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1 Introduction

A typical macroeconomic model takes as given some exogenous disturbances, proposes a

model for the behavior of economic agents, and makes predictions for some endogenous

variables. Because the disturbances are exogenous to the theory, by de�nition they are

unexplained and must be taken as given, so it would be desirable to impose on them as few

arbitrary restrictions as possible. However, the common practice in dynamic stochastic

general-equilibrium (DSGE) models is the opposite, with very strict assumptions on the

processes driving disturbances. This paper argues that these assumptions are unwarranted,

develops new estimation techniques for models with a rich correlation structure for the

disturbance vector, and applies them to study U.S. business cycles.

Our �rst contribution is methodological. In the simultaneous-equation reduced-form

macroeconomic model tradition, there has long been a careful treatment of disturbances.

Researchers routinely allow for rich dynamic cross and auto-correlations across disturbances,

sometimes estimated non-parametrically. This literature has convincingly established that

arbitrary restrictions on the disturbances can severely bias the estimates of key parameters

and impulse responses and lead researchers astray in attempts to endogenize incorrectly-

identi�ed disturbances.1 However, DSGE macroeconometric models routinely assume that

disturbances are independent �rst-order autoregressions, AR(1)s. While this makes inter-

pretation and estimation easier, and in some cases it is required to make the estimation

feasible given the limits of existing algorithms in dealing with many nuisance parameters,

it is still arbitrary and potentially dangerous for inference.

In this paper, we develop new Bayesian econometric techniques to incorporate correlated

disturbances in dynamics macroeconomic models. We show that the economic structure

of the models implies that key conditional posterior distributions belong either exactly or

approximately to the family of conjugate distributions with known analytical form. We

propose a new conjugate-conditionals algorithm that exploits this knowledge to e¢ ciently

characterize the posterior. Our algorithm signi�cantly speeds up estimation with indepen-

dent AR(1)s. More importantly, because the parameters associated with the disturbances

1See Cochrane and Orcutt (1949), Zellner (1962), and Newey and West (1987) for the evolution on dealing
with disturbances, and Fair (2004) for a recent careful application.
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are part of the conjugate conditional distributions, it allows for estimation of DSGE models

with correlated disturbances that were previously prohibitively numerically costly.

We envision two possible uses for correlated disturbances. First, allowing for more

�exible speci�cations than the independent AR(1) should robustify inferences in DSGE

models, in the same way that good practice adjusts standard errors in linear regressions

to allow for heteroskedasticity and autocorrelation in the disturbances (Stock and Watson,

2007). It is even more important to be careful with the disturbances in the non-linear DSGE

models than in linear regressions, because correlations will lead to not just ine¢ cient but

also biased estimates. Second, allowing for correlated disturbances lets the data speak

more freely on the dimensions along which the model is inadequate. Finding a strong

correlation between di¤erent elements of the disturbance vector highlights the ways in which

the endogenous part of the model is failing to match the data, and suggests the path to

building future models that endogenize these correlations.

The second contribution of this paper is to study U.S. business cycles. Not only is this an

important �eld to which DSGEs have been applied, but also the assumption of uncorrelated

AR(1) disturbances is clearly incredible in medium-scale business-cycle models. Whenever

economists have measured disturbances directly, whether to total factor productivity (Solow,

1957), to government spending (Rotemberg and Woodford, 1992), to labor supply (Parkin,

1988, Hall, 1997), or to investment productivity (Jorgenson, 1966, Greenwood, Hercowitz

and Krusell, 1997), they have almost always found that these measures of disturbances are

cross and dynamically correlated in ways that are inconsistent with independent AR(1)s.

Two striking examples were provided by Evans (1992) and Chari, Kehoe and McGrattan

(2007). Evans (1992) estimated vector autoregressions using military spending to mea-

sure government-spending disturbance and using Solow residuals to measure productivity

disturbances, and found that government spending Granger-causes productivity. Chari,

Kehoe and McGrattan (2007) estimated a �rst-order vector autoregression, VAR(1), for

the disturbances of a business-cycle model and found that most cross-correlations are large

and statistically signi�cant.

After a brief literature review and discussion of some issues, the paper is organized

as follow. Section 2 introduces a simple real business-cycle model and uses it to present
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the conjugate-conditionals estimation method. The estimates of the model in the U.S.

data show that disturbances are correlated in a particular way: government spending tends

to strongly increase after a fall in productivity. This explains four long-standing puzzles

for full-information estimates of this model: why hours tend to fall after an increase in

productivity, why changes in productivity have a delayed and persistent e¤ect on output,

why productivity accounts for a large part of the business cycle, and why the intertemporal

elasticity of substitution is small.

Section 3 presents the estimation method more generally. We show that the conjugate

conditionals arise in a broad class of equilibrium macroeconomic models, and discuss how to

exploit the knowledge of this known slice of the posterior distribution in making inferences.

Section 4 focuses on a richer business-cycle model, as in Smets and Wouters (2007).

Allowing for correlated disturbances does not signi�cantly improve the �t of the model,

nor does it a¤ect its main qualitative predictions on the impact of policy changes in the

economy. However, with correlated disturbances, wage markups are now less important

sources of business cycles, being replaced by productivity and government spending as key

drivers. Moreover, the data suggest that endogenizing the changes in investment-speci�c

productivity and in risk premia, perhaps through �nancial frictions, is a promising way to

improve the empirical performance of the model.

Section 5 concludes with a brief review of the main results.

1.1 Literature review

The closest paper to this one is Ireland (2004). He adds measurement errors to the reduced-

form equations of a DSGE model and allows them to follow a VAR(1), proceeding to esti-

mate the model by maximum likelihood and to statistically test for structural stability. We

di¤er in several respects. First, our focus is on the exogenous disturbances of the model,

not on measurement error (which we will even abstract from). A key distinction between

disturbances and measurement errors is that the properties of the disturbance process af-

fect the behavioral responses of the agents in the model, whereas the properties of the

measurement error only a¤ect the job of the econometrician. For instance, if productiv-

ity disturbances are more persistent, agents in the model will engage in less intertemporal
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substitution in consumption and hours worked, altering the response of all endogenous vari-

ables. Instead, more persistent measurement errors only mechanically drive a di¤erence

between the endogenous variables and the observations. Second, from an econometric per-

spective, while both Ireland�s and our approaches exploit the state-space representation of

the model, Ireland�s focus is on dealing with the measurement equation, while ours is on

the state equation. Third, we take a Bayesian approach, we allow for VARs of higher order

than one, and we focus on implications for business cycles.

Del Negro and Schorfheide (2009) also emphasize the need for robustifying inferences

from DSGEs. They merge the versatility of a VAR with the tight restrictions of a DSGE

in an innovative method that uses the DSGE to provide priors for the VAR. They also

contrast their approach with the alternative of allowing for �exible processes for the distur-

bances as we do. As they note, our approach �ts into their general framework for dealing

with misspeci�cation in policy analysis. Their empirical analysis is constrained to indepen-

dent AR(2) processes though, and part of their criticisms focus on researchers judiciously

picking which correlations to model. We instead allow for a more �exible and more general

correlation structure for the disturbances. Finally, they emphasize the di¢ cult issue of

policy invariance, while we are more worried with the positive properties of the models.

A few papers have moved beyond the assumption of independent AR(1) disturbances,

but typically in only special ways. Within closed-economy models, Chari, Kehoe, and

McGrattan (2007) allow for a restricted VAR(1) where the productivity disturbance is

special in that it Granger-causes all others, and Smets and Wouters (2007) allow two of

their seven disturbances to follow an ARMA(1,1) and two others to be contemporaneously

correlated. Schmitt-Grohe and Uribe (2009) �nd that a common shock to total factor

productivity and investment-speci�c productivity explain an important share of the business

cycle.

In the open-economy literature, it is more common to assume that disturbances are

correlated across countries, starting with the work of Backus, Kehoe and Kydland (1992).

More recently, Justiniano and Preston (forthcoming) estimate an open-economy DSGE

model and �nd that correlated cross-country disturbances can partially account for the

exchange rate disconnect puzzle. Rabanal, Rubio-Ramirez and Tuesta (2008) allow for
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cointegration among technological disturbances and �nd they can explain the volatility of

real exchange rates.

As these papers on closed-economy and open-economy business cycles show, as models

grow larger, with more disturbances and more emphasis on accounting for the data beyond

just a few moments, there is a natural tendency to allow for correlated disturbances. We

take a step further than this literature and allow for a richer and more general correlation

between disturbances.

Finally, our paper �ts into a burgeoning literature extending the ability to estimate more

general DSGE models. Justiniano and Primiceri (2008a) allow for time-varying volatility,

Rubio-Ramirez and Villaverde (2007) consider non-normal innovations, and Binsbergen,

Koijen, Rubio-Ramirez and Villaverde (2008) deal with recursive non-expected utility pref-

erences. Our methods are complementary to these. Chib and Ramamurthy (2009) propose

a multiple-block Metropolis-Hasting approach to DSGE estimation, with some resemblances

with ours. A key di¤erence is that while our blocks are suggested by the structure of the

model, in their work it is the statistical properties of the data that guides the blocking of

parameters.

1.2 Three issues: simplicity, identi�cation and orthogonalization

One objection to allowing for correlated disturbances is that it is harder to give them a

structural interpretation. While we are sympathetic with this objection, we are uncom-

fortable with its implications. Even though the estimates from independent AR(1)s for a

vector of variables are simpler to interpret than those from a VAR, few (if any) researchers

would argue in favor of the former instead of the latter. This apparent simplicity comes

with great estimation biases and incorrect inferences. Moreover, as the two applications

in this paper show, it is possible to interpret estimates with correlated disturbances. Once

this is done, what becomes hard to understand is what was captured by estimates that

assumed, for instance, that government spending was exogenous. Looking forward, we

would expect that once researchers become used to models with correlated disturbances,

this objection will become mute as it did just a few years after VARs became popular. In

any case, the contribution of this paper is to argue that even when researchers prefer to
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assume independent disturbances, they should check whether their inferences are robust to

allowing for correlated disturbances.

A second, more di¢ cult issue is identi�cation. As noted by Sargent (1978) in estimating

dynamic labor demands, it will often be di¢ cult to empirically distinguish between endoge-

nous sluggishness mechanisms, and exogenous persistent disturbances. More generally,

the issue is similar to the old argument (Griliches, 1967) that it is di¢ cult to separately

identify a linear regression with both a lagged dependent variable and an autocorrelated

disturbance. Canova and Sala (2009) and Komunjer and Ng (2009) have addressed these

concerns by providing a set of conditions for identi�cation of DSGE models, which include

the case of correlated disturbances, and are easy to check. In all of the applications of this

paper, we exhaustively checked that the information matrix of each model we estimated

had full column rank, and looked at the rank of the Hessian of the posterior distribution at

many randomly drawn points. There were no identi�cation problems in our applications.

Looking forward, we �nd compelling the argument that when there is an identi�cation

problem, the disturbance parameter responsible for it is set to zero so that the endogenous

mechanisms have primacy in explaining the data.

Finally, whenever disturbances are contemporaneously correlated, one must orthogo-

nalize them to produce impulse responses and variance decompositions. In our empirical

study of business cycles using the Smets and Wouters (2007) model, we consider the special

case where disturbances are dynamically but not contemporaneously correlated, so that this

issue does not arise. In the simple RBC model, di¤erent orthogonalizations give similar

results so the issue is empirically negligible. Therefore, our applications are robust to

di¤erent orthogonalizations.

More generally, we think it is a virtue rather than a vice to bring attention to the need

for thinking hard about identi�cation and orthogonalization in estimating DSGE models.2

These are central issues in all empirical work, and should not be assumed away as the as-

sumption of independent disturbances implicitly does. In any case, the particular methods

and results in this paper do not depend on which stand one takes on identi�cation and

orthogonalization more generally.

2Reis (2008) discusses other identi�cation issues in DSGE modelling.
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2 Correlated disturbances in a canonical DSGE model

The best-known and simplest DSGE model is due to Prescott (1986), and we extend it to

include government spending following Baxter and King (1992) and Christiano and Eichen-

baum (1992). This model has three merits for our purposes. First, it is su¢ ciently simple

that the e¤ect of correlated disturbances can be grasped intuitively. Second, it has gener-

ated some puzzles that we can re-examine. And third, it only has a few parameters, which

makes the estimation method transparent.

2.1 The model of �uctuations

A social planner chooses sequences of consumption and hours, f g1=0, to maximize
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The notation is standard.3 Utility increases with consumption and leisure and the bene�ts

of government spending enter additively through the function  (), so they have no e¤ect on

the positive predictions of the model. Equation (2) states that output equals consumption

plus investment plus government spending, and equation (3) is a neoclassical production

function. We use this DSGE model to explain the business cycle in output and hours

worked (, ) in response to disturbances to productivity and government spending (,

).

Some of the parameters are easily pinned down by steady-state relations.4 Two of the

3 In particular:  is private consumption,  is government consumption,  is the fraction of hours in a
quarter spent at work,  is capital,  is output,  is total factor productivity, � is the discount factor,  
is the intertemporal elasticity of substitution, � determines the relative utility from leisure and consumption,
� is the geometric depreciation rate, and � is the labor share.

4 In particular, the discount factor, �, is set at 0995, to generate a steady-state risk-free annual real interest
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parameters are not, and they are crucial to the model�s business-cycle predictions. First,

the elasticity of intertemporal substitution,  , determines the willingness of households to

shift resources over time. It is a key determinant of how strongly savings and labor supply

respond to persistent productivity changes, and thus of the model�s ability to generate

sizeable output �uctuations. Second, the parameter � pins down the steady-state elasticity

of labor supply with respect to wages. It is the key determinant of the size of the �uctuations

in hours worked. We collect these economic parameters in the vector  = (  �).

Collecting the disturbances in the vector  = (ln ()  ln
¬
 �

�
) � (̂ ̂), they

follow a vector autoregression of order :

 = �()¬1 +  with  � (0  )  (4)

where �() = �1 +  + �
¬1, the � are 2x2 matrices, and  is a positive-de�nite sym-

metric 2x2 matrix. This is a quite general representation; beyond assuming linearity and

covariance stationarity, it merely assumes that the order  is large enough to approximate

well an arbitrary Wold process. It nests three cases:

1) Independent AR(1) disturbances. This is the typical assumption in the literature,

which in our notation maps into  being one and �1 and  both being diagonal. These

assumptions are hard to accept in this context. Government spending is certainly not

an independent process in the data, and via the payment of unemployment bene�ts or

countercyclical �scal policy,  typically responds to  at least with a lag. In the other

direction, perhaps private productivity responds with a lag to some forms of government

spending like infrastructures or the enforcement of contracts.

2) Dynamically correlated disturbances. In this case,  � 1 and the � are unrestricted,

but  is still diagonal. Because, in the model,  and  are exogenous, their correlations

cannot be explained but must be assumed. It is then desirable to assume as little as possible

on these measures of our ignorance and focus instead on the tight restrictions imposed by

the model on the endogenous variables. Imposing the assumption that  is diagonal has the

rate of 2%, the production parameter, �, is 033 to match the capital income share, the depreciation rate, �,
is 0015 to roughly match econometric estimates and the average U.S. capital-ouput ratio, the average level
of productivity, �, is normalized to 1, and the average government spending � equals its historical average
of 20% of GDP.
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virtue that we can still give a structural interpretation to the elements of  as innovations

to productivity and government spending.

3) Contemporaneously correlated disturbances. Now  is not diagonal but it is left

unrestricted. The elements of  no longer have a structural interpretation, unless we add

orthogonalization assumptions as in the VAR literature. However, the inferences on the

economic parameters  are invariant to these restrictions.

We model disturbances in the RBC model as being both dynamically and contemporane-

ously correlated, so that we impose as little structure on the general speci�cation in equation

(4) as possible. With only two variables and two disturbances, only one orthogonalization

condition is needed and it is easy to check alternatives and their implications for impulse

responses and variance decompositions. Inspired by the results of Evans (1992) discussed

in the introduction, in our baseline we use a Choleski decomposition with the innovations to

government spending ordered �rst. We discuss robustness to this orthogonalization later.

One argument for assuming independent AR(1) disturbances is that it reduces the num-

ber of parameters. Letting � denote the vector of statistical parameters in �() and  that

describe the dynamics of the disturbances, with independent AR(1)s, � has four elements.

With unrestricted correlated disturbances, there are 3 + 4 statistical parameters. There is

a curse of dimensionality as  increases, since the computational complexity of most esti-

mation algorithms explodes even for modest values of . However, as we show next, this is

not a limitation of the theory, but rather of the particular algorithms being used.

2.2 Estimating the model

Log-linearizing the solution of the model around a non-stochastic steady state:

 = �1̂¬1 + �2 (5)

̂ = �3̂¬1 + �4 (6)

where  = (̂, ̂) are the observables, and a hat over a variable denotes its log-deviation.

The state vector of the problem includes the exogenous  and the endogenous capital stock

̂, and the � are conformable matrices of coe¢ cients that are functions of both  and �.
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These functions can be complicated, but are nowadays easily computed by many algorithms.

Substituting out the unobserved capital stock, the reduced-form of the DSGE is:

 = �3¬1 + �2 + (�1�4 ¬ �3�2)¬1 (7)

 = �()¬1 +  with  � (0  )  (8)

together with initial conditions 0, 0, and a transversality condition.

It is nowadays popular to take a Bayesian perspective to estimate models like this one.5

Starting with a prior distribution for the parameters, (�), we can use the reduced-form

in equation (7)-(8) to compute the likelihood function L(
�� �) for a sample of data

 � fg
=1, and obtain the posterior distribution for the parameters via Bayes rule:

(�j ) = L(
�� �)(�)( ) (9)

The marginal posterior density of the data ( ) is unknown, and there is no convenient

analytical form for the posterior distribution, so it must be characterized numerically. This

is usually done with Markov Chain Monte Carlo (MCMC) algorithms, that draw a new

(�) pair from an approximate distribution conditional on the last draw, in a way that

ensures convergence of the draws to the posterior distribution.

The typical algorithm used is a random-walk Metropolis. At step , it draws a proposal

(�)() from a normal density with mean (�)(¬1) and some pre-de�ned covariance matrix,

accepting this draw with a probability that depends on the ratio (�)()(�)(¬1),

keeping (�)(¬1) in case of rejection. This algorithm is robust in the sense that it usually

explores well the posterior distribution with minimal input from the researcher. The

other side to this robustness is that, because it uses almost no knowledge of the shape of

the posterior, the algorithm can take many draws to converge. Experience with DSGE

models has found that it takes millions of draws to converge if there are more than ten

parameters to estimate. With correlated disturbances, this algorithm quickly hits the

curse of dimensionality and becomes infeasible.

5See Fernandez-Villaverde (2009) for a survey and a defense of the virtues of the Bayesian approach.
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We propose an alternative algorithm that avoids the curse of dimensionality by exploiting

the economic structure of the model. Because its central observation is to use knowledge

that some conditional posterior distributions are exactly or approximately conjugate, we

label it the conjugate-conditionals algorithm. It is based on three observations.

First, by the principle of Gibbs sampling, we can break the sampling from the joint pos-

terior at step  into drawing �() from the conditional (�()
��  (¬1)) followed by drawing

() from the conditional (()
�� �()). This well-known alternative to the random-walk

Metropolis has here a natural application in separating statistical and economic parameters.

Second, note that while we are interested in the parameters, there is also uncertainty

on the realization of the innovations  and thus the disturbances  . Focusing on

the �rst Gibbs step, note that by the de�nition of a marginal distribution (�j  ) =
R

(� 
��  ) , so drawing from the conditional for the statistical parameters is equiv-

alent to drawing from the joint distribution for � and  , retaining only the � draws. This

is often referred to in the statistics literature as data augmentation.

Third, note that drawing from (� 
��  ) can be split by Gibbs sampling again

into drawing from (
��  �) and (�j    ) in succession. But, conditional on the

parameters, the reduced-form in equations (7)-(8) is a state-space system and the uncer-

tainty on the disturbances  �ts into a standard signal extraction problem. Therefore, the

conditional distribution (
��  �) is normal with mean and variance given by variants

of the Kalman smoother. Moreover, conditional on the disturbances  , equation (8) is

a standard vector autoregression. If the prior distribution  is an inverse-Wishart, then

the posterior distribution is also an inverse-Wishart. Moreover, if the variability in the

innovations  is much larger than the variability in the initial disturbances, then approxi-

mately all of the information about � in the system (7)-(8) is contained only in the second

equation, and a normal prior for � leads to a normal posterior distribution. Both for the

exact inverse-Wishart distribution and for the approximate normal distribution, we have

easily computable analytical expressions for their moments.

Combining these three observations provides our algorithm. It draws from the expanded

parameter vector
¬
� 

�
in turn, exploiting the knowledge that the conditional distrib-

ution for  is known, while we have a very good guess for the conditional distribution

12



for �. Only the conditional for  is unknown, but this involves just two parameters, re-

gardless of the assumptions on the disturbances. Allowing for correlated disturbances may

dramatically increase the number of parameters in �, but because the conditional posterior

distribution for the covariance matrix is known analytically, and because we have a good

approximating distribution for the conditional posterior distribution for the correlation co-

e¢ cients, then the curse of dimensionality is broken. Estimating a DSGE with correlated

disturbances is not signi�cantly harder than one with independent AR(1) disturbances, be-

cause it is not harder to draw from normals and inverse-Wishart distributions of higher

dimension. Because it uses our knowledge of particular slices of the posterior distribution

that we are trying to characterize, this algorithm should be more e¢ cient than the standard

Metropolis algorithm.6

2.3 Data, priors, and the e¢ ciency of the algorithm

We now turn to the data to demonstrate the use of our method and its potential. Because

the model is so simple, and such a large literature in the last twenty years has identi�ed and

partly remedied its weaknesses, we do not want to take the estimates too seriously. Our

goal here is instead to show how some apparent puzzles when comparing likelihood-based

estimates of this DSGE with other estimates can be resolved by allowing for correlated

disturbances. Section 4 is more concerned with �tting the data. Here, we use U.S. data

for non-farm business sector hours and output per capita that is quarterly, HP-�ltered, and

goes from 1948:1 to 2008:2, although we use the data before 1960:1 only to calibrate the

priors.

The priors are summarized in table 1. Following the convention in the literature, we

set the prior modes for the economic parameters at  = 23 and � = 485 (to generate a

steady-state value of 0.2 for ) and they have a gamma distribution. For the statistical

parameters, the modes of the four AR(1) parameters (the diagonal terms of �0 and  0) are

set to match four moments in the the data before 1960: the variances and serial correlations

of output and hours. For the remainder statistical parameters, we consider two cases. In

6The statement has to be quali�ed, because it is possible that the co-dependence between  and � is so
strong that the Metropolis algorithm ends up dominating the Gibbs-sampler. In our experience, this is not
the typical case.
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the �rst case, we follow the literature and assume independent AR(1)s. The priors for all

the correlated-disturbance terms are zero with zero variance. We include this case both

because it provides the comparison point for the correlated-disturbances case, and because

it provides an illustration of the relative e¢ ciency of our new algorithm. Our focus is on the

correlated case, and we present results for an unrestricted VAR(1). The three non-diagonal

elements in �0 and  still have a prior mode of zero, but now have a non-zero variance

set according to the extension of the Minnesota prior discussed in Kadiyala and Karlsson

(1997), tighter around zero the further away we move from the diagonal.7 We estimated

VARs of orders 1 to 6 with very similar results. While the marginal likelihood is higher

for order 6, we focus on the VAR(1) case because the results are easier to interpret and the

di¤erence in marginal likelihood is less than 3 log points.

Our �rst set of results address the e¢ ciency of the conjugate-conditionals algorithm

versus the Metropolis random-walk. We simulated data of the same length as the sample

using the priors for the independent AR(1), estimated the model on the simulated data using

the two algorithms with four parallel chains, and then compared their relative e¢ ciency at

converging to the posterior distribution.

We use four metrics to assess convergence. First, the  statistic of Gelman and Rubin

(1992), which compares the variance of each parameter estimate between and within chains,

to estimate the factor by which these could be reduced by continuing to take draws. This

statistic is always larger or equal than one, and a cut-o¤ of 1.001 is often used. We report

the maximum of these statistics across all the parameters. Second, the number of e¤ective

draws, ne¤ , in each chain for each parameter, which corrects for the serial correlation across

draws following Geweke (1992). The larger this is, the more e¢ cient the algorithm, and

we again report the minimum of these statistics. Third, the number of e¤ective draws in

total, mne¤ , which combines the previous two corrections applied to the mixed simulations

from the four chains (Gelman et al, 1998: 298), where again we report the minimum across

parameters. Finally, the number of rejections at the 5% level of the z-test that the mean of

the parameter draws in two separated parts of the chain is the same. This is the separated

7Section 3 discusses these priors in more detail as well as alternatives within the conjugate-conditionals
family.
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means test, SPM, of Geweke (1992) and fewer rejections implies being closer to convergence.

Figure 1 shows the results.8 In the horizontal axis are the number of draws, and in

the vertical axes are the convergence metrics. The conjugate-conditionals algorithm clearly

dominates the Metropolis random-walk. The number of e¤ective draws is almost always

higher, and commonly used thresholds like 1.01 for , or 300 for  , are reached earlier

while the SPM tests have always fewer rejections for the same number of draws. Since in

this case, disturbances are uncorrelated and the number of statistical parameters is small,

these �gures provide a conservative estimate on the improvement to be had in switching

to the conjugate-conditionals algorithm. When the disturbances are a VAR of high order,

the bene�ts from the conjugate-conditional approach over a random-walk Metropolis are

larger.

2.4 Estimates and inferences with correlated disturbances

Starting with the independent AR(1)s case, the �rst panel of table 2 reports moments of

the posterior distributions, and the top panel of �gure 2 plots the distribution of impulse

responses to one standard-deviation innovations to the two disturbances with the legend

showing the median unconditional variance decomposition between parentheses. Four

features of the estimates show well-known problems with this model.

1) The IES disconnect. The mean intertemporal elasticity of substitution is 14, not

just above the prior, but especially substantially higher than the usual value of 02 that

comes from Euler-equation estimates (Hall, 1988, Yogo, 2004).

2) The output persistence puzzle. In response to an improvement in productivity,

output increases both because of the higher productivity, and also because the representative

household chooses to work longer today when the returns to working are higher. However,

as Cogley and Nason (1995) noted, the persistence of the output response closely mirrors

the persistence of the productivity disturbance, whereas most reduced-form estimates of

8The proposal density for  in the conjugate-conditionals algorithm is a random-walk Metropolis. The
covariance matrix for the Metropolis algorithm is the Hessian at the mode of the posterior (found by
numerical maximization), multiplied by a scale factor to obtain approximately a 25% acceptance rate. This
is updated after 20,000 draws to the covariance matrix of these draws, and the algorithm is then re-started.
We report the draws in this second run, after discarding the initial 12,500 for burn-in, and average over 20
Monte Carlo simulations.
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these responses are more gradual.

3) The hours-productivity puzzle. Gali (1999), Francis and Ramey (2005), and Basu,

Fernald and Kimball (2006) estimated that hours fall after improvements in productivity,

while Uhlig (2004) and Dedola and Neri (2007) �nd a response of hours close to zero. In

�gure 2 though, hours increase strongly after a productivity improvement.

4) The sources-of-business-cycles puzzle. According to the variance decompositions,

government spending disturbances account for half of the variance of output and most of

the variance of hours, against the �ndings in typical VAR studies (e.g., Shapiro and Watson,

1986), which attribute a larger role to productivity.9

One other feature of the estimates is worth discussing. An increase in public spending

lowers resources inducing households to work harder, but because the shock is temporary

they borrow from the future, de-accumulating capital. The �rst e¤ect is stronger on impact

so output rises, but as capital falls, within a few periods, the second e¤ect becomes stronger

and output turns negative. The empirical size of the �scal multiplier is still under debate,

and the model predicts very di¤erent responses to transitory and permanent shocks (Baxter

and King, 1993) so it is hard to compare these estimates to other evidence.

We now turn to the unrestricted VAR(1). The second panels of table 2 and �gure 2

summarize the posterior distributions, impulse responses and variance decompositions. The

three non-diagonal terms of the � and  matrices do not include zero in their 90% credible

sets, unlike the assumption in the independent case. This is re�ected in the log marginal

predictive density of the model, which is 26 points higher with correlated disturbances than

with independent AR(1)s, so the posterior odds ratio is an overwhelming 26 in favor of the

former.10 The largest correlated-disturbance term is the lagged productivity term in the

law of motion for government spending. According to these estimates, when productivity

falls, there is a lagged increase in government spending, matching what we would expect

from the automatic and discretionary stabilizers in U.S. �scal policy.

We can then re-examine the puzzles, now that we have allowed for this lagged response

9The 90% credible sets for the variance decompositions output are (17, 79) and (21, 83) and for hours
(3, 12) and (89, 97), for  and  respectively.
10Note that because our prior was still centered around the independent-disturbances model, and had

shrinking variances as we moved towards the cross-correlations, the marginal likelihood would be, if anything,
biased against correlated distrubances.
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of government spending to productivity that the data strongly favors. First, the elasticity

of intertemporal substitution is much lower, with a mean of 0.43 and a 5% bound of 0.29,

bringing the DSGE estimates in line with the single-equation Euler equation estimates.

Second, the response of output to a productivity disturbance is now signi�cantly more

delayed. An increase in productivity now leads to a subsequent fall in government spending.

While this initially makes the impact on output smaller, after a few periods, it boosts output

up partially solving the output persistence puzzle. Third, an improvement in productivity

lowers hours. While the improvement in productivity increases hours, the subsequent fall

in government spending lowers them and the net impact is close to zero, matching the

results from the literature that followed Gali (1999). Fourth, productivity now accounts

for a much larger fraction of the business cycle, and as much of the earlier predominance

of government spending was due to its response to productivity.11 In line with the VAR

evidence, productivity now accounts for three quarters of the variance of output and 64%

of the variance of hours.12

Introducing correlated disturbances therefore solves four apparent puzzles with the real

business cycle model. By imposing the strict and unjusti�ed assumption that disturbances

are independent AR(1)s, researchers would face a discrepancy between the DSGE full-

information estimate and those that come from independent VARs and limited-information

estimates. Allowing for correlated disturbances showed that the robust inference is instead

that the dynamics of the model are broadly consistent with these other facts. Moreover, the

estimates showed that the direction for improving the model is to account for countercyclical

�scal policy.

11The 90% credible sets for the variance decompositions output are (58, 83) and (17, 42) and for hours
(44, 75) and (25, 56), for  and  respectively.
12These results identify the impulse reponses and variance decompositions with a Choleski decomposition

ordering government spending �rst. We also tried ordering productivity �rst, as well as estimating a model
with dynamic but not contemporaneous correlation between the disturbances. The solution of the four
puzzles was robust to these alternatives. Likewise, the results are robust to the order of the VAR.
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3 The general theory of the conjugate-conditionals method

Consider an economic model that relates the following vectors:

�  : observables, of dimension ;

�  : endogenous economic variables, of dimension ;

�  : exogenous disturbances, of dimension ;

�  : exogenous mean-zero innovations to the disturbances, of dimension ;

�  : economic parameters, of dimension ,

� � : statistical parameters, of dimension �,

in a sample  = 1   with the convention that a variable dated  is determined at that

date. The sample realization of a variable, say , from  = 1 to date  is denoted by

 � fg
=1. We use () to denote a general posterior distribution, () to denote a

sampling distribution, and () to denote a prior distribution. The inference problem is the

following: given the observations  , and a prior distribution (�), to characterize the

posterior distribution (�j ) / 
¬

�� �� (�) numerically by simulating  draws.

3.1 Two assumptions characterizing the problem

Two assumptions de�ne our problem, and we will return to them at the end of this section

to discuss whether they can be relaxed. The �rst assumption characterizes the economic

models to which our methods apply, which include most DSGE models:

Assumption 1. The economic model is:

 = 1() + 2 () () + 3()() (10)

 = �1(�)¬1 + �2(�) + �3(�)()¬1 (11)

 = � (�) () ¬1 +  with  i.i.d. and  () =  ( �) (12)

� (�) () =
P

=1� (�) ¬1 is a matrix lag polynomial of order , and similarly for

2()() 3()() and �3(�)(). All matrices are conformable and depend on the sub-

set of parameters of ( �) that are indicated in brackets. Moreover:

a) The distributions (j  �), (�j  ) and (
��  �) are not degenerate.
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b) The �(�) matrices depend on the parameters in �(�) but not on the parameters in

 (�).

c) The statistical parameters � = (�  )  and the matrices � and  are unrestricted.

Equation (10) links observables to endogenous variables and disturbances in a general

linear way, including allowing for constant deviations between the two through 1().13

We abstract from measurement error in these observations to avoid confusion with the

economic disturbances speci�ed in the model. Including measurement error does not change

our conclusions signi�cantly, although it requires a clear distinction between them and the

disturbances. Assumption 1a) only requires that there is a legitimate estimation problem,

with several possible values for the parameters  and �. It also adds an assumption that

the observables are not enough to recover the disturbances; otherwise this problem would

boil down to estimating the VAR in (12).

The second equation (11) nests most linear (or linearized) dynamic economic models

that are described by a system of equations:

	0() = 	1()¬1 +	2()() +	3() (13)

where the vector of endogenous disturbances  has the property that ¬1 = 0 and

can capture terms involving (+1). The 	 matrices typically have many zero elements

and have more elements than , embodying the cross-equation restrictions that come from

optimal behavior, technologies and other constraints and which are a¤ected by the eco-

nomic parameters . As Blanchard and Khan (1982) and Sims (2002) among many others

have shown, equation (11) is the solution, or reduced-form, of these models. The matrices

�(�) in this solution are typically complicated non-linear functions of all parameters.

Little can be said about these matrices in general, as their form will depend on the model,

but there is one exception stated as assumption 1b): the principle of certainty equiva-

lence, that the parameters in the reduced-form solution of the model do not depend on the

covariances in  .

The third equation states the assumption that disturbances are linear covariance-stationary

13We will treat  as deviations from a steady-state so we ommit constants from (11)-(12), but it is
straightforward to include these.
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processes that are well approximated by a vector autoregression of �nite order . It implies

that � =  + ( + 1)2, so the number of statistical parameters may be quite large.

Assumption 1c) adds the further assumption that the VAR is unrestricted.

The second assumption de�nes the distributions for the di¤erent propositions and vari-

ables:

Assumption 2. The prior and likelihood distributions are:

a) (j �) is a normal distribution

b) (
�� �) is a normal distribution.

c) ( ) is an inverse-Wishart distribution,

d) (�j  ) is a normal distribution,

e) () is a non-degenerate distribution.

The �rst part of the assumption is standard in the literature: innovations are inde-

pendent and identically normally distributed. The second part assumes that the initial

unobserved states in the  lags of the VAR are also normal, so that the observations 

are normally distributed. The third and fourth part set the priors for the statistical para-

meters. These are standard in the VAR literature, although not as common in the DSGE

literature. Finally, the �fth part puts only the weakest restriction on the prior for the

economic parameters for our method to work.

3.2 Two results on which the method rests

The �rst result breaks the problem into several sub-problems using the powerful result on

Gibbs-sampling:

Proposition 1 Starting at step  with ((¬1)�(¬1)), then:

a) drawing �() from the conditional (�()
��  (¬1)) and then drawing () from the con-

ditional (()
�� �()) converges in distribution to a set of draws from (�j ).

b) drawing �() and  () from the joint distribution (�()  ()
��  (¬1)), and storing

only the �() draws gives a set of draws from (�()
��  (¬1))

c) drawing  () from the conditional ( ()
��  (¬1)�(¬1)) and then drawing �() from

the conditional (�()
��  (¬1)  ()) converges in distribution to a set of draws from
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(�()  ()
��  (¬1)).

The �rst and third parts of the result are standard application of Gibbs sampling. By

assumptions 1a and 2, the distributions involved are all non-degenerate, so the standard

proof of the convergence of the Gibbs sampler follows through (Tierney, 1994). The second

part is just a statement of the de�nition of a marginal distribution in relation to a joint

distribution.

Focusing on result c) of the previous proposition, we can further show that there are

two conjugate families of priors-posteriors within our problem:

Proposition 2 The following two distributions belong to known families, with analytical

means and variances:

a) the posterior distribution for the disturbances, conditional on the data and the parameters,

(
��  �) is normal.

b) the posterior distribution for the variance of the innovations, conditional on the data, the

other parameters, and the disturbances (  j  �  ) = (  j  ) and it is an inverse-

Wishart.

To prove the �rst result, note that the system in (10)-(12) is a standard state-space

system (Durbin and Koopman, 2001). Because the system is linear with normal innovations,

the normality of the disturbances follows. The Kalman smoother provides the posterior

means and variances recursively, although as shown by Carter and Kohn (1994) sampling

from the joint distribution is considerably more e¢ cient. We use their approach as described

in Chib�s (2001) algorithm 14.

To prove the second result, note that only equation ((12) involves the covariance matrix

 . Moreover, no  or  appear in that equation. It therefore follows that (  j    �) =

(  j  ). But then, it is a standard result from linear regression that, since the prior is an

inverse-Wishart, so is the posterior, and the formulae for the parameters of this distribution

can be found in most textbooks (Geweke, 2005).
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3.3 The conjugate-conditionals method

Based on the results above, our proposal is to use the following hybrid, Metropolis-within-

Gibbs, or block-Metropolis algorithm:

Algorithm At draw :

Step 1) draw  () from ( ()
��  (¬1)�(¬1)), the known distribution in proposition 2;

Step 2) draw  () from (  j  ()), the known distribution in proposition 2;

Step 3) draw �() from a proposal distribution that approximates (�j  (¬1)  ()  ())

and accept or reject this draw with some probability;

Step 4) draw () from a proposal distribution that approximates (j  �()) and accept

or reject this draw with some probability.

The �rst two steps are easy even for a very large number of disturbances , number of

lags, , and number of observations  . Most software programs can take draws from the

multivariate normal quickly and, while the Kalman �lter recursions can take some time,

they were required anyway in order to calculate the likelihood function of the problem.

As for step 3, while we do not have the exact distribution, we have a very good guess.

The autocorrelation parameters � enter both the reduced-form solution of the model in

(11), as well as the VAR in (12). But, if the variance of the innovations  is much

smaller than the variance of the prior for the initial states and endogenous variables, then

this �ltering problem has an approximate solution where only the information in the VAR

is relevant.14 That is, in this limit case, (�j      ) � (�j    ) . But then, we

have another conjugate conditional, since it is a standard result from Bayesian VARs that,

because the prior for the � is normal (assumption 2c), then the posterior is also normal

and the formulae for the mean and variance are the standard linear regression formulae.

We have found that a particular implementation of this approximate proposal works

remarkably well. Following Geweke (1989), we use an independence-Metropolis step sam-

pling from a t-distribution instead of the normal in the previous paragraph, to allow for

fatter tails. We choose the degrees of freedom to maximize the acceptance rate of the

14 It is common practice to set the prior variance of the initial conditions equal to the unconditional
variance predicted by the system. If the economic system has signi�cant propagation and magni�cation,
then this variance should be considerably larger than the variance of the innovations.
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proposals, usually �nding a very high rate.

Finally, for step 4, our algorithm does not make any signi�cant improvement over the

literature. We neither know (j  �) nor is there any hope of having even an approximate

result beyond very speci�c models, since the parameters  usually enter the system in a very

non-linear way. In practice, we used a random-walk Metropolis for this step, drawing ()

from a normal with mean (¬1) and covariance matrix equal to the inverse-Hessian at the

mode of the posterior, scaled to reach an acceptance rate around one quarter. We have

tried several alternatives: independent Metropolis, rejection sampling, and modifying the

random-walk Metropolis to have the new draws depend on �(), but none clearly dominated

the more conventional random-walk Metropolis.

3.4 Relaxing the two assumptions

Some features of assumption 1 are central to our method. First, the fact that the matrices

�(�) with the model solution are non-linear functions of the parameters, with many

cross-equation restrictions imposed by the theory, distinguishes the DSGE problem from

an unrestricted state-space system. Second, assumption 1a) ensures that the inference

problem is not trivial. Third, assumption 1b) is important for the conjugate distribution

of  in our proposition, but this principle of certainty equivalence applies to all linearized

DSGE models. Fourth, the assumption that the economic parameters  do not a¤ect the

law of motion for the disturbances in (12) is crucial for the ability to deal separately with

the two types of parameters, but it is as much an assumption as it is just a de�nition of

what � and  are.

Assumption 1c) can be signi�cantly relaxed, as it is easy to accommodate many types

of restrictions on the VAR matrices. One case is when disturbances follow independent

AR()s, so � and  matrices are all diagonal. Adapting the priors in assumption 2

to  = 1   independent normals for [�()]

=1, and  = 1  independent inverse-

gammas squared for each of  ( ), our results follow. A second case is to have dynamic but

not contemporaneous correlation, so the � are unrestricted but the  must be diagonal.

In this case, using the normal priors for � from assumption 2, and the independent inverse

gamma priors for  ( ) just described, again our results follow. Finally, more generally, we
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may wish to impose that some of the elements of � and  are either zero, or appear more

than once in the matrices. In this case, equation (12) is a system of seemingly unrelated

regressions (SUR). Collecting the disturbances into the vector � of size ( ¬ ), it is

written as � = � +  with  � (0   ¬), where  contains the lagged states as

well as blocks of zeros allowing for a rich set of restrictions on the VAR. The coe¢ cients

� include the elements of �. As long as the prior for �j  is normal and the prior for

 ¬1 is the Wishart distribution as described in assumption 2, then our results on conjugate

distributions still hold (Zellner, 1962).

Turning to assumption 2, the normality of the errors and initial conditions is important

to our method in order to obtain the conjugate conditional distribution for the disturbances

in proposition 2. Assumption 2c) and 2d) can be somewhat relaxed. There are alternative

conjugate priors to the normal-inverse-Wishart family. Kadiyala and Karlsson (1997)

discuss combinations of di¤use, normal, Wishart and Minnesota prior distributions that

deliver conjugate families for VARs. Sims and Zha (1998) propose an alternative, with

a normal conjugate family for the distribution of � conditional on  , which puts fewer

restrictions on the prior variance than the one in assumption 2 and has some computational

advantages, although the posterior for the covariance matrix  stops being conjugate.

Another important class of prior restrictions comes from the common desire to impose

the constraint that the VAR in equation (12) is stationary. This a¤ects the distribution

for � in step 3, which is now truncated to the stationarity region. However, our experience

is that still using as proposal the t-distribution based on the approximate-normal result,

but truncating it to only accept stationary draws, has almost no e¤ect on the performance

of the algorithm. This is perhaps not entirely surprising; the truncation does not a¤ect

the relative density of di¤erent draws in the stationary region, so it has little e¤ect on the

importance sampling algorithm.

4 New Keynesian cycles with correlated disturbances

Smets andWouters (2007) proposed a new Keynesian model of monetary policy and business

cycles with a variety of frictions, including sticky prices and wages, habits in consumption,
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and investment adjustments costs. They found that this model �t the U.S. data on seven

series well� output, consumption, investment, hours worked, real wages, in�ation and nom-

inal interest rate� and, in a slightly di¤erent version, the Euro-area data as well (Smets and

Wouters, 2003). Central banks around the world have adopted variants of this model.15

The appendix lays out the equations of the model. Our focus is on its seven exoge-

nous disturbances: total factor productivity (), investment-speci�c productivity (), risk

premium (), government spending (), monetary policy (), price markups ( ), and

wage markups ( ). Following the DSGE tradition, Smets and Wouters assume that they

all follow independent AR(1)s, with only two exceptions. First, the model includes two

�rst-order moving average terms for the price and wage markup disturbances to �t high-

frequency movements in the data. Second, Smets and Wouters allow for contemporaneously

correlated disturbances between government spending and total factor productivity.

We re-estimate the Smets and Wouters model, using the same data and priors, but

with two di¤erent assumptions for the dynamics of the disturbances. In the �rst case, we

assume that disturbances are independent AR(1)s, just like Smets and Wouters, with only

one modi�cation: we set to zero the contemporaneous correlation between productivity and

government spending. This way, all of the disturbances are independent. In the second

case, we allow for correlated disturbances that follow a VAR(1). We impose the restriction

on this VAR that disturbances are dynamically correlated, but not contemporaneously so.

That is, using the notation from section 3, the matrix of dynamic-correlation coe¢ cients

� is left unrestricted, but the variance matrix  is required to be diagonal. We restrict

ourselves to this case because, with seven disturbances, any orthogonalization would be

controversial.16

The full set of estimates and impulse responses is reported in the appendix. We focus

here on four main lessons. The �rst one is that the responses of output, hours and in�ation

to disturbances to productivity, �scal spending, and monetary policy, plotted in �gure 3,

are qualitatively similar in the two cases. An improvement in productivity still lowers

hours and in�ation, more government spending still boosts output only in the �rst quarter,

15Del Negro et al (2008) document more exhaustively the empirical strengths and weaknesses of the model.
16All the estimates are based on 3 million draws, preceeded by another 6 million draws used to update

the covariance matrix in the Metropolis proposals.
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and higher interest rates cause a recession and a hump-shaped decline in in�ation. The

models also do equally well at explaining the data: the log marginal predictive densities

of the models with independent and dynamically-correlated disturbances are within 5 log

points of each other. Part of this similarity is explained by the many sources of endogenous

dynamics in the model that reduce the impact of correlated disturbances. Another part is

due to the imprecision with which many of these moments are estimated.

A second lesson, still looking at the impulse responses in �gure 3, is that there are some

signi�cant quantitative di¤erences. With correlated disturbances, an increase in government

spending lowers output by more after the �rst quarter, partly because if has a more modest

and temporary impact on hours. Also, the response of in�ation to monetary policy is more

than twice as large with dynamically-correlated rather than independent disturbances.

The third lesson comes from Table 3, which shows the median variance decompositions

for output, hours, real wages and in�ation in the short run (1 quarter ahead), the long run

(unconditionally), and at business cycle frequencies (2 years and 8 years ahead).17 With

independent disturbances, the �uctuations in output and hours are accounted mostly by

government spending, risk premium and investment-speci�c productivity at the shorter

horizon. At longer horizons though, as Smets and Wouters (2007) emphasized, it is the

wage-markup disturbance that dominates.

With correlated disturbances, the short-run conclusions are similar, but at the business-

cycle and long-run frequencies the conclusions are di¤erent. Focusing on the variance of

output, wage markups go from accounting for 51% and 55% at the 8-year and in�nite horizon

with independent disturbances, to only 28% and 13% with correlated disturbances. The

two productivity disturbances and government spending now explain 82% of the variance

of output in the long run, and as much as one third at the 2-year horizon. Looking instead

at the variance of in�ation, again the role of wage markup declines signi�cantly when we

allow for correlated disturbances, and the di¤erence form the independent-disturbances case

increases with the horizon. Across all series, there is an increase in the role of productivity

and government spending in accounting for the business cycle.

The fourth and �nal lesson comes from looking at which of the nuisance parameters in

17The 90% credible sets are in the appendix.
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the (dynamic-)correlation structure are signi�cantly di¤erent from zero. The full posterior

distribution is in the appendix, and we summarize here only the ones that are signi�cantly

di¤erent from zero. First, the correlation between total factor productivity and government

spending is large, and goes in both directions (� and �). In part, this justi�es the

Smets and Wouters (2007) modelling assumption of allowing for contemporaneous corre-

lation between these two variables. It also shows that while the new Keynesian model is

more involved than the simple RBC model from section 2, it is still missing an important

role for �scal policy rules. Second, all of the other signi�cant correlations (�, � ,

�, �, �, �, �, �) involve either the risk-premium disturbance or

investment-speci�c productivity. This suggests that an important direction for future re-

search building on this model should focus on endogenizing these disturbances. Models

with �nancial imperfections seem particularly promising.18

To conclude, allowing for correlated disturbances con�rmed some of the lessons from

previous estimates of the Smets-Wouters model. There are three changes though, that

again highlight the need to allow for correlated disturbances to robustify inference and

to point the direction of future research. First, the size of the response of the economy

to government spending and monetary policy disturbances depends on how disturbances

are modelled, recommending caution in using this model to too �nely tune the economy.

Second, we found that the much debated �nding that markup disturbances are important

is not robust. The role of wage markups is much reduced for all variables and becomes

insigni�cant for output and wages beyond a few quarters.19 As with the simple model, the

results showed that it is important to account for endogenous �scal policy responses to the

business cycle. Moreover, the main missing element in the endogenous dynamics of the

model is in modelling risk and investment.

18For recent DSGE models with �nancial imperfections see Cúrdia and Woodford (2009) and Christiano,
Trabandt and Wallentin (2009).
19See Chari, Kehoe, McGrattan (2009) for some of the debate, and Justiniano and Primiceri (2008b) for

an alternative estimation approach that converges with our results that wage markups are not as important
as previously thought.
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5 Conclusion

DSGE modelling has made great strides in the last decade, in particular in the area of

estimation and statistical inference. Because this work is in its infancy, there are still

some clear holes in our knowledge that must be �lled. This paper identi�ed one of these

holes: the strong and incredible restrictions that models typically place on the exogenous

disturbances. Using well-known points in simultaneous-equation econometrics, we argued

that these restrictions could severely hamper the model�s ability to �t the data and severely

bias inferences on key parameters and model predictions. We proposed the alternative of

allowing for correlated disturbances, in the tradition of Zellner (1962).

The main obstacle to allowing for correlated disturbances is that it introduces a large

number of nuisance parameters. We proposed a new method for estimating DSGE mod-

els, based on using conjugate families for some conditional posterior distributions. The

algorithm is also valid and useful with uncorrelated disturbances, and with correlated dis-

turbances it makes previously infeasible estimation now possible.

We applied the method to a simple real business cycle mode, and found that many

apparent empirical puzzles in this model were easily accounted for by its omission of the

strong correlation between government spending and productivity disturbances. This sug-

gests that endogenous countercyclical �scal policy is the main missing element to make this

model roughly consistent with the data.

We then studied the impact of correlated disturbances in a more involved monetary

business cycle model. We found that disturbances to markups are much less important

once one accounts for correlated disturbances. Rather, it is productivity and �scal policy

that drives the signi�cant part of the business cycle previously ascribed to markups, and

again endogenizing it is the priority for future research. Moreover, our method pointed to

endogenously modelling risk premia and investment-speci�c productivity disturbances as

the most promising avenue to bringing this model closer to the data.
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Appendix

The New Keynesian business cycle model. We follow Smets and Wouters (2007)

closely, including keeping their notation in this appendix as much as we can. The only

change is for the statistical parameters to �t our general setup in section 3. The notation

refers to:  is output,  is consumption,  is investment,  is the value of capital, 

is hours worked,  is capital utilization,  is the nominal interest rate, � is in�ation,

 is the real wage,  is capital installed, �

 is the price mark-up, and �


 is the wage

mark-up. The disturbance are all denoted by  with the superscript denoting the type

of shock. The estimates of the model with independent AR(1) disturbances and dynamic

correlated VAR(1) disturbances are in tables A.1 and A.2, respectively. Impulse responses

at the median of the posterior are in �gure A.1 and the credible sets for the variance

decompositions are in table A.3.

The model has the following equations:

 = (082 ¬ )  +  + 
� + 



 = 1¬1 + (1 ¬ 1)+1 + 2( ¬ +1) ¬ 3( ¬ �+1 + 
)

 = 1¬1 + (1 ¬ 1)+1 + 2 + 


 = 1+1 + (1 ¬ 1) (+1 ¬ +1 + +1) ¬ ( ¬ �+1 + 
)

 = � [�¬1 + � + (1 ¬ �) + 
 ]

 = [(1 ¬  )  ] ( ¬  + )

 = 1¬1 + (1 ¬ 1) + 2



� = �1�¬1 + �2�+1 ¬ �3�

 + 



 = 1¬1 + (1 ¬ 1) (+1 + �+1) ¬ 2� + 3�¬1 ¬ 4�

 + 



�
 = �(¬1 +  ¬ ) ¬  + 



�
 =  ¬ [� + ( ¬ ¬1�=)  (1 ¬ �=)]

 = �r¬1 + (1 ¬ �)[�� + ( ¬ 
 )] + � (� ¬ �

 ) + 


The reduced-form parameters are linked to structural parameters according to:  =

( ¬ 0975) 1 = (�=)(1 + �=) 2 = [(� ¬ 1)( 
� ��)[�(1 + �=)], and 3 =
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(1 ¬ �=)[(1 + �=)�] 1 = 1(1 + � (1¬�)) 2 = 1 2, 1 = 0975� ¬� , 1 =

0975 , 2 = (1 ¬ 1)(1 + � 1¬�) 2, �1 = �(1 + � 1¬��) �2 = �1� 1¬�=�, �3 =

(�1=�)
�
(1 ¬ � 1¬��)(1 ¬ �)

�
� [10(�¬ 1) + 1]

		
, 1 = 1, 2 = 1(1 + � 1¬��)

3 = �1 4 = 1

�
(1 ¬ � 1¬��)(1 ¬ �) f� [10(� ¬ 1) + 1]g

	
,  � = 100( ¬ 1),

and  is the steady-state capital-output ratio and 
� is the steady-state rental rate of

capital,

The structural parameters are:  � = 100( ¬ 1) is the steady-state growth rate, � is

the steady-state hours worked, �� is the steady-state in�ation rate, � is the discount factor,

� is one plus the share of �xed costs in production, � is the elasticity of intertemporal

substitution keeping labor �xed, � is the degree of habit formation, � is the degree of wage

stickiness, � is the wage elasticity of labor supply, � is the degree of price stickiness, � is

the degree of wage indexation, � is the degree of price indexation,  is a positive function of

the steady-state elasticity of the capital utilization adjustment cost function that is , �

is the gross steady-state labor markup, � , �,  and � are the monetary policy-rule

parameters, and � is the capital share.
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Table 1. Prior Distributions for RBC model 
 

        Percentile 

Parameter  Densitya  Mode    5  50  95 

Economic             

  G  0.6667    0.2347  1.1559  3.3311 

  G  4.8480    2.7326  5.3290  9.2117 
             
Statistical             
Panel A. Independent AR(1)s 

A  N  0.7525    0.5141  0.7459  0.9356 

G  N  0.4255    0.1994  0.4297  0.6554 

A  IG2  .00010    .00006  .00015  .00050 

G  IG2  0.2297    0.1452  0.4002  1.7917 

Panel B. Unrestricted VAR(1)             

AA  N  0.7525    0.5070  0.7413  0.9308 

AG  N  0.0000    ‐0.0041  0.0001  0.0041 

GA  N  0.0000    ‐12.960  ‐0.0558  12.720 

GG  N  0.4255    0.1788  0.4237  0.6540 

AA  IW  .00008    .00006  .00015  .00048 

AG  IW  0.0000    ‐0.0080  0.0000  0.0081 

GG  IW  0.2583    0.2012  0.4820  1.5017 

a. The densities are the gamma (G), normal (N) and the inverse‐Wishart (IW). 
 
   



Table 2. Posterior Distributions for RBC model 
 

        Percentile 

Parameter  Mean  Mode    5  50  95 

Panel A. Independent AR(1)s 
Economic             

  1.4029  1.4234    0.4970  1.2435  2.8629 

  0.6184  0.4896    0.2632  0.5471  1.2036 
Statistical             

A  0.8173  0.8106    0.7422  0.8174  0.8923 

G  0.7505  0.7518    0.6713  0.7520  0.8234 

A  .00014  .00014    .00012  .00014  .00017 

G  0.2706  0.2475    0.1928  0.2645  0.3684 

             
Panel B. Unrestricted VAR(1)             
Economic             

  0.4301  0.4304    0.2892  0.4170  0.6060 

  4.8550  4.3184    1.9072  4.6302  8.5641 
Statistical             

AA  0.9385  0.9355    0.9058  0.9402  0.9656 

AG  0.0048  0.0048    0.0041  0.0049  0.0054 

GA  ‐8.62  ‐8.26    ‐11.21  ‐8.50  ‐6.25 

GG  0.8805  0.8828    0.8362  0.8811  0.9232 

AA  .00013  .00013    .00011  .00013  .00016 

AG  0.0084  0.0071    0.0045  0.0080  0.0138 

GG  2.0718  1.3527    0.7942  1.6752  4.6432 

   



Table 3. Variance Decompositions in the Smets‐Wouters model 
    Shock       

 
Variable 

Total 
productivity 

Risk 
premium 

Government 
spending 

Investment 
productivity

Monetary 
Policy 

Price 
markup 

Wage 
markup 

Panel A. Independent AR(1) disturbances         
1‐quarter ahead             
   Output  0.017  0.292  0.477  0.120  0.065  0.026  0.003 
   Hours  0.424  0.162  0.275  0.085  0.035  0.006  0.014 
   Real wage  0.009  0.015  0.000  0.007  0.012  0.270  0.687 
   Inflation  0.026  0.003  0.001  0.008  0.015  0.802  0.145 
2‐years ahead             
   Output  0.184  0. 074  0.184  0.198  0.095  0.085  0.179 
   Hours  0.158  0.075  0.203  0.154  0.087  0.061  0.263 
   Real wage  0.097  0.017  0.000  0.068  0.058  0.271  0.488 
   Inflation  0.050  0.007  0.003  0.023  0.050  0.397  0.470 
8‐years ahead             
   Output  0.200  0.022  0.131  0.070  0.032  0.033  0. 513 
   Hours  0.060  0.025  0.163  0.064  0.032  0.025  0.631 
   Real wage  0.338  0.011  0.001  0.089  0.047  0.194  0.320 
   Inflation  0.045  0.006  0.004  0.022  0.043  0.310  0.570 
Unconditional             
   Output  0.147  0.015  0.198  0.047  0.021  0.022  0.550 
   Hours  0.047  0.016  0.246  0.045  0.021  0.017  0.609 
   Real wage  0.386  0.010  0.002  0.083  0.044  0.180  0.296 
   Inflation  0.044  0.005  0.006  0.020  0.038  0.272  0.614 
 
Panel B. Dynamic VAR(1) disturbances 

       

1‐quarter ahead              
   Output  0.011  0.466  0.404  0.025  0.019  0.053  0.021 
   Hours  0.478  0.232  0.218  0.019  0.009  0.014  0.031 
   Real wage  0.043  0.033  0.004  0.001  0.008  0.337  0.574 
   Inflation  0.049  0.006  0.020  0.016  0.025  0.668  0.216 
2‐years ahead             
   Output  0.135  0.148  0.196  0.050  0.019  0.111  0.341 
   Hours  0.227  0.174  0.072  0.133  0.009  0.050  0.331 
   Real wage  0.320  0.013  0.060  0.024  0.034  0.251  0.298 
   Inflation  0.052  0.008  0.065  0.040  0.069  0.318  0.447 
8‐years ahead             
   Output  0.263  0.040  0.291  0.101  0.004  0.023  0.277 
   Hours  0.130  0.099  0.055  0.074  0.008  0.027  0.607 
   Real wage  0.478  0.043  0.208  0.127  0.009  0.064  0.070 
   Inflation  0.056  0.009  0.077  0.039  0.068  0.298  0.455 
Unconditional             
   Output  0.389  0.041  0.299  0.135  0.001  0.009  0.125 
   Hours  0.129  0.095  0.052  0.070  0.008  0.026  0.619 
   Real wage  0.482  0.045  0.264  0.149  0.003  0.022  0.034 
   Inflation  0.199  0.020  0.156  0.074  0.044  0.196  0.310 
               



Figure 1. Convergence in simulated RBC model with AR(1) disturbances: random‐walk 
Metropolis versus conjugate‐conditionals methods 
 

 
 
   



Figure 2. Impulse response functions in RBC model, median and distributions 
Panel A. Independent AR(1)s case 

 
 
Panel B. Unrestricted VAR(1) 

 



Figure 3. Median impulse response functions in the Smets‐Wouters model, with independent 
and correlated disturbances 
 

 
 

   



Table A.1. Prior and posterior distribution for MBC model, independent AR(1) disturbances

Prior Posterior
Dist 5% Median 95% Mode Mean SE 5% Median 95%

 � N 0.2355 0.4000 0.5645 0.3898 0.3864 0.0191 0.3523 0.3881 0.4145
� N -0.4935 0.0000 0.4935 0.0000 0.0003 0.3006 -0.4989 0.0020 0.4954
�� G 0.4652 0.6146 0.7931 0.6873 0.7100 0.1024 0.5454 0.7071 0.8843

100(�¬1 ¬ 1)) G 0.1111 0.2368 0.4339 0.1470 0.1698 0.0592 0.0830 0.1643 0.2765
� N 1.5327 4.0000 6.4673 6.1285 6.1955 1.1311 4.4047 6.1516 8.1194
� N 0.8832 1.5000 2.1168 1.4058 1.3673 0.1409 1.1508 1.3589 1.6113
� B 0.5242 0.7068 0.8525 0.7024 0.7083 0.0486 0.6218 0.7122 0.7807
� B 0.3351 0.5000 0.6649 0.7056 0.6756 0.0701 0.5562 0.6788 0.7861
� N 0.7664 2.0000 3.2336 1.7248 1.7625 0.5421 0.9467 1.7220 2.7179
� B 0.3351 0.5000 0.6649 0.7011 0.6845 0.0572 0.5850 0.6872 0.7735
� B 0.2526 0.5000 0.7474 0.5110 0.5137 0.1259 0.3061 0.5142 0.7203
� B 0.2526 0.5000 0.7474 0.2645 0.3024 0.1109 0.1438 0.2899 0.5046
 B 0.2526 0.5000 0.7474 0.6195 0.6366 0.0693 0.5299 0.6326 0.7585
� N 1.0526 1.2500 1.4474 1.6617 1.6628 0.0764 1.5398 1.6608 1.7914
� N 1.0888 1.5000 1.9112 1.9834 2.0435 0.1724 1.7654 2.0392 2.3341
� B 0.5701 0.7595 0.8971 0.8015 0.8008 0.0258 0.7562 0.8020 0.8405
 N 0.0378 0.1200 0.2022 0.0846 0.0884 0.0207 0.0566 0.0872 0.1243
� N 0.0378 0.1200 0.2022 0.2257 0.2257 0.0289 0.1788 0.2254 0.2739
� N 0.2178 0.3000 0.3822 0.1676 0.1698 0.0179 0.1408 0.1695 0.1998
�1 N 0.1986 0.4964 0.7732 0.9601 0.9609 0.0139 0.9369 0.9618 0.9822
�1 N 0.2010 0.4959 0.7805 0.2021 0.2382 0.1478 0.0274 0.2206 0.5267
�1 N 0.1869 0.4994 0.7780 0.9945 0.9910 0.0062 0.9795 0.9922 0.9986
�1 N 0.1957 0.4975 0.7853 0.7119 0.7147 0.0570 0.6204 0.7149 0.8089
�1 N 0.1925 0.4958 0.7764 0.1698 0.1779 0.0713 0.0604 0.1787 0.2934
�1 N 0.1967 0.4983 0.7772 0.7203 0.7053 0.0982 0.5365 0.7098 0.8575
�1 N 0.1834 0.4979 0.7882 0.9802 0.9794 0.0098 0.9616 0.9807 0.9931
¬	 B 0.1718 0.5000 0.8282 0.5470 0.5228 0.1363 0.2866 0.5291 0.7358
¬	 B 0.1718 0.5000 0.8282 0.8926 0.8540 0.0641 0.7331 0.8653 0.9367

  IG2 0.0291 0.0823 0.3889 0.2076 0.2143 0.0257 0.1758 0.2122 0.2596
  IG2 0.0291 0.0823 0.3889 3.4472 3.9211 2.0819 1.0706 3.6287 7.8164
  IG2 0.0291 0.0823 0.3889 0.3182 0.3285 0.0376 0.2723 0.3255 0.3946
  IG2 0.0291 0.0823 0.3889 0.2170 0.2272 0.0453 0.1621 0.2223 0.3092
  IG2 0.0291 0.0823 0.3889 0.0615 0.0648 0.0078 0.0528 0.0642 0.0786
  IG2 0.0291 0.0823 0.3889 0.0264 0.0279 0.0051 0.0203 0.0275 0.0371
  IG2 0.0291 0.0823 0.3889 0.0673 0.0701 0.0117 0.0526 0.0693 0.0906



Table A.2. Prior and posterior distributions for MBC model with correlated VAR(1) disturbances

Prior Posterior
Dist 5% Median 95% Mode Mean SE 5% Median 95%

 � N 0.2355 0.4000 0.5645 0.2753 0.2964 0.0201 0.2623 0.2976 0.3271
� N -0.4935 0.0000 0.4935 -0.0000 -0.0001 0.2976 -0.4911 -0.0003 0.4878
�� G 0.4652 0.6146 0.7931 0.6090 0.6559 0.1024 0.4937 0.6525 0.8295

100(�¬1 ¬ 1)) G 0.1111 0.2368 0.4339 0.2335 0.2645 0.0907 0.1304 0.2563 0.4259
� N 1.5327 4.0000 6.4673 5.1223 5.3067 1.1751 3.3973 5.2952 7.2588
� N 0.8832 1.5000 2.1168 1.4438 1.5421 0.2238 1.2028 1.5300 1.9303
� B 0.5242 0.7068 0.8525 0.5250 0.6873 0.0629 0.5668 0.6965 0.7745
� B 0.3351 0.5000 0.6649 0.6400 0.5441 0.0545 0.4560 0.5430 0.6356
� N 0.7664 2.0000 3.2336 0.9592 1.2453 0.5283 0.4435 1.2086 2.1817
� B 0.3351 0.5000 0.6649 0.5150 0.5832 0.0628 0.4772 0.5845 0.6841
� B 0.2526 0.5000 0.7474 0.4756 0.5619 0.1284 0.3453 0.5644 0.7687
� B 0.2526 0.5000 0.7474 0.2083 0.2912 0.1105 0.1324 0.2789 0.4932
 B 0.2526 0.5000 0.7474 0.3518 0.4891 0.0585 0.3944 0.4885 0.5857
� N 1.0526 1.2500 1.4474 1.4191 1.4946 0.0734 1.3765 1.4930 1.6180
� N 1.0888 1.5000 1.9112 1.5055 1.7383 0.1887 1.4361 1.7327 2.0606
� B 0.5701 0.7595 0.8971 0.7611 0.7535 0.0325 0.6979 0.7552 0.8035
 N 0.0378 0.1200 0.2022 0.0564 0.0801 0.0302 0.0330 0.0787 0.1314
� N 0.0378 0.1200 0.2022 0.2250 0.1913 0.0305 0.1418 0.1909 0.2420
� N 0.2178 0.3000 0.3822 0.0395 0.0994 0.0183 0.0713 0.0984 0.1311

�1 N 0.1787 0.4932 0.7524 0.9302 0.9141 0.0348 0.8578 0.9137 0.9719
�1 N -0.2779 -0.0033 0.2907 -0.0088 0.0096 0.0239 -0.0366 0.0135 0.0399
�1 N -0.2820 -0.0025 0.2848 -0.2914 -0.2712 0.0521 -0.3588 -0.2702 -0.1876
�1 N -0.2886 -0.0049 0.2828 -0.0961 -0.0922 0.1051 -0.2675 -0.0899 0.0753
�1 N -0.2817 0.0021 0.2944 0.0222 -0.0142 0.1290 -0.2228 -0.0162 0.2012
�1 N -0.2768 -0.0006 0.2862 -0.0588 0.0074 0.1573 -0.2537 0.0096 0.2625
�1 N -0.2859 0.0016 0.3046 0.1247 0.0872 0.0995 -0.0767 0.0873 0.2513
�1 N -0.2828 0.0012 0.2923 0.0693 0.2099 0.1217 0.0385 0.1974 0.4282
�1 N 0.1942 0.4910 0.7528 0.6947 0.2397 0.2056 -0.0321 0.1961 0.6489
�1 N -0.2874 0.0048 0.3024 -0.1308 -0.1692 0.1635 -0.4602 -0.1550 0.0707
�1 N -0.2864 -0.0036 0.2867 -0.4177 -0.8591 0.4121 -1.5980 -0.8148 -0.2752
�1 N -0.2799 0.0076 0.3013 -0.5817 -1.2483 0.6686 -2.4081 -1.2064 -0.2460
�1 N -0.2786 -0.0013 0.2933 0.2720 0.7074 0.6548 -0.2060 0.6163 1.9356
�1 N -0.2873 -0.0018 0.3019 0.1370 0.4821 0.4196 -0.1093 0.4332 1.2362
�1 N -0.2914 -0.0008 0.2920 -0.1899 -0.1787 0.0394 -0.2445 -0.1779 -0.1155
�1 N -0.2791 0.0017 0.2847 -0.0630 -0.0196 0.0252 -0.0596 -0.0191 0.0187
�1 N 0.1996 0.4931 0.7622 0.7551 0.6769 0.0660 0.5686 0.6770 0.7846
�1 N -0.2826 0.0010 0.2724 0.4629 0.1924 0.1345 -0.0144 0.1843 0.4281
�1 N -0.2816 0.0036 0.2758 -0.0990 0.0240 0.1482 -0.2175 0.0228 0.2704
�1 N -0.2839 0.0016 0.2958 0.1392 0.1926 0.1760 -0.0969 0.1927 0.4808
�1 N -0.2794 -0.0026 0.2871 0.3713 0.1419 0.1190 -0.0489 0.1394 0.3405
�1 N -0.2904 -0.0039 0.2980 0.0595 0.0643 0.0280 0.0203 0.0632 0.1117
�1 N -0.2901 -0.0019 0.2762 -0.0385 -0.0324 0.0175 -0.0638 -0.0305 -0.0083
�1 N -0.2882 -0.0026 0.2836 -0.1085 -0.0779 0.0387 -0.1463 -0.0749 -0.0199
�1 N 0.1922 0.4911 0.7543 0.6312 0.6918 0.0575 0.5961 0.6928 0.7854
�1 N -0.2855 0.0030 0.2898 -0.1230 -0.0878 0.0964 -0.2495 -0.0852 0.0646
�1 N -0.2782 0.0022 0.2846 0.0318 0.0180 0.1008 -0.1424 0.0148 0.1882
�1 N -0.2901 0.0012 0.2830 0.0213 0.0756 0.0912 -0.0741 0.0781 0.2184



Prior Posterior
Dist 5% Median 95% Mode Mean SE 5% Median 95%

�1 N -0.2710 0.0030 0.2851 -0.0283 -0.0330 0.0174 -0.0624 -0.0327 -0.0052
�1 N -0.2781 0.0038 0.2789 -0.0810 -0.0335 0.0148 -0.0620 -0.0308 -0.0149
�1 N -0.2786 -0.0002 0.2843 0.0075 0.0192 0.0276 -0.0260 0.0190 0.0652
�1 N -0.2735 0.0015 0.2936 0.1007 0.1143 0.0438 0.0459 0.1126 0.1896
�1 N 0.2035 0.4908 0.7542 0.1292 0.1838 0.0771 0.0577 0.1832 0.3102
�1 N -0.2715 0.0017 0.2855 -0.0099 0.0011 0.0842 -0.1391 0.0017 0.1384
�1 N -0.2837 0.0003 0.2837 0.0423 -0.0052 0.0640 -0.1122 -0.0040 0.0976
�1 N -0.2843 -0.0005 0.2877 -0.0107 -0.0058 0.0058 -0.0157 -0.0056 0.0034
�1 N -0.2901 0.0049 0.2851 -0.0007 0.0014 0.0055 -0.0071 0.0012 0.0107
�1 N -0.2960 -0.0016 0.2891 -0.0273 -0.0036 0.0102 -0.0204 -0.0035 0.0126
�1 N -0.2846 -0.0007 0.2847 -0.0007 0.0072 0.0171 -0.0207 0.0078 0.0336
�1 N -0.2898 0.0014 0.2903 0.0253 0.0062 0.0399 -0.0570 0.0051 0.0735
�1 N 0.1988 0.4934 0.7435 0.8069 0.6629 0.0842 0.5205 0.6660 0.7962
�1 N -0.2785 0.0025 0.2842 -0.0243 -0.0082 0.0222 -0.0484 -0.0057 0.0235
�1 N -0.2686 -0.0004 0.2937 0.0099 0.0055 0.0083 -0.0083 0.0055 0.0191
�1 N -0.2822 -0.0018 0.2723 -0.0008 0.0029 0.0081 -0.0091 0.0027 0.0149
�1 N -0.2895 0.0008 0.2891 0.0124 0.0194 0.0132 -0.0003 0.0183 0.0429
�1 N -0.2707 0.0043 0.2966 -0.0247 -0.0024 0.0261 -0.0434 -0.0034 0.0427
�1 N -0.2839 -0.0002 0.2809 -0.0082 -0.0194 0.0544 -0.1077 -0.0193 0.0676
�1 N -0.2856 -0.0028 0.2851 0.0002 -0.0035 0.0532 -0.0854 -0.0061 0.0867
�1 N 0.1819 0.4911 0.7657 0.9735 0.9422 0.0331 0.8826 0.9481 0.9830

¬	 B 0.1718 0.5000 0.8282 0.5134 0.3397 0.1212 0.1422 0.3382 0.5421
¬	 B 0.1718 0.5000 0.8282 0.9665 0.6739 0.1094 0.4751 0.6877 0.8264

  IG2 0.0291 0.0823 0.3889 0.2431 0.2257 0.0284 0.1828 0.2235 0.2756
  IG2 0.0291 0.0823 0.3889 0.4768 5.1996 3.3725 0.6226 4.8122 11.5165
  IG2 0.0291 0.0823 0.3889 0.2563 0.2584 0.0310 0.2120 0.2562 0.3126
  IG2 0.0291 0.0823 0.3889 0.0582 0.0912 0.0334 0.0473 0.0854 0.1552
  IG2 0.0291 0.0823 0.3889 0.0497 0.0542 0.0066 0.0444 0.0537 0.0659
  IG2 0.0291 0.0823 0.3889 0.0296 0.0257 0.0052 0.0181 0.0252 0.0351
  IG2 0.0291 0.0823 0.3889 0.0855 0.0724 0.0132 0.0528 0.0712 0.0961



 
Table A.3. Variance Decompositions in the Smets‐Wouters model, 5% and 95% points in the 
posterior 
 

    Shock       

 
Variable 

Total 
productivity 

Risk 
premium 

Government 
spending 

Investment 
productivity

Monetary 
Policy 

Price 
markup 

Wage 
markup 

Panel A. Independent AR(1) disturbances         
1‐quarter ahead             
   Output  .004, .044  .234, .355  .398, .545  .072, .168  .043, .100  .016, .038 .000, .017
   Hours  .349, .491  .123, .210  .229, .326  .053, .120  .021, .058  .002, .011 .006, .028
   Real wage  .002, .029  .004, .049  .000, .001  .002, .013  .003, .030  .208, .340 .584, .757
   Inflation  .011, .051  .001, .012  .000, .003  .001, .023  .005, .033  .679, .907 .069, .222
1‐year ahead             
   Output  .054, .169  .102, .242  .189, .350  .133, .307  .074, .172  .050, .103 .015, .127
   Hours  .176, .330  .08, .212  .181, .284  .110, .230  .055, .135  .023, .063 .037, .165
   Real wage  .010, .111  .006, .054  .000, .002  .014, .057  .017, .079  .200, .373 .442, .682
   Inflation  .026, .082  .002, .025  .001, .006  .004, .055  .018, .076  .382, .678 .237, .457
Unconditional             
   Output  .048, .278  .005, .031  .051, .642  .012, .106  .005, .051  .006, .048 .201, .761
   Hours  .018, .088  .005, .035  .076, .674  .012, .097  .006, .048  .005, .035 .226, .829
   Real wage  .130, .708  .004, .024  .000, .005  .025, .157  .013, .084  .084, .305 .108, .511
   Inflation  .018, .081  .002, .018  .002, .014  .004, .062  .015, .075  .146, .405 .429, .787
 
Panel B. Dynamic VAR(1) disturbances 

       

1‐quarter ahead              
   Output  .000, .068  .354, .561  .258, .488  .003, .076  .001, .060  .021, .114 .005, .073
   Hours  .384, .547  .172, .303  .152, .275  .003, .049  .000, .031  .003, .042 .014, .075
   Real wage  .014, .102  .006, .093  .000, .026  .000, .015  .000, .032  .219, .440 .420, .695
   Inflation  .021, .104  .000, .066  .001, .062  .001, .075  .001, .087  .482, .790 .111, .308
1‐year ahead             
   Output  .003, .130  .204, .529  .077, .180  .014, .269  .001, .105  .043, .249 .062, .309
   Hours  .182, .407  .119, .380  .053, .198  .044, .226  .001, .060  .006, .117 .057, .291
   Real wage  .060, .284  .005, .109  .000, .091  .000, .057  .001, .109  .159, .467 .218, .619
   Inflation  .024, .132  .001, .125  .006, .141  .002, .155  .003, .166  .215, .514 .225, .497
Unconditional             
   Output  .188, .552  .010, .126  .162, .432  .030, .254  .001, .031  .002, .048 .022, .309
   Hours  .076, .392  .028, .225  .030, .251  .037, .252  .003, .085  .007, .104 .155, .635
   Real wage  .309, .608  .005, .134  .135, .398  .038, .264  .000, .028  .004, .071 .008, .125
   Inflation  .073, .432  .008, .115  .059, .321  .033, .203  .006, .116  .047, .267 .079, .436
               

   



Figure A.1. Median impulse response functions in the Smets‐Wouters model, with 
independent and correlated disturbances 
 

 
 
Variables: dY is output growth, dCo is consumption growth, dlo is investment, dWo is wage growth, Lo is 

hours, pio is inflation, and Ro is the nominal interest rate. 
Disturbances: total factor productivity (A), risk premium (B), government spending (G), investment‐

specific productivity (EI), nominal interest rates (ER), price markups (EP), wage markups (EW). 



Table 1. Prior Distributions for RBC model 
 

        Percentile 

Parameter  Densitya  Mode    5  50  95 

Economic             

  G  0.6667    0.2347  1.1559  3.3311 

  G  4.8480    2.7326  5.3290  9.2117 
             
Statistical             
Panel A. Independent AR(1)s 

A  N  0.7525    0.5141  0.7459  0.9356 

G  N  0.4255    0.1994  0.4297  0.6554 

A  IG2  .00010    .00006  .00015  .00050 

G  IG2  0.2297    0.1452  0.4002  1.7917 

Panel B. Unrestricted VAR(1)             

AA  N  0.7525    0.5070  0.7413  0.9308 

AG  N  0.0000    ‐0.0041  0.0001  0.0041 

GA  N  0.0000    ‐12.960  ‐0.0558  12.720 

GG  N  0.4255    0.1788  0.4237  0.6540 

AA  IW  .00008    .00006  .00015  .00048 

AG  IW  0.0000    ‐0.0080  0.0000  0.0081 

GG  IW  0.2583    0.2012  0.4820  1.5017 

a. The densities are the gamma (G), normal (N) and the inverse‐Wishart (IW). 
 
   



Table 2. Posterior Distributions for RBC model 
 

        Percentile 

Parameter  Mean  Mode    5  50  95 

Panel A. Independent AR(1)s 
Economic             

  1.4029  1.4234    0.4970  1.2435  2.8629 

  0.6184  0.4896    0.2632  0.5471  1.2036 
Statistical             

A  0.8173  0.8106    0.7422  0.8174  0.8923 

G  0.7505  0.7518    0.6713  0.7520  0.8234 

A  .00014  .00014    .00012  .00014  .00017 

G  0.2706  0.2475    0.1928  0.2645  0.3684 

             
Panel B. Unrestricted VAR(1)             
Economic             

  0.4301  0.4304    0.2892  0.4170  0.6060 

  4.8550  4.3184    1.9072  4.6302  8.5641 
Statistical             

AA  0.9385  0.9355    0.9058  0.9402  0.9656 

AG  0.0048  0.0048    0.0041  0.0049  0.0054 

GA  ‐8.62  ‐8.26    ‐11.21  ‐8.50  ‐6.25 

GG  0.8805  0.8828    0.8362  0.8811  0.9232 

AA  .00013  .00013    .00011  .00013  .00016 

AG  0.0084  0.0071    0.0045  0.0080  0.0138 

GG  2.0718  1.3527    0.7942  1.6752  4.6432 

   



Table 3. Variance Decompositions in the Smets‐Wouters model 
    Shock       

 
Variable 

Total 
productivity 

Risk 
premium 

Government 
spending 

Investment 
productivity

Monetary 
Policy 

Price 
markup 

Wage 
markup 

Panel A. Independent AR(1) disturbances         
1‐quarter ahead             
   Output  0.016  0.289  0.475  0.1160  0.065  0.025  0.003 
   Hours  0.421  0.160  0.274  0.082  0.034  0.006  0.014 
   Real wage  0.010  0.016  0.000  0.006  0.012  0.268  0.682 
   Inflation  0.026  0.003  0.001  0.007  0.014  0.807  0.137 
2‐years ahead             
   Output  0.177  0. 075  0.184  0.191  0.095  0.083  0.163 
   Hours  0.158  0.075  0.203  0.149  0.087  0.059  0.242 
   Real wage  0.098  0.018  0.000  0.061  0.055  0.269  0.474 
   Inflation  0.050  0.008  0.003  0.022  0.050  0.408  0.443 
8‐years ahead             
   Output  0.200  0.023  0.134  0.072  0.033  0.034  0.474 
   Hours  0.064  0.026  0.170  0.066  0.033  0.026  0.596 
   Real wage  0.330  0.011  0.001  0.080  0.044  0.189  0.304 
   Inflation  0.046  0.007  0.004  0.021  0.044  0.321  0.542 
Unconditional             
   Output  0.133  0.014  0.208  0.043  0.019  0.020  0.489 
   Hours  0.047  0.015  0.257  0.041  0.019  0.015  0.558 
   Real wage  0.379  0.010  0.001  0.073  0.040  0.172  0.280 
   Inflation  0.044  0.006  0.006  0.019  0.037  0.279  0.593 
 
Panel B. Dynamic VAR(1) disturbances 

       

1‐quarter ahead              
   Output  0.008  0.454  0.392  0.032  0.016  0.053  0.023 
   Hours  0.468  0.229  0.212  0.023  0.007  0.014  0.032 
   Real wage  0.045  0.036  0.004  0.002  0.007  0.325  0.564 
   Inflation  0.054  0.009  0.020  0.022  0.023  0.638  0.202 
2‐years ahead             
   Output  0.108  0.161  0.173  0.066  0.019  0.103  0.308 
   Hours  0.210  0.180  0.069  0.136  0.012  0.046  0.289 
   Real wage  0.300  0.023  0.057  0.021  0.029  0.227  0.275 
   Inflation  0.058  0.020  0.067  0.056  0.063  0.288  0.386 
8‐years ahead             
   Output  0.237  0.051  0.275  0.096  0.011  0.027  0.252 
   Hours  0.128  0.104  0.059  0.097  0.019  0.035  0.484 
   Real wage  0.452  0.046  0.199  0.120  0.011  0.059  0.069 
   Inflation  0.068  0.027  0.081  0.066  0.060  0.258  0.383 
Unconditional             
   Output  0.381  0.044  0.287  0.129  0.005  0.011  0.094 
   Hours  0.177  0.089  0.094  0.107  0.016  0.028  0.407 
   Real wage  0.456  0.047  0.258  0.142  0.005  0.019  0.036 
   Inflation  0.224  0.036  0.175  0.098  0.032  0.145  0.231 
               



Figure 1. Convergence in simulated RBC model with AR(1) disturbances: random‐walk 
Metropolis versus conjugate‐conditionals methods 
 

 
 
   



Figure 2. Impulse response functions in RBC model, median and distributions 
Panel A. Independent AR(1)s case 

 
 
Panel B. Unrestricted VAR(1) 

 



Figure 3. Median impulse response functions in the Smets‐Wouters model, with independent 
and correlated disturbances 
 

 
 

   



Table A.1. Prior and posterior distribution for MBC model, independent AR(1) disturbances

Prior Posterior
Dist 5% Median 95% Mode Mean SE 5% Median 95%

 � N 0.2355 0.4000 0.5645 0.3898 0.3864 0.0191 0.3523 0.3881 0.4145
� N -0.4935 0.0000 0.4935 0.0000 0.0003 0.3006 -0.4989 0.0020 0.4954
�� G 0.4652 0.6146 0.7931 0.6873 0.7100 0.1024 0.5454 0.7071 0.8843

100(�¬1 ¬ 1)) G 0.1111 0.2368 0.4339 0.1470 0.1698 0.0592 0.0830 0.1643 0.2765
� N 1.5327 4.0000 6.4673 6.1285 6.1955 1.1311 4.4047 6.1516 8.1194
� N 0.8832 1.5000 2.1168 1.4058 1.3673 0.1409 1.1508 1.3589 1.6113
� B 0.5242 0.7068 0.8525 0.7024 0.7083 0.0486 0.6218 0.7122 0.7807
� B 0.3351 0.5000 0.6649 0.7056 0.6756 0.0701 0.5562 0.6788 0.7861
� N 0.7664 2.0000 3.2336 1.7248 1.7625 0.5421 0.9467 1.7220 2.7179
� B 0.3351 0.5000 0.6649 0.7011 0.6845 0.0572 0.5850 0.6872 0.7735
� B 0.2526 0.5000 0.7474 0.5110 0.5137 0.1259 0.3061 0.5142 0.7203
� B 0.2526 0.5000 0.7474 0.2645 0.3024 0.1109 0.1438 0.2899 0.5046
 B 0.2526 0.5000 0.7474 0.6195 0.6366 0.0693 0.5299 0.6326 0.7585
� N 1.0526 1.2500 1.4474 1.6617 1.6628 0.0764 1.5398 1.6608 1.7914
� N 1.0888 1.5000 1.9112 1.9834 2.0435 0.1724 1.7654 2.0392 2.3341
� B 0.5701 0.7595 0.8971 0.8015 0.8008 0.0258 0.7562 0.8020 0.8405
 N 0.0378 0.1200 0.2022 0.0846 0.0884 0.0207 0.0566 0.0872 0.1243
� N 0.0378 0.1200 0.2022 0.2257 0.2257 0.0289 0.1788 0.2254 0.2739
� N 0.2178 0.3000 0.3822 0.1676 0.1698 0.0179 0.1408 0.1695 0.1998
�1 N 0.1986 0.4964 0.7732 0.9601 0.9609 0.0139 0.9369 0.9618 0.9822
�1 N 0.2010 0.4959 0.7805 0.2021 0.2382 0.1478 0.0274 0.2206 0.5267
�1 N 0.1869 0.4994 0.7780 0.9945 0.9910 0.0062 0.9795 0.9922 0.9986
�1 N 0.1957 0.4975 0.7853 0.7119 0.7147 0.0570 0.6204 0.7149 0.8089
�1 N 0.1925 0.4958 0.7764 0.1698 0.1779 0.0713 0.0604 0.1787 0.2934
�1 N 0.1967 0.4983 0.7772 0.7203 0.7053 0.0982 0.5365 0.7098 0.8575
�1 N 0.1834 0.4979 0.7882 0.9802 0.9794 0.0098 0.9616 0.9807 0.9931
¬	 B 0.1718 0.5000 0.8282 0.5470 0.5228 0.1363 0.2866 0.5291 0.7358
¬	 B 0.1718 0.5000 0.8282 0.8926 0.8540 0.0641 0.7331 0.8653 0.9367

  IG2 0.0291 0.0823 0.3889 0.2076 0.2143 0.0257 0.1758 0.2122 0.2596
  IG2 0.0291 0.0823 0.3889 3.4472 3.9211 2.0819 1.0706 3.6287 7.8164
  IG2 0.0291 0.0823 0.3889 0.3182 0.3285 0.0376 0.2723 0.3255 0.3946
  IG2 0.0291 0.0823 0.3889 0.2170 0.2272 0.0453 0.1621 0.2223 0.3092
  IG2 0.0291 0.0823 0.3889 0.0615 0.0648 0.0078 0.0528 0.0642 0.0786
  IG2 0.0291 0.0823 0.3889 0.0264 0.0279 0.0051 0.0203 0.0275 0.0371
  IG2 0.0291 0.0823 0.3889 0.0673 0.0701 0.0117 0.0526 0.0693 0.0906



Table A.2. Prior and posterior distributions for MBC model with correlated VAR(1) disturbances

Prior Posterior
Dist 5% Median 95% Mode Mean SE 5% Median 95%

 � N 0.2355 0.4000 0.5645 0.2753 0.2964 0.0201 0.2623 0.2976 0.3271
� N -0.4935 0.0000 0.4935 -0.0000 -0.0001 0.2976 -0.4911 -0.0003 0.4878
�� G 0.4652 0.6146 0.7931 0.6090 0.6559 0.1024 0.4937 0.6525 0.8295

100(�¬1 ¬ 1)) G 0.1111 0.2368 0.4339 0.2335 0.2645 0.0907 0.1304 0.2563 0.4259
� N 1.5327 4.0000 6.4673 5.1223 5.3067 1.1751 3.3973 5.2952 7.2588
� N 0.8832 1.5000 2.1168 1.4438 1.5421 0.2238 1.2028 1.5300 1.9303
� B 0.5242 0.7068 0.8525 0.5250 0.6873 0.0629 0.5668 0.6965 0.7745
� B 0.3351 0.5000 0.6649 0.6400 0.5441 0.0545 0.4560 0.5430 0.6356
� N 0.7664 2.0000 3.2336 0.9592 1.2453 0.5283 0.4435 1.2086 2.1817
� B 0.3351 0.5000 0.6649 0.5150 0.5832 0.0628 0.4772 0.5845 0.6841
� B 0.2526 0.5000 0.7474 0.4756 0.5619 0.1284 0.3453 0.5644 0.7687
� B 0.2526 0.5000 0.7474 0.2083 0.2912 0.1105 0.1324 0.2789 0.4932
 B 0.2526 0.5000 0.7474 0.3518 0.4891 0.0585 0.3944 0.4885 0.5857
� N 1.0526 1.2500 1.4474 1.4191 1.4946 0.0734 1.3765 1.4930 1.6180
� N 1.0888 1.5000 1.9112 1.5055 1.7383 0.1887 1.4361 1.7327 2.0606
� B 0.5701 0.7595 0.8971 0.7611 0.7535 0.0325 0.6979 0.7552 0.8035
 N 0.0378 0.1200 0.2022 0.0564 0.0801 0.0302 0.0330 0.0787 0.1314
� N 0.0378 0.1200 0.2022 0.2250 0.1913 0.0305 0.1418 0.1909 0.2420
� N 0.2178 0.3000 0.3822 0.0395 0.0994 0.0183 0.0713 0.0984 0.1311

�1 N 0.1787 0.4932 0.7524 0.9302 0.9141 0.0348 0.8578 0.9137 0.9719
�1 N -0.2779 -0.0033 0.2907 -0.0088 0.0096 0.0239 -0.0366 0.0135 0.0399
�1 N -0.2820 -0.0025 0.2848 -0.2914 -0.2712 0.0521 -0.3588 -0.2702 -0.1876
�1 N -0.2886 -0.0049 0.2828 -0.0961 -0.0922 0.1051 -0.2675 -0.0899 0.0753
�1 N -0.2817 0.0021 0.2944 0.0222 -0.0142 0.1290 -0.2228 -0.0162 0.2012
�1 N -0.2768 -0.0006 0.2862 -0.0588 0.0074 0.1573 -0.2537 0.0096 0.2625
�1 N -0.2859 0.0016 0.3046 0.1247 0.0872 0.0995 -0.0767 0.0873 0.2513
�1 N -0.2828 0.0012 0.2923 0.0693 0.2099 0.1217 0.0385 0.1974 0.4282
�1 N 0.1942 0.4910 0.7528 0.6947 0.2397 0.2056 -0.0321 0.1961 0.6489
�1 N -0.2874 0.0048 0.3024 -0.1308 -0.1692 0.1635 -0.4602 -0.1550 0.0707
�1 N -0.2864 -0.0036 0.2867 -0.4177 -0.8591 0.4121 -1.5980 -0.8148 -0.2752
�1 N -0.2799 0.0076 0.3013 -0.5817 -1.2483 0.6686 -2.4081 -1.2064 -0.2460
�1 N -0.2786 -0.0013 0.2933 0.2720 0.7074 0.6548 -0.2060 0.6163 1.9356
�1 N -0.2873 -0.0018 0.3019 0.1370 0.4821 0.4196 -0.1093 0.4332 1.2362
�1 N -0.2914 -0.0008 0.2920 -0.1899 -0.1787 0.0394 -0.2445 -0.1779 -0.1155
�1 N -0.2791 0.0017 0.2847 -0.0630 -0.0196 0.0252 -0.0596 -0.0191 0.0187
�1 N 0.1996 0.4931 0.7622 0.7551 0.6769 0.0660 0.5686 0.6770 0.7846
�1 N -0.2826 0.0010 0.2724 0.4629 0.1924 0.1345 -0.0144 0.1843 0.4281
�1 N -0.2816 0.0036 0.2758 -0.0990 0.0240 0.1482 -0.2175 0.0228 0.2704
�1 N -0.2839 0.0016 0.2958 0.1392 0.1926 0.1760 -0.0969 0.1927 0.4808
�1 N -0.2794 -0.0026 0.2871 0.3713 0.1419 0.1190 -0.0489 0.1394 0.3405
�1 N -0.2904 -0.0039 0.2980 0.0595 0.0643 0.0280 0.0203 0.0632 0.1117
�1 N -0.2901 -0.0019 0.2762 -0.0385 -0.0324 0.0175 -0.0638 -0.0305 -0.0083
�1 N -0.2882 -0.0026 0.2836 -0.1085 -0.0779 0.0387 -0.1463 -0.0749 -0.0199
�1 N 0.1922 0.4911 0.7543 0.6312 0.6918 0.0575 0.5961 0.6928 0.7854
�1 N -0.2855 0.0030 0.2898 -0.1230 -0.0878 0.0964 -0.2495 -0.0852 0.0646
�1 N -0.2782 0.0022 0.2846 0.0318 0.0180 0.1008 -0.1424 0.0148 0.1882
�1 N -0.2901 0.0012 0.2830 0.0213 0.0756 0.0912 -0.0741 0.0781 0.2184



Prior Posterior
Dist 5% Median 95% Mode Mean SE 5% Median 95%

�1 N -0.2710 0.0030 0.2851 -0.0283 -0.0330 0.0174 -0.0624 -0.0327 -0.0052
�1 N -0.2781 0.0038 0.2789 -0.0810 -0.0335 0.0148 -0.0620 -0.0308 -0.0149
�1 N -0.2786 -0.0002 0.2843 0.0075 0.0192 0.0276 -0.0260 0.0190 0.0652
�1 N -0.2735 0.0015 0.2936 0.1007 0.1143 0.0438 0.0459 0.1126 0.1896
�1 N 0.2035 0.4908 0.7542 0.1292 0.1838 0.0771 0.0577 0.1832 0.3102
�1 N -0.2715 0.0017 0.2855 -0.0099 0.0011 0.0842 -0.1391 0.0017 0.1384
�1 N -0.2837 0.0003 0.2837 0.0423 -0.0052 0.0640 -0.1122 -0.0040 0.0976
�1 N -0.2843 -0.0005 0.2877 -0.0107 -0.0058 0.0058 -0.0157 -0.0056 0.0034
�1 N -0.2901 0.0049 0.2851 -0.0007 0.0014 0.0055 -0.0071 0.0012 0.0107
�1 N -0.2960 -0.0016 0.2891 -0.0273 -0.0036 0.0102 -0.0204 -0.0035 0.0126
�1 N -0.2846 -0.0007 0.2847 -0.0007 0.0072 0.0171 -0.0207 0.0078 0.0336
�1 N -0.2898 0.0014 0.2903 0.0253 0.0062 0.0399 -0.0570 0.0051 0.0735
�1 N 0.1988 0.4934 0.7435 0.8069 0.6629 0.0842 0.5205 0.6660 0.7962
�1 N -0.2785 0.0025 0.2842 -0.0243 -0.0082 0.0222 -0.0484 -0.0057 0.0235
�1 N -0.2686 -0.0004 0.2937 0.0099 0.0055 0.0083 -0.0083 0.0055 0.0191
�1 N -0.2822 -0.0018 0.2723 -0.0008 0.0029 0.0081 -0.0091 0.0027 0.0149
�1 N -0.2895 0.0008 0.2891 0.0124 0.0194 0.0132 -0.0003 0.0183 0.0429
�1 N -0.2707 0.0043 0.2966 -0.0247 -0.0024 0.0261 -0.0434 -0.0034 0.0427
�1 N -0.2839 -0.0002 0.2809 -0.0082 -0.0194 0.0544 -0.1077 -0.0193 0.0676
�1 N -0.2856 -0.0028 0.2851 0.0002 -0.0035 0.0532 -0.0854 -0.0061 0.0867
�1 N 0.1819 0.4911 0.7657 0.9735 0.9422 0.0331 0.8826 0.9481 0.9830

¬	 B 0.1718 0.5000 0.8282 0.5134 0.3397 0.1212 0.1422 0.3382 0.5421
¬	 B 0.1718 0.5000 0.8282 0.9665 0.6739 0.1094 0.4751 0.6877 0.8264

  IG2 0.0291 0.0823 0.3889 0.2431 0.2257 0.0284 0.1828 0.2235 0.2756
  IG2 0.0291 0.0823 0.3889 0.4768 5.1996 3.3725 0.6226 4.8122 11.5165
  IG2 0.0291 0.0823 0.3889 0.2563 0.2584 0.0310 0.2120 0.2562 0.3126
  IG2 0.0291 0.0823 0.3889 0.0582 0.0912 0.0334 0.0473 0.0854 0.1552
  IG2 0.0291 0.0823 0.3889 0.0497 0.0542 0.0066 0.0444 0.0537 0.0659
  IG2 0.0291 0.0823 0.3889 0.0296 0.0257 0.0052 0.0181 0.0252 0.0351
  IG2 0.0291 0.0823 0.3889 0.0855 0.0724 0.0132 0.0528 0.0712 0.0961



Table A.3. Variance Decompositions, Smets‐Wouters model, 5% and 95% in the posterior 
    Shock       

 
Variable 

Total 
productivity 

Risk 
premium 

Government 
spending 

Investment 
productivity

Monetary 
Policy 

Price 
markup 

Wage 
markup 

Panel A. Independent AR(1) disturbances         
1‐quarter ahead             
   Output  .004, .044  .234, .355  .397, .545  .072, .168  .043, .099  .016, .038 .000, .017
   Hours  .349, .491  .123, .210  .229, .326  .053, .120  .021, .058  .002, .011 .006, .028
   Real wage  .002, .029  .004, .049  .000, .001  .002, .013  .003, .030  .208, .341 .583, .756
   Inflation  .011, .051  .001, .012  .000, .003  .001, .023  .005, .033  .680, .907 .069, .222
2‐years ahead             
   Output  .109, .264  .047, .137  .121, .267  .107, .299  .051, .162  .054, .124 .069, .297
   Hours  .101, .226  .047, .144  .147, .269  .092, .229  .048, .145  .036, .093 .122, .403
   Real wage  .028, .231  .003, .046  .001, .002  .004, .107  .024, .099  .293, .389 .332, .624
   Inflation  .029, .083  .006, .026  .000, .007  .028, .065  .026, .091  .181, .544 .315, .557
8‐years ahead             
   Output  .111, .323  .013, .047  .066, .246  .034, .143  .014, .072  .017, .065 .315, .633
   Hours  .039, .103  .014, .055  .093, .279  .034, .121  .015, .069  .014, .049 .420, .752
   Real wage  .121, .590  .004, .027  .000, .002  .031, .164  .018, .087  .112, .323 .147, .520
   Inflation  .023, .079  .002, .022  .001, .010  .005, .064  .021, .083  .223, .435 .408, .674
Unconditional             
   Output  .048, .278  .005, .031  .051, .642  .012, .106  .005, .051  .006, .048 .201, .762
   Hours  .018, .088  .005, .035  .076, .674  .012, .096  .006, .048  .005, .035 .227, .828
   Real wage  .130, .708  .004, .024  .000, .005  .025, .157  .013, .084  .084, .306 .108, .512
   Inflation  .018, .081  .002, .018  .002, .014  .004, .062  .015, .076  .146, .405 .429, .786
 
Panel B. Dynamic VAR(1) disturbances 

       

1‐quarter ahead              
   Output  .000, .067  .355, .560  .259, .488  .003, .076  .001, .060  .021, .114 .005, .073
   Hours  .383, .547  .173, .303  .152, .275  .003, .050  .000, .031  .003, .041 .014, .075
   Real wage  .014, .101  .006, .093  .000, .026  .000, .016  .000, .032  .219, .440 .419, .695
   Inflation  .021, .104  .000, .067  .001, .062  .001, .074  .001, .086  .482, .790 .111, .308
2‐years ahead             
   Output  .035, .220  .082, .300  .093, .288  .017, .190  .002, .098  .028, .221 .173, .460
   Hours  .110, .323  .069, .342  .035, .136  .036, .289  .001, .074  .006, .144 .145, .487
   Real wage  .152, .458  .008, .090  .007, .182  .003, .116  .001, .125  .097, .404 .110, .477
   Inflation  .021, .120  .001, .130  .009, .170  .005, .180  .007, .182  .187, .426 .247, .528
8‐years ahead             
   Output  .098, .395  .023, .121  .143, .428  .027, .225  .001, .053  .008, .084 .110, .460
   Hours  .059, .250  .037, .254  .022, .154  .033, .263  .003, .099  .008, .120 .286, .671
   Real wage  .311, .590  .009, .126  .094, .323  .032, .243  .001, .050  .021, .156 .028, .162
   Inflation  .028, .142  .004, .124  .017, .194  .013, .184  .009, .173  .167, .377 .241, .523
Unconditional             
   Output  .189, .552  .010, .126  .162, .432  .030, .254  .001, .030  .002, .048 .022, .308
   Hours  .076, .391  .028, .225  .030, .250  .037, .252  .003, .085  .007, .103 .154, .636
   Real wage  .309, .607  .005, .134  .135, .398  .038, .264  .000, .028  .004, .071 .008, .125
   Inflation  .074, .431  .007, .116  .059, .321  .033, .203  .006, .116  .048, .267 .080, .436
               



Figure A.1. Median impulse response functions in the Smets‐Wouters model, with 
independent and correlated disturbances 
 

 
 
Variables: dY is output growth, dCo is consumption growth, dlo is investment, dWo is wage growth, Lo is 

hours, pio is inflation, and Ro is the nominal interest rate. 
Disturbances: total factor productivity (A), risk premium (B), government spending (G), investment‐

specific productivity (EI), nominal interest rates (ER), price markups (EP), wage markups (EW). 
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