic programming problem. They propose an alternative

approach based on mathematical programming subject to equilibrium constraints that

simultaneously solves for the value function and estimates the parameters θ . Effect-

ively, they treat the unknown value functions as parameters to be estimated and define

the link between the value functions and the structural parameters as a set of nonlinear

constraints on the parameters. Once set up in this way any standard optimisation al-

gorithm can be used. They find one obtains both speed and accuracy gain in the Rust

type problem.

To see how the model can be solved we start by constructing the probabilities of

educational attainment conditional on unobserved heterogeneity.

a. An individual is observed having just statutory education. They are then ob-

served for Ti periods in the labour market. The probability of this level of schooling

is

PS
i ≡ Pr(Statutory Schooling) = Pr

�
νH

i < EVWS
i −κH�ZH

i −Fi −βE max
�

VC
i ,VWH

i
��

(12)

This probability depends on the costs of high school, on the stream of earnings resulting

from work at this level of qualification, as well as on the benefits of continuing educa-

tion into college, which is expressed as a comparison between the benefits of college

and the stream of future incomes from high school. Interestingly, even if the benefits

from high school may be low for a particular individual, because say τH
i happens to be

very low they may still choose to attend high school because their benefits from college

may be very high. This illustrates why final educational attainment cannot in general

be represented as an ordered discrete choice regression model, which will have implic-

ations below for the identification and estimation of the wage returns to education.13

From an economic point of view this highlights the notion that each education level
13See Cameron and Heckman (1998)
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may represent a different sector and individuals may have a comparative advantage for

a more advanced sector, without being particularly good at the intermediate level.

Now consider what is the probability of observing someone completing high school

and then going on to work. They prefer to continue after statutory schooling and stop

after high school. To write down the probability of this event we will assume that the

schooling shocks vJ , J = S,H,C are independent over time and that all the depend-

ence in the sequential decisions comes from Fi. Then the probability of high school

completion with no further college is

PH
i ≡ Pr(High School and not College) =

�
1−Pr

�
νH

it < βEVWS
i −κH�ZH

i −Fi −βE max
�

VC
i ,VWH

i
���

×

Pr
�
νC

it+1 −νH
it+1 < κH�

i ZH
i −κC�

i ZC
i +(1−α)Fi +β

�
E max

�
VC,VWH

i
�
−EVWC

i
��

(13)

Finally, the probability of completing college can be written as

PC
i ≡ Pr(College) =

�
1−Pr

�
νH

it < βEVWS
i −κH�ZH

i −Fi −βE max
�

VC
i ,VWH

i
���

×

�
1−Pr

�
νC

it+1 −νH
it+1 < κH�

i ZH
i −κC�

i ZC
i +(1−α)Fi +β

�
E max

�
VC,VWH

i
�
−EVWC

i
���

(14)

This sequence of probabilities also illustrates the way that the distribution of character-

istics (observable and unobservable) evolve as individuals progress through schooling:

all else being equal individuals with the lowest values of F are the first to stop school.

The selection that happens next very much depends on the relative importance of effort

costs F for high school and college. If F is more important for high school than college

(α < 1) then individuals with the highest values of F will actually drop out and not go
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to college. If on the other hand effort is more important for college, the persons with

highest value of F will complete college and then enter the labour market.

Now suppose we observe earnings for an individual over Ti periods. The key com-

plexity here relates to the stochastic structure of earnings, i.e. the way that the error

terms ε evolve over time. In this context we will deal with the simplest case where

the ε are all independently and identically distributed over time. However, other more

realistic assumptions in the literature include cases where the ε are a random walk or

have an autoregressive structure.14

We suppose that observations on earnings start immediately after full time edu-

cation is completed. Thus if t = 1 for the first observation of someone who started

working following statutory schooling, t = eH +1 for someone with a high school de-

gree and t = eC + 1 for someone with college. With i.i.d. errors the density of the

sequence of earnings for the ith individual can be written as

LJ
i ≡ L(wis...wiTi |Ji,τi,Xi,θ) =

Ti

∏
t=ei

gJ(wi|t − ei, Xi, τJi
i ) (15)

where Ji is the level of education achieved, gJ is the density of wages for those with

education J, and θ is the vector of parameters. Putting all the pieces together the like-

lihood function for an individual who has followed education stream J and is observed

working until age Ti is

Li(wis...wiTi ,Ji|Zi,τi,θ) = PJ
i (Ji|Zi,Fi,τi,θ)LJ

i (wis...wiTi |Ji,τi,θ) (16)

All probabilities and wages depend on unobserved heterogeneity components. The

distribution of unobservables needs to be estimated together with the rest of the para-

meters. The model includes four unobservables, namely τi =(τS
i , τH

i , τC
i ), and F which

14Adda et al. (2009) allow for a within firm random walk.
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need to be integrated out. Integrating out the unobserved heterogeneity implies that

we average over all possible values, using as weights the probability of each possible

value. The weights, as well as the possible values of unobserved heterogeneity consti-

tute unknown parameters of the model. The individual contribution to the likelihood

now becomes

EF,τ [Li(wis...wiTi ,Ji|Zi,τi,θ)] =
ˆ

F,τ
PJ

i (Ji|Zi,Fi,τ,θ)LJ
i (wis...wiTi |Ji,τ,θ)dG(F,τ)

where G(F,τ) is the four dimensional distribution of unobserved heterogeneity. Note

that we are allowing for correlation between the factors.

A key complication in practice is that such high dimensional integrals can take a

long time to compute and while this level of generality is very attractive, in that it allows

very general sorting patterns into different education groups, the computational diffi-

culty could make the whole problem prohibitive, particularly in the context of richer

and more complex models including other decisions such as labour supply.

We can keep some of the advantages of the original specification and simplify the

problem substantially by assuming that there are just two factors, one that enters edu-

cation as before (F) and one that enters wages (τ). The effect of the unobservable in

each of the wages is controlled for by a coefficient αJ (J = H, C). The coefficient on

the wages for statutory schooling is normalised to one since τ is not observed.

Whatever the specifics of the distribution of unobserved heterogeneity, the sample

loglikelihood for N individuals is

LogL =
N

∑
i=1

log
�ˆ

F,τ
PJ

i (Ji|Zi,Xi,F,τ,θ)LJ
i (wis...wiTi |Ji,Xi,τ,θ)dG(F,τ)

�
(17)

The estimation problem relates to obtaining estimates for the unknown parameters θ

and the distribution G(F,τ) by maximising LogL in 17.
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2.3.1 Estimation by simulation

Many structural models are often too complex to estimate based on Maximum Likeli-

hood. Since the seminal work of Lerman and Manski (1981), McFadden (1989) and

Pakes and Pollard (1989) simulation approaches and in particular simulated methods

of moments have offered a useful alternative that allow us to approach much more

complex models.

The first step in simulated method of moments is to decide on a set of moments that

can identify the parameters on the model. In our education choice model the propor-

tions attending each level of education, mean wages and variance of wages by educa-

tion, all conditional on the exogenous variables would be suitable moments. These can

be estimated directly from the data. Denote these by q̂. Given a value for the parameter

vector θ ,which includes the distribution of unobservables we can simulate education

choices and lifecycle profiles of wages from the model. The same moments that were

estimated from the data can now be constructed from the simulated data. Denote these

simulated moments by qs(θ), where s denotes the number of simulations. An estimate

of the covariance matrix of the estimated moments is Ω̂. Then the simulated method of

moments minimises the function

Q(D|θ) = (q̂−qs(θ))�Ω̂−1(q̂−qs(θ)) (18)

with respect to θ , where D is the data used to compute the moments Precision will

improve with the number of simulations S used to compute qs(θ) as well as with the

degree of overidentification, i.e. the number of moments over and above those needed

to exactly identify the model.

A note of caution is called for: while maximum likelihood uses all the information

and restrictions implied by the model, given the available data, method of moments do

not. In linear models it is easy to see what moments identify the model; however in
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highly nonlinear models choosing the set of moments that can identify the model may

be difficult in practice. Moreover it is complicated if not intractable to check formally

that the chosen moments identify the model: this would involve checking that the 2nd

derivative matrix of the criterion function is negative definite around the optimum.

Thus the cost of moving away from maximum likelihood is the lack of clear rules for

choosing the right moments to match.

Returning to the estimation problem, if the criterion function 18 is smooth then

a derivative based method, such as Gauss Newton is appropriate. This may not be

always the case. Recently Chernozhukov and Hong (2003) have offered an estimation

approach that borrows from Bayesian estimation methods and is particularly suitable

for complex problems and non-smooth criteria functions. Borrowing from the Bayesian

literature they define the “quasi posterior” distribution of the parameters as

gN(θ |D) ∝ exp(−NQ(D|θ))π(θ) (19)

where π(θ) is a suitable prior. Asymptotically the prior will not matter, but in any fixed

sample the choice will affect the parameter estimates. The key result by Chernozhukov

and Hong (2003) is that if we draw a sample of parameters θ (k) from gN(θ |D), where

k denotes one random draw, then the sample mean of the {θ (k),k = 1,K} converges

asymptotically to θ . To draw random vectors from gN(θ |D) we can use Markov

Chain Monte Carlo methods (Chib, 2001). This works as follows: guess an initial

value for θ , say θ (0), solve and simulate the model and compute the corresponding

exp(−NQ(D|θ))π(θ), which is gN(θ (0)|D) up to an unknown constant of integration.

Now define an update of θ by

θ (k+1) = θ (k) +η (20)

where η is a random vector drawn from a distribution such that it respects any con-
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straints on the parameter space. For example, for parameters that cover the entire real

line η could be normal with some variance to be chosen by us and modified as the

sampling proceeds until we reach a stationary distribution. Once the stationary distri-

bution has been reached the sampling needs to remain the same.15 We thus proceed

as follows: compute the value of gN(θ (k+1)|D). The next element of the sample space

that we will keep is

θ (k+1) with probability p = max(1, exp(−NS(D|θ (k+1)))π(θ (k+1))

exp(−NS(D|θ (k)))π(θ (k) )

θ (k) otherwise

(21)

Note that the constant of integration cancels out from 21 and hence never needs to

be computed. This algorithm leads to a sample drown from gN(θ |D). The estimator

is then the average of the draws from the stationary distribution and the confidence

intervals can be obtained directly from the quantiles of the sampled parameters. This

approach can work well, even if the criterion function Q(D|θ) is not smooth because

no derivatives are required.

Overall simulation methods require programming the solution of the model and our

ability to simulate it but do not require the computation of an often intractable likeli-

hood function. Such approaches promise to give a fresh impetus to the use of structural

models. This is particularly important because as we shall see most methods that look

simpler rely implicitly for their interpretation on particularly strong assumptions about

individual behaviour.

15For implementation details of Markov Chain Monte Carlo methods see Robert and Casella (1999)
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2.4 Estimating the Wage Returns to education in Mincer wage equa-

tions

Most of the work on the returns to education has not followed the approach described

above; rather it has used the framework of the Mincer equations where educational at-

tainment is summarised by years of education. Thus we digress to discuss the methods

used that are based on years of education. The theoretical foundations for such a model

can be found in the work of Mincer (1958, 1974). Heckman, Lochner and Todd (2003)

have an excellent analysis of the theoretical foundations of the Mincer wage equation

and on its empirical relevance.

The key differences in the underlying choice model that leads to the Mincer equa-

tion is the absence of direct costs of education and the absence of any uncertainty when

education choice is made. Moreover, education is seen as enhancing human capital but

not changing its nature: different education levels are perfectly substitutable for each

other. The basic Mincer equation can be written as

lnwit = at +bsi + cxit +dx2
it +uit (22)

where si represents the years of schooling and xit represents years of actual work ex-

perience. This relationship is derived in Mincer (1974) and results from pre-labour

market investments in schooling and post school training. In the simplest form of the

Mincer model, where there are no direct costs of schooling, but only an opportunity

cost, and no heterogeneity in discount rates, the coefficient on schooling is the return

to education and will be equal to the interest rate. However, in more complex models,

where there are direct costs and possibly heterogeneity in discount rates and in costs,

this is no longer true. So the first (well known) point is that in general just using a wage

equation does not provide us with enough information to estimate the return to educa-

tion, but just the educational premium for wages; this is just part of the story. In what
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follows, we refer to the wage return to education as the effect of extra education on

wages earned, rather than the full return, which would include a complete accounting

of the costs and benefits.16

Relaxing a number of assumptions underlying the Mincer model we can end up

with a relationship that is both nonlinear in education and where the returns differ

across individuals. Perhaps the easiest way of justifying this equation is via the human

capital production function, which can take a variety of functional forms and then price

out human capital by the equilibrium in the labour market.

We can simplify the problem by replacing actual experience (the number of periods

worked) and including potential experience (Ageit − si) in a linear fashion to start with.

We will also abstract from all other relevant observable characteristics and we will drop

the time subscript. However we will allow the baseline wage to be different across

individuals by specifying that a depends on individual i (ai) due to unobserved labour

market ability. Thus we get

lnwi = a+bsi + cAge+[ai −a]

If differences in ability are known at the time the individual makes educational choices

and are taken into account by them, the years of education will depend on them and

be endogenous.17 This means that E[ai −a|si] = q(si) where q(si) is some non-trivial

function of schooling s. In this simple framework, suppose we have a variable zi which

satisfies the rank condition E(si|zi) �= 0 (correlated with education) and the exclusion

restriction E(ai − a|zi) = 0. Then the instrumental variable estimator is the sample

analog of

b =
E ((zi − z̄) lnwi)

E(si(zi − z̄))
(23)

16The Mincer equation can also be viewed as a restrictive version of the Roy model, where the unobserv-
ables are the same across education groups.

17see Griliches (1977a,b) for one of the first and comprehensive discussions of the role of ability in wage
equations.
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which can be implemented by replacing the numerator with the sample covariance of

z and log wages and the denominator by the sample covariance between z and years of

schooling. The resulting estimator is consistent, i.e. converges to the true value b as

the sample tends to infinity, under the stated conditions.

Of course the key difficulty is finding variables that somehow affect schooling and

do not affect wages. Because of the linearity of the relationship our task is made easier:

even a binary instrumental variable would be sufficient to estimate b. An obvious pos-

sibility is to use variables that reflect the cost of schooling when the individual was

making these decisions. The key problem of course is that such cost related variables

may also be related to the future productivity of the individual when they enter the

labour market. A number of variables have been used in the literature in this respect.

For example, Card (1995) discusses the use of distance from school as an instrument,

which reflects both time and money costs of schooling. While this is clearly a cost re-

lated variable and is correlated with schooling it may also be correlated with individual

ability. This is because individuals and schools are unlikely to be randomly allocated.18

An example is individuals living in a city tend to be higher ability and probably more

dynamic and ambitious. At the same time the increased population density will mean

that schools are on average closer to individuals.

Other instruments relate to changes in legislation. Prominent examples include

the use of changes in compulsory schooling laws by Harmon and Walker (1995). They

exploit the fact that compulsory schooling increased twice in the UK, from 14 to 15 and

then from 15 to 16. However, because their estimation involves comparing outcomes

across successive cohorts, they are not able to allow for other confounding factors

that may influence productivity and the returns to experience of each of the successive

cohorts.

Meghir and Palme (2005) directly evaluate the impact of an educational reform

that increases compulsory schooling and abolishes early streaming at 12 years of age.
18see also Card (2001) on this point.
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In their case they are able to exploit the fact that the reform was introduced gradu-

ally across different municipalities in Sweden, which meant that at the same point in

time there were municipalities operating different school systems and whose workers

would eventually end up in the same labour market. This implied that they could com-

pare across cohorts living in municipalities that switched education system between

the cohorts to those living in municipalities that kept the old system for both cohorts

(or indeed who were in the new system for both cohorts). The results showed clear

benefits for individuals from lower socioeconomic groups both in terms of educational

attainment and wages; for those from higher socioeconomic groups there was no effect

of education but an adverse effect on their earnings over the lifecycle. Indeed the nature

and scope of the reforms were such that we would expect them to affect wages directly

as well as possibly through years of education. Hence in this case the reform does not

provide a valid instrument for the returns to education, but can be evaluated as a policy

in itself.19

This brings up an important point of general interest: it is often the case that reforms

are used as instruments for estimating returns to education. However, if the reforms

changed other aspects of education, such as its quality, it is no longer an excludable in-

strument for the quantity of education. The reforms to the number of compulsory years

of schooling are a strong case at point: if we increase the number of compulsory years

of schooling we may change both the peer group of those who would have continued

anyway and possibly the pupil teacher ratio. And if we do increase the resources we

will change the composition of the secondary teacher population, all of which can have

a direct effect on wages. In most plausible cases the reform will not be excludable from

the wage equation a priori.

Angrist and Krueger (1991) use the quarter of birth of an individual an instrument

for education in a wage equation. Quarter of birth interacts with the laws on compuls-
19It did however, allow inferences to be made on the effects of streaming on groups whose socioeconomic

background was such that their educational attainment could not be affected by the change in the compulsory
schooling laws.
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ory schooling to generate differences among individuals who happen to have been born

on different dates: the reason this instrument may explain differences in the amount of

schooling received is because one can drop out of school on their 16th birthday; hence

depending on the month of birth some individuals have effectively fewer months of

compulsory schooling than others. Interestingly this instrument acts at the individual

level and does not affect aggregate schooling, as do reforms to the schooling laws men-

tioned above. Angrist and Krueger show that there are differences in total schooling by

month of birth. However, the differences are small and this particular study led to the

important literature on the effects of using instruments that are only weakly correlated

with the variable to be instrumented (here schooling). One of the conclusions of this

literature is that when an instrument is weak the estimated results are biased towards

OLS (see Bound, Jaeger and Baker, 1995 and Steiger and Stock, 1997). A further issue

with quarter of birth is whether it is excludable as an instrument from the wage equa-

tion: children born in different quarters start attending school at different ages, which

may well have an impact on their performance. The effect may be small, but it has to

be compared with the small effect that quarter of birth has on attained schooling.

In a interesting paper Acemoglu and Angrist (1999) combine compulsory school-

ing reforms as instruments that change both the individual level of education and the

aggregate one with quarter of birth, that changes only individual decisions but have

no aggregate effect. Their purpose is to distinguish between the private and the social

returns to education; this brings to the fore the issues we discussed earlier: reforms to

compulsory schooling laws affect directly those individuals who would have dropped

out anyway. However, because they increase education for a number of people at the

same time they change the composition and amount of educated individuals in the state.

If education has externalities, i.e. social returns over and above the private ones, then

using reforms as an instrument should pick up these effects; the estimated returns to

education will be different from those measured by an instrument that “varied” indi-
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vidual levels of education but not the aggregate. Indeed they will be larger if education

has positive external effects. To measure the contribution of the external effects they

then use quarter of birth instruments to identify the private returns as in Angrist and

Krueger (1991). The difference of the two estimates should be the externality effect of

education. However, if the reforms also affect the quality of education and equilibrium

returns the estimates obtained with the reforms will be confounded by GE effects and

quality differences. A further issue arises if returns to education are heterogeneous

because, even under the monotonicity assumption the instruments may be measuring

the returns corresponding to different types of individuals. Moreover, with GE and

peer effects monotonicity may no longer be valid . In general it is particularly difficult

to find satisfactory instruments for education returns without embedding the problem

within the a structural model, which allows us to account for such confounding factors.

2.4.1 Nonparametric Models

When the wage returns to education are not constant but depend on education, as would

be the case if the effect of schooling on wages were nonlinear, the instrumental vari-

ables approach becomes more demanding. Dropping age for notational simplicity, a

general way of describing the problem is through the following model

lnwi = b(si)+ui (24)

where now b(si) is some unknown function, and education may be endogenous. The

econometric problem of using instrumental variables in this nonparametric context has

been addressed by Newey and Powell (2003) and Darolles, Florens and Renault (2000).

The estimator is defined based on the assumption that E(u|Z) = 0 as in the usual linear

instrumental variables context. This restriction means that the error term u is mean

independent of any nonlinear function of z. However, this is not sufficient: we also
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need a suitable rank condition. Thus in this regard Newey and Powell (2003) introduce

the critical rank condition that any function of education δ (s) can be predicted by Z.

To restate their proposition 2.1:

[Proposition 2.1, Newey and Powell (2003) page 1567] If E(u|Z) = 0 then b(s) in

24 is identified if and only if for all δ (s) with finite expectation E(δ (s)|Z) = 0 implies

δ (s) = 0.

The importance of this result lies in its implications (or requirements) for identific-

ation. The practical difficulty is finding instruments that can satisfy these conditions:

the rank condition is much more demanding than the equivalent one in a linear con-

text because it requires that the instrument can produce predictions of any nonlinear

function of education and that all these predictions are full rank. However, the prac-

tical importance of this theorem lies in what it tells us about the identifiability of such

general nonlinear relationships.

Suppose we do have an instrument satisfying the conditions, we now briefly de-

scribe implementing an estimator for the function b(si). To understand how the non-

parametric estimator works we will start with the simple case where the education

variable takes K distinct values (1 year to 22 years say) and we have an instrument

Z which takes M distinct values; imagine this as reflecting discrete costs of schooling.

The exclusion restriction effectively implies that the values of this instrument have been

randomly allocated to individuals20. Since si takes K discrete values, g(si) also takes K

discrete values. The exclusion restriction implies that (lnw−b(S)|Z = z j) = 0.21 This

implies the following set of equations

E(lnw|Z = z j) = E(b(S)|Z = z j) j = 1, ...,M (25)

This represents a system of M equations with K unknowns. For example the first
20The theory requires the instrument just to be mean independent of the residuals, conditional on other

observable characteristics. Hence the assumptions are weaker than complete randomisation that indices full
independence.

21We use a capital to denote a random variable and a lower case to denote a specific realisation.

36



equation will have the form

E(lnw|Z = z1) = Σkb(S = sk)Pr(S = sk|Z = z1)

For this system of equations to have a unique solution for the K unknowns b(S = sk),

k = 1, ...,K, we need the matrix whose ( j,k) element is Pr(S = sk|Z = z j) to have rank

K. This means that the instrument has to take at least K values and that the probab-

ility of different levels of schooling vary sufficiently with the instrument. This rank

condition is the discrete analog of the Newey and Powell condition.

To implement this define the sample average logw when the instrument takes the

value z j by ȳ j whose value is determined by ȳ j = 1
Nj

N
∑

i=1

�
1(Zi = z j) lnwi

�
, where 1(Zi =

z j) is one whenever in the sample the instrument take the value z j and Nj is the number

of such sample points. Denote by pk j = Pr(S = sk|Z = z1) and by p̂k j the sample

estimate of this probability. The sample analog of 25 is the set of equations

ȳ j =
K

∑
k=1

bk p̂k j j = 1, ...,M (26)

where bk = b(S = sk) is the set of k unknown values. Estimating g then involves simply

solving the system of equations in 26. For the exact identification case (M = K) this

simply means

ĝ = P̂−1ȳ (27)

where ĝ is the K × 1 vector of all ĝks and P̂ is the K ×K matrix of probabilities of

the p̂k j. For the overidentified case (M > K and rank(P)=K) the estimator of gk would

minimise the distance

D(g) = (ȳ−Pg)�Ω−1(ȳ−Pg)

with respect to the vector g. In the above Ω is a suitable covariance matrix.

Extending this procedure to the continuous education case, involves solving an "ill-
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posed inverse" problem, where in general the matrix P̂ in 27 is not invertible in finite

samples. The approach to solving this is called regularisation, which involves adding a

component to P so that it becomes invertible, for example replacing P by P∗ =P+λNI,

λN being a scalar that declines (at a suitable rate) as the sample size N goes to infinity

and I being the identity matrix. Darolles, Florens and Renault (2002) and Newey and

Powell (2003) offer solutions to the estimation problem in more general terms than we

described here.

The key implication of this discussion is that a wage equation that is linear or

nonlinear in years of education can in principle be estimated by instrumental variables,

without saying much about the structure of the education choice model, other than the

standard conditions on the instruments. The most important restriction that has been

imposed in this discussion is that the returns to education are homogeneous, or more

precisely that education choice does not depend on heterogeneous returns to education.

2.4.2 Heterogeneous returns to years of education and nonparametric models

If individuals have say different learning abilities the wage returns to education may

differ across individuals. A simple way of expressing this is to rewrite the Mincer

model as

lnwi = ai +bisi + cAge. (28)

where ai and bi are unobservables. Now rewrite the above in the form

lnwi = a+bsi + cAge+[ai −a+(bi −b)si]

where the term in square brackets [ai −a+(bi −b)si] is the residual . If the individual

takes account of ai and bi in choosing si, or indeed if any mechanism allocating school-

ing to individuals depends on ai and bi then OLS will be inconsistent for b = E(bi). So
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the question is how can we estimate b or other interesting features of the distribution

of the wage returns. These may include the impact of education level s for those who

choose that level (analogous to the effect of treatment on the treated). When si is bin-

ary, this is the subject of the extensive treatment effects literature, which has also been

extended to continuous treatments.22 We discuss the binary or multiple discrete case

in the following section, when we go back to our theoretical framework of education

choice and wages.

To start off we define the reduced form model for education choice. Thus we spe-

cify

S = P(Z)+V (29)

where we define P(Z)≡ E(S|Z).

The first important lesson from this literature is that Instrumental Variables as

defined in 23 is not consistent for the average parameter b = E(bi), i.e. for the average

returns to education, without further restrictions. Heckman and Vytlacil (1998) show

that IV is consistent for E(bi) with the additional assumption that E((bi −b)vi|Z) = 0,

implied by the stronger assumption (A,B,V ) ⊥⊥ Z, where the capital letters are the

random variables and ai, bi and vi are their specific realisation respectively.

To see that this is a strong assumption suppose that the instrument Z was random-

ised. In the standard IV framework, this would be sufficient for identification, because

randomisation guarantees that E(ai|Z) = 0. Now however, we need to take a stance

about the actual model generating educational choices. Suppose for instance that the

true model generating educational choices took the form S = D(Z,u) where u is un-

observed heterogeneity. While (ai,bi,ui) ⊥⊥ Z is guaranteed by randomisation we

require the stronger assumption that (ai,bi,vi)⊥⊥ Z for v = S−E[D(Z,u)|Z] or at that

E[bivi|Z] = 0; this does not follow without further assumptions. The implication of this
22see Heckman and Robb (1985), Heckman, LaLonde and Smith (1999), Imbens and Angrist (1994),

Florens, Heckman, Meghir and Vytlacil (2008) , Imbens and Newey (2009) and Altonji and Matzkin (2005)
amongst many others.
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discussion is clear: even if the assumptions underlying IV are valid, the interpretation

of IV coefficients is unclear and will depend on the structure of the education model

itself. We now go deeper into this issue.

More generally, suppose the education model is nonlinear in education si so that

we can write (ignoring other variables)

lnw = g(S,e) (30)

where e is a vector of unobserved characteristics and where S will in general depend on

e. A number of papers have attempted to tackle this important problem in various ways,

by making different assumptions and considering identification of different aspects of

the model. These include Chesher (2003), Altonji and Matzkin (2005), Imbens and

Newey (2009) and Florens, Heckman, Meghir and Vytlacil (2008).23 Without getting

into too much detail we briefly review some of these here.

Altonji and Matzkin develop two approaches. In the one that is most relevant to our

problem they make a conditional independence assumption that the distribution of the

error term f (·) is such that f (e|Z,S) = f (e|Z), i.e. conditional on Z the distribution of

the error term does not depend on schooling. In this case e can be a two dimensional

vector of errors that affects log wages in some arbitrary way. The authors identify the

average effect of schooling on wages at each level of schooling s, i.e. E( ∂g(S,e)
∂S |S = s),

based on their assumption.

Chesher (2003) develops identification results for the impact of the endogenous

variable (here schooling) on quantiles of the distribution of the outcome. His identifica-

tion results rely on weaker than usual local independence conditions; these require that

specific quantiles of the distributions of the unobservables are insensitive to changes in

the instrument. He also requires that the outcome of interest, here the wage, is mono-

tonically related to the unobservables. In this his model is more restrictive than that of
23Blundell and Powell (2004) show identification and estimation for nonseparable models with a binary

dependent variable.
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Florens et al. (2008) and Imbens and Newey. If all quantiles of the unobservables are

insensitive to the instrument, then global identification follows.

One issue that is important is that the local independence conditions do not have

a clear relationship with an underlying choice model. While we can specify sufficient

conditions on behaviour for full independence to be satisfied no such conditions have

been specified for local independence, when full independence is not valid.

Imbens and Newey (2009) consider a general case where e in equation 30 is a

vector of unobservables, and hence they allow for a completely flexible specification

of heterogeneity in 30. To prove identification they specify the equation assigning

values to the endogenous variable, which in our case is the model of education choice

to take the form

S = P(Z,U) (31)

where the function P is strictly monotonic in U . They define the control variate V =

FS|Z(S,Z); in a binary choice context this would be the probability of S = 1 give Z.

The core of the identification result in their paper is based on the following three

assumptions:

1. The function P in 31 is strictly monotonic in U ;

2. The errors (U,e) are independent of Z,i.e. (U,e)⊥⊥Z. This implies that S and e

are independent conditional on V ;

3. The support of V given S is the same as the support of S.

To understand the meaning of this last assumption return to the definition of V and

suppose Z does not affect V for some S = s�; in this case the support of V given S = s�

would be degenerate. Thus this assumption requires Z to affect V , which makes it

equivalent to a rank condition. However, it also has another important implication
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because it requires Z to be able to span the entire support of V whatever schooling

level we consider. To see why this may be restrictive, suppose U is unobserved ability

and Z are the observable costs. The assumption effectively requires that Z varies in

such a way as to ensure that all ability levels (U) are represented within each schooling

level S.

Under these assumptions the authors prove identification of the "quantile structural

function", i.e. they can identify the quantiles of g(S,e), defined as q(τ,S) where τ

stands for the quantile of g(S,e).This allows them to identify quantile effects, i.e. how

changes in education change the τth quantile of wages (q(τ,S= s)−q(τ,S= s�)). They

also derive a number of other identification results under weaker assumptions, which

are beyond the scope of this chapter.

Florens, Heckman, Meghir and Vytlacil (2008) consider a more restrictive class

of models, but obtain identification under a weaker rank condition, namely that of

measurable separability, discussed below. The class of models they consider take the

following nonseparable form

lnw = m(S,ε)≡ g(S)+ ε0 +
K

∑
k=1

Skεk (32)

where the function g(·) is not known. The model discussed in Newey and Powell

(2003) and Newey, Powell and Vella (1999) is one where K = 0. More generally, this

function is non-separable in education S and unobserved heterogeneity. The restrictions

vis-a-vis Imbens and Newey (2009) is that g(S) has to be differentiable up to the order

K and the maximum value of heterogeneous terms K needs to be known in advance.

In the context of Florens et al. (2008) , no identification results have been proved for

the case where K is unknown and has to be estimated. The object of interest for the

Florens et al. (2008) core identification result is the "Average Treatment Effect", or the
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average wage return to education at each level of education S. This is defined as

∆AT E(s) =
∂g(s)

∂ s
= Eε

�
∂m(S,ε)

∂S

�
(33)

The econometric problem is to identify ∂g(s)
∂ s or even the function g(S). As stated above,

standard instrumental variables will not work. Florens et al. (2008) make the following

assumptions (omitting some technical details).

1. The function g is differentiable to the Kth order.

2. Control Function: E(ε j|Z,S) = r j(V ) for j = 0, ...,K, where r j(·) is a known or

identifiable function and V is defined in 29.

3. Rank condition (measurable separability): S and V are measurably separated,

that is, any function of S almost surely equal to a function of V must be almost

surely equal to a constant.

Theorem [from Florens et al. (2008) , Theorem 1 p 1197] Given assumptions 1, 2 and

3 above the average wage returns to education in 33 as well as the wage returns to

education for those who chose schooling level S = s are identified.

This identification theorem defines conditions under which we can actually identify

the wage returns to education even with errors that enter in a non-separable way and in

a very general fashion. It is important of course to understand the limitations implied

by the assumptions.

Assumption 1 precludes any kinks or discontinuities in the relationship between

education and wages; discontinuities could be induced by sheepskin effects, where

wages may jump discontinuously upon graduation for instance.

Assumption 2 is similar (but not identical) to the usual exclusion restriction. It

states that all the dependence between the unobservables in the education equation and

the educational assignment rule can be expressed through some known or identifiable
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function of the residual in the educational equation reduced form. This assumption is

the same as the one used in Heckman (1979) and many others since;24 In Heckman

(1979) the control function is the Mills ratio. Imbens and Newey (2009) use the same

concept of a control variate. This control variate induces conditional independence

between schooling and unobserved heterogeneity. The third assumption is a rank con-

dition: it requires sufficient independent variation of V and S; If the instrument Z did

not "explain" S this condition would not be satisfied. Note however, that measurable

separability does not require the support of V given S to be the same as the support of

V . As such it is a weaker assumption than the one used by Imbens and Newey (2009).

These assumptions seem overly technical; we need to explain what they mean in

terms of economic behaviour. Unfortunately necessary and sufficient conditions are

not available. Florens et al. (2008) provide sufficient conditions on a structural model

of education choice for the conditions to be satisfied. In particular they posit a model

where the education choice can be written as 31 where U is a continuous scalar random

variable and P is an increasing function of U. This is restrictive, because it requires that

just one unobservable factor characterises educational choice and that this variable is

monotonically related to education. For example, if the level of education depends on

unobservable costs and on labour market ability then S will depend on two unobserved

factors that may not be possible to aggregate them into one satisfying the monotonicity

assumption. Florens et al. (2008) show that if the instrument Z is independent of all

unobservables in the model i.e. Z⊥⊥ (U,ε0,ε1, ...,εK), then under the assumption of

measurable separability between U and S assumptions 2 and 3 of the theorem are sat-

isfied and identification of the average wage return to education follows. Hence results

obtained under the control function assumption can be interpreted in the context of any

education choice model that can be expressed as S = S(Z,U), which is monotonic in

U.

24See Heckman and Robb (1985) and Newey, Powell and Vella (1999)
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2.4.3 Education choice and Wages: A Simple Illustration and Discussion

Florens, Heckman, Meghir and Vytlacil (2008) present the following example to

illustrate the issues. Suppose that the discounted annualised earnings flows for s years

of education is Ws .

Ws = ϕ0 +(ϕ1 + ε1)s+
1
2

ϕs2 + ε0

and the cost function for schooling as

Cd =C0(Z)+(C1(Z)+ v1)s+
1
2

C2(Z)s2 + v0 (34)

where εk and vk (k = 0,1) are, respectively, unobserved heterogeneity in the wage level

and in the cost of schooling. We impose the normalisations that E(εk) = 0, E(vk) = 0,

for k = 0,1. We implicitly condition on variables such as human capital characteristics

that affect both wages and the costs of schooling. The Z are factors that only affect the

cost of schooling, such as tuition costs.

Assume that agents choose their level of education to maximise wages minus costs.

Let S denote the resulting optimal choice of education. S solves the first order condition

(ϕ1 −C1(Z))+(ϕ2 −C2(Z))S+ ε1 − v1 = 0.

Assuming that ϕ2 −C2(Z) < 0 for all Z, the second order condition for a maximum

will be satisfied. This leads to an education choice equation (assignment to treatment

intensity rule)

S =
ϕ1 −C1(Z)+ ε1 − v1

C2(Z)−ϕ2
.

This choice equation satisfies the monotonicity restriction discussed above and if Z

is randomised it will be jointly independent of εk and vk (k = 0,1). This implies the

control function assumption and the model is identified without knowledge of or further

restrictions on the functional form of the wage and the education choice equations.
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However this result is sensitive to changes in both the degree of heterogeneity in

wages or directly in the cost function because both can affect the structure of educa-

tional choice. Consider the same example as before, except now the second derivative

of Wd is also stochastic:

Ws = ϕ0 +(ϕ1 + ε1)s+
1
2
(ϕ2 + ε2)s2 + ε0

In itself this poses no problem, except that in an optimising model it will change the

structure of educational choice; this now becomes

S =
ϕ1 −C1(Z)+ ε1 − v1

C2(Z)−ϕ2 − ε2

In this case, the structural model makes S a function of V = (ε1 − v1,ε2), which can

satisfy the independence assumption if Z is randomised, i.e. Z ⊥⊥ (V,ε0,ε1,ε2) but V

is not a scalar error. We can still construct an education model depending monoton-

ically on one error term but this new error term will not generally be independent of

Z: define a residual Ṽ = FS|Z(S|Z); the "reduced form" education choice equation can

then be written as S = g̃(Z,Ṽ ) = F−1
S|Z (Ṽ |Z), which is increasing in Ṽ . Thus S is strictly

increasing in a scalar error term Ṽ that is independent of Z by construction. However,

Z is not independent of (Ṽ ,ε0,ε1,ε2) as required by the identification theorem, despite

the fact that it is independent of the original errors (V,ε0,ε1,ε2). To see why, note that

Pr(Ṽ ≤ v|Z,ε0,ε1,ε2) =

Pr
�
v1 : ϕ1−C1(Z)+ε1−v1

C2(Z)−ϕ2−ε2
≤ F−1

S|Z (v)
��Z,ε0,ε1,ε2

�
�= Pr(Ṽ ≤ v|ε0,ε1,ε2)

In the above varying Z changes the set of v1 for which the condition is true and hence

the distribution of Ṽ depends on Z.

This example illustrates how the specification of the educational choice model has
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implications for the identifiability of the wage returns to education. As emphasised by

Heckman, LaLonde and Smith (1999) and Abbring and Heckman (2007) informational

assumptions can play an important role: here if the individual knows and takes into ac-

count the complete structure of wages the educational choice model becomes such that

the sufficient assumptions for identification used by most papers in this literature may

no longer be valid depending on the degree of heterogeneity in the wage equation.

Hence even in a non-parametric framework and with randomised instruments the in-

terpretation of results will depend crucially on the model driving educational choice:

randomisation of the instruments is not sufficient in this respect. Thus, what transpires

from the above is that identification depends on the nature of education choice, beyond

the simple statement that a valid instrument is available.25 This contrasts to an extent

with what is known about models with homogeneous effects.

In the next section we will consider explicitly educational choice as discrete. This

framework permits consideration of identification and estimation issues based on richer

models of educational choice.

2.5 Identification and Estimation of the wage returns to Education

in the dynamic discrete education choice model.

We now return to the dynamic multisector model of education choice described in

section 2.2. This is a more complex model because it recognises the sequential nature

of education choice and allows for uncertainty, which gets revealed gradually between

different educational stages. It also allows for the possibility of comparative advantage

for a particular educational level.26 Our aim is to review approaches to identifying and

estimating measures of the returns to education, such as the average treatment effect or

the Local Average treatment effect.
25valid in the traditional sense of being uncorrelated to unobservables and correlated with education.
26See for example Heckman and Sedlacek (1985).
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There is a vast literature on discrete treatment effects and their identification. Some

of the most important results are presented in Heckman and Robb (1985), Heckman,

LaLonde and Smith (1999), Imbens and Angrist (1994), Heckman and Vytlacil (2005),

Carneiro, Heckman and Vytlacil (2010) and many others. Most papers define statist-

ical assumptions that lead to identification. Some make the additional important step

of relating these assumptions to the underlying economic behaviour a prime example

being Vytlacil (2002).

We focus on two issues that arise when using the model of section 2.2 as an organ-

ising framework. There are two issues. First to what extent is the full model nonpara-

metrically identified and second if the full model is not identified under what conditions

can we at least identify the marginal distribution of earnings for each education level,

so as to get to the average returns to education.

Magnac and Thesmar (2002) explicitly analyse the identification in dynamic dis-

crete choice models with uncertainty where the data only include the discrete choices

as well as observations on the relevant state variables. In our case these would be the

education choices and the variables determining the costs of education respectively (Z).

No observations on outcomes motivating such choices, such as income are observed.

They show that even in the absence of persistent unobserved heterogeneity the model is

seriously underidentified: to identify the within period utility, without functional form

restrictions one needs to know the distribution of the shocks, the discount factor and

the current and future preferences for a reference alternative. Exclusion restrictions

between alternatives can improve things but not by much.

However, when we observe outcome variables such as earnings and when we can

link the choice of a level of education to the observed outcome as indeed the model

presented in section 2.2 the prospects for identification improve. Heckman and Navarro

(2007) present a number of identification theorems relating to the dynamic structural

model itself and to the distribution of earnings in each education level. Many of the
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issues can be understood by taking the simpler framework of Heckman, Urzua and

Vytlacil (2006a,b) (HUV henceforth).

Consider first a simple framework where education choice can be expressed as a

once and for all choice at a point in time. Individuals choose the level of education

among a set of possible levels. However the levels are not necessarily ordered. The

underlying reason why the choices are not ordered are the dynamics: it is possible that

an individual choosing between dropping out of school or attending high school, could

choose the former, in the absence of any other choice, but that if the choice of college

is added, then they could progress to college (via high school graduation). HUV study

identification of models with discrete treatments and unordered choices and provide

identification results, which we outline briefly here.

Write the net payoff to education as

RJ(ZJ ,X) = ϑ J(ZJ ,X)−V J , J = S,H,C (35)

where ZJ is the set of variables that affect education choice J; these could be the costs

that affect a particular education level, such as fees or transport costs to the closest

educational institution. Because of dynamics all ZJ may be the same (see below). Let

Z = {ZS,ZH ,ZC}. The payoff to education is earnings and is given by 5. Now make

the following assumptions as in HUV

1. The unobservables are jointly independent of Z, X and age: (τS + εJ
t ,V J , J =

S,H,C)⊥⊥ {Z, age, Xi}

2. The support (supp) of the functions ϑ J(ZJ) and mJ(age,X) is independent of
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each other so that

supp{ϑ J(ZJ ,X),mJ(age,X),J = S,H,C}=

ϑ S(ZS,X)×mS(age,X)×ϑ H(ZH ,X)×mH(age,X)×ϑC(ZC,X)×mC(age,X)

3. The structures of the functions ϑ J(ZJ) and of the variables ZJ is such that their

support is at least as large as the support of V J :

supp{ϑ J(ZJ)} ⊇ supp{V J}

4. Given age and Z, X has full rank

These assumptions imply that we can find combinations of values of Z such that the

probability of any choice J becomes 1. Within that "limit set" as Heckman and Navarro

(2007) call them we can identify the marginal distribution of earnings Y J conditional on

age and X . The latter follows from the independence assumption that ensures that the

distribution of earnings is the same for whatever value of Z and by the rank condition

that ensures that whatever the value of Z and age there is sufficient variation in X . In

addition if all we are interested is average earnings given X and age, then all we need

is that the errors in the earnings equation are mean independent of Z, age and X .

This identification result suggests an estimation strategy for mean earnings. Sup-

pose the only X regressor was age. Then we can estimate mean earnings for education

level J at age a as

Ŷ (a,J) = ∑N
i=1 K(p̂(Zi)−1)Y J

i (agei = a)
∑N

i=1 K(p̂(Zi)−1)

where K( p̂(Zi)− 1) is a kernel giving maximum weight when p̂(Zi) = 1. This is a
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weighted average of the earnings of (potentially) all individuals with education level

J, with the weights being higher the higher the predicted probability of attaining that

level. The weights towards individuals with probability equal to one of achieving this

level increase as the sample size increases, but at a rate which is slower than the sample

size increase. Clearly this estimation procedure is only justified if the limit sets exist

in the population and the assumptions detailed above are justified. Below we discuss

further the support assumptions and the consequences of them being violated. But

before this we turn to the model that is explicitly dynamic.

The question is how different is the dynamic context in terms of the required as-

sumptions for identifying the marginal distributions of earnings corresponding to dif-

ferent education levels. By examining equations 12, 13 and 14 it is apparent that all

probabilities depend on all Zs so long as these are all known when the decisions are

made sequentially over time. Second it is also apparent that the probabilities are non-

linear functions of unobserved heterogeneity and the decision problem is not separable

in observables and unobservables as in 35. The education choice model has the non-

separable form

RJ = ϑ J(Z,X ,e) J = S,H,C (36)

where RJ is the lifecycle value of alternative J and where e is a vector of unobservables.

Of course there is some structure to this, which will matter both in terms of understand-

ing whether the assumptions are valid or not and for identifying the dynamic discrete

choice model. Heckman and Navarro (2007) make assumptions on the primitives of

the model so that the support conditions discussed above carry over to this context. As

before we need to be able to argue that the required limit sets exist. Given they exist

the same identification argument applies as before.
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2.6 Using Bounds to estimate the returns to education

The idea of limit sets is interesting intellectually but in practice it is highly un-

likely that we observe suitable variables such that the limit sets exist. The variables

we observe are likely to have limited support; for example it is unlikely that we will

observe such a range of fees that at one end all attend college (presumably this would

require a hefty subsidy) and at the other no one did. Even combining this with other

cost type variables like distance from college we are not likely to find a set where the

probabilities of attendance reach the limit or even come close; the condition that the

distribution of earnings conditional on other observables is the same within such limit

sets, is even less likely to be satisfied. However, such identification strategies help us

understand the nature of the problem and can sometimes points to other strategies. One

strategy is to use the model we described in 2.2 or other such suitable specification, im-

posing distributional and other functional form assumptions. Indeed, even if the model

is conceptually identified this may be a way of improving efficiency in practice. A dia-

metrically opposite alternative is to make minimal assumptions and follow the route of

partial identification and use bounds as discussed in Manski (1994), Manski and Pep-

per (2000) and Blundell, Gosling, Ichimura and Meghir (2007). In the context of this

discussion the latter approach is particularly useful: it offers an alternative approach to

learning something about the distribution of earnings with minimal assumptions and

illustrates clearly the identification problem and how the limit set assumption resolves

it.

Suppose we wish to identify the marginal distribution of earnings given a level

of education J for individuals with characteristics X , F(Y J |X). Based on the law of

iterated expectations we can write

F(Y J= j < y|X) = F(Y J < y|X ,J = j)Pr(J = j|X)+F(Y J < y|X ,J �= j)Pr(J �= j|X)
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where where F(Y J < y|X ,J �= j) is the distribution of earnings corresponding to level J

for those that did not choose level J. This is not observed and without further assump-

tions all we can say is that lies in the closed interval [0,1]. Then this implies the "worst

case" bounds
F(Y J < y|X ,J = j)Pr(J = j|X)

≤ F(Y J= j < y|X)≤

F(Y J < y|X ,J = j)Pr(J = j|X)+Pr(J �= j|X)

Because of the lack of any exclusion restrictions the lower and upper bounds can never

be equal; in other words without further assumptions the distribution of earnings in

each education group are never identified and of course neither is any notion of a wage

return to education.

Now suppose we do possess a set of instruments Z as above from which education

in level J is independent of. The assumption is that F(Y J= j < y|Z,X) = F(Y J= j <

y|X). Thus Z is excluded from earnings. However, these affect both the probability

of selecting education choice J and through selection they also affect the conditional

distributions. Thus for each value of the instruments Z and each education level J we

have that
F(Y J < y|Z,X ,J = j)Pr(J = j|Z,X)

≤ F(Y J= j < y|X)≤

F(Y J < y|Z,X ,J = j)Pr(J = j|Z,X)+Pr(J �= j|Z,X)

Since the distribution of earnings does not depend on Z we can choose the best bounds
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across Zs. Thus the tightest bounds are

maxZ
�

F(Y J < y|Z,X ,J = j)Pr(J = j|Z,X)
�

≤ F(Y J= j < y|X)≤

minZ
�

F(Y J < y|Z,X ,J = j)Pr(J = j|Z,X)+Pr(J �= j|Z,X)
�

(37)

This links the approach with the earlier discussion: given the exclusion restrictions and

assuming the distribution of X is not degenerate given Z, a necessary and sufficient

condition for the distribution of earnings to be identified is that the upper and lower

bounds in 37 to be equal. The existence of limit sets as discussed in Heckman and

Navarro (2007) would imply such an equality. However this is just a sufficient condi-

tion, and it is possible that the bounds are equal without the limit set assumption. The

difficulty is understanding how such conditions may relate to an underlying model of

choice and can we expect them to hold.

If identification is not obtainable, i.e. if

maxZ
�

F(Y J < y|Z,X ,J = j)Pr(J = j|Z,X)
�
<

minZ
�

F(Y J < y|Z,X ,J = j)Pr(J = j|Z,X)+Pr(J �= j|Z,X)
�

(38)

for some are all X , then we can only obtain bounds on the distribution of earnings

and thus bounds on its quantiles. Moreover, without bounds on the support of Y J we

cannot obtain bounds on means and variances and other moments, other than the order

statistics. In this case we need to either impose restrictions on the support or compare

the order statistics as a measure of the wage returns to education. To see how this works

suppose we wish to compare quantile q. Define wql(J = j,Z,X) the w that solves the
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equation

q = F(w|Z,X ,J = j)Pr(J = j|Z,X) (39)

and wqu(Z,X ,J = j) the solution to

q = F(w|Z,X ,J = j)Pr(J = j|Z,X)+(1−Pr(J = j|Z,X)) (40)

Thus the upper bound of the qth quantile for a particular value of Z is equal to the

q/Pr(J = j|Z,X) quantile of the observed distribution of earnings for those with educa-

tion level j. The lower bound is the (q− (1−Pr(J = j|Z,X)))/Pr(J = j|Z,X) quantile

of the same observed distribution. To then use the exclusion restriction the best bounds

can be obtained by

max
Z

�
wql(Z,X ,J = j)

�
≤ wq(X ,J = j)≤ min

Z
{wqu(Z,X ,J = j)}

Now suppose we define the wage returns to education as the difference in the medians

of the two distributions. This measure of gain is bounded by

wql(X ,J =C)−wqu(X ,J = H)≤ ∆C/H ≤ wqu(X ,J =C)−wql(X ,J = H) (41)

where q = 0.5. This is not equivalent to the wage returns usually presented, which cor-

responds to comparing means. Thus, lack of point identification has led us to compare

different aspects of the distribution of earnings across education groups.

To implement the bounds approach we can directly estimate the conditional distri-

bution of earnings given each education group. BGIM (in the context of selection into

work rather than education - see below) use

F̂N(w|J = j,age = a,Z = z) =
∑N

i=1 Φ
�w−wi

h
�

I(J = j)κaz(agei,zi)

∑N
i=1 I(J = j)κa(agei,zi)
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In the above F̂N(·) denotes the estimated distribution and Φ
�w−wi

h
�

is the standard

normal distribution function and it is used instead of the indicator function 1(wi ≤ w)

to provide some smoothness. As the sample size gets bigger we can reduce h, then this

function becomes zero very fast as observations above w are used and is one for values

of wi even slightly lower than w. For the sample size in the BGIM study h was set at a

fifth of the standard deviation of wages. For the function κaz(agei,zi) BGIM use

κa(agei,zi) =

�
agei −a

3
+1

�2�agei −a
3

−1
�2

I(|agei −a|< 3)φk(zi)

where

φk(zi) =

�
zi − zk

0.2
+1

�2� zi − zk

0.2
−1

�2
I(|zi − zk|≤ 0.2).

Once the distributions of wages and the probability of attainment conditional on Z have

been estimated we can then apply 38 to bound the distribution, which can then be used

to estimate the bounds to the quantiles. Here an interesting observation can be made:

the bounds that depend on the exclusion restrictions Z may cross. This can happen

either because the restrictions are wrong or because the ample is small. We can thus

devise a test of the null hypothesis that the bounds are equal against the alternative

that the lower bound is above the upper bound. Rejecting implies the restrictions are

invalid. The test has power against the alternative, but cannot detect invalid restrictions

that do not lead to the bounds crossing. BGIM discuss such tests and implement it

using the bootstrap. Kitagawa (2010) derives formally a test for independence in a

similar context.

2.7 A special case: binary educational choice

Many problems in the broad area of education and training can be represented as

the impact of a binary treatment, whose choice may be endogenous. A prime example
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is the impact of vocational training. In this case the wage equation would take the form

lnwi = a+biTi +ui (42)

or in counterfactual notation used in the treatment effects literature

lnw0
i = a+ui

lnw1
i = a+bi +ui

(43)

where w0
i represents wages in the no training state and w1

i represents wages in the

training state. Estimation and identification of this model has been widely analysed

with some of the key results to be found in Heckman, LaLonde and Smith (1999).

We do not reproduce these here; however we complete our discussion of instrumental

variables by pointing out the interpretation of this estimator in this context.

Suppose we possess a binary instrument Z; for example an indicator as to whether

some individuals are facing a different policy environment, such as a training subsidy

and which we take as having been randomly allocated. Suppose the model is the simple

Roy model with just a binary education/training choice (Ti = {1,0}).

Instrumental variables for this problem has been analysed by Imbens and Angrist

(1994). Define T (1) and T (0) to be indicators of whether an individual would take

up training when Z = 1 and Z = 0 respectively. They assume that the instrument Z

is jointly independent from all unobservables i.e. (lnw0, lnw1,T (1),T (0) ⊥⊥ Z); they

also make a critical monotonicity assumption: no person who would have obtained

training when facing environment Z = 0 refrains from training when Z = 1. In terms

of the notation above we have that for all individuals T (1) ≥ T (0).27 Under these

assumption they show that using Z as an instrument in the above regression (42) will
27Obviously all that matters is that Zi induces either no movement or movement in the same direction for

all individuals. So we need to have either that T (1) ≥ T (0) for all individuals or alternatively thatT (0) ≥
T (1) for all individuals.
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identify the effect of T on wages for those choosing T = 1 when facing Z = 1 (e.g.

when offered the subsidy) and who would have chosen T = 0 if instead they faced Z = 0

(no subsidy).28 The effect is known as the Local Average Treatment Effect (LATE).

LATE is not invariant to the choice of instrument: different policies that act on different

margins, i.e. induce different types of individuals into training, can lead to different

estimates of the effect if it is heterogeneous. However, in each case the effect can be

interpreted as causal. What is under question is the external validity/generalisability of

the estimate. We are left with a situation where we can estimate the impact of training

in some specific context, but we cannot necessarily generalise to other contexts.

Vytlacil (2002) shows that the LATE assumptions are equivalent to those of the

traditional selection model. Thus the LATE assumptions are satisfied if and only if the

training choice can be represented by a threshold crossing model, i.e.

T = 1 ⇐⇒ ς > g(Z) (44)

where the unobservables in 44 and 42 satisfy the independence assumption (ς ,b,u)⊥⊥

Z. This means that if we can transform the decision rule implied by an economic model

into the form 44 with all unobservables jointly independent of Z then that economic

model is consistent with the assumptions implied by LATE.

Important cases where these conditions may not be satisfied is when there are gen-

eral equilibrium effects or peer/congestion effects. Suppose that Z represents a subsidy

to college education and suppose that many individuals take up college education. This

may well discourage individuals with say high lnw0
i from attending college, when they

may have done so without the subsidy.

Heckman and Vytlacil (2005) provide an elegant way of interpreting LATE and

placing it in a broader family of treatment effects.29 Suppose we represent binary
28i.e. the effect for those for whom T (1) = 1 and T (0) = 0
29see also Carneiro, Heckman and Vytlacil (2010)
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education choice by a threshold crossing model, which satisfies the monotonicity re-

striction (Vytlacil, 2002)

Pr(Ti = 1|Z) = Pr(κ(Z)< v)

An individual is defined as marginal with respect to this training choice if κ(Z) = v:

given Z the unobservable characteristics are such that the benefits and costs of training

exactly outweigh each other. A small increase of the benefits will draw this person in.

The marginal treatment effect at some value of Z is the effect of training on individuals

who are just indifferent between accepting training and not, i.e. bMT E(z) = E(bi|κ(Z =

z) = v. For convenience we can rewrite this relationship by defining κu(Z) = F(κ(Z))

so that we can define the marginal individual as κu(Z = z) = p where p ∈ [0,1]. Now

consider a policy that increases Z from a to b. Then the LATE parameter is the aver-

age effect for all those individuals in the range [κu(Z = a),κu(Z = b)]. If on the other

hand the policy increases the value of Z by some fixed value, and assuming the LATE

assumptions are valid at all Z, then LATE will be an average across different LATE val-

ues corresponding to the different starting points for Z. More generally, with Z being

continuous one can imagine estimating an MTE parameter at all levels of Z. Heck-

man and Vytlacil (2005) show that the average MTE is the average treatment effect.

Moreover, all treatment effect parameters, such as the average effect of treatment on

the treated, can be expressed as weighted averages of the MTE over different relevant

ranges. From a policy perspective the MTE offers us a way of estimating the marginal

benefit in terms of our outcome variable (such as wages) of a small increase in say the

incentive to obtain training.

Heckman and Vytlacil (2005) and Carneiro et al. (2010) show that that the MTE is

equal to

β MT E(p) =
∂E(Y |P(Z) = p)

∂ p
(45)
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Thus we can estimate a nonparametric regression of Y on P(Z), where P(Z) is the

propensity score or the probability that treatment is assigned, given Z. The estimate of

the marginal treatment effect then is the derivative of this nonparametric estimator.

As a tool the MTE can be very useful. For example suppose we estimate the MTE

for going to college as a function of different levels of p; and suppose that we find that

the MTE is high for those with a low probability of attending college. This indicates

that a policy that targets those with a low probability of attendance is likely to have

high returns. In some circumstances, such an empirical finding may be interpreted

as reflecting the presence of liquidity or other constraints of attending college. The

difficulty with the MTE is the extent that the instruments Z can span a continuous

support of the probability of being assigned to treatment between 0 and 1. It is generally

difficult to identify instruments that satisfy the independence assumptions and have

sufficient support. In practice many discrete instruments may serve that purpose.

3 The returns to education and labour force participa-

tion

3.1 Bias to the estimated returns when Participation is ignored

We have emphasised the issue of endogenous education when estimating the re-

turns. However, another equally important problem when estimating the returns is that

of missing wages for nonworking individuals. Comparing the wages of workers can

lead to biased results on the returns to education because those with missing wages are
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not selected randomly: suppose we measure the wage returns to college by

∆C/H = E(lnw|C,P = 1)−E(lnw|H,P = 1)

If education affects participation in the labour market (P = 1) then the ability compos-

ition of those working with a college degree will be different from the ability compos-

ition for those working with a high school degree even if education is exogenous for

wages. This problem is important because the proportion of nonworkers can be very

high. In the UK for example in 2000 only 78% of men with statutory schooling and

85% high school graduates worked. For women the respective figures are 60% and

75%.

A simple analysis based on Heckman’s (1979) model will illustrate that ignoring

non-participation is likely to lead to an underestimate of the returns to education. The

intuition is simple: if education increases participation the composition of the workers

with higher level of education will be worse than the composition of the workers with

lower levels of education, where participation is lower. This intuitive analysis is based

on many strong assumptions. For example is individuals sort into educational groups

by comparative advantage it is no longer obvious how the bias will go. One way of

understanding the potential amount of bias is to use Manski’s (1994) worst case bounds.

Denote by F(w|ed) the distribution of wages for the entire population with educa-

tion level ed, irrespective of work status. Assume for simplicity that education itself

is exogenous. The concept here is that each individual has some wage they would

earn were they to work; however this wage is not observed when the individual is not

employed. Hence F(w|ed) is not itself observed. Instead we observe F(w|ed,P = 1),

where P = 1 denotes those working. The two are related by

F(w|ed) = F(w|ed,P = 1)Pr(P = 1|ed)+F(w|ed,P = 0)Pr(P = 0|ed)
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where F(w|ed,P = 0) is not observed. This implies that

F(w|ed,P = 1)Pr(P = 1|ed)≤ F(w|ed)≤ F(w|ed,P = 1)+Pr(P = 0|ed)

which implies that the width of the bounds for the unconditional distribution of wages

is Pr(P = 0|ed), giving a potentially very large range for the order statistics (me-

dian, quartiles etc.) of the wage distribution and leaving all the order statistics below

Pr(P = 0|ed) and above Pr(P = 1|ed) unidentified. Moreover without restrictions on

the support of wages it is not possible to bound the mean of wages corresponding to

F(w|ed), without other information or restrictions. This means that the wage returns

to education are unidentified and those based on comparing order statistics, such as the

medians can lie in very wide ranges. Although this is definitely not a novel point it is

often overlooked when estimating returns to education.

3.2 Accounting for non-participation

The original way of dealing with the issue was that of correcting wages for selec-

tion into employment as in Gronau (1974) and Heckman (1974, 1979) and many others

that followed. Heckman and Honoré (1990) provided an in-depth analysis of identific-

ation in a Roy model that includes the simple selection model. Heckman (1990), Ahn

and Powell (1993), and Das, Newey, and Vella (2003) developed further identification

results. The literature on selectivity corrected wage equations is vast and we will not

discuss it further here.

Alternatively we discuss recent developments on using bounds to account for se-

lection when estimating the distribution of wages or more specifically the returns to

education. In an earlier section we illustrated the use of bounds for allowing for the

endogeneity of wages. Here we discuss the approach of Blundell, Gosling, Ichimura

and Meghir (2007) (henceforth BGIM) who develop bounds that allow us to control
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for the effects of selection into work.

Worst case bounds are generally too wide to be useful, other than to illustrate that

without any assumptions it is very difficult to say anything. Thus BGIM obtain tighter

bounds by using three different restrictions. In the first they assume that the distribution

of wages of workers either stochastically dominates the unobserved one of non-workers

or at least has a higher median than that of non-workers. The idea here is that there

is positive selection into the labour market. Under the stronger stochastic dominance

restriction the lower bound to the distribution of wages increases and we obtain that

F(w|ed,P = 1)≤ F(w|ed)≤ F(w|ed,P = 1)Pr(P = 1|ed)+Pr(P = 0|ed).

This restriction is never testable. In addition it does not follow from economic theory,

particularly if we do not condition on wealth. Indeed it is possible that higher wage

individuals have higher reservation wages because they are on average wealthier - this

would lead to a violation of the stochastic dominance assumption. On the other hand

there is circumstantial evidence, presented in BGIM that there is positive selection into

the labour market, even when we do not condition on wealth.

An alternative and non-nested set of restrictions relates to the use of instruments.

The idea is the same as the one presented earlier for the case of endogenous education.

Denote the instrument by Z. Note that while the observed distribution of wages for

workers F(w|Z,ed,P = 1) will depend on Z in general, the population distribution of
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wages F(w|ed) will not, by assumption. Then BGIM show the bounds to be30

maxz {F(w|Z = z,ed,P = 1)Pr(P = 1|Z = z,ed)}

≤ F(w|ed)≤

minz {F(w|Z = z,ed,P = 1)Pr(P = 1|Z = z,ed)+Pr(P = 0|Z = z,ed)} .

. (46)

In the above expression we search over different values of z to identify the tightest

bounds. These may not necessarily be where Pr(P = 1|Z = z,ed) is maximised, unless

it goes to one. In contrast to the case with stochastic dominance this restriction has

some testable implications because its violation can lead to the bounds crossing, i.e. to

the lower bound being higher than the upper bound; this provides a means of testing

for the validity of the exclusion restriction, although note that it may be possible for

the restriction to be false and still the bounds may not cross. Hence the test may not

have power one against the null that wages are independent of the instrument (see the

section on bounds for endogenous education).

Manski and Pepper (2000) originally presented the idea of monotone instrumental

variables. In this case it is no longer assumed that wages are independent of the instru-

ment but that the mean of wages is monotonic in the instrument. BGIM extend this

idea to the entire distribution by assuming that

F(w|Z = z�,ed)≤ F(w|Z = z,ed) ∀ w, z, z� with z < z�

30See Blundell, Gosling, Ichimura and Meghir (2007), equation 8.
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This then implies the following bounds conditional on some value of the instrument z1

F(w|Z = z1,ed)≥ Fl(w|Z = z1,ed)≡

maxż>z1 {F(w|ed,Z = z,P = 1)Pr(P = 1|Z = z,ed)}

F(w|Z = z1,ed)≤ Fu(w|Z = z1,ed)≡

maxż>z1 {F(w|ed,Z = z,P = 1)Pr(P = 1|Z = z,ed)+Pr(P = 0|Z = z,ed)}

By averaging over all possible values of z we can then obtain bounds to F(w|ed) that

are consistent with the monotonicity assumption. These take the form

Ez

�
Fl(w|z,ed)

�
≤ F(w|ed)≤ Ez [Fu(w|z,ed)]

where Ez denotes the expectation with respect to the distribution of z. As in the case of

the exclusion restrictions, these bounds can cross if the monotonicity restriction is not

valid. Moreover, it is possible to combine the monotonicity assumption with positive

selection, such as stochastic dominance.

This procedure bounds the distribution of wages. This allows us to bound some

quantiles as discussed above, but not means without support conditions on the distri-

bution of wages. Bounding differences in the order statistics can give us a measure of

the wage returns to education; this is done as in equation 41. As an indication of the

results that one can obtain Table 1 presents results on bounds to the returns to college

versus high school estimated by BGIM for men in the UK. These use both the mono-

tonicity restriction and the assumption that the median wage of workers is higher of that

which non-workers would earn. The instrument used is the income that an individual

would have if they did not work; this is determined by the benefit system in place at

the time and the demographic structure of the household. Interestingly BGIM report

65



Birth Cohort Age Bounds

1965 30 23%-29%
1955 30 18%-23%
1945 35 17%-20%
1935∗ 45 16%
1925∗ 55 44%
∗Point Estimate obtained
Source BGIM, Figure 13;

Table 1: Bounds to the returns to college relative to high school by cohort - Males, UK

that the instrument they use is rejected when used as an exclusion restriction based on

the test for crossing bounds. This may reflect the fact that characteristics determining

out of work income maybe related to wages. The weaker monotonicity restriction al-

lows these factors to be correlated with wages, so long as the distribution of wages is

monotonically related to out of work income. Indeed, the monotonicity restriction is

not rejected. The reported returns correspond to different ages, because older cohorts

are not observed at younger ages. These bounds are quite tight and in some cases lead

effectively to point estimates. This illustrates the point that identification may be ob-

tained without having to assume that participation rates are 1 for a set of values of the

instrument Z.

3.3 Non participation and endogeneity

The discussion in this chapter has dealt with the implications of endogeneity of edu-

cation when estimating returns and separately with the implications of non-participation.

Both these issues are very important and ignoring them can cause bias. It is thus im-

portant to deal with both issues simultaneously, although this is not always done in the

empirical literature.

From a parametric view point the obvious way to proceed would be to extend the

model presented earlier for educational choice to one that also allowed for labour force
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participation. Two examples of such models are Keane and Wolpin (1997) and Adda,

Dustmann, Meghir and Robin (2009) among others. In these models individuals de-

cide on their educational attainment; subsequently during their labour market career

individuals also decide (among other choices) whether to work or not. Within this con-

text the models can be enriched further by allowing for endogenous accumulation of

human capital in work (experience) as in Eckstein and Wolpin (1989) and the papers

mentioned above among others, and by allowing for search frictions as in Adda et al.

(2009) as well as earlier papers including for example Wolpin (1992). In these integ-

rated models the issue of endogeneity of education and labour force participation is

treated in a comprehensive, albeit fully parametric way. Non-parametric approaches,

either to point estimation or to just bounds have not been implemented in practice to

our knowledge and neither has a comprehensive analysis of identification taken place.

However, preliminary unpublished calculations by Hide Ichimura and Costas Meghir

suggested that bounds would be too wide to be informative, even if we were to assume

that only those expecting to gain from education actually attended. Finding suitable

restrictions that would make such an approach informative would be an important ad-

vance.

To provide a brief illustration of how the model of section 2.2 can be generalised

to allow for non participation we rewrite the value functions for the period of working
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life in period (age) t as31

VWJ
t (Xit ,τJ

i ) = wJ
it +βEmax

�
VWJ

t+1(Xit+1,τJ
i ),V

0J
t+1(Xit+1,τJ

i )
�

Value when working, J = S,H,C

V 0J
t (Xit ,τJ

i ) = b(Xit)+ξit +βEmax
�
VWJ

t+1(Xit ,τJ
i ),V

0J
t+1(Xit ,τJ

i )
�

Value when not working, J = S,H,C

logwJ
it = mJ(Xit)+ τJ

i + εJ
it Wages for education level J = S,H,C

Xit+1 = Xit +Pit Experience
(47)

In 47 Xit represents experience, which here is defined as the number of periods working

in the labour market. We have introduced a flow value for leisure, b(Xit)+ξit which is

stochastic and depends on experience, possibly reflecting the level of benefits depend-

ent on past wages, or contributions to some unemployment insurance fund. Wages are

assumed to depend on work experience and education J but on on age. The decision to

work is

Pit = 1(VWJ
it >V 0J

it )

Experience Xit is endogenous, because it is an accumulation of past work decisions,

which depend on the unobserved heterogeneity component τJ
i . The terminal value

function could be specified as in 10, where X now represents experience at the time

when we stop having information on wages. To complete the model one needs to

specify the stochastic properties of the shocks ε and ξ including their distribution.

Because of the finite life nature of the model the value functions depend on age t as

well as on experience. Thus the model is solved backwards from the terminal point to

the point where the education decisions are made. The work value functions (VWJ ,J =

S,H,C) are evaluated at zero experience when solving for the education choice. In

this model it is assumed that all education decisions are made at the beginning of the
31Recall that the education levels are S for statutory, H for high school and C for college.
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lifecycle, but there is no reason why we cannot further generalise the model to include

the possibility of returning to full time education after a period of work. Finally, note

that the return to education, as seen at the beginning of the lifecycle, will be generalised

now to include the effect of education on the length of work spells.

Estimation will be similar to that discussed in section 2.3 with the important modi-

fication that we need to model the probability of working in each period and we need

to account for the fact that wages are observed for workers only. Assuming for simpli-

city that εand ξ are iid normal the likelihood contribution for an observed career of Ti

periods, conditional on education and on unobserved heterogeneity becomes

LJ
i ≡ L(wis...wiTi |Ji,τi,Xi,θ)

=
Ti
∏

t=1

�
gJ(wit | Xi, τJi

i )Pr(Pit = 1| Xi, τJi
i ,wit)

�Pit=1
×

�´
w gJ(w| Xi, τJi

i )Pr(Pit = 0| Xi, τJi
i ,w)dw

�Pit=0

(48)

The construction of the rest of the likelihood follows as in section likelihood follows

as in section 2.3.In particular 16completes the likelihood function including the step

relating to educational choice. The unobserved heterogeneity is integrated out and

the likelihood for the whole sample is put together as in 17 The joint distribution of

G(F,τ) accounts for the endogeneity of education in wages and participation over the

subsequent periods of the lifecycle.

Finally, we have already discussed the difficulties relating to nonparametric identi-

fication of such models, even without endogenous participation. Obviously with par-

ticipation being endogenous matters do not become easier because we would now need

to also identify the distribution of the shocks to leisure ξ as well as the distribution of

the shocks to wages. In practice many of these aspects will be specified parametrically.

However, identification is aided by the presence of exogenous variation at the time of
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education choice. For example continuous (or even discrete) variables that affect the

costs of education and vary exogenously across individuals, can provide credible ex-

ogenous sources of identification. Attanasio, Meghir and Santiago (2009) argue that the

use of a randomized experiment with say educational incentives, as in the PROGRESA

conditional cash transfer programme in Mexico can serve such a purpose.

4 Education Policy and the estimated returns to Edu-

cation

We have argued that it is hard to interpret results from estimating wage equations

without a theoretical foundation. The need for models is reinforced when we consider

scaling up human capital policies. Consider for example the impact of a school subsidy

for children from low income families.32 Estimating the impact of such a policy on a

small scale is insufficient for understanding its longer term effects, even if we can es-

timate the wage returns to education for those induced into education due to the policy.

Among other issues, we need to know the mechanism through which the subsidy acted:

was the increase primarily due to a distortion of incentives or due to the alleviation of

liquidity constraints? Second we need to know what the general equilibrium effects are.

The latter include i. the effect of changes in the supply of skill on skill prices, which
32 An example of such a policy is the Education Maintenance allowance in the UK, a subsidy to 16

year olds for post-compulsory school attendance. in the UK, evaluated by Dearden, Emmerson, Frayne and

Meghir (2009). This is a conditional cash transfer offered to pupils who completed statutory education at 16

and whose family’s income is low, on condition they remain in full time education At the time the policy was

evaluated in 1999-2001, the amount received was at a maximum when the family earned less than $20,800

a year and thereafter declined linearly up until the family income reached $48000, which was the eligibility

threshold. Based on a pilot/control comparison using matching the estimated effect of the policy was to

increase post-compulsory school participation by 6-7 percentage points for eligible children.
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can feed back on to the decision to obtain the extra education; ii. the potential dilution

of education quality as the resources are spread out more thinly; and iii. the peer effects

of keeping more of the 16 year olds in school, which could change the composition of

the classrooms as well as the cultural norms. Allowing for all this is a tall order and it

will be hard, to say the least, to build a credible model that will be able to capture all

these elements. One needs to make some realistic choices of which of these aspects are

likely to be of first order importance. We will briefly discuss dealing with the changes

in human capital prices as a result of the increased supply of educated workers due to

the subsidy. Important work in this field of general equilibrium models with heterogen-

eous agents has been carried out by Heckman, Lochner and Taber (1998), Lee (2005),

Lee and Wolpin (2006), and Gallipoli, Meghir and Violante (2008).33

Start with the model in section 2.2 and assume this has been estimated on data either

collected as part of the experimental pilot or from observational survey data. This is the

first building block. Since the problem has been set up as a lifecycle one, to solve for

equilibrium one needs to set it up an an overlapping generations model. However, since

the environment is stationary the problem to be solved for each generation is identical.

Thus for any given set of human capital prices we can solve the individual problem

and then account for the number of individuals in each education group at each point

in time.

The next step is to estimate the production function of the form presented in sec-

tion 2.1. Heckman, Lochner and Taber (1998) for example estimate a production func-

tion with two human capital inputs: less than college and college, while Gallipoli et

al (2008) allow for three human capital inputs as in the model of sections 2.1 and

2.2. Both allow for one factor of capital. The estimated production function and the

assumption of competitive labour markets allows us to derive relative human capital

prices for each group as as function of employed human capital. Both authors estimate
33In Gallipoli et al (2008) we also consider other important issue, such as the role of parental transfers

liquidity constraints.
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substitution elasticities for the human capital inputs that imply quite a lot of sensitivity

of relative prices to changes in supplies.34

Simple policy simulation would then compare the baseline outcomes (essentially

the data) to the results from a simulated new steady state arising as a result of im-

plementing a new policy such as an educational subsidy. The simulation based on the

model described here would allow for the effect of changes in individual incentives; for

the impact of funding the subsidy by raising taxation through say income taxes, which

would compress the effects of education on wages; and for the effect of changes in

the return to education induced by a new equilibrium in the labour market as supplies

change.

The point is that all these effects can be potentially important and the results can

be sensitive to the assumed environment and the specification of the model. Heckman,

Lochner and Taber (1998) show that the GE effects can almost neutralise the effects

of a policy. Lee (2005) has a different model specification where the feedback effects

from GE are small. This shows that the results can be sensitive to important modelling

choices and that we do need to know all the components of the model to acquire a

good understanding of what the policy will achieve. Just estimating the wage returns

to education, even when we can do so based on a partial model, is useful but is only

part of the story as far as design of policy is concerned.

34 This may be controversial because in an open economy with more goods than factors, trade can lead

to factor price equalisation. If this was really the case then policies that changed the supply of human

capital would not affect human capital prices and would not be subject to such general equilibrium effects.

Nevertheless, factor price equalisation is either a very slow process or is prevented by other mechanisms.
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5 Estimation of School Input Effects

Variation in the return to observed schooling comes from many sources, one of the most

important of which is the quality of education. A growing body of research investig-

ates the effects of various educational inputs, and the proliferation of administrative

and survey data facilitates such analyses. Similar to research on school attainment, en-

dogenous choices and unobserved heterogeneity complicate efforts to identify variable

effects. Empirical models must explicitly or implicitly account for the inter-related

choices of families, teachers, administrators and policy makers to avoid contamination

from confounding factors. In this section we discuss selected papers covering four

topics that have generated substantial interest in education research in order to high-

light key empirical and methodological issues including the treatment of the multiple

decisions that determine the allocation of educational inputs. These areas are class

size effects, teacher quality, housing market capitalisation of school quality, and the

effects of choice and accountability. The selected papers use a variety of approaches

and types of data, and we emphasise implications of the specification choices. Meth-

ods discussed include the use of observed characteristics as controls, various types of

IV techniques including regression discontinuity and lottery generated quasi-random

assignment, difference-in-differences and large-scale fixed effects specifications, hier-

archical linear modelling (HLM), and structural discreet choice models. As in the

previous section, we highlight the explicit and implicit assumptions regarding the un-

derlying choice framework as they relate to both the identification and interpretation

of variable effects. Prior to considering these four topics we describe a model of hous-

ing choice that highlights many of the determinants of family location decisions and

then discuss some general issues related to learning and the accumulation of human

capital. The latter discussion focuses on empirically relevant issues pertinent to much

education research.
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5.1 Housing Choice
35

Consider the location equilibrium of a household that resides at location d*. Ignoring

mobility costs, the household will be in equilibrium at location d∗ if:

d∗ = argmaxdE
ˆ

H

�
U(Xd

τ ,SQd
τ ,O

d
τ |wd , f ,κd , pd)dτ

�
f or d ∈ {d}

where expected utility is accumulated over the relevant planning horizon, H, and the

location, d∗, is chosen once and for all (for simplicity) compared to all d.36 Each

location is associated with a wage wd , preferences for such a location kd , prices pd

(which include house prices), a set of local amenities O and in particular SQ is school

quality. Utility may depend on individual abilities f, that drive wages. They also de-

pend on a vector of household consumption, on labour supply and on demographics,

all of which have all been maximized given location.37 Hence U(.) represents indir-

ect utility given location. Largely static variants of this lie behind general theories of

urban location decisions, the quality of local public services, and the demand for local

government services (cf. Straszheim, 1987; Tiebout, 1956; Wildasin, 1987). In the

simplest models a household optimizes equation 1 across all of the feasible locations

within its choice set given complete information for all periods. Yet lifecycle changes,

unexpected shocks or incorrect predictions move families out of equilibrium and of-

ten lead to relocation. For example, households may decide to relocate because of

changes in expected lifetime income, family structure (additions of children, divorce

or remarriage), perceptions of the quality of local public services including schools,

the distribution of employment opportunities, or other factors. Even in the absence of

prediction error, rising income may reduce borrowing constraints and expand oppor-

tunities. Note further that moving costs introduce inertia into the decisions, so that

at any point in time a household might drift away from its current utility maximising
35This section draws from Hanushek, Kain and Rivkin (2004)
36See Kennan and Walker (2009)
37We are being vague about household formation so as not to complicate the notation.
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location and might not move until a time when the utility loss from d∗ compared to the

next best alternative becomes large. A much more complete model of location choice

is developed by Kennan and Walker (2009) and shows the complexity of such decision

making. Developing this in a general equilibrium framework and understanding the in-

teraction between amenities, labour market opportunities and preferences is at the heart

of understanding how individuals end up choosing school quality as a function of pref-

erences and abilities as well as prices. This simple model highlights some of the main

impediments to the estimation of school and teacher effects. First, it is quite difficult

to account for all the factors that lead families to make different location and school

choices. Second, even with panel data to account for student or family fixed effects,

changes sizeable enough to induce geographic moves are likely also to have direct ef-

fects on outcomes. This raises immediate questions about the validity of exogeneity

restrictions in panel data analyses.

5.2 Learning Dynamics

The cumulative nature of knowledge acquisition introduces an additional complication

into the estimation of school and teacher effects, and we now consider specification

issues directly related to the modelling of the dynamics of knowledge retention in a

data generating process driven by the multiple dimensions of choices that determine

the distribution of teacher and school characteristics. In order to highlight the specific-

ation issues related to assumptions regarding the rate of knowledge depreciation we

assume no heterogeneity in school input effects. Equation 49 models the outcome of

student i in year t as a function of a school input S, a vector of control variables X,

a time varying student effect αit that captures unobserved student heterogeneity other

than differences resulting from S and X, and an error term e that represents all other de-

terminants of A including measurement error in the outcome variable and unobserved
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school, community, and family influences.

Ait = αit +βXit +δSit + eit (49)

The variables X and S have t subscripts, because many studies make use of panel

data that contain multiple measures of family and school variables. In other cases

including research on earnings, earnings in year t are regressed on family and school

characteristics measured during childhood.

If S is orthogonal to α and e estimation of Equation 49 produces consistent es-

timates of δ . In reality, OLS estimation of Equation 49 is unlikely to produce con-

sistent estimates given limited information available and the complex processes that

determine the distribution of school and teacher characteristics. These include 1) fam-

ily location and schooling decisions that are part of the previously discussed process

of life-cycle optimisation of utility; 2) utility maximising choices of schools and dis-

tricts by teachers and other school personnel; 3) purposeful matching of students and

teachers in classrooms; and 4) the political and judicial processes that determine school

finances and a range of laws that affect the allocation of resources and students among

classrooms, schools, and districts.

Although confounding factors and consequent omitted variables bias tend to be the

primary issue considered in the discussion of the merits of most empirical approaches,

other measurement and specification errors also threaten estimation of equation 49. As

we discuss below, complications introduced by test-measurement error have received

considerable attention in studies of teacher and school effects and related policies in-

cluding merit pay and NCLB accountability.38

Another frequently discussed specification issue is the appropriate treatment of the

history of family and school inputs given life cycle utility optimisation. As Cunha,

Heckman, and Schennach (2010), Cunha and Heckman (2008), and Todd and Wolpin
38The arbitrary normalisation of test scores also complicates estimation, as monotonic transformations

may lead to very different findings. Cunha and Heckman (2008) discuss this issue.
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(2003) emphasise, the development of cognitive and non-cognitive skills is a cumulat-

ive and complex process and the failure to account for the history of inputs can lead

to biased estimates of the effects of variables of interest. Limited availability of his-

torical data on parental, school, and community inputs and the endogeneity of parental

inputs impede efforts to estimate the full life-cycle model, leading to the use of lagged

achievement measures and student fixed effects to account for the history of parent,

community, and school input effects. Such methods fail to capture the nuances of skill

development processes involving endogenous parental behaviour in which there appear

to be sensitive periods during childhood for parental investments in both types of skills

(Cunha and Heckman, 2008).

Nonetheless, the value-added and fixed effect methods may account for the aggreg-

ate effects of the history of inputs, and it is informative to examine the implications

of imposing various assumptions on the rate of knowledge depreciation. Therefore

we assume no confounding family or other factors including endogenous responses to

realised school quality and describe the implications of five commonly used approaches

using a simple model of achievement for student i in grade G in which a constant pro-

portion (1-θ ) of knowledge is lost each year (0 ≤ θ ≤ 1), the effect and variance of

SC do not differ across grades, the covariance of SC across grades is constant, and the

error is orthogonal to SC in all periods.

AiG = β
G

∑
g=0

θ G−gSCg + error (50)

First consider an OLS regression of achievement in grade G on SC in grade G

with no control for prior achievement and thus likely to be subject to the influences

of confounding factors. In this case the error includes effects of all past values of the

school characteristic:

AiG = SCGβlevel +β
G−1

∑
g=0

θ G−gSCg + error (51)
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and39

E(β̂level) = βlevel +βρ

�
G−1

∑
g=0

θ G−g

�
1

var(SC)
(52)

where ρ is the covariance of the school characteristic in grades i and j that is assumed

not to vary by number of years or grades apart.

In general, the magnitude of any bias depends on both θ and ρ . Not surprisingly,

bias decreases along with the rate of decay and approaches zero as θ approaches zero.

In the special case of random assignment experiments, IV, or other methods that isolate

the component of the school characteristic in grade G that is uncorrelated with the

school characteristic in other grades, this specification produces unbiased estimates of

β regardless of θ .

Any correlation between the current and past values of the school characteristic

complicates interpretation of the estimate and limits the generalisability of the find-

ings. The estimate would reflect some weighted average of current and depreciated

past effects, where the weighting depends upon the often unknown serial correlation

in the school characteristic. Given the substantial demographic differences in school

mobility rates by race, ethnicity, and family income, estimates would tend to be higher

for students in stable schools even if the true effects were either similar for all students

or higher for those in more turbulent environments.40

More compelling approaches use multiple years of test score results to account for

student heterogeneity. One such approach is the student fixed effects model without

a control for lagged achievement. Taking first differences of equation 49 (subtracting

AG−1 from AG) to remove any student fixed error component gives:
39Given the assumption that θ is a constant, the expected value can be calculated using the omitted vari-

ables bias formula treating the terms in the summation as a single variable.
40Hanushek, Kain, and Rivkin (2004) describe mobility differences in Texas elementary schools.
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AiG −AiG−1 =

(SCG −SCG−1)β f .e.+β
�
θSCG−1 +∑G−2

g=0 (θ G−g −θ G−(g+1))SCg

�
+ error

(53)

In this case41

E(β̂ f .e.) = β −βθ/2 (54)

In contrast to the simple levels model, the fixed effect specification produces an

estimate of the school characteristic effect that is biased toward zero as long as the

rate of decay (1-θ ) does not equal one. Notice that the magnitude of the bias does not

depend upon the value of correlation of the school characteristic across grades, ρ .

A second approach uses prior year test score to account for student heterogeneity

by subtracting it from current year score and using the test score gain as the dependent

variable. This model is a special case of the value added model of test score in grade

g regressed on test score in grade g-1 and the school characteristic in which θ is as-

sumed to equal 1. This model is often preferred to the unrestricted value added model,

because the inclusion of an imprecisely measured lagged endogenous variable as a re-

gressor can introduce other types of specification error including errors in variables and

endogeneity bias.42 Here achievement in grade g minus achievement in grade g-1 is

regressed on the school characteristic in grade G.

AiG −AiG−1 = SCGβgain +β ∑G
g=1(θ g −θ g−1)SCG−g + error (55)

41Here the term in brackets is treated as the single omitted variable. Notice that the assumption of a
constant covariance regardless of the number of grades between grades i and j mean that the covariance
between (SCG–SCG−1) and SCg equals zero for all values of g less than G-1.

42Numerous studies use test score gain as the dependent variable including Rivkin, Hanushek, and Kain
(2005) and Harris and Sass (2009); both papers discuss the model in some detail.
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and43

E(β̂gain) = β −β (1−θ G)ρ
var(SC)

(56)

The magnitude of any bias depends on both θ and ρ . In the case of θ , the problem

is that the violation of the assumption of no knowledge depreciation means that the

higher the lagged score the higher is the over-estimate of expected test score in the

current year. Not surprisingly given the structure of the model, bias decreases as the

true value of θ increases and disappears if there is no loss of knowledge from year to

year, i.e. θ=1. As is the case with the levels model, the use of a value added framework,

random assignment experiments, IV, or other methods that isolate the component of the

school characteristic in grade G that is uncorrelated with the value of the characteristic

in other grades produce unbiased estimates of β regardless of the true value of θ ; If

ρ equals zero the error introduced by the mis-specification is orthogonal to the school

characteristic and does not introduce bias.

As is the case with the model with lagged achievement, the inclusion of a student

fixed effects does not eliminate the specification error to the gains model. Taking first

differences of equation 55 (subtracting AG−2 −AG−1 from AG −AG−1) to remove any

student fixed effect in gains gives the fixed effect in gains model.

(AiG −AiG−1)− (AiG−1 −AiG−2) =

(SCG −SCG−1)β f .e.gain +β
�
(θ −1)SCG−1 +∑G

g=2(θ g −2θ g−1 +θ g−2)SCG−g

�
+ error
(57)

and44

43Given the assumption that cov(SCi,SCj)is constant regardless of the number of grades apart, all terms
cancel except for one grade G−1 term and one grade 0 term.

44Given the assumption that cov(SCi,SCj) is constant regardless of the number of grades apart, all terms
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E(β̂ f .e.gain) = β +β (1−θ)/2 (58)

Similar to the case for levels, bias in the fixed effect in gains specification is of

the opposite sign as any bias in the gains model without student fixed effects, and the

magnitude of the bias does not depend upon the value of ρ . Notice that the bias is the

same magnitude but the opposite sign for the two fixed effects models in cases where

θ=0.5.

In summary, this simple education production function model illustrates that the vi-

olation of a strong assumption regarding the rate of knowledge depreciation introduces

bias in fixed effects models regardless of the magnitude of ρ and in models without

fixed effects as long as the magnitude of ρ does not equal zero. This provides some

rationale for the use of models including those with student fixed effects in which the

value of θ is not constrained to equal zero or one.45

Of course the dynamics of non-cognitive and cognitive skill formation necessitate

the use of richer empirical models to control for potentially confounding family and

community influences. Cunha and Heckman (2008) argue in favour of the use of a

latent variable framework to account for the endogeneity of parental inputs and multi-

plicity of potential proxies for family background. Although their interest in the pat-

tern of family effects differs from our focus on school inputs, the issues of endogenous

parental behaviour and student heterogeneity along multiple dimensions have direct

relevance to the identification of school input effects given the possibility of parental

responses to realised teacher quality, class size, and other school inputs and potential

non-random sorting of students into schools and classrooms on the basis of cognitive

and non-cognitive skills.

Another important issue is the scale of the test scores. This is arbitrary and any

cancel except for one grade G-1 term and one grade 0 term.
45Nerlove (1971), Nickell (1981), Arellano and Bond (1991 ) and Hsiao (2003) discusses estimation fixed

effects models with a lagged dependent variable and biases that can arise from within groups estimation.
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monotonic transformation provides the same information. However, this raises two

related issues: first there is no reason to expect that linearity and additivity of fixed

effects or other unobservables, such as the one postulated in equations (49, 50, 51 or

55) has to be valid for the particular scale we happen to be working with. Second, the

comparison of changes in test scores is not invariant to monotonic transformations: for

example, the statement that the change in test scores was larger for some group than for

another is not invariant to monotonic transformations of the scores. One way around

this problem is to find a natural cardinalisation or anchoring of the test scores.46 This

in itself raises interesting questions, because test scores are an aggregation of answers

to many different questions and also provide the benchmark for the teacher to evaluate

her success. As a result the way test scores are arrived at may affect teacher incent-

ives. Thus suppose for example that test scores were calculated in order to maximise

their predictive power with respect to future wages, academic attainment or other out-

come. Then the objective for teachers could be defined as aligned with such longer

term outcomes, and the scores could be anchored in that metric. This would not elim-

inate complications introduced by non-linearities, but at least it would fix the metric

and define clearly the meaning of the linearity assumption. The difficulty is of course

that we often do not have a clearly measured link between the test scores at hand and

an outcome variable let alone agreement on what that outcome variable should be.

5.3 Estimation of Class Size Effects

Similar to the case of the return to schooling, the benefits of smaller classes may vary

along several dimensions including initial class size, student characteristics, the school

environment, and the nature of the comparison. Yet little of the empirical work on

class size is grounded in a conceptual model of class size effects that points toward
46see Cunha, Heckman and Schennach (2010)
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particularly types of heterogeneity. Rather analyses typically provide average effects or

effects that differ by demographic group or grade. If there is substantial heterogeneity

in the benefits of smaller classes, samples drawn from different populations would

be expected to produce different estimates of average effects for all students or even

students in a particular demographic group. Estimates would also be expected to differ

on the basis of whether or not the differences in class size used to identify a coefficient

are related to differences in unobserved teacher quality resulting from either teacher

preferences for smaller classes or any expansion in the number of teaching positions

necessary to reduce class size.

We begin this section by outlining a model of the relationship between learning

and class size and then discuss six studies of class size effects that use a range of

methods and types of data. The model allows for heterogeneity by student ability and

the level of disruptive behaviour in a classroom and can incorporate general equilibrium

effects resulting from changes in teacher quality. Recent research finds evidence of

heterogeneous class size effects along the achievement distribution, and Lazear (2001)

highlights differences in the level of disruption as a likely explanation for why lower

income students appear to realise larger benefits from smaller classes.47

5.3.1 Model
48

Equation 59 models learning for student i in classroom c in school j as a function

of the amount of classroom time available for learning and the value of that time in

terms of the quality of the teaching and relevance of the material, plus all other student,

community, and school factors:

learningic j = ρ(d)n
c jq(n,a)ic j +Xic j (59)

47Ding and Lehrer (2005), Konstantopoulos (2008), and McKee, Rivkin and Sims (2010) all find that the
benefits of smaller classes appear to increase with achievement.

48The discussion is drawn from McKee, Rivkin and Sims (2010).
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where ρ is the proportion of time a student is not disrupting the class; d is the classroom

average propensity to disrupt the class; q is the value of a unit of instructional time; n

is class size; a is an index of ability49 and X is a vector of other student, community

and school factors.

The term ρ(d)n
c j is drawn from Lazear (2001) and represents the share of class time

not lost to disruption by any of the n students in the room, while the term q(n,a)ic j mod-

els the value of a unit of instructional time as function of both class size and academic

preparation. Variation in classroom behaviour, d, and academic preparation, a, provide

two dimensions of potential heterogeneity in the benefit of smaller classes. Import-

antly, all students in a classroom experience the same amount of instructional time, but

the value of instructional time may vary by ability due to targeting of the curriculum,

the distribution of teacher effort, and student heterogeneity.

In order to illustrate the ways in which disruption and academic preparation may

affect the benefits from class size reduction, we take the derivative of equation 1 with

respect to n and then again with respect to d (equation 60) and a (equation 61 below):

∂ 2learning
∂n∂d

=

�
[ρ(d)]n−1 ∂ρ(d)

∂d

��
(n ln(ρ(d))+1)q(n,a)+n

∂q(n,a)
∂n

�
(60)

Equation 60 illustrates the relationship between the propensity to disrupt class and

the benefit of class size reduction.50 The product of the two relationships in squiggly

brackets determines the sign of the cross-partial derivative of learning with respect to

n and d. The first is negative, as the derivative of ρ with respect to d is assumed to be

negative (a higher average propensity to disrupt reduces the share of time available for

learning), while the second is ambiguous and depends on the magnitudes of the various
49Ability represents a one dimensional index of academic skill and is not meant to refer to capture innate

differences.
50The derivative of learning with respect to class size (n) equals [ρ(d)]nln(ρ(d))q(n,a)+ [ρ(d)]n ∂q(n,a)

∂n .
Taking the derivative of this relationship with respect to d produces Equation 60 and with respect to a
produces equation 61.
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terms: n∂q(n,a)
∂n is assumed to be negative: the quality of instructional time declines as

class size increases for a number of reasons including more difficulty differentiating

the curriculum to account for variation in academic preparation. q(n,a) is positive and

the product of ln(ρ) and n lies between 0 and -1, so nln(ρ)+1 is also positive.51

Thus the relationship between the benefits of class size reduction and the degree of

disruption (d) thus depends upon the magnitudes of two counteracting effects. First, as

Lazear (2001) points out, at lower values of ρ reduced class size has a larger effect on

the share of time available for learning and thus a larger effect on achievement. Second,

at lower values of ρ any improvement in the quality of instruction time due to smaller

classes has a lower overall impact, because classrooms with lower values of ρ have less

time for learning.

Equation 61illustrates the relationship between initial achievement and the benefit

of class size reduction:

∂ 2learning
∂n∂a

= [ρ(d)]n



ln(ρ(d))+
∂ 2q(n,a)

∂n∂a
q(n,a)

∂a




 (61)

As is the case with disruption, the relationship between the benefit of class size

reduction and initial achievement cannot be signed a priori in this framework. Here

the sum of the two relationships in squiggly brackets determines the sign of the cross-

partial derivative of learning with respect to n and a. The first term, roughly the average

disruption of a single student, is negative, while the ratio can be positive or negative

depending upon the relationship between achievement and the quality of instruction

and the relationship between achievement and the change in the quality of instruction

as class size falls.

In sum, the pattern of heterogeneous effects along both dimensions cannot be pre-

dicted a priori. Moreover, differences in district policies may produce variation across
51At a value of ρ below 0.95, nln(ρ)+1 becomes negative, but at such a low value of ρ the share of class

time available for instruction is well below 50 percent.

85



districts in the distribution of treatment effects across each of these dimensions. Finally,

any accompanying changes in teacher quality may affect both the quality of instruction

and level of disruption per student (changes in teacher skill at managing the classroom),

and any such affects may vary by school characteristics.

5.3.2 Discussion of Empirical Analyses

Table 5.3.2 lists the six studies that we consider and describes their methods, data, and

findings. The studies use a range of empirical methods to account for potential con-

founding factors including controls for observables, regression discontinuity, and fixed

effects, and various types of administrative, survey, experimental data. Importantly,

these different approaches also alter the interpretation of the parameter estimates.

Pong and Pallas (2001) use TIMSS data on the mathematics achievement of 13

year olds in nine countries to estimate the effects of class size on achievement and the

degree to which curriculum and classroom instruction mediate those effects. In order

to explicitly account for the multi-level structure of the data that has test score and

family background measured at the individual level and class size and other school

characteristics measured at the school level, the paper uses hierarchical linear model-

ling (henceforth HLM) estimation methods52 The inclusion of a random school effect

in the empirical model accounts for the fact that class size is a school level variable.

The results reveal little evidence of a significant negative relationship between class

size and achievement in any of the countries; in fact the class size coefficients are as

likely to be positive as negative. Note that the study does not account for student het-

erogeneity explicitly with either student fixed effects or measures of prior achievement,

and it includes only a handful of family characteristics as controls. The fact that the in-

clusion of a small number of other school level variables tends to reduce the magnitude
52.See Raudenbush and Bryk (2002) for a comprehensive description of HLM including two and three

level random effects models.
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M

et
ho

d
In

te
rp

re
ta

tio
n

D
at

a
Fi

nd
in

gs

D
ea

rd
en

,F
er

ri,
M

at
ch

in
g

ce
te

ris
pa

rib
us

ef
fe

ct
pl

us
U

K
N

at
io

na
lC

hi
ld

sm
al

le
rc

la
ss

es
an

d
M

eg
hi

r(
20

02
)

ef
fe

ct
of

di
ff

er
en

ce
s

in
D

ev
el

op
m

en
tS

tu
dy

in
cr

ea
se

fu
tu

re
su

pp
ly

of
te

ac
he

rq
ua

lit
y

w
ag

es
of

w
om

en
re

la
te

d
to

cl
as

s
si

ze
bu

tn
ot

m
en

Po
ng

an
d

Pa
lla

s
(2

00
1)

H
ie

ra
rc

hi
ca

lL
in

ea
r

ce
te

ris
pa

rib
us

ef
fe

ct
pl

us
TI

M
M

S
lit

tle
ev

id
en

ce
of

M
od

el
lin

g
ef

fe
ct

of
di

ff
er

en
ce

s
in

cl
as

s
si

ze
ef

fe
ct

on
su

pp
ly

of
te

ac
he

r
ac

hi
ev

em
en

t
qu

al
ity

re
la

te
d

to
cl

as
s

si
ze

Po
ng

an
d

Pa
lla

s
(2

00
1)

St
at

e
an

d
C

oh
or

t
ce

te
ris

pa
rib

us
ef

fe
ct

pl
us

an
y

U
S

C
en

su
s

PU
M

S
sm

al
le

rc
la

ss
es

Fi
xe

d
Ef

fe
ct

s
ch

an
ge

in
st

at
e

av
er

ag
e

te
ac

he
r

in
cr

ea
se

re
tu

rn
qu

al
ity

re
la

te
d

to
ch

an
ge

s
ov

er
to

ed
uc

at
io

n
tim

e
in

av
er

ag
e

cl
as

s
si

ze
in

la
bo

rm
ar

ke
t

sm
al

le
rc

la
ss

es
R

iv
ki

n,
H

an
us

he
k

st
ud

en
t,

sc
ho

ol
by

ce
te

ris
pa

rib
us

ef
fe

ct
Te

xa
s

pu
bl

ic
sc

ho
ol

in
cr

ea
se

ac
hi

ev
em

en
t

an
d

K
ai

n
(2

00
5)

gr
ad

e
an

d
sc

ho
ol

ad
m

in
is

tra
tiv

e
da

ta
in

4t
h

an
d

5t
hg

ra
de

;
by

ye
ar

fix
ed

ef
fe

ct
s

ef
fe

ct
s

sl
ig

ht
ly

la
rg

er
fo

rl
ow

in
co

m
e

st
ud

en
ts

A
ng

ris
ta

nd
La

vy
(1

99
9)

re
gr

es
si

on
di

sc
on

tin
ui

ty
ce

te
ris

pa
rib

us
ef

fe
ct

Is
ra

el
ip

ub
lic

sc
ho

ol
sm

al
le

rc
la

ss
es

in
cr

ea
se

ad
m

in
is

tra
tiv

e
da

ta
ac

hi
ev

em
en

ti
n

5t
h

gr
ad

e

K
ru

eg
er

(1
99

9
ra

nd
om

as
si

gn
m

en
t

ce
te

ris
pa

rib
us

ef
fe

ct
Te

nn
es

se
e

ST
A

R
si

gn
ifi

ca
nt

ly
in

cr
ea

se
ex

pe
rim

en
t

ex
pe

rim
en

ta
ld

at
a

ac
hi

ev
em

en
ti

n
ea

rly
gr

ad
es

;l
ar

ge
re

ff
ec

tf
or

lo
w

er
in

co
m

e
st

ud
en

ts

87



of the positive coefficients provides evidence that confounding variables introduce up-

ward bias. Moreover, the cross-sectional estimator used in this analysis in combination

with the local nature of teacher labor markets means that class size effects capture any

related differences in teacher quality: teacher quality may be lower in schools with

smaller classes because of the need to hire additional teachers, or teacher quality may

be higher in schools with smaller classes because higher wealth communities can afford

both smaller classes and higher teacher salaries.

Although the random effects provide a standard error correction to the clustering of

students in schools, the validity of random effects models in general and HLM models

as a special case rests in the assumption of orthogonality between the included variables

and random effects. Given the limited number of covariates and multiple dimensions

of choices that generate the distribution of class size, this assumption is likely to be

violated in this case. Fixed effects provides an alternative to random effects that does

not require the orthogonality assumption, but fixed effects do not provide a plausible

approach in this case because of the absence of class size variation within schools and

the assumption of linearity.53

Dearden, Ferri, and Meghir (2002) use rich longitudinal data that follow all subjects

living in Great Britain who were born during the week of March 3-9, 1958 to estimate

the effects of the pupil-teacher ratio at age 11 and at age 16 on educational attainment

and wages for men and women. Equation 62 models log wage as a function of a

time varying student effect α that captures unobserved differences among students, a

vector X of family and community characteristics, the primary and secondary school

pupil teacher ratios PPT and SPT, other included components of school and peer group

quality in primary and secondary school PS and SS, and a random error.
53Blundell and Windmeijer (1997) show that the random and fixed effect multilevel estimators are equival-

ent when group sizes (in this case number of students per school) are large. However, the number of students
in classrooms and schools is not large enough to eliminate the bias introduced by correlation between the
random effects and included variables.
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wiy = αiy +βXiy +δpPPTi +δsSPTi +λpPSi +λsSSi + eiy (62)

If the two pupil teacher ratio variables were uncorrelated with e and α , OLS would

yield unbiased estimates of δp and δs. But as noted above, the endogeneity of family

choice of school and the dependence of school finance on a number of factors in-

cluding family demographics in combination with existing evidence on peer, teacher,

and school effects on achievement strongly suggest that typically available variables

contained in X and S will not account adequately for potentially confounding factors,

thereby introducing bias into OLS estimates of δp and δs based on cross-sectional data.

However, the array of test results available in the longitudinal data along with of ex-

tensive information on schools and communities permits the inclusion of both earlier

test scores as controls for unobserved heterogeneity α and a set of school and com-

munity variables to account for potentially confounding factors captured by the error.54

In addition, the use of the pupil-teacher ratio at the school level rather than the size of

individual classes circumvents potential bias introduced by the purposeful allocation of

students into classes. Although a portion of the between school variation in the pupil-

teacher ratio results from differences in the numbers of special education teachers and

additional financing for disadvantaged populations, the included test scores and school

variables should account for much of the variation in school circumstances.

It is not possible to prove that even an extensive set of controls fully accounts for all

confounding factors. Altonji, Elder and Taber (2005) discuss selection on observables

and unobservables and develop an informal method for assessing the probability that

selection on unobservables introduces substantial bias. In this case the estimates show

little sensitivity to changes in the specifications, suggesting that selection on unobserv-

ables is unlikely to introduce substantial bias.

Error in the measurement of the pupil-teacher ratio provides an additional poten-
54This approach is a form of matching on observable characteristics.
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tial source of bias in many studies such as this where there is only a single snapshot

of school characteristics to represent the school environment for a number of years.

The use of a class size in a particular grade likely introduces attenuation bias, though

the similar limitations in the measurement of controls also introduce bias that may

amplify or offset the bias resulting from the measurement of class size. Given the

relatively small size of the sample and noisiness of the wage measure, it may be dif-

ficult to identify small but educationally and economically meaningful effects such as

the effects of the pupil-teacher ratio on educational attainment which are insignificant

statistically but large enough to be meaningful for education policy.

In terms of interpretation, the use of pupil-teacher ratio does introduce some un-

certainty, as reduction achieved through the addition of special education or interven-

tion teachers is likely to produce a different effect on average achievement and have

different implications for the educational attainment and earnings distributions than a

reduction brought about by the hiring of additional classroom teachers. Therefore the

estimate captures differences of the type experienced by students in the March, 1958

cohort. If a lower pupil-teacher ratio increases the supply of teacher quality, the estim-

ated benefit of smaller classes will incorporate class size induced differences in teacher

quality given the absence of information on teachers.

Concerns about omitted variables bias even in rich specifications have contributed

to the expanded use of instrumental variable and fixed effect methods to account for

unobserved influences. Card and Krueger (1992) provide a prominent example of an

analysis with little or no information on family background that uses fixed effects for

both the state of birth and state of residence to account for unobserved influences on

earnings that could contaminate estimates of the pupil-teacher effect on the return to

schooling. The two step procedure begins by estimating separate returns to educa-

tion for each cohort-state combination from a regression of log(wage) on state of birth

dummy variables, state of residence dummy variables, education by region interactions,
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and separate education variables for each cohort-state of birth combination. Then the

coefficients on the separate education terms are regressed on the cohort-state average

pupil-teacher ratio, the cohort-state average teacher salary, and the cohort-state average

school year length. Note that the use of cohort average school characteristics mitigates

the measurement error introduced by a single snapshot, though any heterogeneity in

class size effects by grade raises questions about the interpretation of coefficients on

characteristics that aggregate information across elementary and secondary grades.

The fixed effects model uses inter-state movers and within state variation over time

in school inputs to identify variable effects. Three key assumptions underlying the

analysis are 1) school quality affects earnings via the return to education only; 2) se-

lective migration does not contaminate the estimates; and 3) unobserved school or

community factors are not related to the pupil-teacher ratio. Betts (1995) and Heck-

man, Layne-Farrar, and Todd (1996) raise questions about the first assumption, and

Heckman, Layne-Farrar, and Todd (1996) document evidence of selective migration.55

In terms of Equation 62, selective migration introduces bias by leading to a correlation

between unobserved heterogeneity (represented by α in Equation 62) and the school

quality measures thereby violating the exogeneity condition required for identification.

Finally, Hanushek, Rivkin, and Taylor (1996) find that the use of information ag-

gregated to the state level affects the magnitude of omitted variables bias. In terms of

Equation 62, the omission of relevant variables introduces a correlation between the

school quality measures and the error which would violate the exogeneity condition

required for identification. Aggregation may dampen or exacerbate any specification

error depending upon the structure of the covariance between the omitted variable, the

school variable of interest and the outcome. For example, if the omitted factors were to

vary only at the level of aggregation (such as would be the case if these are state policy

factors) and the factors were positively related to school quality and negatively related
55Betts (1995) investigates the effect of school resources using the NLSY and fails to find a significant

relationship between wages and the pupil-teacher ratio for various parameterisation of the pupil-teacher ratio
effect.
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to class size, aggregation would tend to amplify the omitted variables bias. Note that

the oft-asserted concern that aggregate measures of school inputs introduce measure-

ment error, because of the difference between actual school values and the state average

is incorrect regardless of whether data are aggregated to the level of aggregation of the

school input measures. Rather aggregation alters the variation used to identify the es-

timates and does not introduce bias if the relationship between the outcome and input

are linear and there are no other specification errors.56

This paper also uses the pupil-teacher ratio and therefore the estimates provide in-

formation on differences produced by similar underlying variation in instructional staff.

However, changes in the number and potentially the quality of teachers likely accom-

pany state average changes in the pupil-teacher ratio, conditional on salary. There-

fore these estimates capture both the direct benefit of a lower pupil-teacher ratio and

any offsetting effects resulting from the expansion of the teaching force, the latter of

which almost certainly depends upon labor market factors specific to the place and time

period.

In contrast to the earnings papers that relate school inputs in childhood to earnings

as an adult, the three achievement analyses investigate the effects of class size on end

of year achievement. In order to account for unobserved school and neighbourhood

factors and student differences, Rivkin, Hanushek, and Kain (2005) model test score

gain as a function of class size, teacher experience and education, family characterist-

ics, and full sets of student, school by year, and in some cases school by grade fixed

effects. Equations 63 and 64 divide this model in two in order to highlight the school

fixed effects:

AiGst −AiG−1,s�,t−1 = SCGstβgain +αi + eiGst (63)

eiGst = ωs +ξG +ψt +ρGt +πsG +ϕst + τsGt + εiGst (64)
56Theil (1954) examines aggregation in a linear framework.
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where SC is a vector of the school characteristics and α is a student fixed effect. Equa-

tion 64 decomposes the error term into a number of school, grade, and year components

and a random error. The first three terms are fixed school (ω ), grade (ξ ), and year (ψ

) effects, the next three terms (ρ ,π , ϕ ) are second level interactions among these three

components, the seventh term (τ) is the third level interaction, and the final term ( ε) is

a random error.

The school fixed effect (ω) captures time invariant differences in neighbourhoods

and schools, many of which are likely related to both achievement and school racial

composition. These include school facilities, public services, community type, and

working conditions that influence teacher supply. The grade, year, and year-by-grade

fixed effects ( ξ ,ψ,ρ) account for statewide trends in class size and achievement by

grade and year and other factors including changes in test difficulty.

Because school quality may vary over time and by grade for each school, Equation

64 also includes interactions between school and both grade and year. The school-

by-grade component (π) captures any systematic differences across grades in a school

that are common to all years, and the school-by-year ( ϕ) term accounts for systematic

year-to-year differences that are common to all grades in a school. The school-by-

grade fixed effects account for school or district specific influences on the quality of

instruction that might vary by grade such as curriculum or information technology.

The school-by-year fixed effects remove in a very general way not only school spe-

cific performance trends but also idiosyncratic variation over time in school adminis-

tration and in neighbourhood and local economic conditions that likely affect mobility

patterns including such things as the introduction of school policies or local economic

or social shocks. For example, an economic shock that reduces neighbourhood em-

ployment and income is absorbed and will not bias the estimates; nor will a shock to

local school finances or the quality of the local school board, because each of these

would affect all grades in a school.
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The seventh term, τ , is the full three-way interaction between school, grade, and

year; it cannot be included in the estimation, because there would be no variation left in

class size across time or grades. Ignoring this three-way interaction means that grade

specific variation over time in school average teacher quality or other achievement

determinants could potentially bias the estimates if also correlated with class size. Yet

the non-trivial costs of switching schools, the presence of multiple children in a family,

and the fact that teacher assignments and other relevant aspects of school decisions are

typically not known until immediately prior to the beginning of school year reduces the

likelihood that changes over time in school and teacher quality for specific grades are

systematically linked with yearly changes in class size through parental behavioural

responses.

In this framework, the remaining variation in class size comes from differences

across classrooms at point in time and differences in the pattern of grade average

class sizes experienced by adjacent cohorts in a school that come from changes in

policy regarding the allocation of resources among grades, students movement among

schools and natural demographic variations in cohort composition. In terms of differ-

ences across classrooms, the potential for non-random allocation of students such as

the placement of more difficult to educate students in smaller classes raises concerns

about the validity of such variation, and the use of grade average class size in this study

avoids the introduction of selection bias from this channel. In terms of differences in

the pattern of grade average class size among adjacent cohorts, an identifying assump-

tion in a number of studies that make use of cohort differences is that either raw cohort

differences or differences remaining following the removal of school specific trends

over time are not correlated with confounding factors. This approach builds on the

intuition that students close in age in the same school have many similar experiences

including similar quality teachers. Therefore this structure identifies the ceteris paribus

class size effect, holding constant other school factors.
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Despite the multiple levels of school fixed effects, unobserved student heterogen-

eity might introduce bias, possibly through the linkages between academic preparation

and either the number of new entrants or cohort size. The use of achievement gain as

dependent variable and inclusion of student fixed effects should, however, account for

differences related to both student movement among schools and enrolment differences

among adjacent cohorts.

Although the fixed effect in gains specification accounts for primary confounding

factors, the use of achievement gain as dependent variable in a student fixed effects

model biases the coefficients away from zero as discussed above. Moreover, the mul-

tiple fixed effects likely exacerbate any error in the measurement of class size, and the

estimates are sensitive to the elimination of observations with class size values that ap-

pear to be incorrect. Finally, the exogeneity assumption that the remaining errors are

orthogonal to class size may be violated if within school differences in class size across

cohorts are related to unobserved differences in teacher quality or time varying student

factors that affect achievement.

Angrist and Lavy (1999) use a regression discontinuity, instrumental variables ap-

proach based on Maimonides Law to identify class size effects on 4th and 5th grade

achievement in Israel. Regression Discontinuity (RD) is a quasi-experimental method

that uses a discontinuity in the probability of treatment to identify the local average

treatment effect (LATE) and avoid bias introduced by non-random selection into treat-

ment. Hahn, Todd, and Van der Klaauw (2001) describe identification conditions and

estimation using an RD design, and we review their work prior to discussing the An-

grist and Lavy estimates of class size effects.

Equation 65 presents a simple model of the effect of treatment x on outcome y for

individual i:
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yi = αi + xiβi

αi ≡ y0i

βi ≡ y1i − y0i

(65)

where y0i is the outcome without treatment and y1i is the outcome with treatment.

Hahn, Todd and Van der Klaauw begin by considering the case of a homogeneous

treatment effect where βi = β . Let z take on a continuum of values where the condi-

tional probability

f (z) = E [xi|zi = z] = Pr [xi = 1|zi = z] (66)

is discontinuous at zi = z0. Note that this is commonly referred to as a fuzzy RD

design where other unobserved variables also affect the probability of treatment; the

sharp design can be treated as a special case in which assignment to treatment is a

deterministic function of z.

The key assumption required for identification is that E [αi|zi = z] , is continuous in

z at z0, which is justified by the belief that persons close to the threshold are similar.

The authors prove that β is non-parametrically identified as long as this assumption

holds, the positive and negative limits for the probability of treatment exist at z0, and

the probability of treatment is discontinuous at z0.

Hahn, Todd and Van der Klaauw turn next to identification when treatment ef-

fects are heterogeneous. They first prove that the local average treatment effect at z0

is non-parametrically identified if the assumptions from the constant treatment effect

case outlined in the previous paragraph are satisfied, the average treatment effect at zi,

E [βi|zi = z], is continuous at z0, and xi is independent of βi conditional on zi near z0.

The authors point out that the assumption that xi is independent of βi conditional on
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zi near z0 assumes that the anticipated gains from treatment do not affect the probab-

ility of receiving treatment, a strong assumption that may well be violated in practice.

Therefore the authors, drawing from Imbens and Angrist (1994), establish the identi-

fication of the local average treatment effect at z0 under an alternative set of conditions

that allows selection into treatment on the basis of prospective gains without the strong

assumption of conditional independence. Specifically, they consider the case where

treatment assignment is a deterministic function of z for each observation i, but the

function is different for different groups or persons. Given this supposition, Hahn,

Todd, and Van der Klaauw describe the specific assumptions necessary for identifica-

tion of the local average treatment effect at z0.

The authors then turn to estimation and propose the use of local linear nonpara-

metric regression (LLR) methods rather than standard kernel estimators based on work

by Fan (1992) showing that the LLR estimator has better boundary properties than the

standard kernel estimator. They derive the asymptotic distribution of the RD treatment

effect estimator based on LRR in the Appendix to the paper.

We now turn back to the class size application of RD based on Maimonides Law.

This rule prohibits class sizes larger than forty, meaning that if schools desire to have

class size of at least forty an increase in enrolment from 40 to 41 reduces average class

size from 40 to 20.5, and increase in enrolment from 80 to 81 reduces average class size

from 40 to 27, and so on. The authors argue that the use of predicted class size based on

the rule as an instrument for class size along with flexible controls for enrolment effects

produces consistent estimates of class size effects on 4th and 5th grade achievement,

and the pattern of observed class sizes largely corresponds to that which would be

predicted by Maimonides Law. As is the case with the study by Rivkin, Hanushek

and Kain (2005), these estimates are aimed at capturing the pure effect of smaller

classes holding all other factors constant. In this case the estimates can be interpreted

as weighted averages of local average treatment effects across the various boundaries,
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where the weights reflect the numbers of schools that contribute to identification by

having enrolment that places it at a particular boundary.

There are reasons to be concerned that the identification conditions described in

Hahn, Todd and Van der Klaauw (2001) could be violated. First, the paper shows

that many schools add classes prior to enrolment reaching a multiple of forty, and

districts may manipulate enrolment among schools in order to comply with the rule.

Consequently the assumption that expected achievement in the absence of the small

class is continuous at the boundary may be violated, as schools with enrolments just

above boundaries may differ systematically from those just below. Moreover, the basic

models combine the effects of changes in class size around the boundaries and intra-

boundary changes, and intra-boundary class size variation may well be correlated with

unobserved determinants of achievement. Restricting identification to comparisons

across boundaries by limiting the sample to schools with enrolment that is first within

five students and then within three students of a boundary leads to fluctuation in the

estimates, and the increasingly small samples also reduce precision. Moreover, such

selection may be endogenous because of the way the system is actually administered

in practice.

In contrast to the other four papers based on observational data, Krueger (1999)

uses data generated by a random assignment experiment designed to uncover the be-

nefits of smaller classes. In an ideal experiment in which both students and teachers

were randomly assigned to class types, mean achievement comparisons between treat-

ment and control groups would produce unbiased estimates, and family background,

teacher, and school information could be included to reduce sampling error. However,

non-random movement between treatment and control groups and non-random attri-

tion from the sample potentially introduces selection bias. Although the use of initial

random assignment as an instrument for actual class type can produce LATE estim-

ates, subject to the monotonicity assumption, selective attrition provides a more vexing
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problem.

Similar to the two other class size papers, the Tennessee STAR experiment is de-

signed to produce estimates of the direct benefit of smaller classes ignoring any change

in the quality of instruction. This potentially diverges from the benefit that would be

realised in a large-scale class size reduction that requires substantial expansion of the

teaching force.57

5.4 Estimation of Teacher Value-Added

The passage of No Child Left Behind its requirement that states test students annually

and build comprehensive data systems has expanded opportunities to estimate teacher

productivity as measured by value-added to student achievement. The repeated test

scores and tracking of students and teachers through time enable researchers to ac-

count for differences among students and schools that could impede efforts to identify

teacher value-added. In this section we examine methods used to estimate teacher

value added in five papers listed in Table 3. The first four estimate effectiveness for

each teacher using regression models that account for potential confounding factors in

different ways, while the final paper estimates the variance in teacher quality on the

basis of the pattern of school average achievement.

Despite the steps taken to account for confounding factors in these and other papers,

Rothstein (2009) and others have begun to raise concerns about the methods used to

measure teacher quality. These critiques argue that sorting on unobservables that vary

over time, endogenous parental response to teacher quality, test measurement error, and

other failings introduce bias to estimates of teacher value added and estimates of the

variance in teacher value added.
57Jepsen and Rivkin (2009) estimate the effects of changes in teacher experience and certification that

accompanied class size reduction in California, but a lack of data impedes efforts to learn more about the
magnitude, timing, and distribution of any decline in teacher quality.
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Table 3: Selected Research on Variance in Teacher Quality
Pa

pe
r

M
et

ho
d

D
at

a
Fi

nd
in

gs
A

ar
on

se
n,

B
ar

ro
w

,a
nd

va
lu

e-
ad

de
d

m
od

el
;t

ea
ch

er
C

hi
ca

go
Pu

bl
ic

Sc
ho

ol
s

si
gn

ifi
ca

nt
va

ria
tio

n
Sa

nd
er

(2
00

7)
fix

ed
ef

fe
ct

s;
sc

ho
ol

fix
ed

ad
m

in
is

tra
tiv

e
da

ta
in

te
ac

he
rq

ua
lit

y
ef

fe
ct

s
in

so
m

e
m

od
el

s;
in

cl
ud

in
g

va
ria

tio
n

ob
se

rv
ed

st
ud

en
tc

ha
ra

ct
er

is
tic

s
by

ex
pe

rie
nc

e
R

oc
ko

ff
(2

00
4)

va
lu

e-
ad

de
d

m
od

el
;

N
ew

Je
rs

ey
sc

ho
ol

si
gn

ifi
ca

nt
va

ria
tio

n
te

ac
he

rfi
xe

d
ef

fe
ct

s;
di

st
ric

ta
dm

in
is

tra
tiv

e
in

te
ac

he
rq

ua
lit

y,
st

ud
en

ta
nd

sc
ho

ol
by

da
ta

co
nd

iti
on

al
on

ex
pe

rie
nc

e
ye

ar
fix

ed
ef

fe
ct

s;
ob

se
rv

ed
st

ud
en

t
ch

ar
ac

te
ris

tic
s

(c
he

ck
)

B
al

lo
u,

Sa
nd

er
s,

an
d

fir
st

es
tim

at
e

se
pa

ra
te

ad
m

in
is

tra
tiv

e
da

ta
si

gn
ifi

ca
nt

va
ria

tio
n

W
rig

ht
(2

00
4)

te
ac

he
rs

pe
ci

fic
re

si
du

al
te

st
sc

or
e

in
te

ac
he

rq
ua

lit
y

ga
in

s
fo

re
ac

h
su

bj
ec

ta
nd

gr
ad

e.
in

cl
ud

in
g

va
ria

tio
n

Th
en

pr
od

uc
e

a
si

ng
le

qu
al

ity
by

ex
pe

rie
nc

e
(c

he
ck

)
es

tim
at

e
fo

re
ac

h
te

ac
he

r
ba

se
d

on
th

e
va

ria
nc

e-
co

va
ria

nc
e

st
ru

ct
ur

e
of

th
es

e
re

si
du

al
ga

in
s.

K
an

e
an

d
St

ai
ge

r(
20

08
)

re
gr

es
s

di
ff

er
en

ce
in

av
er

ag
e

te
st

ex
pe

rim
en

ta
la

nd
si

gn
ifi

ca
nt

va
ria

tio
n

in
sc

or
es

fo
rt

w
o

te
ac

he
rs

in
a

no
n-

ex
pe

rim
en

ta
l

te
ac

he
rq

ua
lit

y
in

sc
ho

ol
ra

nd
om

ly
as

si
gn

ed
to

da
ta

fo
ra

sm
al

l
no

n-
ex

pe
rim

en
ta

la
nd

cl
as

sr
oo

m
s

on
ea

rli
er

ye
ar

nu
m

be
ro

fL
os

A
ng

el
es

ex
pe

rim
en

ta
ld

at
a;

do
no

t
di

ff
er

en
ce

in
Em

pi
ric

al
pu

bl
ic

sc
ho

ol
s

re
je

ct
th

e
hy

po
th

es
is

B
ay

es
es

tim
at

es
of

va
lu

e-
ad

de
d

th
at

no
n-

ex
pe

rim
en

ta
l

fo
rt

he
sa

m
e

pa
ir.

es
tim

at
es

ar
e

un
bi

as
ed

.
R

iv
ki

n,
H

an
us

he
k,

co
m

pa
re

co
ho

rt
di

ff
er

en
ce

s
Te

xa
s

pu
bl

ic
sc

ho
ol

si
gn

ifi
ca

nt
va

ria
tio

n
an

d
K

ai
n

(2
00

5)
in

te
st

sc
or

e
ga

in
s

w
ith

sh
ar

e
ad

m
in

is
tra

tiv
e

da
ta

in
te

ac
he

rq
ua

lit
y

of
te

ac
he

rs
w

ho
ar

e
di

ff
er

en
ti

n
w

ith
in

sc
ho

ol
s

th
e

re
sp

ec
tiv

e
co

ho
rts

in
a

sc
ho

ol
.

100



In order to highlight the issues of bias and sampling error that are addressed in

each of these papers, Equation67 decomposes the estimate of teacher value-added for

teacher j in year y as the sum of the true teacher effect (assumed not to vary over time),

the confounding student contribution (subscript i), the confounding peer contribution

(subscript p), the confounding school contribution (subscript s), and random sampling

error (subscript n):

t̂ jy = t j + ε̂iy + ε̂py + ε̂sy + ε̂ny (67)

Estimates of teacher value added deviate from the true teacher effect, but if the ex-

pected values of each of the four error terms are zero unobserved differences in student,

peer, and school characteristics would not introduce bias. Regardless, the variance of

t̂ jy incorporates the true variance in teacher quality plus the variances of the other terms.

Thus estimation of the variance in teacher value added must address complications re-

lated to both bias and sampling error, and the methods frame the interpretation of the

estimates.

Aaronson, Barrow and Sander (2007) use lagged achievement and observed char-

acteristics to account for unobserved student heterogeneity and school fixed effects to

control for school and peer differences that would otherwise be captured by the teacher

effects; experience controls are not included, meaning that the estimated effects com-

bine fixed differences across teachers and differences related to experience. The school

fixed effects are omitted from some models, because in addition to accounting for con-

founding school factors they also soak up any systematic sorting by quality of teachers

into schools. Importantly, the school fixed effects do not mitigate bias resulting from

sorting into classrooms on the basis of unobserved time varying or even fixed differ-

ences in the rate of learning not captured by the included lagged achievement measures.

Rockoff (2004) takes a different approach to accounting for unobserved heterogen-

eity; he includes student fixed effects but not measures of prior achievement, implicitly
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imposing the strong assumption of no knowledge depreciation over time. He also in-

cludes school by year fixed effects to eliminate any between school variation including

systematic differences in teacher quality. Finally, he controls for teacher experience in

order to isolate fixed differences in teacher effectiveness.

Ballou, Sanders, and Wright (2004) use a sequential process to estimate teacher ef-

fects purged of the influence of student heterogeneity. First, they regress test score gain

on a vector of student characteristics and teacher fixed effects separately by grade and

subject. Rather than simply treating the estimated teacher fixed effects as estimates of

teacher quality in a particular subject and grade, they combine information from differ-

ent subjects and grades in order to produce a single quality estimate for each teacher.

This is accomplished in the following steps: 1) use the student demographic variable

coefficients obtained from the teacher fixed effect models to subtract the contributions

of the student variables from test score gain; and 2) use the variance/covariance struc-

ture of teacher average residual test score gains for all grades and subjects to produce

a single quality estimate for each teacher. Note that although the use of teacher fixed

effects in the first stage eliminates bias introduced by sorting into classrooms on the

basis of the included variables, omitted student factors introduce bias if students sort

into schools or classrooms on the basis of unobserved factors.

The authors claim that the insensitivity of the estimates to the inclusion of the

student covariates provides evidence that the use of multiple tests accounts for the con-

founding effects of unobserved heterogeneity, but this finding is not surprising given

that the limited set of covariates explains little of the achievement variation within

classrooms, accounts for little of the heterogeneity among students, and may well be

unrelated to unobserved confounding variables. The strong implicit assumptions about

the nature of sorting among schools and classrooms, about the contributions of school

and peer effects, about the covariance of teacher effectiveness across subjects and years,

and about manner through which knowledge accumulates through time are unlikely to
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be satisfied, and this may introduce substantial bias. The fact that the estimates were far

more sensitive to the introduction of peer characteristics than to student level controls

suggests that unobserved school differences and systematic student sorting by school

may present particular problems.

Recognising the threat of student sorting both within and between schools to the

estimation of teacher value-added, Kane and Staiger (2008) use experimental data gen-

erated by a random assignment study of the National Board for Professional Teaching

Standards Certification Program to investigate the validity of non-experimental estim-

ates of teacher value-added. In the study, pairs of teachers are identified in each school,

one with and the other without certification, and classrooms are randomly assigned to

the pairs. The difference in average test scores of the classrooms is regressed on the

difference in Empirical Bayes estimates of value added for the pair of teachers based

on multiple years of data from earlier years in order to examine the validity of the

estimation based on non-experimental data.58 The hypothesis test is based on the es-

timate of β in the regression of average achievement in teacher j’s classroom on VA,

the empirical Bayes value-added estimate for teacher j:

Ā = βVA j + εp (68)

It is the structure of the empirical Bayes estimator that underlies the hypothesis test.

Specifically, VA j equals the random effect estimate for teacher j multiplied by

a =
σ2

t +σ2
ī +σ2

p̄ +σ2
s̄ +2σ2

t,ī +2σ2
t,p̄ +2σ2

t,s̄

σ2
t +σ2

i +σ2
p +σ2

s +2σ2
t,i +2σ2

t,p +2σ2
t,s

(69)

Note that the bars in the numerator indicate that the terms capture the persistent

components of individual, peer, and school variation among teachers.59 Thus the mag-

nitude of a determines the extent to which the estimate for teacher j is shrunk toward
58See Morris (1983) for a discussion of the empirical Bayes estimator.
59To simplify we set the covariances among the individual, peer, and school factors equal to zero.
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the grand mean teacher quality of zero: the lower the ratio of the persistent components

to the total variance the more the estimate is shrunk toward zero.

The expected value of β equals

cov(Ā j ,VA j)
var(VA j)

= σ2
t

a(σ2
t +σ2

i +σ2
p+σ2

s +2σ2
t,i+2σ2

t,p+2σ2
t,s)

= σ2
t�

σ2
t +σ2

ī +σ2
p̄+σ2

s̄ +2σ2
t,ī+2σ2

t,p̄+2σ2
t,s̄

�

(70)

If there were no persistent differences in student, peer, or school components across

teachers not accounted for in the model, then all terms following σ2
t would equal 0, and

the ratio would equal 1. This suggests a test of the null hypothesis of β=1 as a spe-

cification test: rejection of the null hypothesis would provide evidence in support of

the presence of non-random sorting on unobservables. Kain and Staiger report estim-

ates that range from roughly 0.75 to 1.1 in their preferred specifications that control

for student heterogeneity with lagged test scores. Importantly, none of these estimates

are significantly different from one, which is consistent with the hypothesis that sort-

ing on unobservables does not confound the estimates of teacher value-added based on

observational data.

It should be noted that the test does have some limitations. First, given the small

sample size, even if the 95 or even 90 percent confidence interval for β contains 1, it

also contains values that are much smaller than one that would be evidence of sorting

on unobservables. Second, if there is compensatory assignment of better teachers to

more difficult students, the covariance terms would be negative and would offset some

of the persistent variation in student, school, or peer differences among teachers not

captured by the model, potentially pushing the estimate toward 1. Finally, the small

group of schools in which principals agreed to permit classes to be randomly assigned

to teachers is unlikely to be representative, meaning that evidence of the validity of
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value-added estimates with this sample may not generalise beyond this sample.

The final paper by Rivkin, Hanushek, and Kain (2005) avoids the question of sort-

ing within classrooms altogether by focusing on cohort differences in achievement

gains within schools. Specifically, the approach builds on the notion that if schools

select teachers from a pool with substantial variation in quality, higher teacher turnover

should lead to larger differences in test score gains between adjacent cohorts as fewer

students in a cohort have a teacher who also taught the other cohort. Equation 71 rep-

resents average achievement gain in grade g in school s for cohort c as an additive

function of grade average student and teacher fixed effects, a school fixed effect and

the grade average error:

¯∆Ac
gs = ¯γc

gs + ¯θ c
gs +δs + ῡc

gs (71)

Taking the difference between adjacent cohorts c and c’ in the differences of grade

average gains in achievement in grades g and g-1 for the sample of students who remain

in the school in both grades eliminates all fixed student and family differences, leaving

only cohort-to-cohort differences in the grade average difference in teacher quality

and time varying student and school factors (contained in υ) as determinants of the

difference in the pattern of achievement gains.

�
¯∆Ac

gs − ¯∆Ac
g�s

�
−
�

¯∆Ac�
gs −

¯∆Ac�
g�s

�
=

=
��

¯θ c
gs − ¯θ c

g�s

�
−
�

¯θ c�
gs −

¯θ c�
g�s

��
+
��

ῡc
gs − ¯υc

g�s

�
−
�

ῡc�
gs −

¯υc�
g�s

��
(72)

Squaring this difference yields a natural characterisation of the observed achievement

differences between cohorts as a series of terms that reflect variances and covariances

of the separate teacher effects plus a catchall component e that includes all random

error and cross product terms between teacher and other grade specific effects.
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(73)

Under assumptions that formally characterise the notion that teachers are drawn from

common distributions over the restricted time period of the cohort and grade observa-

tions, the expectation of Equation 73 yields:

E
��

¯∆Ac
gs − ¯∆Ac

g�s

�
−
�

¯∆Ac�
gs −

¯∆Ac�
g�s

��2
= 4

�
σ2

θs −σ2
θ c

s θ c�
s

�
+E(es) (74)

where σ2
θs

is the variance of teacher quality in school s and σ2
θ c

s θ c�
s

is the covariance in

teacher quality across cohorts in a school.

Equation (74) provides the basis for estimation of the within-school variance of

teacher quality over the sample of students that remain in the same school for both

grades. The left-hand side is the squared divergence of the grade pattern in gains across

cohorts, which is regressed on the proportion of teachers in a school who are different

in cohort c’ than in cohort c. In order to account for differences in the number of

teachers and place all schools on a common metric, the proportion different must be

divided by the number of teachers per grade, and the coefficient on this proportion

divided by four provides the estimate of the within-school variance in teacher quality.

Only unobserved, time-varying factors systematically related to teacher turnover can

introduce bias, and sensitivity testing suggests that any such biases are negligible.

As previously noted, the use of test score gain likely introduces some upward bias,
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though violation of the strong assumption that true teacher effectiveness never varies

over time and errors in the measurement of both the number of teachers in a grade and

turnover both bias the estimates toward zero. Moreover, the estimates based on this

approach ignore all between school differences in the quality of instruction. Finally,

a limitation of this aggregate approach for policy is the absence of estimates of value-

added estimates for individual teachers.

Finally the issue of scale for the test scores reappears in this literature. Many studies

of teacher value added rely on a specific test score scale and are based on comparing

gains, which are not invariant to monotonic transformations. Moreover, the empirical

strategy of differencing out heterogeneity relies on the assumption of linearity for the

particular score at hand. This issue raises questions about the robustness of the results

to changes of scale and merits attention during sensitivity testing given the absence of

an agreed upon metric to anchor the results. Moreover, this concern supports the use

of more flexible parameterisation of prior achievement as controls.

One source of bias for all approaches to the estimation of teacher value-added or the

variance in teacher quality is the endogenous intervention of parents and schools. Todd

and Wolpin (2003) and Dearden, Ferri, and Meghir (2002) discuss the likelihood that

the amount of time and money dedicated to academic support is likely to depend on the

quality of instruction. Cullen, Jacob, and Levitt (2006) find mixed evidence regarding

the effect of winning a lottery to choice into a specific school on parent involvement, but

individual teacher quality may induce a stronger parental response. Though inspiring

teachers can potentially induce parents to become more involved, parental intervention

to compensate for lower quality instruction is more likely. In addition to influencing

parental behaviour, teacher quality may also affect the amount of intervention support

allocated by the school. For example, reading or mathematics specialists may spend

additional time in classrooms with less effective teachers.

Such compensatory intervention by school staff and parents would tend to bias
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value-added estimates toward the school mean and estimates of the within school vari-

ance in teacher quality toward zero due to the negative correlation between teacher

quality on the one hand and both the school and parent components on the other. Even

the random assignment of classrooms to teachers does not mitigate the impact of this

type of endogenous response to realised quality, and any such biases would not be

detected in the specification test proposed by Kane and Staiger (2008). Therefore in

the absence of controls for parental and school interventions such as the quantity and

quality of family and school support in specific subjects, teacher value-added estim-

ates capture both classroom teacher effects and the contributions of other sources of

academic support.

5.5 Estimation of the housing market capitalisation of school qual-

ity

The belief that the quality and cost-effectiveness of local public schools affect hous-

ing values provides a key underpinning for the notion that competition among loc-

alities fosters higher quality public services; this issue is the focus of Chapter ? in

this volume. Yet the non-random sorting of families into communities, multitude of

public services provided, and difficulty controlling for all housing and neighbourhood

amenities impede efforts to empirically test the relationship between housing prices

and school quality. Recent work has attempted to overcome these difficulties by focus-

ing on comparisons of houses on opposite sides of school attendance zone boundaries.

The validity of school quality capitalisation models with boundary fixed effects rests in

large part on the assumption that unobserved determinants of housing prices vary con-

tinuously at the boundary and are virtually uncorrelated with school quality differences

between houses on opposite sides of the boundary. This is the continuity assumption

described in Hahn, Todd, and Van der Klaauw (2001). If it is satisfied, differences
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in school quality would account for any discontinuity in housing prices at the school

attendance zone or school district boundary, and boundary fixed effects models would

generate consistent estimates of the relationship between measured school quality and

price at the boundary.

Table 4 lists three papers that utilise somewhat different boundary fixed effect mod-

els. Despite their differences, each finds that accounting for unobserved neighbourhood

differences substantially reduces the estimated relationship between house price and

school average test score. Although remaining concerns about bias introduced by un-

observed differences in housing quality, the characteristics of immediate neighbours or

the quality of other amenities remains an important issue, a key methodological ques-

tion is what exactly underlies any relationship between the measures of school quality

and the house price.

Black (1999) calculates differences in mean house prices on opposite sides of

school attendance zone boundaries and investigates whether the differences, are sys-

tematically related to the differences in test scores in the respective schools, adjusted

for a set of observed housing characteristics. Only boundaries in which both attend-

ance zones lie in the same city and school district are included, so this method holds

constant the property tax rate, district administration, the quality of city public services,

and other amenities that do not vary within the narrow boundaries. The focus on close

neighbours also has the advantage of accounting for the effects of factors that change

over space such as proximity to parks, police and fire stations, and public transporta-

tion.

One potential threat to the identification of the capitalised value of higher test scores

is the possibility that the parsimonious set of housing variables fail to capture quality

differences that may be related to test scores; higher income families may both select

the house in the higher test score zone and spend more on home renovation, introducing

an upward bias in the estimate of the capitalised value of higher scores. Any failure
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Table 4: Selected Research on Boundary Fixed Effect Estimates of Housing Market
Capitalisation of School Quality
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of the included characteristics to capture dimensions of housing quality that are related

to school average test score including the demographic characteristics of neighbours

will lead to a non-zero within boundary covariance between the error and test score

and introduce bias. The direction of the bias would likely be negative if unobserved

housing quality were higher on the low test score side of the boundary, consistent with

heterogeneous preferences regarding education, and would likely be positive if higher

income households tended to live in the higher test score side of boundaries.

An important limitation of this approach is the inability to disentangle the contri-

butions of peers from that of the quality of the provision of public education per tax

dollar spent. The restriction that boundaries lay within as opposed to between school

districts mitigates biases potentially introduced by confounding factors across district

boundaries at a cost of eliminating any impact of district policies or resource use on

house prices. As the district controls principal and staff hiring, curricular decisions,

capital investments this is a major drawback, making it more likely that student demo-

graphic characteristics play a primary role in the determination of the desirability of an

attendance zone.

Bayer, Ferreira, and McMillan (2007) embed a boundary fixed effects approach

in a model of neighbourhood choice using restricted U.S. Census data that provides

richer information on the characteristics of neighbours. The finding that the inclusion

of neighbourhood socio-demographic characteristics roughly cuts in half the estimated

effect of school average test score even in models with rich controls for average student

characteristics suggests that some of what appears to be preference for school or peer

quality is actually a preference for neighbour demographics. Importantly, average test

score is likely to be a poor proxy for school effectiveness in raising achievement, and a

more accurate measure of school value-added would likely provide a clearer picture of

the value placed on more effective schools.

The difference in neighbourhood characteristics on opposite sides of the boundar-
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ies suggests the existence of heterogeneous preferences regarding education, and this

is precisely what is shown by the structural estimation of willingness to pay for school

quality and other neighbourhood characteristics. The discrete choice model incorpor-

ates heterogeneity in the willingness to pay for higher test scores and other house char-

acteristics and neighbourhood amenities. It should be noted that the focus on within

district comparison of attendance zones prevents differences in district quality from

being capitalised into higher house prices in both the hedonic price and discrete choice

regressions.

The additional structure requires the satisfaction of a number of assumptions in-

cluding 1) place of work is exogenous; 2) housing characteristics more than three miles

from any house have no direct effect on the residents; 3) the included neighbourhood

characteristics account fully for sorting across boundaries; 4) school average test scores

and other school characteristics control fully for differences in school quality; and 5)

the multinomial logit IIA assumptions. Concerns can be raised by each of these as-

sumptions, but the underlying assumption of no variation in the weighting of different

aspects of school quality merits additional attention in a framework that emphasises

heterogeneity in preferences. The possibility of variation in the quality of instructing

students from different points in the achievement distribution or different backgrounds

cannot be dismissed, and this model may misinterpret that as differences in willingness

to pay for an amenity whose quality does not vary by student or family characteristics.

Gibbons, Machin, and Silva (2009) use boundary fixed effect hedonic models to es-

timate capitalised values of both school effectiveness, as measured by test score gain,

and school composition, as measured by initial test score, for a sample of United King-

dom students. In contrast to the two other papers, this paper focuses on boundaries

between local authorities, which perform many of the same functions as US school

districts. Therefore local authority actions that affect achievement gain are captured in

the estimates. Moreover, test score gain would appear to provide a better measure of
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school value-added than average test score.

Because of the absence of school attendance zones within local authorities, the au-

thors had to construct a method for measuring the quality of schooling associated with

each housing unit. They used the empirical distribution of school attendance to define a

set of overlapping school attendance zone boundaries, meaning that many houses were

located in more than one attendance zone. Subsequently school characteristics were

computed for each house as a weighted average of the initial test score and test score

gain for schools in all the relevant attendance zones.

A concern about this approach to measuring school quality is the fact that families

are assumed to respond to the same test score and gain information that their actual

location decisions help to determine (for example through peer effects). This problem

holds for all the papers using test score information and relates to the aforementioned

possibility that test scores capture differences in unobserved quality of neighbours or

neighbourhood amenities. It is quite difficult to distinguish whether 1) test score differ-

ences reflect differences in school quality; 2) test score differences result from sorting

on the basis of school reputations; and 3) test score differences result from sorting on

the basis of other amenities including the characteristics of residents. In fact each of

these channels could contribute to test score differences across boundaries.

The use of measures of school quality less directly related to family characterist-

ics would mitigate this problem, but input measures historically explain little of the

variation in school effectiveness. The estimation of school value added controlling

for observed and unobserved student heterogeneity would provide a better measure of

school quality with which to estimate the capitalisation of school effectiveness into

housing prices.
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5.6 Estimation of the Effects of Competition, Choice, and Account-

ability

Recent expansions in public school choice and the growth of accountability systems

in many countries have altered the public school environment, but the effects of such

programs have proven elusive to estimate because of both the manner in which the

programs have been introduced and the difficulty accounting for student and family

heterogeneity related to different choices. A number of methods have been used to

identify choice and accountability effects, including instrumental variables, difference-

in-differences and lottery outcomes as instruments for school enrolment. Table 5

provides examples of three of these methods used in studies of choice and accountabil-

ity. The study of catholic-public school quality differences by Neal (1997), the study of

accountability system effects on achievement by Hanushek and Raymond (2005), and

the investigation of open enrolment effects by Cullen, Jacob and Levitt (2006) provide

examples of these three methods.

The endogeneity of the decision to attend private school introduces a difference

between students in public and private school that biases estimates of sector differences

in quality unless the unobserved heterogeneity is fully accounted for. Consider the

following two equation model. In the first equation achievement A is a function of

a school sector indicator variable P (equal to 1 for catholic school and 0 for public

school), a vector of family and community characteristics X, and an error u. In the

second equation the unobserved propensity to attend private school P∗ is a function of

a vector of family and community characteristics Z and an error e. If P∗ > 1 students

attend catholic school and P = 1; otherwise students attend public school and P=0.

Ai = Piδ +Xiβ +ui

P∗
i = Ziγ + ei

(75)
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Table 5: Selected Research on Choice and Accountability
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OLS estimation of the top equation is likely to produce an upward biased estimate

of δ and overstate the catholic school-public school quality differential because the

expected value of the error u is likely to be higher for students attending private school.

A solution to this problem is the identification of an instrument that belongs in Z but

not X, i.e. affects the probability of attending private school but otherwise does not

affect achievement.60

Neal (1997) argues that catholic church adherents as a share of the county pop-

ulation and the number of catholic secondary schools per square mile provide valid

instruments for the estimation of δ , because they affect the money (first instrument) or

time (second instrument) costs of attending catholic school but are otherwise unrelated

to A. Although religious affiliation may be a stronger predictor of catholic school at-

tendance, Neal argues that it is not a valid instrument because of the possibility that it is

directly related to achievement. For example, families may choose to become catholic

in order to send a child to a catholic school.

The argument that personal religious affiliation is likely related to confounding

factors while the county mean share of individuals with a particular religious affiliation

is not related to those factors appears tenuous, as it seems likely that students in more

heavily catholic counties with more catholic schools per square mile are more likely to

have family backgrounds and even tastes similar to the average catholic. This would

introduce a non-zero correlation between these instruments and u and bias estimates of

δ . Moreover, the share of Catholics in the county population and number of catholic

schools may be directly related to the quality of public schools by affecting both the

level of tax support for the public schools and the involvement of community members

in public school affairs. Such a correlation would also introduce an upward bias into

the estimate catholic-public school gap.

Finally as Neal points out, this approach relies on the assumption that the residential

choice is exogenous with respect to the quality of public and catholic schools. Given
60See Heckman (1979) for a comprehensive treatment of non-random selection.
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the previously discussed evidence that families appear to sort partly on the basis of

preferences regarding education, this assumption may well be violated. If the choice is

between living in School District A and attending catholic school and living in School

District B and attending public school, county composition is likely to be related to the

quality of the public schools. The fact that the instrument is measured at the county

level and inclusion of a number of demographic characteristics likely mitigate the po-

tentially problematic impact of sorting, though many metropolitan areas include mul-

tiple counties and demographic variables may not capture salient differences among

families and communities.

In terms of interpretation, this IV approach rules out consideration of general equi-

librium effects of the presence of catholic schools affecting the quality of local public

schools either through competitive pressures or financial support. Rather it identifies

the race specific average catholic-public school difference in school value-added based

on county differences in catholic religiosity. Given housing constraints faced by blacks

in many metropolitan areas during the late 1970s, these arguments justifying the em-

pirical approach seem stronger for blacks than for whites.

Cullen, Jacob and Levitt (2006) investigate choice entirely within a single public

school district (open enrolment) through comparisons of lottery winners and losers.

The use of lottery outcomes circumvents problems introduced by the fact that those

who apply to non-neighbourhood schools differ from non-applicants and winners who

decide to accept admission differ from those who decide not to accept admission.

Estimation of the following OLS specification generates estimates of the benefits

of open enrolment:

Aia =Win_Lotteryiaδ +LotteryaΓ++Xiβ +uia (76)

where Win_Lottery is a dummy variable equal to 1 if application a for student i was

a lottery winner and Lottery is vector of lottery fixed effects that indicates to which
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lottery the observation refers (there are 194 different lotteries, and students may parti-

cipate in more than one). In this model the estimate of δ is the weighted average of the

regression adjusted difference in mean outcomes for winners and losers of the various

lotteries. In the absence of selective attrition from the sample or contamination of the

lotteries the lotteries produce an unbiased estimate of δ .

The possibility of participating in multiple lotteries and not attend a lottery school

even if you win the lottery affects the interpretation of δ . Choosing to participate in

more lotteries raises the probability of winning and the probability of not attending a

particular lottery school even if you win that lottery. If the treatment is defined as the

average effect of attending the lottery school, the estimate of δ captures the intention to

treat effect on applicants. The authors also provide an alternative explanation: the aver-

age impact of having a school in the choice set for students who expressed an interest.

Note that as the number of choices and lotteries per-student rise, one would expect a

decrease in the benefit to winning as fewer students would take up the opportunity to

attend the lottery school and the next-best alternative for losers would tend to be closer

in expected match quality to the lottery school.

Importantly, this and other lottery based analyses provide no information on either

the general equilibrium effects of choice on the overall distribution of school quality or

the specific factors that account for any positive or negative effects. Because the lottery

analyses compare the outcomes of winners and losers, the estimates ignore any district

wide increases or decreases in school quality. In terms of the sources of any differences

between those attending non-neighbourhood and neighbourhood schools, the lotteries

do not provide information on the contributions of teachers, facilities, curriculum, or

peers.

The limitations of lottery based analyses in terms of public policy are perhaps most

severe in cases where the set of lottery school spaces is small relative to the total num-

ber of students. The fact that participants in such lotteries are a selective sample means
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that students in schools made up entirely of lottery winners will also constitute a select-

ive group. Consequently a finding that winners of lotteries to charter or private schools

outperform the losers who end up primarily at neighbourhood schools could be driven

entirely by differences in the peer composition. If that is the case, program expansion

would tend to diminish the average benefits to lottery winners as the lottery sample be-

came less select, and the benefits of attending a charter or private school would decline

to zero if all students were to attend such schools.

Hanushek and Raymond (2005) use a difference in differences framework to ana-

lyse the effect of accountability on the level and distribution of achievement. In con-

trast to school choice analyses where endogenous decisions on the part of families

complicate the estimation, empirical studies of accountability effects must address is-

sues related to the political decision to adopt an accountability regime at a particular

time. Adoption affects all districts in a state, and it is likely that adoption is related

to other contemporaneous policy changes such as a decision to add resources that also

affect outcomes. Identification of accountability effects requires the construction of

valid counterfactuals for accountability regimes.

Equation 77 describes state average achievement (A) in year y as a function of an

indicator for an accountability regime C, a vector of a characteristics X that vary by

state and year, and a composite error that includes a year effect α , a state effect τ and

random term ε that varies by state and year.

Asy =Csyδ +Xsyβ +αy + τs + εsy (77)

Consider the following four possible estimators of the accountability effect. The

first uses cross-sectional data for a single year, and identifies the accountability effect

as the mean achievement difference between states with and without accountability sys-

tems. Clearly myriad differences among states would introduce a correlation between

C and τ and contaminate the estimate.
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The second uses time-series data for a single state that implemented an accountab-

ility system during the sample period. This method identifies the accountability effect

as the mean achievement difference between periods following adoption and periods

prior to adoption. In this case, any changes over time would confound the estimated

accountability effect by introducing a correlation between C and α .

The third method uses panel data on states and a state and year fixed effects specific-

ation with a dummy variable for whether or not a state has an accountability program

in year y. The fixed effects explicitly account for differences among states common

to all years τ and all differences among years common to all states α . Identification

relies on the assumption that changes over time in states that do not change account-

ability status provide a valid counterfactual estimate of what would have occurred in

states that transition to an accountability system. This assumption that the covariance

between C and ε equals zero would be violated if adoption of an accountability system

were correlated with other changes that affect educational outcomes, perhaps including

changes in the political system, economic circumstances, etc.

The fourth method used by Hanushek and Raymond adds a state specific time trend

to account for state specific changes over time that could bias estimates of δ ; the pa-

per also measures accountability by the share of the previous four years covered by

an accountability system. In this framework the accountability effect is identified by

within-state deviations from the time trend related to the adoption of an accountability

system and differences in the timing of accountability adoption across states. Although

the addition of a state-specific time trend controls for trends over time that could con-

found the estimates, it does not account for discontinuous time-varying factors include

those related to the decision to enact an accountability structure. Even with long time

series and polynomial trends the possibility remains that accountability program adop-

tion would not be the only factor contributing to a discontinuous change in achievement

around the time of program adoption.
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Interpretation is complicated by a number of factors including heterogeneity in

accountability programs, uncertainties in the time pattern of effects following pro-

gram adoption, and the extent to which the adoption of accountability programs led

to changes in other factors that affect achievement including the amount of resources

devoted to education. Hanushek and Raymond control for school spending, but to the

extent that accountability increases the return on investments in education, the mag-

nitude of the effect varies with school spending. Therefore a specification that restricts

the effect to be constant when it is in fact inter-woven with the level of spending will

provide an incomplete picture of the overall effects. In addition, the long run effects

may include any impact on the quality and distribution of the stock of teachers, while

effects in the short run operate largely through other mechanisms.

6 Conclusions

Estimation of the return to schooling or school input effects must account for the com-

plications introduced by the myriad choices made by families, teachers, administrat-

ors, politicians, judges, or other actors. Approaches to estimation range from structural

models derived explicitly from theory to experimental and quasi-experimental meth-

ods based on randomised trials, rule changes, policy changes, lotteries or other source

of variation. Although these methods may appear as almost polar opposites in terms

of their reliance on theory and explicit assumptions about behaviour, closer inspec-

tion says otherwise. Rather conditions for identification and parameter interpretation

in most cases require assumptions about some aspects of the underlying choice frame-

work. Importantly, such assumptions appear to take on greater importance as the mod-

els become more flexible and comprehensive. As we highlight in Part 1, identification

of the return to schooling in models that allow for heterogeneous returns and mul-

tiple dimensions of unobserved heterogeneity require assumptions about the processes
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underlying the choice of schooling level. Similarly, efforts to estimate differences in

teacher quality require assumptions regarding the mechanisms through which teachers

and students are matched. In addition, they also require assumptions about the beha-

viour of parents in response to observed instructional quality in order to identify teacher

effects on learning. The proliferation of elementary and secondary school administrat-

ive data facilitates the use of panel data methods that can account for confounding

factors introduced by purposeful choices. Moreover, the linking of these data with

information on wages, involvement in the criminal justice system, and vital statistics

will enable researchers to follow children from birth to adulthood. This expands the

range of questions that can be addressed but also introduces additional choices and

behaviours that must be accounted for. More complicated conceptual and empirical

models will be required to identify treatment effects in these settings. Although there

are many directions to expand and improve upon existing work, four specific areas

come to mind based upon existing findings and recent methodological developments.

The first is improved treatment of individual heterogeneity along multiple dimensions

including non-cognitive skills; the second is the incorporation of endogenous parental

responses into estimates of school input effects or teacher quality; the third is an en-

hanced understanding of the linkages among school and teacher effects across years

and classrooms including the effects of heterogeneity in preparation on the distribution

of teacher effort and learning; and the fourth is a greater integration of differences in

school quality into models of education choice and the returns to schooling. In terms

of the fourth, access to elementary and secondary school quality may be an import-

ant determinant of heterogeneous returns to schooling and differences in education

choices, and the incorporation of such differences would enhance our understanding of

the ways in which various policy changes that alter schooling choices are likely to af-

fect the distribution of achievement, academic attainment, and future earnings. Serious

progress along these dimensions is likely to require additional data on the years prior to
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kindergarten entry, individual skills and behaviours, the allocation of academic support

within schools, and parental time and financial support for learning. The combining of

administrative and survey data sets would appear to be a particularly promising way

of building a data set with the elements necessary to gain a much better understanding

of the distribution of teacher and school effects and the underlying choice frameworks

that contribute to the distribution of achievement and future earnings.
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