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I Introduction 

In 2007, over 1 million drivers were arrested for driving under the influence of alcohol1 

while there are 159 million self-reported episodes of alcohol–impaired driving among U.S. adults 

each year [Quinlan et al. (2005)]. During 2005, 17,602 people in the U.S. died in alcohol-related 

motor vehicle crashes, representing 41% of all traffic-related deaths2 and it is estimated that 

alcohol-related crashes in the U.S. cost about $51 billion each year [Blincoe et al. (2002)].3 The 

Center for Disease Control at the Department of Health and Human Services provides a variety 

of policy recommendations to reduce the incidence of alcohol-impaired driving.4 Virtually all 

these policies involve stricter laws, harsher penalties, and more aggressive enforcement intended 

to either increase the penalties associated with drinking while driving or to decrease general 

alcohol consumption among youth.  In this paper, we evaluate the impact of public policy aimed 

at reducing the probability that a drinker gets behind the wheel of a car.   

It is a commonly held belief that the provision of accessible public transportation could 

reduce the incidence of DUIs. For example, the popular press regularly prints articles blaming 

high DUI incidence on the lack of public transportation.5 Both public and private organizations 

provide transportation to drinkers in order to reduce DUIs – for example both the MillerCoors 

and Anheuser-Busch Brewing Companies provide free transportation on popular holidays to and 

from “member” bars. The slogan of a current Illinois campaign to reduce DUI incidence is 

"designate a driver - stay overnight - use public transportation."6 However, there is virtually no 

evidence on the relationship between the provision of public transportation and drunk driving, 

                                                 
1 Sourcebook of Criminal Justice Statistics Online: http://www.albany.edu/sourcebook/pdf/t4272007.pdf 
2 National Highway Traffic Safety Administration: http://www-nrd.nhtsa.dot.gov/Pubs/810821.PDF 
3 http://www.cdc.gov/ncipc/factsheets/drving.htm 
4 The complete list is available on their website. See appendix for webpage. 
5 Marsha Dorgan (Oct 22, 2008) "CHP DUI checkpoint results" Napa Valley Register ,  Alan K. Category (Oct 2 
2008) The Drunk Driving Situation in Los Angeles , Mutineer Magazine 
6 http://www.cyberdriveillinois.com/publications/pdf_publications/dsd_a1495.pdf 
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and no empirical quantitative evidence that providing public transportation would actually 

reduce the incidence of drunk driving. This lack of credible evidence is due, in large part, to the 

fact that alteration of public transportation, particularly fixed rail service, requires a huge 

investment in infrastructure and thus rarely changes.  

Between November 5th, 1999 and July 4th 2003, Washington DC’s Metro system 

gradually extended its weekend operating hours.  We exploit the sequential expansion of 

Washington DC Metro’s late night service to identify how risky behavior changes in response to 

public transit. 7  Because the changes in schedule allow us to observe the same geographic area 

on the same day of the week during the same time of day, both with and without public 

transportation availability, one can use the changes in hours of operation of fixed rail 

transportation in D.C. to conduct a credible investigation into the relationship between public 

transportation provision and the incidence of alcohol–impaired driving.   

Public transportation may have had a perverse effect on alcohol consumption outside of 

the home, what we refer to as “risky” alcohol consumption. As such, we also investigate the 

relationship between public transportation provision and alcohol-related crimes.  We also test for 

evidence of an overall spillover effects in Metro accessible areas on days when late night Metro 

service was not provided. 

 Using a difference in difference in difference identification strategy, where Thursday 

serves as our comparison day of the week, we find that the aggregate impact of public 

transportation on risky behavior on Friday and Saturday evenings is small.  However, in 

neighborhoods where bars are located within walking distance of a Metro station there were 

sizable reductions in alcohol-impaired driving arrests for each additional hour of Metro 

                                                 
7 In addition to Washington, DC, Boston’s Massachusetts Bay Transportation Authority and Austin’s Capital Metro 
Authority introduced late night service with the last ten years. 
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availability after midnight. We also find evidence of moral hazard in the form of increased 

alcohol related arrests (our proxy for excessive alcohol consumption outside of the home) in 

these neighborhoods. When this increase in potential drunk drivers is taken into account, the 

localized reduction in DUIs per drinker becomes quite large. The fact that alcohol related arrests 

and DUI arrests move in the opposite direction is compelling evidence that our effects are not 

driven by secular changes in overall crime8 and we conduct a variety of tests to support the 

validity of our identification strategy.  We also find evidence consistent with a spillover effect on 

Thursday nights in areas where bars are located near Metro stations, implying that our main 

estimates of outcomes on Friday and Saturday evenings should be interpreted as lower bounds of 

the true behavioral change.  

This paper presents the first credible evidence on the relationship between public 

transportation on drunk driving and alcohol consumption (both in areas directly served by public 

transportation and for the Metropolitan area as a whole).  The behavioral effects estimated imply 

that even intoxicated individuals respond to incentives in a rational way, a point of contention in 

the research literature on criminal behavior. While we examine different populations, our spatial 

pattern of results is also consistent research in urban economics on the localized effects of public 

transit on worker mobility.9   

 The remainder of the paper is as follows. Section II outlines the extant literature on 

alcohol consumption, crime and public transportation, and provides institutional detail of the 

Washington DC Metro expansion.  Section III presents the analytical framework describing how 

public transportation may affect drunk driving and drinking behaviors, section VI presents the 

                                                 
8 We cannot exclude reallocation of police resources away from drunk driving to what are by and large nuisance 
crimes, although given the high social cost, and high profile, of drunk driving this seems an unlikely policy decision. 
9 The localized effects of public transportation on crime are consistent with research documenting that public 
transportation only affects worker commuting patterns of residents within 2 km of businesses within 6 miles of fixed 
rail transportation [Baum-Snow and Kahn 2000; Holzer et al 2003] 
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empirical strategy, section V presents the results and section VII concludes. 

II  Alcohol Consumption, Crime, and Public Transportation 

i. Alcohol consumption and crime 

The decision to drive while intoxicated is twofold: the risky decision to drink excessively 

outside of the home and the criminal decision to drive home once inebriated. There is a large 

literature in economics on the first component of this decision.  Economists have found that 

alcohol consumption can be reduced by increasing alcohol prices or taxes [Kenkel (1996); 

Chaloupka et al. (1993); Cook and Moore (1993a),(2002); Kenkel and Manning (1996); and 

Leung and Phelps (1993)] enforcing minimum drinking age laws [O’Malley and Wagenaar 

(1991)] and imposing harsher legal penalties on the frequency of alcohol consumption [Kenkel 

(1993)]. However, the extant literature has not evaluated policies aimed at reducing the social 

harm associated with risky alcohol use. We aim to fill this gap in the literature by investigating 

how the provision of public transportation reduces the rate at which alcohol consumption 

translates into socially costly DUI incidents.   

Conditional on alcohol consumption, individuals must then evaluate the criminal decision 

to drive home once inebriated. As stated in Becker (1968) “a person commits a crime if the 

expected utility to him exceeds the utility he could get by using his time and other resources at 

other activities”.10 Researchers have primarily focused on one side of this equation – reducing 

the prevalence of crime through policies intended to increase the expected private costs of illicit 

behavior.  However, since decisions to commit crime are also a function of the opportunity cost 

of illicit behavior, crime could theoretically be reduced by increasing the private benefit of not 

offending. We will refer to this mechanism as the “safer option”.  

Policies of this nature have been criticized on the grounds that providing less risky 
                                                 
10See Doob and Webster (2003) and Levitt (2002) for reviews of the literature on risky behavior and deterrence.   
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alternatives to certain externally costly actions (e.g. drunk driving) could hurt society overall by 

increasing the likelihood that persons engage in other undesirable behaviors (e.g. excessive 

drinking in bars) [Boyum and Reuter (1996)]. These policies may introduce a moral hazard – by 

providing a safer way to engage in socially undesirable behaviors, one makes socially 

undesirable behavior more attractive to individuals who do not internalize the full social costs of 

their actions [Pauly (1974); Holmstrom (1979)]. In fact, in severe cases such well-intentioned 

solutions could cause more harm than good [Hansen and Imrohoroglu (1992)].11 While public 

transportation may lower the probability that a risky drinker drives home, it may also increase 

the amount of alcohol consumed outside of the home which has a potentially large social cost.  In 

addition, since drinking is a social activity [Boisjoly et al. 2003, Norton et al.(1998)], the reduced 

costs of alcohol consumption for a few individuals could result in an increase in the total  

number of DUIs, even if the policy reduces the propensity of a given drinker to drive drunk.   

With these moral hazards in mind, we look not only at how the availability of late 

transportation affects DUI arrests, but also its potentially deleterious effects on risky alcohol 

consumption.  As this policy change reduces the private cost of drinking in bars, a-priori, we 

would expect public alcohol consumption to increase as Metro service expands, as alcohol 

consumption is quite responsive to price changes [Chaloupka et al. 2002].  However, it is unclear 

how total alcohol consumption changes as the cost of public alcohol consumption falls.  To the 

extent that individuals respond to the increase in public transportation by shifting their drinking 

behavior from the home to a bar, total alcohol consumption could go do down as the marginal 

cost of alcohol is higher at a bar (where you pay per drink) than an at home (where you pay per 

bottle).  However, for policy purposes, alcohol consumed outside of the home is decidedly more 

                                                 
11 Researchers have linked abortion access to increased sexual activity [Klick and Stratmann (2003)] and 
improvements in the treatment of AIDS/HIV to risky sexual behavior [Sood and Goldman (2006)]. 
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“risky” from a social perspective since the external costs of someone drinking in their own home 

are likely low (if that the individual has internalized the risk to their future health) while 

excessive drinking outside the home can impose substantial costs on others.12  

An increase in risky drinking could potentially have large negative social consequences.  

Approximately 40% of individuals under criminal justice supervision report being under the 

influence of alcohol at the time of offense [Greenfeld (1998)], and alcohol is the only mood 

altering substance shown to increase violent behavior in a laboratory setting [Miczek et al. 

(1994)]. In addition, there is a large and growing literature demonstrating a positive correlation 

between alcohol consumption and crime [Markowitz and Grossman (2000); Joksch and Jones 

(1993); Carpenter (2008); Dobkin and Carpenter (2008); Cook and Moore (1993b)].   

ii. Public transportation in Washington, D.C. 

The Washington Metropolitan Area Transit Authority (WMATA) officially received a 

charter from the Maryland, Virginia, Washington DC, and federal governments in 1966.  The 

WMATA operates a bus service, MetroBus, and a fixed rail transit service, MetroRail, hereafter 

the “Metro.”13  The Metro was originally intended to service commuters from the Maryland and 

Virginia suburbs, not DC residents or individuals engaging in leisure activity; there are 106 miles 

of Metro track on five lines, with 86 Metro stations, but Metro does not provide equal service to 

all parts of the city.14 In Figure 1 we show the location of each Metro station entry point, 

obtained from the DC government’s GIS database,15  as well as each bar in Washington DC.16 

                                                 
12 Indeed, actions that might impose essentially no cost of society at home may be considered socially harmful if 
done in public.  For example, urinating in your own back yard does not impose much cost of society, while urinating 
in public is indecent exposure.        
13 MetroBus has always operated for 24 hours a day along routes designed to service DC resident.  For more 
information on the difference between MetroBus and Metro see www.wmata.com/about_Metro/docs/Metrofacts. pdf 
14 For example, the Georgetown neighborhood has no Metro stations, as Georgetown University faculty has 
traditionally lived in that neighborhood.   
15 http://dcatlas.dcgis.dc.gov/catalog/results.asp?pretype=All&pretype_info=All&alpha=M 
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Note that the highest concentration of Metro stations is in the central city, and then radiating 

outwards.  Bars, on the other hand, are distributed more evenly across the city, with the 

exception of Southwest DC. 

In 1999, Metro made two significant expansions in its service.  First, on September 18th, 

the two “Green” lines, which extended from the outskirts of DC into northern or central Prince 

George’s County and service both the University of Maryland and Howard University, were 

connected through downtown.  The second Metro change is the focus of our analysis.  Prior to 

November of 1999, the last Metro trains left the center of Washington, DC at midnight, seven 

days a week.17  With an eye on serving a “younger rider, who is out on the town, [and] probably 

could be drinking,”18 beginning on November 5th, 1999, the Metro system remained open for 

one additional hour on Friday and Saturday nights (technically Saturday and Sunday early 

mornings). This first expansion was considered a success, and Friday and Saturday evening 

service hours were extended to 2 am on July 1st 2000. A final schedule change occurred on July 

4th 2003, in which late night service was extended until 3 am. This last schedule change also 

extended morning service on the weekends, moving opening hours from 8 am to 7 am on 

Saturdays and Sundays.   It is clear from Figure 2 that while there is a fair amount of noise in the 

month to month variation in ridership, the relationship between Metro ridership after 7 pm and 

before 7 pm was similar across days of the week during the first Metro schedule, with clear 

seasonal cyclicality and an upward trend that is evidence on Thursday, Friday, and Saturday.19     

To show that the schedule changes lead to the expected "treatment", (i.e. a 

                                                                                                                                                             
16 During rush hour the expected wait time is 2 to 3 minutes, and after the evening rush hour that expected wait time 
is between 7 and 10 minutes.  Roughly half of Metro stations (47) are underground, and all of the stations are 
controlled access, are well lit, and are monitored by both cameras and security guards during operating hours. 
17 For additional detail on  Metro and MetroBus service, see www.wmata.com/about_Metro/docs/Metrofacts.pdf 
18 Jim Graham, The Washington Post, 9/17/1999 
19 This pattern is evident on all days of the week, but for purposes of clarity, we show only these three days. 
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disproportionate increase in evening ridership on the weekend) in Figure 3 we present the 

natural log of ridership on Friday late night (one of the days for which the schedule changed) 

minus the natural log of ridership on Thursday late night (during which there was no schedule 

change). For comparison we also show the natural log of ridership on Friday early evening minus 

the natural log of ridership on Thursday during early evening, (during which there are no 

schedule changes for either Thursday or Friday). Thursday is a uniquely appealing counterfactual 

to the weekend in Washington DC; roughly 12% of all working adults in the DC Metro area are 

federal government employees [Perrins and Nilsen (2006)],20 and in1999 the Office of Personnel 

Management estimated that half of government workers use an alternative work schedule (AWS 

in which they do not work every other Friday, substantially higher than the private sector.21 

Combined with the large population of college students (who tend to go out drinking on 

Thursday evenings) enrolled in seven major universities, Thursday night is arguably closer to a 

weekend night in Washington DC than in any other city in the United States. We present further 

evidence of the suitability of Thursday night as a comparison for Friday and Saturday evenings 

in Section IV.   Using Thursday ridership as our baseline for comparison, the schedule changes 

affect ridership exactly as one would expect ─  (a) late evening ridership increased on Fridays 

relative to Thursday late evening ridership with each successive change and (b) there was no 

discernable change in the relationship between early evening ridership on Fridays relative to 

early evening on Thursdays.  

We also present Wednesday ridership relative to Thursday ridership on the left panel. As 

one might expect, the schedule changes do not change the relationship between ridership on 

Wednesdays and Thursdays during any time of day — suggesting that the schedule changes 

                                                 
20 http://www.bls.gov/opub/mlr/2006/12/art1full.pdf 
21 www.mith2.umd.edu/WomensStudies/GenderIssues/WomenInWorkforce/Work+FamilyNeeds/01introduction 
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affected late night ridership on the weekend, but not other days of the week.22  

It is clear that there is a large amount of cyclical variation in late evening and early 

evening ridership that is common to Friday and Thursdays. Using a difference in difference in 

difference strategy that subtracts the increase in late night ridership on Thursdays (relative to the 

PM ridership) from the change on Fridays and Saturdays, we estimate that approximately 7% 

more one-way trips were taken on weekend nights for each additional hour of Metro service.23  

There were an average of 137,150 one way trips made each night on Fridays and Saturdays prior 

to the first schedule change so that our estimates suggest that more than 1,065 additional people 

may have been added to the DC nightlife as Metro service increased.24   

III Analytic Framework 

 In this section we present a simple model that links alcohol consumption and intoxicated 

driving to public transportation, provide some intuition for the possible moral hazard created by 

Metro’s expanded late night service, and present a framework that would explain both temporal 

and geographic shifting of drinking activities toward areas and times when the private costs are 

lowest and the private benefits are highest. 

 A simple coordination game, combined with basic consumer demand and production 

theory can be used to analyze the potential effects of the expanded Metro hours of operation on 

DUI behaviors and on drinking behaviors. 

 The consumer problem: Individuals demand a night out N, with price CN, and a numerair 

good Y with price 1. Individual i’s utility from going out is an increasing function of aggregate 

                                                 
22 A similar graph using Saturday and Thursday is available on request. 
23 Specifically, we estimate the parameters of the following model: Ln(Ridershipdtym)=βHoursdtym + µdt+Tym + εdtym 

where Ridershipdtym is the number of one way trips taken on day of the week d at time of day t during year y and 
month m, Hoursdtym is the number of hours that Metro is open during that period, µdt is a vector  of day of the week 
by time of day fixed effects, and  a T is a set of year and month fixed effects,  
24 In appendix Table A1, we present full regression results, showing that this estimate is robust to a relaxation of 
parametric assumptions  
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going out for others in the population 'i  , so such that individual i’s maximizes utility  

  '( ( , ), )i i iU f g N Y  s.t. the budget constraint    i i i NE Y N C         [1]. 

Aggregate going out for others in the population is ' ''

I

i ii i
N


  and '/ 0ig    . The 

parameter 'i , captures the fact that a night out drinking is a social activity.25 The utility 

maximizing levels of the numereair good Y and night out are given by 

( / ) / ( / )i i i Nf Y f N C     for individual i, so that individuals chose their desired level of nights 

out based on the shape of their individual utility functions. 

 The production of nights out: A night out is produced by combining two inputs, drinking 

D and transportation T. There are two modes of transportation, driving a car T1 and taking the 

train T2. The price of driving a car is p1, the price of taking the train is p2 and the price of 

drinking is pd. The total price of a night out for individual i is   

1 1 2 2N Di iC D P T P T P       .     [2]. 

Where DiP is the individual i’s price of driving (determined by car ownership, the price of gas 

etc.) and 2iP  is individual i’s price of public transportation (determined by Metro ticket prices, 

taxi rates, Metro availability, and Metro accessibility). When there is no public transportation 

available 2  iP i   . The provision of transportation constitutes a reduction in the price of 

taking the train from infinity to 2iP such that 20 iP   .  

 Prediction 1: As the price of taking the train falls, the demand for driving falls as long as 

                                                 
25Consistent with this notion, the amount of alcohol one consumes is believed to be a positive function of the 
amount of alcohol others around you are drinking [Cook and Moore (2000)] and Metro’s publicity campaign 
highlighted late night activities downtown using the phrase “Metro Opens Doors to Late Night Fun”. Promotion of 
Metro’s expanded hours enhanced public awareness of downtown alcohol venders. The Washington Post 
characterized the service change as targeted at bar patrons, and Metro’s publicity campaign highlighted late night 
activities downtown. The opening scene of the televised ad campaign showed a pair of  Metro doors opening onto a 
crowded bar, and the words ‘Metro Opens Doors to Late Night Fun”  The commercial can be viewed at 
http://www.lmo.com/case_studies-change_behavior.html 
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modes of transportation are gross substitutes and they are both normal inputs.  

 Prediction 2: As the price of taking the train falls, the cost of a night out decreases so that 

demand for a night out goes up, as long as a night out is a normal good.  

 Prediction 3: As the price of taking the train falls, the cost of a night out decreases and 

the demand for drinking goes up as long as a night out is a normal input.  

 Prediction 4: Since going out for person i and going out for person i' are strategic 

complements, as the price of taking the train falls, individual demand for a night out goes up, so 

that aggregate demand for a night out goes up, which in turn, increases demand for a night out. 

In equilibrium, there is an increase in aggregate going out and an increase in aggregate drinking.  

 Prediction 5: In equilibrium, the effect on aggregate intoxicated driving is ambiguous. 

Because the number of individuals who go out drinking will increase, if the fraction of drinkers 

who drive home falls is not large enough, there may be a net increase in total intoxicated driving. 

Alternatively, as more bar patrons use the Metro, the amount of alcohol consumed by any given 

bar patron’s peers, including drivers, will rise. 

Prediction 6: If going out on the weekend and going out during the week are substitutes, 

on the margin, some individuals who would have gone out on Thursdays will go out during the 

weekend. Also, if a night out in one area is substitutable for going out in another, as the price of 

going out declines in areas close to Metro stations, individuals will substitute going out in areas 

far away from Metro stations to areas with Metro stations.  

IV Data 

The effect of extended Metro service on the price of taking the train will be directly 

proportional to how close Metro stations are to bars. The spatial pattern of expected effects (i.e. 

larger effect in areas with bars serviced by Metro stations) will be critical to our identification 
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strategy.  To exploit geospatial variation in Metro access and access to alcohol, we divide DC 

into neighborhoods based on Police Service Areas (PSAs). PSAs are relatively large making the 

assumption that someone arrested for a DUI was drinking within the PSA somewhat tenable.26 

The PSA boundaries are shown in Figure 1. We identify the number of bars within each PSA 

using address information on establishments licensed to serve alcohol for on-premises 

consumption provided by the DC Alcoholic Beverage Regulation Administration.27 While these 

data are the stock of all existing bars in 2008, most neighborhoods known for late night 

carousing, such as Adams Morgan (PSA 303) and Georgetown (PSA 206), have been under 

liquor license moratoriums since the late 1990s (District of Columbia Municipal Regulations 

Title 23 Chapter 3).28  

We present some basic summary statistics describing the PSAs in Table 1.  The PSAs in 

our sample have on average 19 alcohol venders in their borders (sd= 39.4), and just under one 

half (47.8%) have a Metro station within their borders. For Metro service to affect drinking 

behaviors, it should be the case that transportation from bars within the PSAs to a Metro station 

is sufficiently small, what we call “Metro accessible.”  We measure the spatial pattern of bars 

and Metro stations by constructing circles with radii of 100 meters, 400 meters or 800 meters 

around each Metro station. We then calculate, by PSA, the number of bars that are within each of 

these areas.29 Increasing the size of the circle we draw around Metro stations increases the 

number of Metro accessible bars, but we predict that one additional bar within 100 meters of a 

Metro will induce a larger change in drinking behavior relative to one additional bar a half a mile 

                                                 
26 See FAQs about PSA boundaries: http://mpdc.dc.gov/mpdc/cwp/view,a,1239,q,543455.asp 
27 Note that this includes restaurants.   
28 Two neighborhoods, U Street (PSA 305) and H Street (PSA 102), have large numbers of bars in our database due 
to highly visible neighborhood revitalization efforts in the early 2000s. As information on alcohol venders in these 
two neighborhoods is functionally missing, we exclude these two PSAs from our analysis, although our empirical 
results are qualitatively identical if we include information from these two PSAs.   
29 Note that the Metro station and bar do not have to be in the same PSA.   



 14

away.  Because residential neighborhoods may have different types of nightlife than commercial 

districts, we also obtained the DC Police department’s estimate of the number of children 

(people under 18 years old) living in each PSA.  

Our measures of intoxicated driving and alcohol consumption are based on intoxicated 

driving and alcohol related arrest data from Washington DC’s Metropolitan Police Department 

(MPD), respectively. The data set contains information on all arrests made between 1998 and 

2007, and includes information on the primary charge, date and time of the arrest, as well as the 

location of arrest.30  We code as DUI arrests (driving under the influence arrests) all arrests listed 

as DUIs, DWIs (driving while intoxicated), and refusing to submit to a breathalyzer. While all 

crimes are more likely to occur if the victim or offender has been drinking, we argue that certain 

types of offenses are more likely to be associated with excessive drinking in bars than others. As 

such, we code as alcohol related arrests, crimes that we consider most likely to be committed by 

individuals with an otherwise low criminal propensity, but have engaged in excessive drinking. 

These offenses include urinating in public, obscene gestures, drinking in public, possession of 

open alcohol containers, or defacing a building, as well as crimes for which victims may have 

been at higher risk due to their own excessive drinking (e.g. simple assault, unarmed robbery, 

attempted sexual assault without a weapon, indecent exposure, indecent sexual proposal).31 

While alcohol related arrests will not be a perfect proxy for total alcohol consumption, they are 

good proxies for alcohol consumption in commercial establishments such as bars or restaurants, 

                                                 
30 We exclude all arrests occurring on New Year’s Eve, during which there is unusual drinking behavior and DC 
bars are allowed to operate until 4 am.  Our results are robust to the inclusion of these observations. 
31 Simple assault constitutes 22 % of alcohol related arrests, open container violations 19%, “Other” misdemeanor 
arrests 18%, and disorderly conduct arrests 11%.   Note that serious crime, such as aggravated assaults and forcible 
rape are excluded from “alcohol related” crimes.  While these offenses may be positively correlated with alcohol 
consumption, variation in these crimes will likely also be driven by other individual factors, making them unsuitable 
proxies for alcohol consumption outside of the home.        
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which is the primary concern in this paper.32   

 Because forward looking individuals decide on their drinking driving and going out 

actions based on the anticipated availability of the Metro service at the end of the evening, 

changes in behavior caused by Metro changes between 2 am and 3 am may manifest themselves 

in changes in arrests hours before, and would typically not occur only between 2 am and 3 am.  

In addition, Metro “closing hours” correspond to when trains leave stations in the center of DC 

in all directions (roughly 30 minutes from the end of each line) so that depending on whether an 

individual is traveling inbound or outbound, the last train going “home” from any given station 

could be up to 30 minutes before 30 minutes after official closing hours.33 We address both these 

issues by parsing each day into three time “blocks” – 5 am to 6 pm (day time), 6 pm to 10 pm 

(evening) and 10 pm to 5 am the next morning (late night). Since we have data on the exact time 

of the arrest (unlike the Metro ridership data) we can differentiate between the evening and the 

late night – a central distinction for our identification strategy. Since the fourth Metro schedule 

change affected the day time hours as well as the late night hours, we limit our analysis to 

evening and late night hours only.  

To construct out final dataset, we link each arrest to its PSA (with the associated Metro 

proximity and bar data) and aggregate our merged data into PSA × Month × Day of the Week × 

Time of Day cells. To avoid any classification error, we exclude observations that correspond 

with the exact dates of schedule changes (that is, weekend late night observations during the 

                                                 
32 As there are roughly one half as many arrests for “drunk and disorderly” behavior, in our primary analysis we will 
use our broad measure of alcohol related arrests, as it is continuously defined.  However, our results are robust to 
using this other measure of public alcohol consumption.     
33 Specifically, if 75% of individuals drinking around a Metro station, in the center of the city, were headed 
westbound, the last train would leave at 12:10.  For the 25% of drinkers eastbound, the last train would leave at 12 
am.  On the perimeter of the city, the last train westbound would leave at 11:49 pm and at 12:21am eastbound.  
Individuals wishing to transfer Metro lines are bound by the last train line at their transfer point (not all of which are 
close to the city center) Without knowing where the drinkers around any given station are headed, this essentially 
creates a window of unknown size around each station when the technically “last train” leaves an given station.          
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months of September 1999 and July of 2003).34 The final dataset has 73,218 observations, for all 

7 days of the week, 2 times of day (late evening and early evening) across 44 PSAs. These data 

are summarized in Table 2, where we report means for our entire sample, Fridays and Saturdays 

only, and Thursday through Saturday.    

One econometric issue is immediately apparent.  Even aggregating across an entire 

month, only 12% of PSA × Month × Day of the Week × Time of Day cells have any DUI arrests.  

While DUIs are relatively more common when we restrict our attention to weekends, DUI arrests 

occur less than 18% of the time.  Arrests that we define as “Alcohol-Related” are more common, 

with arrests occurring in roughly half of our observations, and also occur more frequently on the 

weekend.35  Table 3 confirms that most cells with any arrests have only one arrest.  Our 

dependant variable is an integer which takes on only positive values.  However, in situations 

where most of the variation in the dependant variable is binary in nature, count models can yield 

misleading conclusions, as count models estimate partial elasticities that are undefined over most 

of the distribution of the dependant variable.  This issue will motivate and inform our 

econometric specification. 

V Empirical Strategy 

There are two sources of variation in public transportation that can be exploited: (1) the 

temporal difference in provision by comparing outcomes when public transportation is provided 

to times when it is not; (2) the spatial variation by comparing outcomes in areas where there are 

many bars close to Metro stations to those of areas where Metro stations are not located near any 

bars.  In our first pass, we estimate the effect of Metro service on intoxicated driving and risky 

                                                 
34 We also exclude December 31st in all years from our analysis prior to aggregation.   
35 Notably, arrests for behavior that we designate as non-alcohol related, which includes more serious felonies and 
weapons violations, are actually slightly more common on Thursdays than Fridays and Saturdays, which is 
consistent with our assertion that they are less reliable proxies for drinking outside of the home. 
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alcohol consumption using only the temporal variation. This is a good starting point because it 

identifies the effect overall for all geographic areas. Exploiting both sources of variation, we then 

expand our model to see if the time effects we observe are stronger in areas with bars close to 

Metro stations. 

i. Temporal variation  

When there is a set public transportation schedule (e.g., trains always run at 10 pm and 

never run at 5am), it is impossible to separate a time of day effect from a public transportation 

effect. To identify Metro availability effects, one needs to compare outcomes during the same 

time of day (and day of the week) when Metro is available to when Metro is not available. In 

principle, a simple first difference strategy would only use data from Friday and Saturday late 

nights and compare outcomes before and after schedule changes. However, since the schedule 

changes may have coincided with other potentially confounding changes over time, like the 

Green line connection, this is unlikely to isolate the effect of Metro access on the outcomes.  

To account for possible confounding time effects, one could use one of two difference in 

difference (DID) strategies: (1) one that compares the difference between outcomes before and 

after the schedule changes on Friday and Saturday late evenings to the difference between 

outcomes before and after the schedule changes on Friday and Saturday afternoons, or (2) one 

that compares the difference between outcomes before and after the schedule changes on Friday 

and Saturday late evenings to the difference between outcomes before and after the schedule 

changes on Thursday late evenings. The first DID approach relies of the assumption that any 

changes over time, such as variation in BAC laws, affect both late night and evening outcomes 

the same. While this is a reasonable assumption, since we might expect certain changes to 

differentially affect risky alcohol consumption at night this assumption may not be desirable. The 



 18

second DID approach relies of the assumption that any changes over time affect late night 

outcomes during the weekends and on Thursdays the same. While this assumption is also 

reasonable, there may be changes over time that affect outcomes on the weekends, but not on 

Thursdays that could confound the results. 

To address both these concerns with the two DID models, we propose another round of 

differencing, using the difference between outcomes in the late night to those in the early 

evening before and after the schedule changes on Thursday (when there were no changes in 

Metro hours of operation over time) as the counterfactual change in outcomes for Friday and 

Saturday (when there were changes in the Metro’s hours of operation over time). As we point out 

in the theoretical section, there may be shifting of drinking from Thursday night toward Friday 

and Saturday nights. Since, the DIDID strategy described above relies on the assumption that the 

schedule change did not lead to shifting of activity from Thursday to Friday and Saturday, we 

present empirical support for this assumption in section IViii. We also show that the results 

obtained using the DIDID models are similar to those from both the DID models — indicating 

that our findings are robust to different identifying assumptions. 

 To justify our use of Thursday as our comparison day, Appendix Figures A1 and A2 

show the incidence of DUI arrests and alcohol related arrests by hour between 8pm and 5am. A 

few key patterns are apparent; (1) most DUI arrests take place between 10 pm and 3 am on 

Thursday through Saturday evenings, (2) alcohol related arrests peek at 8 pm and again around 

2am, and (3) the time profile of DUI and alcohol related arrests on Friday and Saturdays are 

much better tracked by movements on Thursdays that any other day of the week. These patterns 

suggest that focusing on the late evening period is most appropriate for analyzing the effects of 

policy on DUI and alcohol related arrests and that Thursday is a good (and clearly the best) 
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comparison day of the week for Fridays and Saturday evenings. 

To implement this Difference-in-Difference-in-Difference (DIDID) model we estimate (1) 

below by OLS using late evening and PM outcomes data from Thursdays, Fridays and Saturdays.  

(1)   ismdt sdt i isd ist idt m isdtY Hours              

In equation (1) Yismdt is the outcome in PSA i during schedule s on month m on day d for time of 

day t. Hourssdt is the number of hours the Metro is in operation during time of day t during 

schedule s on day d. Since the number of hours of late night service varies at the schedule by day 

of the week by time of day level, we include all the two way interactions effects for each PSA 

(PSA by schedule by time of day effect μisd, PSA by schedule by day of the week effects μist, and 

PSA by time of day by day of the week effects μidt). The matrix T includes year fixed effects and 

month fixed effects. In (3), β identifies the change in the difference between late night outcomes 

and early evening outcomes during the weekend and late night outcomes and early evening 

outcomes on Thursdays associated with a one hour increase in late night Metro access.  

Our dependant variable is the number of arrests that occur in a given neighborhood i in a 

given month m on day of the week d at time of day t.  Following Cameron and Trivedi (1998) 

since our arrests data are count data we present both (a) a linear probability model where the 

outcome is equal to 1 if there were any arrests in a given month in a given PSA on a given day of 

the week during a given time of day and (b) a log linear model, functionally equivalent to a 

negative binomial count model, where the dependent variable is the natural log of the number of 

arrests in a given month in a given PSA on a given day of the week during a given time of day 

plus 1. Where there are very few arrests, as is the case with DUI arrests, the linear probability 

model may be the most appropriate, while where the number of arrests is high as is the case for 
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alcohol related arrests, the log linear model will be most appropriate.36 

ii. Spatial variation  

The second potential source of variation is spatial in nature. One expects that 

neighborhoods with Metro stations will be more greatly affected by the availability of Metro 

service than areas that are farther away from Metro stations. It is also reasonable to expect a 

larger effect on alcohol related outcomes in neighborhoods with several drinking establishments 

particularly if those drinking establishment are close to Metro stations. We test these hypotheses 

by seeing if the marginal effects of Metro availability vary by geography, interacting Hourssdt 

with measures of the number and location of bars within that PSA. Specifically we test if there 

are larger effects in areas that have any Metro stations, areas than have a lot of drinking 

establishments and areas where those drinking establishments are located near Metro.37  It is also 

possible that there was shifting away from neighborhoods where bars were located far from 

Metro stations to neighborhoods where bars were close to Metro.  We will explore this 

possibility by estimating equation (1) for each neighborhood, and directly examine the spatial 

pattern of Metro effects.   

VI Results 

i. Temporal variation  

 Before turning to the regression results, we present visual evidence of our estimated 
                                                 
36 While survey data suggest that intoxicated driving may be a common event, arrests for intoxicated driving are 
rare.  In fact, the average number of DUI and DWI arrests occurring in each PSA between 10pm and 5 am on Friday 
and Saturday nights is 0.596.  In fact, 87% of the time, there are no DUI arrests between 6 pm and 5 am in a PSA 
during an entire month, and in only 5.6% of our primary sample (Thursdays through Saturdays, 6 pm to 5 am) are 
there more than 2 DUI arrests. 
37 As in a count model, the estimated value of β is a partial elasticity.  However, because of the expected spatial 
heterogeneity in the effect of Metro service, we are primarily interested in the cross partial elasticities- ∂ 
Arrests/∂Hours∂Bars. In a log linear model, these effects are identical to the coefficients on the interactions terms.  
In a non linear model, however, this is not the case.  In fact, given that we are not able to credibly estimate the first 
order effect of having a neighborhood bar on arrests (as the only variation is cross sectional) we are limited in our 
ability to interpret a true count model. Technically, in a negative binomial model, the estimate of interest would be 
(βB+HoursβHB)βH+BarsβHB(βB+(Hours x Bars)βHB)+βHB, and note that we are unable to estimate βB, the first order 
effect of the number of bars.  For further discussion of this issue, see Owens (2009).   
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effects. Specifically, we plot the data used to construct the DID estimates that compare late 

evening outcomes on the weekends to the late evening outcomes on Thursdays. Figure 4 shows 

the monthly alcohol related arrests for each month on Thursday late evenings and Friday late 

evenings during each schedule. Vertical lines indicate the date of the schedule changes and the 

horizontal lines indicate the mean for each schedule.  During the first schedule, the number of 

alcohol related arrests during Thursdays and those during the weekend move very closely 

together – confirming our assumption that the movements in Thursday evenings are a good 

counterfactual for what the changes in the weekend evenings would have been in the absence of 

any schedule changes. Between schedules 1 and 2, alcohol-related arrests increase on both 

Thursdays and Fridays, but the increase is larger on Fridays then for Thursdays. Between 

schedules 2 and 3, both days experience a decline, however, the decline is larger for Thursdays 

than for Fridays - again suggesting that increased Metro access lead to an increase in alcohol-

related crimes. The changes between schedule 3 and 4 however, does appear to show a larger 

increase in Thursday arrests that Friday arrests.  

The right panel shows similar figures for DUI arrests. Much like alcohol related arrests, 

the number of DUI arrests during Thursdays and those during the weekend move closely 

together. The first two schedule changes show a decline in DUI arrests on Friday relative to 

Thursday, while the last change shows a slight increase in DUI arrests on Fridays relative to 

Thursdays. Taken in sum the visual evidence suggests that Metro access may have affected 

drinking behavior in our predicted way, but is not particularly striking.   

 The regression results in Table 4 are consistent with this graphical analysis. While the 

naïve first difference results (column 1) indicate that alcohol related arrests increased by 5.7 

percent and the likelihood of a DUI arrest increased by 7 percentage points with each additional 
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hour of late Metro service all subsequent specification tell a different story. Both DID 

approaches (comparing late nights and evenings on weekends or comparing late nights from 

Thursday through Saturday) yield estimated increases in alcohol related arrests and decreases in 

DUI arrests, although these estimates are measured with inconsistent precision.  In column 4, the 

DIDID results suggest that each additional hour of late evening Metro service leads to a 

statistically insignificant 0.1 percent decrease in alcohol related arrests and a statistically 

insignificant 0.4 percentage point decrease in the likelihood of a DUI arrest.  No obvious 

conclusions about Metro service and intoxicated driving can be drawn from our temporal results.  

The upper and lower bound of the 95 percent confidence intervals of all of the estimates is 

0.00987 and -0.0442 (obviously centered below zero). Furthermore, the standard errors of the 

estimated parameters also indicate that we do not have sufficient power to detect effects smaller 

that about a 2 percent change. 

ii. Spatial variation 

 A pure temporal analysis ignores the spatial distribution of Metro stations and bars.  If 

our proposed mechanisms are correct, one would expect that the marginal effects of greater 

Metro availability would be greatest in areas with a large number of drinking establishments, and 

in particular areas where those establishments are closer to Metro stations.  We test for this type 

of response heterogeneity by including interactions of the main three-way effect with measures 

of geographic distance to a Metro station and the prevalence of alcohol venders. Before turning 

to the regression estimates, we present some visual evidence of heterogeneity by geography. In 

the left panel of Figure 5, we plot the natural log of alcohol related and arrests on Fridays minus 

the log of alcohol related arrests on Thursdays over time for PSAs that have more than 20 bars 

and those with fewer than 20 bars (this is equivalent to splitting the sample at the 75th percentile 
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of the distribution of bars).  It appears that as the Metro expanded its hours of operation, there 

was an increase in alcohol related arrests in areas with more than 20 bars relative to areas that do 

not have more than 20 bars. The right panel of Figure 5 presents the same analysis for DUI 

arrests. Unlike the strong patterns for alcohol related arrests, there is little visually apparent 

effect on DUI arrests.  However, if public alcohol consumption has increased in these areas, as 

the arrests suggest, we would expect, ceteris paribus, to observe an increase in intoxicated 

driving in these neighborhoods.   

The regression estimates are consistent with the visual analysis. We test for whether 

additional hours of Metro access has a differential effect in areas based on the number of bars in 

the PSA, whether the PSA actually has a Metro station within its borders, and the number of bars 

in the PSA that are close to a Metro station (even if the Metro station does not lie within the 

borders of the PSA). We do this by interacting these PSA specific characteristics with the Metro 

Hours variable in the preferred DIDID model. The results are presented in Table 5. In column 1, 

we present the linear probability model for the DUI arrests. The interaction between the number 

of hours of Metro access and the total number of on-site licenses within the PSA is negative and 

the coefficients on the interactions with the number of licenses within 100m, and 400m of a 

Metro station are also negative, and the marginal effects are diminishing as we relax our 

definition of “near” a Metro station.  While only one of these estimates is statistically significant 

at the 10 percent level, the number of bars within 100 meters of the Metro, they all move in the 

hypothesized direction; Areas with more bars and where those bars are close to Metro stations 

experienced a decrease in DUI arrests relative to areas that were farther away from Metro 

stations or where, due the location of bars, the “price” of a night out did not fall as much as 

Metro expanded.  In addition, it is worth noting that the magnitude of the relationship between 
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bars within 100 meters of a Metro and DUIs is large.  Alcohol venders tend to be located 

together; while there are on average 2.45 “Metro accessible” bars in a neighborhood, if there is at 

least one on-premises vender, there is an average of 8 others.  A 2 percentage point reduction in 

the probability of there being a DUI arrest corresponds with almost a 5% reduction per hour of 

Metro service relative the average DUI probability in those areas.   

In column 4, we present the log linear model for the alcohol related arrests. Consistent 

with the visual evidence in Figure 5, there is a clear indication that areas with more on-site 

alcohol licenses station experienced a greater increase in alcohol related crimes as the Metro 

expanded the hours of late night service. The coefficient on the interaction between the number 

of licenses and Metro hours is statistically significant at the 1 percent level.  Each additional bar 

increases the effect of Metro service on alcohol related arrests by 0.16 percentage points. 

Neighborhoods in the 75th percentile of number of bars have more risky drinking when Metro is 

open later.  There is also a substantively important 0.4 percentage point increase in the “Metro 

effect” for each bar located with 100 meters of a Metro station, although this result is statistically 

imprecise (p=0.16).  The coefficients on the other interactions do not tell any consistent story and 

are not statistically significant.   

 One striking pattern in Table 5 is that those areas that are associated with statistically 

significant increases in alcohol related crimes are the same areas that experience the largest 

reductions in DUI arrests, and vice versa. This suggests a strong behavioral response on the part 

of drinkers.  Under the assumption that the marginal drinker consumes the same amount of 

alcohol as the average drinker, the elasticity of drunk driving with respect to risky drinking 

should be close to one.  In order to isolate the change in the probability that an intoxicated person 

drives home due to Metro service, we subtract the natural log of alcohol related arrests from the 
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natural log of DUIs to estimate the number of “DUIs per drinker” in DC.   We present estimates 

of the relationship between DUIs per drinker and the spatial distribution of bars and Metro 

stations in column 5.  As one can see, both the number of bars in a PSA and the number of bars 

in a PSA that are located within 100 meters of a Metro station are associated with reductions in 

“DUIs per drinker” and both are statistically significant at the 5 percent level.  As Metro 

expanded its late night service, the fraction of heavy drinkers that drove home fell by 0.23 

percentage points for each bar in a neighborhood.  If that additional bar is located within 100 

meters of a Metro station, the probability that a heavy drinker drove home fell by 0.82 

percentage points, a reduction of roughly 2% per additional hour of late night public 

transportation. The results presented in columns 6 through 8 use all working days of the week as 

a comparison instead of only Thursday ─ results are very similar.  

As Figures 6 and 7 show, there is a very suggestive pattern in the magnitude and 

direction of the “Metro effect” across neighborhoods.  In Figure 6, we report the number of bars 

within each neighborhood, as well as the location of Metro entrances.  The reduction in DUIs per 

drinker appears to be concentrated in central DC.  This is where most bars are located, but there 

are seven PSAs with more than 10 bars in which there is an observed increase in DUIs per 

drinker as Metro expands.  While it is possible (and common) to take taxis from Metro stations 

to bars, expanded Metro service should have the largest effect on the behavior of heavy drinkers 

in neighborhood where bars are located within walking distance to Metro stations.  In Figure 7, 

we limit our attention to only the number of bars within 100 meters of a Metro.  When we focus 

on these areas, it is clear that in those neighborhoods with many bars but an apparent increase in 

DUIs per drinker, those bars are located far from Metro stations.  It is therefore unlikely that 

expanded Metro service would substantially reduce the private cost of the safer option for 
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drinkers.  Two of neighborhoods with no “Metro accessible” bars that are positively affected by 

Metro have over 70 on-premises alcohol venders- Georgetown (81 bars) and Adams Morgan (74 

bars).  As noted previously, these neighborhoods are historic destinations for DC nightlife, and it 

seems reasonable that drinkers might use taxi service from Metro stations to these neighborhoods.   

The pattern of marginal effects is striking.  With the exception of one neighborhood on 

the northwest DC border, every PSA with more than 2 bars located within 100 meters of a Metro 

state has a reduction in DUIs per drink of at least 10% per hour of Metro service.  Incorporating 

the number of bars within 100 meters of a Metro station using a linear probability model where 

the outcome is a reduction in DUIs per drinker, we estimate that there is only a 2% chance we 

would observe this pattern of results at random.38   

iii. Specification tests 

 There are three specific endogeneity concerns that may generate downward bias in our 

estimate of Metro service of DUIs and upward bias of the effect of Metro on risky drinking. 

Specifically, one might worry that (1) our temporal results are confounded by any independent 

effect the schedule change may have on Thursday outcomes, (2) the geographic patterns we 

estimate reflect factors that affect all crimes, and (3) our measures of intoxicated driving does not 

reflect real DUI behaviors because people may not be caught driving drunk where they drink. 

We address these remaining concerns below in turn. 

 iii. a)  Is there an effect of the schedule change on Thursday’s outcomes? 

 It is important to point out that our estimates of the effect of increased Metro access on 

arrests, using Thursday as a comparison day, will be biased if the Metro expansions had an 

independent effect on outcomes on Thursdays.  There are two primary reasons why one might 

worry that our DIDID estimates may not reflect the true overall policy effect: (1) the schedule 
                                                 
38 Using a logit or probit model yields substantively the same result. 
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changes led to an increase in the attractiveness of taking the Metro or going out on all nights in 

our sample, in which case our results understate the total effect of Metro service or (2) the 

schedule changes may have caused people to shift their risky public drinking from Thursday late 

night to Friday late night, in which case our results overstate the total effect of Metro service.39  

  In Table 6, we explore possible spillover effects in detail.  In columns 1a – 4a we impose 

the weekend schedule on Thursdays, and comparing changes in Thursdays arrests relative to 

Wednesday arrests.40 The geographic patterns are similar in the Wednesday to Thursdays (i.e. 

reductions in DUIs in areas with more bars within 100 meters of a Metro and increases in 

alcohol-related arrests is areas with more bars within 400 meters of a Metro station). Instead of 

people shifting behavior from Thursday to the weekend, if anything, alcohol related behaviors on 

Thursday are trending in the same direction as drinking behaviors on Friday and Saturday.  This 

could be a real spillover effect of Metro service, for example, if the DC bar and restaurant market 

changed in response to Metro operation.41  Alternately, this effect on Thursday could reflect 

unrelated changes in drinking or police behavior over time. Regardless, this apparent change on 

Thursday highlights the importance of our DIDID approach; if this model is incorrectly specified, 

we are being conservative in our estimates of the policy effect while if this is the correct 

specification, not including Thursday as a comparison day of the week would lead us to overstate 

the spatial distribution of the Metro effect on Fridays and Saturdays arrests. 

We further  test for whether our estimates are affected by any shift in behaviors from 

                                                 
39 Specifically, if Metro caused people to go out on Fridays or Saturdays en lieu of Thursdays, it would lead to a 
reduction in Thursday ridership, alcohol arrests, and DUI arrests and an increase in Friday ridership, alcohol arrests, 
and DUI arrests. Under such a scenario, any increase in alcohol related arrests will be overstated, and any decrease 
in DUI arrests will be understated.   
40 This approach allows us to include PSA x Time of Day x Schedule fixed effects, meaning that the identification of 
the Metro effect is the same as our main specification.  A DID model with Friday and Saturday does not allow for 
any temporal variation in the relationship between late night and evening arrests, making it unclear how to map 
observed spatial heterogeneity in the effect of Metro service to the DIDID results.      
41 Title 23-402.7 of the DC code suggests this is unlikely; since 1986 bars have been prohibited from being open 
after 3 am on weekends.   
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Thursdays (or any other day of the week) by imposing the weekend Metro schedule on all days 

of the week (in essence, aggregating across all days of the week).  If our results were driven by 

shifting of activity from Thursdays (or other days of the week) to Fridays and Saturdays any 

increase on Fridays and Saturdays will be undone by a reduction on Thursdays so that there 

would be an net zero effect overall. These results in columns 1b – 4b of Table 6 are in the same 

direction as the main DIDID results using Thursday as the comparison day, so that it is clear that 

the main findings are not driven by any shifting of behaviors across days of the week    

iii. b)  The geographic patterns we estimate reflect factors that affect all crimes. 

 While the geographic patterns in the marginal effect of Metro service follow a priori 

expectations, one may worry that the patterns we estimate reflects changing unobserved factors 

that affect all crimes. To test this possibility, in the last two columns of Table 5, we allow for 

spatial heterogeneity in the Metro effect with respect to our less alcohol related, or “Other” 

arrests.  If changes in the size or behavior of police officers were driving our results in columns 1 

though 7, we would expect to see no difference in the relationship between our alcohol related 

arrests and other arrests.  While we pick up two statistically precise estimates, there is no clear 

spatial pattern in the magnitude or sign of the coefficients.42  

iii. c) Using DUI arrests in D.C. only might not be picking up all the DUIs because a drinker 
may drive outside of DC. 
 

In Figure 7 there appears to be an increase in DUIs relative to drinking on the 

northwestern and northeastern DC borders.  This is driven primarily by a reduction in alcohol 

related arrests in those areas, but may also indicate some negative spatial spillovers. Since drunk 

drivers are mobile it is possible that DUI arrests outside of DC increased, which DUI arrests in 

DC remained constant.   To address this concern, we examine fatal alcohol-related car crashes, 

                                                 
42 We also present results for Drunk and Disorderly arrests only in Appendix Table A2. 
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using data for the entire DC Metro area.43  First, we identify the effect of the Metro extension on 

fatal traffic accidents by estimating the full Thursday through Saturday DIDID model using 

crash data for DC, Maryland, and Virginia. En lieu of aggregating the data at the PSA-month 

level data are aggregated at the state-MSA-month level.44 If the schedule changes led to an 

increase in intoxicated driving one might expect a larger increase in alcohol related fatal crashes 

than those not involving alcohol. We show the effects separately for crashes where alcohol was 

deemed to be involved and accidents where alcohol is not reported to be a factor. 

These results, using accidents in the DC-Metro area, are resented in the top panel of 

Table 7. The DIDID estimate indicates that each additional hour of Metro service is associated 

with a statistically insignificant 2.3 percent increase in alcohol related accidents (column 1) and a 

0.7 percent increase in non-alcohol related accidents (column 7). The interaction between the 

Metro hour and indicator variables for Virginia and Maryland are small and statistically 

significant for both alcohol related accidents (column 2) and non-alcohol related accidents 

(column 6). The evidence suggests that the schedule changes had no effect on fatal car crashes in 

DC, Maryland and Virginia (so that the lack of any effect on DUI arrests did not reflect 

geographic shifting). 

 As another test for an effect on fatal crashes, we look at crashes in Maryland and Virginia 

separately by whether the area is serviced or not serviced by Metro. Specifically, we interact 

Metro hours with an indicator variable that is equal to 1 if the area is serviced by Metro and 0 if 

it is not. Since one would expect the schedule changes to have an effect on covered areas, and no 

effect on non-covered areas, the DIDID effect in non-covered areas provides a credible control 

for underlying changes in fatal accidents over time for the covered areas. These results are 

                                                 
43 As there are (at least) six police jurisdictions in the DC suburbs, obtaining arrest data for the DC metropolitan area 
would be involve prohibitively high costs.   
44 In other words, we divide MD and VA into DC area and non-DC area observations. 
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presented in the lower panel of Table 7. All of the point estimates are imprecise, and the sign 

follow no systematic patterns - suggesting that there is no effect of the Metro schedule changes 

on fatal crashes overall (either in the DC area or in the outer lying parts of Maryland and 

Virginia). 

VII  Conclusion 

Using a triple differences strategy, we find that as the DC Metro expanded its late night 

hours of operation there was very little effect on DUI arrests, fatal alcohol related automobile 

accidents or total non-alcohol related arrests in the aggregate. This null aggregate effect masks 

striking spatial variation.  Looking at particular neighborhoods within DC, we find that in 

neighborhoods with at least one bar within 100 meters of a Metro station, expanding Metro 

service by 3 hours reduced the probability of a DUI arrest occurring by approximately 14%. At 

the same time, the number of arrests for alcohol-related crimes increased by at least 5.4% in the 

same neighborhoods. Using arrests for these crimes as a proxy for changes in the size of risky 

drinkers, a typically non-measurable population, we estimate that expanding Metro’s hours of 

operation from midnight to 3 am reduced the number of drinkers who drove home by 2.46% per 

“Metro accessible” bar in these neighborhoods on average, or 19.7%.  The magnitude of the 

effect warrants attention.  At the same time, the benefit of reduced DUIs per drinker dissipates 

rapidly as alcohol venders become more remote to Metro stations.  Given that the literature in 

urban economics finds similar spatial effects when examining commuting patterns, this 

dissipation of effects actually lends confidence in our results.  While the social benefit of 

providing a “safer option” for drinkers appear to be localized to areas directly served by the 

Metro, it does appear that even excessive drinkers respond to changes in costs in a rational way.      
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Figures: 
 
 
Figure 1: Alcohol Venders and Metro Stations in Washington, DC 
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Figure 2: Ridership on Thursdays, Fridays, and Saturdays.  

 
 
Figure 3: Ridership on Wednesdays and Fridays Relative to Thursday Levels.  
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Figure 4: Mean Monthly Arrests by Day of the Week and Time of Day, Washington DC 1998-
2007 

 
 
Figure 5: The difference between outcomes on Fridays relative to Thursdays in areas with more 
than and fewer than 20 bars.  
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Figure 6: Distribution of Marginal Effects Across PSAs, by Number of Alcohol Venders within 
the PSA. 

 
Note: U street and H street corridors, excluded from analysis, are marked with an “X” 
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Figure 7: Distribution of Marginal Effects Across PSAs, by Number of Alcohol Venders within 
100m of Metro Station 

 
Note: U street and H street corridors, excluded from analysis, are marked with an “X” 
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Tables: 
 
Table 1 PSA Characteristics (n=44) 
 Mean Std Dev 

On site Licenses 18.98 39.44 

On site Licenses within 100m of Metro station 2.45 7.23 

On site Licenses within 400m of Metro station 10.54 30.99 

On site Licenses within 800m of Metro station 14.23 35.80 

Metro Station in PSA 0.478 0.505 

Population under 18  2,509 1,444 
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Table 2: Arrests by Neighborhood 

 
Week, Evening & Late 

Night (n=73,218) 

Thurs-Sat, Evening & 
Late Night 
(n=31,420) 

Fri-Sat, Evening & Late 
Night 

(n=20,968) 
 Mean Std Dev Mean Std Dev Mean Std Dev 

Any DUI arrests 0.123 0.328 0.161 0.367 0.176 0.381 

Ln(DUI arrests + 1) 0.107 0.308 0.148 0.371 0.165 0.396 

Any Alcohol  
related arrests 0.469 0.499 0.512 0.500 0.524 0.499 

Ln (Alcohol  
related arrests +1) 0.503 0.618 0.575 0.661 0.593 0.669 

Ln(DUI arrests + 1) - 
Ln(Alcohol related 
arrests +1) 

-0.397 0.634 -0.428 0.674 -0.428 0.679 

Any Drunk & 
Disorderly arrests 0.269 0.444 0.322 0.467 0.336 0.472 

Ln (Drunk &  
Disorderly arrests +1) 0.270 0.499 0.338 0.556 0.354 0.567 

Any Non-Alcohol 
Related arrests 0.604 0.489 0.631 0. 482 0.625 0.484 

Ln(Non-Alcohol 
Related arrests+1) 0.753 0.754 0.806 0.772 0.785 0.757 
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Table 3: Frequency of Monthly Arrests per PSA, Friday and Saturday Late Nights, 1999-2007 

Arrest Type 

Number of Arrests DUI Drunk and Disorderly Alcohol Related 

0 7,553 6,850 4,708 
1 1,727 1,825 2,387 
2 550 719 1,298 
3 247 437 725 
4 155 224 429 
5 100 144 274 
6 51 94 195 
7 37 56 151 
8 18 43 91 
9 15 17 73 

10 9 20 32 
11 4 16 38 
12 4 12 17 
13 5 6 14 
14 1 3 9 
15 2 6 14 
16 0 4 9 
17 1 0 4 
18 0 2 4 
19 2 0 2 
20 0 1 2 
21 0 0 0 
22 1 0 0 
23 0 0 0 
24 0 1 3 
25 0 0 0 
26 1 1 2 
27 1 0 0 

>27 0 3 5 
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Table 4: Effect of Metro Access on DUI Arrests and Alcohol Related arrests.
 Independent Variable is Number of Hours of Metro Access.
 1 2 3 4

Any Alcohol related arrests  0.021 -0.003 0.001 -0.004
 [0.021] [0.008] [0.007] [0.008] 

log (Alcohol related arrests +1) 0.057* 0.004 0.002 -0.010
 [0.027] [0.015] [0.010] [0.011] 

Any DUI arrests 0.070** -0.0121+ -0.009 -0.004
 [0.017] [0.006] [0.006] [0.006] 

log (DUI arrests + 1) 0.080** -0.010 -0.007 -0.004
 [0.017] [0.008] [0.007] [0.007] 

Days included Fri & Sat Fri & Sat Thurs -Sat Thurs -Sat 
Times of Day included Late Late & PM Late Late & PM 
PSA*Sched*TOD    X X 
PSA*Sched*DOW  X  X 
PSA*TOD*DOW X X X X 
N 10,484 20,968 15,718 31,420 
+ significant at 10%; * significant at 5%; ** significant at 1% 
Heteroskedasticity robust standard errors clustered at the PSA level in brackets.  
All models include PSA fixed effects, year fixed effects and month of the year fixed effects. 
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Table 5: Geographic Variation in the Effect of Metro Access on Metro Ridership, DUI Arrests, and Alcohol Related arrests. 

Dependent Variable  

Any DUI 
arrests 

log (DUI 
arrests + 1) 

Any Alcohol 
related 
arrests 

log (Alcohol 
related arrests 

+1) 

log (DUI arrests 
+ 1) -  log 

(Alcohol related 
arrests +1) 

Any DUI 
arrests 

log (Alcohol 
related arrests 

+1) 

log (DUI arrests 
+ 1) -  log 

(Alcohol related 
arrests +1) 

any Other 
arrests 

log (Other 
related arrests 

+1) 

 1 2 3 4 5 6 7 8 9 10 

Hours 0.00456 -0.00697 -0.0125 -0.0337+ 0.0267 0.0014 -0.0463** 0.0375+ -0.0380+ -0.0444 

 [0.0180] [0.0155] [0.0186] [0.0198] [0.0227] [0.00990] [0.0164] [0.0206] [0.0201] [0.0345] 

Hours*On site Licenses -0.000511 -0.00067 0.000587+ 0.00162** -0.00229** 0.000178 0.00264** -0.0026** 0.000808 0.0014 

 [0.000636] [0.000509] [0.000340] [0.000362] [0.000620] [0.000268] [0.000868] [0.0004] [0.000912] [0.00154] 

Hours*# within 100 meters -0.00316+ -0.00238 0.00232 0.00351 -0.00589* -0.00322** 0.000563 -0.00318+ 0.00282 0.00157 

 [0.00174] [0.00272] [0.00426] [0.00285] [0.00264] [0.000875] [0.00238] [0.00161] [0.00549] [0.00647] 

Hours*# within 400 meters -0.000705 -0.00222 -0.000313 -0.00264 0.000423 0.000964 -0.00164 0.00298 0.00307 0.00648 

 [0.00137] [0.00232] [0.00199] [0.00168] [0.00240] [0.000828] [0.00179] [0.00189] [0.00299] [0.00522] 

Hours*# within 800 meters 0.00155 0.00302 -0.000504 0.00113 0.00189 -0.000545 -0.000947 0.000258 -0.00431+ -0.00736 

 [0.00140] [0.00211] [0.00144] [0.00146] [0.00222] [0.000787] [0.00188] [0.00196] [0.00256] [0.00488] 

Hours*Metro within borders -0.000607 0.00419 -0.00672 -0.0234 0.0276 0.00476 -0.0088 -0.0044 0.0172 0.0282 

 [0.0131] [0.0132] [0.0178] [0.0179] [0.0200] [0.00756] [0.0171] [0.0135] [0.0183] [0.0322] 

Days included Thurs - Sat Thurs - Sat Thurs - Sat Thurs - Sat Thurs - Sat All All All Thurs - Sat Thurs - Sat 

Times of day included Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM 

R2 0.301 0.432 0.289 0.411 0.281 0.268 0.375 0.274 0.336 0.518 
N 31,420 31,420 31,420 31,420 31,420 73,218 73,218 73,218 31,420 31,420 
+ significant at 10%; * significant at 5%; ** significant at 1% 

Heteroskedasticity robust standard errors clustered at the PSA level in brackets.  

All models include PSA*Schedule fixed Effects, PSA*TOD Effects, PSA*DOW Effects, PSA*Sched*TOD, PSA*Sched*DOW, PSA*TOD*DOW , PSA fixed effects, year fixed effects and month 
of the year fixed effects.  
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Table 6: Geographic Variation in the Effect of Metro Access on Metro Ridership, DUI Arrests, and Alcohol Related arrests. 

Dependent Variable 

Any DUI 
arrests 

log (DUI 
arrests + 1) 

Any Alcohol 
related arrests 

log (Alcohol 
related arrests 

+1) 

Any DUI 
arrests 

log (DUI 
arrests + 1) 

Any Alcohol 
related arrests 

log (Alcohol 
related arrests 

+1) 

 1a 2a 3a 4a 1b 2b 3b 4b 

Hours -0.00552 -0.0078 -0.00066 -0.0038 -0.0009031 -0.00699 -0.0256927 -0.0383* 
 [0.0141] [0.0135] [0.0179] [0.0220] 0.011113 [0.0133] 0.0139938 [0.0159] 
Hours*On site Licenses 0.000667 0.000637 0.000723** 0.00049 0.000519 0.000447 0.00186** 0.00236* 
 [0.000684] [0.000912] [0.000232] [0.000776] [0.000625] [0.00105] [0.000302] [0.000992] 
Hours*# within 100 -0.00301+ -0.00238 -0.00529 -0.004 -0.00219+ -0.00188 -0.00312** -0.00134 
 [0.00167] [0.00192] [0.00383] [0.00389] [0.00116] [0.00136] [0.00103] [0.00195] 
Hours*# within 400 0.000238 0.00153 0.00324+ 0.00379 0.00162+ 0.00297* 0.00220+ -0.000486 
 [0.00113] [0.00160] [0.00185] [0.00240] [0.000945] [0.00121] [0.00111] [0.00156] 
Hours*# within 800 -0.00032 -0.00145 -0.00283* -0.00396+ -0.00159 -0.00262 -0.00321** -0.00187 
 [0.00125] [0.00178] [0.00120] [0.00208] [0.00110] [0.00161] [0.00105] [0.00178] 
Hours*Metro within 0.0118 0.00771 0.0188 0.0285 0.00627 0.00686 0.0154 0.00268 
 [0.0143] [0.0126] [0.0188] [0.0217] [0.00914] [0.00988] [0.0142] [0.0183] 
         
Days included Wed-Thurs Wed-Thurs Wed-Thurs Wed-Thurs All All All All 
Times of day included Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM Late & PM 
 R2 0.27 0.36 0.27 0.38 0.27 0.38 0.27 0.38 
PSA*Sched*TOD  X X X X     
PSA*Sched*DOW X X X X X X X X 
PSA*TOD*DOW X X X X X X X X 
N 20,885 20,885 20,885 20,885 73,218 73,218 73,218 73,218 

+ significant at 10%; * significant at 5%; ** significant at 1% 
Heteroskedasticity robust standard errors clustered at the PSA level in brackets.  

a. The weekend schedule is imposed on Thursday as a "placebo" treatment. 

b. The weekend schedule is imposed on all days of the week during the same schedule. This indicates that the data are aggregated across all days of the week. 
(this does not compare weekend days to other days of the week) 
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Table 7: Fatal Crashes in Maryland, Virginia, and Washington, DC. 
 Alcohol related Accidents  Non-alcohol related accidents 

 Ln(Accidents+1) Any accidents  Ln(Accidents+1) Any accidents 

 1 2 3 4  5 6 7 8 

Hours 0.0231 0.0181 0.0222 0.0262  0.00788 -0.0135 -0.00693 -0.0177 

 [0.0192] [0.0236] [0.0188] [0.0209]  [0.0306] [0.0238] [0.0221] [0.0217] 

Hours * MD  0.00615  -0.00593   -0.0144  -0.0181 

  [0.0453]  [0.0432]   [0.0742]  [0.0524] 

Hours * VA  0.00883  -0.00609   0.0785  0.0504 

  [0.0428]  [0.0420]   [0.0591]  [0.0460] 

          

          

R2 0.136 0.136 0.144 0.144  0.127 0.127 0.13 0.13 

N 2970 2970 2970 2970   2970 2970 2970 2970 

          

          

 Alcohol related Accidents  Non-alcohol related accidents 

 Ln(Accidents+1) Any accidents  Ln(Accidents+1) Any accidents 

 VA MD VA MD  VA MD VA MD 

 9 10 11 12  13 14 15 16 

Hours 0.0669 -0.00592 0.0606 0.00881  0.0906 -0.119 0.0936* -0.0456 

 [0.0577] [0.0503] [0.0447] [0.0427]  [0.0811] [0.0806] [0.0455] [0.0462] 

Hours * DCMSA -0.0349 0.0368 -0.0329 0.0166  -0.0345 0.0998 -0.0688 0.0115 

 [0.0674] [0.0623] [0.0568] [0.0555]  [0.0959] [0.104] [0.0591] [0.0643] 

          

R2 0.356 0.264 0.317 0.255  0.278 0.176 0.287 0.166 

N 2136 2136 2136 2136   2136 2136 2136 2136 

  

All models are based on the DIDID that use Thursday as the counterfactual day. 
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Appendix:   
 
Appendix Table A1:  Effect of Metro Access on Metro Ridership: DV=Log(One Way Trips) 

Ln(Metro Hours) Ln(Metro Hours) 

Hours 0.081 0.112 0.460 0.503 0.074 -0.046 0.46 . 

[0.017] [0.023] [0.083] [0.097] [0.018] [0.092] [0.111] . 

Hours * Sched  2  -0.017 -0.016 0.088 0.042 

[0.045] [0.044] [0.018] [0.081] 

Hours * Sched  3  -0.033 -0.022 0.102 0.056 

[0.023] [0.021] [0.089] [0.02] 

Hours * Sched  4  -0.032 0.0017 0.12 0.076 

[0.022] [0.018] [0.090] [0.019] 

R2 0.83 0.83 0.83 0.83 0.82 0.82 0.82 0.82 

N 7,620 7,620 7,620 7,620 5,715 5,715 5,715 5,715 

TOD All All All All 
No 

Morning 
No 

Morning 
No 

Morning 
No 

Morning 
Robust standard errors in brackets. 
All models include Sched*DOW, Sched*TOD, TOD*DOW, year, and month fixed effects.    

 
Appendix Table A2: The Effect of Metro Access Drunk and Disorderly Conduct Arrests.

Dependent 
Variable 

Any Drunk and 
Disorderly 

arrests 

ln(Disorder 
arrests + 1) 

Any Drunk and Disorderly 
arrests 

ln (Disorder arrests + 1) 

 1 2 3 4 

Hours -0.0101 -0.0276* -0.0286 -0.0457* 

 [0.00927] [0.0128] [0.0170] [0.0196] 
Hours*On site 
Licenses   0.00111** 0.000912+ 

   [0.000388] [0.000463] 
Hours*# within 
100 meters   0.00371 0.00460+ 

   [0.00353] [0.00256] 
Hours*# within 
400 meters   -0.00271+ -0.00489** 

   [0.00161] [0.00150] 
Hours*# within 
800 meters   0.00117 0.00364* 

   [0.00114] [0.00135] 
Hours*Metro 
within borders   0.00667 -0.0023 

   [0.0177] [0.0220] 

R2 0.262 0.344 0.263 0.344 
N 31,420 31,420 31,420 31,420 

+ significant at 10%; * significant at 5%; ** significant at 1% 

Heteroskedasticity robust standard errors clustered at the PSA level in brackets.  
All models include PSA*Schedule fixed Effects, PSA*TOD Effects, PSA*DOW Effects, PSA*Sched*TOD, 
PSA*Sched*DOW, PSA*TOD*DOW , PSA fixed effects, year fixed effects and month of the year fixed effects. 
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Appendix Table A3: Fatal Traffic Accidents  

 Whole Week, Evening & PM (n=2,884) 

 Washington, DC Maryland Virginia 

 Mean Std Dev Mean Std Dev Mean Std Dev 

Any Fatal Accident 0.130 0.337 .302 .459 .237 .426 

log (Fatal Accident + 
1) 

0.209 0.598 .495 .861 .351 .705 

Any Alcohol Related  
Accident 

0.026 0.160 .113 .317 .119 0.324 

log (Alcohol Related 
Accident + 1) 

0.028 177 .108 .322 .109 .316 

Any Non-Alcohol 
Related Accident 

035 0.184 .246 .431 .152   .359 

log (Non-Alcohol 
Related Accident + 
1) 

0.041 0.242 0.334 .671 .194 .507 

 Thurs-Sat, Evening & PM (n=1,236) 
 Washington, DC Maryland Virginia 
 Mean Std Dev Mean Std Dev Mean Std Dev 

Any Fatal Accident 0.171 0.376 0.487 0.500 0.502 0.500 

log (Fatal Accident + 
1) 

0.292 0.712 0.896 10.06 0.967 10.12 

Any Alcohol Related  
Accident 

0.037 0.189 0.266 0.442 0.339 0.473 

log (Alcohol Related 
Accident + 1) 

0.041 0.218 0.280 0.507 0.386 0.602 

Any Non-Alcohol 
Related Accident 

0.042 0.203 393 0.489 0.363 0.481 

log (Non-Alcohol 
Related Accident + 
1) 

0.050 0.266 0.567 0.806 0.533 0.802 

 Fri-Sat, Evening & PM (n=824) 
 Washington, DC Maryland Virginia 
 Mean Std Dev Mean Std Dev Mean Std Dev 

Any Fatal Accident 0.198 0.398 0.525 0.500 0.534 0.499 

log (Fatal Accident + 
1) 

0.345 0.770 1.00 1.10 1.06 1.16 

Any Alcohol Related  
Accident 

0.0390 0.193 0.305 0.461 0.382 0.486 

log (Alcohol Related 
Accident + 1) 

0.044 0.231 0.329 0.543 0.447 0.641 

Any Non-Alcohol 
Related Accident 

0.048 0.215 0.427 0.495 0.394 0.489 

log (Non-Alcohol 
Related Accident + 
1) 

0.059 0.297 0.629 0.838 0.581 0.825 
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Figure A1: DUI Arrests By hour and Day of the Week 
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Figure A2: Alcohol Related Arrests By hour and Day of the Week 
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