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The rapid ascent of commodity prices between 2006 and 2008 led to a renewed debate

about what drives the demand and supply for basic food commodities. Corn prices nearly

quadrupled from about $2.00 per bushel to almost $8.00 per bushel and prices for rice, soy-

beans, and wheat rose by similar amounts. High prices for these staple grains caused hunger,

malnutrition, and riots in a number of developing nations, as was vividly reported in the

popular press. The price spike was attributed to a number of factors, including the pro-

longed drought in Australia, accelerating demand growth due to the broad scale economic

development in Asia, and a shift in demand stemming from the United States ethanol policy.

The combination of ethanol subsidies, restrictions on ethanol imports, and high oil prices

caused a formerly nascent ethanol industry to quickly grow into one that consumes approxi-

mately one third of the United States corn production and about five percent of the world’s

combined caloric production of corn, soybeans, wheat and rice. Evaluating how much the

biofuel mandated contributed to higher prices requires estimates of the underlying supply

and demand elasticities.

A closely connected issue is land use change. Land used in commodity production might

alternatively be used for pasture or forests, which generally sequester more CO2 than does

crop production. This has ignited an active debate about the potential benefits of using

biofuels to reduce CO2 emissions. For example, the Washington Post reported on February

4, 2010 that ”The Environmental Protection Agency said new data showed that, even after

taking into account increased fertilizer and land use, corn-based ethanol can yield significant

climate benefits by displacing conventional gasoline or diesel fuel.” The article cites Tim

Searchinger with the counterpoint, ”The [Environmental Protection Agency’s] numbers are

inconsistent with the great bulk of analyses by others, which consistently find that emissions

from indirect land-use change for crops grown on productive land cancel out the bulk or all

of the greenhouse gas reductions, but I will have to study the results.” A crucial point of

disagreement in the literature is how much the biofuel standard increase commodity prices,

and thereby induce expansion of growing area. The potential size of this effect is nontrivial,

as land use change (mainly deforestation) is thought to account for about 20 percent of

worldwide CO2 emissions (IPCC 2007).1

Another discussion that requires estimates of the demand and supply elasticities of agri-

cultural involves “leakage” from carbon offset programs that pay farmers to either forestall

1Holland et al. (2009) find that a low-carbon fuel standard, which limits the carbon intensity of fuels
might actually increase CO2 emissions as it increases the price of high-carbon fuels but decreases the price of
low-carbon fuels. The implicit subsidy on the latter might decrease the price of low-carbon fuels, increasing
demand and total emissions.
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deforestation or reforest land that would otherwise be used in crop production. Carbon offset

programs shift the supply of cropland inward, causing commodity prices to rise, and thus an

offsetting increase in the quantity of cropland supplied elsewhere. The global net offset can

therefore be much less than the offset purchased in any particular location. The amount of

leakage depends on size of the supply elasticity relative to the demand elasticity.

With these key applications in mind, this paper develops a new framework to empirically

identify both supply and demand elasticities for the world’s four most important staple

food commodities: wheat, rice, corn and soybeans. These commodities comprise about 75

percent of the caloric content of food production worldwide.2 While many other commodities

matter for food consumption, and the particular mix of foods varies across locations, we

limit ourselves to these four crops. It seems unlikely for the prices and quantities of other

staple food items not to be inextricably linked to these four commodities given that these

commodities figure so predominantly in the world food system. Indeed, as we will show

below, the prices of these four commodities tend to fluctuate closely together. We simplify

matters further by aggregating these four key crops on either a caloric or value-weighted

basis.

Agricultural commodity markets, with their many price-taking producers and buyers and

well-developed spot and futures markets, are often cited as the archetype of perfect competi-

tion. The key empirical challenge is to separate supply and demand in the market’s formation

of prices and quantities. Correct identification requires instruments that shift prices in ways

that are plausibly unrelated to unobservable shifts in each curve. Since Wright’s (1928)

introduction of instrumental-variable estimation, weather has been considered a natural in-

strument for agricultural supply shifts, which can be used to facilitate unbiased demand

estimation. The idea is that weather shifts supply in a manner that is unrelated to unob-

served demand shifts. Given this idea was established long ago we find it surprising that the

literature in agricultural economics that uses weather-based instruments to identify demand

is extremely thin.

Here we show how yield shocks that are due to random weather shocks can also be used

to identify supply. The idea follows naturally from the theory of competitive storage: past

shocks exogenously shift inventories, which affects expected future prices, which in turn

causes a future production response. Thus, past shocks can serve as instrument for futures

prices.

2Cassman (1999) attributes two-thirds of world calories to corn, wheat, and rice. Adding soybean calories
brings the share to 75 percent.
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Our approach to supply estimation differs from a large existing literature that stems

from the seminal work of Nerlove (1958). In this literature supply is estimated by regress-

ing quantities against uninstrumented futures prices, lagged prices, or prices predicted from

an autoregressive model. Nerlove’s approach purges endogeneity stemming from current

unanticipated supply shocks, like the weather shocks Wright suggested be used for identifi-

cation of demand. But because futures prices reflect the intersection of anticipated supply

and anticipated demand, the standard approach does not account for endogeneity stemming

from anticipated supply shifts that are unobserved to the econometrician. Because these

unobserved supply shifts are the natural interpretation of the error in a supply equation

with futures prices on the right-hand-side of the regression, endogeneity remains a serious

concern. This is perhaps one reason why this substantial literature on agricultural supply re-

sponse finds widely varying supply elasticities that often lack statistical significance (Askari

and Cummings 1977).

A recent example from the United States illustrates the endogeneity of futures prices

in the supply equation. In the spring of 2004 soybean rust (a fungus) was first detected

in the United States. Although soybean rust is manageable, fungicides used to control it

are expensive. In the subsequent growing season, fear of the pest caused some farmers to

switch from planting soybeans to planting corn. These supply shifts were anticipated in

advance, causing futures prices for soybeans to rise and futures prices for corn to fall–clearly

movements along the demand curves for these key crops. In other words, the planted area

did not decrease because prices went up, but prices went up because there was an unobserved

shift in supply (stemming from fear of soybeans rust) that lowered area planted and expected

harvest. In subsequent years the perceived threat of this new pest abated, causing additional

supply fluctuations as relative prices returned to normal. A naive econometrician, regressing

quantity supplied of either corn or soybeans on futures prices, would estimate a supply

elasticity biased towards zero due to the soybean rust phenomenon, because the potential

pest threat (part of the error term) was correlated with the expected future price. While

this is just one example, it should be clear that, when using the standard approach to

supply estimation, any number of anticipated supply shifts that are either unobservable

or unmeasurable to the econometrician would cause downward bias in estimated supply

response.

Our first approach to estimation of supply and demand exploits yield shocks – devia-

tions from country and crop-specific yield trends that appear to stem mainly from random

weather shocks. A potential shortcoming of this approach is that yields themselves may be
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endogenous to price. We explore this potential issue in detail and argue that any short-run

causal links going from price to yield are likely minimal. We also consider estimates derived

from weather-based instruments, which are more defensibly exogenous. The obvious trade-

offs between using yield shocks and weather variables as instruments are between statistical

power, endogeneity bias and weak-instruments bias. Despite these tradeoffs, a wide variety

of estimates using different specifications and instruments show remarkable consistency, and

most estimates have strong statistical significance.

We use the demand and supply model of world commodity calories to examine the effect

of the current United States biofuel mandate on food prices. This analysis provides some

perspective on rapid price increase between 2006 and 2008 and how much of it might have

been attributable to ethanol policy. Our estimates indicate that supply is more elastic than

demand, with almost all of the supply response coming from the extensive margin, i.e.,

an expansion of land area. Both supply and demand elasticities are significantly larger,

both economically and statistically, than uninstrumented estimates derived using traditional

techniques. The estimates suggest that the US ethanol mandate increased food prices about

30 percent and increased world production area by 2 percent. The baseline estimate for

the price increase does not incorporate any recycling of the corn used to produce biofuels

as feedstock, which will reduce the predicted price increase proportionally. For example, if

one third of the calories used to produce biofuel are contained in the waste product that

is fed to animals, the price increase would be 20 percent. While these predicted effects are

substantial they suggest that other factors likely played a larger role in the 2006-2008 price

boom.

At the same time, a 30 percent price increase implies an annual loss of 155 billion in

consumer surplus. While most of this is offset with an increase in producer surplus, the US

ethanol policy results in transfers from net food importers to next food exporters. Since

most developing countries are net food importers, they are especially impacted. Moreover,

an increase in world food prices for a food importer is equivalent to a reduction in income,

which has been shown to result in an increase in civil conflicts (Miguel et al. 2004, Burke et

al. 2009). The US biofuel policy therefore has significant distributional consequences. This

is in line with earlier research about other policies that aim to reduce CO2 emissions. Bento

et al. (2009) examine the markets for new and used cars and find that the distributional

consequences of a gasoline tax crucially depend on how the revenues are recycled. Similarly,

(Li et al. 2009) find that higher gasoline taxes not only change the fuel economy of new cars,

but also lead to increased scrappage of old inefficient cars, which are primarily owned by less
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affluent people.

1 A Model of Supply and Demand

We simplify our characterization of world food commodity market by transforming quanti-

ties of maize, wheat, rice, and soybeans into caloric equivalents and then aggregating them

(Roberts and Schlenker 2009). In sensitivity check we also aggregate on the basis of average

price. Aggregating crops facilitates a simple yet broad-scale analysis of the supply and de-

mand of staple food commodities on a worldwide scale. A practical reason for aggregation

is that prices for all four commodities tend to vary synchronously, which seriously impedes

identification of multiple cross-price elasticities and separating cross-price elasticities from

own-price elasticities. The strong correlation of prices over time also suggests that substi-

tution possibilities are large enough that the aggregate outcomes likely characterize all four

markets reasonably well. Perhaps the greatest concern comes from combining calories from

wheat and rice with those derived from corn and soybeans. Most wheat and rice is directly

processed into food people eat while corn and soybeans are mainly used for animal feed and

thus form the caloric basis for most meat and dairy products. In another sensitivity check

discussed below we therefore test whether the shocks from corn and soybeans have different

influence on aggregate price than do rice and wheat shocks, but we find no evidence for this.

1.1 Theoretical Motivation

Having reduced the staple food commodity market to a single caloric measure, we need a

model that characterizes supply, demand and inventories and how random shocks facilitate

identification of the supply and demand elasticities. The theory of competitive storage sits

at the heart of this approach. Storage is a characteristic feature of all four commodities we

consider. It allows for substitution of consumption over time by transferring commodities

from periods of relative scarcity to periods of relative plenty. Consumption is smoother than

production and prices are less variable and more autocorrelated than they would be without

storage opportunities. Equilibrium in each period does not require a price where supply in

the current period equals consumption demand in the current period, but a price where the

amount consumed ct equals food supply at the beginning of the period zt minus the amount

stored (denoted xt).

ct = zt − xt
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An extensive literature on the rational competitive storage model characterizes the de-

mand for inventories and the resulting price path of commodities. Our focus differs from this

literature, but we do exploit the above identity and other essential characteristics of storage

models.

Scheinkman and Schechtman (1983) and Bobenrieth H. et al. (2002) set up a model in

which profit-maximizing agricultural producers make two decisions. The first is how much

to store and carry over to the next period, xt. Storage has convex cost φ(xt). The amount

not stored zt − xt is consumed and gives consumers utility u(zt − xt). The second decision

is how much “effort” λt to put into new production, which is subject to a multiplicative

i.i.d. random weather shock ωt+1 that is unknown at the time of planting. One possible

interpretation of λt is that it specifies the number of acres a farmer plants. Production in

the coming harvest season is st+1 = λtωt+1, where ωt+1 is the distribution of yields, which

are impacted by exogenous weather shocks. The production cost g(λt) are assumed to be

convex, as land of heterogenous quality becomes progressively more expensive to farm.

The Bellman equation for the social maximization problem is

v(zt) = max
xtλt

{u(zt − xt) − φ(xt) − g(λt) + δE [v(zt+1)]} subject to

zt+1 = xt + λtωt+1

xt ≥ 0, zt − xt ≥ 0, λt ≥ 0

Competitive price-taking producers and storers achieve the socially optimal outcome by

optimally balancing the marginal cost of effort against expected price and the marginal cost

of storing agricultural goods against the expected change in prices. In the social planner’s

problem, price is reflected by the marginal utility of consumption. Increasing storage levels

are profitable in years when availability zt is sufficiently large, which causes the current price

to be low. By shifting some of the current availability into the next period, current prices

rise and the expected price in the next period falls. This process continues up to the point

when the discounted future price equals the current price. By the same token, prices rise

if availability zt decreases. Prices tend to spike most after multiple negative shocks such

that inventories are drawn very low. We observe this behavior empirically: price spikes are

exceptionally steep if inventory levels remain low for several periods. If the weather shock

is sufficiently negative, inventories theoretically may be drawn to zero, even though this is

rarely observed in practice.3

3In the absence of convenience yield, a stockout theoretically occurs when prices are high enough that
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Scheinkman and Schechtman (1983) show that in a competitive equilibrium:

(i) consumption ct = zt − xt is strictly increasing in zt

(ii) storage xt is weakly increasing in zt

(iii) effort λt is weakly decreasing in zt

For our purposes, the key result from this model is that it implies exogenous shocks are

optimally divided between current consumption and inventory adjustments. We can infer

this because random shocks randomly shift zt. Thus, bad weather shocks exogenously reduce

zt thereby reducing consumption and increasing price, and vice versa for positive weather

shocks (i), which captures movement along the demand curve. The same negative weather

shocks also draw down inventories, reducing consumption and increasing price in subsequent

periods (ii). And when storage levels are low and the expected price in the next period

is high, farmers increase the amount planted λt (iii), which captures movement along the

supply curve.

1.2 Empirical Model

The empirical model is

Supply: log(st) = αs + βslog (E[pt|t−1]) + γsωt + f(t) + ut (1)

Demand: log(zt − xt) = αd + βdlog(pt) + g(t) + vt (2)

Quantities supplied and demanded are denoted by st and zt −xt, respectively; pt is price,

which equals the marginal willingness to pay for quantity demanded; the parameters βs and

βd are supply and demand elasticities; ωt is the random weather-induced yield shock; αs and

αd are intercepts; and f(t) and g(t) capture time trends in supply and demand, stemming

from technological change, population, and income growth. The errors ut and vt are other

unobserved factors that shift supply and demand.

the expected subsequent price change becomes negative. If, however, ωt+1 is allowed to have a mass point
at zero, i.e., a non-zero probability that the entire harvest is wiped out, and limc→0 u′(c) = ∞, then the
long-run distribution has a finite price, inventories will be positive with probability one, and the mean of
the price distribution is infinite (Bobenrieth H. et al. 2002). While low inventory levels (and high prices)
will almost surely result in subsequent price declines, the expected price is still increasing. The rationale is
that if another bad shock occurs, the already strained market would result in a very large price jump. The
resulting payoff is so large that it always justifies holding positive inventories.
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Because farmers make planting decisions before a year’s weather shock or other supply

or demand shocks are realized, supply is linked to expected prices. It is therefore standard

to use futures prices one year in advance to more accurately measure farmer expectations.

Specifically, we use future prices for corn in December of period t−1 for a December delivery

in period t. For soybeans we use futures prices in November, and for wheat we use futures

prices in September. Each month constitutes the end of the growing season in the Northern

hemisphere. For demand we use current-year prices.

Prices are the key endogenous variables on the right-hand side of both supply and de-

mand. The crux of the identification problem is to identify supply and demand elasticities

given that unobserved shifts in supply and demand (ut and vt) influence prices via the equi-

librium identity. Without correcting for the endogeneity of prices, the supply elasticity would

be biased negatively, since unobserved positive supply shifts (ut) would tend to reduce price

all else the same, creating a negative correlation between ut and price. A naive demand

elasticity (without correcting for the endogeneity of prices) would tend to be biased posi-

tively, since unobserved positive demand shifts (vt) would tend to increase price all else the

same, creating a positive correlation between vt and price. If unobserved supply and demand

shifters ut and vt are correlated, biases could go in either direction.

We use concurrent and/or lagged yield shocks to identify demand and supply. Our base-

line proxy for weather-induced yield shocks are deviations from country-specific trends in

yield (tons per hectare) for each crop. Country-and-crop-specific deviations are then con-

verted to calories and aggregated to obtain a world supply shock. Our premise is that these

deviations from yield trends are exogenous as they largely due to random weather. One po-

tential concern is that yields themselves might be a function of prices. For example, higher

prices could induce farmers to choose higher sowing densities, thereby increasing average

yields. On the other hand, higher prices might induce farmers to expand their production

to marginal, less productive, land, thereby lowering average yields. It is hence unclear a

priori which way the bias would go. We believe that endogenous yield responses are not

important in our paper for several reasons: First, farm and county-level data show consider-

able variability in deviations from a yield trend but have almost no autocorrelation (Roberts

and Key 2002, Roberts et al. 2006), while prices have a very high degree of autocorrelation.

If yields endogenously respond to prices, then yields would show autocorrelation as well.

Second, if yields were responsive to price levels, we would observe that yield shocks are cor-

related between various countries in a given year, as all countries face the same world price.

In Figure 4 below, we show scatter plots of yield deviations for the two biggest producers
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of our four commodities. These plots show no systematic correlation: two of the four even

have negative correlation coefficients. While some endogenous yield response is likely present,

these stylized facts suggest it is small relative to variation induced by weather shocks. In one

of our sensitivity check we directly instrument for yield shocks with weather variables. The

challenges with using weather-based instruments are (a) obtaining and linking world-wide

fine-scaled weather data to growing areas and (b) finding a few weather variables strongly

associated with yield.

The yield shocks are calculated as proportion of predicted output by area. To gain

statistical power we divide the shocks by inventories because competitive storage theory

and empirical evidence suggest shocks have more influence on price when inventories are

low. Prominent examples include the recent price spike and the one in the 1970s, both of

which occurred in an environment with unusually low inventories. If yield shocks are linearly

independent of other supply or demand shifters, then multiplying yield shocks with inventory

levels is also linearly independent of those shifters.4

The first stage regressions relate natural log of prices and the natural log of futures prices

against current and lagged yield shocks ωt up to lag K, plus a polynomial time trend up to

order I.5 The first-stage regressions are thus:

log(pt) = πd0 +
K−1∑

k=0

µdkωt−k +
I∑

i=1

ρdit
i + ǫdt

log (E[pt|t−1]) = πs0 +

K∑

k=0

µskωt−k +

I∑

i=1

ρsit
i + ǫst

In the second stage we estimate the structural equations (1) and (2), substituting the

predicted values of price from the first stage in place of actual prices. For the supply equa-

tion (1) we regress the natural log of production quantity against the predicted futures price
̂log (E[pt|t−1]), a polynomial time trend up to order I as a proxy for f(t) and the supply

shifter in the current period ωt. Stage-one variables excluded from the stage-two supply

equation are lagged yield shocks ωt,t=t−K−1,...,t−1 which serve as instruments. The stage-two

4In another cross-check we use the raw yield shocks as instruments.
5The first stage of expected price used in the supply equation includes the shock ωt as it is included as

a supplier shifter in the second stage. Since the expected price is traded in period t − 1, K lags runs from
t − 1 to t − K − 1.
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regression model of supply is:

log(st) = αs + βs
̂log (E[pt|t−1]) + λs0ωt +

I∑

i=1

τsit
i

︸ ︷︷ ︸

f(t)

+ut

For the demand equation (2) we regress the natural log of quantity consumed on predicted

price, a polynomial time trend up to order I as a proxy for g(t). The stage-one variable

excluded from the stage-two demand equation are the supply shocks ωt,t=t−K,...,t. The stage-

two regression model of demand is:

log(st − xt) = αd + βd
̂log(Pt) +

I∑

i=1

τdit
i

︸ ︷︷ ︸

g(t)

+vt

1.3 Identification of Demand

Wright (1928) was first to use weather as an instrument for demand identification when he

introduced the instrumental variables technique. A key difference from Wright is that we

simultaneously consider the four key commodities that are substitutes in supply and demand.

It is important to consider these crops simultaneously to ensure that effects on crops that are

substitutes in production do not confound own-price elasticities with cross-price elasticities.

We aggregate the caloric value of all four crops. Future research might simultaneously

estimate equations for all crops, including cross-price elasticities, but identification could be

more challenging given the limited number of observations.

Consistent identification of the demand elasticity βd requires that the instrument shifts

supply in a way that is plausibly unrelated to unobserved shifts in demand. Technically,

ωt must have a zero covariance with vt. Weather is a natural instrument for three rea-

sons. Weather is clearly exogenous in an economic sense because weather affects farmers but

farmers cannot affect weather. Second, from the vantage point of farmers, weather is unpre-

dictable and nearly random at planting time, except perhaps for some cycles like El Nino.

The near randomness of weather suggests that it wouldn’t be generally related to broader

economic conditions having to do with demand. Third, while weather has an obvious causal

connection to supply of agricultural commodities, it would generally seem to have little or no

direct influence on demand. It is of course possible that weather could shift tastes, hunger,

or general caloric need. For example, extreme heat may simultaneously harm crop yields
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and make people or animals less physically active thereby reducing demand. It is difficult

to imagine that these demand-related effects could be large. In a global context, however,

it becomes even less of a concern. This is because there are well-established international

markets with a significant share of production traded both within and between regions and

nations. As a result, the weather that affects crop production tends to be far removed from

demand centers. For example, most of the feed grains used for hog and poultry production

in North Carolina comes from the Midwest where weather fluctuations are quite unrelated.

For our baseline regressions, however, we do not use weather based instruments. Instead

we use yield shocks: deviations from local trends in output per acre. While yields shocks are

obviously more connected to supply than weather variables, a potential problem with this

instrument is that an unobserved demand shock would influence expected price, and perhaps

cause farmers to apply more effort or inputs per acre, thereby raising yields. This might

potentially create a positive correlation between yield shocks and unobserved demand shocks

and therefore bias the demand elasticity toward zero. Our main defense against this criticism

is that yield shocks appear random like the weather does, as we will demonstrate below. In a

second step we use weather data from around the world to link yearly country-specific yields

to weather outcomes including time trends to capture technological innovations. Once the

link between weather outcomes and yields is established, yield shocks are constructed by

multiplying the estimated weather coefficients with weather shocks, which we define to be

deviations from average weather outcomes.

It may be tempting to use deviations from the trend in world production as a proxy for

aggregate weather shocks. Such an approach can be misleading because it still confounds

supply and demand responses to price, including adjustments in growing area. Production

shocks depend on changes in average yields (output per acre) and growing area. While the

former plausibly stem from weather-induced yield shocks and are arguably exogenous, the

latter, expansion in the production areas, are known before harvest is realized and hence

responsive to expected prices. We provide empirical evidence of this below. We hence derive

shocks solely from country and crop specific yield shocks. As discussed below, these have a

much stronger (negative) association with price than aggregate production shocks, suggesting

that it is indeed the former that are exogenous.

1.4 Identification of Supply

A novelty of our approach is that we use past yield shocks (or weather) to identify the

supply elasticity βs in addition to the demand elasticity. As described in detail above, this is
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possible because past weather-induced supply shocks affect inventories and inventories affect

expected price in subsequent periods. The key assumption for consistent identification of

the supply elasticity is that past weather-induced supply shocks have zero covariance with

unobserved supply shifters in the current period. Unobserved supply shifters might stem from

recurrent or anticipated pest problems, like the example of soybean rust in the introduction,

broad macroeconomic phenomena, governmental policies, or perhaps other factors. One

concern may be that agronomic or weather factors are correlated over time. We address this

potential concern in two ways. First, we show that yield and weather shocks display little

autocorrelation.6 Second, we include current weather shocks in the supply equation. While

current shocks must be excluded from the demand equation, including them in the supply

equation increases precision by reducing the error variance while accounting for current

supply shifts that may have been associated with past shocks. Thus, conditional on the

current weather or yield shock, it’s not clear how or why past weather or yield shocks might

be related to unobserved supply shifters.

2 Data

World production and storage data are publicly available from the Food and Agriculture

Organization (FAO) of the United Nations (http://faostat.fao.org/) for the years 1961-2007.

The data include production, area harvested, yields (ratio of total production divided by

area harvested), and stock variation (change in inventories) for each of the four key crops.

The last variable is only available until 2003. In our model estimates below, we stop all series

in 2003 because quantity demanded (which depends on changes in storage) is not available

after 2003 and because it precedes the recent boom and bust in commodity prices. Variables

are converted into edible calories using conversion factors by Williamson and Williamson

(1942), which specify the caloric input per output quantity of various crops. Consumption

(quantity demanded) is calculated as production minus the net change in inventories.

Data on quantities are displayed in Figure 1. The top panel displays the number of people

that could be fed on a 2000 calories per day basis and how much each of the four commodities

contributed to total caloric production. Maize has the biggest share while soybeans has the

smallest share. Wheat and rice are in the middle and have roughly equal shares. One

noteworthy fact is that the overall year-to-year fluctuations (top line) are predominantly

6Rice is an exception; however the other three commodities and aggregate yield shocks show little auto-
correlation
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due to fluctuations in maize. More than half of all corn was traditionally produced in the

United States and the bulk of that production is geographically concentrated in one region,

the Midwestern corn belt.7 Other crops are less geographically concentrated and hence local

weather shocks average close to zero when summed over the whole world. Thus, corn may

contribute a larger share of world caloric variability simply because it’s production is more

geographically concentrated and thus more likely to experience correlated weather outcomes.

The bottom panel of Figure 1 shows production and consumption quantities. Two fea-

tures are noteworthy: First, production and consumption have been trending up steadily,

almost linearly. Both appear trend stationary. Second, fluctuations around trend produc-

tion are small in proportion to the trend. Consumption fluctuations are even smaller due

to smoothing from storage accumulation and depletion. The FAO series on stock varia-

tion, necessary for derivation of consumption, ends in 2003 and hence so does our demand

estimate.

Yield shocks in our baseline model are calculated by taking jackknifed residuals from

fitting separate yield trends for each crop in each country.8 Trends and shocks were estimated

for any country with an average of 1 percent or more of world production for each of our

four crops. The average share of world production between 1961-2007 is shown in Table 1.

Remaining rest-of-world yields were pooled and treated as a single country for each crop.

Yield shocks were derived from both linear and quadratic trends and showed small and

statistically insignificant autocorrelation. Figure 2 displays fitted quadratic yield trends to

all countries, while the fitted jackknifed residuals are shown in Figure 3. Figure 4 shows

scatter plots of yield deviations of the two largest producers of each crop. The lack of

significant correlation suggests that yields do not endogenously respond to price, which

would induce correlation between countries as everybody faces the same world price, or at

least that the endogenous yield response is swamped by the much larger variation induced

by weather shocks.

We derive caloric shocks for each country and crop using the product of: (1) country-and-

crop-specific yield shocks; (2) hectares harvested; and (3) the ratio of calories per production

unit. The world caloric shock is simply the sum of all country-specific shocks of all crops,

which is then scaled relative to the world trend in total caloric production. Aggregating

country and crop specific yield shocks purges production variation stemming from endoge-

nous land expansion or contraction. As emphasized in the modeling section, land expansions

7Today, the US still accounts for roughly 40 percent of world corn production.
8OLS residuals give biased estimates of the errors. Jackknifed residuals, derived by excluding the current

observation when determining the current residual, give unbiased estimates of the error.
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are often correlated with components of the error (e.g., a pest outbreak) and incorporated

in next period’s expected price, while yield shocks should be primarily due to exogenous

weather shocks.9

As described above, there is concern that yields might endogenously respond to antici-

pated price changes. In a sensitivity check we therefore construct yield shocks that can be

explained through observed weather fluctuations. We fit regressions of log yields on various

weather measures and a quadratic time trend. Yield shocks are derived as predicted changes

in yields that are attributable to deviations in the weather variables from historic averages.

For example, if the average temperature in a country is 15◦C, the yield shock attributable to

a year with an average temperature of 16.5◦C is 1.5 times the coefficient on average temper-

ature. For the United States we use the fine-scale weather data set of Schlenker and Roberts

(2009) with a piecewise linear function in temperature (degree days) and a quadratic in total

precipitation for maize and soybeans. We model rice and wheat using a quadratic in average

temperature as there is less agreement on the optimal bounds in the agronomic literature as

well as a quadratic in total precipitation during the growing season. For all other countries

in the world we use a quadratic in average temperature as well as total precipitation for

each of the four crops in a panel setting, i.e., we include all countries that produce at least

one percent of a crop as well as the rest of the world in one equation and include country

fixed effects. Weather data from the Climate Research Unit (CRU) at the University of

East Anglia gives monthly temperature and precipitation readings on a 0.5 degree grid for

the entire world for the years 1901-2002 (Mitchell and Jones 2005).10 The growing season

for each country was obtained from Sacks et al. (2010).11 Weather outcomes in a country

are the area-weighted average of all grids that fall in a country, where the crop-specific area

weights from Monfreda et al. (2008) are displayed in Figure 5.12

We obtain two price series. Our baseline model uses futures prices from the Chicago

Board of Trade with a delivery month of December for maize, November for soybeans, and

September for wheat.13 We construct the price pt as the average futures price during the

9We divide world yield shocks and inventories by the trend in production, estimated using a quadratic
trend in our baseline. The estimated trend is close to being linear and a sensitivity check with a linear trends
shows similar results.

10http://www.cru.uea.ac.uk/∼timm/grid/CRU TS 2 1.html (accessed November 2008)
11The authors provide planting and harvest dates on a 5 minute grid.

http://www.sage.wisc.edu/download/sacks/crop calendar.html (accessed January 2010). We include
the entire months between planting and harvest. For example, if average planting is on April 8th and
harvest on September 12th, we use weather data from April through September.

12The authors provide the fraction of each 5 minute grid cell that is used for various crops.
http://www.geog.mcgill.ca/landuse/pub/Data/175crops2000/NetCDF/ (accessed November 2008).

13We use futures price for “No.2 yellow” for corn, “No.1 yellow” for soybeans, and “No.2 soft shell” for
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month when delivery occurred, i.e., in December of the delivery year for corn. The expected

price E[pt|t−1] is the average futures price in the delivery month one year prior to delivery.14

All prices are deflated by the Consumer Price Index. Prices for each commodity are converted

to their caloric equivalent, with the world calorie price taken as world-production-weighted

averages of the four commodities. Unfortunately, the futures price series for rice does not

extend before 1985 and we hence use the production-weighted price of the three commodities.

A second price series with longer temporal coverage are those received by US farmers

in the month of December of each year, publicly available from the US Department of

Agricultural. The top panel of Figure 6 displays real price (annual cost of a 2000 calories

per day diet in 2007 dollars). There has been a general downward trend of food prices.

Prices per calorie move together for all four commodities, most notably maize, wheat and

soybeans. This is not surprising, given that those three are close substitutes in production

and consumption. For example, maize and soybeans (and to some degree wheat) are used as

feed for livestock. If one were cheaper per calorie than the others, profit-maximizing farmers

should switch to the cheaper input. Price fluctuations are proportionately much larger than

quantity fluctuations in Figure 1. This suggests that both demand and supply are inelastic.

The bottom of panel of Figure 6 displays our two price series in black as well as production

shocks (deviation from the quadratic production trend in percent) in grey. The solid black

line shows the production-weighted average December price of all four commodities. The

black dashed line shows the production-weighted average futures price at delivery for maize,

soybeans, and wheat. Leaving out rice, for which we do not have a futures series dating back

to 1961 gives comparable results. The figure demonstrates the first stage of our IV strategy:

prices fluctuate negatively in comparison to yield-shocks. The lack of autocorrelation in

the yield shocks suggest that these yield shocks are due to weather and not technological

advances, which would result in deviations from the trend that are less transient.

Table 2 reports descriptive summary statistics on caloric prices, production, consump-

tion, our constructed world aggregate yield shocks, and yield shocks interacting with inverse

inventories.

Given the large trends in overall production due to population growth and technological

change in Figure 1, all shocks are normalized around the upward production trend. Trend

production is obtained by regressing aggregate caloric production on a time trend of the

same order used to derive jackknifed residuals. The default is a quadratic time trend, but

wheat.
14In some cases the time series of a contract does not extend 12 months back and we hence take the

average price in months closest to 12 months prior.
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we present sensitivity checks for a model with a linear trend below.

3 US Ethanol Subsidies and Mandates

Ethanol has a long history as a car fuel. Ford’s Model-T was designed to run both on

ethanol and petroleum, or arbitrary mixes of the two. Declining petroleum prices led to a

slow phase out of ethanol as a fuel. Recent concerns about anthropogenic CO2 emissions have

renewed interest in ethanol as a fuel substitute, even though the net effect is highly debated

(Searchinger et al. 2008). Ethanol is currently being mixed with traditional petroleum in

ratios up to 10 percent. Most cars can run on such fuel mixes. Modern flex-fuel cars are

designed to run on fuel that is up to 85 percent ethanol.

One might wonder why US ethanol subsidies and mandates can have a measurable effect

of world food prices? The answer is simply the size of the US market share. Figure 7 shows

the US share of world caloric production over time. Yearly observation are shown as crosses,

and a locally weighted regression (bandwidth of 10 years) is added in grey. The yearly

ratio fluctuates somewhat due to weather-induced yield shocks, but the average share stays

rather constant around 23 percent. There is a slight uptick during the boom years (late

1970s) before the US share falls again after the 1980-1982 recession that heavily impacted

the agricultural sector as well. Farmland prices fell roughly one third between the 1982 and

1987 Census.

Given the dominant share of world caloric production, any policy that impacts US pro-

duction might lead to repercussions on world markets. Ethanol production has risen rapidly

over the last couple of years as shown in Figure 8.15 Ethanol subsidies and biofuel mandates

require that a certain amount of fuel is derived from ethanol. The 2005 US energy bill man-

dated that 7.5 billion gallons of ethanol be used by 2012. The 2007 energy bill increased the

mandate to 36 billion by 2022. Moreover, under the 2009 US Renewable Fuels Standard,

refiners and fuel blenders are required to blend roughly 11 billion gallons of ethanol into

gasoline. We examine the effect of the latter on world food prices/ Currently, most of the

ethanol is produced from corn, and 11 billion gallons of ethanol would require roughly 4.23

billion bushels of corn (assuming an average of 2.6 gallons of ethanol per bushel of corn).

This translates into roughly one third of US maize production in 2007 (13 billion bushels),

or about 5 percent of world caloric production in 2007. The remains of corn that is used

in ethanol production can still be used as feed stock for livestock, which is often labeled

15http://www.ethanolrfa.org/industry/statistics/
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distiller’s grain. While estimates vary, up to one third of the caloric input is said to be

recoverable, but the nutritional content is debated. We therefore present two estimates:

our baseline model uses a five percent increase in world caloric production (assuming that

nothing is recycled) as well as a scenario where we assume that one third of the calories is

recycled as feed stock.

While 5 percent of world caloric production would be required for 11 billion gallons of

ethanol, the average daily US motor gasoline consumption is 0.39 billion barrels per day.16

The supply of approximately 8 percent of US gasoline consumption requires approximately

5 percent of world caloric production.

4 Empirical Results

Regression results of the two-stage least squares and three-stage least squares results are

summarized in Table 3. Columns differ by the number of lagged shocks and the order of

polynomial used for the time trend. Elasticity estimates in Table 3 are reasonably stable

across models, varying between 0.08 and 0.13 for supply and -0.05 and -0.08 for demand.

The top panel summarizes the demand and supply elasticity, as well as the predicted price

increase from a ethanol mandate that puts 5 percent of current world caloric production into

biofuels. The second panel displays the regression results. Adding additional lagged weather

shocks in the last two columns changes the results by very little. The results differ more

if we move from a second-order time polynomial (first two columns) to a third order time

polynomial (last four columns). We most prefer estimates in the first two columns because

the additional lagged yield shocks are statistically insignificant in the last two columns.

Moreover, small-sample bias is known to be smallest in two stage least squares when there

are fewer instruments (Nelson and Startz 1990). Unsurprisingly, the trend estimates show

that demand has grown more slowly than supply, which accords with the general downward

trend in prices and the increase in storage over time.

The first-stage regression has highly significant instruments ωt for both the current price

pt in the demand equation and the expected price log (E[pt|t−1]) in the supply equation as

shown in Table 4. Comparison of the coefficients on ωt−1 in the future price regression and ωt

in the current price regression indicates the shock affects the futures price nearly as much the

current price. This is consistent with storage theory wherein transitory shocks are smoothed

over time giving rise to autocorrelation in prices. It is also interesting that ωt is statistically

16Energy Information Administration: http://www.eia.doe.gov/basics/quickoil.html
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significant in the futures price regression. This indicates that shocks are at least partially

forecastable.17

The supply and demand elasticities imply that the US ethanol mandates (which requires

5 percent of world caloric production to be diverted for ethanol) will increase prices by 0.05
βs−βd

.

Since the predicted ratio includes the inverse of the predicted parameters, it will be convex

and the expected value will be greater than the ratio evaluated at the expected values. We

therefore take 1 million random draws from the joint distribution of the demand and supply

elasticity. The mean impact as well as the 95% confidence interval are given in rows 5 and 6

of Table 3. The mean impact is fairly stable between various specification at stays around 30

percent. However, it should also be noted that the distribution is right skewed and the 95%

confidence interval extends further to the right than to the left of the mean impact. The

mean price increase implies a decrease in consumer surplus from food consumption equal to

155 billion dollars annually.18 As noted above, the baseline scenario assumes that the waste

products from ethanol reduction are not fed to animals. Since studies differ in what fraction

can be recycled, we report estimates assuming zero recycling, which can easily be scaled by

the assumed recycling ratio as the ultimate price increase is linear in this recycling ratio. For

example, in case one third of the calories could be recovered as feed stock, the price increase

would scale to 20%. There will also be a partially offsetting increase in producer surplus.

On top of that, some authors have argued that the ethanol mandate increases fuel supply,

thereby lowering fuel cost, which in turn benefits consumers (Rajagopal et al. 2007). The

full welfare analysis therefore also requires assumption on the elasticity of supply of fuels

that are beyond the scope of this paper. It is worth noting that the policy is a larger shift

from consumer surplus to producer surplus.

Table 5 conducts a sensitivity analysis which includes separate yield shocks for corn

and soybeans (index by subscript MS) and rice and wheat (indexed by subscript RW). The

rational is that the latter are primarily used as food, while the former are also used as feed

stock. One might hence wonder whether yield shocks from all four commodities can be pooled

together. On the margin, caloric demand should equate the price per calorie produced or it

would be better to substitute to another crop. While there are of course regional preferences

for various food sources (rice is predominant in Southeast Asia while Europeans rely much

17The forecastibility of current shocks does not create bias in the supply equation because current shocks
are not excluded from the second stage.

18The expected supply (along the trend line) is the equivalent of feeding 7.06 billion people for a year on
2000 calories per day, prices in 2007 were 74.12 dollars per person per year, and the 30 percent price increase
will reduce consumption by 1.5 percent.
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more on wheat), all we need for the prices to move together in equilibrium is that some

demanders (feed lots, food processing plants) are willing to substitute various crops on the

margin. We find no evidence that shocks are different for the two sets of commodities as all

Wald tests (reported in the last three columns of each panel) are not significantly different.

Since we have a limited number of observations (43 years), we pool all shocks to limited then

number of variables in our analysis.

Table 6 presents various sensitivity checks. Panel A reports the baseline results from

Table 3. Panel B uses a linear time trend to obtain jackknifed residuals as well a linear trend

in production. The results are insensitive whether we use a linear time trend or a quadratic

time trend in the baseline results. The predicted price increase remains robust around 30

percent.

Panel C derives caloric shocks as the product of the jackknifed yield residuals and the

predicted (as opposed to actual) harvested area along a quadratic time trend. The effect on

the estimated results is very minor though as we are dealing with a second order effect, i.e.,

the product of changes in yield times changes in areas.

Panel D rescales the caloric conversions factors so that the average price between 1961

and 2003 is the same for all commodities. If various goods are substitutes in production,

relative conversion factors are given by the price ratios. This allows us to back out the

implicit conversation factors set by the market instead of using the ones by Williamson and

Williamson (1942). The results change again very little supporting our hypothesis that it is

feasible to aggregate all four crops based on caloric conversion factors.

Panel E uses a sensitivity check where the caloric shock ωt is not normalized by the

inventory levels. The results seem to become a bit more sensitive to the order of the time

polynomial, which is picking up that there was a time period in the 1970s when inventory

levels were low and prices spiked.

Panel F focuses on the planting dates in the Northern hemisphere: As before, expected

futures prices for wheat with a September delivery are averaged in the previous September.

However, we no longer use soybeans and maize price a year in advance (i.e., in November and

December of the previous, respectively), but the average price in March of the delivery year,

the month when planting decisions are made in most of the Northern hemisphere. These

March prices can incorporate information about the harvest in the Southern hemisphere that

farmers in the North can incorporate at the time of planting. Again, the results are robust

to this change.

Finally, Table 7 presents results when we use yield residuals that are attributable to
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observed weather shocks in Panel B. Significance levels decrease in both the first stage

and the second stage. Since the instruments are weak, the results should be considered

cautiously. Generally, demand is inelastic, while supply elasticities fluctuate around our

baseline estimates, although the confidence intervals are wider as well. Three-stage least

squares gives smaller standard errors than two-stage least squares, which are comparable to

our baseline estimates if we include one lag of the shock. While the results are consistent

with our baseline estimates for the specification with one lag and 3SLS, the results are

less robust to other modifications of the specification. The larger confidence intervals are

due to the weather measures having limited predictive accuracy outside the United States.

The correlation coefficient between yearly caloric shocks using (i) jackknifed residuals and

using (ii) shocks attributable to observed weather shocks is 0.71 in the United States. Since

the United States accounts for such a disproportional share of world caloric production, the

correlation is still 0.51 if we aggregate shocks over all countries. This is further demonstrated

in Figure 9 where we plot yield residuals as deviations from a time trend on the x-axis and

yield residuals using weather instruments on the y-axis for some of the biggest producers.

The top left panel shows the United States where the scatter plots aligns reasonably well

with the 45-degree line. However, the bottom row shows that our model linking yields to

weather is fairly bad for China and Thailand, which both heavily rely on rice.

The main motivation of using weather-induced caloric shocks was to rule out that yields

are endogenous to price and hence our caloric shock, which is derived as deviations from a

quadratic time trend, might also be endogenous. Figure 9 provides further evidence that this

unlikely. We color-coded the scatter plot by the futures prices (traded the year before the

yield was realized). If yields are endogenous, we should observe distinct color patterns. For

example, if yields respond positively to higher prices as farmers increase sowing densities, our

caloric shocks derived as deviations from a time trend should be more positive when prices

are high. This would imply that observations with a large x-values should be predominantly

shown in red colors, while negative x-values should be shown in blue colors. We find no such

distinct color pattern.

Our new estimates are contrasted to other approaches in Table 8. The first two columns

report elasticity estimates from seemingly unrelated regressions (SUR) without a first stage.

That is, these models use raw endogenous price, not predicted price. They do account

for observed supply shifters and the correlation of innovations ut and vt. We include this

regression mainly to illustrate likely endogeneity bias in comparison to 2SLS estimates in
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Table 3. The SUR regression gives extremely inelastic estimates of supply and demand, 0.016

for supply and -0.017 for demand. While the demand elasticity is statistically significant at

the 10% level, the standard errors are small and (if assumptions are accepted, which is

dubious) rule out elasticities less than -0.034 with 97.5 percent confidence. The supply is

statistically insignificant, and again rule out elasticities greater than 0.34 with 97.5 percent

confidence. The predicted price increase of an ethanol mandate (diverting 5 percent of world

production) would be almost 200 percent.

Columns (3) to (6) of Table 8 follow the approach of Nerlove (1958) and include futures

prices which are not instrumented. The estimated supply elasticity becomes lower and

insignificant, which is in accordance with the previous literature on supply responses. The

predicted price increase of an ethanol mandate (diverting 5 percent of world production)

would be around 60 percent if we use the point estimates of the elasticities. The mean impacts

are even higher as the predicted price increase is a convex function of the parameters. Our

concern with this approach is that expected price incorporates anticipated area responses

and is hence endogenous.

All models in Table 8 give smaller supply elasticities and hence the ethanol policy would

lead to larger price increases and lower area expansions. Our model gives a lower pre-

dicted reduction in consumer surplus than previous approaches, yet the predicted impact

is still sizable. The flip-side of a more elastic supply is that the dampened price increase

comes at another potentially harmful effect: A predicted expansion in the agricultural area.

Searchinger et al. (2008) and others have emphasized that this land conversion will lead to

further CO2 emissions. Currently, land conversion already accounts for 20% of global CO2

emissions.

Panel A of Table 9 examines this further by regressing the log of total world growing area

(for maize, rice, soybeans, and wheat) on the combined lagged production shock ωt−1 of all

four commodities in the first two columns. The coefficient is negative and significant at the

one percent level, i.e., the planting area moves in the opposite direction of the shocks: A bad

yield shock leads to an expansion of the area and vice versa. Rational market participants

will incorporate this area-response, as well as all other known information about planting

areas, in their expectation of future prices, making the price endogenous. Our approach

therefore only uses production shocks that are due to unpredictable yield shocks as an

instrument and purges the analysis of possible area responses. We regress the log of total

area on instrumented caloric prices in columns (3) through (6), suggesting an area elasticity

of roughly 0.06-0.07. While this number is smaller than our supply elasticity estimates, it
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should be noted that if the more productive countries are the responsive ones, a less than

one-to-one response between output increases and area increases is expected. For example,

if countries which have twice the average yield increase the area by 6%, total supply will

increase by more than 6%. Panels B through F replicate the analysis for individual countries

and demonstrate that there are different sensitivities to world caloric shocks and world

prices: Major producers and exporters like the United States and Brazil show an even larger

elasticity, while more self-sufficient countries like India show smaller elasticities. Our land

elasticity for Brazil is comparable to Barr et al. (2010), but larger for the US.19 Our estimated

elasticities imply that total caloric production would increase by roughly 3.5 percent, or 180

trillion calories. Using an elasticity of 0.06 from Table 9 on the predicted 30 percent price

change, total acreage is predicted to increase by 2 percent, or 30 million acres. In 2007, total

planting area for the four commodities were 1.5 billion acres.

Table 10 shows the range of calories per hectare that can currently be obtained. Using

the highest coefficient for maize in the United States, the predicted area increase is 19

million acres. For comparison, the total corn area in the United States is approximately 80

million acres. If the area expansion were to occur in less productive parts of the world, the

land conversion would be even greater. For example, Brazil would require an area that is

almost three times as large to derive the same amount of calories from maize.20 As shown

in Table 9, exporting countries like the Unites States and Brazil have been more responsive

to fluctuations in world price.

5 Conclusions

We have two basic goals with this analysis. The first is to demonstrate how weather-induced

yield shocks can facilitate estimation of both supply and demand of agricultural commodities.

In applying this idea to the available data we found it more practical to use yield shocks

(deviations from quadratic time trends of output per land unit), mainly due to a weak

instruments problem. This is stemming from the difficulty in predicting yields outside the

United States. The second objective is to estimate elasticities for caloric energy from the

world’s most predominant food commodities. While the idea of using weather to identify

demand is an old idea, it has rarely been applied, and to our knowledge has never been

19As pointed out above, not instrumenting the price can bias the results towards zero as outlined in the
soybean rust example in the introduction.

20It should be noted that we are using average calories per acre, yet the correct measure would be the
amount of calories obtained on the marginal land. These numbers should hence been seen as a first proxy.

22



applied on a global scale. Our approach of using weather to identify supply is new, and we

show this approach results in supply estimates that are far more elastic than those obtained

using traditional methods.

Our model is simple. By aggregating crops and countries, we obscure the likely impor-

tance of many important factors, especially the imperfect substitutability of crops, trans-

portation costs, tariffs, trade restrictions, and agricultural subsidies. But what the model

lacks in complexity, it gains in transparency. We see these estimates as a complement

to larger and more sophisticated computational models, wherein local supply and demand

responses are either assumed or estimated individually, and transportation and trade restric-

tions are carefully accounted for. Our estimates provide a useful reality check for whether

micro complexities add up to patterns that are observable in the aggregate data.

With this perspective in mind, we consider price and quantity predictions stemming from

the rapid and largely policy-induced expansion of ethanol demand. The US ethanol policy

has diverted (or will soon divert) approximately 5 percent of world caloric production into

ethanol production. Since commodities are storable and the current ethanol production trend

was largely anticipated since the Energy Policy Act of 2005, it is reasonable to expect that

futures prices would have quickly incorporated the shift in demand, even though it has taken

several years for ethanol production growth to be realized. Using our preferred estimated

supply and demand elasticities, a shift of this magnitude would cause an estimated increase

in price equal to 30 percent if none of the corn used for biofuel production can be recycled. If

the distillers’ left over grains from corn used in ethanol production is recycled as feed stock,

the price increase would be scaled back accordingly. For example, if one third of the calories

can be recovered as feed stock, the price increase would be lowered to 20 percent. Note,

however, that this difference might easily be compensated by further anticipated growth

in biofuel production. These predicted price increases are far smaller than those obtained

using a SUR model that does not account for the endogeneity of prices, or from a model

that accounts for the endogeneity of current prices in the demand equation but does not

instrument futures prices in the supply equation. Our prediction is slightly larger than the

USDA projected price increase made for corn in 2007, and would suggest that the ethanol

subsidy had some role in the four-fold price increase, but by no means can account for all of

it.

It is surprising that research in agricultural economics has not made greater use of

weather-based instruments. One possible reason is the difficulty in linking weather vari-

ables to agricultural outcomes, like crop yields. We have circumvented this difficulty by
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summing local yield deviations from trend. In theory such deviations might be part of the

supply response function and therefore endogenous; in practice; however, this appears to

be a small issue. Nevertheless, use of weather variables instead of yield shocks may be a

promising direction for future research. To make such an approach viable will require rich

weather data and a parsimonious model linking weather to yield. Yield shocks attributable

to fine scale weather data in the United States shows a correlation coefficient of 0.71 with our

baseline deviations from trends. This suggests a both powerful instrument and limited en-

dogenous yield response in the United States. However, the likely imprecision of fine-scaled

weather data outside the United States makes it more difficult to obtain powerful instru-

ments in other countries. Some of our difficulty may also result from different agronomic

processes in wheat and rice production, which are more prevalent outside the United States,

as compared to corn and soybeans, where the United States is dominant producer. While

our results using weather-based yield shocks are comparable to the ones we obtain in our

baseline model, the results are not very robust.

Our analysis suggests factors besides the US ethanol policy likely contributed strongly

to the rapid price rise between 2006 and 2008. These factors may include rapid growth in

the demand for basic calories from emerging economies like China. This demand growth has

accelerated through demand for meat and other animal-based foods, which are highly income

elastic. While population doubled in China between 1961 and 2006, meat consumption grew

33-fold (FAO), and comprised a little less than a third of the world’s meat consumption in

2006. Meat requires between 5-10 times the agricultural area to obtain the same amount

of calories as a vegetarian diet. This demand growth may resume as the world economy

recovers from the financial crisis and subsequent recession of 2009. Another reason for the

fourfold price increase is a decrease in supply due to detrimental weather, such as prolonged

drought in Australia, coupled with low worldwide inventories. Also, the United States is the

largest exporter of agricultural commodities and many commodity markets are denominated

in US dollars. The devaluation of the dollar therefore increased the price for commodities in

dollars. Some have argued that the commodity price boom, much like earlier housing and

stock market booms, were due to a speculative bubble. However, recorded inventories of

all major commodities declined throughout most the boom, and it is difficult to reconcile a

bubble with an absence of inventory growth. Finally, prices, particularly those for rice, were

influenced by temporary export bans in Vietnam and India, as well as speculation led by

Thailand about a possible formation of rice exporters’ cartel. Since the Fall of 2008, prices

have fallen precipitously, at least partly due to a large inward shift in demand stemming
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from the global economic slowdown.

Because we find supply response occurs mainly through land use rather than through

output per unit area, our results likely have implications for the carbon balance of land or

commodity-based related policies. Ethanol subsidies or carbon offsets derived from limiting

agricultural production in certain targeted areas will raise prices and thereby cause greater

expansion of cropland in other locations. Econometric estimates of full carbon balance effects

would require much more detail on the particular land-use transitions and where they occur.

Substitution of rangeland for cropland would likely have less of an influence that substitution

of rainforest for cropland. It is possible, however, that land transitions from rangeland to

cropland facilitate transitions of forest to rangeland. While these calculations are beyond

the scope of this article, the fact that the United States and especially Brazil have the largest

estimated supply elasticities suggests these effects could be substantial.
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Figure 1: Production and Consumption of Calories from Maize, Wheat, Rice, and Soybeans
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Notes: Top panel displays world production of calories from maize, wheat, rice, and soybeans for 1961-

2007. The y-axis are the number of people who could be fed on a 2000 calories/day diet. Bottom level

displays production as well as consumption of the same four commodities. A locally weighted regression line

(bandwidth of 10 year) is added.
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Figure 2: Scatter Plots of Annual Yields (Countries with more than 1 Percent of World
Production)
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Notes: Scatter plots of yields in each country against time. A quadratic time trend is added as a solid line.

Figure shows all countries that produce on average more than 1 percent of world production. All other

countries are lumped together as “Rest of World”.
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Figure 3: Annual Jackknifed Yield Residuals (Countries with more than 1 Percent of World
Production)
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Notes: Scatter plots of jackknifed yield residuals, i.e., the residual is estimated by excluding the observation

in question. Figure shows all countries that produce on average more than 1 percent of world production.

All other countries are lumped together as “Rest of World”.
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Figure 4: Correlation of Residuals of Two Largest Producers
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Notes: Figure shows scatter plots of yield residuals (deviations from a quadratic trend) of the two largest

producers of each crop. The correlation coefficients are -0.24 for maize, 0.12 for wheat, 0.05 for rice, and

-0.18 for soybeans.
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Figure 5: World Growing Area of Crops

Notes: Panels displays the fraction of each grid cell that is used to grow a crop. A fraction greater than one indicates double cropping.
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Figure 6: Price and Caloric Shocks
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Notes: Top panel displays real annual cost of maize, wheat, rice, and soybeans in 2007 dollars for a 2000

calories per day diet using USDA’s December price series. Overall, prices show a downward trend, and the

recent spike in food prices in small in absolute terms. However, the spike is large in term of relative increase

(threefold increase).

The bottom panel displays log price on the left axis in black and caloric shocks (as percent deviation from

production trend) on the right axis in grey for the years 1961-2007. Production-weighted December prices

of maize, wheat, rice and soybeans are shown as solid black line, while production-weighted futures prices at

delivery (December for maize, November for soybeans, and September for wheat) are shown as dashed line.

Shocks are deviations from country-specific yield trends for the same four commodities.
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Figure 7: US Share of World Production
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Notes: Graph displays the percent of world wide caloric production from maize, wheat, rice and soybeans

that is produced in the United State. Yearly observations are shown as crosses and a locally weighted

regression with a bandwidth of 10 years is added in grey.
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Figure 8: US Ethanol Production Capacity Over Time and as Share of World Capacity
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Figure 9: Contrasting Caloric Shocks: Deviations from Trend versus Weather Induced Resid-
uals
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Notes: Figure shows scatter plots of caloric chocks for four countries. The x-axis shows caloric shocks using

yield deviations from a quadratic time trend. The y-axis uses yield shocks that are obtained from regressing

yields on weather measures. The scatter plots are color coded by the futures price (traded in the previous

year).
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Table 1: Countries with Share of World Production Greater than 1 Percent

Country Share Country Share

Wheat Maize
USSR 21.23 United States of America 42.00
China 14.05 China 15.66
United States of America 12.07 Brazil 5.21
India 8.53 USSR 3.52
Russian Federation 6.86 Mexico 3.01
France 5.33 Yugoslav SFR 2.47
Canada 4.81 Argentina 2.35
Turkey 3.48 France 2.32
Australia 3.13 Romania 2.15
Germany 2.89 South Africa 2.01
Ukraine 2.69 India 1.91
Pakistan 2.49 Italy 1.54
Argentina 2.23 Hungary 1.41
Italy 2.06 Indonesia 1.26
United Kingdom 2.01 Canada 1.15
Kazakhstan 1.87 Rest of World 14.07
Iran, Islamic Republic of 1.54
Poland 1.38
Yugoslav SFR 1.29
Romania 1.27
Spain 1.16
Czechoslovakia 1.05
Rest of World 12.12

Rice Soybeans
China 34.44 United States of America 56.73
India 20.64 Brazil 14.43
Indonesia 7.50 China 13.05
Bangladesh 5.48 Argentina 6.62
Thailand 4.27 India 1.63
Vietnam 3.97 Canada 1.04
Japan 3.67 Rest of World 6.49
Myanmar 3.12
Brazil 2.08
Philippines 1.87
Korea, Republic of 1.59
United States of America 1.44
Pakistan 1.07
Rest of World 8.86

Notes: Table reports all countries with an average yearly share of world production (1961-
2007) above one percent for each crop. All other countries are lumped together as ”Rest of
World”.
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Table 2: Descriptive Statistics

Variable Unit Mean Std. Dev. Min Max

Year 1982 12.56 1961 2003
Caloric Production billion people 4.32 1.34 2.08 6.35
Caloric Storage million people 15.9 118 -317 210
Caloric Stock million people 982 339 445 1564
Caloric Shock - Dev. from Linear Trend million people 2.97 104 -226 175
Caloric Shock - Dev. from Quadratic Trend million people 4.67 107 -240 159
Caloric Shock - Weather Inst. Linear Trend million people -2.29 65 -219 105
Caloric Shock - Weather Inst. Quadratic Trend million people 0.15 60 -218 92
Caloric Price - Futures at Delivery US$2007 per year 89.43 42.96 35.25 215.44
Caloric Price - Futures one Year Before US$2007 per year 87.98 37.24 38.62 189.60
Caloric Price - Dec. USDA Prices US$2007 per year 117.29 60.95 36.85 305.76
Log Caloric Supply Log billion people 1.412 0.337 0.734 1.849
Log Caloric Demand Log billion people 4.060 1.261 1.495 5.775
Log Caloric Price - Futures at Delivery Log US$2007 per year 4.385 0.474 3.563 5.373
Log Caloric Price - Futures one Year Before Log US$2007 per year 4.388 0.430 3.654 5.245
Log Caloric Price - Dec. USDA Prices Log US$2007 per year 4.628 0.540 3.607 5.723

Notes: Descriptive Statistics of the 43 annual observations used in the demand/supply equation. Quantities are in the number of
people that could be fed on a 2000 calories a day diet. Prices are the annual cost of a daily diet of 2000 calories in US$2007.
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Table 3: Demand and Supply Elasticities of Calories using Jackknifed Yield Residuals

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0634∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1165∗∗∗ 0.1337∗∗∗ 0.0826∗∗∗ 0.0951∗∗∗ 0.0957∗∗∗ 0.0979∗∗∗

(s.e.) (0.0286) (0.0241) (0.0217) (0.0189) (0.0208) (0.0189)
Price Increase 31.41 27.01 36.10 29.31 32.14 32.16

95% Conf. Int. (21.32,50.14) (20.69,36.62) (23.75,60.31) (22.01,40.80) (22.23,50.00) (22.79,48.40)

Demand

Price pt -5.05e-02∗∗∗ -5.54e-02∗∗∗ -6.41e-02∗∗ -7.97e-02∗∗∗ -6.68e-02∗∗∗ -6.34e-02∗∗∗

(1.90e-02) (1.67e-02) (2.43e-02) (2.15e-02) (2.41e-02) (2.26e-02)
Time Trend 4.26e-02∗∗∗ 4.26e-02∗∗∗ 4.56e-02∗∗∗ 4.77e-02∗∗∗ 4.69e-02∗∗∗ 4.77e-02∗∗∗

(8.32e-04) (8.57e-04) (2.50e-03) (2.81e-03) (3.03e-03) (3.44e-03)
Time Trend2 -4.18e-04∗∗∗ -4.23e-04∗∗∗ -6.12e-04∗∗∗ -7.34e-04∗∗∗ -6.74e-04∗∗∗ -7.07e-04∗∗∗

(2.34e-05) (2.28e-05) (1.53e-04) (1.63e-04) (1.77e-04) (1.93e-04)
Time Trend3 2.93e-06 4.56e-06∗ 3.78e-06 4.23e-06

(2.26e-06) (2.37e-06) (2.57e-06) (2.74e-06)

Supply

E[pt|t−1] 1.17e-01∗∗∗ 1.34e-01∗∗∗ 8.26e-02∗∗∗ 9.51e-02∗∗∗ 9.57e-02∗∗∗ 9.79e-02∗∗∗

(2.86e-02) (2.41e-02) (2.17e-02) (1.89e-02) (2.08e-02) (1.89e-02)
Shock ωt 2.46e-01∗∗∗ 2.62e-01∗∗∗ 2.61e-01∗∗∗ 2.72e-01∗∗∗ 2.71e-01∗∗∗ 2.73e-01∗∗∗

(3.37e-02) (2.94e-02) (2.65e-02) (2.38e-02) (2.56e-02) (2.35e-02)
Time Trend 4.46e-02∗∗∗ 4.46e-02∗∗∗ 5.41e-02∗∗∗ 5.40e-02∗∗∗ 5.27e-02∗∗∗ 5.26e-02∗∗∗

(9.34e-04) (8.74e-04) (2.04e-03) (1.89e-03) (2.32e-03) (2.14e-03)
Time Trend2 -3.54e-04∗∗∗ -3.44e-04∗∗∗ -9.23e-04∗∗∗ -9.11e-04∗∗∗ -8.48e-04∗∗∗ -8.43e-04∗∗∗

(2.66e-05) (2.40e-05) (1.12e-04) (1.04e-04) (1.26e-04) (1.16e-04)
Time Trend3 8.45e-06∗∗∗ 8.37e-06∗∗∗ 7.52e-06∗∗∗ 7.46e-06∗∗∗

(1.68e-06) (1.55e-06) (1.81e-06) (1.68e-06)
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Top panel displays the demand and supply elasticity as well as the predicted price increase from an ethanol
mandate that requires 5 percent of world production calories to be diverted for biofuel use (assuming none of the corn
used for biofuel production is recycled as feed stock, otherwise the predicted price increase would scale accordingly).
The bottom panel displays the second stage regressions in more detail. The first stage results are given in Table 4.
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Table 4: First-Stage Results for Demand and Supply Equation

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Demand: First-Stage Instrumenting Price pt

Shock ωt -1.19e+00∗∗∗ -1.16e+00∗∗∗ -1.12e+00∗∗∗ -9.92e-01∗∗∗ -1.04e+00∗∗∗ -1.07e+00∗∗∗

(2.62e-01) (2.47e-01) (2.93e-01) (2.65e-01) (2.97e-01) (2.57e-01)
Shock ωt−1 -3.99e-01 -3.30e-01

(2.95e-01) (2.02e-01)
Time Trend -8.43e-03 -6.49e-03 4.64e-03 2.03e-02 7.05e-04 2.32e-02

(9.73e-03) (1.01e-02) (2.64e-02) (2.84e-02) (3.22e-02) (3.28e-02)
Time Trend2 -5.49e-04∗∗ -5.88e-04∗∗∗ -1.32e-03 -2.10e-03 -1.08e-03 -2.12e-03

(2.24e-04) (2.28e-04) (1.47e-03) (1.53e-03) (1.72e-03) (1.71e-03)
Time Trend3 1.22e-05 2.32e-05 8.68e-06 2.26e-05

(2.27e-05) (2.33e-05) (2.60e-05) (2.54e-05)

Supply: First-Stage Instrumenting Expected Price E[pt|t−1]
Shock ωt−1 -8.60e-01∗∗∗ -7.52e-01∗∗∗ -9.18e-01∗∗∗ -8.17e-01∗∗∗ -8.33e-01∗∗∗ -8.45e-01∗∗∗

(2.14e-01) (1.91e-01) (2.26e-01) (1.98e-01) (2.20e-01) (1.96e-01)
Shock ωt−2 -3.53e-01 -3.41e-01∗

(2.21e-01) (1.89e-01)
Shock ωt -6.10e-01∗∗∗ -6.35e-01∗∗∗ -6.82e-01∗∗∗ -6.75e-01∗∗∗ -6.39e-01∗∗∗ -6.45e-01∗∗∗

(2.10e-01) (1.97e-01) (2.27e-01) (2.09e-01) (2.20e-01) (1.99e-01)
Time Trend -1.04e-02 -9.64e-03 -3.01e-02 -2.54e-02 -2.14e-02 -2.17e-02

(8.15e-03) (7.64e-03) (2.46e-02) (2.26e-02) (2.77e-02) (2.51e-02)
Time Trend2 -4.39e-04∗∗ -4.57e-04∗∗∗ 6.72e-04 4.25e-04 2.55e-04 2.76e-04

(1.85e-04) (1.73e-04) (1.32e-03) (1.21e-03) (1.43e-03) (1.30e-03)
Time Trend3 -1.69e-05 -1.34e-05 -1.07e-05 -1.11e-05

(1.99e-05) (1.83e-05) (2.10e-05) (1.91e-05)
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Table displays the first stage regressions for the results in Table 3.
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Table 5: First-Stage Results Separating Maize/Soybeans and Rice/Wheat Shocks

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Demand: First-Stage Instrumenting Price pt

Shock ωt,MS -1.14e+00∗∗ -1.18e+00∗∗∗ -1.18e+00∗∗ -1.01e+00∗∗∗ -1.04e+00∗∗ -1.09e+00∗∗∗

(4.71e-01) (4.03e-01) (4.79e-01) (3.87e-01) (4.83e-01) (3.74e-01)
Shock ωt,RW -1.22e+00∗∗∗ -1.21e+00∗∗∗ -1.08e+00∗∗ -1.15e+00∗∗∗ -9.78e-01∗∗ -1.18e+00∗∗∗

(3.51e-01) (3.10e-01) (4.41e-01) (3.59e-01) (4.58e-01) (3.54e-01)
Shock ωt−1,MS 1.95e-01 -5.16e-02

(4.90e-01) (3.38e-01)
Shock ωt−1,RW -9.29e-01∗∗ -6.74e-01∗∗

(4.35e-01) (3.34e-01)
Time Trend -8.75e-03 -6.82e-03 6.87e-03 1.25e-02 -2.52e-02 -3.95e-03

(1.02e-02) (1.03e-02) (3.11e-02) (3.17e-02) (4.25e-02) (3.96e-02)
Time Trend2 -5.41e-04∗∗ -5.79e-04∗∗ -1.44e-03 -1.69e-03 1.98e-04 -7.55e-04

(2.37e-04) (2.34e-04) (1.71e-03) (1.69e-03) (2.23e-03) (2.04e-03)
Time Trend3 1.38e-05 1.72e-05 -8.88e-06 3.61e-06

(2.60e-05) (2.54e-05) (3.26e-05) (2.97e-05)
F-stat 0.0146 0.0195 1.3904
χ2-stat 0.0039 0.0627 1.5022
p-value 0.9040 0.9505 0.8892 0.8023 0.2557 0.4719

Supply: First-Stage Instrumenting Expected Price E[pt|t−1]
Shock ωt−1,MS -6.88e-01∗ -6.25e-01∗∗ -4.91e-01 -5.43e-01∗ -5.03e-01 -5.43e-01∗

(3.67e-01) (3.15e-01) (3.66e-01) (3.03e-01) (3.64e-01) (3.11e-01)
Shock ωt−1,RW -8.56e-01∗∗∗ -7.00e-01∗∗∗ -1.15e+00∗∗∗ -9.46e-01∗∗∗ -1.01e+00∗∗∗ -9.97e-01∗∗∗

(3.00e-01) (2.59e-01) (3.25e-01) (2.76e-01) (3.37e-01) (2.88e-01)
Shock ωt−2,MS 7.62e-03 7.44e-02

(3.61e-01) (2.88e-01)
Shock ωt−2,RW -5.75e-01∗ -6.07e-01∗∗

(3.28e-01) (2.64e-01)
Shock ωt,MS -2.63e-01 -2.64e-01 -9.26e-02 -9.33e-02 -1.28e-01 -1.38e-01

(3.64e-01) (3.32e-01) (3.61e-01) (3.20e-01) (3.50e-01) (3.01e-01)
Shock ωt,RW -8.22e-01∗∗∗ -8.89e-01∗∗∗ -1.20e+00∗∗∗ -1.23e+00∗∗∗ -1.03e+00∗∗∗ -1.06e+00∗∗∗

(2.94e-01) (2.66e-01) (3.42e-01) (3.03e-01) (3.45e-01) (2.96e-01)
Time Trend -1.31e-02 -1.22e-02 -7.37e-02∗∗ -6.49e-02∗∗ -7.10e-02∗ -7.35e-02∗∗

(8.75e-03) (7.94e-03) (3.18e-02) (2.78e-02) (3.77e-02) (3.22e-02)
Time Trend2 -3.73e-04∗ -3.95e-04∗∗ 2.90e-03∗ 2.45e-03∗ 2.72e-03 2.85e-03∗

(2.00e-04) (1.81e-04) (1.66e-03) (1.46e-03) (1.90e-03) (1.63e-03)
Time Trend3 -4.82e-05∗ -4.21e-05∗∗ -4.48e-05 -4.66e-05∗∗

(2.43e-05) (2.14e-05) (2.72e-05) (2.33e-05)
F-stat 0.1179 1.5607 0.8349
χ2-stat 0.0326 0.8421 2.9795
p-value 0.7323 0.8568 0.2158 0.3588 0.4385 0.2254
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Table displays first stage regressions results when we separate caloric shocks from maize and soybeans
(subscript MS) and rice and wheat (subscript RW). Table includes Wald tests in the last three rows of each panel
to check whether coefficients for maize and soybeans are different from coefficients for rice and wheat in the first
four rows of each panel. None of the p-values is below 0.1, suggesting that pooling the four crops is adequate.
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Table 6: Sensitivity Checks: Elasticities Estimated using Jackknifed Yield Residuals

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Panel A: Baseline

Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0634∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1165∗∗∗ 0.1337∗∗∗ 0.0826∗∗∗ 0.0951∗∗∗ 0.0957∗∗∗ 0.0979∗∗∗

(s.e.) (0.0286) (0.0241) (0.0217) (0.0189) (0.0208) (0.0189)
Price Increase 31.41 27.01 36.10 29.31 32.14 32.16

95% Conf. Int. (21.32,50.14) (20.69,36.62) (23.75,60.31) (22.01,40.80) (22.23,50.00) (22.79,48.40)

Panel B: Caloric Shock Derived using Linear Time Trend

Demand Elasticity -0.0492∗∗ -0.0544∗∗∗ -0.0590∗∗ -0.0715∗∗∗ -0.0616∗∗ -0.0575∗∗∗

(s.e.) (0.0192) (0.0169) (0.0234) (0.0211) (0.0234) (0.0220)
Supply Elasticity 0.1058∗∗∗ 0.1206∗∗∗ 0.0868∗∗∗ 0.1010∗∗∗ 0.1008∗∗∗ 0.1038∗∗∗

(s.e.) (0.0261) (0.0219) (0.0230) (0.0194) (0.0229) (0.0206)
Price Increase 33.91 29.20 36.43 29.70 32.24 32.21

95% Conf. Int. (22.88,54.59) (22.32,39.68) (23.80,61.39) (22.33,41.26) (22.07,50.88) (22.67,48.94)

Panel C: Caloric Shock Derived using Quadratic Area Trend

Demand Elasticity -0.0489∗∗ -0.0528∗∗∗ -0.0614∗∗ -0.0740∗∗∗ -0.0639∗∗∗ -0.0595∗∗∗

(s.e.) (0.0185) (0.0165) (0.0233) (0.0211) (0.0233) (0.0216)
Supply Elasticity 0.1171∗∗∗ 0.1318∗∗∗ 0.0856∗∗∗ 0.0970∗∗∗ 0.0988∗∗∗ 0.1013∗∗∗

(s.e.) (0.0274) (0.0230) (0.0206) (0.0178) (0.0199) (0.0180)
Price Increase 31.51 27.66 35.85 29.95 31.96 32.15

95% Conf. Int. (21.66,49.45) (21.23,37.39) (24.04,58.22) (22.59,41.46) (22.44,48.72) (23.15,47.34)

Panel D: Rescaled Caloric Conversion Factors to Equalize Average Prices

Demand Elasticity -0.0629∗∗∗ -0.0578∗∗∗ -0.0803∗∗∗ -0.0794∗∗∗ -0.0662∗∗∗ -0.0655∗∗∗

(s.e.) (0.0184) (0.0151) (0.0237) (0.0167) (0.0200) (0.0199)
Supply Elasticity 0.1247∗∗∗ 0.1347∗∗∗ 0.0716∗∗∗ 0.0783∗∗∗ 0.0808∗∗∗ 0.0801∗∗∗

(s.e.) (0.0362) (0.0289) (0.0165) (0.0142) (0.0154) (0.0139)
Price Increase 28.15 26.64 34.27 32.18 35.13 35.38

95% Conf. Int. (18.71,46.27) (19.92,37.27) (23.97,52.50) (25.63,41.52) (25.44,51.32) (25.87,51.01)

Panel E: Caloric Shock not Divided by Inventory

Demand Elasticity -0.0439∗∗ -0.0464∗∗∗ -0.0555∗∗ -0.0654∗∗∗ -0.0564∗∗ -0.0535∗∗

(s.e.) (0.0180) (0.0158) (0.0225) (0.0198) (0.0218) (0.0205)
Supply Elasticity 0.1219∗∗∗ 0.1376∗∗∗ 0.0870∗∗∗ 0.1001∗∗∗ 0.0991∗∗∗ 0.1031∗∗∗

(s.e.) (0.0285) (0.0230) (0.0208) (0.0172) (0.0193) (0.0169)
Price Increase 31.61 27.70 37.01 30.87 33.43 32.89

95% Conf. Int. (21.55,50.13) (21.46,36.99) (24.67,60.68) (23.65,41.84) (23.51,50.83) (24.11,47.24)

Panel F: Futures Price for Maize and Soybeans Traded in March

Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0642∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1234∗∗∗ 0.1455∗∗∗ 0.0858∗∗∗ 0.1009∗∗∗ 0.0981∗∗∗ 0.1001∗∗∗

(s.e.) (0.0323) (0.0268) (0.0232) (0.0199) (0.0218) (0.0197)
Price Increase 30.34 25.45 35.38 28.36 31.68 31.60

95% Conf. Int. (20.20,49.76) (19.40,34.71) (23.18,59.42) (21.35,39.31) (21.87,49.45) (22.33,47.74)
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Sensitivity checks of results from Table 3 to various modeling assumptions. Panel A displays the baseline
results from Table 3 for comparison.
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Table 7: Sensitivity Checks: Elasticities Estimated using Yield Shocks Attributable to Observed Weather Shocks

Model
2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Panel A: Baseline
Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0634∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1165∗∗∗ 0.1337∗∗∗ 0.0826∗∗∗ 0.0951∗∗∗ 0.0957∗∗∗ 0.0979∗∗∗

(s.e.) (0.0286) (0.0241) (0.0217) (0.0189) (0.0208) (0.0189)
Price Increase 31.41 27.01 36.10 29.31 32.14 32.16

95% Conf. Int. (21.32,50.14) (20.69,36.62) (23.75,60.31) (22.01,40.80) (22.23,50.00) (22.79,48.40)

Panel B: Production Shock Derived using Observed Weather
Demand Elasticity -0.0315 -0.0591 -0.0324 -0.0682 -0.0404 -0.0569

(s.e.) (0.1144) (0.0494) (0.1197) (0.0539) (0.0621) (0.0347)
Supply Elasticity -1.8247 0.1532∗∗∗ 1.6023 0.1555∗∗∗ -0.2373 -0.4045

(s.e.) (48.0201) (0.0388) (32.5143) (0.0461) (0.4016) (0.3542)
Price Increase 0.02 26.98 -0.02 25.39 3.00 -4.77

95% Conf. Int. (-1.65,1.66) (14.88,55.91) (-2.43,2.47) (13.75,58.30) (-177.35,170.22) (-146.83,131.75)
Observations 41 41 41 41 40 40
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Sensitivity checks of results from Table 3 to modeling yield shocks using observed weather outcomes. Caloric
shocks in panel B are derived as follows: For the United States we fit a model that uses degree days and a quadratic
in total precipitation following Schlenker and Roberts (2009), while rice and wheat are modeled using a quadratic in
average temperature and total precipitation during the growing season. We estimate a quadratic in average tempera-
ture and total precipitation for a panel of all other countries that produces more than 1 percent of a particular crop.
All other countries are lumped together as ”Rest of World”, where the weather variables are the area-weighted average
of all countries. All regressions include a quadratic time trend.
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Table 8: Replication of Other Approaches: Demand and Supply of Calories

SUR - Price Not Instrumented Demand Instrumented / Supply Not Instrumented
(1) (2) (3) (4) (5) (6)

Demand Elasticity -0.0173∗ -0.0187∗ -0.0489∗∗∗ -0.0489∗∗∗ -0.0489∗∗∗ -0.0655∗∗∗

(s.e.) (0.0094) (0.0098) (0.0180) (0.0180) (0.0180) (0.0243)
Supply Elasticity 0.0159 0.0136 0.0226 0.0245 0.0238 0.0226

(s.e.) (0.0182) (0.0162) (0.0239) (0.0251) (0.0274) (0.0239)
Price Increase 197.31 191.37 146.21 124.40 75.41 80.69

95% Conf. Int. (-694.47,1147.67) (-646.87,1145.45) (36.94,299.62) (35.79,294.97) (34.00,343.52) (31.62,209.22)
Time Trend I 2 3 2 2 2 3
Shocks Lags K n.A. n.A. 1 1 1 2
Supply Lags n.A. n.A. 0 1 2 0

Notes: The first two columns do not instrument price (which is arguably endogenous) and simply use the observed price in
a year in both the supply and demand equation. The last four columns follow the approach of Nerlove (1958) and do not
instrument futures prices in the supply equation. Following the literature, lagged supply quantities are included in some
regressions.

44



Table 9: Acreage Changes in Response to Past Caloric Shocks and Instrumented Price

(1) (2) (3) (4) (5) (6)

Panel A: World Growing Area
Shock ωt−1 -0.0599∗∗∗ -0.0620∗∗∗

(0.0147) (0.0186)
E[pt|t−1] 0.0725∗∗∗ 0.0634∗∗∗ 0.0756∗∗∗ 0.0750∗∗∗

(0.0146) (0.0148) (0.0130) (0.0140)

Panel B: Growing Area of United States
Shock ωt−1 -0.2642∗∗∗ -0.2512∗∗∗

(0.0654) (0.0826)
E[pt|t−1] 0.3200∗∗∗ 0.2569∗∗∗ 0.3350∗∗∗ 0.2967∗∗∗

(0.0562) (0.0566) (0.0504) (0.0527)

Panel C: Growing Area of Brazil
Shock ωt−1 -0.3111∗∗∗ -0.2304∗∗

(0.0731) (0.0897)
E[pt|t−1] 0.3768∗∗∗ 0.2356∗∗ 0.3681∗∗∗ 0.2233∗∗

(0.1096) (0.0947) (0.0986) (0.0877)

Panel D: Growing Area of China
Shock ωt−1 -0.0256 -0.0424

(0.0272) (0.0340)
E[pt|t−1] 0.0311 0.0434 0.0371 0.0713∗∗

(0.0299) (0.0311) (0.0265) (0.0277)

Panel E: Growing Area of India
Shock ωt−1 -0.0124 -0.0049

(0.0262) (0.0331)
E[pt|t−1] 0.0150 0.0050 0.0259 0.0065

(0.0296) (0.0315) (0.0266) (0.0287)

Panel F: Growing Area of Thailand
Shock ωt−1 -0.1078∗ -0.1636∗∗

(0.0553) (0.0682)
E[pt|t−1] 0.1306∗ 0.1673∗∗ 0.0979∗ 0.1020

(0.0672) (0.0730) (0.0591) (0.0640)

Observation 42 42 42 42 41 41
Time Trend I 2 3 2 3 2 3
Shock Lags K n.a. n.a. 1 1 2 2

Notes: First two columns show regression results of log total world growing area (for maize, wheat,
rice, and soybeans) on lagged weather shocks using various time trends as controls. The last four
columns regress log total area on instrumented lagged prices. Columns (3) and (4) use up to one
lag of the weather shock as the instrument, while columns (5) and (6) use up to two lags.
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Table 10: Calories per Acre in 2007

Country Maize Wheat Rice Soybeans

Argentina 16.96 5.82 8.59
Australia 3.61
Bangladesh 8.16
Brazil 8.91 8.10 8.83
Canada 20.01 5.37 8.39
China 13.29 9.89 13.6 6.09
France 22.11 15.60
Germany 16.93
Hungary 14.14
India 5.16 6.24 6.82 3.44
Indonesia 8.74 9.64
Iran 5.04
Italy 22.93 7.58
Japan 13.33
Kazakhstan 2.72
Korea 13.22
Mexico 7.30
Myanmar 7.77
Pakistan 5.64 6.26
Philippines 7.44
Poland 7.92
Rest of World 6.27 6.22 6.42 5.78
Romania 7.13 4.98
Russian Federation 4.60
South Africa 7.43
Spain 6.31
Thailand 6.01
Turkey 4.71
Ukraine 5.63
United Kingdom 17.92
United States of America 23.04 6.00 16.21 9.12
Vietnam 10.74

Notes: Table gives the number of million calories per hectare using the pre-
dicted yield (along the trend) in 2007.
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