
NBER WORKING PAPER SERIES

INTERVAL ESTIMATION OF POTENTIALLY MISSPECIFIED QUANTILE MODELS
IN THE PRESENCE OF MISSING DATA

Patrick Kline
Andres Santos

Working Paper 15716
http://www.nber.org/papers/w15716

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2010

We thank David Card, Justin McCrary, Hal White, and seminar participants at UC Berkeley for useful
comments and Ivan Fernandez-Val for assistance in replicating the results of Angrist, Chernozhukov,
and Fernandez-Val (2006). The views expressed herein are those of the authors and do not necessarily
reflect the views of the National Bureau of Economic Research.

© 2010 by Patrick Kline and Andres Santos. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Interval Estimation of Potentially Misspecified Quantile Models in the Presence of Missing
Data
Patrick Kline and Andres Santos
NBER Working Paper No. 15716
February 2010
JEL No. C01,C1,J3

ABSTRACT

This paper develops practical methods for relaxing the missing at random assumption when estimating
models of conditional quantiles with missing outcome data and discrete covariates. We restrict the degree
of non-ignorable selection governing the missingness process by imposing bounds on the Kolmogorov-
Smirnov (KS) distance between the distribution of outcomes among missing observations and the
overall (unselected) distribution. Two methods are developed for conducting inference in this environment.
The first allows us to perform finite sample inference on the identified set and is well suited to tests
of model specification. The second enables us to conduct inference on the parameters of potentially
misspecified models. To illustrate our techniques, we revisit the results of Angrist, Chernozhukov,
and Fernandez-Val (2006) regarding changes across Decennial Censuses in the quantile specific returns
to schooling.

Patrick Kline
Department of Economics
UC, Berkeley
508-1 Evans Hall #3880
Berkeley, CA 94720
and NBER
pkline@econ.berkeley.edu

Andres Santos
Department of Economics
UC San Diego
9500 Gilman Drive
La Jolla, CA 92093-0508
a2santos@ucsd.edu



1 Introduction

Despite major advances in the design and collection of survey and administrative data, missingness

remains a pervasive feature of virtually every modern economic dataset. Hirsch and Schumacher

(2004), for instance, find that nearly 30% of the earnings observations in the Outgoing Rotation

Groups of the Current Population Survey are imputed. Similar allocation rates are present in other

major earnings sources such as the March CPS and Decennial Census with the problem growing

worse in more recent years.

The dominant framework for dealing with missing data has been to assume that it is “missing

at random” (Rubin (1976)) or “ignorable” conditional on observable demographics; an assumption

whose popularity owes more to convenience than plausibility. Even in settings where it is reason-

able to believe that non-response is approximately ignorable, the extent of missingness in modern

economic data suggests that economists ought to assess the sensitivity of their conclusions to small

deviations from this assumption.

This paper develops practical methods for relaxing the missing at random (MAR) assumption

when estimating models of conditional quantiles with missing outcome data and discrete covariates.

Previous work on non-ignorable missing data processes has either relied upon parametric models

of missingness in conjunction with exclusion restrictions to obtain point identification (Greenless,

Reece, and Zieschang (1982) and Lillard, Smith, and Welch (1986)) or considered the worst case

bounds on population moments that result when all assumptions about the missingness process are

abandoned (Manski (1994, 2003)). Neither approach has garnered much popularity.1 It is typically

quite difficult to find variables that shift the probability of missingness but are uncorrelated with

population outcomes. And for most applied problems, the worst case bounds are overly conservative

in the sense that they consider missingness processes unlikely to be found in modern datasets.

We propose here an intermediate approach allowing the researcher to assess the sensitivity of

his or her conclusions regarding the conditional distribution of the data to modest deviations from

MAR of the sort likely to be found in a given economic dataset. In particular we consider the iden-

tifying power of restrictions on the Kolmogorov-Smirnov (KS) distance between the distribution of

outcomes among missing observations and the overall (unselected) distribution. The level of the

bound on the KS metric yields a natural parametrization of deviations from ignorability, with a

bound of zero corresponding to MAR and a bound of one yielding the totally unrestricted missing-

ness process considered in Manski (1994). The resulting identified set for the conditional quantile

1See DiNardo, McCrary, and Sanbonmatsu (2006) for an applied example comparing these two approaches.
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function (CQF) has a simple representation similar to the one obtained in Horowitz and Manski

(1995) for processes with contaminated data but known bound on the probability of contamination.

Our strategy of nonparametrically bounding deviations from MAR is similar in spirit to Lee

(2009) who imposes nonparametric restrictions on the missingness process designed for use with

experiments and to Blundell, Gosling, Ichimura, and Meghir (2007) who develop nonparametric

bounds on the distribution of offered wages implied by particular models of labor supply. Our ap-

proach is distinguished from these two in that we restrict an outcome of the selection process, which

is potentially observable with auxiliary validation data, rather than some feature of the selection

process itself, which in many cases is intrinsically unobservable without auxiliary model-based as-

sumptions.2 As such, our methods are strongly complementary with applied research documenting

the extent of nonrandom missingness in particular datasets through use of validation data (e.g.

David, Little, Samuhel, and Triest (1986), Grovers and Couper (1998), DiNardo, McCrary, and

Sanbonmatsu (2006)).

Two methods are developed for conducting inference on the identified set. The first technique,

which is useful for specification testing, satisfies the coverage requirement advocated in Imbens and

Manski (2004) in finite samples.3 The procedure operates by constructing finite sample confidence

intervals for population quantiles within each covariate bin and then exploiting conditional indepen-

dence across bins to obtain a confidence region for the entire identified set. This confidence region

can be employed to construct confidence intervals for parametric specifications. For example, if we

posit that the conditional quantile function is linear, a finite sample confidence interval is given

by all linear specifications that lie within the estimated bounds. Failure to find any such lines

represents a rejection of the linear specification.

Our second inferential procedure acknowledges the possibility that parametric models of condi-

tional quantiles may be misspecified. It is convenient in such cases to be able to cover parameters

that possess an interpretation as best parametric approximations to the true conditional quantile

function as in Chamberlain (1994) and Angrist, Chernozhukov, and Fernández-Val (2006). Follow-

2Lee (2009), for example, explores the identifying power of restricting the effect of a randomly assigned treatment

on outcome missingness to be one-sided – i.e. for treatment to either encourage or discourage nonresponse among

all sample members. In doing so he rules out the existence of a subpopulation of “defiers” who respond to treatment

in an opposite manner from the bulk of the population. This assumption, though perhaps quite appropriate for the

program he studies is not directly refutable.
3The identified set we study could be analyzed using results from the existing literature on moment inequalities;

see Chernozhukov, Hong, and Tamer (2007), Andrews and Soares (2007), Romano and Shaikh (2008) and references

therein. However, our focus on conditional quantiles allows us to conduct finite sample inference and hence avoid

the complications inherent in the asymptotic analysis of partially identified models.
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ing Horowitz and Manski (2006), Stoye (2007), and Ponomareva and Tamer (2009), we extend the

concept of “pseudo-true” approximating parameters White (1980, 1982) to a partially identified set-

ting. In particular, we characterize the set of parameter values constituting the best approximation

to some CQF in the identified set.

In the cases we consider, the pseudo-true conditional quantile is given by the projection of

the CQF onto the linear subspace spanned by the covariates. Hence, when point identification

of the CQF fails due to missingness, the identified set of pseudo true parameters consists of all

coefficients associated with the best approximation to a function that lies within the CQF bounds.

We obtain sharp bounds on the coordinates of the pseudo true parameter vector and show that

they have a representation as the solutions to a pair of linear programming problems.4 This result

suggests simple estimators for these bounds, which we show converge in distribution to a Gaussian

process indexed by the quantile of interest and the level of the KS restriction on the missingness

process. In addition, we establish the consistency of a weighted bootstrap for estimating the limiting

distribution of the process, which enables us to construct uniform confidence intervals. This latter

feature is particularly useful for sensitivity analysis as it enables researchers to determine a critical

level of the KS bound for which a given hypothesis cannot be rejected.

To empirically assess the likely magnitude of deviations from ignorability in actual data we

analyze a sample of workers from the 1973 Current Population Survey for which IRS earnings

records are available. This sample allows us to observe the IRS earnings of CPS participants who,

for one reason or another, failed to provide valid earnings information to the CPS. We show that

IRS earnings predict nonresponse to the CPS question within narrow demographic covariate bins,

with very high and very low earning individuals most likely to have invalid CPS earnings records.

Having rejected the MAR assumption, we develop a method of estimating the appropriate choice

of KS bounds on the earnings nonresponse process. We find the data are consistent with nearly

random earnings nonresponse within covariate bins, suggesting that a worst case bounds analysis

would be vastly over-conservative.

We then proceed to illustrate our inferential methods by revisiting the results of Angrist, Cher-

nozhukov, and Fernández-Val (2006) regarding changes across Decennial Censuses in the quantile

specific returns to schooling. Weekly earnings information is missing for roughly a quarter of the

observations in their study, suggesting the results may be sensitive to small deviations from ignor-

ability. We show that despite extensive missingness in the dependent variable, we are able to reject

the simple Mincerian model used for the conditional quantiles of log earnings.

4See Stoye (2007) for a similar conclusion for approximations to conditional expectations.
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Having rejected the Mincer specification as a literal description of the data generating process

we proceed to bound the pseudo-true quantile process governing returns to schooling. We conclude

that the well-documented increase in the returns to schooling between 1980 and 1990 is relatively

robust to deviations from the missing at random assumption. However, deterioration in the quality

of Decennial Census data renders conclusions regarding heterogeneity in returns and changes in the

returns function between 1990 and 2000 very sensitive to departures from ignorability.

The remainder of the paper is structured as follows: Section 2 characterizes the identified set for

the conditional quantile function under the KS bound and Section 3 develops methods for performing

finite sample inference on this set. Section 4 contains the results concerning pseudo-true parameters.

In Section 5 we present our empirical study and briefly conclude in Section 6.

2 Identified Set

We consider a triplet of random variables (Yi, Xi, Di) where Yi ∈ R, Xi ∈ Rl and Di ∈ {0, 1} is a

dummy variable that equals one if Yi is observable and zero otherwise. Denote the distribution of

Yi given Xi and the distribution of Yi given Xi and Di respectively as:

Fy|x(c) ≡ P (Yi ≤ c|Xi = x) Fy|d,x(c) ≡ P (Yi ≤ c|Di = d,Xi = x) , (1)

where d ∈ {0, 1} and further define the probability of Yi being observed conditional on Xi to be:

p(x) ≡ P (Di = 1|Xi = x) . (2)

It is well known that without additional assumptions Fy|x is not identified in the presence of

missing data, but can be restricted to lie in an identified set (see Manski (2003)). As a result, it is

still possible to derive potentially informative bounds on the conditional quantiles of Yi given Xi.

We explore the nature of these bounds under the following assumptions on (Yi, Xi, Di):

Assumption 2.1. (i) Xi ∈ Rl has finite support X ; (ii) Fy|d,x(c) is continuous and strictly increas-

ing at all c such that 0 < Fy|d,x(c) < 1; (iii) Di equals one if Yi is observable and zero otherwise.

The discrete support requirement in Assumption 2.1(i) allows us to perform finite sample in-

ference and to avoid the problem of bandwidth selection that accompanies most nonparametric

estimators. While this assumption may be restrictive in some environments, it is still widely ap-

plicable as illustrated in our study of quantile specific returns to education in Section 5. It is also

important to emphasize that Assumption 2.1(i) is not necessary for our identification results, but
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only for our discussion of inference. Assumption 2.1(ii) ensures that for any 0 < τ < 1, the τ th

conditional quantile of Yi given Xi, denoted cτ (x), is the unique number satisfying Fy|x(cτ (x)) = τ .

The identified set for cτ (x) has been studied under different assumptions on the missingness

process. Manski (1994), for example, derives the identified set that results from making no assump-

tions on Fy|0,x. He notes that since 0 ≤ Fy|0,x(cτ (x)) ≤ 1, the law of total probability implies that

cτ (x) must satisfy the inequalities:

Fy|1,x(cτ (x))× p(x) ≤ Fy|x(cτ (x)) ≤ Fy|1,x(cτ (x))× p(x) + {1− p(x)} . (3)

Under Assumption 2.1(ii), the identified set for cτ (x) is given by the set of functions that agree with

the observable implications of (3). We denote this identified set by:

Cτ = {θ : X → R : τ − {1− p(x)} ≤ Fy|1,x(θ(x))× p(x) ≤ τ} . (4)

In most cases, however, these worst case bounds will be too conservative, allowing for selection

mechanisms which, on prior grounds, are thought to be implausible. Few economists, for example,

worry that surveys are so poorly designed (or respondents so strategic) that all nonrespondents

have earnings above the conditional median of their demographic group.

For applied researchers interest usually centers on considering the effects of relatively mild

deviations from missingness at random. It is useful then to devise a metric for comparing selection

mechanisms in terms of the deviations they generate from ignorability. We propose use of the

following nonparametric metric: the Kolmogorov-Smirnov distance between the distribution of Yi

conditional on Xi, and the distribution of Yi conditional on Xi and Yi being missing. More precisely,

we examine the set of conclusions that may be drawn under the following additional assumption:

Assumption 2.2. supx∈X KS(Fy|x, Fy|0,x) ≤ k, where KS(Fy|x, Fy|0,x) ≡ supc∈R |Fy|x(c)−Fy|0,x(c)|.

Assumption 2.2 is satisfied by a nonparametric family of selection models that yield conditional

quantiles in the unselected population close to those in the overall population in a well-defined sense.

By imposing this restriction, we depart from the conventional econometric practice of first positing a

selection mechanism and then deriving its implications for observed data. For comparison with this

approach Appendix A provides a numerical example mapping the parameters of a bivariate normal

selection model into values of our KS distance bound k. Our methods are tailored to situations

in which little is known about the selection mechanism. If a researcher has prior knowledge of

features of the selection mechanism additional restrictions can, in principle, be incorporated into

the analysis. We leave such extensions for future work.
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Since cτ (x) is the conditional quantile of Yi given Xi, Assumption 2.2 implies that:

max{τ − k, 0} ≤ Fy|x,0(cτ (x)) ≤ min{τ + k, 1} , (5)

or equivalently, that cτ (x) must be between the max{τ − k, 0} and min{τ + k, 1} quantile of Yi

conditional on Xi and Yi being missing.5 Applying this relationship, it is possible to obtain a sharp

characterization of the identified set for cτ (x) under Assumptions 2.1(ii)-(iii) and 2.2.

Lemma 2.1. If Assumptions 2.1(ii)-(iii) and 2.2 hold, then the identified set for cτ (x) is:

Ckτ ≡ {θ : X → R : τ−min{τ+k, 1}×{1−p(x)} ≤ Fy|1,x(θ(x))×p(x) ≤ τ−max{τ−k, 0}×{1−p(x)}} .

As Lemma 2.1 shows, imposing bounds on the Kolmogorov-Smirnov distance between Fy|0,x and

Fy|x yields a simple parametrization for Ckτ as a function of k. The set Ckτ is increasing in k, with

identification occurring at k = 0 (the missing at random case), and k = 1 yielding the opposite

extreme with C1
τ = Cτ (the worst case bounds). By studying the set of conclusions that may be

reached under different choices of k, it is possible to analyze what degree of selection is necessary

to overturn conclusions obtained under a missing at random assumption.

We conclude the discussion of the identified set with an alternative representation of Ckτ .

Corollary 2.1. Suppose Assumptions 2.1(ii)-(iii), 2.2 hold and let F−y|1,x(q) = F−1
y|1,x(q) if 0 < q < 1,

F−y|1,x(q) = −∞ if q ≤ 0 and F−y|1,x(q) =∞ if q ≥ 1. If the bounds (ckτ,L(x), ckτ,U(x)) are given by:

ckτ,L(x) ≡ F−1,x

(τ −min{τ + k, 1}(1− p(x))

p(x)

)
ckτ,U(x) ≡ F−1,x

(τ −max{τ − k, 0}(1− p(x))

p(x)

)
,

then it follows that Ckτ = {θ : X → R : ckτ,L(x) ≤ θ(x) ≤ ckτ,U(x)}.

The characterization of Ckτ as the set of functions satisfying particular pointwise bounds provides

a simple geometric interpretation of the identified set. Both the representation of Ckτ obtained in

Lemma 2.1 and in Corollary 2.1 will prove useful when studying how to conduct inference.

3 CQF Inference

An appealing feature of quantiles is the ability to perform finite sample inference on them in the

presence of an i.i.d. sample; see Chernozhukov, Hansen, and Jansson (2009). In this section, we

5In a different context, this restriction has also been applied to copulas by Hoderlein and Stoye (2009).
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exploit this property to develop a simple computational procedure for conducting inference on Ckτ .

For a specified desired level of coverage 1− α, we construct a confidence collection Ĉkτ satisfying:

P (θ ∈ Ĉkτ |{Xi}ni=1) ≥ 1− α , (6)

for all functions θ in the identified set Ckτ . The coverage requirement in (6) was originally proposed

in Imbens and Manski (2004) and is weaker than the one in Chernozhukov, Hong, and Tamer (2007)

or Romano and Shaikh (2010), who explore methods for covering the entire identified set.

By Corollary 2.1, the identified set Ckτ may be characterized as the set of functions θ : X → R

that satisfy certain pointwise bounds on x ∈ X . These pointwise bounds determine intervals

[ckτ,L(x), ckτ,U(x)] which constitute the identified set for the τ th quantile of Yi conditional on Xi being

equal to x. For computational simplicity, we focus on confidence sets that are of the similar form:

Ĉkτ = {θ : X → R : ĉkτ,L(x) ≤ θ(x) ≤ ĉkτ,U(x) ∀x ∈ X} , (7)

for appropriate choices of ĉkτ,L(x) and ĉkτ,U(x). We construct these bounds so that (i) ĉkτ,L(x)

and ĉkτ,U(x) are independent of ĉkτ,L(x′) and ĉkτ,U(x′) conditional on {Xi}ni=1 for x 6= x′; and (ii)

[ĉkτ,L(x), ĉkτ,U(x)] provides coverage of the interval [ckτ,L(x), ckτ,U(x)] at a prespecified level 1 − αx as

in Imbens and Manski (2004). Due to independence, the coverage probability of Ĉkτ can in turn be

accurately controlled by the individual coverage probabilities 1− αx, thus ensuring (6) is satisfied.

3.1 The Bounds ĉkτ,L(x) and ĉkτ,U(x)

We aim to obtain pointwise bounds ĉkτ,L(x) and ĉkτ,U(x) such that for a specified level of coverage

1− αx and all values c with ckτ,L(x) ≤ c ≤ ckτ,U(x), it follows that:

P
(
ĉkτ,L(x) ≤ c ≤ ĉkτ,U(x) |{Xi}ni=1

)
≥ 1− αx . (8)

Bounds ĉkτ,L(x) and ĉkτ,U(x) satisfying (8) can be constructed exploiting the dual characterizations

of Ckτ obtained in Lemma 2.1 and Corollary 2.1. In particular, defining the parameter space:

Γkτ,x ≡ {(γ, ξ) ∈ [0, 1]2 : τ −min{τ + k, 1} × γ ≤ ξ ≤ τ −max{τ − k, 0} × γ and γ + ξ ≤ 1} , (9)

it follows that for any c ∈ R, the inequalities ckτ,L(x) ≤ c ≤ ckτ,U(x) are satisfied, if and only if

(1 − p(x), Fy|1,x(c)p(x)) ∈ Γkτ,x. Consequently, bounds ĉkτ,L(x) and ĉkτ,U(x) satisfying the coverage

requirement in (8) may be obtained through test inversion of the hypothesis:

H0 : (1− p(x), Fy|1,x(c)p(x)) ∈ Γkτ,x H1 : (1− p(x), Fy|1,x(c)p(x)) /∈ Γkτ,x . (10)
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In turn, because the hypothesis in (10) concerns conditional probabilities and Xi has finite support,

the distribution of test statistics conditional on {Xi}ni=1 can be readily simulated under the null

hypothesis in order to attain finite sample control of size, as required for satisfying (8).

A number of different test statistics may be employed in order to examine the hypothesis in

(10). For concreteness, we employ a standard Likelihood Ratio test and denote the relevant test

statistic by Tn,x(c). The following algorithm outlines how to obtain the bounds ĉτ,L(x) and ĉτ,U(x)

and we refer the reader to the appendix for computational details.

Step 1: Obtain the critical value r(αx) that delivers finite sample control in size by:

r(αx) ≡ {inf r : sup
(γ,ξ)∈Γkτ,x

Pγ,ξ (Tn,x(c) > r |{Xi}ni=1) ≤ αx} , (11)

where Pγ,ξ denotes the distribution of Tn,x(c) if (1−p(x), Fy|1,x(c)p(x)) = (γ, ξ). Since the constraint

set Γkτ,x does not depend on c, the critical value r(αx) does not depend on c either.

Step 2: Letting tn,x(c) denote the actual realization of Tn,x(c) in the sample, we obtain:

ĉkτ,L(x) ≡ {inf c : tn,x(c) ≤ r(αx)} ĉkτ,U(x) ≡ {sup c : tn,x(c) ≤ r(αx)} . (12)

The estimated bound ĉkτ,L(x)/ĉkτ,U(x) may potentially equal negative/positive infinity. In particular,

this will occur whenever tn,x(c) evaluated at c equal to the smallest/largest observation of Yi on the

set of the sample for which Xi = x, is smaller/larger than r(αx).

As the following Lemma shows, the resulting bounds ĉkτ,L(x) and ĉkτ,U(x) indeed satisfy (8).

Lemma 3.1. If {Yi, Xi, Di} are i.i.d. and Assumptions 2.1 and 2.2 hold, then it follows that:

P
(
ĉkτ,L(x) ≤ c ≤ ĉkτ,U(x)|{Xi}ni=1

)
≥ 1− αx ,

for all c ∈ R such that ckτ,L(x) ≤ c ≤ ckτ,U(x).

3.2 The Set Ĉkτ

The confidence collection Ĉkτ , as in (7), may be interpreted to be the joint confidence interval implied

by the product of the marginal confidence regions [ĉkτ,L(x), ĉkτ,U(x)] for the intervals [ckτ,L(x), ckτ,U(x)]

at each x ∈ X . However, since conditional on {Xi}ni=1 the estimated bounds ĉkτ,L(x) and ĉkτ,U(x)

are independent across x ∈ X , the coverage level of the joint confidence intervals can be accurately

controlled by that of the marginals. Indeed, as the following Lemma shows, the resulting Ĉkτ satisfies

the desired coverage requirement in (6) provided that the coverage requirement for each bound, as

in (8), is properly selected.
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Lemma 3.2. If {Yi, Di, Xi}ni=1 are i.i.d., Assumptions 2.1, 2.2 hold and Πx(1− αx) = 1− α, then:

inf
θ∈Ckτ

P (θ ∈ Ĉkτ |{Xi}ni=1) ≥ 1− α .

An appealing consequence of Ĉkτ being characterized by a set of pointwise bounds is the compu-

tational ease with which it enables us construct confidence intervals for parametric specifications of

cτ (x). For example, a standard model for cτ (x) is to assume linearity, so that:

cτ (x) = x′βτ (13)

for some βτ ∈ Rl. Under the assumption that (13) holds, the relevant identified set may be further

restricted to be the intersection of Ckτ with the set of linear functions. Often, of special interest in

this context is a particular coordinate of βτ or the conditional quantile evaluated at a particular

value of the covariates. Both these quantities may be expressed as λ′βτ for some known vector

λ ∈ Rl. The following Lemma characterizes the identified set for parameters of the form λ′βτ :

Lemma 3.3. Suppose Assumptions 2.1(ii)-(iii) and 2.2 hold, and in addition define:

φkτ,L ≡ inf
β∈Rl

λ′β s.t. ckτ,L(x) ≤ x′β ≤ ckτ,U(x) ∀x ∈ X (14)

φkτ,U ≡ sup
β∈Rl

λ′β s.t. ckτ,L(x) ≤ x′β ≤ ckτ,U(x) ∀x ∈ X (15)

The identified set for λ′β is then given by the interval [φkτ,L, φ
k
τ,U ].

While Lemma 3.3 establishes the identified set for λ′βτ is an interval with endpoints characterized

as the solution to linear programs, the structure of Ĉkτ enables us to obtain a confidence region for

λ′βτ employing immediate sample analogues. Specifically, defining:

φ̂kτ,L ≡ inf
β∈R

λ′β s.t. ĉkτ,L(x) ≤ x′β ≤ ĉkτ,U(x) ∀x ∈ X (16)

φ̂kτ,U ≡ sup
β∈R

λ′β s.t. ĉkτ,L(x) ≤ x′β ≤ ĉkτ,U(x) ∀x ∈ X (17)

we obtain a valid confidence region in [φ̂kτ,L, φ̂
k
τ,U ]. It is important to note that the optimization

problems in (16) and (17) may be infeasible. This implies there are no linear functions in Ĉkτ and

constitutes a rejection of the linear model. For moderate values of k, this is precisely the outcome

of our analysis of returns to schooling in Section 5.

The following Corollary establishes the coverage properties of the interval [φ̂kτ,L, φ̂
k
τ,U ].

Corollary 3.1. If {Yi, Xi, Di}ni=1 are i.i.d. and Assumptions 2.1-2.2 hold, then it follows that:

P (φ̂kτ,L ≤ φ ≤ φ̂kτ,U |{Xi}ni=1) ≥ 1− α

for any φ ∈ R such that φkτ,L ≤ φ ≤ φkτ,U and Ĉkτ is as in Lemma 3.2.
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4 Misspecification

Parametric models can serve as useful devices for summarizing complex multivariate relationships.

However, in practice, most parametric models are misspecified. In such situations the methods

developed in the previous section may yield misleading results. Figure 1 illustrates a case where

the nonparametric identified set for the conditional quantile function possesses an erratic (though

perhaps not unusual) shape. The set of linear CQFs obeying the bounds provide a poor description

of this set, covering only a small fraction of its area. Were the true CQF known to be linear this

reduction in the size of the identified set would be welcome, the benign result of imposing additional

identifying information. But in the absence of true prior information these reductions in the size of

the identified set are unwarranted – a phenomenon we term “identification by misspecification.”

Hence, the methods developed thus far confront the applied researcher with a difficult choice.

One can either conduct a fully nonparametric analysis of the identified set, which may be difficult to

interpret with many covariates, or work with a parametric set likely to overstate what is known about

the CQF. Under identification, this tension is often resolved by estimating parametric models that

possess an interpretation as best approximations to the true CQF and adjusting the corresponding

inferential methods accordingly as advocated in Angrist, Chernozhukov, and Fernández-Val (2006).

In this section we extend this approach to the present partially identified setting and develop

methods for estimating parametric models that acknowledge the possibility of misspecification.

Our strategy is to develop bounds on parametric approximations to the CQF rather than the

CQF itself and then to derive the corresponding sampling theory of those bounds. We focus on

linear parametric models and approximations that minimize a known quadratic loss function. For

S a known measure on X and ES[g(Xi)] denoting expectation of a function g(x) under S, we define

the pseudo true parameter to be:6

β∗τ ≡ arg min
β∈Rl

ES[(cτ (Xi)−X ′iβ)2] . (18)

Lack of identification of the conditional quantile function cτ (x) due to missing data implies lack

of identification of the pseudo true parameter β∗τ . We therefore consider the identified set of pseudo

true parameters to be the set of parameter values that constitute a best approximation to some

6An important task of the applied researcher is to specify the measure S which weights the squared deviations

in each x bin. This is an inherently context-specific task depending entirely upon the researcher’s objectives. In

Section 5 we weight the deviations by sample size which approximates the impact on an average sample member.

Other schemes (including equal weighting) may also be of interest in some settings.
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conditional quantile function in the identified set Ckτ :

Pkτ ≡ {β∗ ∈ Rl : β∗ = arg min
β∈Rl

ES[(θ(Xi)−X ′iβ)2] for some θ ∈ Ckτ } . (19)

Figure 2 illustrates an element of Pkτ graphically. While intuitively appealing, the definition of Pkτ is

not necessarily the most convenient for computational purposes. Fortunately, the choice of quadratic

loss and the characterization of Ckτ in Corollary 2.1 imply a tractable alternative representation for

Pkτ , which we obtain in the following Lemma.

Lemma 4.1. If Assumptions 2.1(ii)-(iii), 2.2 hold and ES[XiX
′
i] is invertible, then it follows that:

Pkτ = {β∗ ∈ Rl : β∗ = (ES[XiX
′
i])
−1ES[Xiθ(Xi)] s.t. ckτ,L(x) ≤ θ(x) ≤ ckτ,U(x) ∀x ∈ X} .

It follows from Lemma 4.1 that Pkτ is convex, a property that is not immediate from its definition

in (19). As in Section 3, we focus on studying the identified set for parameters of the form λ′β∗τ

for some known vector λ ∈ Rl. The analysis hence includes both coordinate values of β∗τ as well as

pseudo true quantiles evaluated at a particular choice of covariates as special cases. Using Lemma

4.1 it is possible to show that the identified set for parameters of the form λ′β∗τ is an interval with

endpoints characterized as the solution to linear programming problems (see Stoye (2007)).

Corollary 4.1. Suppose Assumptions 2.1(ii)-(iii), 2.2 hold, ES[XiX
′
i] is invertible and define:

πL(τ, k) ≡ inf
β∗∈Pkτ

λ′β∗ = inf
θ
λ′(ES[XiX

′
i])
−1ES[Xiθ(Xi)] s.t. ckτ,L(x) ≤ θ(x) ≤ ckτ,U(x) (20)

πU(τ, k) ≡ sup
β∗∈Pkτ

λ′β∗ = sup
θ
λ′(ES[XiX

′
i])
−1ES[Xiθ(Xi)] s.t. ckτ,L(x) ≤ θ(x) ≤ ckτ,U(x) . (21)

The identified set for λ′β∗τ is then given by the interval [πL(τ, k), πU(τ, k)].

It is worth pointing out that while the identified set Pkτ is a clear extension of the concept of a

pseudo-true parameter to a partially identified context, it is not necessarily the obvious one. Under

the assumption that the true conditional quantile function is linear, it is possible to further restrict

Ckτ by including only the linear functions that satisfy the pointwise bounds of Corollary 2.1. As a

result, letting (a)+ ≡ max{0, a}, we may characterize the identified set under the assumption of

linearity as the set of zeroes to the criterion function:

ES[(ckτ,L(Xi)−X ′iβ)2
+ + (X ′iβ − ckτ,U(Xi))

2
+] . (22)

Under identification pseudo-true parameters are often characterized as the minimizers of a cri-

terion function with minimum equal to zero under proper specification, but positive minimum

12



otherwise. Hence, while we study Pkτ , we could have alternatively defined the relevant set of pseudo

true parameters to be the set of minimizers of (22), denoted by:

Akτ ≡ {β∗ ∈ Rl : β∗ ∈ arg min
β∈Rl

ES[(ckτ,L(Xi)−X ′iβ)2
+ + (X ′iβ − ckτ,U(Xi))

2
+]} . (23)

If the model is identified, then both definitions agree and Pkτ = Akτ . However, important differences

arise when the model is partially identified. The set Akτ may be alternatively expressed as:

Akτ = {β∗ ∈ Rl : β∗ ∈ arg min
β∈Rl
{min
θ∈Ckτ

ES[(θ(Xi)−X ′iβ)2]}} . (24)

Therefore, the elements of Akτ are those that minimize the distance between Ckτ and the set of linear

functions, while Pkτ consists of all linear models that minimize distance to some conditional quantile

function in Ckτ . Because interest in applied work is in the best approximation to the true conditional

function, which may not be in Akτ but is guaranteed to be in Pkτ , we develop inferential procedures

for Pkτ rather than Akτ . See Ponomareva and Tamer (2009) for an excellent discussion of this issue

in the context of estimating conditional expectations with interval valued dependent variables.

4.1 Bounds Estimation

In what follows we study the asymptotic properties of estimators for πL(τ, k) and πU(τ, k) as in (20)

and (21). To enable inference on the entire quantile process, we examine the asymptotic distribution

of these estimators uniformly in both quantile τ and KS bound k.

For particular choices of τ and k, the bounds on the conditional quantile function may be infinite

in turn leading to an unbounded identified set for the pseudo true parameter. We focus our analysis

on choices of τ and k for which the bounds πL(τ, k) and πU(τ, k) are in fact finite. For this reason,

we restrict our analysis to values of τ and k that belong to the set:

B ≡ {(τ, k) ∈ [0, 1]2 : min{τ+k, 1}×{1−p(x)}+ε ≤ τ ≤ p(x)+max{τ−k, 0}×{1−p(x)}−ε ∀x ∈ X}

for some ε satisfying 0 < 2ε < infx∈X p(x). Provided that the conditional probability of missing is

bounded away from one, the set B is nonempty since it contains the MAR analysis as the special case

k = 0. In general, however, the set B imposes that large or small values of τ must be accompanied

by small values of k. This simply reflects that the fruitful study of quantiles close to one or zero

requires stronger assumptions on the nature of the selection process than the study of, for example,

the conditional median.

We introduce the following additional assumption in order to develop our asymptotic theory:

13



Assumption 4.1. (i) B 6= ∅; (ii) Fy|1,x(c) has a continuous bounded derivative fy|1,x(c); (iii)

fy|1,x(c) has a continuous bounded derivative f ′y|1,x(x); (iv) ES[XiX
′
i] is invertible; (v) fy|1,x(c) is

bounded away from zero uniformly on all c satisfying ε ≤ Fy|1,x(c)p(x) ≤ p(x)− ε ∀x ∈ X .

For any (τ, k), it is possible to construct a confidence interval for πL(τ, k) and πU(τ, k) by

employing the confidence region Ĉkτ . However, Corollary 4.1 implies the bounds πL(τ, k) and πU(τ, k)

are linear combinations of ckτ,L(x) and ckτ,U(x) evaluated at different x ∈ X . An inferential procedure

that requires correct inference on all bounds ckτ,L(x) and ckτ,U(x), as Ĉkτ provides, will therefore prove

conservative relative to a procedure that focuses directly on the desired linear combinations. For

this reason, our strategy for estimating the bounds πL(τ, k) and πU(τ, k) instead consists of first

obtaining estimates c̆kτ,L(x) and c̆kτ,U(x) of the conditional quantile bounds and then employing them

in place of ckτ,L(x) and ckτ,U(x) in the linear programming problems given in (20) and (21). We study

the estimation of the conditional quantile bounds ckτ,L(x) and ckτ,U(x) in the context of a general

M-estimation problem characterized by the family of population criterion functions:

Qx(c|τ, b) ≡ (P (Yi ≤ c,Xi = x,Di = 1) + bP (Di = 0, Xi = x)− τP (Xi = x))2 . (25)

At points (τ, k) ∈ B, the bounds ckτ,L(x) and ckτ,U(x) can be expressed as the unique minimizers of

Qx(c|τ, b) for a specific choice of parameters (τ, b). In particular, it follows from Lemma 2.1 that:

ckτ,L(x) = arg min
c∈R

Qx(c|τ,min{τ + k, 1}) ckτ,U(x) = arg min
c∈R

Qx(c|τ,max{τ − k, 0}) , (26)

and hence there exists a direct relationship between the bounds ckτ,L(x) and ckτ,U(x) as indexed by

(τ, k) and the minimizers of the criterion function Qx(c|τ, b) as indexed by (τ, b).

We therefore employ the sample analogue to Qx(c|τ, b) for estimation, which we denote by:

Qx,n(c|τ, b) ≡
( 1

n

n∑
i=1

{1{Yi ≤ c,Xi = x,Di = 1}+ b1{Di = 0, Xi = x} − τ1{Xi = x}}
)2

. (27)

Exploiting (26), the extremum estimators for the bounds ckτ,L(x) and ckτ,U(x) are then given by:

c̆kτ,L(x) ∈ arg min
c∈R

Qx,n(c|τ,min{τ + k, 1}) c̆kτ,U(x) ∈ arg min
c∈R

Qx,n(c|τ,max{τ − k, 0}) . (28)

By studying the criterion function Qx,n(c|τ, b) as a stochastic process indexed by (τ, b) it is possible

to derive the asymptotic behavior of the estimators c̆kτ,L(x) and c̆kτ,U(x) uniformly in the parameters

(τ, k) ∈ B. However, since our primary focus is on the estimation of πL(τ, k) and πU(τ, k), we

relegate this intermediate result to the appendix.
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Employing c̆kτ,L(x), c̆kτ,U(x) we can in turn obtain estimates of πL(τ, k), πU(τ, k) through the

sample analogues to the linear programming problems given in (20) and (21):

π̂L(τ, k) ≡ inf
θ
λ′(ES[XiX

′
i])
−1ES[Xiθ(Xi)] s.t. c̆kτ,L(x) ≤ θ(x) ≤ c̆kτ,U(x) (29)

π̂U(τ, k) ≡ sup
θ
λ′(ES[XiX

′
i])
−1ES[Xiθ(Xi)] s.t. c̆kτ,L(x) ≤ θ(x) ≤ c̆kτ,U(x) . (30)

Under assumptions 2.1, 2.2 and 4.1, the uniform asymptotic behavior of c̆kτ,L(x) and c̆kτ,U(x) is

inherited by π̂L(τ, k) and π̂U(τ, k). The following theorem establishes this point by obtaining the

asymptotic distribution of these estimators uniformly both in τ and k.

Theorem 4.1. If Assumptions 2.1, 2.2, 4.1 hold and {Yi, Xi, Di}ni=1 is an i.i.d. sample, then:

√
n
( π̂L(τ, k)− πL(τ, k)

π̂U(τ, k)− πU(τ, k)

)
L−→ G(τ, k) , (31)

where G(τ, k) is a gaussian process on L∞(B)× L∞(B).

4.2 Inference

For every fixed k, the functions πL(τ, k) and πU(τ, k) constitute the lower and upper envelopes for

the identified set of the pseudo-true quantile process λ′β∗τ under a KS bound of k. In this section,

we employ Theorem 4.1 to devise an inferential procedure for the set of functions that lie between

these envelopes, which we denote by:

G ≡ {g : B → R : πL(τ, k) ≤ g(τ, k) ≤ πU(τ, k) for all (τ, k) ∈ B} . (32)

It is important to note that while πL(τ, k) and πU(τ, k) are themselves in the identified set for

the pseudo-true quantile process λ′β∗τ for all k, not all functions in G are. For example, under our

assumptions λ′β∗τ must be continuous in τ and hence functions in G that are discontinuous in τ do

not belong in the identified set for the pseudo-true quantile process λ′β∗τ . However, the set G does

have the favorable properties of (i) containing the true identified set so that processes not in G are

also known not to be in the identified set; (ii) sharpness of the lower and upper envelopes πL(τ, k)

and πU(τ, k); (iii) ease of analysis and graphical representation. We leave the development and

analysis of sharp bounds on the identified set for pseudo-true quantile processes to future work.7

7To the best of our knowledge, the only work studying inference on identified sets in function spaces is in the

nonparametric instrumental variables literature, where the structure of the problem implies simple characterizations

of the identified set (Santos (2007a,b)).

15



A natural way to construct a confidence region for G is by “extending” π̂L(τ, k) and π̂U(τ, k) by

an appropriate amount. We hence consider confidence regions that are of the general form:

Ĝ(ω, r) ≡ {g : B → R : π̂L(τ, k)− r√
n
ωL(τ, k) ≤ g(τ, k) ≤ π̂U(τ, k) +

r√
n
ωU(τ, k) ∀(τ, k) ∈ B} ,

where ωL(τ, k) and ωU(τ, k) are positive weight functions which we assume are known for the present

discussion but allow to be estimated in the next section. These weight functions enable us to adjust

for settings in which the estimators π̂L(τ, k) and π̂U(τ, k) have very different asymptotic variances

at different points (τ, k).8

The constant r needs to be selected so that Ĝ(ω, r) satisfies the coverage requirement advocated

in Imbens and Manski (2004), namely that:

lim inf
n→∞

P (g ∈ Ĝ(ω, r)) ≥ 1− α (33)

for all functions g ∈ G and desired level of confidence 1 − α. In the following lemma, we exploit

Theorem 4.1 to characterize the appropriate choices of r that ensure (33) is satisfied:

Lemma 4.2. Let Assumptions 2.1, 2.2, 4.1 hold and suppose ωL(τ, k) and ωU(τ, k) are both positive,

continuous and bounded away from zero on (τ, k) ∈ B. For G(τ, k) as in (31) define:

Z ≡ sup
(τ,k)∈B

max
{G(1)(τ, k)

ωL(τ, k)
,−G

(2)(τ, k)

ωU(τ, k)

}
, (34)

where G(i)(τ, k) denotes the ith coordinate of G(τ, k). If {Yi, Xi, Di}ni=1 is i.i.d. and r1−α is the 1−α

quantile of Z, then it follows that (33) is satisfied if and only if r ≥ r1−α.

By Lemma 4.2, the smallest choice of r for which the coverage requirement in (33) is satisfied

is the 1 − α quantile of Z, as defined in (34). Interestingly, this choice of r also ensures that

with asymptotic probability 1− α the entire set G is included in the confidence collection Ĝ(ω, r).

Therefore, for the type of confidence collections we consider, the coverage requirement in Imbens

and Manski (2004) is equivalent to the one proposed in Chernozhukov, Hong, and Tamer (2007).

While in parametric models the former coverage requirement is weaker than the latter, in the present

nonparametric context the set G is so rich that the only way in which (33) can be satisfied is if in

fact Ĝ(ω, r) covers G in its entirety. We formalize these conclusions in the following corollary.

Corollary 4.2. Let Assumptions 2.1, 2.2, 4.1 hold, ωL(τ, k) and ωU(τ, k) be both positive, contin-

uous and bounded away from zero on (τ, k) ∈ B. Then Ĝ(ω, r) satisfies (33) if and only if:

lim inf
n→∞

P (G ⊆ Ĝ(ω, r)) ≥ 1− α . (35)

8Appropriate choices of ωL(τ, k) and ωU (τ, k) are context specific. Setting them equal to the asymptotic standard

deviation of
√
n(π̂L(τ, k) − πL(τ, k)) and

√
n(π̂U (τ, k) − πU (τ, k)) respectively stabilizes the variance across points,

but at the cost of wider intervals around points (τ, k) with high variance (relative to equal weighting).
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4.3 Bootstrap Critical Values

The construction of the proposed confidence interval Ĝ(ω, r) is of course infeasible in the absence

of suitable estimators for the critical value r1−α and weight functions ωL(τ, k) and ωU(τ, k). In the

present section we conclude our discussion on inference by establishing the validity of a bootstrap

procedure for the consistent estimation of r1−α. The choice of weight functions ωL(τ, k) and ωU(τ, k)

is context specific and in some instances they may even be known hence voiding the need for esti-

mation. For this reason, we do not focus on deriving estimators for ωL(τ, k) and ω(τ, k) and instead

we establish the consistency of a bootstrap procedure under the following high level assumption:

Assumption 4.2. (i) ωL(τ, k) ≥ 0 and ωU(τ, k) ≥ 0 are continuous and bounded away from zero

on B; (ii) There exist estimators ω̂L(τ, k) and ω̂U(τ, k) that are uniformly consistent on B.

The resampling method we examine is the weighted bootstrap, which has been previously em-

ployed in semiparametric M-estimation by Ma and Kosorok (2005) and in conditional moment

models by Chen and Pouzo (2008). This procedure is similar to the regular bootstrap except for

the important difference that the random weights on different observations are independent from

each other. Specifically, let {Wi}ni=1 be an i.i.d. sample from a random variable Wi satisfying:

Assumption 4.3. Wi is positive a.s., independent of (Yi, Xi, Di) and E[Wi] = V ar(Wi) = 1.

The weighted bootstrap estimator for r1−α can then be obtained through the following algorithm:

Step 1: For a generated random sample of weights {Wi}ni=1, define the criterion function:

Q̃x,n(c|τ, b) ≡
( 1

n

n∑
i=1

Wi{1{Yi ≤ c,Xi = x,Di = 1}+ b1{Di = 0, Xi = x} − τ1{Xi = x}}
)2

, (36)

which may in turn be employed to obtain the following bootstrap estimators for ckτ,L(x) and ckτ,L(x):

c̃kτ,L(x) ∈ arg min
c∈R

Q̃x,n(c|τ,min{τ + k, 1}) c̃kτ,U(x) ∈ arg min
c∈R

Q̃x,n(c|τ,max{τ − k, 0}) . (37)

Note that if we were to employ the conventional bootstrap, then we would run the risk of redrawing

a sample for which no observations existed with Xi = x. This is not a concern under the weighted-

bootstrap for which c̃kτ,L(x) and c̃kτ,L(x) are necessarily well defined.

Step 2: Using the bootstrap bounds c̃kτ,L(x) and c̃kτ,U(x) from Step 1, obtain the estimators:

π̃L(τ, k) ≡ inf
θ
λ′(ES[XiX

′
i])
−1ES[Xiθ(Xi)] s.t. c̃kτ,L(x) ≤ θ(x) ≤ c̃kτ,U(x) (38)

π̃U(τ, k) ≡ sup
θ
λ′(ES[XiX

′
i])
−1ES[Xiθ(Xi)] s.t. c̃kτ,L(x) ≤ θ(x) ≤ c̃kτ,U(x) . (39)
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The weighted bootstrap statistic for the random variable Z, as defined in (34), is then given by:

Z̃ ≡ sup
(τ,k)∈B

max
{√n(π̃L(τ, k)− π̂L(τ, k))

ω̂L(τ, k)
,

√
n(π̂U(τ, k)− π̃U(τ, k))

ω̂U(τ, k)

}
. (40)

Our estimator for r1−α is the 1− α quantile of Z̃ conditional on the sample {Yi, Xi, Di}ni=1:9

r̃1−α ≡ inf
{
r : P

(
Z̃ ≥ r

∣∣∣{Yi, Xi, Di}ni=1

)
≥ 1− α

}
. (41)

Notice that the random variable Z̃ is a function of {Yi, Xi, Di}ni=1 as well as {Wi}ni=1. Hence, the

randomness in r̃1−α is a result of the weights {Wi}ni=1 which are not part of the conditioning.

In applications, r̃1−α can be computed through simulations in the same manner as for the regular

bootstrap. For this purpose, a random number generator can be employed to obtain samples {Wi}ni=1

satisfying Assumption 4.3; for example by generating exponentially distributed random variables

with mean one. These samples of random weights {Wi}ni=1 can in turn be used to compute a sample

of realizations Z̃ conditional on {Yi, Xi, Di}ni=1 by following Steps 1 and 2. Provided the number

of simulations is sufficiently large, the estimator r̃1−α is then well approximated by the empirical

1− α quantile of Z̃ across the computed simulations.

As Theorem 4.2 shows, the estimated critical value r̃1−α is indeed consistent for r1−α.

Theorem 4.2. If Assumptions 2.1, 2.2, 4.1, 4.2, and 4.3 hold and {Yi, Xi, Di,Wi}ni=1 is i.i.d., then:

r̃1−α
p→ r1−α .

Given the consistency of r̃1−α, established in Theorem 4.2, and of (ω̂L(τ, k), ω̂U(τ, k)), imposed

in Assumption 4.2, it is straightforward to show that the direct “plug-in” analogue to G(ω, r1−α)

provides the desired coverage. Corollary 4.3 establishes this result.

Corollary 4.3. If Assumptions 2.1, 2.2, 4.1, 4.2, and 4.3 hold and {Yi, Xi, Di,Wi}ni=1 is i.i.d:

lim inf
n→∞

P (g ∈ Ĝ(ω̂, r̃1−α)) ≥ 1− α ,

for all g ∈ G, where ω̂ denotes the function ω̂(τ, k) ≡ (ω̂L(τ, k), ω̂U(τ, k)).

5 Application

To illustrate our techniques we revisit the results of Angrist, Chernozhukov, and Fernández-Val

(2006) regarding changes across Decennial Censuses in the quantile specific returns to schooling.

9The assumptions imposed on π̃L(τ, k) and π̃U (τ, k) are not sufficient for implying that Z̃ is a measurable function

of {Wi}ni=1 for fixed {Yi, Xi, Di}ni=1. The conditional probability in (41) should be interpreted as an outer probability.
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Before doing so, it is useful to empirically assess the likely magnitude of any deviations from ignor-

able non-response present in similar earnings data in order to inform our choice of k in Assumption

2.2. To that end we begin by examining missingness patterns in the 1973 Exact Match CPS-SSA

Earnings File which provides IRS based measures of wage and salary earnings for March CPS re-

spondents with valid Social Security numbers. These data allow us to examine whether IRS earnings

predict missingness of CPS earnings within covariate bins.10

5.1 Analysis of 1973 CPS-SSA File

In this section we demonstrate how to measure deviations from ignorability using our nonparametric

KS metric when validation data are available. We work with an extract from the 1973 CPS of black

and white men between the ages of 25 and 50 with six or more years of schooling who reported

working at least one week in the past year and had valid IRS earnings. To deal with outliers in

the IRS data we drop observations with earnings less than 200 or greater than 7500 dollars per

week worked. Roughly eight percent of the remaining sample have missing (allocated) CPS based

earnings. Like Angrist, Chernozhukov, and Fernández-Val (2006) we take the relevant covariates

to be age, years of schooling, and race. Hence our first question is whether conditional on these

covariates the data are missing at random.

Table 1: Conditional Fixed Effects Logit Estimates of Missingness in 1973 CPS-SSA sample

log(IRS annual earnings/weeks worked) -3.34

(0.86)

(log(IRS annual earnings/weeks worked))2 0.23

(0.06)

Log-Likelihood -3,247.66

X 2(2) 15.22

Number of observations 12,556

Note: Robust Standard Errors in Parentheses

Table 1 presents estimates from a conditional fixed effects logit where all interactions of the

demographic covariates have been absorbed as fixed effects and the response probability is modeled

as a quadratic in log IRS earned income per week worked (robust standard errors in parenthesis).

Evidently, missingness follows a U-shaped response pattern with very low and very high wage men

10We focus on IRS earnings rather than Social Security earnings because the latter are severely topcoded.
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least likely to provide valid earnings information. This pattern is consistent with the one conjectured

in Lillard, Smith, and Welch (1986).

These parametric estimates of the missingness process can be used to construct estimates of

the KS distance bound k in Assumption 2.2 given some additional results which we briefly develop

here. In the present context we take Fy|x(c) and Fy|0,x(c) to represent the CDF of IRS based

earnings in demographic cell x and the conditional CDF among men with imputed CPS earnings in

demographic cell x respectively. The bound k is then given by the maximum across demographic

cells x of KS(Fy|x, Fy|0,x).

In order to exploit the parametric structure of our logit model in estimating k, we introduce an

alternative representation of KS(Fy|x, Fy|0,x) as a reweighted inverse quantile:11

KS(Fy|x, Fy|0,x) = sup
c∈R

∣∣∣ ∫ c

−∞
w(y, x)dF (y|Xi = x)

∣∣∣ , (42)

where w(y, x) = 1 − P (Di = 0|Yi = y,Xi = x)/(1 − p(x)). A byproduct of our conditional logit

procedure then is an estimate ŵ(y, x) of the weight function w(y, x). The representation in (42)

suggests these weights can be used to form an estimate of KS(Fy|x, Fy|0,x) as follows:

K̂S(Fy|x, Fy|0,x) ≡ max
c∈Cn

∣∣∣ 1

nx

n∑
i=1

1{Yi ≤ c,Xi = x}ŵ(Yi, x)
∣∣∣ , (43)

where nx ≡
∑

i 1{Xi = x} and Cn is a finite set of points in R that expands with n.12 In practice

we choose Cn to consist of all deciles between 0.1 and 0.9 along with the 0.05 and 0.95 quantiles in

order to obtain an estimate of the KS distance in each covariate bin.

To parsimoniously summarize the heterogeneity across bins, we model the cell specific KS dis-

tances (and their corresponding estimates) as:

KS(Fy|x, Fy|0,x) = exp(W ′
xγ0) K̂S(Fy|x, Fy|0,x) = exp(W ′

xγ0) + ηx (44)

where Wx is a vector of six cell level attributes and an intercept and ηx is a random estimation

error that vanishes as the number of observations per covariate bin grows large.13 We estimate the

above model via weighted nonlinear least squares with weights proportional to cell size. The fit of

the model is quite good with a weighted R2 of .995.

Letting W be the set of possible realizations of cell specific covariates Wx, the specification in

(44) implies that the KS bound k is equal to the maximum over Wx ∈ W of exp(W ′
xγ0). Hence, a

11See Lemma 6.7 in the Appendix for a derivation of this equality.
12See Lemma 6.8 in the Appendix for a proof of the consistency of K̂S(Fy|x, Fy|0,x).
13The attributes are: years of schooling, years of schooling squared, age, age squared, potential experience, and

potential experience squared.
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natural estimator of k is given by:

k̂ ≡ sup
Wx∈W

exp(W ′
xγ̂) , (45)

where γ̂ is some estimator of γ0 that is consistent as the number of demographic cells |X | (the cardi-

nality of X ) grows large. In order to conduct inference on k, we derive the asymptotic distribution

of k̂ under the null of correct model specification and the high level requirement that the estimator

γ̂ be asymptotically normally distributed.

Lemma 5.1. Suppose (44) and (45) hold, (i) W is finite and (ii)
√
|X |(γ̂ − γ0)

L−→ N(0,Σ) for

some positive definite Σ. If W0 = {Wx ∈ W : k = exp(W ′
xγ0)}, then it follows that:

√
|X |(k̂ − k)

L−→ k × max
Wx∈W0

W ′
xZ ,

where Z is a normal random variable with mean zero and covariance matrix Σ.

SinceW0 is a subset ofW , the asymptotic distribution of
√
|X |(k̂−k) is first order stochastically

dominated by the distribution of the random variable

V ≡ k × max
Wx∈W

W ′
xZ , (46)

where Z ∼ N(0,Σ) for Σ the covariance matrix in Lemma 5.1. Hence, for c1−α the 1− α quantile

of V , an asymptotically valid one sided confidence interval for k is given by [k̂ − c1−α/
√
|X |,∞).

We estimate c1−α via a two-step procedure. First, we use our weighted nonlinear least squares

estimate γ̂ to form an estimate of k̂ via (45) which we use in place of k in (46). We then em-

ploy a parametric bootstrap procedure, simulating from a normal distribution with mean zero and

covariance matrix Σ̂ to generate draws of maxWW
′
xZ, where Σ̂ is the standard estimate for the

asymptotic variance of the NLLS estimate. We take the empirical 1− α quantile of this simulated

distribution scaled by k̂ as our estimate of c1−α.

Implementing these steps, our NLLS based point estimate of k̂ is 0.065 and our bootstrap

procedure yields a confidence interval with a lower bound value for k of 0.056. Though the CPS

earnings data are clearly not missing at random, the deviations from ignorability are relatively

minor, suggesting that a worst case bounds analysis would be extremely conservative. Though this

conclusion only applies to item nonresponse in the 1973 CPS among men with valid social security

numbers, we suspect deviations from MAR of similar magnitude are likely to be present in other

settings as well. Additional validation data are necessary to more fully resolve this issue.
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5.2 Analysis of Census Data

We turn now to a re-analysis of the 1980, 1990, and 2000 Census samples considered in Angrist,

Chernozhukov, and Fernández-Val (2006).14 To simplify our estimation routine, and to correct small

mistakes found in the IPUMS files since the time of their study, we use new extracts of the 1%

unweighted IPUMS files for each decade rather than their original mix of weighted and unweighted

samples. Sample sizes and imputation rates for the weekly earnings variable are given in Table 2.

Table 2: Fraction of Observations in Census Estimation Sample with Missing Weekly Earnings

Census Year Number of Observations Fraction Missing

1980 80,800 19.53%

1990 111,356 23.10%

2000 131,711 27.70%

Overall 323,867 23.67%

Like Angrist, Chernozhukov, and Fernández-Val (2006), we estimate linear conditional quantile

models for log earnings per week of the form:

cτ (x) = X ′iγτ + Eiβτ . (47)

where Xi consists of an intercept, a black dummy, and a quadratic in potential experience, and Ei

represents years of schooling. Our analysis focuses on the quantile specific “returns” to a year of

schooling βτ .
15

Figure 3 provides estimates of the pseudo-true returns functions in 1980, 1990, and 2000 that

result from assuming the data are missing at random. Uniform confidence regions for these estimates

were constructed by applying the methods of Section 4 subject to the restriction that k=0.16 As

in Section 4, our loss metric is chosen to be squared error and we weight bin-specific deviations by

sample size (i.e. we choose S equal to empirical measure).

Our results are comparable to those found in Figure 2A of Angrist, Chernozhukov, and Fernández-

14The sample consists of native born black and white men ages 40-49 with six or more years of schooling who

worked at least one week in the past year. Rather than dropping observations with allocated earnings we treat them

as missing. We also drop 25 observations falling in demographic cells with greater than 66% missing.
15Particularly in the context of quantile regressions, the Mincerian earnings coefficients need not map into any

proper economic concept of returns (Heckman, Lochner, and Todd, 2005).
16In constructing uniform confidence intervals we use a quantile specific weighting function of the form ω(τ) =

φ(Φ−1(τ))1/2, where φ(.) and Φ(.) are the standard normal density and CDF respectively. This can be shown to be

inversely proportional to the square root of the variance of the quantiles of a standard normal.
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Val (2006).17 They suggest that the returns function increased uniformly across quantiles between

1980 and 1990 but exhibited a change in slope in 2000. The change between 1980 and 1990 is

consistent with a wide array of other evidence on changes in the wage structure (Juhn, Murphy,

and Pierce (1993); Autor and Katz (1999); Autor, Katz, and Kearney (2008); Lemieux (2006a)).

However, to our knowledge, the finding of a shape change in the quantile process between 1990 and

2000 is new, representing a form of heteroscedasticity in the conditional earnings distribution with

respect to schooling that appears not to have been present in previous decades.18

A natural concern, however, is the extent to which some or all of these estimated changes in

the wage structure are driven by limitations in the quality of Census earnings data. As Table 2

shows the prevalence of earnings imputations increases steadily over the sample period with roughly

a quarter of the observations allocated by 2000. Without restrictions on the missingness process

quantiles below the 25th percentile and above the 75th are not even bounded. Our question then is

how robust the patterns found in Figure 3 are to plausible deviations from the missing at random

assumption.

We begin by using our finite sample likelihood ratio procedure described in Section 3 to construct

a confidence interval for the βτ at each τ . Figure 4 plots intervals providing pointwise coverage of the

quantile process with the relatively conservative value of k = 0.10. For most values of τ the interval

is empty meaning the model has been rejected. Only at extreme quantiles do we get nondegenerate

intervals. This rejection is remarkable given the degree of missing data present in these samples

and our relatively lax restriction on the selection process.19

Though the Mincer specification is easily rejected as a literal description of the conditional

quantile function, it may still serve as a useful means of summarizing patterns in the data. Hence

we now turn to constructing intervals covering the pseudo-true approximating values of βτ . Figures

5 shows the intervals that result with a value of k = 0.05 which we consider reasonable given our

earlier analysis of the CPS.

Though the returns function clearly increased between 1980 and 1990, we cannot reject the null

hypothesis that the quantile process was unchanged from 1990 to 2000. Moreover, there is little

17They are not identical because of revisions to the IPUMS files used by Angrist, Chernozhukov, and Fernández-

Val (2006) that occured since the time of their analysis and our different choice of loss function for determining the

pseudo true approximation.
18Lemieux (2006b) finds a similar pattern though his focus is on the nonlinearity of the conditional quantile function

with respect to education rather than the implied heteroscedasticity.
19Our findings are in line with the conclusion of Heckman, Lochner, and Todd (2006) that the separability restric-

tions implicit in the Mincer model are easily rejected for the case of the conditional expectation function.
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evidence of heterogeneity across quantiles in the returns in any of the three Census samples – a

straight line can be fit through each sample’s confidence region. To assess the sensitivity of our

conclusion that the process changed between 1980 and 1990 to further deviations from MAR we

searched for the smallest value of k such that the intervals for these two decades overlap at all

quantiles between 0.1 and 0.9. This occurs at k = 0.135 which is a fairly large deviation from MAR

(see Appendix A). The resulting confidence regions for this critical value of the KS restriction are

plotted in Figure 6.

Finally, we show the results of estimating the more flexible earnings model of Lemieux (2006b)

which allows for quadratic effects of education on earnings quantiles.20 Figure 7 provides bounds

on the 10th, 50th, and 90th conditional quantiles of weekly earnings by schooling level in 1980,

1990, and 2000 using our baseline KS restriction of k = 0.05. Little evidence exists of a change

across Censuses in the real earnings of workers at the 10th conditional quantile. At the conditional

median, however, the returns to schooling (which appear roughly linear) increased substantially,

leading to an increase in inequality across schooling categories. Uneducated workers witnessed

wage losses while skilled workers experienced wage gains, though in both cases these changes seem

to have occurred entirely during the 1980s. Finally, as noted by Lemieux (2006b) the returns to

schooling appear to have convexified at the upper tail of the weekly earnings distribution with very

well educated workers experiencing substantial gains relative to the less educated.

6 Conclusion

We have proposed a nonparametric restriction on the degree of non-ignorable selection governing

non-response and developed inferential procedures for parametric quantile models subject to this

restriction and the possibility of misspecification. Our examination of missingness patterns in

merged CPS-SSA data led us to reject the MAR assumption but to conclude that the degree of

non-random selection in earnings data is likely small. Revisiting the empirical analysis in Angrist,

Chernozhukov, and Fernández-Val (2006) we found that the well-documented increase in the returns

to schooling between 1980 and 1990 is relatively robust to alternative assumptions on the missing

process, but that conclusions regarding heterogeneity in returns and changes in the returns function

between 1990 and 2000 are very sensitive to departures from ignorability.

20The model also includes a quartic in potential experience. Our results differ substantively from those of Lemieux

both because of differences in sample selection and our focus on weekly (rather than hourly) earnings.
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Appendix A - The bivariate normal selection model and KS distance

To develop intuition for our nonparametric KS metric of deviations from missing at random, we

provide here a mapping between some values of a standard bivariate selection model and the implied

KS distance. Using the notation of Section 2, our DGP of interest is:

(Yi, vi) ∼ N(0,
(

1 ρ
ρ 1

)
) Di = 1{µ+ vi > 0} . (48)

In this model, the parameter ρ indexes the degree of non-ignorable selection in the outcome variable

Yi. We choose µ to ensure a missing fraction of 25% which is approximately the degree of missingness

found in our analysis of earnings data in the US Census. We computed the KS distance between

the distribution of missing outcomes and the unselected distribution for various values of ρ by

simulation. The results are given in the following table:

Table 3: KS(Fy, Fy|0) as a function of ρ

ρ KS ρ KS ρ KS

0.05 0.0261 0.35 0.1815 0.65 0.3554

0.10 0.0515 0.40 0.2085 0.70 0.3887

0.15 0.0771 0.45 0.2363 0.75 0.4239

0.20 0.1028 0.50 0.2648 0.80 0.4621

0.25 0.1287 0.55 0.2939 0.85 0.5043

0.30 0.1548 0.60 0.3239 0.90 0.5529

Appendix B - Computing ĉkτ,L(x) and ĉkτ,U(x)

In this Appendix we discuss the details of the inference procedure outlined in Section 3.1. For notational

convenience, define the variables:

Vx,i ≡ 1{Di = 0, Xi = x} Wx,i(c) ≡ 1{Yi ≤ c, Di = 1, Xi = x} . (49)

Letting γx ≡ 1 − p(x), ξx(c) ≡ Fy|1,x(c)p(x) it then follows that the log-likelihood of the subsample of

{Vx,i,Wx,i}ni=1 for which Xi = x, conditional on {Xi}ni=1 and (γx, ξx(c)) = (γ, ξ), is given by:

Ln,x(γ, ξ) ≡ log γ ×
n∑
i=1

Vx,i + log ξ ×
n∑
i=1

Wx,i(c) + log(1− γ − ξ)×
n∑
i=1

(1{Xi = x} − Vx,i −Wx,i(c)) . (50)

Therefore, the relevant likelihood ratio test statistic for the hypothesis in (10) is given by:

Tn,x(c) ≡ sup
(γ,ξ)

Ln,x(γ, ξ)− sup
(γ,ξ)∈Γkτ,x

Ln,x(γ, ξ) , (51)
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for Γkτ,x as defined in (9). Also let nx ≡
∑

i 1{Xi = x}, V̄x = 1
nx

∑
i Vx,i, W̄x(c) ≡ 1

nx

∑
iWx,i(c) and

B1 ≡ −(V̄x + W̄x(c))(τ − k)(1− τ)− τ(1− τ + k)(1− W̄x(c))

B2 ≡ −(V̄x + W̄x(c))(τ + k)(1− τ)− τ(1− τ − k)(1− W̄x(c)) .

Furthermore, letting (γ̂cx, ξ̂
c
x) be the maximizers of Ln,x(γ, ξ) on Γkτ,x, it is possible to show that:

γ̂cx =
−B1−

√
B2

1−4τ(τ−k)(1−τ+k)(1−τ)V̄x
2(τ−k)(1−τ+k) if τ − k > 0 and W̄x(c) > τ − (τ − k)V̄x

γ̂cx = (1−τ)V̄x
1−W̄x(c)

if τ − k ≤ 0 and W̄x(c) > τ

γ̂cx = V̄x if τ −min{τ + k, 1}V̄x ≤ W̄x(c) ≤ τ −max{τ − k, 0}V̄x
γ̂cx = τV̄x

V̄x+W̄x(c)
if τ + k ≥ 1 and W̄x(c) < τ − V̄x

γ̂cx =
−B2−

√
B2

2−4τ(τ+k)(1−τ−k)(1−τ)V̄x
2(τ+k)(1−τ−k) if τ + k < 1 and W̄x(c) < τ − (τ + k)V̄x ,

(52)

while the closed form solution for ξ̂cx is in turn given by:

ξ̂cx = τ −max{τ − k, 0}γ̂cx if W̄x(c) > τ −max{τ − k, 0}V̄x
ξ̂cx = W̄x(c) if τ −min{τ + k, 1}V̄x ≤ W̄x(c) ≤ τ −max{τ − k, 0}V̄x
ξ̂cx = τ −min{τ + k, 1}γ̂cx if W̄x(c) < τ −min{τ + k, 1}V̄x .

(53)

Since the unconstrained maximizers of Ln,x(γ, ξ), denoted (γ̂ux , ξ̂
u
x), are given by (γ̂ux , ξ̂

u
x) = (V̄x, W̄x(c)), it

is straightforward to compute a closed form solution for Tn,x(c) from (51), (52) and (53).

In order to compute r(αx) as in (11), let qγ,ξ(1 − αx) denote the 1 − αx quantile of Tn,x(c) when

(γx, ξx(c)) = (γ, ξ), and observe that through direct manipulations:

r(αx) = {inf r : sup
(γ,ξ)∈Γkτ,x

{1− Pγ,ξ(Tn,x(c) ≤ r|{Xi}ni=1)} ≤ αx}

= {inf r : inf
(γ,ξ)∈Γkτ,x

Pγ,ξ(Tn,x(c) ≤ r|{Xi}ni=1) ≥ 1− αx}

= sup
(γ,ξ)∈Γkτ,x

qγ,ξ(1− αx) . (54)

However, for every fixed (γ, ξ) ∈ Γkτ,x, qγ,ξ(1−αx) may be computed either analytically or by simulation by

exploiting the closed form solution for Tn,x(c) and noting that the random variable (
∑

i Vx,i,
∑

iWx,i(c))

is multinomially distributed with parameters (γ, ξ,
∑

i 1{Xi = x}). In our application in Section 5, we

computed qγ,ξ(1− αx) through simulation and obtained r(αx) by numerically maximizing qγ,ξ(1− αx) on

Γkx,τ . Having found r(αx), it is then possible to compute ĉkτ,L(x) and ĉkτ,U (x) from (12).

Appendix C - Proof of Results

Proof of Lemma 2.1: If θ(x) = cτ (x), then it immediately follows from Assumption 2.2 that:

τ = Fy|1,x(θ(x))× p(x) + Fy|0,x(θ(x))× {1− p(x)}

≤ Fy|1,x(θ(x))× p(x) + min{Fy|x(θ(x)) + k, 1} × {1− p(x)}

= Fy|1,x(θ(x))× p(x) + min{τ + k, 1} × {1− p(x)} . (55)
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By identical manipulations, it follows that Fy|1,x(θ(x))× p(x) ≤ τ −max{τ − k, 0}× {1− p(x)} and hence

we conclude θ ∈ Ckτ . To prove the bounds are sharp, first observe that:

sup
x∈X

KS(Fy|x, Fy|0,x) = sup
x∈X

sup
c∈R
|Fy|0,x(c)× {1− p(x)}+ Fy|1,x(c)× p(x)− Fy|0,x(c)|

= sup
x∈X

sup
c∈R
|Fy|0,x(c)− Fy|1,x(c)| × p(x) . (56)

Therefore, we obtain from (56) that Assumption 2.2 is satisfied if and only if:

sup
x∈X
{KS(Fy|1,x, Fy|0,x)× p(x)} ≤ k . (57)

Next, let θ ∈ Ckτ and define the function κ : X → R by:

κ(x) ≡
τ − Fy|1,x(θ(x))× p(x)

1− p(x)
. (58)

Further observe that by virtue of θ ∈ Ckτ , the following two inequalities hold uniformly in x ∈ X :

max{τ − k, 0} ≤ κ(x) ≤ min{τ + k, 1} |κ(x)− Fy|1,x(θ(x))| ≤ k

p(x)
. (59)

We now aim to construct a distribution for Yi conditional on Xi and Yi being missing such that all

assumptions are met and in addition θ(x) is the conditional quantile of Yi given Xi. Define:

F̃+
y|0,x(c) ≡1{c ≥ θ(x)} ×max{Fy|1,x(c), min{1

2
(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x), 1}}

+ 1{c < θ(x)} ×max{Fy|1,x(c), 2(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x)}

F̃−y|0,x(c) ≡1{c ≥ θ(x)} ×min{Fy|1,x(c), 2(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x)}

+ 1{c < θ(x)} ×min{Fy|1,x(c), max{1

2
(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x), 0}} (60)

and let the distribution of Yi conditional on Xi and Yi being unobservable be given by:

F̃y|0,x(c) ≡ 1{κ(x) ≥ Fy|1,x(θ(x))} × F̃+
y|0,x(c) + 1{κ(x) < Fy|1,x(θ(x))} × F̃−y|1,x(c) . (61)

Note that F̃y|0,x(c) is strictly increasing and continuous for all c such that 0 < Fy|0,x(c) < 1 by virtue

of Fy|1,x(c) being strictly increasing and continuous. Since F̃y|0,x is bounded between zero and one, we

conclude it is a properly defined cdf. Denoting F̃y|x(c) = Fy|1,x(c)×p(x)+ F̃y|0,x(c)×{1−p(x)}, we obtain:

F̃y|x(θ(x)) = Fy|1,x(θ(x))×p(x)+F̃y|0,x(θ(x))×{1−p(x)} = Fy|1,x(θ(x))×p(x)+κ(x)×{1−p(x)} = τ , (62)

so that θ(x) is the conditional τ th quantile of Yi given Xi. In addition, by construction and (59) we have:

sup
c∈R
|F̃y|0,x(c)− Fy|1,x(c)| = |F̃y|0,x(θ(x))− Fy|1,x(θ(x))| ≤ k

p(x)
, (63)

uniformly in x ∈ X . Therefore, from (57) and (63) it follows that KS(F̃y|x, F̃y|0,x) ≤ k for all x ∈ X , and

hence F̃y|x and F̃y|0,x satisfy Assumptions 2.1 and 2.2 and are such that θ(x) = cτ (x). We hence conclude

the bounds are sharp and the Lemma follows.
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Proof of Corollary 2.1: Follows immediately form Lemma 2.1 and the definition of F−y|1,x(q).

Proof of Lemma 3.1: As in Appendix B, let (γx, ξx(c)) ≡ (1 − p(x), Fy|1,x(c)p(x)) and note that since

c /∈ [ĉkτ,L(x), ĉkτ,U (x)] implies Tn,x(c) > r(αx), it follows that for any c such that ckτ,L(x) ≤ c ≤ ckτ,U (x):

Pγx,ξx(c) (c /∈ [ĉτ,L(x), ĉτ,U (x)]|{Xi}ni=1) ≤ Pγx,ξx(c) (Tn,x(c) > r(αx)|{Xi}ni=1)

≤ sup
(γ,ξ)∈Γkx

Pγ,ξ (Tn,x(c) > r(αx)|{Xi}ni=1)

≤ αx (64)

where the second inequality follows by c ∈ [ckτ,L(x), ckτ,U (x)] if and only if (γx, ξx(c)) ∈ Γkx and the final

inequality follows by definition of r(αx).

Proof of Lemma 3.2: As in Appendix B, let (γx, ξx(c)) ≡ (1− p(x), Fy|1,x(c)p(x)). Since θ ∈ Ckτ if and

only if ckτ,L(x) ≤ θ(x) ≤ ckτ,U (x) for all x ∈ X , it follows that:

P
(
θ ∈ Ĉkτ |{Xi}ni=1

)
= P

(
ĉkτ,L(x) ≤ θ(x) ≤ ĉkτ,U (x) ∀x ∈ X |{Xi}ni=1

)
=
∏
x∈X

P
(
ĉkτ,L(x) ≤ θ(x) ≤ ĉkτ,U (x)|{Xi}ni=1

)
≥
∏
x∈X

(1− αx) (65)

where for the second equality we have used that (ĉkτ,L(x), ĉkτ,U (x)) are independent across x ∈ X conditional

on {Xi}ni=1, and the inequality follows from Lemma 3.1. The claim of the Lemma is then implied by (65)

and
∏
x∈X (1− αx) = 1− α by hypothesis.

Proof of Lemma 3.3: Observe that f ∈ R belongs to the identified set for λ′βτ if and only if there exists

a β ∈ Rl such that λ′β = f and ckτ,L(x) ≤ x′β ≤ ckτ,U (x) for all x ∈ X . It follows that the identified set is

convex, and therefore an interval in R. All that remains is to determine the lower and upper ends of the

interval, which are by construction given by φkτ,L and φkτ,U respectively.

Proof of Corollary 3.1: By Lemma 3.3, it follows that f ∈ [φkτ,L, φ
k
τ,L] if and only if there exists a

β̃τ ∈ Ckτ such that λ′β̃τ = f . Hence, by Lemma 3.2, we are then able to conclude:

1− α ≤ P (x′β̃τ ∈ Ĉkτ |{Xi}ni=1)

≤ P (φ̂kτ,L ≤ f ≤ φ̂kτ,L |{Xi}ni=1) , (66)

where the second inequality follows by definition of φ̂kτ,L and φ̂kτ,U .

Proof of Lemma 4.1: For any θ ∈ Ckτ , the first order condition of the norm minimization problem yields

β∗τ = (ES [XiX
′
i])
−1ES [Xiθ(Xi)]. The Lemma then follows from Corollary 2.1.

Proof of Corollary 4.1: Since Pkτ is convex by Lemma 4.1, it follows that the identified set for λ′β∗τ

is a convex set in R and hence an interval. The fact that πL(τ, k) and πU (τ, k) are the endpoints of such

interval follows directly from Lemma 4.1.
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Lemma 6.1. Let Assumption 2.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1 and E[W 2
i ] <∞

and positive almost surely. If {Yi, Xi, Di,Wi} is an i.i.d. sample, then the following class is Donsker:

M≡ {mc : mc(y, x, d, w) ≡ w1{y ≤ c, d = 1, x = x0} − P (Yi ≤ c, Di = 1, Xi = x0), c ∈ R} .

Proof: For any 1 > ε > 0, by Assumption 2.1(ii) there is an increasing sequence {y0, . . . , yd 4
ε
e} such that

for {[yj−1, yj ]}
d 8
ε
e

i=1 partitions R and for any 1 ≤ j ≤ d8
ε e we have Fy|1,x(yj)− Fy|1,x(yj−1) < ε/4. Let

lj(y, x, d, w) ≡ w1{y ≤ yj−1, d = 1, x = x0} − P (Yi ≤ yj , Di = 1, Xi = x0) (67)

uj(y, x, d, w) ≡ w1{y ≤ yj , d = 1, x = x0} − P (Yi ≤ yj−1, Di = 1, Xi = x0) (68)

and notice the brackets {[lj , uj ]}
d 8
ε
e

j=1 form a partition of the class Mc (since w ∈ R+). In addition, note:

E[(uj(Yi, Xi, Di,Wi)− lj(Yi, Xi, Di,Wi))
2]

≤ 2E[W 2
i 1{yj−1 ≤ Yi ≤ yj , Di = 1, Xi = x0}] + 2P 2(yj−1 ≤ Yi ≤ yj , Di = 1, Xi = x0)

≤ 4E[W 2
i ]× (Fy|1,x(yj)− Fy|1,x(yj−1)) , (69)

and hence each bracket has norm bounded by
√
E[W 2

i ]ε. Therefore, N[ ](ε,M, ‖ · ‖L2) ≤ 16E[W 2
i ]/ε2, and

the Lemma follows by Theorem 2.5.6 in van der Vaart and Wellner (1996).

Lemma 6.2. Let Assumption 2.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞ and

positive almost surely. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1− p(x)}+ ε ≤ τ ≤ p(x) + b{1− p(x)} − ε ∀x ∈ X}

for some ε satisfying 0 < 2ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (70)

Then s0(τ, b, x) is bounded in (τ, b, x) ∈ S × X and if {Yi, Xi, Di,Wi} is i.i.d. then for some M > 0:

P
(

sup
x∈X

sup
(τ,b)∈S

|ŝ0(τ, b, x)| > M
)

= o(1) .

Proof: First note that Assumption 2.1(ii) implies s0(τ, b, x) is uniquely defined, while ŝ0(τ, b, x) may be

one of multiple minimizers. By Assumption 2.1(ii) and the definition of S, it follows that the equality:

P (Yi ≤ s0(τ, b, x), Di = 1|Xi = x) = τ − bP (Di = 0|Xi = x) (71)

implicitly defines s0(τ, b, x). Let s̄(x) and s(x) be the unique numbers satisfying Fy|1,x(s̄(x))×p(x) = p(x)−ε

and Fy|1,x(s(x))×p(x) = ε. By result (71) and the definition of the set S we then obtain that for all x ∈ X :

−∞ < s(x) ≤ inf
(τ,b)∈S

s0(τ, b, x) ≤ sup
(τ,b)∈S

s0(τ, b, x) ≤ s̄(x) < +∞ . (72)

Hence, we conclude that sup(τ,b)∈S |s0(τ, b, x)| = O(1) and the first claim follows by X being finite.
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In order to establish the second claim of the Lemma, we define the functions:

Rx(τ, b) ≡ bP (Di = 0, Xi = x)− τP (Xi = x) (73)

Rx,n(τ, b) ≡ 1

n

n∑
i=1

Wi(b1{Di = 0, Xi = x} − τ1{Xi = x}) (74)

as well as the maximizers and minimizers of Rx,n(τ, b) on the set S, which we denote by:

(τn(x), bn(x)) ∈ arg max
(τ,b)∈S

Rx,n(τ, b) (τ̄n(x), b̄n(x)) ∈ arg min
(τ,b)∈S

Rx,n(τ, b) . (75)

Also denote the set of maximizers and minimizers of Q̃x,n(c|τ, b) at these particular choices of (τ, b) by:

Sn(x) ≡
{
sn(x) ∈ R : sn(x) ∈ arg min

c∈R
Q̃x,n(c|τn(x), bn(x))

}
(76)

S̄n(x) ≡
{
s̄n(x) ∈ R : s̄n(x) ∈ arg min

c∈R
Q̃x,n(c|τ̄n(x), b̄n(x))

}
(77)

From the definition of Q̃x,n(c|τ, b), we then obtain from (75), (76) and (77) that for all x ∈ X :

inf
sn(x)∈Sn(x)

sn(x) ≤ inf
(τ,b)∈S

ŝ0(τ, b, x) ≤ sup
(τ,b)∈S

ŝ0(τ, b, x) ≤ sup
s̄n(x)∈S̄n(x)

s̄n(x) . (78)

We establish the second claim of the Lemma, by exploiting (78) and showing that for some 0 < M <∞:

P
(

inf
sn(x)∈Sn(x)

sn(x) < −M
)

= o(1) P
(

sup
s̄n(x)∈S̄n(x)

s̄n(x) > M
)

= o(1) . (79)

To prove that infsn(x)∈Sn(x) sn(x) is larger than −M with probability tending to one, note that:

|Rx,n(τn(x), bn(x)) + εP (Xi = x)| = |Rx,n(τn(x), bn(x))− max
(τ,b)∈S

Rx(τ, b)| = op(1) , (80)

where the second equality follows from the Theorem of the Maximum and the continuous mapping theorem.

Therefore, using the equality a2 − b2 = (a− b)(a+ b), result (80) and Lemma 6.1, it follows that:

sup
c∈R
|Q̃x,n(c|τn(x), bn(x))− (Fy|1,x(c)p(x)− ε)2P 2(Xi = x)| = op(1) . (81)

Fix δ > 0 and note that since Fy|1,x(s(x))p(x) = ε and ε/p(x) < 1, Assumption 2.1(ii) implies that:

η ≡ inf
|c−s(x)|>δ

(Fy|1,x(c)p(x)− ε)2 > 0 . (82)

Therefore, it follows from direct manipulations and the definition of Sn(x) in (76) and of s(x) that:

P
(
| inf
sn(x)∈Sn(x)

sn(x)− s(x)| > δ
)
≤ P

(
inf

|c−s(x)|>δ
Q̃x,n(c|τn(x), bn(x)) ≤ Q̃x,n(s(x)|τn(x), bn(x))

)
≤ P

(
η ≤ sup

c∈R
2|Q̃x,n(c|τn(x), bn(x))− (Fy|1,x(c)p(x)− ε)2P 2(Xi = x)|

)
.

We hence conclude from (81) that infsn(x)∈Sn(x) sn(x)
p→ s(x), which together with (72) implies that

infsn(x)∈Sn(x) sn(x) is larger than −M with probability tending to one for some M > 0. By similar

arguments it can be shown that sups̄n(x)∈S̄n(x) s̄n(x)
p→ s̄(x) which together with (72) establishes (79). The

second claim of the Lemma then follows from (78), (79) and X being finite.
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Lemma 6.3. Let Assumption 2.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞ and

positive almost surely. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1− p(x)}+ ε ≤ τ ≤ p(x) + b{1− p(x)} − ε ∀x ∈ X}

for some ε satisfying 0 < 2ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (83)

If {Yi, Xi, Di,Wi} is an i.i.d. sample, then supx∈X sup(τ,b)∈S |ŝ0(τ, b, x)− s0(τ, b, x)| = op(1).

Proof: First define the criterion functions M : L∞(S × X )→ R and Mn : L∞(S × X )→ R by:

M(θ) ≡ sup
x∈X

sup
(τ,b)∈S

Qx(θ(τ, b, x)|τ, b) Mn(θ) ≡ sup
x∈X

sup
(τ,b)∈S

Q̃x,n(θ(τ, b, x)|τ, b) . (84)

For notational convenience, let s0 ≡ s0(·, ·, ·) and ŝ0 ≡ ŝ0(·, ·, ·). By Lemma 6.2, s0 ∈ L∞(S × X ) while

with probability tending to one ŝ0 ∈ L∞(S ×X ). Hence, (83) implies that with probability tending to one:

ŝ0 ∈ arg min
θ∈L∞(S×X )

Mn(θ) s0 = arg min
θ∈L∞(S×X )

M(θ) . (85)

By Assumption 2.1(ii) and (71), Qx(c|τ, b) is strictly convex in a neighborhood of s0(τ, b, x). Furthermore,

since by (71) and the implicit function theorem s0(τ, b, x) is continuous in (τ, b) ∈ S for every x ∈ X :

inf
‖θ−s0‖∞≥δ

M(θ) ≥ inf
x∈X

inf
(τ,b)∈S

inf
|c−s0(τ,b,x)|≥δ

Qx(c|τ, b)

= inf
x∈X

inf
(τ,b)∈S

min{Qx(s0(τ, b, x)− δ|τ, b), Qx(s0(τ, b, x) + δ|τ, b) > 0 , (86)

where the final inequality follows by compactness of S which together with continuity of s0(τ, b, x) implies

the inner infimum is attained, while the outer infimum is trivially attained due to X being finite. Since

(86) holds for any δ > 0, s0 is a well separated minimum of M(θ) in L∞(S × X ). Next define:

Gx,i(c) ≡Wi1{Yi ≤ c,Di = 1, Xi = x} (87)

and observe that compactness of S, a regular law of large numbers, Lemma 6.1 and finiteness of X yields:

sup
x∈X

sup
(τ,b)∈S

sup
c∈R
| 1
n

n∑
i=1

Gx,i(c) +Rx,n(τ, b)− E[Gx,i(c)]−Rx(τ, b)|

≤ sup
x∈X

sup
c∈R
| 1
n

n∑
i=1

Gx,i(c)− E[Gx,i(c)]|+ sup
x∈X

sup
(τ,b)∈S

|Rx,n(τ, b)−Rx(τ, b)| = op(1) , (88)

where Rx(τ, b) and Rx,n(τ, b) are as in (73) and (74) respectively. Hence, using (88), the equality a2− b2 =

(a− b)(a+ b) and Qx(c|τ, b) uniformly bounded in (c, τ, b) ∈ R×S due to the compactness of S, we obtain:

sup
θ∈L∞(S×X )

|Mn(θ)−M(θ)| ≤ sup
θ∈L∞(S×X )

sup
x∈X

sup
(τ,b)∈S

|Q̃x,n(θ(τ, b, x)|τ, b)−Qx(θ(τ, b, x)|τ, b)|

≤ sup
x∈X

sup
(τ,b)∈S

sup
c∈R
|Q̃x,n(c|τ, b)−Qx(c|τ, b)| = op(1) . (89)

The claim of the Lemma then follows from results (85), (86) and (89) together with Corollary 3.2.3 in

van der Vaart and Wellner (1996).
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Lemma 6.4. Let Assumptions 2.1, 4.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞

and positive a.s. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1 − p(x)} + ε ≤ τ ≤ p(x) + b{1 − p(x)} − ε ∀x ∈ X} for

some ε satisfying 0 < 2ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (90)

For Gx,i(c) ≡Wi1{Yi ≤ c,Di = 1, Xi = x} and Rx,n(τ, b) as defined in (74), denote the criterion function:

Q̃sx,n(c|τ, b) ≡
( 1

n

n∑
i=1

{E[Gx,i(c)−Gx,i(s0(τ, b, x))] +Gx,i(s0(τ, b, x))}+Rx,n(τ, b)
)2

. (91)

If {Yi, Xi, Di,Wi} is an i.i.d. sample, it then follows that:

sup
x∈X

sup
(τ,b)∈S

∣∣∣dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

∣∣∣ = op(n
− 1

2 ) . (92)

Proof: We first introduce the criterion function M s
n : L∞(S × X )→ R to be given by:

M s
n(θ) ≡ sup

x∈X
sup

(τ,b)∈S
Q̃sx,n(θ(τ, b, x)|τ, b) . (93)

We aim to characterize and establish the consistency of an approximate minimizer of M s
n(θ) on L∞(S×X ).

Observe that by Lemma 6.1, compactness of S, finiteness of X and the law of large numbers:

sup
x∈X

sup
(τ,b)∈S

| 1
n

n∑
i=1

{Gx,i(s0(τ, b, x))− E[Gx,i(s0(τ, b, x))]}+Rx,n(τ, b)−Rx(τ, b)|

≤ sup
x∈X

sup
c∈R
| 1
n

n∑
i=1

{Gx,i(c)− E[Gx,i(c)]}|+ sup
x∈X

sup
(τ,b)∈S

|Rx,n(τ, b)−Rx(τ, b)| = op(1) , (94)

where Rx(τ, b) is as in (73). Hence, by definition of S and Rx(τ, b), with probability tending to one:

ε

2
P (Xi = x) ≤ 1

n

n∑
i=1

{E[Gx,i(s0(τ, b, x))]−Gx,i(s0(τ, b, x))} −Rx,n(τ, b)

≤ (p(x)− ε

2
)P (Xi = x) ∀(τ, b, x) ∈ S × X . (95)

By Assumption 2.1(ii), whenever (95) holds, we may implicitly define ŝs0(τ, b, x) by the equality:

P (Yi ≤ ŝs0(τ, b, x), Di = 1, Xi = x) =
1

n

n∑
i=1

{E[Gx,i(s0(τ, b, x))]−Gx,i(s0(τ, b, x))} −Rx,n(τ, b) , (96)

for all (τ, b, x) ∈ S × X and set ŝs0(τ, b, x) = 0 for all (τ, b, x) ∈ S × X whenever (95) does not hold. Thus,

sup
x∈X

sup
(τ,b)∈S

|Q̃sx,n(ŝs0(τ, b, x)|τ, b)− inf
c∈R

Q̃sx,n(c|τ, b)| = op(n
−1) . (97)

Let ŝs0 ≡ ŝs0(·, ·, ·) and note that by construction ŝs0 ∈ L∞(S × X ). From (97) we then obtain that:

M s
n(ŝs0) ≤ sup

x∈X
sup

(τ,b)∈S
inf
c∈R

Q̃sx,n(c|τ, b) + op(n
−1) ≤ inf

θ∈L∞(S×X )
M s
n(θ) + op(n

−1) . (98)
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In order to establish ‖ŝs0− s0‖∞ = op(1), let M(θ) be as in (84) and notice that arguing as in (89) together

with result (94) and Lemma 6.1 implies that:

sup
θ∈L∞(S×X )

|M s
n(θ)−M(θ)| ≤ sup

θ∈L∞(S×X )
sup
x∈X

sup
(τ,b)∈S

|Q̃sx,n(θ(τ, b, x)|τ, b)−Qx(θ(τ, b, x)|τ, b)|

≤ sup
x∈X

sup
(τ,b)∈S

sup
c∈R
|Q̃sx,n(c|τ, b)−Qx(c|τ, b)| = op(1) . (99)

Hence, by (86), (98), (99) and Corollary 3.2.3 in van der Vaart and Wellner (1996) we obtain:

sup
x∈X

sup
(τ,b)∈S

|ŝs0(τ, b, x)− s0(τ, b, x)| = op(1) . (100)

Next, define the random mapping ∆n : L∞(S × X )→ L∞(S × X ) to be given by:

∆n(θ) ≡ 1

n

n∑
i=1

{(Gx,i(θ(τ, b, x))− E[Gx,i(θ(τ, b, x))])− (Gx,i(s0(τ, b, x))− E[Gx,i(s0(τ, b, x))])} , (101)

and observe that Lemma 6.1 and finiteness of X implies that ‖∆n(s̄)‖∞ = op(n
− 1

2 ) for any s̄ ∈ L∞(S ×X )

such that ‖s̄− s0‖∞ = op(1). Since Q̃x,n(ŝ0(τ, b, x)|τ, b) ≤ Q̃x,n(s0(τ, b, x)|τ, b) for all (τ, b, x) ∈ S ×X , and

by Lemma 6.1 and finiteness of X , supx∈X sup(τ,b)∈S Q̃x,n(s0(τ, b, x)|τ, b) = Op(n
−1), we conclude that:

sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}

≤ sup
x∈X

sup
(τ,b)∈S

{Q̃x,n(ŝ0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}+ ‖∆2
n(ŝ0)‖∞ + 2‖∆n(ŝ0)‖∞ ×M

1
2
n (ŝ0)

≤ sup
x∈X

sup
(τ,b)∈S

{Q̃x,n(ŝs0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}+ op(n
−1) , (102)

where Mn(θ) is as in (84). Furthermore, since by (98) we have M s
n(ŝs0) ≤M s

n(s0) + op(n
−1) and by Lemma

6.1 and finiteness of X we have M s
n(s0) = Op(n

−1), similar arguments as in (102) imply that:

sup
x∈X

sup
(τ,b)∈S

{Q̃x,n(ŝs0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}

≤ ‖∆n(ŝs0)‖2∞ + 2‖∆n(ŝs0)‖∞ × [M s
n(ŝs0)]

1
2 = op(n

−1) . (103)

Therefore, by combining the results in (97), (102) and (103), we are able to conclude that:

sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)|τ, b)− inf
c∈R

Q̃sx,n(c|τ, b)}

≤ sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}+ op(n
−1) ≤ op(n−1) . (104)

Let εn ↘ 0 be such that εn = op(n
− 1

2 ) and in addition satisfies:

sup
x∈X

sup
(τ,b)∈S

|Q̃sx,n(ŝ0(τ, b, x)|τ, b)− inf
c∈R

Q̃sx,n(c|τ, b)| = op(ε
2
n) , (105)
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which is possible by (104). A Taylor expansion at each (τ, b, x) ∈ S × X then implies:

0 ≤ sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x) + εn|τ, b)− Q̃sx,n(ŝ0(τ, b, x)|τ, b)}+ op(ε
2
n)

= sup
x∈X

sup
(τ,b)∈S

{
εn ×

dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

+
ε2n
2
×
d2Q̃sx,n(s̄(τ, b, x)|τ, b)

dc2

}
+ op(ε

2
n) , (106)

where s̄(τ, b, x) is a convex combination of ŝ0(τ, b, x) and ŝ0(τ, b, x) + εn. Since Lemma 6.3 and εn ↘ 0

imply that ‖s̄− s0‖∞ = op(1), the mean value theorem, fy|1,x(c) being uniformly bounded and (89) yield:

sup
x∈X

sup
(τ,b)∈S

∣∣∣ 1
n

n∑
i=1

{E[Gx,i(s̄(τ, b, x))−Gx,i(s0(τ, b, x))] +Gx,i(s0(τ, b, x))}+Rx,n(τ, b)}
∣∣∣

≤ sup
c∈R

fy|1,x(c)p(x)P (Xi = x)× ‖s̄− s0‖∞ +M
1
2
n (s0) = op(1) . (107)

Therefore, exploiting (107), f ′y|1,x(c) being uniformly bounded and by direct calculation we conclude:

sup
x∈X

sup
(τ,b)∈S

∣∣∣d2Q̃sx,n(s̄(τ, b, x)|τ, b)
dc2

− 2f2
y|1,x(s̄(τ, b, x))p2(x)P 2(Xi = x)

∣∣∣
≤ sup

x∈X
sup

(τ,b)∈S
|f ′y|1,x(s̄(τ, b, x))p(x)P (Xi = x)| × op(1) = op(1). (108)

Thus, combining results (106) together with (108) and fy|1,x(c) uniformly bounded, we conclude:

0 ≤ εn × sup
x∈X

sup
(τ,b)∈S

dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

+Op(ε
2
n) . (109)

In a similar fashion, we note that by exploiting (105) and proceeding as in (106)-(109) we obtain:

0 ≤ inf
x∈X

inf
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)− εn|τ, b)− Q̃sx,n(ŝ0(τ, b, x)|τ, b)}+ op(ε
2
n)

≤ inf
x∈X

inf
(τ,b)∈S

{
− εn ×

dQ̃x,n(ŝ0(τ, b, x)|τ, b)
dc

+
ε2n
2
×
d2Q̃sx,n(s̄(τ, b, x)|τ, b)

dc2

}
+ op(ε

2
n)

≤ −εn × sup
x∈X

sup
(τ,b)∈S

dQ̃x,n(ŝ0(τ, b, x)|τ, b)
dc

+Op(ε
2
n) . (110)

Therefore, since εn = op(n
− 1

2 ), we conclude from (109) and (110) that we must have:

sup
x∈X

sup
(τ,b)∈S

dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

= Op(εn) = op(n
− 1

2 ) . (111)

By similar arguments, but reversing the sign of εn in (106) and (110) it possible to establish that:

sup
x∈X

sup
(τ,b)∈S

−
dQ̃sx,n(ŝ0(τ, b, x)|τ, b)

dc
= op(n

− 1
2 ) . (112)

The claim of the Lemma then follows from (111) and (112).

Lemma 6.5. Let Assumptions 2.1, 4.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞

and positive a.s. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1 − p(x)} + ε ≤ τ ≤ p(x) + b{1 − p(x)} − ε ∀x ∈ X} for

some ε satisfying 0 < ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (113)
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If Gx,i(c) is as in (87), infx∈X inf(τ,b)∈S fy|1,x(s0(τ, b, x))p(x) > 0 and {Yi, Xi, Di,Wi} is i.i.d., then:

sup
x∈X

sup
(τ,b)∈S

∣∣∣(ŝ0(τ, b, x)− s0(τ, b, x))

− 1

n

n∑
i=1

Gx,i(s0(τ, b, x)) +Wi(b1{Di = 0, Xi = x} − τ1{Xi = x})
P (Xi = x)p(x)fy|1,x(s0(τ, b, x))

∣∣∣ = op(n
− 1

2 ) . (114)

Proof: For Q̃sx,n(c|τ, b) as in (91), note that the mean value theorem and Lemma 6.4 imply:

sup
x∈X

sup
(τ,b)∈S

∣∣∣(ŝ0(τ, b, x)− s0(τ, b, x))×
d2Q̃sx,n(s̄(τ, b, x)|τ, b)

dc2
+
dQ̃sx,n(s0(τ, b, x)|τ, b)

dc

∣∣∣ = op(n
− 1

2 ) (115)

for s̄(τ, b, x) a convex combination of s0(τ, b, x) and ŝ0(τ, b, x). Also note that Lemma 6.1 implies:

sup
x∈X

sup
(τ,b)∈S

∣∣∣dQ̃sx,n(s0(τ, b, x)|τ, b)
dc

∣∣∣
= sup

x∈X
sup

(τ,b)∈S

∣∣∣2fy|1,x(s0(τ, b, x))p(x)P (Xi = x)× { 1

n

n∑
i=1

Gx,i(s0(τ, b, x)) +Rn(τ, b)}
∣∣∣ = Op(n

− 1
2 ) . (116)

In addition, by (108), the mean value theorem and fy|1,x(c) being uniformly bounded we conclude that:

sup
x∈X

sup
(τ,b)∈S

∣∣∣d2Q̃x,n(s̄(τ, b, x)|τ, b)
dc2

− 2f2
y|1,x(s0(τ, b, x))p2(x)P 2(Xi = 1)

∣∣∣
. sup

x∈X
sup

(τ,b)∈S
|f2
y|1,x(s̄(τ, b, x))− f2

y|1,x(s0(τ, b, x))|+ op(1) . sup
c∈R
|f ′y|1,x(c)| × ‖s̄− s0‖∞ + op(1) . (117)

Since by assumption fy|1,x(s0(τ, b, x))p(x) is bounded away from zero uniformly in (τ, b, x) ∈ S × X , it

follows from (117) and ‖s̄− s0‖∞ = op(1) by Lemma 6.3 that for some δ > 0:

inf
x∈X

inf
(τ,b)∈S

d2Q̃x,n(s̄(τ, b, x)|τ, b)
dc2

> δ (118)

with probability approaching one. Therefore, we conclude from results (115), (116) and (118) that we must

have ‖ŝ0 − s0‖∞ = Op(n
− 1

2 ). Hence, by (115) and (117) we conclude that:

sup
x∈X

sup
(τ,b)∈S

∣∣∣2(ŝ0(τ, b, x)− s0(τ, b, x))f2
y|1,x(s0(τ, b, x))p2(x)P 2(Xi = 1) +

dQ̃sx,n(s0(τ, b, x)|τ, b)
dc

∣∣∣ = op(n
− 1

2 )

(119)

The claim of the Lemma is then established by (116), (118) and (119).

Lemma 6.6. Let Assumptions 2.1, 4.1(ii)-(iii) hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1,

E[W 2
i ] <∞ and positive a.s. Let S ≡ {(τ, b) ∈ [0, 1]2 : b{1−p(x)}+ε ≤ τ ≤ p(x)+b{1−p(x)}−ε ∀x ∈ X}

for some ε satisfying 0 < 2ε < infx∈X p(x) and for some x0 ∈ X , denote the minimizers:

s0(τ, b, x0) = arg min
c∈R

Qx0(c|τ, b) .

If inf(τ,b)∈S fy|1,x(s0(τ, b, x0))p(x0) > 0 and {Yi, Xi, Di,Wi} is i.i.d., then the following class is Donsker:

F ≡
{
fτ,b(y, x, d, w) =

w1{y ≤ s0(τ, b, x0), d = 1, x = x0}+ bw1{d = 0, x = x0} − τw1{x = x0}
P (Xi = x0)p(x0)fy|1,x(s0(τ, b, x0))

: (τ, b) ∈ S
}
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Proof: For ε > 0, let {Bj} be a collection of closed balls in R2 with diameter ε covering S. Further notice

that since S ⊆ [0, 1]2, we may select {Bj} so its cardinality is less than 4/ε2. On each Bj define:

τ j = min(τ,b)∈S∩Bj τ τ̄j = max(τ,b)∈S∩Bj τ

bj = min(τ,b)∈S∩Bj b b̄j = max(τ,b)∈S∩Bj b

sj = min(τ,b)∈S∩Bj s0(τ, b, x0) s̄j = max(τ,b)∈S∩Bj s0(τ, b, x0)

f
j

= min(τ,b)∈S∩Bj fy|1,x(s0(τ, b, x0)) f̄j = max(τ,b)∈S∩Bj fy|1,x(s0(τ, b, x0)) ,

(120)

where we note that all minimums and maximums are attained due to compactness of S ∩ Bj , continuity

of s0(τ, b, x0) by (71) and the implicit function theorem and continuity of fy|1,x(c) by assumption 4.1(iii).

Next, for 1 ≤ j ≤ #{Bj} define the functions:

lj(y, x, d, w) ≡
w1{y ≤ sj , d = 1, x = x0}+ bjw1{d = 0, x = x0}

P (Xi = x0)p(x0)f̄j
− τ̄jw1{x = x0}
P (Xi = x0)p(x0)f

j

(121)

uj(y, x, d, w) ≡ w1{y ≤ s̄j , d = 1, x = x0}+ b̄jw1{d = 0, x = x0}
P (Xi = x0)p(x0)f

j

−
τ jw1{x = x0}

P (Xi = x0)p(x0)f̄j
(122)

and note that the brackets [lj , uj ] cover the class F . Since f̄−1
j ≤ f−1

j
≤ [inf(τ,b)∈S fy|1,x(s0(τ, b, x0))]−1 <∞

for all j, there is a finite constant M not depending on j so that M > 3E[W 2
i ]P−2(Xi = x0)p−2(x0)fj

−2f̄−2
j

uniformly in j. To bound the norm of the bracket [lj , uj ] note that for such a constant M it follows that:

E[(uj(Yi, Xi, Di,Wi)− lj(Yi, Xi, Di,Wi))
2] ≤M × (b̄j f̄j − bjf j)

2 +M × (τ̄j f̄j − τ jf j)
2

+M × E[(1{Yi ≤ sj , Di = 1, Xi = x0}f j − 1{Yi ≤ s̄j , Di = 1, Xi = x0}f̄j)2] (123)

Next observe that by the implicit function theorem and result (71) we can conclude that for any (τ, b) ∈ S:

ds0(τ, b, x0)

dτ
=

1

fy|1,x(s0(τ, b, x0))

ds0(τ, b, x0)

db
= − 1− p(x0)

fy|1,x(s0(τ, b, x0))
. (124)

Since the minimums and maximums in (120) are attained, it follows that for some (τ1, b1), (τ2, b2) ∈ Bj ∩S

we have s0(τ1, b1.x0) = s̄j and s0(τ2, b2, x0) = sj . Hence, the mean value theorem and (124) imply:

|s̄j − sj | =
∣∣∣ 1

fy|1,x(s0(τ̃ , b̃, x0))
(τ1 − τ2) +

1− p(x)

fy|1,x(s0(τ̃ , b̃, x0))
(b1 − b2)

∣∣∣ ≤ √
2ε

inf(τ,b)∈S fy|1,x(s0(τ, b, x0))
(125)

where (τ̃ , b̃) is between (τ1, b1) and (τ2, b2) and the final inequality follows by (τ̃ , b̃) ∈ S by convexity of S,

(τ1, b1), (τ2, b2) ∈ Bj ∩ S and Bj having diameter ε. By similar arguments, and (125) we conclude:

|f̄j − f j | ≤ sup
c∈R
|f ′y|1,x(c)| × |s̄j − sj | ≤ sup

c∈R
|f ′y|1,x(c)| ×

√
2ε

inf(τ,b)∈S fy|1,x(s0(τ, b, x0))
. (126)

Since bj ≤ b̄j ≤ 1 due to b̄j ∈ [0, 1] and |b̄j − bj | ≤ ε by Bj having diameter ε, we further obtain that:

(b̄j f̄j − bjf j)
2 ≤ 2f̄2

j (b̄j − bj)2 + 2b2j (f̄j − f j)
2 ≤ 2 sup

c∈R
f2
y|1,x(c)× ε2 +

4ε2

inf(τ,b)∈S f
2
y|1,x(s0(τ, b, x0))

, (127)

where in the final inequality we have used result (126). By similar arguments, we also obtain:

(τ̄j f̄j − τ jf j)
2 ≤ 2 sup

c∈R
f2
y|1,x(c)× ε2 +

4ε2

inf(τ,b)∈S f
2
y|1,x(s0(τ, b, x0))

. (128)
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Also note that by direct calculation, the mean value theorem and results (125) and (126) it follows that:

E[(1{Yi ≤ sj , Di = 1,Xi = x0}f j − 1{Yi ≤ s̄j , Di = 1, Xi = x0}f̄j)2]

≤ 2(f̄j − f j)
2 + sup

c∈R
f2
y|1,x(c)× P (Xi = x0)p(x0)(Fy|1,x(s̄j)− Fy|1,x(sj))

≤ 4ε2

inf(τ,b)∈S f
2
y|1,x(s0(τ, b, x0))

+ sup
c∈R

f3
y|1,x(c)×

√
2ε

inf(τ,b)∈S fy|1,x(s0(τ, b, x0))
. (129)

Thus, from (123) and (127)-(128), it follows that for ε < 1 and some constant K not depending on j:

E[(uj(Yi, Xi, Di,Wi)− lj(Yi, Xi, Di,Wi))
2] ≤ Kε . (130)

Since #{Bj} ≤ 4/ε, we can therefore conclude that N[ ](ε,F , ‖ · ‖L2) ≤ 4K/ε2 and hence by Theorem 2.5.6

in van der Vaart and Wellner (1996) it follows that the class F is Donsker.

Proof of Theorem 4.1: Throughout the proof we exploit Lemmas 6.5 and 6.6 applied with Wi = 1

with probability one, so that Q̃x,n(c|τ, b) = Qx,n(c|τ, b) for all (τ, b) in S, where

S ≡ {(τ, b) ∈ [0, 1]2 : b{1− p(x)}+ ε ≤ τ ≤ p(x) + b{1− p(x)} − ε ∀x ∈ X} . (131)

Also notice that for every (τ, k) ∈ B, the points (τ,min{τ + k, 1}), (τ,max{τ − k, 0}) ∈ S and therefore for

s0(τ, b, x) and ŝ0(τ, b, x) as defined in (113) we additionally conclude that:

ckτ,L(x) = s0(τ,min{τ + k, 1}, x) ckτ,U (x) = s0(τ,max{τ − k, 0}, x)

c̆kτ,L(x) = ŝ0(τ,min{τ + k, 1}, x) c̆kτ,U (x) = ŝ0(τ,max{τ − k, 0}, x)
(132)

Next, observe that since Xi has finite support, we may denote X = {x1, . . . , x|X |} and define the matrix

B = (P (Xi = x1)x1, . . . , P (Xi = x|X |)x|X |) as well as the vector of weights:

w ≡ λ′ (ES [XiX
′
i])
−1B . (133)

Since w is also a function on X , we refer to its coordinates by w(x). Solving the linear programming

problems in (20) and (21), it is then possible to obtain the closed form solution:

πL(τ, k) =
∑
x∈X
{1{w(x) ≥ 0}w(x)ckτ,L(x) + 1{w(x) ≤ 0}w(x)ckτ,U (x)}

πU (τ, k) =
∑
x∈X
{1{w(x) ≥ 0}w(x)ckτ,U (x) + 1{w(x) ≤ 0}w(x)ckτ,L(x)} (134)

with a similar representation holding for (π̂L(τ, k), π̂U (τ, k)) but with (c̆kτ,L, c̆
k
τ,U ) in place of (ckτ,L, c

k
τ,U ). We

hence define the linear map K : L∞(S × X )→ L∞(B)× L∞(B), with K(θ)(τ, k) to be given by:

( ∑
x∈X {1{w(x) ≥ 0}w(x)θ(τ,min{τ + k, 1}, x) + 1{w(x) ≤ 0}w(x)θ(τ,max{τ − k, 0})}∑
x∈X {1{w(x) ≥ 0}w(x)θ(τ,max{τ − k, 0}, x) + 1{w(x) ≤ 0}w(x)θ(τ,min{τ + k, 1})}

)
(135)

for any θ ∈ L∞(S × X ). It then follows from (132), (134) and the linearity of K that:

√
n
( π̂L − πL
π̂U − πU

)
= K(

√
n(ŝ0 − s0)) . (136)
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We establish the Theorem by exploiting (136). Assumptions 2.1, 2.2 and 4.1 imply the conditions for

Lemmas 6.5 and 6.6 are satisfied. Since X has finite cardinality and the finite sum of Donsker clases is

Donsker, we can then conclude from Lemmas 6.5 and 6.6 that:

√
n(ŝ0(τ, b, x)− s0(τ, b, x))

L−→ J(τ, b, x) (137)

for J(τ, b, x) Gaussian process on L∞(S ×X ). Employing the norm ‖ · ‖∞+ ‖ · ‖∞ on L∞(B)×L∞(B), we

can then obtain by direct calculation that for any θ ∈ L∞(S × X ):

‖K(θ)‖∞ ≤ 2
∑
x∈X
|w(x)| × sup

x∈X
sup

(τ,b)∈S
|θ(τ, b, x)| = 2

∑
x∈X
|w(x)| × ‖θ‖∞ , (138)

which implies the linear map K is continuous. Therefore, the theorem is established by (136), (137), the

continuous mapping theorem and linear maps of Gaussian processes also being Gaussian processes.

Proof of Lemma 4.2: We first show that (33) is satisfied if r ≥ r1−α. To this end, note that if g ∈ G,

then πL(τ, k) ≤ g(τ, k) ≤ πU (τ, k) for all (τ, k) ∈ B, and hence we obtain:

lim inf
n→∞

P (g ∈ Ĝ(ω, r)) = lim inf
n→∞

P (π̂L(τ, k)− r√
n
ωL(τ, k) ≤ g(τ, k) ≤ π̂U (τ, k) +

r√
n
ωU (τ, k) ∀(τ, k) ∈ B)

≥ lim inf
n→∞

P (max{
√
n(π̂L(τ, k)− πL(τ, k))

ωL(τ, k)
,

√
n(πU (τ, k)− π̂U (τ, k))

ωU (τ, k)
} ≤ r ∀(τ, k) ∈ B)

= P (Z ≥ r) , (139)

where the final inequality follows from Theorem 4.1, the continuous mapping theorem, the Portmanteau

lemma and Z being continuously distributed due to Theorem 11.1 in Davydov, Lifshits, and Smorodina

(1998). Since for all r ≥ r1−α we have P (Z ≥ r) ≥ 1− α, it follows that (33) holds for all r ≥ r1−α.

We next show that (33) fails to hold if r < r1−α. Since r1−α is the 1− α quantile of Z, it follows that:

P (Z ≤ r) ≤ 1− α− η , (140)

for some η > 0. Next, observe that since continuous functions on compact sets are uniformly continuous and

both ωL(τ, k) and ωU (τ, k) are bounded away from zero on B, it follows that (ωL(τ, k))−1 and (ωU (τ, k))−1

are uniformly continuous on B. Therefore, defining the processes:

G̃n,L(τ, k) ≡
√
n(π̂L(τ, k)− πL(τ, k))

ωL(τ, k)
G̃n,U (τ, k) ≡

√
n(π̂U (τ, k)− πU (τ, k))

ωU (τ, k)
, (141)

it follows that G̃n,L(τ, k) and G̃n,U (τ, k) are asymptotically uniformly equicontinuous in probability by

virtue of
√
n(π̂L(τ, k) − πL(τ, k), π̂U (τ, k) − πU (τ, k)) being asymptotically uniformly equicontinuous in

probability and tight as a result of Theorem 4.1. Hence, for any ε > 0 there exits a δ > 0 such that:

lim sup
n→∞

P
(

sup
‖(τ,k)−(τ ′,k′)‖<δ

max{|G̃n,L(τ, k)− G̃n,L(τ ′, k′)|, |G̃n,U (τ, k)− G̃n,U (τ ′, k′)|} > ε
)
<
η

2
. (142)

In particular, since Z is continuously distributed, by (140) we may select ε so that the following holds:

P (Z ≤ r + ε) < 1− α− η

2
. (143)
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For some odd integer K > δ−1, partition [0, 1]2 into squares with sides of length 1/K, and denote this

partition by {Aj}K
2

j=1 where the squares are enumerated from the upper left corner proceeding down the

rows. Since K is odd, all even squares share sides only with odd squares and vice-versa. Define:

gK(τ, k) ≡
K2∑
j=1

{1{(τ, k) ∈ Aj , j odd }πL(τ, k) + 1{(τ, k) ∈ Aj , j even }πU (τ, k)} (144)

for all (τ, k) ∈ [0, 1]2 and notice that since the {Aj}K
2

j=1 are nonoverlapping and form a partition of [0, 1]2,

by construction we have that the restriction of gK to B is an element of G.

Since the inequalities defining B become more stringent for smaller values of p(x) it follows that:

B = {(τ, k) ∈ [0, 1]2 : min{τ + k, 1} × {1− p}+ ε ≤ τ ≤ p+ max{τ − k, 0} × {1− p} − ε} , (145)

where p ≡ infx∈X p(x). Furthermore, notice that (τ, k) satisfies the lower constraint if and only if (1− τ, k)

satisfies the upper constraint. As a result, if we define the sets:

B1 = {(τ, k) ∈ [0, 1]2 : τ ≤ k, τ ≤ p− ε} B2 = {(τ, k) ∈ [0, 1]2 : τ ≥ k, τ ≤ p+ (τ − k)(1− p)− ε} ,

it follows that B = (B1 ∪ B2) ∩ (R(B1) ∪ R(B2)) where R(B) denotes the reflection of B along the line

τ = 0.5. Letting H = {(τ, k) ∈ [0, 1]2 : τ ≥ 1/2} we may therefore decompose B into the sets:

B = (B1 ∩H) ∪R(B1 ∩H) ∪ (B2 ∩H) ∪R(B2 ∩H) . (146)

Hence B is the union of four convex sets, none of which is a singleton (though some may be empty).

Letting K be such that
√

2/K is smaller than the diameter of the sets in (146) that are not empty, it

follows by convexity that each such set intersects with at least two adjacent squares in {Aj}Kj=1. Thus, for

every (τ, k) ∈ B, either gK(τ, k) = πL(τ, k) or there is a (τ ′, k′) ∈ B such that gK(τ ′, k′) = πL(τ ′, k′) and

‖(τ, k)− (τ ′, k′)‖ < δ (and similarly for πU (τ, k)). Since πL(τ, k) ≤ gK(τ, k) ≤ πU (τ, k) for all (τ, k) ∈ B,

0 ≤ sup
(τ,k)∈B

max{G̃n,L(τ, k),−G̃n,U (τ, k)}− sup
(τ,k)∈B

max{
√
n(π̂L(τ, k)− gK(τ, k))

ωL(τ, k)
,

√
n(gK(τ, k)− π̂U (τ, k))

ωU (τ, k)
}

≤ sup
‖(τ,k)−(τ ′,k′)‖<δ

max{|G̃n,L(τ, k)− G̃n,L(τ ′, k′)|, |G̃n,U (τ, k)− G̃n,U (τ ′, k′)|} . (147)

Therefore, by employing the results in (142), (143) and (147) together with the continuous mapping

theorem, Z being continuously distributed and the Portmanteau lemma we are able to conclude that:

lim inf
n→∞

P (gK ∈ Ĝ(ω, r)) = lim inf
n→∞

P
(

sup
(τ,k)∈B

max{
√
n(π̂L(τ, k)− gK(τ, k))

ωL(τ, k)
,

√
n(gK(τ, k)− π̂U (τ, k))

ωU (τ, k)
} ≤ r

)
≤ lim inf

n→∞
P
(

sup
(τ,k)∈B

max{G̃n,L(τ, k),−G̃n,U (τ, k)} ≤ r + ε
)

+
η

2
< 1− α . (148)

It follows that (33) is not satisfied for gK ∈ G, which establishes the lemma.

Proof of Corollary 4.2: To see that (35) implies (33) is satisfied, notice that for every g ∈ G we have:

lim inf
n→∞

P (g ∈ Ĝ(ω, r)) ≥ lim inf
n→∞

P (G ⊆ Ĝ(ω, r)) ≥ 1− α . (149)
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On the other hand, if (33) is satisfied, then by Lemma 4.2 r ≥ r1−α and arguing as in (139) we obtain:

lim inf
n→∞

P (G ⊆ Ĝ(ω, r))

= lim inf
n→∞

P
(

sup
(τ,k)∈B

max{
√
n(π̂L(τ, k)− πL(τ, k))

ωL(τ, k)
,

√
n(πU (τ, k)− π̂U (τ, k))

ωU (τ, k)
} ≤ r

)
≥ 1− α . (150)

The claim of the corollary then follows from (149) and (150).

Proof of Theorem 4.2: For a metric space D, let BLc(D) denote the set of real valued bounded Lipschitz

functions with supremum norm and Lipschitz constant less than or equal to c. We first aim to show that:

sup
h∈BL1(R)

|E[h(Z̃)|Zn]− E[h(Z)]| = op(1) , (151)

where Zn = {Yi, Xi, Di}ni=1 and E[h(Z̃)|Zn] denotes outer expectation over {Wi}ni=1 with Zn fixed. Let

ŝ0(τ, b, x) ∈ arg min
c∈R

Qx,n(c|τ, b) s̃0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) s0(τ, b, x) ∈ arg min
c∈R

Qx(c|τ, b) ,

and notice that Lemma 6.5 applied to Wi = 1 with probability one, implies that:

ŝ0(τ, b, x)− s0(τ, b, x)

=
1

n

n∑
i=1

1{Yi ≤ s0(τ, b, x), Di = 1, Xi = x}+ b1{Di = 0, Xi = x} − τ1{Xi = x}
P (Xi = x)p(x)fy|1,x(s0(τ, b, x))

+ op(n
− 1

2 ) (152)

uniformly in (τ, b, x) ∈ S × X , for S as defined in (131). Furthermore, also by Lemma 6.5 we obtain:

s̃0(τ, b, x)− s0(τ, b, x)

=
1

n

n∑
i=1

Wi(1{Yi ≤ s0(τ, b, x), Di = 1, Xi = x}+ b1{Di = 0, Xi = x} − τ1{Xi = x})
P (Xi = x)p(x)fy|1,x(s0(τ, b, x))

+ op(n
− 1

2 ) (153)

uniformly in (τ, b, x) ∈ S×X . Letting K be the continuous linear operator defined in (135), we then obtain

√
n
( π̃L − π̂L
π̃U − π̂U

)
= K(

√
n(s̃0 − ŝ0)) , (154)

for s̃0 = s̃0(·, ·, ·) and ŝ0 = s0(·, ·, ·). By Lemma 6.6, results (152) and (153) and Theorem 2.9.2 in van der

Vaart and Wellner (1996), the process
√
n(s̃0 − ŝ0) converges to a tight Gaussian process on L∞(S × X ).

Hence, by the continuous mapping theorem, the process K(
√
n(s̃0 − ŝ0)) is asymptotically tight. Define,

Z0 ≡ sup
(τ,k)∈B

max
{√n(π̃L(τ, k)− π̂L(τ, k))

ωL(τ, k)
,

√
n(π̂U (τ, k)− π̃U (τ, k))

ωU (τ, k)

}
, (155)

and notice that ωL(τ, b) and ωU (τ, b) being bounded away from zero, ω̂L(τ, b) and ω̂U (τ, b) being uniformly

consistent by Assumption 4.2(ii) and tightness of K(
√
n(s̃0 − ŝ0)) imply that:

|Z̃ − Z0| ≤ sup
(τ,b)∈S

∣∣∣√n(π̃L(τ, k)− π̂L(τ, k))

ω̂L(τ, k)
−
√
n(π̃L(τ, k)− π̂L(τ, k))

ωL(τ, k)

∣∣∣
+ sup

(τ,b)∈S

∣∣∣√n(π̃U (τ, k)− π̂U (τ, k))

ω̂U (τ, k)
−
√
n(π̃U (τ, k)− π̂U (τ, k))

ωU (τ, k)

∣∣∣ = op(1) . (156)
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By definition of BL1, all h ∈ BL1 have Lipschitz constant less than or equal to 1 and are also bounded by

1. Therefore, for any η > 0 it follows that:

P
(

sup
h∈BL1(R)

|E[h(Z̃)|Zn]−E[h(Z0)|Zn]| > η
)
≤ P

(
2P (|Z̃ − Z0| >

η

2
|Zn) +

η

2
P (|Z̃ − Z0| ≤

η

2
|Zn) > η

)
≤ P

(
P
(
|Z̃ − Z0| >

η

2
|Zn
)
>
η

4

)
≤ 4

η
E
[
E
[
1
{
|Z̃ − Z0| >

η

2

}
|Zn
]]
≤ 4

η
P
(
|Z̃ − Z0| >

η

2

)
= o(1) (157)

where the third and fourth inequality hold by Markov’s inequality and Fubini’s theorem for outer expec-

tations (cf Lemma 1.2.6 in van der Vaart and Wellner (1996)), while the final result follows by (156).

For θ ∈ L∞(B)× L∞(B), let θ(i)(τ, k) denote its ith coordinate evaluated at (τ, k), and define:

T (θ) ≡ sup
(τ,k)∈B

max
{θ(1)(τ, k)

ωL(τ, k)
,−θ

(2)(τ, k)

ωU (τ, k)

}
. (158)

Notice that the mapping T : L∞(B)× L∞(B)→ R satisfies for every θ1, θ2 ∈ L∞(B)× L∞(B):

|T (θ1)− T (θ2)| ≤M0{‖θ(1)
1 − θ

(1)
2 ‖∞ + ‖θ(2)

1 − θ
(2)
2 ‖∞} (159)

forM0 ≡ inf(τ,k)∈Bmax{(ωL(τ, k))−1, (ωU (τ, k))−1}. Equipping L∞(B)×L∞(B) with the norm ‖·‖∞+‖·‖∞,

it follows that T is Lipschitz with Lipschitz constant M0. In addition, note that:

Z0 = T (K(
√
n(s̃0 − ŝ0))) Z

L
= T (K(J)) , (160)

where
L
= stands for “equal in law”, J(τ, b, x) is the Gaussian process in (137) and for the second result we

have used the continuous mapping theorem. Also define the process:

Ln(τ, b, x) =
1√
n

n∑
i=1

(Wi − 1)(1{Yi ≤ s0(τ, b, x), Di = 1, Xi = x}+ b1{Di = 0, Xi = x} − τ1{Xi = x})
P (Xi = x)p(x)fy|1,x(s0(τ, b, x))

For w(x) as defined in (133) and C0 ≡ 2
∑

x∈X |w(x)|, it follows from linearity of K and (138), that

K is Lipschitz with Lipschitz constant C0. Therefore, for any h ∈ BL1(R), result (159) implies that

h ◦ T ◦K ∈ BLC0M0(L∞(B × X )). Thus, by (160) it follows that:

sup
h∈BL1(R)

|E[h(Z0)|Zn]− E[h(T (K(Ln)))|Zn]|

≤ sup
h∈BLC0M0

(L∞(S×X ))
|E[h(

√
n(s̃0 − ŝ0)|Zn]− E[h(Ln)|Zn]| = op(1) , (161)

where the final result follows from (152), (153) and arguing as in (157). Exploiting (160) again:

sup
h∈BL1(R)

|E[h(T (K(Ln)))|Zn]− E[h(Z)]| ≤ sup
h∈BLC0M0

(L∞(S×X ))
|E[h(Ln)|Zn]− E[h(J)]|

= C0M0 × sup
h∈BL1(L∞(S×X ))

|E[h(Ln)|Zn]− E[h(J)]| = op(1) , (162)

where the final result holds by J(τ, b, x) being the limit in law of the right hand side of (152) and Theorem

2.9.6 in van der Vaart and Wellner (1996). Hence, (157), (161) and (162) establish (151).
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Next, we aim to exploit (151) to show that for all t ∈ R that are continuity points of the cdf of Z:

|P (Z̃ ≤ t|Zn)− P (Z ≤ t)| = op(1) . (163)

Towards this end, for every λ > 0, and t a continuity point of the cdf of Z define the functions:

hUλ,t(x) = 1− 1{x > t}min{λ(x− t), 1} hLλ,t(x) = 1{x < t}min{λ(t− x), 1} . (164)

Notice that by construction, hLλ,t(x) ≤ 1{x ≤ t} ≤ hUλ,t(x) for all x ∈ R, the functions hLλ,t(x) and hUλ,t(x)

are both bounded by one and they are both Lipschitz with Lipschitz constant λ. Also by direct calculation:

0 ≤ E[hUλ,t(Z)− hLλ,t(Z)] ≤ P (t− λ−1 ≤ Z ≤ t+ λ−1) . (165)

Therefore, exploiting that hLλ,t, h
U
λ,t ∈ BLλ(R) and that h ∈ BLλ(R) implies λ−1h ∈ BL1(R), we obtain:

|P (Z̃ ≤ t|Zn)− P (Z ≤ t)| ≤ |E[hLλ,t(Z̃)|Zn]− E[hUλ,t(Z)]|+ |E[hUλ,t(Z̃)|Zn]− E[hLλ,t(Z)]|

≤ 2 sup
h∈BLλ(R)

|E[h(Z̃)|Zn]− E[h(Z)]|+ 2P (t− λ−1 ≤ Z ≤ t+ λ−1)

= 2λ sup
h∈BL1(R)

|E[h(Z̃)|Zn]− E[h(Z)]|+ 2P (t− λ−1 ≤ Z ≤ t+ λ−1) . (166)

If t is a continuity point of the cdf of Z, then (163) follows from (151) and (166).

To conclude the proof, note that Z is continuously distributed with strictly increasing cdf as a result

of Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998). Therefore, for every ε > 0 we must have:

P (Z ≤ r1−α − ε) < 1− α < P (Z ≤ r1−α + ε) . (167)

Define the event An ≡ {P (Z̃ ≤ r1−α − ε|Zn) < 1− α < P (Z̃ ≤ r1−α + ε|Zn)} and notice that

P (|r̃1−α − r1−α| ≤ ε) ≥ P (An)→ 1 , (168)

where the inequality follows by definition of r̃1−α and the second result is implied by (163) and (167).

Proof of Corollary 4.3: In order to establish the Corollary, first define the random variable:

Zn ≡ sup
(τ,k)∈B

max
{√n(π̂L(τ, k)− πL(τ, k))

ωL(τ, k)
,

√
n(πU (τ, k)− π̂U (τ, k))

ωU (τ, k)

}
(169)

and notice that since
√
n(π̂L−πL, π̂U−πU ) is asymptotically tight by Theorem 4.1, Assumption 4.2 implies:

sup
(τ,k)∈B

max
{√n(π̂L(τ, k)− πL(τ, k))

ω̂L(τ, k)
,

√
n(πU (τ, k)− π̂U (τ, k))

ω̂U (τ, k)

}
= Zn + op(1) , (170)

by arguing as in (156). For T as defined in (158) and π̂ − π = (π̂L − πL, π̂U − πU ) we then obtain:

Zn = T (
√
n(π̂ − π))

L−→ Z (171)
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by continuity of T , as shown in (159), Theorem 4.1 and the continuous mapping theorem. Hence,

lim inf
n→∞

P (g ∈Ĝ(ω̂, r̃1−α))

≥ lim inf
n→∞

P (G ⊆ Ĝ(ω̂, r̃1−α))

= lim inf
n→∞

P
(

sup
(τ,k)∈B

max
{√n(π̂L(τ, k)− πL(τ, k))

ω̂L(τ, k)
,

√
n(πU (τ, k)− π̂U (τ, k))

ω̂U (τ, k)

}
≤ r̃1−α

)
≥ 1− α (172)

where the first inequality hold for any g ∈ G and the second is a result of (170), (171), Theorem 4.2,

Slutsky’s and the Portmanteau Theorem and Z being continuously distributed as a result of Theorem 11.1

in Davydov, Lifshits, and Smorodina (1998).

Lemma 6.7. Suppose Assumption 2.1(ii)-(iii) and 4.1(ii) hold. Then for the weight function ω(y, x) ≡

1− P (Di = 0|Yi = y,Xi = x)/(1− p(x)), it follows that:

KS(Fy|x, Fy|0,x) = sup
c∈R

∣∣∣ ∫ c

−∞
w(y, x)dF (y|Xi = x)

∣∣∣ .
Proof: Applying Baye’s Rule and the definition of w(y, x) we immediately obtain that:

P (Y ≤ c|Xi = x)− P (Y ≤ c|Xi = x,D = 0)

=

∫ c

−∞
f(y|Xi = x)dy −

∫ c

−∞
f(y|Xi = x,D = 0)dy

=

∫ c

−∞
f(y|Xi = x)dy −

∫ c

−∞

P (D = 0|Y = y,Xi = x)

P (D = 0|Xi = x)
f(y|Xi = x)dy

=

∫ c

−∞
w(y, x)f(y|Xi = x)dy . (173)

Therefore, the claim of the Lemma follows by taking the supremum over c of the absolute value of (173).

Lemma 6.8. If Assumptions 2.1(ii)-(iii), 4.1(ii) hold, {Yi, Xi}ni=1 be i.i.d., supy |ŵ(y, x0) − w(y, x0)| =

op(1) and supc∈R infc′∈Cn |Fy|x0(c)− Fy|x0(c′)| = o(1), then K̂S(Fy|x0 , Fy|0,x0)
p→ KS(Fy|x0 , Fy|0,x0).

Proof: In order to establish the Lemma, we first notice that since by assumption supy |w(y, x0) −

ŵ(y, x0)| = op(1) and n−1
x0

∑
i 1{Yi ≤ c,Xi = x0} ≤ 1 we have that:

∣∣∣max
c∈Cn

∣∣∣ 1

nx0

n∑
i=1

1{Yi ≤ c,Xi = x0}ŵ(Yi, x0)
∣∣∣−max

c∈Cn

∣∣∣ 1

nx0

n∑
i=1

1{Yi ≤ c,Xi = x0}w(Yi, x0)
∣∣∣∣∣∣

≤ sup
y∈R
|ŵ(y, x0)− w(y, x0)| × sup

c∈R

1

nx0

∑
i=1

1{Yi ≤ c,Xi = x0} = op(1) . (174)

Similarly, observe that since |w(y, x0)| ≤ 1+(1−p(x0))−1, using n−1
∑

i 1{Yi ≤ c,Xi = x0} ≤ 1, we obtain:

∣∣∣max
c∈Cn

∣∣∣ 1

nx0

n∑
i=1

1{Yi ≤ c,Xi = x0}w(Yi, x0)
∣∣∣−max

c∈Cn

∣∣∣ 1

nP (Xi = x0)

n∑
i=1

1{Yi ≤ c,Xi = x0}w(Yi, x0)
∣∣∣∣∣∣

≤
∣∣∣ n
nx0
− 1

P (Xi = x0)

∣∣∣× sup
c∈R

1

n

n∑
i=1

1{Yi ≤ c,Xi = x0}|w(Yi, x0)| = op(1) . (175)
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LetM = {mc : R1+l → R : mc(y, x) = 1{y ≤ c, x = x0}w(y, x0)−E[1{y ≤ c, x = x0}w(y, x0)], c ∈ R}. For

M > (1+(1−p(x0))−1)2, and any 1 > ε > 0, under Assumption 2.1(ii), there exists an increasing sequence

{y0, . . . , yd 16M
ε
e} such that the intervals {[yj−1, yj ]}

d 16M
ε
e

j=1 partition R and in addition for all 1 ≤ j ≤ d16M
ε e

we have Fy|x0(yj)− Fy|x0(yj−1) ≤ ε
16M . Define the functions:

lj(y, x) = 1{y ≤ yj−1, x = x0}w(y, x0)− 1{yj−1 ≤ y ≤ yj , x = x0}|w(y, x0)|

uj(y, x) = 1{y ≤ yj−1, x = x0}w(y, x0) + 1{yj−1 ≤ y ≤ yj , x = x0}|w(y, x0)| , (176)

and l̃j(y, x) = lj(y, x)−E[uj(Yi, Xi)] as well as ũj(y, x) = uj(y, x)−E[lj(Yi, Xi)]. Further observe that the

brackets {[l̃j , ũj ]}
d 16M

ε
e

j=1 partition M since for every yj−1 ≤ c ≤ yj we have l̃j(y, x) ≤ mc(y, x) ≤ ũj(y, x).

Arguing as in (69), it can be shown that E[(l̃j(Yi, Xi)−ũj(Yi, Xi))
2] ≤ ε. Hence, N[ ](ε,M, ‖·‖L2) ≤ ε2/16M .

Theorem 2.5.6 in van der Vaart and Wellner (1996) then implies the class is Donsker, which establishes:∣∣∣max
c∈Cn

1

nP (Xi = x0)

n∑
i=1

1{Yi ≤ c,Xi = x0}w(y, x0)
∣∣∣−max

c∈Cn

∣∣∣E[1{Yi ≤ c,Xi = x0}w(Yi, x0)|Xi = x0]
∣∣∣∣∣∣

≤ 1

P (Xi = x0)
sup
c∈R

∣∣∣ 1
n

n∑
i=1

1{Yi ≤ c,Xi = x0}w(Yi, x0)− E[1{Yi ≤ c,Xi = x0}w(Yi, x0)]
∣∣∣ = op(1) . (177)

Employing |w(y, x0)| ≤ 1 + (1− p(x0))−1, we then obtain by supc∈R infc′∈Cn |Fy|x0(c)− Fy|x0(c′)| = o(1):∣∣∣max
c∈Cn

∣∣∣E[1{Yi ≤ c,Xi = x0}w(Y, x0)]
∣∣∣− sup

c∈R

∣∣∣E[1{Y ≤ c,Xi = x0}w(Y, x0)]
∣∣∣∣∣∣

≤ (1 + (1− p(x0)))−1 × sup
c∈R

inf
c′∈Cn

|P (Yi ≤ c,Xi = x0)− P (Yi ≤ c′, Xi = x0)| = o(1) . (178)

The claim of the Lemma is then established by (174), (175), (177) and (178).

Proof of Lemma 5.1: Since γ̂
p→ γ0 and W is finite, it follows that with probability tending to one

k̂ = exp(W ′xγ̂) for some Wx ∈ W0. In addition, notice that since W ′xγ0 = W̃ ′xγ0 for all Wx, W̃x ∈ W0,

P (Wxγ̂ = W̃xγ̂, for some Wx, W̃x ∈ W0)

= P (
√
|X |(Wx − W̃x)′(γ̂ − γ0) = 0, for some Wx, W̃x ∈ W0) = o(1) , (179)

where the final result follows by W being finite,
√
|X |(γ̂ − γ0)

L−→ N(0,Σ) with Σ positive definite and

the Portmanteau Lemma. Therefore, exploiting (179), exp(W ′xγ0) = exp(W̃ ′xγ0) for all Wx, W̃x ∈ W0 and

applying the delta method we are able to conclude that:√
|X |(k̂ − k) =

√
|X |{ max

Wx∈W0

exp(W ′xγ̂)− k}+ op(1)

=
√
|X |

∑
Wx∈W0

1{W ′xγ̂ ≥ W̃ ′xγ̂, ∀W̃x ∈ W0}(exp(W ′xγ̂)− exp(W ′xγ0)) + op(1)

=
√
|X |

∑
Wx∈W0

1{W ′x(γ̂ − γ0) ≥ W̃ ′x(γ̂ − γ0), ∀W̃x ∈ W0} exp(W ′xγ0)W ′x(γ̂ − γ0) + op(1)

= k × max
Wx∈W0

W ′x
√
|X |(γ̂ − γ) + op(1) . (180)

The Lemma then follows by
√
|X |(γ̂ − γ0)

L−→ N(0,Σ) and the continuous mapping theorem.
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Figure 1: Linear Conditional Quantile Functions (Shaded Region) as a Subset of the Identified Set
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Figure 2: Conditional Quantile and its Pseudo-True Approximation
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Figure 3: Quantile Regression Estimates Assuming Missing at Random

0
.0

5
.1

.1
5

.2
dl

nE
/d

ln
S

.1 .2 .3 .4 .5 .6 .7 .8 .9
Tau

1980 1990 2000

Note: Returns computed under missing at random assumption. Pseudo true projection weighted by
empirical frequency of demographic groups. Shaded regions provide 95% uniform confidence bands.
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Figure 4: Finite Sample Confidence Interval for Linear Specification
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intervals generated via inversion of finite sample likelihood ratio test statistic. See Appendix B for
details. Empty intervals constitute rejection of model at given quantile.
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Figure 5: Pseudo True Confidence Intervals
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Figure 6: Pseudo True Confidence Intervals, Sensitivity Analysis (1980 vs. 1990)
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Figure 7: Pseudo True Confidence Intervals, Fitted Values
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