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1 Introduction

The average return on stocks is roughly 7% higher per year than the average return on bills across
a large cross-section of countries in the twentieth century (Barro and Ursua, 2008). Mehra and
Prescott (1985) argue that this large equity premium is difficult to explain in simple consumption-
based asset-pricing models. A large subsequent literature in finance and macroeconomics has sought
to explain this “equity-premium puzzle”. One strand of this literature has investigated whether the
equity premium may be compensation for the risk of rare but disastrous events. This hypothesis
was first put forward by Rietz (1988)E| A drawback of Rietz’s paper is that it does not provide
empirical evidence regarding the plausibility of the parameter values needed to generate a large
equity premium based on rare disasters.

Barro (2006) uses data on GDP for 35 countries over the 20th century from Maddison (2003)
to evaluate Rietz’s hypothesis empirically. His main conclusion is that a simple model calibrated
to the empirical frequency and size distribution of large economic contractions in the Maddison
data can match the observed equity premium. In subsequent work, Barro and Ursua (2008) have
gathered a long-term data set for personal consumer expenditure in over 20 countries and shown
that the same conclusions hold using these data. Barro (2006) and Barro and Ursua (2008) analyze
the effects of rare disasters on asset prices in a model in which consumption follows a random
walk, disasters are modeled as instantaneous, permanent drops in consumption, and the timing of
disasters is uncorrelated across countries. They show that it is straightforward to calculate asset
prices in this case.

The tractability of the models used in Barro (2006) and Barro and Ursua (2008) comes at the
cost of empirical realism in certain respects. First, their model does not allow for recoveries after
disasters. Gourio (2008) argues that disasters are often followed by periods of rapid growth. A
world in which all disasters are permanent is far riskier than one in which recoveries often follow
disasters. Assuming that all disasters are permanent therefore potentially overstates the asset-
pricing implications of disasters. Second, their model assumes that the entire drop in consumption
due to the disaster occurs over a single time period, as opposed to unfolding over several years as in

the dataﬂ Third, their model assumes that output and consumption follow a random walk in normal

!Other prominent explanations for the equity premium include models with habits (Campbell and Cochrane,
1999), heterogeneous agents (Constantinides and Duffie, 1996) and long run risk (Bansal and Yaron, 2004).

2This assumption is criticized in Constantinides (2008).
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times as well as times of disaster. A large literature in macroeconomics has debated the empirical
plausibility of this assumption (Cochrane, 1988; Cogley, 1990). Fourth, Barro (2006) and Barro
and Ursua (2008) fit their model to the data using an informal estimation procedure based on the
average frequency of large economic contractions and the size distribution of peak-to-trough drops
in consumption during such contractions. Formal estimation might yield different results. Finally,
their model does not allow for correlation in the timing of disasters across countries. Relaxing this
assumption is important in assessing the statistical uncertainty associated with estimates of the
model’s key parametersﬂ

In this paper, we consider a richer model of disasters than that considered in Barro (2006)
and Barro and Ursua (2008). Our aim is to improve on this earlier work along the dimensions
discussed above. Our model allows for permanent and transitory effects of disasters that unfold over
multiple years. It allows for transitory shocks to growth in normal times. The model also allows
for correlation in the timing of disasters across countries. The model is challenging to estimate
using maximume-likelihood methods, because it has a large number of unobserved state variables.
It is, however, relatively straightforward to estimate using Bayesian Markov-Chain Monte-Carlo
(MCMC) methods. We estimate the model using a Metropolized Gibbs samplerﬁ

In estimating the model, we maintain the assumption that the frequency, size distribution, and
persistence of disasters is time invariant and the same for all countries. This strong assumption is
important in that it allows us to pool information about disasters over time and across countries.
The rare nature of disasters makes it difficult to estimate accurately a model of disasters with much
variation in their characteristics over time and space. We use the Barro-Ursua data on personal
consumer expenditure in our analysis.

Our estimates imply that the probability of entering a disaster is 1.7% per year. A majority of
the disasters we identify occur during World War I, the Great Depression and World War II. Other
disasters include the collapse of the Chilean economy first in the 1970’s and then again in the early
1980’s, and the contraction in South Korea during the Asian financial crisis. On average, disasters

last roughly 6.5 years. Consumption drops sharply during disasters. In the disaster episodes we

31f the timing of disasters is assumed to be uncorrelated across countries, the model will interpret the occurrence
of, e.g., World War II in a number of countries as many independent observations. This will overstate the statistical
precision of the estimates.

4A Metropolized Gibbs sampler is a Gibbs sampler with a small number of Metropolis steps. See e.g. Gelfand
(2000) and Smith and Gelfand (1992) for particularly lucid short descriptions of Bayesian estimation methods. See
e.g. Gelman, Carlin, Stern, and Rubin (2004) and Geweke (2005) for a comprehensive treatment of these methods.
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identify in our data, consumption drops on average by 30% in the short run. A large part of
this drop in consumption is reversed in the long-run. The long run effect of disaster episodes on
consumption in our data is a drop of 14% on averageﬁ Uncertainty about future consumption
growth is massive in the disaster state. The standard deviation of consumption growth in this state
is roughly 12% per year. We find that allowing for correlation in the timing of disasters across
countries has little effect on the point estimates of the parameters in our model.

We adopt the representative-agent endowment-economy approach to asset pricing, following
Lucas (1978) and Mehra and Prescott (1985). Within this framework, we assume that agents
have Epstein-Zin-Weil preferences. For an intertemporal elasticity of substitution (IES) of 2 and
a coefficient of relative risk aversion (CRRA) of 6.5, the model generates an unleveraged equity
premium of 4.8%. The asset pricing implications of the model depend importantly on the degree of
permanence of the disasters in our estimated model. An alternative specification of our model in
which the peak-to-trough drop in consumption is completely permanent, generates an unleveraged
equity premium of 4.8% for a CRRA of 4.5. With a CRRA of 6.5, this version of the model
generates an unleveraged equity premium of almost 14%.

The multi-year nature of disasters also affects our asset pricing results. A specification of our
model in which disaster are both permanent and occur in a single period generates an unleveraged
equity premium of 4.8% with a CRRA of 2.7. The main reason for the difference between multi-
period disasters and single-period disasters is that in the case of single-period disasters the drop in
consumption and the drop in the price of stocks are fully coincident. A second reason is that agents
have a desire to save at the onset of a multi-period disaster—in which consumption is expected to
drop for several periods—to smooth their consumption. This limits the drop in stock prices in this
case.

We also consider the asset pricing implications of our model for the case of power-utility analyzed
in Mehra and Prescott (1985), Rietz (1988), and Barro (2006). Unlike in the simple disaster model
considered in earlier work, the consumption process we estimate generates highly counterfactual

implications for the behavior of asset prices during disasters for agents with power utility. For

®Cerra and Saxena (2008) estimate the dynamics of GDP after financial crises, civil wars and political shocks
using data from 1960 to 2001 for 190 countries. They find no recovery after financial crises and political shocks but
partial recovery after civil wars. Their sample does not include WWI, the Great Depression and WWII, which are
important for our results. Davis and Weinstein (2002) document a large degree of recovery at the city level after
large shocks.



standard parameter values, the onset of a disaster counterfactually generates a stock-market boom,
leading to a negative equity premium in normal times.

The key reason for the difference versus earlier models of disasters is that the disasters we
estimate unfold over multiple periods rather than occurring instantaneously. Entering the disaster
state in our model therefore causes agents to expect steep future declines in consumption. This
generates a strong desire to save. When the IES is substantially below one, this savings effect
dominates the effect of lower expected future dividends from stocks due to the disaster and therefore
raises the price of equity. The large movements in expected consumption growth associated with
disasters provide a strong test of consumers’ willingness to substitute consumption over time.
The strong desire of consumers with a low IES to smooth consumption over time yields highly
counterfactual implications for asset pricing. We interpret the sharp drop in stock prices that
typically accompanies the onset of a major disaster as evidence that consumers have a relatively
high willingness to substitute consumption over time (at least during disasters).

Another way of stating our results is to consider what parameters are appropriate to calibrate
a simple model of permanent disasters such as the one considered in Barro and Ursua (2008). As
we discuss in section [6] their results can be roughly replicated with p = 0.0363 and a constant size
of disasters of b = 0.36. In contrast, the simple model with constant-sized permanent disasters of
size b = 0.36 matches our results for a probability of disasters of p = 0.008. The difference in the
two calibrations reflects the fact that we are accounting explicitly for partial recoveries following
disasters and the fact that disasters unfold over time.

In this paper, we employ the Mehra and Prescott (1985) methodology to asset pricing. Hansen
and Singleton (1982) pioneered an alternative methodology based on measuring the empirical corre-
lation between asset price returns and the stochastic discount factor. An important difficulty with
employing the Hansen-Singleton approach is that the observed timing of real returns on stocks and
bonds relative to drops in consumption during disasters is affected by gaps in the data on asset
prices as well as price controls, asset price controls and market closure. For example, stock price
data is missing for Mexico in 1915-1918, Austria in WWII, Belgium in WWI and WWII, Portugal
in 1974-1977, and Spain in 1936-1940. The Nazi regime in Germany imposed price controls in
1936 and asset price controls in 1943 that lapsed only in 1948. In France, the stock market closed

in 1940-1941 and price controls affected measured real returns over a longer period. Because of



irregularities in the timing between stock-market crashes and depressions likely associated with
measurement problems of this sort, in addition to the fact that these events usually unfold over
multiple periods, Barro and Ursua (2009) allow for flexible timing to compute the covariance be-
tween returns and an asset-pricing factor that depends on the proportionate decline of consumption
during a depression. Given this flexibility, they can match the equity premium with a coefficient
of relative risk aversion between three and four. Their calculations highlight the disproportionate
importance of disasters in matching the equity premium. Non-disaster periods contribute trivially
to the equity premium. The challenge with the Hansen-Singleton methodology is thus that the
periods that are likely to be most important for measuring the equity premium are also those for
which the measurement of asset prices is most suspect.

A limitation of some existing models that have been proposed as resolutions of asset-pricing
puzzles is that it is difficult to find direct evidence for the underlying mechanism these models
rely on. Consequently, the literature has sought to distinguish between these alternative models
by assessing whether they resolve not only the equity-premium puzzle but also a number of other
asset-pricing puzzles. In contrast, we focus primarily on documenting the existence of rare disasters
in long-term consumption data. A number of recent papers study whether the presence of rare dis-
asters may also help to explain other anomalous features of asset returns, such as the predictability
and volatility of stock returns. These papers include Farhi and Gabaix (2008), Gabaix (2008),
Gourio (2008), and Wachter (2008). Martin (2008) presents a tractable framework for asset-pricing
in models of rare disasters. Gourio (2009) embeds disaster risk in a business cycle model. Julliard
and Ghosh (2008) assess disaster risk for the United States using a novel estimation approach.

The paper proceeds as follows. Section [2| discusses the Barro-Ursua data on long-term personal
consumer expenditure. Section [3| presents the empirical model. Section [d] discusses our estimation
strategy. Section [5|presents our empirical estimates. Section [f]studies the asset-pricing implications

of our model. Section [ concludes.

2 Data

Since rare disasters occur infrequently, by definition, short time series provide little information
about the appropriate parameter values for a model of rare disasters. A short sample is likely
to contain no disasters even if the true probability is in the range considered by Barro (2006) of
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1-2% per year. Furthermore, sample-selection issues are an important problem in disaster studies
because data tend to be missing precisely when disasters occur. It is therefore crucial to analyze
data covering long time spans, where the starting and ending points are relatively unaffected by
the occurrence of disasters.

Barro (2006) uses per capita GDP data from Maddison (2003) for 35 countries for 1900-2000 to
estimate the frequency and size distribution of disasters. However, economic models of asset-pricing
typically involve consumption, rather than GDP. Barro and Ursua (2008) have since undertaken a
major data collection project to develop a long-term panel dataset on per capita personal consumer
expenditure—the available data that are likely to proxy well for consumption. They have also
substantially modified and extended the Maddison data on GDP. Maddison’s series are in some
cases imputed using smooth trends or data from other countries. These imputations tend to occur
at times of major upheavals in the countries in question. Barro and Ursua (2008) have removed such
imputed observations. In some cases they have been able to locate more comprehensive original
sources to fill in gaps.

We use Barro and Ursua’s (2008) dataset on consumer expenditure. Our sample-selection rules
follow theirs. We include a country only if uninterrupted data are available back at least before
World War 1. This procedure yields a sample of 17 OECD countries (4 are dropped because of
missing data) and 7 non-OECD countries (11 are dropped due to missing data)ﬁ To avoid sample-
selection bias problems associated with the starting dates of the series, we include only data after
1890E| The resulting data set is an unbalanced panel for 24 countries, with data from each country
starting between 1890 and 1914. The total number of annual observations is 2685.

One limitation of the Barro-Ursua consumption data set is that it does not allow us to distin-
guish between expenditures on non-durables and services versus durables. Consumer expenditure
generates a flow of consumption services. It is this flow of consumption services that we would
like to analyze for asset-pricing purposes. Equating consumption with consumer expenditure may

overstate the severity of consumption disasters because consumer expenditure on durables fall pro-

5The OECD countries are: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan,
Netherlands, Norway, Portugal , Spain, Sweden, Switzerland, U.K. and U.S. The “non-OECD” countries are Ar-
gentina, Brazil, Chile, Mexico, Peru, South Korea, and Taiwan. See Barro and Ursua (2008) for a detailed description
of the available data and the countries dropped due to missing data. In cases where there is a change in borders, as
in the case of the unification of East and West Germany, Barro and Ursua (2008) smoothly paste together the initial
per capita series for one country with that for the unified country.

"Barro and Ursua (2008) use data back to 1870.



portionately more than durable consumption flows. Unfortunately, separate data on durable and
non-durable consumption are not available for most of the countries and time periods we study.
Barro and Ursua (2008) document the behavior of consumer expenditure on durables and non-
durables during consumption disasters for the subset of cases for which data are available. Their
analysis shows that declines in consumer expenditure on durables are indeed proportionately much
larger than declines in consumer expenditure on non-durables during disasters. Nevertheless, de-
clines in consumer expenditure on non-durables are on average only 3 percentage points smaller
than for overall consumer expenditure during disasters because durables represent only a small
fraction of overall consumer spending. Barro and Ursua (2008) argue that the difference between
the decline in overall consumer expenditures versus only non-durable expenditure is even smaller
for the case of large disasters since the contribution of the decline in durable expenditures to the
fall in overall expenditures can at most equal the total expenditure on durable, which is small.
We also make use of data on the total returns on stocks, bills and bonds. We use the same
asset-return data set as Barro and Ursua (2009). These data are based largely on information from
Global Financial Data (GFD) but augmented with data from Dimson, Marsh, and Staunton (2002)
and other sources. To our knowledge, these are the most comprehensive data sets available on total
returns over long periods. Unfortunately, the resulting asset return data are less comprehensive
than the Barro-Ursua consumer expenditure and GDP data. For some countries, the returns data
start later than the consumer expenditure and GDP data. For some countries, there are gaps in
the returns data, often during disaster periods. And in some cases, price controls and controls on
asset prices affect measurement of returns. It may, in principle, be possible to construct a more
comprehensive data set from original sources, but such an effort has not yet been undertaken, as
far as we know. These data limitations lead us to focus our analysis of asset prices primarily on

average returns rather than the evolution of returns over the course of disasters.

3 An Empirical Model of Consumption Disasters
We model log consumption as the sum of three unobserved components:

Cit = Tip + zZit + €i g, (1)



where ¢;; denotes log consumption in country i at time ¢, x;; denotes “potential” consumption
in country 7 at time ¢, z;; denotes the “disaster gap” of country 7 at time ¢—i.e., the amount by
which consumption differs from potential due to current and past disasters—and ¢;; denotes an
i.i.d. normal shock to log consumption with a country specific variance Jém that potentially varies
with time.

The occurrence of disasters in each country is governed by a Markov process I;;. Let I;; = 0

¢

denote “normal times” and I;; = 1 denote times of disaster. The probability that a country that is
not in the midst of a disaster will enter the disaster state is made up of two components: a world
component and an idiosyncratic component. Let Iyy; be an i.i.d. indicator variable that takes the
value Iy = 1 with probability py,. We will refer to periods in which Iyy; = 1 as periods in which
“world disasters” begin. The probability that a country not in a disaster in period ¢t —1 will enter the
disaster state in period t is given by poyw Iwt + powsr (1 — Iwt), where popw is the probability that
a particular country will enter a disaster when a world disaster begins and pcpy is the probability
that a particular country will enter a disaster “on its own”. Allowing for correlation in the timing
of disasters through Iyy; is important for accurately assessing the statistical uncertainty associated
with the probability of entering the disaster state. Once a country is in a disaster, the probability
that it will exit the disaster state each period is pce.

We model disasters as affecting consumption in two ways. First, disasters cause a large short-
run drop in consumption. Second, disasters may affect the level of potential consumption to which
the level of actual consumption will return. We model these two effects separately. First, let 0; ;
denote a one-off permanent shift in the level of potential consumption due to a disaster in country
i at time t. Second, let ¢;; denote a shock that causes a temporary drop in consumption due to the
disaster in country ¢ at time ¢. For simplicity, we assume that 6; ; does not affect actual consumption
on impact, while ¢;; does not affect consumption in the long run. In this case, 6; ; may represent
a permanent loss of time spent on R&D and other activities that increase potential consumption
or a change in institutions that the disaster induces. The short run shock, ¢;;, could represent
destruction of structures, crowding out of consumption by government spending and temporary
weakness of the financial system during the disaster.

We assume that 6;; is distributed 6; ; ~ N(6, 03). We consider two distributional assumptions

for the short-run shock ¢;;. Both of these distributions are one sided reflecting our interest in



modeling disasters. In our baseline case, ¢;; has a truncated normal distribution on the interval
[—00,0]. We denote this as ¢;; ~ tN(qb*,ajf, —00,0), where ¢* and 0352 denote the mean and
variance, respectively, of the underlying normal distribution (before truncation). We use ¢ and 03)
to denote the mean and variance of the truncated distribution. We also estimate a model with
¢ir ~ Gamma(ag, B4). The gamma distribution is a flexible one-sided distribution that has excess
kurtosis relative to the normal distribution.

Potential consumption evolves according to
Az = pie+nit + Lit0i, (2)

where A denotes a first difference, j; ¢ is a country specific average growth rate of trend consumption

that may vary over time, 7;; is an i.i.d. normal shock to the growth rate of trend consumption with

2

a country specific variance Tpiv
K

This process for potential consumption is similar to the process
assumed by Barro (2006) for actual consumption. Notice that consumption in our model is trend
stationary if the variances of 1;; and 0;; are zero.

The disaster gap follows an AR(1) process:

Zit = P2Zit—1 — LitOiy + I 1dir + Vig, (3)

where 0 < p. < 1 denotes the first order autoregressive coefficient, ¢;; is the short-run disaster

2

shock and v;; is an i.i.d. normal shock with a country specific variance o7} ;.
’

We introduce v;
mainly to aid the convergence of our numerical algorithmﬁ Since 0; ; is assumed to affect potential
consumption but to leave actual consumption unaffected on impact, it gets subtracted from the
disaster gap when the disaster occurs.

Figure [I| provides an illustration of the type of disaster our model can generate. For simplicity,
we abstract from trend growth and set all shocks other than ¢; ; and 0;; to zero. The Figure depicts
a disaster that lasts six periods and in which p, = 0.6 and ¢;; = —0.125 and 6;; = —0.0025 in each
period of the disaster. Cumulatively, log consumption drops by roughly 0.40 from peak to trough.

Consumption then recovers substantially. In the long run, consumption is 0.15 lower than it was

before the disaster. This disaster is therefore partially permanent. The negative 0;; shocks during

8MCMC algorithms have trouble converging when the objects one is estimating are highly correlated. In our case,
z¢ and z44; for small j are highly correlated when there are no disturbances in the disaster gap equation between
time ¢ and time ¢ + j. This would be the case in the “no disaster” periods in our model if it did not include the
vi¢ shock. In fact, z; and z;4+; would be perfectly correlated in this case. It is in order to avoid this extremely high
correlation that we introduce small disturbances to the disaster gap equation.
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the disaster permanently lower potential consumption. The fact that the shocks to ¢;; are more
negative than the shocks to ¢;; mean that consumption falls below potential consumption during
the disaster. The difference between potential consumption and actual consumption is the disaster
gap in our model. In the long run, the disaster gap closes—i.e., consumption recovers—so that only
the drop in potential consumption has a long run effect on consumption. Our model can generate
a wide range of paths for consumption during a disaster. If 6;; = 0 throughout the disaster, the
entire disaster is transitory. If on the other hand ¢;; = 6;; throughout the disaster, the entire
disaster is permanent.

A striking feature of the consumption data is the dramatic drop in volatility in many countries
following WWII. Part of this drop in consumption volatility likely reflects changes in the procedures
for constructing national accounts that were implemented at this time (Romer, 1986; Balke and
Gordon, 1989). We allow for this break by assuming that aii’t takes two values for each country:
one before 1946 and one after. Another striking feature is that many countries experienced very
rapid growth for roughly 25 years after WWII. We allow for this by assuming that p;; takes three
values for each country: one before 1946, one for the period 1946-1972 and one for the period since
1973E| The added flexibility that these assumptions yield dramatically improves the fit of the model
to the data. A drawback of modeling these features as one-time events is that whatever generated
these features of the data is not part of the process that will generate future consumption in our
model. While we have not investigated this issue formally, Bansal and Yaron’s (2004) long-run risk
model suggests that persistent movements in the average growth rate of consumption could further
raise the equity premium implied by our model. We discuss the implications of allowing for such
trend breaks in section [Bl

One can show that the model is formally identified except for a few special cases in which
multiple shocks have zero variance. Nevertheless, the main challenge in estimating the model is
the relatively small number of disaster episodes observed in the data. We, therefore, assume that
all the disaster parameters—pw, pcyw, PcbI, PCe, Pz, 0, 03, o, a;—are common across countries
and time periods. This strong assumption allows us to pool information about the disasters that
have occurred in different countries and at different times. In contrast, we allow the non-disaster

. 2 2 2 .
parameters—i; ¢, Ocits Onitr Oui to vary across countries.

9See Perron (1989) and Kilian and Ohanian (2002) for a discussion of trend breaks in macroeconomic aggregates.
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4 Estimation

The model presented in section [3| decomposes consumption into three unobserved components:
potential consumption, the disaster gap and a transitory shock. One way of viewing the model
is, thus, as a disaster filter. Just as business-cycle filters isolate movements in output attributable
to the business cycle, our model isolates movements in consumption attributable to disasters.
Maximum-likelihood estimation of this model is difficult since it involves carrying out numerical
optimization over a high dimensional space of states and parameters. We instead use Bayesian
MCMC methods to estimate the model [

To carry out our Bayesian estimation we need to specify a set of priors on the parameters of the
model. To minimize the influence of the priors on our results, we specify relatively uninformative
priors for the majority of the parameters of the model. For a few parameters, however, we specify
informative priors. Our main deviation from uninformative priors is that we make assumptions
that ensure that “rare disasters” are in fact rare. Specifically, we assume that py ~ U(0,0.03),
pevr ~ U(0,0.005) and 1 — pee ~ U(0,0.9). The first two of these assumptions limit the frequency
with which disasters occur to less than 3% per year for world disasters and less than 0.5% per year
for idiosyncratic disasters. The third assumption limits the expected length of disasters to less than
10 yearsE

The reason we want to focus on estimating rare disasters is that such events can be dispropor-
tionately important for asset pricing (Rietz, 1988; Barro, 2006). However, it is important to note
that imposing informative priors on pyw, pcer and pee in no way ensures that the rare events we
identify will be large disasters. If there are no large disasters in the data, this will be reflected in
either a posterior disaster probability close to zero (on which our prior puts substantial weight)

or estimates for the means and variances of ¢;; and 0;; implying that the “disasters” are in fact

10We sample from the posterior distributions of the parameters and states using a Gibbs sampler augmented with
Metropolis steps when needed. This algorithm is described in greater detail in appendix @ The estimates discussed
in section [B] for the baseline model, are based on four independent Markov chains each with 2 million draws with the
first 150,000 draws from each chain dropped as burn-in. The alternative specification of our model, in which ¢ is
assumed to follow a gamma distribution, are based on four independent chains each with 1.2 million draws with the
first 150,000 draws from each chain dropped as burn-in. In both cases, the four chains are started from 2 different
starting values, 2 chains from each starting value. We choose these two sets of starting values to be far apart in a sense
made precise in the appendix. We use a number of techniques to assess convergence. First, we employ Gelman and
Rubin’s (1992) approach to monitoring convergence based on parallel chains with “over-dispersed starting points”
(see also Gelman, et al. 2004, ch 11). Second, we calculate the “effective” sample size (corrected for autocorrelation)
for the parameters of the model. Finally, we visually evaluate “trace” plots from our simulated Markow chains.

" This approach is analogous to the approach used in the asset pricing literature of assuming that jumps in returns
and volatility are rare and large (Eraker, Johannes and Polson, 2003).
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small, which is again a possibility on which our priors put substantial weight. In section ], we verify
that, indeed, if we estimate our model using data generated from a model without disasters, the
parameter estimates yield small values for the means and variances of ¢;; and 6;; and a negligible
equity premium.

We make only one other substantive deviation from uninformative priors. We assume p, ~
U(0,0.9). This assumption ensures that the half-life of the disaster gap is less than 6.5 years. Again,
we make these assumptions to ensure that the disasters generated by our algorithm correspond to
our intuitive notion of disasters. Our assumptions on p, rule out the possibility that consumption
growth in a given period can be explained by disasters that occurred decades earlier.

As we discuss above, v;; is introduced mainly to aid numerical convergence of our MCMC
sampling algorithm. We therefore restrict its magnitude such that it has a negligible effect on the
predictions of the model. Specifically, we assume that o, ; ~ U(0,0.015).

The priors on all other parameters are very dispersed. In particular, our prior for 8—the mean
of the long run disaster shock—is 6 ~ N(0, 0.2). This prior is agnostic about whether disasters have
any long run effect at all. Our estimated long run effect thus comes entirely from the data.

Recall that we consider two specifications for the short run shock ¢; ;—a truncated normal dis-
tribution and a gamma distribution. For the baseline case of the truncated normal distribution, we
assume that ¢* ~ U(—0.25,0) and o7, ~ U(0.01,0.25). These priors imply a joint prior distribution
over ¢ and o4. For the alternative case with gamma distributed ¢;; shocks, we place priors on the
mean and standard deviation of ¢; ;—which we denote ¢ and o4. We assume that ¢ ~ U(—0.25,0)
and o4 ~ U(0.01,0.25). These priors imply a joint prior distribution over ay and (.

Our choices for the remaining priors are:

op ~ U(0.01,0.25), pmis ~ N(0.02,1),
oeit ~ U(0,0.15), oni ~ U(0,0.15), (4)

posw  ~ U(0,1), povr ~ U(0,1),
5 Empirical Results

Table [1| presents our estimates of the disaster parameters for our baseline case, while Tables [2| and
|§| present our estimates of p;4, oc;: and oy,; for this case. For each parameter, we present the

parametric form of the prior distribution, the mean of the prior and its standard deviation, as well
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as the posterior mean and posterior standard deviation. We refer to the posterior mean of each
parameter as our point estimate for that parameter.

Consider first our estimates of the disaster parameters in Table [II We estimate the probability
of the start of a world disaster py to be 0.021 per year and the probability that a country enters
a disaster “on its own” pcpr to be 0.0034 per year. Our estimates for both of these parameters
are close to the upper bound of their prior distributions. Our prior restrictions are thus binding
for these parameters. The probability that the start of a world disaster will trigger a concurrent
disaster in a particular country pcpw is 0.64. The overall probability that a country will enter a
disaster is pwpceew + (1 — pw)pewr- Since the three parameters involved are not independent, we
cannot simply multiply together the posterior mean estimates we have for them to get a posterior
mean of the overall probability of entering a disaster. Instead, we use the joint posterior distribution
of these three parameters to calculate a posterior mean estimate of the overall probability that a
country enters a disaster. This procedure yields an estimate for the overall probability of entering
a disaster 0.017 per year. A centered 90% probability interval for this overall probability is [0.0039,
0.0234]. In contrast, a country that is already in a disaster will continue to be in the disaster in the
following year with a 0.847 probability regardless of the world situation. This estimate implies that
the average length of disasters is roughly 6.5 years, while the median length of disasters is roughly
4.5 years. Our estimate of p, is 0.495. This value implies that, without further shocks, about half
of the disaster gap dissipates each period.

Consumption drops by a large amount on average over the course of the disasters we identify.
Our estimate of ¢—the mean of the short-run shock ¢;;—is -0.112. In other words, the negative
shock to consumption during disasters is on average 11.2% per year. Our estimate of #—the mean
of the long-run shock 6; ;—is -0.024. This implies that disasters do on average have negative long
run effects on consumption. However, the fact that 6 is estimated to be much smaller than ¢
implies that a large part of the effect of disasters on consumption in the short run is reversed in
the long run. Our estimate of o4 and og—the standard deviation of the short-run shock ¢;; and
long-run shock ¢; ;—are 0.083 and 0.120, respectively. The large estimated values of these standard
deviations reveals that there is a huge amount of uncertainty during disasters about the short-run as
well as the long-run effect of the disaster on consumption. The standard deviation of consumption

growth during disasters is roughly 12% per year.
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To get a better sense for what these parameters imply about the nature of consumption disasters,
Figures 2| and [3| provide two different visual representations of the size of disasters and the extent of
recovery from disasters. Figure[2| plots the impulse response of a “typical disaster”. This prototype
lasts for 7 years, and the sizes of the short-run and long-run effects are set equal to the respective
posterior means of these parameters for each of the seven disaster years (i.e. ¢;; = ¢ and 0;; = 6).
The figure shows that the maximum short run effect of this typical disaster is approximately a
29% fall in consumption (a 0.34 fall in log consumption), while the long-run negative effect of the
disaster is approximately 15%@

Figure |3| provides a different view of disasters. Imagine an agent at time 1 who knows that a
disaster will begin at time 2 but knows nothing about the character of this disaster beyond the
unconditional distribution of disasters. The solid line in Figure [ plots the mean of the distribution
of beliefs of such an agent about the change in log consumption going forward relative to what his
beliefs were before he received the news about the disaster. The dashed lines in the figure plot the
median and 5% and 95% quantiles of this same distribution. This figure therefore gives an ex ante
view of disasters, while Figure 2| gives an ex post view of a particular disaster.

The mean long-run effect of the disaster in Figure [3]is similar in magnitude to the long-run effect
of the typical disaster depicted in Figure [2| The median long-run effect is smaller than the mean
long-run effect because the distribution of disaster sizes is negatively skewed. Figure [2] also shows
the huge risk associated with disasters. When a disaster strikes, there is a non-trivial probability
that consumption will be more than 50% lower than without the disaster even 20-25 years later.
This long left tail of the disaster distribution is particularly important for asset pricing.

At first glance, Figure [3] seems to tell a different story about the permanence of disasters than
the “typical” disaster depicted in Figure [2] The median and mean paths in Figure [3[ seem to imply
that disasters are much more permanent than is suggested by the typical disaster. This is, however,
an artifact of Figure [3| averaging over disasters of different lengths and sizes rather than depicting
short-run and long-run effects for any particular disaster. Disasters of different lengths will reach
their troughs at different points in time—for example, a short disaster may reach its trough after 2

years while a long disaster may reach its trough after 10 years. The average drop in consumption

12The maximum drop is “only” roughly twice the size of the long-run drop even though the average size of the
short-run shocks is more than four times larger than the average size of the long-run shock. This is because the effect
of the short-run shocks in the first few years of the disaster have largely died out by the end of the disaster.
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at a given point in time (relative to the start of the disaster) is an average over some disaster paths
for which consumption is already recovering after having reached its trough at an earlier point and
other disaster paths for which consumption is still falling towards a later trough. The trough in
average consumption is, therefore, far less severe than the average of the troughs across different
disasters. In contrast, the long-run average level of consumption is equal to the average of the
long-run levels of consumption across the different disaster paths. It is the fact that the trough
in average consumption is so much less than the average of the troughs that makes the average
disaster path look more permanent than the prototype disaster.

Table [] reports summary statistics for the main disaster episodes identified by our model.
Our Bayesian estimation procedure does not deliver a definitive judgement on whether a disaster
occurred at certain times and places but rather provides a posterior probability of whether a disaster
occurred. We define a disaster episode as a set of consecutive years for a particular country such
that: 1) The probability of a disaster in each of these years is larger than 10%, and 2) The sum
of the probability of disaster for each year over the whole set of years is larger than oneE Using
this definition, we identify 50 disaster episodes. These episodes vary greatly in size and shape. On
average, the maximum drop in consumption due to the disasters is 30%. The permanent effect of
disasters on consumption is on average 14%. However, the largest short run effects of a disaster
are the 66% and 61% drops in consumption in Taiwan and Japan, respectively, during World War
HE Quite a few of the disaster episodes have huge long-run effects. For example, we estimate the
long-run effect of the disaster episode in Chile in the 1970’s and early 1980’s to be a 56% drop in
consumption relative to a counterfactual consumption path with no disaster, while the long-run
effect of the Spanish Civil War and the subsequent turmoil was a 53% drop in consumption relative
to a counterfactual no-disaster consumption path.

The bulk of the disaster episodes we identify occur during World War I, the Great Depression,
and World War II. Figure {4 plots our estimates of the probability that a “world disaster” began

in each yearﬁ Our model clearly identifies 1914, 1930, and 1940 as years in which world disasters

3More formally: A disaster episode is a set of consecutive years for a particular country, T, such that for all ¢ € T;
P(I;; =1) > 0.1 and ZteT,, P(I;; = 1) > 1. The idea behind this definition is that there is a substantial posterior
probability of a disaster for a particular set of consecutive years. We stress that the concept of a disaster episode
is purely a descriptive device and does not influence our analysis of asset pricing. One could consider broader or
narrower definitions (lower or higher cutoffs) of disaster episodes. In our experience, there are few borderline cases.

141n all cases, these statistics measure the negative effect of the disaster on the level of consumption relative to the
counterfactual scenario where the country instead experienced normal trend growth.

15This is the posterior mean of Iy for each year. In other words, with the hindsight of all the data up until 2006,
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began.

The model also identifies a number of disaster episodes that are not primarily associated with
world disasters. These include one of the most serious disaster episodes—Chile during the early
period of the reign of Augusto Pinochet. In a few cases, our model is not able to distinguish between
two or more episodes of economic turmoil that occur in the same country over a short span of time
and therefore lumps these events into one long disaster episode. Examples of this include WWII
and the Korean war for South Korea and WWI and the Great Depression for Chile.

In some cases, our model does not clearly identify a disaster during periods when prior historical
knowledge may have suggested such a classification. This is particularly the case for the Latin
American countries in the sample, which have very high volatility of growth rates on average.
Examples include the Mexican Revolution of 1910 and the crisis in Argentina in 2001 and 2002.
The high “normal” volatility implies that shocks need to be particularly large in these countries
for our model to classify them as disasters. In some other cases, unusually high volatility and low
growth in a country relative to surrounding periods contributes to our model classifying certain
years as disaster years. This is particularly the case for Spain in the first half of Franco’s regime,
before he reformed his economic policies in 1959.

Figure [5| provides more detail about how our model interprets the evolution of consumption
for France, Korea, Chile, and the United Statesm The two lines in each panel plot consumption
and our estimate of potential consumption. The bars give our posterior probability estimate that
a country was in a disaster in each year. The left axis gives values of the probability of disaster,
while the right axis gives values for log consumption and potential consumption.

For France, the model picks up WWI and WWII as disasters. The model views WWII as largely
a transitory event for French consumption. The permanent effect of WWII on French consumption
is estimated to be only about 7%. The French experience in WWII is typical for many European
countries. For South Korea, our model interprets the entire period from 1940 to 1957 as a single long
disaster that spans WWII and the Korean War. In contrast to the experience of many European
countries, our estimates suggest that the crisis in the 1940’s and 1950’s had a large permanent effect
on South Korean consumption (46%). This pattern is typical of the experience of Asian countries

in our sample during WWII. For South Korea, we also identify the Asian Financial Crisis as a

what is our estimate of whether a world disaster began in say 19407
16)\More detailed figures for all the countries in our study are reported in a web appendix.
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disaster [

Chile is one of the most volatile countries in our sample. Our model identifies three disaster
episodes for Chile. The first begins in WWI and spans the early years of the Great Depression.
The second disaster occurred in 1955-59 during the final reign of Carlos Ibanez. The third disaster
in Chile began in 1970 during the tenure of Salvator Allende but intensified greatly in the early
years of Augusto Pinochet’s rule. The late 1970’s and early 1980’s are a period of recovery. But
another period of huge decline in consumption starts in 1982 at the time of the Latin American
debt crisis and lasts until 1987. This long disaster period—from 1970 to 1987—is the most severe
disaster episode we identify outside of periods of major world wars.

The last panel in Figure [5| plots results for the United States. Relative to most other countries
in our sample, the United States was a tranquil place during our sample period. The model
identifies two disaster episodes for the U.S. The first disaster begins in 1914 and lasts until 1922,
encompassing both WWI and the Great Influenza Epidemic of 1918-1920. The Great Depression
is identified as a second disaster for U.S. consumption. The Great Depression is the larger of the
two disasters with a 26% short-run drop in consumption and a 14% long-run drop.

According to our model, there have been no world disasters since the end of WWIL[T| Tt is
natural to ask whether this pattern provides evidence against the model. In fact, the rare nature
of world disasters implies that the posterior probability of experiencing no world disasters over a
61 year stretch is roughly 27%. One could also ask whether the relative tranquility of the U.S.
experience since the Great Depression provides evidence that the United States is fundamentally
different from other countries in our sample. However, the posterior probability for a randomly
selected country experiencing no disasters over a 73-year stretch is 0.31 according to our model.
The posterior probability of at least one out of 24 countries experiencing no disaster over a 73-year
stretch is 0.88. Therefore, the tranquility of the U.S. experience (which is not randomly selected)
does not provide evidence against our model.

Tables [2| and [3| present the remaining parameter estimates for our empirical model. Table
presents country-specific estimates of the mean growth rate of potential consumption for the

countries in our sample. Recall that our model allows for breaks in the mean growth rate of

17Countries such as Indonesia and Thailand that likely also experienced disasters during the Asian Financial Crisis,
are not in the data set.

80ur sample period ends in 2006 and thus does not cover the current world-wide recession, which may in the
future be identified as a world disaster.
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potential consumption in 1946 and 1973. We estimate sizable breaks of this kind both in 1946 and
1973 for many countries. In most cases, the growth rate of potential consumption is estimated to
have risen in 1946 and fallen in 1973.

This timing and pattern of breaks raises the question of whether increases in the trend growth
rate of consumption follow disasters more generally. Were this the case, such trend breaks might
more appropriately be viewed as part of the “recovery” from a disaster. However, this pattern does
not, in general, arise in the data. While WWII was followed by a 30 year period of high growth
in many countries, this was not the case following WWI or the Great Depression. In preliminary
work, Nakamura, Sergeyev, and Steinsson (2010) analyze movements in long-run growth rates
around disaster periods. This analysis suggests that a more realistic interpretation of the data is
that disasters are often associated with disproportionate changes in the trend growth rate in our
model, but these may be positive or negative. Such persistent changes in the mean growth rate of
consumption are the focus of the long-run risk model of Bansal and Yaron (2004). Incorporating
this feature into the model is beyond the scope of the current paper. Instead, we proxy for it using
the trend breaks discussed above. Including these breaks greatly improves the fit of the model since
the it is otherwise forced to fit a pattern of increasing growth rates following the WWII disaster
that does not arise in the case of the other disaster episodes in the dataE

Table [3| presents country-specific estimates of the variances of the permanent and transitory
shocks to consumption. We allow for a break in the variance of the transitory shock in 1946. We
find a great deal of evidence for such a break. For all but four of the countries in our data set, our
estimates of the variance of the transitory shocks to consumption fell dramatically from the earlier
period to the later period. Romer (1986) argues that in the case of the United States this volatility
reduction is due to improvements in measurement.

As we discussed earlier in the paper, we also consider a model with gamma-distributed short-
run shocks. Like the truncated normal distribution we use in our baseline model, the gamma
distribution is one-sided. However, the gamma distribution has excess kurtosis relative to the
truncated normal distribution. Table [5| presents our estimates of the main disaster parameters

when we assume that ¢;; has a Gamma distribution. Most of the estimates are quite similar to

19Bansal and Yaron’s (2004) analysis suggests that explicitly modeling long-run risk could raise the equity premium
implied by our model for a given coefficient of relative risk aversion. In that case, investors would price both the risk
of disasters and changes in trend growth rates. In our model, however, investors assume that any changes in growth
rates they may have observed in the past will not repeat themselves in the future.
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the baseline case. The overall probability that a country enters a disaster in a given year is 1.8%
versus 1.7% in the baseline model. The mean of the long run shock is very similar at -2.0% and
so is the persistence of the disaster gap at 0.56. The main difference that arises is that the gamma
model assigns a somewhat larger portion of the volatility of consumption during disasters to the
short-run shock as oppose to the long-run shock. The standard deviations of these shocks are 0.095

and 0.108, respectively, while they are 0.083 and 0.120, respectively, in the baseline model.

6 Asset Pricing

We follow Mehra and Prescott (1985) in analyzing the asset pricing implications of the consumption
process we estimate above within the context of a representative consumer endowment economy.
We assume that the representative consumer in our model has preferences of the type developed by
Epstein and Zin (1989) and Weil (1990). For this preference specification, Epstein and Zin (1989)
show that the return on an arbitrary cash flow is given by the solution to the following equation:

By |8 (é:) Ry R | =1, (5)

where R; ;11 denotes the gross return on an arbitrary asset in country ¢ from period ¢ to period
t 4+ 1, Ryt+1 denotes the gross return on the agent’s wealth, which in our model equals the
endowment stream. The parameter 3 represents the subjective discount factor of the representative
consumer. The parameter £ = li%%, where v is the coefficient of relative risk aversion and ) is
the intertemporal elasticity of substitution (IES)H

Much work on asset pricing—including Mehra and Prescott (1985), Rietz (1988) and Barro
(2006)—considers the special case of power utility. In this case, the coefficient of relative risk
aversion equals the reciprocal of the IES—y = 1/¢. In other words, a single parameter governs
consumers’ willingness to bear risk and substitute consumption over time. Bansal and Yaron (2004)
and Barro (2009), among others, have emphasized the importance of delinking these two features of
consumer preferences. Our results below provide additional evidence in support of a more flexible

model.

29The representative-consumer approach that we adopt abstracts from heterogeneity across consumers. Wilson
(1968) and Constantinides (1982) show that a heterogeneous-consumer economy is isomorphic to a representative-
consumer economy if markets are complete. See also Rubinstein (1974). Constantinides and Duffie (1996) argue that
highly persistent, heteroscedastic uninsurable income shocks can resolve the equity-premium puzzle.
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The asset-pricing implications of our model with Epstein-Zin-Weil (EZW) preferences cannot
be derived analytically@ We therefore use standard numerical methods@ Initially, we calculate
returns for two assets: a one period risk-free bill and an unleveraged claim on the consumption
process. In section we calculate asset prices for a long-term bond and allow for partial default
on bills and bonds during disasters.

Differences in the discount factor have only minimal effects on the equity premium in our
model@ These differences do, however, affect the risk-free rate. Given a calibration of v and ¥,
we can pick ( to match the risk-free rate generated by the model to the risk-free rate observed in
the data. We set = exp(—0.034) to match the risk-free rate for our baseline specification. The
equity premium is highly sensitive to the coefficient of relative risk aversion = in our model. We
present results for a range of values for v that includes the value that matches the average equity
premium in the data.

There is a debate in the macroeconomics and finance literature about the appropriate parameter
value for the IES. Hall (1988) estimates the IES to be close to zero. His estimates of the IES are
obtained by analyzing the response of aggregate consumption growth to movements in the interest
rate over time. Yet, as noted by Bansal and Yaron (2004) and Gruber (2006), such estimates are
potentially subject to important endogeneity concerns. The interest rate and consumption growth
are results from capital-market equilibrium, making it difficult to estimate the causal effect of one
on the other without strong structural assumptions. These concerns are sometimes addressed by
using lagged interest rates as instruments for movements in the current interest rate. However, this
instrumentation strategy is successful only if there are no slowly moving parameters of preferences
and technology (including especially parameters related to uncertainty) that affect interest rates and
consumption growth. Alternative procedures for identifying exogenous variation in the interest rate

sometimes generate much larger estimates of the IES. For example, Gruber (2006) uses instruments

2! An analytical solution for asset prices may be derived in the case of permanent disasters (Barro, 2009).

22We solve the integral in equation on a grid. Specifically, we start by solving for the price-dividend ratio for
a consumption claim. In this case we can rewrite equation as PDREY = Ei[f(AC:y1, PDRE, )], where PDRY
denotes the price dividend ratio of the consumption claim. We specify a grid for PDRS over the state space. We
then solve numerically for a fixed point for PDRS as a function of the state of the economy on the grid. We can then
rewrite equation for other assets as PDR;, = E¢[f(ACi41, ADyyq, PDRtC_‘_l, PDR;+1)], where PDR; denotes the
price dividend ratio of the asset in question and AD;;1 denotes the growth rate of its dividend. Given that we have
already solved for PDRY | we can solve numerically for a fixed point for PDR; for any other asset as a function of
the state of the economy on the grid. This approach is similar to the one used by Campbell and Cochrane (1999)
and Wachter (2008).

23In the continuous time limit of our discrete time model, the equity premium is unaffected by 3.
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based on cross-state variation in tax rates on capital income to estimate a value close to 2 for the
IES. As a consequence of this dispersion in empirical estimates, a wide variety of parameter values
for the IES are used in the asset-pricing literature. On the one hand, Campbell (2003) and Guvenen
(2008) advocate values for the IES well below one, while Bansal and Yaron (2004) use a value of
the IES of 1.5 and Barro (2009) relies on Gruber (2006) to use a value of 2. We argue below that
low values of the IES are starkly inconsistent with the observed behavior of asset prices during
consumption disasters. We therefore focus on parameterizations with IES = 2 as our baseline case.

Barro and Ursua (2008) present data on rates of return for stocks, bonds and bills for 17 countries
over long periods. The average arithmetic real rate of return on stocks in their data is 8.1% per year.
The average arithmetic real rate of return on short term bills is 0.9% per year. The average equity
premium in their data is therefore 7.2% per year. If we view stock returns as a leveraged claim on
the consumption stream, the target equity premium for an unleveraged claim on the consumption
stream is lower than that for stocks. According to the Federal Reserve’s Flow-of-Funds Accounts
for recent years, the debt-equity ratio for U.S. non-financial corporations is roughly one-half. This
amount of leverage implies that the target equity premium for an unleveraged consumption claim
in our model should be 4.8% per year (7.2/1.5)@ We therefore take 4.8% per year as the target
for our analysis.

The consumption data we analyze presumably reflect any international risk sharing that agents
may have engaged in. The asset-pricing equations we use are standard Euler equations involving
domestic consumption and domestic asset returns. We could also investigate the asset-pricing
implications of Euler equations that link domestic consumption, foreign consumption, and the
exchange rate (see, e.g., Backus and Smith, 1993). A large literature in international finance
explores how the form that these Euler equations take depends on the structure of international
financial markets. Analyzing these issues is beyond the scope of this paper. However, recent work

suggests that rare disasters may help to explain anomalies in the behavior of the real exchange

rate@

24Dividing the equity premium for leveraged equity by one plus the debt-equity ratio to get a target for unleveraged
equity is exactly appropriate in the simple disaster model of Barro (2006). Abel (1999) argues for approximating
leveraged equity by a scaled consumption claim. Bansal and Yaron (2004) and others have adopted this approach.
For our model, these two approaches yield virtually indistinguishable results.

ZPapers on this topic include Bates (1996), Brunnermeier et al. (2008), Burnside et al. (2008), Farhi et al. (2009),
Farhi and Gabaix (2008), Guo (2007) and Jurek (2008).
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6.1 The Equity Premium with Epstein-Zin-Weil Preferences

The asset-pricing results for our model are presented in Table [6] Specification 1 in the table is
for our baseline model and preferred preference parameters. The table also presents results for a
number of alternative specifications. For each specification, we present results on the one hand for
a long sample with a representative set of disasters and on the other hand for a long sample for
which agents expect disasters to occur with their normal frequency but no disasters actually occur.
This latter case is meant to capture asset returns in “normal” times, such as the post-WWII period
in most OECD countries. The statistics we report are the logarithm of the arithmetic average gross
return on each asset (log E[R; ¢ 141]).

For the baseline model with IES = 2 and v = 6.5, the model generates an unleveraged equity
premium of 4.8% per year. Our disaster model thus matches the equity premium and the risk-free
rate observed in the data for these preference parameters. The equity premium generated by the
model is quite sensitive to the value of v. With v = 4.5, the model generates an equity premium of
1.8%, while it generates an equity premium of 8.8% when v = 8.5. For comparison, specification
9 in Table [6] presents results for a version of the model without disasters. In this case, the model
generates an equity premium that is too small by a factor of 10. This last finding is in line with
Mehra and Prescott (1985).

Figure [6] depicts equity and bond returns over the course of a “typical” disaster when IES = 2
and v = 6.5. When the news arrives that a disaster has struck, the stock market crashes. In
contrast, bills are risk-free in the short run. Their returns are thus not affected in this initial
period. The crash in the stock market at the onset of the disaster coincides with a sizable drop in
consumption. Stocks must thus yield a considerable return-premium over bills in normal times to
compensate for the risk of a disaster.

When the news arrives that the disaster has ended, stocks surge relative to bills. The crash
at the beginning of the disaster and the boom at the end of the disaster are roughly equally large
and the average equity premium during the disaster (excluding the initial crash and the boom at
the end) is similar to the average equity premium in normal times. The average equity premium
in a long sample with a representative number of disasters is thus similar to the average equity
premium in a long sample for which agents expect disasters to occur with their normal frequency

but no disasters actually occur (the case considered in the three rightmost columns of Table @
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Two major differences between our disaster model and earlier models of disasters are that our
model allows for partial recovery after disasters and that in our model disasters unfold over several
years. To assess the importance of these features for our asset pricing results, specifications 4 and
5 in Table [6] report results for two alternative versions of the model. In specification 4, we consider
a case in which disasters are completely permanent@ This specification of the model matches the
equity premium in the data when v = 4.5. The fact that our model allows for partial recovery
after disasters thus accounts for a large part of the difference in our results and the results of Barro
(2006) and Barro and Ursua (2008). With permanent disasters and v = 6.5, the equity premium
rises to almost 14%. This reflects the fact that the equity premium is highly non-linear in ~ in the
disaster model. A world in which disasters are completely permanent is clearly much riskier than
a world in which there is substantial recovery after disasters.

In specification 5, we consider a case in which disasters are both completely permanent and
occur in a single period@ For this specification, we can match the equity premium in the data
with v = 2.7@ The main reason why the single-period case yields a lower « is that in this case
the drop in consumption and the drop in the price of stocks are fully coincident. In contrast, in
a multi-period disaster, stocks crash at the onset of the disaster — when the news arrives that
the disaster has struck (see Figure @— while a large fraction of the drop in consumption occurs
in subsequent periods. A second reason why the v needed to match the equity premium is lower
when disasters occur in a single period is that agents have a greater desire to save at the onset of
a multi-period disaster since they expect consumption to keep falling for several periods and wish
to smooth their consumption over the disaster. This desire to save limits the fall in stock prices at
the onset of disasters in our baseline model. The same savings effect does not arise when the entire

disaster occurs in a single period.

26We consider a version of our model in which ¢i,t = 0;+ and set the mean and variance of these shocks for each
year of the disaster equal to the mean and variance of peak-to-trough drops in consumption due to disasters in our
baseline model divided by the expected length of disasters.

2"We set the probability of exiting a disaster equal to one, assume that ¢;: = 6;: and that the distribution of
these shocks is equal to the distribution of the peak-to-trough drop in consumption over the course of disasters in
our baseline model.

28The model analyzed in specification 3 is very similar to the model analyzed by Barro and Ursua (2008). Their
model matches the equity premium when v = 3.5, while the model in specification 3 matches the equity premium
for a slightly lower value of v = 2.7. This difference arises because the size distribution of disasters in our model is
relative to trend, while the peak-to-trough distribution used by Barro and Ursua (2008) does not adjust for trend
growth over the course of the disaster and because of differences between our approach to estimating the distribution
of disasters and the non-parametric approach of used by Barro and Ursua (2008).
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Specifications 10-12 in Table [] consider the case in which the short run disaster shocks follow a
Gamma distribution. With v = 6.5 and an IES of 2, the equity premium is 3.4% and the risk-free
rate is 2.0%. The gamma model matches the equity premium and risk-free rate when v = 7.5.
This difference arises because the gamma model allocates slightly more of the overall volatility in
consumption to the short-run shock than to the long-run shock than does the baseline model.

The asset-pricing exercises discussed above are based on the posterior means of the parameters
of our model. These calculations thus ignore sampling error in our parameter estimates. Given the
limited amount of data we have to estimate the frequency, size, and shape of rare disasters, the
posterior standard deviation of the parameters governing disasters are in some cases substantial.
Using the posterior distribution of the parameters of our model, we can calculate a posterior
distribution for the equity premium. This allows us to investigate the precision of our model’s
implications for the equity premium. The posterior distribution for the equity premium implied
by the posterior distribution of the parameters of our model is plotted in Figure[7] In calculating
this distribution, we assume that agents have 8 = exp(—0.034), v = 6.5 and ¢ = 2. Figure
shows that our estimates place more than 90% weight on parameter combinations that generate an
equity premium of more than 3%. The centered 90% probability interval for the equity premium
is [0.032,0.073].

An important question is whether our results regarding the equity premium are somehow “built
in” to our prior or estimation algorithm. To assess the degree to which our results on the equity
premium are driven by the data as opposed to our priors and estimation algorithm, we simulate
an artificial dataset of the same size as our data (24 countries and a total of 2685 observations)
from our model with the disaster probabilities set to zero. We then estimate our model on these
data and calculate the posterior distribution of the equity premium. This distribution is plotted in
Figure 8| For this alternative data set, our model places a large probability (roughly 77%) on the
equity premium being below 1%. Clearly, our results would be very different if there in fact were
no disasters in the data. The distribution has a long right tail reflecting the fact that even a data
set the size of ours with no disasters would not entirely rule out the possibility that such events
could occur.

We can also calculate the posterior distribution of the value of the coefficient of relative risk

aversion that matches the equity premium. This distribution is plotted in Figure [0 The centered
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90% probability interval for v is [5.2,8.2]. Our disaster model thus implies a fairly tight distribution
for the coefficient of relative risk aversion.

During the disaster, consumers expect consumption to keep falling and thus have an incentive
to save. This force drives up the price-dividend ratio for assets and drives down their expected
returns. As a consequence, stock and bill returns are lower on average during disasters then during
normal times even after the initial crash (see Figure @ Furthermore, the return on stocks and bills
is temporarily high during the recovery period after a disaster. These features of asset prices in
our model line up well with the data. Barro (2006) reports low returns on bills and stocks during
many disasters. He also presents evidence that real returns on U.S. Treasury bills were unusually
low during wars. This regularity is inconsistent with many macroeconomic models (Barro, 1997,
Ch. 12). There is furthermore some evidence that real returns on bills are temporarily high after
wars; for example, in the United States after the Civil War and WWI.

In our model, consumption growth is predictable following major disasters, as the country re-
covers to the level of potential consumption. Outside of disasters and their immediate aftermath,
however, consumption growth is hard to forecast. The explanatory power of the price dividend
ratio in predicting future consumption growth at medium and short horizons is close to zero@ In
this regard, our model differs from the long-run risks model of Bansal and Yaron (2004) which gen-
erates substantial forecastability of consumption growth using the price-dividend ratio. Beeler and
Campbell (2009) argue that this feature of the model is hard to reconcile with the U.S. consumption
data, particularly in the post-WWII period.

One way to think about the importance of the features we have added relative to earlier work
on disasters is to ask how we could recalibrate the simpler model used in Barro and Ursua (2008)
to generate an equity premium of the same size as the one our model yields. Recall that, in Barro
and Ursua (2008), disasters are modeled as instantaneous and permanent drops in consumption.
The appropriate calibration for this model may, therefore, differ from the observed probability and
size of (partially transient) disasters in the data. The equity premium in Barro and Ursua (2008)
is given by

log ER® —log R = vo® 4+ pE{b[(1 — b))~ — 1]},

where p denotes the probability of disasters, b denotes the permanent instantaneous fraction by

29Gpecifically, we have analyzed regressions of consumption growth at one, 3 and 5 year horizons on the current
price dividend ratios. The R? of such regressions is consistently 3% or less.
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which consumption drops at the time of disasters, o2 denotes the variance of consumption growth
in normal times, and v denotes the coefficient of relative risk aversion. For simplicity, consider a
version of this model in which b is a constant. Barro and Ursua’s (2008) results can be roughly
replicated with p = 0.0363 and a constant size of disasters of b = 0.36. In contrast, the simple model
with constant-sized, permanent disasters of size b = 0.36 matches our results for a probability of
disasters p = 0.008. The substantially lower probability of disasters in our calibration—and the
correspondingly lower equity premium for any given value of risk aversion—is due to the partial
recoveries we estimate after many disasters as well as the gradual fall in consumption after disasters

begin.

6.2 The Equity Premium with Power Utility

As we discussed before, there is no consensus in the literature regarding the appropriate value for
the intertemporal elasticity of substitution. In our baseline results, we follow Bansal and Yaron
(2004) and Barro and Ursua (2008) in assuming that the IES is larger than one. To see why this
is important in our context, it is instructive to consider asset-pricing results for our model when
the representative consumer has power utility. Results for the power utility case are presented in
specifications 6-8 of Table [6]

For a model with partially temporary, multi-period disasters and v = 1/¢) = 4—the utility
specification used by Barro (2006)—the equity premium is 0.9%. This is only about 60% of the
equity premium the model generates with v = 4 and IES = 2. However, a more serious concern is
that, conditional on no disasters, the equity premium is -0.9%, i.e., lower than in a model in which
no disasters can happen. The overall equity premium is, therefore, coming entirely from superior
equity returns during disasters, and the equity premium in normal times is negative. This outcome
contrasts with Barro (2006), in which the equity premium arises in normal times, and stocks do
poorly during disasters.

Why does our model with power utility yield such different results from earlier work by Barro
(2006)7 The important difference is that disasters unfold over multiple periods in our model.
Figure [L0] presents a time-series plot of the behavior of equity and bond returns over the course of a
“typical” disaster for our baseline multi-period disaster model with power utility. Notice that there

is a huge positive return on equity at the start of the disaster (when the news arrives that a disaster

26



has struck). The reason for this large positive return is that entering the disaster state causes agents
in the model to expect further drops in consumption going forward. Since the agents in the model
have an IES equal to only 1/4 they have a tremendous desire to smooth consumption over time
and, hence, have a tremendous desire to save when they receive news of a disaster. This desire to
save is so strong that it dominates the fact that entering a disaster is bad news about the dividends
on stocks. The disaster therefore causes a sharp rise in stock prices@ In contrast to stocks, the
one-period, risk-free bond delivers a “normal” return in the first period of the disaster. Together,
these two facts imply that agents do not demand a high return for holding stocks in normal times
as a compensation for disaster risk. However, stockholders demand a large equity premium during
disasters partly as compensation for the “risk” that the disaster might end, lowering the demand
for assets and causing a sharp drop in stock prices.

Figure [11] presents a set of analogous results for the case of a single-period permanent disaster
with power utility. The results for this case are much more intuitive. In this case, the disaster occurs
instantaneously with no change in expected consumption growth going forward. As a consequence,
there is no increased desire to save pushing up stock prices. Equity, thus, fares extremely poorly
relative to bonds at times of disasters, and this behavior generates a large equity premium in normal
times. Needless to say, the prediction of our multi-period disaster model with power utility—that
stocks yield hugely positive returns at the onset of disasters—is highly counterfactual. We take
this as strong evidence against low values of the IES at least during times of disaster.

Another difference between the power utility case and the Epstein-Zin-Weil case is that in the
power utility case, one-period permanent disasters yield a lower equity premium than one-period
disasters that are followed by partial recoveries—see specifications 7 and 8 in Table @E The reason
for this difference is that in the case in which agents expect a partial recovery after a disaster, they
would like to borrow when the disaster strikes to smooth consumption. This force depresses stock
prices and thus raises the equity premium. With an IES substantially below one, this force is strong

enough that it outweighs the fact that the news about future dividends is not as bad in the case of

30Similarly counter-intuitive results for the case of IES < 1 have been emphasized by Bansal and Yaron (2004) and
Barro (2009). Bansal and Yaron (2004) observe that with an IES < 1 a fall in the growth rate of consumption or a
rise in uncertainty leads to a rise in the price-dividend ratio of stocks. Barro (2009) shows that with an IES < 1 a
rise in the probability of disasters also leads to a rise in the price-dividend ratio of stocks.

31In specification 8, the probability of exiting a disaster equals one, implying that the disasters last only one period.
The distribution of ¢;+ is equal to the distribution of the peak-to-trough drop in consumption over the course of
disasters in our baseline model. Finally, the distribution of 6;; is equal to the distribution of the long-run effect of a
disaster on consumption in our baseline model.
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partially permanent disasters as in the case of fully permanent disasters. Gourio (2008) discusses

this point in greater detail.

6.3 Long Term Bonds, Inflation Risk and Partial Default

Barro and Ursua (2008) present data on real returns on long-term bonds for 15 countries over long
sample periods. The underlying claims are nominal government bonds usually of around ten-year
maturity. The average arithmetic real rate of return on these bonds in their data is 2.7% per year.
The real return on bills for the same sample is 1.5% per year. Thus, the average real term premium
in their data is 1.2% per year. Since long-term government bonds typically promise a fixed set of
payments in nominal terms, inflation risk affects their equilibrium real returns.

The multi-period and partially permanent nature of disasters in our model generates variations
in the expected growth rate of consumption. This property leads to a non-trivial term structure of
real interest rates. To approximate long-term bonds in our model, we consider a perpetuity with
coupon payments that decline over time. We denote the gross annual growth rate of the coupon
payments by G,. We report results for G, = 0.9, a value that implies a duration for our perpetuity
close to that of 10-year coupon bonds@

We begin by considering real bonds with no risk of default. The returns on such long-term
bonds in the baseline model are reported in Table [7l The average return is -2.3% per year. This
implies a term premium of -3.2% per year. In contrast, the term premium in a version of our model
without disasters is virtually zero. The reason the long bond has such a low average return in the
presence of disasters is that it is an excellent hedge against disaster risk.

To understand why the long bond is a valuable hedge against disasters, it is useful to compare
it to stocks. When a disaster occurs, stocks are affected in two ways. First, the disaster is a
negative shock to future expected dividends. This effect tends to depress stock prices. Second, the
representative consumer has an increased desire to save, which tends to raise stock prices. With
an TES=2, the first effect dominates the second one, and stocks decline in value at the beginning
of a disaster. The difference between a long-term bond and stocks is that the coupon payments on
the bonds are not affected by the disaster. The only effect that the disaster has on the long-term

bond is therefore to raise its price because of consumers’ increased desire to save. Since the price of

32The duration of 10-year bonds with yields to maturity and coupon rates between 5% and 10% ranges from 6.5
years to 8 years. Our perpetuity has a duration of 7 years when its yield is 5%.
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long-term bonds rises at the onset of a disaster, these bonds provide a hedge against disaster risk
and earn a lower rate of return than bills in normal times.

Next, we calculate asset prices under the assumption that bills and bonds experience partial
default with a specified probability during disasters potentially due to inflation. Extending the
approach of Barro (2006), we assume that with some probability the return on bills and bonds is
equal to the return on equity. To calibrate the probability of partial default, we follow Barro and
Ursua (2009) in considering peak to trough drops in stock prices over time periods that correspond
roughly to consumption disasters. Extending their empirical asset-price calculations to bills, we
find that in 74% of the largest consumption disasters—25 cases out of 34—stock returns are lower
than bill returnsP?| The average stock return in these 25 cases is -34%, while the average bill return
is -3%. In the remaining 9 cases, the real return on stocks and bonds are similar. In these cases,
the low real returns on bills (and bonds) are caused by huge amounts of inflation. These cases
also tend to be ones in which the measurement of the timing of returns is most suspect because of
market closure and controls on goods and asset prices.

These calculations suggest that an appropriate calibration of the probability of partial default
is 26%. An earlier calculation by Barro (2006) based on somewhat less extensive data suggested a
probability of 40% for partial default. To be conservative, we set the probability of partial default
to 40%. The first column of Table [7] restates our baseline result from Table [(l The second and
third columns of Table [7] report results for calibrations that allow for partial default on bills. For
~ = 6.5, this modification lowers the equity premium from 4.8% to 3.4%. Raising the coefficient of
relative risk aversion to 7.5 restores the equity premium to 4.8%.

The news that a disaster has struck may affect the returns on long-term bonds more than the
returns on bills if it raises inflationary expectations without leading to an immediate jump in the
price level. The fourth column in Table [7] reports results for a case in which the probability of
partial default on the perpetuity is 40% but there is no partial default on bills. In this case, the
average return on the perpetuity is -0.7% implying a term premium of -1.6%. If long-term bonds

experience partial default in an even larger fraction of disasters, the term premium will be higher.

33Here we identify disasters as events in which the peak-to-trough drop in consumption is larger than 17%. We
choose this cutoff because applying it to the data yields a set of events that corresponds closely to the disaster episodes
identified by our model. For the subset of countries that we use to estimate our model, we get 48 events as compared
to 50 disaster episodes identified by our model. The average drop in consumption for these events is 32%, compared
to 30% for our disaster episodes. There are 34 events for which we have data on both stock and bill returns.
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We can thus match the term premium in the data by raising the probability of partial default. The
fifth column presents results for a case that matches the term premium of 1.2%. The probability of
partial default in this case is 73.5%. In other words, to match the term premium in the data, the
perpetuity we consider need only provide insurance against roughly one of every four disasters.
Our model generates the implication that, without default risk on bonds (for example, associated
with inflation risk for nominal bonds), the term structure is downward-sloping. Introducing risk of
partial default on longer term bonds allows us to match the fact that the nominal term structure
is upward-sloping in the Barro-Ursua data. If most of the default risk comes from inflation risk,
our model implies that the term structure on real bonds should be less upward sloping or even
downward sloping. In the United Kingdom, a large and liquid market for indexed government
bonds has existed for several decades. Piazzesi and Schneider (2006) document that while the U.K.
nominal yield curve has been upward sloping, the real yield curve has been downward sloping. In
the United States, indexed bonds (TIPS) have been trading since 1997. Piazzesi and Schneider
(2006) document that the TIPS curve over this period appears to be mostly upward sloping. They
caution, however, that this evidence is hard to assess because of the short sample and poor liquidity

in the TIPS market P4

7 Conclusion

In this paper, we estimate an empirical model of macroeconomic disasters, building on the work
of Rietz (1988), Barro (2006) and Barro and Ursua (2008). The key innovations of our model are
that we allow disasters to be partly transitory, to unfold over multiple periods, and for the timing
of disasters to be correlated across countries. Furthermore, we use a formal Bayesian estimation
procedure to match the data to the model. We find that it is possible to match the observed equity
premium using the estimated representative-agent model with a coefficient of relative risk aversion
of 6.5 and an intertemporal elasticity of substitution of 2.

The degree of risk aversion needed to match the empirical equity premium in our model is higher
than in Barro (2006) and Barro and Ursua (2008) for two reasons. First, we estimate substantial
recoveries after disasters implying that the world is substantially less risky than if all disasters were

permanent. Second, the multi-period nature of disasters in our model also contributes to a higher

34See also Evans (1998), Barr and Campbell (1997) and Campbell, Shiller, and Viceira (2009).
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required . This is because the timing of drops in stock prices and drops in consumption is not
perfectly synchronized and also because the magnitude of the stock market crash is mitigated by
agents’ desire to save to avoid further drops in consumption.

Our asset-pricing results depend on the assumption that, unlike under power utility, the co-
efficient of relative risk aversion need not equal the reciprocal of the intertemporal elasticity of
substitution (IES). Specifically, with Epstein-Zin-Weil preferences, the risk-aversion coefficient and
the IES can both exceed one. With an intertemporal elasticity of substitution substantially below
one, our asset-pricing model counterfactually generates stock-market booms at the onset of disas-
ters. However, with an intertemporal elasticity of substitution above one, our model can match
the empirical fact that stock prices drop at the onset of disasters. This drop in stock prices at the

onset of disasters generated a large equity premium in normal times.
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A  Model Estimation

We employ a Bayesian MCMC algorithm to estimate our model. More specifically, we employ
a Metropolized Gibbs sampling algorithm to sample from the joint posterior distribution of the
unknown parameters and variables conditional on the data. This algorithm takes the following
form in the case of our model.

The full probability model we employ may be denoted by
fY, X,0) = f(Y, X|0)f(0),
where Y € {C;;} is the set of observable variables for which we have data,

X e {xit, zit, Iwe, Lig, Git, 0it )}

is the set of unobservable variables,

2 2 2 2 2
CAS {qu PCOW > PCbI» PCes Pz 0, 09, ®, O His OcitrOnis Uu,i}

is the set of parameters. From a Bayesian perspective, there is no real importance to the distinction
between X and ©. The only important distinction is between variables that are observed and
those that are not. The function f(Y, X|O) is often referred to as the likelihood function of the
model, while f(©) is often referred to as the prior distribution. Both f(Y,X|©) and f(©) are
fully specified in sections [3] and [4 of the paper. The likelihood function may be constructed by
combining equations —, the distributional assumptions for the shocks in these equations and
the distributional assumptions made about I;; and Iy in section The prior distribution is
described in detail in section [

The object of interest in our study is the distribution f(X,©|Y), i.e., the joint distribution of
the unobservables conditional on the observed values of the observables. For expositional simplicity,
let & = (X, ©). Using this notation, the object of interest is f(®|Y). The Gibbs sampler algorithm
produces a sample from the joint distribution by breaking the vector of unknown variables into
subsets and sampling each subvector sequentially conditional on the value of all the other unknown
variables (see, e.g., Gelman et al., 2004, and Geweke, 2005). In our case we implement the Gibbs

sampler as follows.

1. We derive the conditional distribution of each element of ® conditional on all the other

elements and conditional on the observables. For the ith element of ®, we can denote this
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conditional distribution as f(®;|®_;,Y), where ®; denotes the ith element of ® and ¢_;
denotes all but the ith element of ®. In most cases, f(®;|®_;,Y) are common distributions
such as normal distributions or gamma distributions for which samples can be drawn in a
computationally efficient manner. For example, the distribution of potential consumption for
a particular country in a particular year, x;;, conditional on all other variables is normal.
This makes using the Gibbs sampler particularly efficient in our application. Only in the case
of a (p., 02, o*%’l-, ol &, 035, 03) are the conditional distributions not readily recognizable.

In these cases, we use the Metropolis algorithm to sample values of f(®;|®_;, Y)E
2. We propose initial values for all the unknown variables ®. Let ®° denote these initial values.

3. We cycle through & sampling <I>§ from the distribution f (<I>i|<bt:i17 Y') where
ot = (9, .., 0!, 0, . o)

and d denotes the number of elements in ®. At the end of each cycle, we have a new draw

®. We repeat this step N times to get a sample of N draws for ®.

4. It has been shown that samples drawn in this way converge to the distribution f(®|Y’) under
very general conditions (see, e.g., Geweke, 2005). We assess convergence and throw away an

appropriate burn-in sample.

In practice, we run four such “chains” starting two from one set of initial values and two from
another set of initial values. We choose starting values that are far apart in the following way: The
first set of starting values has I;; = 0 for all 7 and all ¢ and sets z;; = ¢;; and z;; = 0 for all 7 and all
t. The second set of starting values is constructed as follows. I; ; = 1 for all < and all ¢. We extract
a smooth trend (with breaks in 1946 and 1973) from ¢; ;. Denote this trend by czt and denote the
remaining variation in consumption as ¢f, = ¢;¢ — cf;. We set z;; = min(max(—0.5,¢{,),0) and
Zit = cit — Zi¢. LThe first set of starting values thus attributes all the variation in the data to z;,,

)

while the second attributes the bulk of the variation in the data around a smooth trend to z; ;.

35The Metropolis algorithm samples a proposal ®; from a proposal distribution J;(®;|®!~"). This proposal dis-
tribution must by symmetric, i.e., Ji(za|2y) = Ji(zs|2a). The proposal is accepted with probability min(r, 1) where
r= f(®F|®_;,Y)/f(®"|®_;,Y). If the proposal is accepted, @ = ®}. Otherwise ®¢ = &!~'. Using the Metropolis
algorithm to sample from f(®;|®_;,Y") is much less efficient than the standard algorithms used to sample from known
distributions such as the normal distribution in most software packages. Intuitively, this is because it is difficult to
come up with an efficient proposal distribution. The proposal distribution we use is a normal distribution centered
at ®1.
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Given a sample from the joint distribution f(®|Y") of the unobserved variables conditional on
the observed data, we can calculate any statistic of interest that involves ®. For example, we can

calculate the mean of any element of ® by calculating the sample analogue of the integral

/ D, f(P;]0, V) dD;.
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TABLE I
Disaster Parameters
Prior Dist.  Prior Mean Prior SD Post. Mean Post SD.

Pw Uniform 0.015 0.009 0.021 0.006
Pevw Uniform 0.500 0.289 0.643 0.074
Pl Uniform 0.0025  0.0014  0.0034  0.0010
1-pee Uniform 0.450 0.260 0.847 0.023
P, Uniform 0.450 0.260 0.495 0.040
b Uniform* -0.176 0.064 0.112 0.008
0 Normal 0.000 0.200 -0.024 0.007
Gy Uniform* 0.098 0.047 0.083 0.006
Go Uniform 0.130 0.069 0.120 0.016

We specify uniform priors on ¢* and o,*, the mean and standard deviation of the
underlying normal distribution (before truncation). These priors imply (non-uniform)
priors on ¢ and 6,. The numbers in the table refer to the prior mean and standard
deviation of ¢ and o,



TABLE Il
Mean Growth Rate of Potential Consumption

Prior Pre-1946 1946-1972 Post-1973
Prior Dist. Prior Mean  Prior SD  Post. Mean  Post SD.  Post. Mean  Post SD.  Post. Mean  Post SD.
Argentina Normal 0.02 1.00 0.016 0.010 0.017 0.011 0.007 0.010
Australia Normal 0.02 1.00 0.014 0.006 0.022 0.005 0.020 0.003
Belgium Normal 0.02 1.00 0.007 0.006 0.027 0.005 0.019 0.004
Brazil Normal 0.02 1.00 0.024 0.008 0.037 0.009 0.017 0.008
Canada Normal 0.02 1.00 0.027 0.005 0.026 0.005 0.018 0.004
Chile Normal 0.02 1.00 0.018 0.009 0.024 0.010 0.040 0.011
Denmark Normal 0.02 1.00 0.018 0.004 0.021 0.005 0.012 0.004
Finland Normal 0.02 1.00 0.025 0.006 0.042 0.007 0.023 0.006
France Normal 0.02 1.00 0.004 0.003 0.038 0.003 0.019 0.002
Germany Normal 0.02 1.00 0.014 0.004 0.051 0.005 0.018 0.003
Italy Normal 0.02 1.00 0.010 0.003 0.046 0.004 0.021 0.003
Japan Normal 0.02 1.00 0.005 0.004 0.075 0.005 0.022 0.004
Korea Normal 0.02 1.00 0.017 0.006 0.035 0.009 0.052 0.006
Mexico Normal 0.02 1.00 0.005 0.007 0.025 0.007 0.015 0.006
Netherlands Normal 0.02 1.00 0.011 0.004 0.034 0.007 0.015 0.004
Norway Normal 0.02 1.00 0.015 0.004 0.028 0.004 0.025 0.004
Peru Normal 0.02 1.00 0.020 0.006 0.030 0.006 0.013 0.009
Portugal Normal 0.02 1.00 0.017 0.008 0.042 0.007 0.030 0.006
Spain Normal 0.02 1.00 0.011 0.005 0.055 0.008 0.021 0.004
Sweden Normal 0.02 1.00 0.026 0.003 0.025 0.004 0.013 0.003
Switzerland Normal 0.02 1.00 0.013 0.003 0.028 0.003 0.009 0.002
Taiwan Normal 0.02 1.00 0.007 0.007 0.057 0.009 0.055 0.006
United Kingdom Normal 0.02 1.00 0.010 0.003 0.020 0.004 0.024 0.003
United States Normal 0.02 1.00 0.018 0.003 0.025 0.004 0.022 0.003
Median 0.014 0.005 0.029 0.005 0.019 0.004
Simple Average 0.015 0.005 0.035 0.006 0.022 0.005




Standard Deviation of Non-Disaster Shocks

TABLE Il

. Temporary Temporary
Priors Permanent Pre-1946 Post-1946
Dist. Prior Mean Prior SD |Post. Mean Post SD. | Post. Mean  Post SD. | Post. Mean  Post SD.
Argentina Uniform 0.075 0.04 0.054 0.007 0.022 0.016 0.012 0.009
Australia Uniform 0.075 0.04 0.018 0.004 0.036 0.008 0.003 0.002
Belgium Uniform 0.075 0.04 0.020 0.003 0.013 0.009 0.003 0.002
Brazil Uniform 0.075 0.04 0.047 0.006 0.062 0.011 0.011 0.007
Canada Uniform 0.075 0.04 0.024 0.003 0.027 0.008 0.003 0.002
Chile Uniform 0.075 0.04 0.043 0.009 0.036 0.018 0.018 0.011
Denmark Uniform 0.075 0.04 0.021 0.003 0.005 0.004 0.005 0.003
Finland Uniform 0.075 0.04 0.031 0.004 0.019 0.008 0.004 0.003
France Uniform 0.075 0.04 0.014 0.002 0.031 0.005 0.002 0.001
Germany Uniform 0.075 0.04 0.019 0.002 0.010 0.006 0.002 0.002
Italy Uniform 0.075 0.04 0.019 0.002 0.011 0.003 0.003 0.002
Japan Uniform 0.075 0.04 0.022 0.003 0.017 0.005 0.003 0.002
Korea Uniform 0.075 0.04 0.027 0.004 0.027 0.007 0.004 0.003
Mexico Uniform 0.075 0.04 0.037 0.004 0.034 0.008 0.005 0.004
Netherlands Uniform 0.075 0.04 0.024 0.003 0.017 0.006 0.003 0.002
Norway Uniform 0.075 0.04 0.022 0.002 0.004 0.003 0.004 0.003
Peru Uniform 0.075 0.04 0.033 0.004 0.007 0.005 0.004 0.003
Portugal Uniform 0.075 0.04 0.033 0.004 0.024 0.008 0.005 0.004
Spain Uniform 0.075 0.04 0.024 0.004 0.046 0.008 0.003 0.002
Sweden Uniform 0.075 0.04 0.019 0.002 0.020 0.004 0.003 0.002
Switzerland Uniform 0.075 0.04 0.012 0.001 0.039 0.005 0.001 0.001
Taiwan Uniform 0.075 0.04 0.033 0.003 0.015 0.014 0.004 0.003
United Kingdom  Uniform 0.075 0.04 0.018 0.002 0.003 0.002 0.003 0.002
United States Uniform 0.075 0.04 0.018 0.002 0.021 0.004 0.003 0.002
Median 0.023 0.003 0.021 0.006 0.003 0.002
Simple Average 0.026 0.004 0.023 0.007 0.005 0.003




TABLE IV
Disaster Episodes

Country Start Date End Date Max Drop Perm Drop Perm/Max Country Start Date End Date Max Drop Perm Drop Perm/Max
Argentina 1890 1907 -0.22 0.02 -0.10 South Korea 1997 2005 -0.23 -0.18 0.77
Argentina 1914 1917 -0.12 -0.05 0.37 Mexico 1914 1918 -0.16 0.27 -1.76
Argentina 1930 1933 -0.15 -0.10 0.63 Mexico 1930 1935 -0.24 -0.05 0.20
Australia 1914 1922 -0.29 -0.14 0.50 Netherlands 1914 1919 -0.45 -0.07 0.16
Australia 1930 1934 -0.24 -0.16 0.64 Netherlands 1940 1951 -0.55 -0.08 0.14
Australia 1939 1955 -0.31 -0.07 0.22 Norway 1914 1924 -0.13 -0.04 0.28
Belgium 1913 1920 -0.39 0.06 -0.15 Norway 1940 1944 -0.07 -0.06 0.87
Belgium 1940 1950 -0.51 -0.12 0.24 Peru 1930 1933 -0.16 -0.08 0.47
Brazil 1930 1933 -0.11 -0.06 0.50 Peru 1977 1993 -0.39 -0.36 0.92
Canada 1914 1926 -0.37 -0.19 0.52 Portugal 1914 1921 -0.28 -0.15 0.55
Canada 1930 1933 -0.29 -0.27 0.93 Portugal 1940 1942 -0.09 -0.07 0.74
Chile 1914 1934 -0.53 -0.36 0.68 Spain 1914 1919 -0.10 0.00 0.05
Chile 1955 1959 -0.06 -0.02 0.37 Spain 1930 1961 -0.58 -0.53 0.91
Chile 1970 1987 -0.58 -0.56 0.95 Sweden 1914 1923 -0.21 -0.15 0.71
Denmark 1914 1926 -0.16 -0.08 0.54 Sweden 1940 1951 -0.28 -0.14 0.51
Denmark 1940 1950 -0.28 -0.11 0.38 Switzerland 1914 1921 -0.14 -0.09 0.63
Finland 1914 1920 -0.42 -0.22 0.53 Switzerland 1940 1950 -0.23 -0.15 0.68
Finland 1930 1935 -0.23 -0.11 0.49 Taiwan 1901 1915 -0.24 -0.08 0.33
Finland 1940 1945 -0.29 -0.14 0.49 Taiwan 1940 1955 -0.66 -0.45 0.69
France 1914 1921 -0.22 0.08 -0.35 United Kingdom 1914 1921 -0.21 -0.11 0.51
France 1940 1945 -0.56 -0.07 0.13 United Kingdom 1940 1946 -0.20 -0.07 0.35
Germany 1914 1932 -0.45 -0.22 0.48 United States 1914 1922 -0.25 -0.14 0.58
Germany 1940 1949 -0.48 -0.34 0.71 United States 1930 1935 -0.26 -0.14 0.53
Italy 1940 1949 -0.33 -0.15 0.46

Japan 1914 1918 -0.04 0.12 -2.76

Japan 1940 1951 -0.61 -0.41 0.68 Average -0.30 -0.14 0.37
South Korea 1940 1957 -0.57 -0.46 0.80 Median -0.25 -0.11 0.50

A disaster episode is defined as a set of consecudite years for a particular country such that: 1) The probability of a disaster in each of these years is larger
than 10%, 2) The sum of the probability of disaster for each year over the whole set of years is larger than 1. Max Drop is the posterior mean of the
maximum shortfall in the level of consumption due to the disaster. Perm Drop is the posterior mean of the permanent effect of the disaster on the level
potential consumption. Perm/Max is the ratio of Perm Drop to Max Drop.



TABLE V
Disaster Parameters with Gamma Shocks

Prior Dist.  Prior Mean Prior SD Post. Mean Post SD.

Uniform 0.015 0.009 0.020 0.006
Uniform 0.500 0.289 0.724 0.093
Uniform 0.0025 0.0014 0.0035 0.0010
Uniform 0.450 0.260 0.862 0.021
Uniform 0.450 0.260 0.555 0.039
Uniform -0.100 0.058 0.084 0.009
Normal 0.000 0.200 -0.020 0.006
Uniform 0.130 0.069 0.095 0.008
Uniform 0.130 0.069 0.108 0.013




TABLE VI
Asset Pricing Results for Unleveraged Equity

Full Sample Cond. On No Disasters
Equity  Equity Bill Equity  Equity Bill

Specification CRRA IES |[Premium Return Return |Premium Return  Return

1. Baseline Case 6.5 2 0.048 0.058 0.009 0.048 0.058 0.010
Sensitivity to Gamma:

2. Low Gamma 45 2 0.018 0.050 0.032 0.017 0.051 0.034

3. High Gamma 8.5 2 0.088 0.066 -0.023 0.091 0.066 -0.025
Permanence and Disaster Length:

4. Permanent 45 2 0.048 0.056 0.008 0.044 0.059 0.015

5. Permanent and One Period 2.7 2 0.048 0.051 0.030 0.049 0.052 0.003
Power Utility:

6. Power Utility 4.0 0.25 0.009 0.112 0.103 -0.009 0.097 0.106

7. Power Utility -- One Period/Perm 2.7 0.37 0.048 0.044 -0.004 0.054 0.050 -0.004

8. Power Utility -- One Period 2.0 0.50 0.048 0.061 0.013 0.048 0.062 0.014
No Disasters:

9. No Disasters 6.5 2 0.005 0.046 0.042 0.005 0.046 0.042

Model with Gamma Shocks:
10. Gamma Shocks -- Low Gamma 45 2 0.014 0.049 0.035 0.013 0.050 0.037
11. Gamma Shocks -- Baseline Gamma 6.5 2 0.034 0.055 0.020 0.034 0.056 0.022
12. Gamma Shocks -- High Gamma 8.5 2 0.063 0.061 -0.002 0.064 0.062 -0.003

In all cases, the discount factor is exp(-0.034). For case 1, the model of consumption dynamics is parameterized according to
the estimates presented in tables 1 through 4. Cases 2-9 are variations on this parameterization. Cases 10-12 are
parameterized according to the estimates presented in tables 5 and corresponding estimates of the non-disaster parameters
(not-reported). The return statistics are the log of the average gross return for each asset. "CRRA" refers to the coefficient of
relative risk aversion. "IES" refers to the intertemporal elasticity of substitution. "Full Sample" refers to a long sample with a
representative set of disasters. "Conditional on No Disaster" refers to a long sample in which agents expect disasters to occur
with their normal frequency but non actually occur.



TABLE VII
Long Term Bonds and Parial Default

1) 2 ©) (4) )

Coefficient of relative risk aversion 6.5 6.5 7.5 6.5 6.5
Intertemporal elasticity of substitution 2 2 2 2 2
Rate of time preference 0.034 0.034 0.034 0.034 0.034
Dividend growth for perpetuity 0.9 0.9 0.9 0.9 0.9
Probability of partial default on perpetuity 0.0 0.4 0.4 0.4 0.735
Probability of partial default on one period bond 0.0 0.4 0.4 0.0 0.0
Log expected return on equity 0.058 0.058 0.061 0.058 0.058
Log expected return on one period bond 0.009 0.023 0.013 0.009 0.009
Log expected return on perpetuity -0.023  -0.007  -0.025 -0.007 0.021
Equity premium 0.049 0.034 0.048 0.049 0.049
Term premium -0.032  -0.031 -0.038 -0.016 0.012

Average duration of perpetuity in normal times 114 9.8 11.9 9.8 7.7
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FIGURE I
A Partially Permanent Disaster
Note: The figure plots the evolution of consumption and potential consumption during and after
a disaster lasting six periods with p = 0.6, ¢ = -0.125 and 6 = -0.025 in each period of the
disaster. For simplicity, we abstract from trend growth and assume that all other shocks are equal
to zero over this period.
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FIGURE I
A Typical Disaster
Note: The figure plots the evolution of log consumption during and after a disaster that strikes in
period 1 and lasts for 7 years. Over the course of the disaster, both ¢ and 6 take values equal to
their posterior means in each period. For simplicity, we abstract from trend growth and assume
that all other shocks are equal to zero over this period.
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disaster state but do not yet know the size or length of the disaster. The black dashed line is the
median of this distribution. The grey dashed lines are the 5% and 95% quantiles of this

distribution.
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FIGURE IV
World Disaster Probability
Note: The figure plots the posterior mean of lyy, i.e., the probability that the world entered a disaster in each
year evaluated using data up to 2006.
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Figure 5 (cont.)
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FIGURE VI
Asset Prices in Baseline Case with Epstein-Zin-Weil Utility
Note: The figure plots asset returns and detrended log consumption for a “typical” disaster in the baseline case
of multi-period disasters with partial recovery when agents have Epstein-Zin-Weil preferences with a
coefficient of relative risk aversion of 6.5 and an intertemporal elasticity of substitution of 2. The typical
disaster is a disaster that lasts 7 periods and in which the short run and long run disaster shocks take their mean
values in each period of the disaster. All other shocks are set to zero.
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Figure VIII: Distribution of the Equity Premium in Data Without Disasters
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Figure IX: Distribution of the Coefficient of Relative Risk Aversion
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FIGURE X
Asset Prices in Baseline Case with Power Utility
Note: The figure plots asset returns and detrended log consumption for a “typical” disaster in the baseline case
of multi-period disasters with partial recovery when agents have power utility with a coefficient of relative risk
aversion of 4. The typical disaster is a disaster that lasts five periods and in which the short run and long run
disaster shocks take their mean values in each period of the disaster. All other shocks are set to zero.
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FIGURE XI

Asset Prices in Permanent, One Period Case with Power Utility

Note: The figure plots asset returns and detrended log consumption for a “typical” disaster in the case of fully
permanent, one-period disasters when agents have power utility with a coefficient of relative risk aversion of 4.
The typical disaster is a disaster that lasts one period and in which the short run and long run disaster shocks are
equal to -0.44. All other shocks are set to zero.
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