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As long as some investors have access to both stock and bond markets, the absence of arbitrage

opportunities imposes cross-market restrictions on the stochastic discount factor, henceforth SDF.

Despite tremendous progress in the separate modeling of SDFs for bond markets and stock markets,

the cross-market restrictions are typically not imposed. As a result, the state-of-the art term

structure model does not price stocks and the state-of-the-art equity pricing model does not price

bonds. We propose a parsimonious no-arbitrage SDF model that exploits these cross-market

restrictions to learn about the pricing of risk across stock and bond markets.

A decomposition of the pricing kernel into a permanent and a transitory component is a useful

device for understanding which risk factors are necessary to achieve consistent risk pricing in stock

and bond markets. Alvarez and Jermann (2005) (AJ), Hansen, Heaton, and Li (2008) and Hansen

and Scheinkman (2009) show that any SDF can be decomposed in a permanent component and a

transitory component. AJ conclude that the permanent component accounts for almost all of the

variation in the SDF. They reach this conclusion because the equity risk premium, their empirical

proxy for the maximum risk premium in the economy, is so much higher in the data than the

30-year bond risk premium, their empirical proxy for the infinite-horizon bond risk premium. One

minus the ratio of the risk premium on the infinite-horizon bond and the maximum risk premium

is a lower bound on the contribution of the permanent component to the overall variance of the

SDF. Thus, their paper shows that a necessary ingredient for any SDF model is a large permanent

component (on average), and it shows that the innovations to this permanent component are

naturally linked to the pricing of equity.1 We identify these shocks as shocks to the dividend-price

(DP ) ratio on the aggregate stock market and show that exposure to DP shocks help us match

average equity risk premia.

A second necessary ingredient of any SDF model is a transitory component.2 In a model

without transitory component, the term structure of interest rates is flat and bond excess returns

are zero at all maturities. Clearly, such models are at odds with the fact that bond yields and

bond returns depend on maturity and fluctuate over time. We identify transitory shocks as shocks

to the level of the term structure, which is the most important source of variation in bond yields.

We confirm Cochrane and Piazzesi (2008)’s finding that cross-sectional variation in returns across

bond portfolios sorted by maturity can be captured by differential exposure to the level factor.

There is a third necessary feature of the SDF, which is that the relative contribution of the

permanent and transitory innovations to the pricing kernel must vary over time. AJ study the

ratio of the unconditional variance of the permanent component to the unconditional variance of

the SDF in terms of the average bond risk premium relative to the average equity risk premium.

1AJ show that if the pricing kernel has only a transitory component, the long-term bond is the asset with the
highest risk premium. To measure the importance of the permanent component, they study both stocks and bonds
and conclude that most of the variation is driven by the permanent component. This suggests that shocks to stock
prices are a prime candidate to capture permanent shocks to the pricing kernel.

2The transitory component of the pricing kernel equals the inverse of the return on an infinite-maturity bond.
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Since the bond risk premium and the equity risk premium both vary over time, it seems natural

to consider the conditional variance ratio in addition. We model risk premia on bonds as a linear

function of the Cochrane and Piazzesi (2005, 2008) factor (CP ), a powerful predictor of future bond

returns. We model risk premia on stocks as a linear function of the dividend-price ratio of the

aggregate stock market, following a large stock return predictability literature. In principle, CP

and DP could each drive fluctuations in the relative importance of the transitory and permanent

components of the SDF. Our estimation results instead imply that the CP factor accounts for

almost all of the action in the conditional variance ratio. When CP rises, so does the importance

of the transitory component of the SDF; the conditional variance of the permanent component

relative to the total conditional variance falls. The CP factor is much less persistent than the

dividend yield DP ; most of its variation occurs at business-cycle frequencies. The conditional

variance ratio inherits this business-cycle frequency variation from CP .

Introducing shocks that drive the relative contribution of the transitory component of the SDF

turns out to be very useful for understanding the link between stock and bond pricing. Exposure

to innovations in the CP factor, which itself predicts future bond returns, helps explain the value

premium puzzle in the stock market. Neither shocks to the transitory component (level shocks) nor

shocks to the permanent component (DP shocks) can help explain why high book-to-market (value)

stocks have higher returns than low book-to-market (growth) stocks because book-to-market decile

portfolios have similar exposures to both. However, value stocks have a large positive exposure

to shocks to the CP factor whereas growth stocks have much lower or even zero exposure, see

Figure 1. Given the positive risk price of CP shocks we estimate, this differential exposure results

in a value spread.

[Figure 1 about here.]

Why is the price of CP risk positive and why are value stocks riskier than growth stocks?

We show that the CP factor is not only a strong forecaster of future bond returns but also of

future economic activity. A high CP factor predicts stronger economic activity, as measured by

the Chicago Fed National Activity Index (CFNAI), one to two years later, see Figure 2. The R-

squared peaks at a horizon of 20 months at 15%; it gradually increases before and gradually declines

afterwards. Since high CP readings signal better economic prospects, they coincide with low

marginal utility growth for an average investor with a preference for early resolution of uncertainty,

and hence the price of CP risk ought to be positive. This is what we find. This result also implies

that value returns are high exactly when economic activity is expected to increase. Since these

are times of low marginal utility growth, this positive covariance makes value stocks riskier, and

explains why value stocks earn higher average returns than growth stocks.

[Figure 2 about here.]
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The above argument thus suggests a model with three priced sources of risk: the DP factor to

capture shocks to the permanent component, the level factor to capture shocks to the transitory

component, and the CP factor to capture shocks to the contribution of the permanent component

to the variance of the SDF. We use these three factors as the key state variables in an otherwise

standard affine asset pricing model. First, we estimate the dynamics of the state vector and of the

nominal short-term interest rate by matching the time series of yields (forward rates) of various

maturities. Second, we estimate the dynamics of the risk prices by matching time series properties

of expected excess stock and bond returns. In particular, the price of level risk depends on the CP

factor as in Cochrane and Piazzesi (2008) and the price of DP risk depends on DP . Third, we

choose the average risk prices on our three factors by matching the cross-section of average returns

on the aggregate stock market, the decile book-to-market portfolios, and five maturity-sorted bond

portfolios. Our model generates a mean absolute pricing error of only 0.40% per year on these 16

portfolios. The pricing errors show no pattern along the book-to-market nor the bond maturity

dimensions. In summary, our affine model with three priced risk factors simultaneously accounts

for the cross-section of average stock returns on the aggregate market and the decile book-to-market

returns, the cross-section of maturity-sorted bond portfolios, the dynamics of expected stock and

bond returns, and the dynamics of bond yields.

The rest of the paper is organized as follows. After discussing related literature in Section

1, Section 2 sets up an affine asset pricing model and shows how to decompose its SDF into a

permanent and a transitory component. Section 3.1 estimates the affine asset pricing model and

discusses the implications for the conditional variance ratio. Section 4 discusses the robustness of

our results. Specifically, we study an extension where the CP factor also predicts stock returns, we

study several other sets of test assets, and examine sub-samples. We find results that are robust.

Notably, our model is able to account for the risk premia on the corporate bond portfolios; the

average pricing error across the original 16 test assets and the additional 4 credit risk portfolios is

0.49% per year. Section 5 concludes.

1 Related Literature

This paper relates to several strands of the literature. The last twenty years have seen dramatic

improvements in economists’ understanding of what determines differences in yields (e.g., Cox,

Ingersoll, and Ross (1985), Duffie and Kan (1996), Dai and Singleton (2000, 2002), Duffee (2002),

Ang and Piazzesi (2003), Ang, Bekaert, and Wei (2008), and Cochrane and Piazzesi (2008)) and

returns on bonds (Campbell and Shiller (1991), Cochrane and Piazzesi (2005) and Ludvigson and

Ng (2009)), as well as what determines heterogeneity in stock returns which differ by characteristics

such as size and book-to-market value (e.g., Fama and French (1992, 1993)). Yet, these two
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literatures have developed largely separately and employ largely different asset pricing factors.

This is curious from the perspective of a no-arbitrage model. As long as some investors have access

to both markets, stock and bond prices ought to equal the expected present discounted value of

their future cash-flows, discounted by the same stochastic discount factor. This paper contributes

to both literatures and helps to bridge the gap between them. It speaks to a large empirical

literature and a small but fast-growing theoretical literature.

On the empirical side, the nominal short rate or the yield spread is routinely used either as a

predictor of the aggregate return on the stock market or as a conditioning variable in an estimation

of a conditional beta model of the cross-section of stock returns. Chen, Roll, and Ross (1986) were

the first to study the connection between stock returns and bond yields. Ferson and Harvey (1991)

study stock and bond returns’ sensitivity to aggregate state variables, among which the slope of the

yield curve. They conclude that time variation in equity risk premia is important for understanding

the cross-sectional variation in size and industry equity portfolios, and that interest rate risk premia

are important for understanding the cross-sectional variation in bond return portfolios. Similarly,

Fama and French (1993) find that three factors (market, size, and book-to-market) account for the

cross-sectional variation in stock returns and that two bond factors (the excess return on a long-term

bond over the short rate and a default spread) explain the variation in government and corporate

bond returns. However, all of their stock portfolios load in the same way on their term structure

factors. Ang and Bekaert (2007) find some predictability of nominal short rates for future aggregate

stock returns. Brennan, Wang, and Xia (2004) write down an intertemporal-CAPM model where

the real rate, expected inflation, and the Sharpe ratio move around the investment opportunity set.

They show that this model prices the cross-section of stocks. Similarly, Petkova (2006) studies the

connection between the Fama-French factors and innovations in state variables such as the default

spread, the dividend-price ratio, the yield spread, and the short rate. In contrast to this literature,

our focus is on the joint pricing of stock and bond returns, the dynamics of bond yields, as well as

their link with the permanent and transitory components of the SDF. Baker and Wurgler (2007)

show that government bonds comove most strongly with “bond-like stocks,” which are stocks of

large, mature, low-volatility, profitable, dividend-paying firms that are neither high growth nor

distressed. They propose a common sentiment indicator driving stock and bond returns. Finally,

Lustig, Van Nieuwerburgh, and Verdelhan (2008) price both nominal bond yields and the aggregate

stock market return in a no-arbitrage model in order to measure the wealth-consumption ratio in

the data; they do not study the cross-section of bond nor stock returns.

On the theory side, several representative-agent models have been developed that are successful

in accounting for many of the features of both stocks and bonds. Examples are the external habit

model of Campbell and Cochrane (1999), whose implications for bonds were studied by Wachter

(2006) and whose implications for the cross-section of stocks were studied separately by Menzly,
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Santos, and Veronesi (2004) and Santos and Veronesi (2006). Likewise, the implications of the long-

run risk model of Bansal and Yaron (2004) for the term structure of interest rates were studied by

Piazzesi and Schneider (2006) and Bansal and Shaliastovich (2007), while Bansal, Dittmar, and

Lundblad (2005) and Bansal, Dittmar, and Kiku (2007) separately study the implications for the

cross-section of equity portfolios. A small but growing literature models stock and bond returns

jointly. Examples are the affine models of Bekaert, Engstrom, and Grenadier (2005), Bekaert,

Engstrom, and Xing (2008), and the linear-quadratic model of Campbell, Sunderam, and Viceira

(2008) all of which explore the relationship between aggregate stock and bond markets. Lettau

and Wachter (2009) and Gabaix (2009) additionally study the cross-section of stock returns. The

former is a model with common shocks to the risk premium in stock and bond markets, while the

latter is a time-varying rare disasters model.

Finally, there is substantial recent interest in understanding the temporal composition of risk in

asset prices, including Cochrane and Hansen (1992), Bansal and Lehman (1997), Hansen, Heaton,

and Li (2008), Hansen and Scheinkman (2009), Borovicka, Hansen, Hendricks, and Scheinkman

(2009), Alvarez and Jermann (2004, 2005), Martin (2008), Backus, Routledge, and Zin (2008), and

Backus, Chernov, and Martin (2009).

2 Decomposing Affine Models for Stocks and Bonds

We develop an affine valuation model to price both stocks and bonds. The next section shows

how a relatively minor change in setup relative to the canonical term structure literature allows

us to price stocks in addition to bonds. The exercise leads to a model with consistent risk pricing

across stocks and bonds. To pave the way, this section sets up a generic affine pricing model. We

show how to decompose the variation in its stochastic discount factor into a part that is transitory

and a part that reflects permanent shocks. This decomposition will prove to be very useful in

understanding the link between stock and bond returns.

2.1 Setup

Let Pt be the price of a risky asset and Dt+1 its (stochastic) cash-flow. Then the stochastic discount

factor (SDF) SDFt+1 > 0 makes Pt = Et[SDFt+1(Pt+1 + Dt+1)]. The stochastic discount factor

SDFt+1 is the ratio of the pricing kernels at times t + 1 and t:

SDFt+1 =
Mt+1

Mt

.
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Our SDF takes the same form as in the term structure literature:

SDFt+1 = exp

(

−yt −
1

2
Λ′

tΣΛt − Λ′
tεt+1

)

, (1)

where yt is the short-term interest rate, εt+1 is a N ×1 vector of shocks to the N ×1 vector of state

variables Xt, and where Λt is the N ×1 vector of market prices of risk associated with these shocks

at time t. As in the canonical affine model, the short rate in (2) and the prices of risk in (3) are

affine in the state vector Xt, and the state vector in (4) follows a first-order vector-autoregression

with intercept γ0, companion matrix Γ, and conditionally normally, i.i.d. distributed innovations,

εt ∼ N (0, Σ):

yt = δ0 + δ′1Xt, (2)

Λt = Λ0 + Λ1Xt, (3)

Xt+1 = γ0 + ΓXt + εt+1. (4)

The stochastic discount factor, the short rate, and all other objects in the paper such as yields

and returns are nominal. Lowercase letters denote natural logarithms: sdft = log (SDFt) and

mt = log (Mt).

First, this model (1)-(4) implies an affine term structure of bond yields of different maturi-

ties (Duffie and Kan (1996) and Duffee (2002)). The price of a nominal bond of maturity τ is

exponentially affine in the state variables X:

Pt(τ) = exp {A(τ) + B′(τ)Xt} . (5)

By no-arbitrage, we have:

Pt(τ) = Et [SDFt+1Pt+1(τ − 1)]

= exp {−δ0 − δ′1Xt + A(τ − 1) + B′(τ − 1)γ0+

B′(τ − 1)ΓXt − Λ′
tΣB(τ − 1) +

1

2
B′(τ − 1)ΣB(τ − 1)

}

,

which implies that A(τ) and B(τ) follow from the recursions:

A(τ) = −δ0 + A(τ − 1) + B′(τ − 1)γ0 − Λ′
0ΣB(τ − 1) +

1

2
B′(τ − 1)ΣB(τ − 1), (6)

B(τ) = −δ1 + (Γ − ΣΛ1)
′ B(τ − 1), (7)

initiated at A(0) = 0 and B(0) = 01×N . Bond yields and bond prices are related through: yt(τ) =

− log (Pt(τ)) /τ . Finally, the short rate yt = −A(1) − B(1)′Xt, which recovers equation (2).
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Second, for each asset j with gross return Rj, a no-arbitrage condition must hold:

Et

[

SDFt+1R
j
t+1

]

= 1,

Log returns can always be written as the sum of expected and unexpected returns: rj
t+1 = Et[r

j
t+1]+

ηj
t+1. Unexpected log returns ηj

t+1 are assumed to be conditionally normally distributed. We denote

the covariance matrix between shocks to returns and shocks to the state variables by ΣXj . We

define log excess returns to include a Jensen adjustment:

rxj
t+1 ≡ rj

t+1 − yt +
1

2
V [ηj

t+1].

The no-arbitrage condition then implies:

Et

[

rxj
t+1

]

= −Covt

[

rxj
t+1, sdft+1

]

= Cov
[

ηj
t+1, ε

′
t+1

]

Λt ≡ ΣXj (Λ0 + Λ1Xt) . (8)

Unconditional expected excess returns are computed by taking the unconditional expectation of

(8):

E
[

rxj
t+1

]

= ΣXj (Λ0 + Λ1E [Xt]) ≡ ΣXjΛ̂0. (9)

2.2 Variance Decomposition of the SDF

Hansen, Heaton, and Li (2008) and Hansen and Scheinkman (2009) show that -under mild regu-

larity conditions- any pricing kernel can be decomposed as:

Mt = βtMe
t MP

t ,

in which MP
t is a martingale, Et[M

P
t+1] = MP

t , and Me
t solves the eigenfunction problem:

Et

[

Mt+1

Mt

1

Me
t+1

]

= β
1

Me
t

. (10)

They also show that the martingale component of the pricing kernel determines the pricing of cash

flows in the long run. Such decompositions are therefore helpful in understanding asset pricing

properties across different horizons. The following proposition shows how to decompose the SDF

of the canonical affine valuation model.
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Proposition 1. The stochastic discount factor of the affine model can be decomposed as:

Me
t+1

Me
t

= exp {−B′
∞γ0 + B′

∞ (I − Γ) Xt − B′
∞εt+1} , (11)

MP
t+1

MP
t

= exp

{

−
1

2
(Λt − B∞)′ Σ (Λt − B∞) − (Λt − B∞)′ εt+1

}

, (12)

with constant β given by:

β = exp

{

−δ0 + (γ′
0 − Λ′

0Σ) B∞ +
1

2
B′

∞ΣB∞

}

.

The proof, which is relegated to Appendix A, solves the eigenfunction problem in (10). We also

provide an alternative proof based on the Alvarez and Jermann (2005) methodology (AJ). While

the decompositions of Hansen and Scheinkman (2009) and AJ do not coincide in general, they do

in affine valuation models. Following the language in AJ, we refer to the martingale component

MP
t as the permanent component and to the dominant pricing component for bonds MT

t ≡ βtMe
t

as the transitory component of the pricing kernel.3

The next section shows how the decomposition of the SDF in a transitory and a permanent

component is useful in identifying important candidate pricing factors for our empirical SDF. AJ

link the variance decomposition of the SDF into permanent and transitory components to the

maximum risk premium across all assets and the risk premium on a long-horizon bond. Similar

to the Hansen and Jagannathan (1991) bounds, the variance ratio allows us to learn about the

properties of the SDF from studying stock and bond returns directly.

We compute the same variance decomposition for affine valuation models. To this end, we define

the transposed risk-neutral companion matrix Θ = (Γ − ΣΛ1)
′. Using this definition, equation (7)

simplifies to B(τ) = −δ1 + ΘB(τ − 1). This recursion has the following solution:

B(τ) = −(I − Θτ )(I − Θ)−1δ1.

The object B∞, which measures the sensitivity of the infinite horizon bond to the state variables

X, is given by

B∞ ≡ lim
τ→∞

B(τ) = −(I − Θ)−1δ1. (13)

With this decomposition in hand, we can calculate what fraction of the conditional variance

of the stochastic discount factor comes from the permanent and from the transitory components.

3While both AJ and Hansen, Heaton, and Li (2008) use the terminology “transient or transitory component,”
this label might be somewhat misleading in the sense that this pricing component is the dominant term in pricing
long-horizon bonds. We thank Lars Hansen for pointing this out to us.
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The variance of the log stochastic discount factor is given by:

vart (log SDFt+1) = Λ′
tΣΛt.

Likewise, for the permanent component, we have:

vart

(

log MP
t+1/M

P
t

)

= (Λt − B∞)′ Σ (Λt − B∞) .

Define the fraction of the conditional variance of the log SDF that comes from the permanent

component by ωt:

ωt ≡
vart

(

log MP
t+1/M

P
t

)

vart (log SDFt+1)
.

It follows that:

ωt =
(Λt − B∞)′ Σ (Λt − B∞)

Λ′
tΣΛt

= 1 −
B′

∞ΣΛt −
1
2
B′

∞ΣB∞
1
2
Λ′

tΣΛt

= 1 −
Et[r

b
t+1(∞) − yt]

maxj Et[r
j
t+1 − yt]

. (14)

2.3 Link with Stock and Bond Pricing

The conditional variance ratio in (14) is one minus the ratio of the expected excess log return on a

bond of infinite maturity (excluding Jensen adjustment) to the highest attainable expected excess

log return on any risky asset in the economy (excluding Jensen adjustment).4 Intuitively, this ratio

is one minus the ratio of the long bond risk premium over the maximum risk premium. Fluctuations

in the conditional variance of the SDF arising from the permanent (transitory) component become

less (more) important when the long bond risk premium increases relative to the maximum risk

premium.

Variation in the transitory component of the SDF is tightly linked to the bond market. In

particular, the transitory component equals the inverse of the gross return on an infinite maturity

bond:
MT

t+1

MT
t

= (Rt+1(∞))−1 .

4From the no-arbitrage equation and the concavity of the log, it follows that 1
2vart (sdft+1) = 1

2Λ′
tΣΛt ≥ Et[r

j
t+1−

yt] for any risky asset j. This equation holds with equality for an asset j whose return is perfectly conditionally
correlated with the sdf and has conditional volatility equal to the condition volatility of sdf . Such an asset always
exists in an economy where markets are complete and where leverage is allowed.
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Hence, shocks to the transitory component are shocks to the long-horizon bond return. Without

a transitory component, excess bond returns are zero and the term structure of interest rates is

constant. To see this in the context of our affine model, it suffices to set δ1 = 0. It follows that B(τ)

and hence the bond risk premium B(τ)ΣΛt are zero at any maturity τ . Because also B∞ = 0,

ωt = 1 in equation (14) and all variation in the SDF comes from permanent shocks. Another

example of an economy without transitory shocks is the standard consumption-based asset pricing

model, which features CRRA preferences and i.i.d. consumption growth. In that model, all bond

risk premia are zero and all variation in the SDF reflects permanent shocks. In reality, bond yields

are not constant and bond returns are not zero; they fluctuate over time. Hence, variation in bond

risk premia suggests not only the existence of a transitory component in the SDF, but also time

variation in the conditional variance of that transitory component.

AJ argue that variation in the permanent component of the SDF is naturally linked to the

stock market. They show that in a world without permanent shocks to the SDF, the highest

risk premium in the economy is the (infinite maturity) bond risk premium. They then argue

that a model with only transitory shocks is counterfactual because various empirical measures of

the long-horizon bond risk premium are small relative to various measures of the maximum risk

premium; the unconditional variance ratio E[ωt] is close to one. Their proxies for the maximum

risk premium are the return on the value-weighted stock market portfolio, a levered-up version of

the stock market return, or a fixed-weight portfolio formed from ten size-decile stock portfolios.

Hence, shocks to the aggregate stock market return are a natural candidate for shocks to the

permanent component of the SDF. The model with only a transitory component arises as a special

case of our model when Λ1 = 0 and Λ0 = B∞. Since the last entry of B∞ is zero, it implies that

the price of DP risk must be zero, which is exactly the price or risk we associate with permanent

shocks.

A large literature on stock and bond return predictability shows that equity and bond risk

premia vary over time. For example, a variable such as the log dividend price ratio (DP ) on the

aggregate stock market is a good predictor of future excess stock returns, and a variable such as

the Cochrane and Piazzesi factor (Cochrane and Piazzesi 2005), henceforth CP factor, is a good

predictor of future excess bond returns. Variation in equity risk premia suggests time variation in

the conditional variance of the permanent component, while variation in bond risk premia suggests

time variation in the conditional variance of the transitory component. Importantly, stock and

bond risk premia are far from perfectly correlated with each other. While the findings of AJ

show that the SDF must have a large permanent component on average, the return predictability

evidence shows that the conditional variance ratio ωt cannot be constant. Understanding what

drives the variation in ωt is one of the key questions of this paper.

This analysis suggests that any successful asset pricing model must have three essential features:
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(1) shocks to the permanent component of the SDF, (2) shocks to the transitory component of

the SDF, and (3) shocks to the relative importance of the permanent and transitory components.

While these insights are general, in the next section we specialize our analysis to the context of

the affine asset pricing model. In that model, shocks to the dividend yield, henceforth DP factor,

capture shocks to stock returns and hence to the permanent component. Shocks to the level of

the term structure of interest rates capture shocks to bond returns, and hence to the transitory

component of the SDF. Finally, shocks to the CP factor capture shocks to the bond risk premium

and shocks to the DP factor capture shocks to the equity risk premium. One, or a combination, of

these two shocks thus captures shocks to the relative contribution of the permanent and transitory

components ωt. Thus, our three key state variables, the DP factor, the level factor, and the CP

factor, follow naturally from the preceding discussion.

Appendix B gives an example of a consumption-based model asset pricing model that is nested

by our more general affine framework. It is the minimal setup that has the three essential features.

Aggregate consumption has a transitory (autoregressive) component and a permanent (random

walk) component. The transitory component is homoscedastic while the variance of the permanent

component’s innovations follows an autoregressive process. All three innovations are independent.

The conditional variance of the permanent component, which can be interpreted as capturing time-

varying economic uncertainty, governs the variation in the ratio ωt. When economic uncertainty

decreases, say in periods with good prospects for economic activity, more of the conditional variance

of the SDF comes from the transitory shocks.

3 Estimation

This section shows that an affine valuation model with three priced sources of risk connected

to the permanent component, the transitory component, and the relative contribution of each is

sufficiently general to account for the bulk of variation in (1) the cross-section of average returns

on stock portfolios and bond portfolios, (2) the dynamics of stock and bond risk premia, and (3)

the dynamics of bond yields. The result is a parsimonious model with consistent pricing of risk

across stock and bond markets.

3.1 Estimation Strategy

We start by laying out our strategy for estimating the parameters of the model in equations (1)-(4).

We partition the set of parameters in three subsets, which are estimated in three steps.

One set of parameters governs the dynamics of bond yields. It consists of 16 parameters in

the risk-neutral companion matrix Θ and 4 parameters in the vector δ1. Following Cochrane and

Piazzesi (2008), we estimate these parameters to match the time-series of demeaned yields on
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1-year bonds and forward rates of maturities 2, 3, 4, and 5 years.

The second set of parameters governs the dynamics of the market prices of risk in the matrix

Λ1. For parsimony, we only estimate 2 such parameters freely. They are chosen to match the

time variation in aggregate stock and bond risk premia, respectively. In particular, we match the

coefficients in the predictability regression of aggregate stock market excess return on the DP

factor and in the predictability regression of the excess return on an equally-weighted portfolio of

one- to five-year bonds on the CP factor. All individual stock portfolios have expected returns

that are affine in the DP factor and all individual bond portfolios have expected returns that are

affine in the CP factor. This part of the estimation requires estimates of the residuals, which we

obtain by estimating the VAR model in (4) by OLS.

The third, and last, set of parameters governs average prices of risk in Λ0. As motivated above,

we estimate three parameters: the price of DP risk, the price of level risk, and the price of CP risk.

They are chosen to match the unconditional average excess return on the aggregate stock market,

on ten book-to-market sorted stock portfolios, and on five maturity-sorted bond portfolios. In a

robustness analysis below, we study alternative choices of equity portfolios as well as corporate

bond portfolios.

While only three state variables have shocks that are priced sources of risk, the state vector

contains two additional elements: a slope and a curvature factor. They are the second and third

principal components of forward rates. While their prices of risk are zero, they are useful for

adequately describing expectations of future bond yields. In sum, our state vector contains five

“yield” variables in the following order: the CP factor, the level factor, the slope factor, the

curvature factor, and the log dividend yield on the aggregate stock market portfolio DP . Their

dynamics are described by equation (4).

We impose a restriction that the dividend yield does not forecast future bond yields, beyond

the current bond yields themselves: Γ(1:4,5) = 04×1. Without this restriction, the model implies

that the dividend yield is an affine function of any five yields. This implication of the model is

easily rejected in the data. Finally, we construct the CP factor following Cochrane and Piazzesi

(2005).5

The next sections present the estimation results and further details on the estimation. We

discuss the results in order of importance, while the description above is the order in which we

estimate the parameters.

5We use monthly Fama-Bliss yield data for nominal government bonds of maturities one- through five-years.
These data are available from June 1953 until December 2008. We construct one- through five-year forward rates
from the one- through five-year bond prices. We then regress the equally-weighted average of the one-year excess
return on bonds of maturities of two, three, four, and five years on a constant, the one-year yield, and the two-
through five-year forward rates. The yields are one-period lagged relative to the return on the left-hand side. The
CP factor is the fitted value of this predictive regression. The R2 of this regression in our sample of monthly data is
20.4%, roughly twice that of the fiver-year minus one-year yield spread, another well-known bond return predictor.
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3.2 The Cross-Section of Unconditional Expected Returns

We first describe the estimation of the average price of risk parameters in Λ̂0. More precisely,

we estimate the average price of CP risk (first element), the average price of level risk (second

element), and the average price of DP risk (fifth element of Λ̂0). We do so in order to minimize

the root mean-squared pricing errors on a cross-section of J stock and bond portfolios.

Let E [rxt+1] be the J ×1 vector of average log excess returns (including a Jensen adjustment).

Let ΣX(i)J be the J×1 vector of covariances between the ith shock to the state vector and unexpected

returns η on all of the J assets, then the no-arbitrage conditions in equation (9) imply that

E [rxt+1] = ΣX(1,2,5)J Λ̂0(1,2,5).

The three prices of risk that minimize the equally-weighted average of squared pricing errors are

found by regressing the J × 1 average excess returns on the J × 3 covariances.

Our test assets are the ten value-weighted portfolios sorted on their book-to-market ratio from

Fama and French (1992), the value-weighted stock market return from CRSP (NYSE, Amex, and

Nasdaq), and five bond portfolios with maturities 1, 2, 5, 7, and 10 years from CRSP. The data are

monthly from June 1952 until December 2008. In order to form unexpected returns η, we regress

each stock portfolio’s log excess return on the lagged DP factor and each bond portfolio’s log

excess return on the lagged CP factor. Unexpected returns are the residual from these regressions;

see Section 3.3. Innovations to the state vector follow from equation-by-equation OLS estimation

of the VAR model in (4).

The first column of Table 1 shows the expected excess returns, expressed in percent per year,

on our 16 test assets we wish to explain. They are the pricing errors resulting from a model where

all prices of risk in Λ̂0 are zero, i.e., from a risk-neutral SDF model (RN SDF ). Average excess

returns on bonds are between 1.1 and 2.0% per year and increase in maturity. The aggregate excess

stock market return is 6.0%, and the risk premia on the book-to-market portfolios range from 5.0%

(BM1, growth stocks) to 10.1% (BM10, value stocks), implying a value premium of 5.15% per year.

The results from our model are in the second column of Table 1. The top panel shows the

pricing errors. Our model succeeds in reducing the mean absolute pricing errors (MAPE) on the

16 stock and bond portfolios to a mere 40 basis points per year. The model succeeds in eliminating

the value spread: The spread between the extreme portfolios is only 25bp per year. We also match

the market equity risk premium and the average bond risk premium. Pricing errors on the stock

and bond portfolios are an order of magnitude lower than in the first column and substantially

below those in several benchmark models we discuss below. In sum, our three-factor pricing model

is able to account for the bulk of the cross-sectional variation in stock and bond returns with a

single set of market price of risk estimates.
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The bottom panel of the table shows the point estimates for Λ̂0. We estimate a positive price of

CP risk, while the price of level factor risk and DP risk are negative. We also calculate (asymptotic)

standard errors on the Λ0 estimates using GMM with an identity weighting matrix. The standard

errors are 33.73 for the CP factor price (88.06), 9.36 for the level factor price (-23.98), and 1.43

for the DP factor price (-1.98). Hence, the first two risk prices are statistically different from zero

(with t-stats of 2.6 and -2.6), whereas the last one is not (t-stat of -1.4). The signs on the price of

level and DP risk estimates are as expected. First, a positive shock to the level factor leads to a

drop in bond prices and bond returns. A negative shock to bond returns is a positive shock to the

transitory component of the SDF. Positive shocks to the SDF increase the representative agent’s

marginal utility of consumption, and, hence, they carry negative risk prices. Likewise, a positive

shock to the DP factor leads to a drop in stock prices and stock returns. It is a positive shock to

the permanent component of the SDF, which again should carry a negative risk price. We return

at length to the CP factor and its positive risk price below.

To help us understand the separate roles of each of the three risk factors in accounting for

the risk premia on these stock and bond portfolios, we switch on only one risk factor and set the

other risk prices to zero. Column 3 of Table 1 minimizes the pricing errors on the same 16 test

assets but only allows for a non-zero price of level risk (Column Level). This is the bond pricing

model proposed by Cochrane and Piazzesi (2008). The cross-section of average bond returns is

well described by differences in exposure to the level factor. Long-horizon bonds have returns that

are more sensitive to interest rate shocks than short-horizon bonds; a familiar duration argument.

However, this bond SDF is unable to jointly explain the cross-section of stock and bond returns;

the MAPE is 2.68%. All pricing errors on the stock portfolios are large and positive, there is a

6% value spread, and all pricing errors on the bond portfolios are large and negative. Clearly,

exposure to the level factor alone does not help to understand the high equity risk premium nor

the value risk premium. Value and growth stocks have similar exposure to the level factor. The

reason that this model does not do better pricing the bond portfolios is that the excess returns on

stock portfolios are larger in magnitude and therefore receive most attention in the optimization.

Consequently, the estimation concentrates its efforts on reducing the pricing errors of stocks.

To illustrate that this bond SDF is able to price the cross-section of bonds, we estimate the

same model by minimizing only the bond pricing errors (the first five moments in the table). The

fourth column of Table 1 (Level - only bonds) confirms the Cochrane and Piazzesi (2008) results

that the bond pricing errors are small. However, the overall MAPE increases to 4.82%. The

canonical bond pricing model offers one important ingredient for the joint pricing of stocks and

bonds: bonds’ heterogeneous exposure to the level factor. However, this ingredient does not help

to account for equity returns. In the language of our model, equity portfolios display no interesting

heterogeneity in their exposure to shocks to the transitory component of the SDF. A model with
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only transitory shocks cannot jointly explain stock and bond returns.

Another natural candidate is the canonical equity pricing model: the capital asset pricing

model (CAPM). The only non-zero price of risk is the one corresponding to the dividend yield.6

The fifth column of Table 1 (DP) reports pricing errors for the CAPM. This model is again unable

to jointly price stock and bond returns. The MAPE is 1.50%. One valuable feature is that the

aggregate market portfolio is priced well and the pricing errors of book-to-market portfolio returns

go through zero. This means that the model gets the common level in all stock portfolio returns

right. However, the pattern of pricing errors still contains the entire value spread. Pricing errors

on bond portfolios are sizeable as well and are all positive. In the language of our model, neither

book-to-market nor bond portfolios display interesting heterogeneity in their exposure to shocks to

the permanent component of the SDF. Models with only permanent shocks, such as the canonical

CAPM or consumption-CAPM, cannot jointly explain stock and bond returns.

[Table 1 about here.]

So, while the level factor helps to explain the cross-sectional variation in average bond returns

and the DP factor helps to explain the level of equity risk premia, neither factor is able to explain

why value stocks have much higher risk premia than growth stocks. The sixth column of Table 1

indeed shows that having both the level and the DP factor priced does not materially improve the

pricing errors and leaves the value premium puzzle in tact.

This is where the CP factor comes in. Figure 3 decomposes each asset’s risk premium into its

three components: risk compensation for exposure to the CP factor, the level factor, and the DP

factor. The top panel is for the market portfolio (first bar) and the five bond portfolios (next five

bars). The bottom panel shows the decomposition for the 10 book-to-market portfolios, ordered

from growth (left bars) to value (right bars). This bottom panel shows that all ten book-to-market

portfolios have about equal exposure to both DP and level shocks. The spread between value

and growth risk premia entirely reflects differential compensation for CP risk. Value stocks have

a large and positive exposure to CP shocks of while growth stocks have a low or even negative

exposure to CP shocks. The differential exposure between the tenth and first book-to-market

portfolio is 0.0053 and is statistically different from zero. Multiplying by the market price of CP

risk of 88.06, this delivers a value premium of 0.46% per month or 5.58% per year.7 That is, the

CP factor’s contribution to the risk premia (more than) fully accounts for the value premium.

6We also considered a model in which the dividend yield is replaced by the aggregate stock market return. The
fit for the unconditional expected returns is very similar. However, such a model does not capture the predictability
of stock returns, making the current model a parsimonious alternative that can capture both the conditional and
unconditional price of aggregate stock market risk.

7Another way to understand the 5.58% value premium is as the product of a CP factor beta for the value-minus-
growth portfolio and a risk premium for CP risk. The former is 74.27 and the latter is 0.0063 per month or 0.0752
per year. Hence, the risk premium for CP risk is 0.075% per year. Since the factors are close to orthogonal to each
other, the overall risk premium is approximately the sum of three such terms.
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Given the monotonically increasing pattern in exposures of the book-to-market portfolios to CP

shocks, a positive price of CP risk estimate is what allows the model to match the value premium.

In the language of our model, book-to-market portfolios do display interesting heterogeneity in

their exposure to shocks that affect the relative contribution of the permanent versus transitory

component to the overall variance of the SDF.

The key economic questions that are left unanswered at this point are: what economic source

of risk do CP shocks capture, and why do value stocks have higher exposure to these shocks than

growth stocks? Below we argue that an increase in CP signals an improvement in the business

cycle going forward. This implies that CP innovations should command a positive price of risk,

as for instance in a model where the representative agent has a preference for early resolution of

uncertainty. Value stocks’ returns are more sensitive to CP shocks, resulting in the value premium.

Turning to the top panel, the first bar makes clear that the aggregate stock market’s risk

premium entirely reflects compensation for DP risk. For the five bond portfolios matters are more

intricate. Risk premia are positive and increasing in maturity due to their exposure to level risk.

The exposure to level shocks is negative and the price of level risk is negative, resulting in a positive

contribution to the risk premium. This is the duration effect mentioned above. But bonds also

have a negative exposure to CP shocks. Being a proxy for the risk premium in bond markets,

positive shocks to CP lower bond prices and returns. This effect is larger the longer the maturity

of the bond. Given the positive price of CP risk, this exposure translates into an increasingly

negative contribution to the risk premium. The sum of the level and CP contributions delivers

the observed pattern of risk premia that increase in maturity.

To highlight the challenge in jointly pricing stocks and bonds, Appendix C develops a stark

model where (1) the CP factor is a perfect univariate pricing factor for the book-to-market port-

folios (it absorbs all cross-sectional variation), (2) the level factor is a perfect univariate pricing

factor for the bond portfolios, and (3) the CP and the level factor are uncorrelated. This model

will generally fail to price the stock and bond portfolios jointly because the bond portfolios are

exposed to the CP factor, while the stock portfolios are not exposed to the level factor. Given

these facts, a joint pricing model only works if the exposures of maturity-sorted bond portfolios to

CP are linear in maturity, with a similar (absolute) slope as the level exposures. The appendix

underscores the challenges in finding a model with consistent risk prices across stocks and bonds,

or put differently the challenge of going from univariate to multivariate pricing models.

[Figure 3 about here.]

3.3 Time Series of Conditional Expected Returns

The second block of parameters governs the dynamics of expected excess stock and bond returns.

These are the parameters in the matrix Λ1, which determine how market prices of risk vary with the
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state variables (recall equation 8). First, we model expected excess stock returns on the aggregate

stock market as well as on the decile book-to-market portfolios as an affine function of the log

dividend-price ratio on the aggregate stock market DP :

rxj
t+1 = rx0 + ξj

sDPt + ηj
t+1, (15)

where j denote the stock portfolios. This specification follows a long tradition in the stock return

predictability literature; see for instance Fama and French (1988), Cochrane (2006), Lettau and Van

Nieuwerburgh (2008), and Binsbergen and Koijen (2009). To generate stock return predictability,

we make the market price of DP risk dependent on the DP factor. We choose Λ1(5,5) to exactly

match the return predictability coefficient ξj
s for the aggregate stock market (j = m). In the model,

this coefficient is ΣX(5)mΛ1(5,5). Setting it equal to the estimate from (15) gives Λ1(5,5) = Σ−1
X(5)mξm

s .

Our point estimate is negative signalling that an increase in DP leads to higher equity risk premia

because the price of DP risk is negative and a higher DP makes it more negative.

While the model matches the predictability of aggregate stock market returns by the dividend

yield exactly, it also implies a predictive coefficient for the ten book-to-market portfolios. Figure 9

juxtaposes the implied predictive coefficient and the one the freely estimated from equation (15)

for each of the decile book-to-market portfolios. It shows that the two sets of coefficients line up

well.

[Figure 4 about here.]

Second, we impose that the CP ratio does not predict future stock returns. This restriction

amounts to:

Λ1(5,1) = −Λ1(2,1)

ΣX(2)m

ΣX(5)m

.

Hence, Λ1(5,1) is not a free parameter, but follows from the estimated covariances and the estimated

risk price coefficient Λ1(2,1) to which we turn next. In our sample, we find only weak evidence for

one-month-ahead return predictability of the market portfolio or of any of the 10 book-to-market

portfolios by the CP factor, beyond that captured by DP . Nevertheless, we consider such an

extension in Section 4.1.

Third, we assume that excess bond returns are predicted by the CP factor. Cochrane and

Piazzesi (2005) show that this factor is a strong forecaster of bond returns. Expected excess bond

returns are given by:

rxj
t+1 = rx0 + ξj

bCPt + ηj
t+1, (16)

where j denote the bond portfolios. To generate bond return predictability, we make the market

price of level risk dependent on the CP factor, following Cochrane and Piazzesi (2008). We choose

Λ1(2,1) so as to exactly match the return predictability coefficient in an equation that regresses the
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monthly excess return on an equally-weighted portfolio of our five CRSP bond portfolios (j = b) on

the lagged CP factor. Call that predictability coefficient ξb
b . Then Λ1(2,1) is found as the solution

of:

ξb
b = ΣX(2)bΛ1(2,1) + ΣX(5)bΛ1(5,1) = Λ1(2,1)

(

ΣX(2)b − ΣX(5)b

ΣX(2)m

ΣX(5)m

)

,

where the last line substitutes in the restriction on Λ1(5,1) from above. The parameter Λ1(2,1) is

estimated to be negative, consistent with the results in Cochrane and Piazzesi (2008). A negative

sign means that an increase in CP leads to higher bond risk premia because the price of level risk

is negative and a higher CP makes it more negative.

Our model also matches the forecasting power of CP for excess bond returns measured over an

annual holding period, as reported by Cochrane and Piazzesi (2005). To show this, we simulate

5,000 time series of our model of 678 observations, which is the length of our monthly sample.

For each of the samples, we construct annual returns of 2-year,. . . , 5-year bonds in excess of the

1-year return. We construct the CP factor for each of the samples and regress the bond returns on

the CP factor. This delivers 5,000 predictive coefficients for each maturity. Figure 5 reports the

predictive coefficients, averaged across the 5,000 sample paths, alongside the estimates in the data.

The model closely replicates the predictability the predictability of long-term bond returns. The

simulated slope coefficients are within one standard deviation from the observed slope coefficients.

The model simulation also does a good job matching the R2 of these predictability regressions;

they are about one standard deviation away from the observed ones.

[Figure 5 about here.]

Finally, because bond yields do not depend on the lagged DP factor, excess bond returns are

not predictable by the lagged dividend yield in the model. A regression of excess bond returns on

lagged DP and lagged CP shows a coefficient on lagged DP , which is statistically and economically

indistinguishable from zero. In summary, we estimate the following matrix Λ1:

Λ1 =

















0 0 0 0 0

−732.91 0 0 0 0

0 0 0 0 0

0 0 0 0 0

14.16 0 0 0 −4.78

















.

With this Λ1 matrix in hand, we can form Λ0 = Λ̂0 − Λ1E[X].

Figure 6 shows risk premia (log expected excess returns) on the aggregate stock market and on

the equally-weighted bond portfolio. A salient differences between equity and bond risk premia is

their persistence. Equity risk premia have a monthly autocorrelation of 0.992, which amounts to
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a half-life of 83 months (7 years), while bond risk premia have a monthly autocorrelation of 0.821,

which amounts to a half-life of 3 months. Hence, there are two frequencies in risk premia: the

bond risk premium is a business cycle frequency variable whereas the equity risk premium moves

at much lower frequencies . Together with the low correlation between bond and stock risk premia

(0.04 in our sample), this implies that two variables are needed to describe risk premia. Our model

matches the time series of expected stock and bond returns (save the average pricing error reported

in Table 1) and hence accounts for these two frequencies in equity and bond risk premia.8

[Figure 6 about here.]

3.4 Term Structure of Interest Rates

The final set of parameters to discuss are the parameters in the risk-neutral companion matrix

Θ and in the dynamics of the short rate δ1. Following the term structure literature (e.g., Duffee

(2002) and especially Cochrane and Piazzesi (2008)), we estimate these parameters to match the

demeaned one-year bond yield and the demeaned two-year through five-year forwards rates. In

the model, yields and therefore forward rates are affine in the state vector; see equation (5). In

the data, yields and forward rates are from the Fama-Bliss data set for June 1952 until December

2008.

Since the dividend yield dynamics are completely decoupled from the bond yields dynamics, we

can estimate the first 4×4 block of Θ and the first four elements of δ, for a total of 20 parameters.9

We choose them so as to minimize the mean squared pricing errors between the observed and

the model-implied forwards via a non-linear least squares optimization. The model’s SDF does a

nice job matching demeaned forward rates of maturities one- through five-years. The annualized

standard deviation of the pricing errors of annual forwards equal 12bp, 22bp, 26bp, 35bp, and

39bp for the one- through five year forwards, respectively. The implied yield pricing errors are

12bp, 7bp, 6bp, 9bp, and 3bp per year for the one- through five bond yields.10 Figure 7 shows the

implied yields in model alongside the yields in the data. In sum, the model can account for the

term structure of interest rates.

[Figure 7 about here.]

8Lochstoer (2009) develops a habit model with two goods. The conditional volatility of luxury good consumption
is cyclical while the conditional volatility of relative price changes of luxury goods is highly persistent. His model
generates two frequency in equity risk premia. We connect the cyclical bond risk premium to the cross-sectional
variation in stock returns.

9Recall that we impose that Γ(1:4,5) = 04×1. The parameters in the last row of Γ cannot be identified off bond
yields. We estimate these parameters from an OLS regression of the dividend yield on the four lagged term structure
factors and the lagged dividend yield itself.

10The parameter δ0 in (2) is chosen to minimize the difference between average forward rates in the model and
in the data. The resulting parameter is 0.0040. This parameter plays no role in the rest of our analysis.

19



A key object of interest that follows from the parameter estimates in this block is B∞, defined

in equation (13). It measures the sensitivity of the bond return to shocks to the state variables for

a bond of infinite maturity. By the same token, it controls how shocks to the state variables affect

the transitory and permanent components of the SDF in equations (11) and (12). This, in turn,

affects the conditional variance ratio ωt in equation (14) to which we turn next. It is worth pointing

out that the AJ decomposition of the SDF is only valid when the dynamics of the state under the

risk-neutral measure are stationary. Otherwise, bond yields would not be finite at infinite maturity

and the regularity conditions in AJ would be violated. Our estimates imply a largest eigenvalue

for Θ strictly less than one, so that the decomposition is well-defined.

3.5 Decomposition of the SDF

With all estimates for the affine valuation model in hand and the reassurance that the estimated

model prices average returns in the cross-section of stocks and bonds and captures the dynamics

of expected returns and bond yields, we can study the decomposition of the stochastic discount

factor into its transitory and permanent components.

The top panel of Figure 8 shows the ratio ωt of the conditional variance of the permanent

component of the stochastic discount factor to the conditional variance of the (entire) stochastic

discount factor; see equation (14). We recover the main result of Alvarez and Jermann (2005) that

almost all the unconditional variation in the SDF comes from the permanent component. The

ratio is about 1 on average.11 However, the figure also shows that there is substantial variation

over time in the conditional variance ratio. It fluctuates between 0.92 and 1.11 in our estimated

affine valuation model.

The bottom panel shows what key variable that drives this time variation in ωt: the CP factor.

The two time series have a correlation of -99.2%. Hence, we find that the CP factor is the most

important driver of the conditional variance ratio. In particular, positive shocks to CP indicate

an increasing importance of the transitory component of the SDF. The DP factor -which drives

all variation in equity risk premia and is more persistent than CP - has a much lower correlation

with the variance ratio. Because CP has a half-life of three months, it is a variable that moves at

business-cycle frequency. As a result, the relative variance ratio ωt is also a business-cycle frequency

variable, inheriting its cyclical dynamics from CP .

[Figure 8 about here.]

11Unlike AJ, we do not rely on a direct measurement of long-horizon (20- or 30-year) bond yields or forward rates
for this inference. Given potential convenience yield or liquidity effects at the long end of the term structure, this
is arguably an advantage.
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3.6 Interpreting the CP Factor and the Value Premium

The remaining economic questions are why the estimated price of CP risk is positive and why

value stocks are riskier than growth stocks.

We consider the following predictive regression in which we forecast future economic activity,

measured by the Chicago Fed National Activity Index (CFNAI ),12 using the current CP :

CFNAIt+k = ck + βkCPt + εt+k, (17)

where k is the forecast horizon expressed in months. The regressions are estimated by OLS and

we calculate Newey-West standard errors with k− 1 lags. The sample runs from March 1967 until

December 2008 because that is when the CFNAI is available.

Figure 2 shows the coefficient βk in the top panel, its t-statistic in the middle panel, and the

regression R-squared in the bottom panel. The forecast horizon k is displayed on the horizontal

axis and runs from 1 to 36 months. The key finding is the strong predictability of the CP factor

for future economic activity 12- to 24-months ahead. All three statistics display a hump-shaped

pattern, gradually increasing until approximately 20 months and gradually declining afterwards.

The maximum t-statistic is about 4.5, which corresponds to an R-squared value of just under 15%.

The results suggest that CP is a strong predictor of future economic activity. Increases in CP

signal higher economic activity in the future. The positive relationship between CP and better

economic prospects explains why the price of CP risk is positive: innovations to CP are good news

and lower the marginal utility of wealth for investors. This finding also explains why value stocks

are riskier than growth stocks. We showed that value stocks have a higher exposure to CP shocks

than growth stocks. This implies that value returns are high, exactly when economic activity is

expected to increase, i.e., when the marginal value of wealth for investors is low. This makes value

stocks riskier than growth stocks and results in the value premium.

4 Robustness and Extensions

This section considers several robustness checks. First, we consider an extension of the benchmark

model where expected stock returns depend not only of the log dividend yield, but also on the CP

factor. Second, we use a different weighting matrix in the market price of risk estimation. Third,

we compare our results to alternative pricing models. Fourth, we study additional stock and bond

portfolios. Fifth, we do a sub-sample analysis. Sixth, we calculate the maximum Sharpe ratio the

12The CFNAI is a weighted average of 85 existing monthly indicators of national economic activity. It is con-
structed to have an average value of zero and a standard deviation of one. Since economic activity tends toward
trend growth rate over time, a positive index reading corresponds to growth above trend and a negative index
reading corresponds to growth below trend.
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model admits with portfolio constraints.

4.1 Stock Returns Also Predicted by CP

In the benchmark model, expected (log) excess returns on stocks depend only on the (log) dividend

yield DPt. In a first extension, we specify expected stock returns as a linear function of both DPt

and CPt, modifying equation (15) to:

rxj
t+1 = rx0 + ξj

s1DPt + ξj
s2CPt + ηj

t+1, (18)

where j denotes the aggregate stock market portfolio (j = m) as well as the decile book-to-market

portfolios. The reason for the extension is threefold. First, Cochrane and Piazzesi (2005) show

evidence of predictability of the aggregate stock market return by CPt. Second, we find some

evidence for predictability of book-to-market portfolio returns by the CP factor, especially for

the value portfolio. Third, we want to investigate the sensitivity of our earlier result that the

conditional variance ratio ωt is almost exclusively driven by CPt to the specification of the equity

risk premium.13

We choose the market price of risk parameters Λ1(5,5) and Λ1(5,1) to exactly match the return

predictability coefficients ξm
s1 and ξm

s2, respectively. The risk price Λ1(2,1) continues to match the

bond return predictability coefficient ξb
b . All three risk price estimates are close to those in the

benchmark model.14 Figure shows the predictability coefficients in data and model for the ten

book-to-market portfolios. These are over-identifying restrictions of the model. They show that

the model does a good job replicating the predictability in the data. The one exception is that the

extreme value portfolio (BM10) has stronger predictability in the data than in the model. Allowing

the market price of CP risk to depend on the CP factor, i.e., a non-zero Λ1(1,5), would allow us to

capture this differential predictability of value versus growth stocks. For brevity and parsimony,

we do not pursue such an extension here.

[Figure 9 about here.]

More importantly, the unconditional pricing errors on the sixteen stock and bond portfolios

are essentially unchanged from our benchmark results in Table 1. The MAPE remains 40 basis

13There is no empirical evidence for the dividend yield predicting future bond returns, so we do not pursue the
reverse exercise.

14As before, we have Λ1(5,5) = Σ−1
X(5)mξ

m
s1. The other two risk prices are found by solving

[

ξm
s2

ξb
b

]

=

[

ΣX(2)m ΣX(5)m

ΣX(2)b ΣX(5)b

] [

Λ1(2,1)

Λ1(5,1)

]

.

We obtain the point estimates Λ1(5,5) = −4.678, Λ1(5,1) = −40.969, and Λ1(2,1) = −693.502.
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points per year and the price of risk parameters in Λ̂0 remain virtually unchanged. The conditional

variance ratio in (14) also remains unchanged. CP remains the only driver of ωt, with a correlation

of -99.1%. (The DP ratio has a correlation with ωt of -11.4%.) Hence, our finding that the CP

factor is the driver of the relative importance of the transitory versus permanent component of the

pricing kernel does not hinge on whether stock returns are predictable by the CP factor or not.

4.2 Weighted Least-Squares

Our cross-sectional estimation results in Table 1 assume a GMM weighting matrix equal to the

identity matrix. This is equivalent to minimizing the root mean-squared pricing error across

the 16 test assets. The estimation devotes equal attention to each pricing error, an leads to a

RMSE of 50.6bp per year. A natural alternative to the identity weighting matrix is to give more

weight to the assets that are more precisely measured. We use the inverse covariance matrix

of excess returns, as in Hansen and Jagannathan (1997). This amounts to weighting the bond

pricing errors more heavily than the stock portfolio pricing errors in our context. When using

the Hansen-Jagannathan distance matrix, we find a MAPE of 56bp per year compared to 40bp

per year. However, the weighted RMSE drops from 50.6bp to 25.6bp per year. The reason for

the improvement in RMSE is that the pricing errors on the bonds decrease substantially, from a

MAPE of 35bp to 14bp per year. Finally, the price of risk estimates in Λ̂0 are comparable to those

in the benchmark case. The price of CP risk remains positive and is estimated to be somewhat

lower than in the benchmark case, at 59.68 (with a t-statistic of 4.3). The market price of level

risk remains statistically negative (-18.58 with t-statistic of -2.7), and the price of DP risk remains

negative (-2.38) and turns marginally significant (t-statistic of 1.89). We conclude that our results

are similar when we use a different weighting matrix.

4.3 Alternative Pricing Models

In Section 3.2, we compare our SDF model to the a SDF model that has been designed to price

bonds, as proposed by Cochrane and Piazzesi (2008), and the CAPM, the most basic model for

pricing stocks. It might also be interesting to also compare the model to the three-factor model

of Fama and French (1992), which offers a better-performing alternative to the CAPM for pricing

the cross-section of stocks. We ask how well it prices the cross-section of book-to-market stocks

and government bonds over our monthly sample from June 1952 until December 2008. We use the

market return (MKT), the size (SMB), and the value factor (HML) as pricing factors and price

the same 16 test assets. The SDF of the Fama-French model takes the same form as equation

(1) but the innovations εX are the innovations in MKT, SMB, and HML.15 The last column of

15As for all other returns, innovations to these factors are formed by regressing the MKT, SMB, and HML returns
on lagged DP ; see equation (15).
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Table 1 contains the pricing errors in the Fama-French models. The MAPE is 57 basis points per

year, which is somewhat higher than the 40 basis points of our model in the second column. The

slightly worse fit in the last column is due to higher pricing errors on the bond portfolios. This is

consistent with the findings in Fama and French (1993) who introduce additional pricing factors

beyond MKT, SMB, and HML to price bonds. Our results suggest that three factors suffice. In

unreported results, we find that the difference between the MAPE of our model and the Fama-

French model increases when we weight the 16 Euler equation errors by the inverse of their variance

as opposed to equally. The reason is that our model fits the bond return moments better.

It is important to reiterate that the focus of this paper is not simply on pricing unconditional

expected returns. Our SDF simultaneously matches the predictability evidence in equity and bond

markets, and fits the dynamics of bond yields. Even if we extend the Fama and French model with

the bond factors proposed in Fama and French (1993), the resulting five-factor model would be

insufficiently rich to match the conditional moments and the term structure dynamics.

4.4 Other Test Assets

Given that we found a unified SDF that does a good job pricing the cross-section and time-series

of book-to-market sorted stock and maturity-sorted bond returns, a natural question that arises

is whether the same SDF model also prices other stock or bond portfolios. In addition, studying

more test assets allows us to address the Lewellen, Shanken, and Nagel (2009) critique. They

argue that explanatory power of many risk-based models for the cross-section of (size and) value

stocks may be poorly summarized by the cross-sectional R2. One of their proposed remedies is

to use more test assets in the evaluation of asset pricing models. Our benchmark results address

this criticism already by adding maturity-sorted government bond portfolios to the cross-section

of book-to-market stock portfolios. In addition, we now study several other sets of test assets.

We start by adding corporate bond portfolios. Then we study replacing ten decile book-to-market

portfolios by ten size decile portfolios, 25 size and book-to-market portfolios, and ten earnings-price

portfolios.

4.4.1 Adding Corporate Bond Portfolios

One asset class that deserves particular attention is corporate bonds. After all, at the firm level,

stocks and corporate bonds are both claims on the firm’s cash flows albeit with different priority

structure. We ask whether, at the aggregate level, our SDF model is able to price portfolios or

corporate bonds sorted by ratings class. Fama and French (1993) also include a set of corporate

bond portfolios in their analysis but end up concluding that a separate credit risk factor is needed

to price these portfolios. Instead, we find that the same three factors we used so far are able to

price the cross-section of corporate bond portfolios.

24



We use data from Citi’s Yield Book for four investment-grade portfolios: AAA, AA, A, and

BBB. Return data for these portfolios are available monthly from January 1980 until December

2008. Their annualized excess returns are listed in the first column of Table 2. For the sample

1980-2008, there is almost no spread in average returns between the four corporate bond portfolios.

This lack of spread is almost entirely due to the credit crisis in the Fall of 2008. For example,

in October 2008, BBB bonds suffered a -10.7% return (a seven-standard deviation drop) whereas

AAA bonds only suffered a -1.5% drop. For the sample up to December 2006, there is a 60bp

spread per year between BBB and AAA. Even though there is not much of a spread in the full

sample, there is a lot of action in the time series of these corporate bond returns, and therefore

in the conditional covariance with the stochastic discount factor. This makes it non-trivial for the

model to generate no spread between the corporate bond returns.

In a first exercise, we calculate Euler equations errors for these four portfolios, using our SDF

model presented in Section 3.2. That is, we do not re-estimate the market price of risk parameters

Λ̂0, but simply calculate the pricing errors for the corporate bond portfolios. The resulting annu-

alized pricing errors are listed in the second column of Table 2. The model does a reasonable job

pricing the corporate bonds: pricing errors are about 1.3% per year, compared to excess returns of

about 3.5% per year. The mean absolute pricing error among all twenty test assets (ten BM port-

folios, the market portfolio, five Treasury bond portfolios, and four corporate bond portfolios) is 58

basis points per year, compared to 40 basis points per year without the corporate bond portfolios.

Equally interesting is to re-estimate the market price of risk parameters of the SDF model when

the corporate bond portfolios are included in the set of test assets. We do not allow for additional

priced factors; the CP , level, and DP factors remain the only three priced risk factors. The third

column of Table 2 shows that the corporate bond pricing errors are down to below 60 basis points

per year on average. The overall MAPE on all 20 assets is 49 basis points per year, a mere 9 basis

points above the MAPE when corporate bonds were not considered and 9 basis points less than

when the corporate bonds were not included in the estimation. There is no monotone pattern

in the pricing errors on the corporate bonds, suggesting our model is successful in generating no

spread between the excess returns. Finally, comparing Columns 2 and 3, the point estimates for

the market prices of risk Λ0 in Panel B are very similar for the models with or without corporate

bonds. The last column reports results for the Fama-French three-factor model. Its pricing errors

are higher than in our three-factor model; the MAPE is 77 basis points. Average pricing errors

on the corporate bond portfolios are about 1.05% per year, and monotonically declining in credit

quality.

[Table 2 about here.]
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4.4.2 Different Stock Portfolios

Table 3 shows three exercises where we replace the ten book-to-market sorted portfolios by other

sets of stock portfolios. In the first three columns we use ten market capitalization-sorted portfolios

alongside the bond portfolios and the market. The first column shows the risk premia to be

explained (risk neutral SDF). Small firms (S1) have about 3.5% higher risk premia than large

stocks (S10). Our model in the second column manages to bring the overall mean absolute pricing

error down from 5.8% per year to 0.52% per year, comparable to the 40 basis points we obtained

with the book-to-market portfolios. This MAPE is comparable to that in the Fama-French model

in the third column. The Fama-French model does better eliminating the spread between small

and large stocks, whereas our model does better pricing the bond portfolios alongside the size

portfolios. The next three columns use ten earnings-price-sorted stock portfolios and are organized

the same way. High earnings-price portfolios have average risk premia that are 4.4% higher per

year than low earnings-price portfolios. Our model reduces this spread in risk premia to less than

1% per year, while continuing to price the bonds reasonably well. The MAPE is 78 basis points

per year compared to 91 in the Fama-French model. The last three columns use the five-by-five

market capitalization- and book-to-market-sorted portfolios. Our three-factor model manages to

bring the overall mean absolute pricing error down from 7.29% per year to 1.37% per year. This is

again comparable to the three-factor Fama-French model. Relative to the FF model, ours reduces

the pricing errors on the S1B1 portfolio but makes a larger error on the S1B4 and S1B5 portfolios.

In all size quintiles but the first, our model is successful at eliminating most of the value spread,

just like the FF model. Finally, the market price of risk estimates Λ̂0 for the three additional sets

of test assets are similar to those we found for the book-to-market portfolios in Table 1.

[Table 3 about here.]

4.5 Subsample Analysis

We investigate the robustness of our main result in Table 1 by studying two subsamples. If we

start the analysis in 1963, an often-used starting point for cross-sectional equity analysis (e.g.,

Fama and French (1993)), we find very similar results. The left columns of Table 4 shows a MAPE

of 40bp per year, identical to what we found for the full sample. Our model improves relative to

the Fama-French three-factor model, which has a pricing error of 72bp. There are no monotone

patterns in the pricing errors on bonds or book-to-market decile portfolios. In the right columns,

we investigate the results in the second half of our sample, 1980-2008. Mean absolute pricing errors

rise to 59 basis points but the risk premia to be explained in this subsample are higher as well. In

this subsample, the MAPE under the Fama-French model is 106 basis points. Panel B of Table

4 shows that the price of risk estimates are similar to the ones from the benchmark estimation.
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These subsample results use yield factors which are estimated over the entire sample. In unreported

results, we have re-estimated the state vector (e.g., the CP factor) over the sub-sample in question.

The results are similar.

[Table 4 about here.]

4.6 Constraining the Maximum Sharpe Ratio on Bonds

A common problem with affine term structure models is that they imply high Sharpe ratios, arising

from unconstrained bond portfolios.16 Our model is no exception because it contains an affine term

structure model as a building block. Given our four-factor term structure model, there exists a

portfolio of four bonds that is perfectly correlated with the maximum risk premium achievable with

bonds.17 The bond portfolio that achieves the maximum bond risk premium contains very large

long and short positions (on the order of 106), and has an annualized Sharpe ratio of 2.6. Because

this magnitude Sharpe ratio might seem too high, we consider a constrained maximum Sharpe

ratio which imposes limits on the portfolio positions. Since the problem is situated in the bond

positions, we can safely ignore the stock portfolios, and compute the constrained maximum bond

risk premium. In particular, we search for the vector of portfolio weights on one-, two-, three-,

and four-year bonds that maximizes the correlation between the resulting portfolio return and the

SDF, subject to constraints on the portfolio weights. Our constraints are of the form −α ≤ wj ≤ 1,

and we study α = 0, .50, and 1. Panel B of Table 5 shows that the resulting constrained maximum

Sharpe ratios are .77 (.28), 0.94 (.17), and .94 (.17) annualized, respectively (time series standard

deviations in parentheses). These constrained Sharpe ratios are much more reasonable than the

unconstrained one. In fact, they are not much higher than the Sharpe ratios that can be achieved

with individual bonds themselves. As Panel A shows, the model does a good job matching the

Sharpe ratios on these individual bonds. We conclude that our model estimates imply reasonable

Sharpe ratios on reasonably restricted bond portfolios.

[Table 5 about here.]

5 Conclusion

This paper argues that any successful asset pricing model must have a stochastic discount factor

with three properties: a large permanent component, a smaller but non-zero transitory compo-

nent, and variation in the relative importance of the permanent and transitory components. We

16We thank Greg Duffee for pointing this out to us.
17The stock market block does not cause additional problems. It turns out that essentially all of the maximum

risk premium (96% of it) can be achieved by combining bonds alone. That maximum bond risk premium is
Λ′

t(1:4)Σ(1:4,1:4)Λt(1:4) in the model.
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set up and estimate an affine asset pricing model that has all three features. A first factor, the

level factor, captures variation in the transitory component of the stochastic discount factor. This

factor is instrumental in pricing the cross-section of average returns on bond portfolios sorted by

maturity. Without a transitory component, the term structure of interest rates would be flat and

bond excess returns would be zero. A second factor, the dividend yield, captures variation in the

permanent component of the SDF. This factor allows us to match the mean equity risk premium on

the aggregate stock market. Without the permanent component, the highest risk premium in the

economy would be the one on a long-term bond, a prediction belied by the higher equity risk pre-

mium. A third factor, the Cochrane-Piazzesi factor, captures variation in the relative contribution

of the two components to the variance of the pricing kernel. Since CP is a business cycle frequency

variable, so is the relative variance ratio. Without this factor the model’s predicted return for high

book-to-market (value) stocks would be the same as for low book-to-market (growth) stocks. We

find that value stocks have a large positive exposure to CP shocks while growth stocks have a

small negative exposure. This differential exposure together with the estimated price of risk allows

the model to quantitatively account for the value premium. Intuitively, value firms have higher

exposure to business cycle risk, as captured by the relative importance of the transitory component

of the SDF. The result of our exercise is a relatively standard looking and parsimoniously-specified

no-arbitrage asset pricing model that can account for cross-sectional differences in average stock

and bond returns, the times series of expected stock and bond returns, and the dynamics of bond

yields, with a common set of risk prices.

In future work we plan to study equilibrium asset pricing models that can quantitatively gener-

ate the links between returns on book-to-market sorted stock portfolios and maturity-sorted bond

portfolios that we have documented here. Such models should connect the CP factor to specific

sources of macroeconomic risk, such as a business cycle frequency component in the conditional

expectation or the conditional variance of aggregate consumption growth.
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A Decomposition of the Affine SDF

A.1 Proof based on Hansen and Scheinkman (2009)

We solve the eigenfunction problem:

E

[

Mt+1

Mt
e (Xt+1)

]

= βe (Xt) . (19)

We conjecture and then verify that the solution is exponentially linear in the state variables, for some

constant vector c:

e (Xt) = exp
(

c′Xt

)

.

Plugging in this conjecture leads to:

E

[

Mt+1

Mt
e (Xt+1)

]

= E

[

exp

(

−δ0 − δ′1Xt −
1

2
Λ′

tΣΛt − Λ′
tεt+1 + c′γ0 + c′ΓXt + c′εt+1

)]

= exp

(

−δ0 − δ′1Xt +
1

2
c′Σc− Λ′

tΣc+ c′γ0 + c′ΓXt

)

= β exp
(

c′Xt

)

,

were the last line implicitly defines:

β = exp

{

−δ0 +
1

2
c′Σc+

(

γ′0 − Λ′
0Σ
)

c

}

c′ = −δ′1 − c′ (ΣΛ1 − Γ) .

The solution for c is given by:

c = −
(

I + (ΣΛ1 − Γ)′
)−1

δ1 = B∞,

where the last equality follows from the definition of B∞ in the main text. Thus, we can rewrite the

expression for β as:

β = exp

{

−δ0 +
(

γ′0 − Λ′
0Σ
)

B∞ +
1

2
B′

∞ΣB∞

}

This establishes that e(Xt) = exp (B′
∞Xt). We define Me

t ≡ 1
e(Xt)

= exp {−B′
∞Xt}, so that

Me
t+1

Me
t

= exp
{

−B′
∞γ0 +B′

∞(I − Γ)Xt −B′
∞εt+1

}

.

We define the transitory component of the pricing kernel as MT
t ≡ βtMe

t , so that the transitory component

of the SDF equals:
MT

t+1

MT
t

= β
Me

t+1

Me
t

.
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Given equation (19), we can define the permanent or martingale component of the SDF,
MP

t+1

MP
t

, as the

component that has unit expectation by construction:

MP
t+1

MP
t

≡ β−1Mt+1

Mt

e(Xt+1)

e(Xt)

= β−1 exp

{

−δ0 − δ′1Xt −
1

2
Λ′

tΣΛt − Λ′
tεt+1 +B′

∞γ0 +B′
∞ (Γ − I)Xt +B′

∞εt+1

}

= exp

{

Λ′
0ΣB∞ −

1

2
B′

∞ΣB∞ − δ′1Xt −
1

2
Λ′

tΣΛt − (Λt −B∞)′ εt+1 +B′
∞ (Γ − I)Xt

}

= exp

{

−
1

2
(Λt −B∞)′ Σ (Λt −B∞) − (Λt −B∞)′ εt+1

}

A.2 Proof based on Alvarez and Jermann (2005)

We start from the definition of the transitory component of the pricing kernel, which is defined in AJ as:

MT
t = lim

τ→∞
βt+τ

Pt (τ)
.

Using the fact that the term structure of bond yields is affine in our model, we have

MT
t = lim

τ→∞
βt+τ exp

(

−A(τ) −B(τ)′Xt

)

.

The constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005):

0 < lim
τ→∞

Pt (τ)

βτ
<∞, (20)

Because of the affine term structure of our model and the stationarity of the state X under the risk-neutral

measure, the limit limτ→∞B(τ) = B∞ <∞ is finite. Taking limits on both sides of equation (6), we get

lim
τ→∞

A(τ) −A(τ − 1) = lim
τ→∞

(

γ′0 − Λ′
0Σ
)

B(τ − 1) − δ0 + lim
τ→∞

1

2
B(τ − 1)′ΣB(τ − 1)

= −δ0 +
(

γ′0 − Λ′
0Σ
)

B∞ +
1

2
B′

∞ΣB∞.

This shows that the limit of A(τ)−A(τ − 1) is finite, so that A(τ) grows at a linear rate in the limit. We

choose the constant β to offset the growth in A(τ) as τ becomes very large. Setting

β = exp

(

−δ0 +
(

γ′0 − Λ′
0Σ
)

B∞ +
1

2
B′

∞ΣB∞

)

, (21)

guarantees that condition (20) is satisfied. Intuitively, without the β term, limτ→∞A(τ) = −∞ and

limτ→∞ Pt (τ) = 0. Hence, condition (20) is a regularity condition imposing that bond yields remain finite

at infinite maturity.
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We can now write the transitory component of the SDF as:

MT
t+1

MT
t

= β exp
(

−B′
∞Xt+1 +B′

∞Xt

)

,

= β exp
(

−B′
∞ (γ0 + ΓXt + εt+1) +B′

∞Xt

)

,

= β exp
(

−B′
∞γ0 +B′

∞ (I − Γ)Xt −B′
∞εt+1

)

.

With the transitory component in hand, we can back out the permanent component of the SDF via:

MP
t+1

MP
t

=
Mt+1

Mt

(

MT
t+1

MT
t

)−1

.

Plugging in the expressions for the SDF and for its transitory component, we get:

MP
t+1

MP
t

= exp

(

−yt −
1

2
Λ′

tΣΛt − Λ′
tεt+1

)

×

β−1 exp
(

B′
∞γ0 −B′

∞ (I − Γ)Xt +B′
∞εt+1

)

,

which simplifies to

MP
t+1

MP
t

= β−1 exp

(

−δ0 +B′
∞γ0 −

[

B′
∞ (I − Γ) + δ′1

]

Xt −
1

2
Λ′

tΣΛt −
(

Λ′
t −B′

∞
)

εt+1

)

.

We need to verify that the permanent component is a martingale, i.e., that Et

[

MP
t+1/M

P
t

]

= 1.

Plugging in for β from (21), we get:

MP
t+1

MP
t

= exp

(

Λ′
0ΣB∞ −

1

2
B′

∞ΣB∞ −
[

B′
∞ (I − Γ) + δ′1

]

Xt −
1

2
Λ′

tΣΛt −
(

Λ′
t −B′

∞
)

εt+1

)

Taking conditional expectations, we get:

Et

[

MP
t+1

MP
t

]

= exp
(

−
[

B′
∞ (I − Γ) + δ′1 +B′

∞ΣΛ1

]

Xt

)

.

But the term in brackets is zero because:

B′
∞ = −δ′1 +B′

∞(Γ − ΣΛ1).

This can be seen to be true by taking limits as τ → ∞ on both sides of equation (7).
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B Example of Consumption-Based Model

In this appendix we explore a consumption-based asset pricing model that fits into the more general

framework developed in Section 2. It is meant as an example that may help to develop economic intuition

for the more general model. It is the simplest structural model we could conceive that has the three

necessary ingredients outlined in Section 3.3.

B.1 Setup

Endowment This is an endowment economy with a continuum of identical atomless agents. The

endowment process, which must equal consumption in equilibrium, contains a transitory and a permanent

component:

Ct = CT
t C

P
t , or ct = cTt + cPt ,

where uppercase letters denote levels and lowercase letters denote logs. This is a standard Beveridge-

Nelson decomposition of log consumption into a cyclical component cTt and a random walk component

cPt . All quantities are expressed in nominal terms, as in the main text.

We make the following assumptions on the two components of consumption:

cTt+1 = µc + ρcTt + σεt+1, (22)

cPt+1 = cPt −
1

2
s2t + stηt+1, (23)

s2t+1 − s̄2 = ν(s2t − s̄2) + σwwt+1, (24)

where (εt+1, ηt+1, wt+1) are standard normal i.i.d. random variables. The transitory component is a

homoscedastic AR(1) process in logs and the permanent component is a random walk in levels (Et[C
P
t+1] =

CP
t ) with heteroscedastic innovations. The conditional variance of the permanent consumption shocks

follows itself an AR(1) process. One could think of the latter process as capturing time-varying economic

uncertainty about the long-run component of consumption. This time variation could be operating at

business-cycle frequency if ν is not too high.

We note that an extension of this model could replace equation (22) by

cTt+1 = µc + ρcTt + ψ(s2t − s̄2) + σεt+1.

The only difference is that, in this version, s2t would forecast future consumption growth. The derivations

would proceed in analogous manner.

Preferences The agents have constant relative risk aversion (CRRA) preferences with risk aversion

parameter γ and time discount factor β. The log inter-temporal marginal rate of substitution, or sdf =
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log(SDF ), is given by:

sdft+1 = log(β) − γ∆ct+1,

= log(β) − γµc + γ(1 − ρ)cTt +
γ

2
s2t − γσεt+1 − γstηt+1, (25)

where we substituted in consumption growth implied by equations (22)-(23).

B.2 Term Structure of Interest Rates

Like the general model in the main text, this model implies an exponentially-affine term structure of

interest rates, where the price of a bond of maturity τ is given by:

Pt(τ) = exp
{

A(τ) +B(τ)cTt + C(τ)
(

s2t − s̄2
)}

.

The corresponding bond yield is yt(τ) = − log(Pt(τ))/τ . To see this, we guess this form and verify it by

satisfying the Euler equation for the bond.

Proof. Guess and verify

Pt(τ + 1) = Et[exp{sdft+1 + log (Pt+1(τ))}]

= Et[exp{sdft+1 +A(τ) +B(τ)cTt+1 + C(τ)
(

s2t − s̄2
)

}]

= exp{log(β) − γµc +
γ

2
s2t +A(τ) + [γ(1 − ρ) +B(τ)ρ] cTt + νC(τ)

(

s2t − s̄2
)

} ×

Et [exp {−γstηt+1 + [B(τ) − γ] σεt+1 + C(τ)σwwt+1}]

The expectation is over a log-normal random variable. The rest follows from recognizing that:

logPt(τ + 1) = A(τ + 1) +B(τ + 1)cTt + C(τ + 1)
(

s2t − s̄2
)

,

and matching up coefficients. The coefficients A(τ), B(τ), and C(τ) satisfy the following recursions:

A(τ + 1) = A(τ) + log(β) − γµc + .5γ(1 + γ)s̄2 + .5 [B(τ) − γ]2 σ2 + .5C(τ)2σ2
w, (26)

B(τ + 1) = ρB(τ) + γ(1 − ρ), (27)

C(τ + 1) = νC(τ) + .5γ(1 + γ), (28)

where the recursion is initialized at A(0) = 0, B(0) = 0, and C(0) = 0.

The short rate yt equals

yt = −A(1) −B(1)cTt − C(1)
(

s2t − s̄2
)

,

= − log(β) + γµc − .5
[

γ(1 + γ)s̄2 + [B∞ − γ]2 σ2 + C2
∞σ

2
w

]

− γ(1 − ρ)cTt − .5γ(1 + γ)
(

s2t − s̄2
)

.
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The one-period log return on a bond of maturity τ , rb(τ), is given by:

rb
t+1(τ) = pt+1(τ − 1) − pt(τ),

= [A(τ − 1) −A(τ)] + [B(τ − 1)ρ−B(τ)] cTt + [C(τ − 1)ν − C(τ)]
(

s2t − s̄2
)

+

B(τ − 1)σεt+1 + C(τ − 1)σwwt+1.

The one-period log expected excess return on a bond of maturity τ is given by:

Et

[

rb
t+1(τ) − yt

]

= [A(τ − 1) −A(τ) +A(1)] + [B(τ − 1)ρ−B(τ) +B(1)] cTt

+ [C(τ − 1)ν − C(τ) +C(1)]
(

s2t − s̄2
)

,

= B(τ − 1)γσ2 −
1

2
B(τ − 1)2σ2 −

1

2
C(τ − 1)2σ2

w. (29)

The Jensen term, which is one-half the conditional variance of the bond return, equals:

1

2
Vt

[

rb
t+1(τ)

]

=
1

2
B(τ − 1)2σ2 +

1

2
C(τ − 1)2σ2

w.

The bond risk premium, the expected excess return on a real bond of maturity τ , including a Jensen

adjustment, is given by

Et[rx
b
t+1(τ)] = −Covt[sdft+1, r

b
t+1(τ)] = B(τ − 1)γσ2 > 0. (30)

The bond risk premium is higher, the higher the risk aversion coefficient γ, the higher the volatility of the

cyclical consumption component σ, and the lower the persistence of the cyclical consumption component

ρ (∂B(τ)/∂ρ = −γτρτ−1 < 0 for ρ > 0). The bond risk premium does not depend on the properties of

the permanent component of consumption. Note that the bond risk premium is always positive in this

model.

The recursions for B and C have closed-form solutions. Taking the limit as the maturity of the bond

τ goes to infinity, delivers

B∞ ≡ lim
τ→∞

B(τ) =
γ(1 − ρ)

1 − ρ
= γ, (31)

C∞ ≡ lim
τ→∞

C(τ) = .5
γ(1 + γ)

1 − ν
, (32)

B.3 Decomposing the SDF

As in the general model, the pricing kernel can be decomposed into a permanent and a transitory com-

ponent:

Mt = MT
t M

P
t = βt

(

CT
t

)−γ (
CP

t

)−γ
.
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This decomposition implies that the log stochastic discount factor satisfies:

sdft+1 = sdfT
t+1 + sdfP

t+1.

Following the procedure outlined in Appendix A, we can solve for the transitory component sdfT by

exploiting that:

sdfT
t+1 ≡ −rb

t+1(∞),

= .5
[

γ(1 + γ)s̄2 + [B∞ − γ]2 σ2 + C2
∞σ

2
w

]

+

γ(1 − ρ)cTt + .5γ(1 + γ)
(

s2t − s̄2
)

−B∞σεt+1 − C∞σwwt+1,

where the second equality follows from the definition of the bond return, evaluated at τ = ∞, and from

using the recursions (26)-(28).

The permanent component sdfP can be found from:

sdfP
t+1 ≡ sdft+1 − sdfT

t+1,

= log(β) − γµc − .5
[

γ2s̄2 + [B∞ − γ]2 σ2 + C2
∞σ

2
w

]

−.5γ2
(

s2t − s̄2
)

+ [B∞ − γ]σεt+1 − γstηt+1 + C∞σwwt+1,

Note that because B∞ = γ, the permanent component of the SDF does not depend on the transitory con-

sumption shock ε. Also note that the innovation to the conditional variance of the permanent component

of consumption growth, wt+1, contributes positively to sdfP
t+1 and negatively to sdfT

t+1.

The conditional variance of the transitory component of the log SDF is:

Vt

[

sdfT
t+1

]

= B2
∞σ

2 + C2
∞σ

2
w.

The conditional variance of the permanent component of the log SDF is:

Vt

[

sdfP
t+1

]

= [B∞ − γ]2 σ2 + γ2s2t + C2
∞σ

2
w.

The conditional variance of the entire log SDF is :

Vt [sdft+1] = γ2σ2 + γ2s2t .

The fraction of the conditional variance of the log SDF that comes from the permanent component,

ωt, in equation (14), in this consumption example is:

ωt =

1
2

(

[B∞ − γ]2 σ2 + γ2s2t + C2
∞σ

2
w

)

1
2

(

γ2σ2 + γ2s2t
) ,

= 1 −
B∞γσ

2 − 1
2B

2
∞σ

2 − 1
2C

2
∞σ

2
w

1
2

(

γ2σ2 + γ2s2t
) . (33)
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The conditional variance ratio equals one minus the ratio of the expected excess return on a bond of

infinite-maturity (see equation 29) divided by the maximum expected excess return in the economy.

Depending on parameters, this ratio can be greater or smaller than one on average.

Finally, the ratio varies over time because the economic uncertainty variable s2t varies over time: ωt

increases in s2t . When economic uncertainty decreases (and the bond risk premium is positive), more of

the conditional variance of the SDF comes from the transitory shocks, and less comes from the permanent

shocks. To the extent that economic uncertainty decreases when economic activity is expected to pick

up, the model predicts that the contribution from the transitory component increases when economic

prospects improve. This is consistent with what we find in the data: a higher CP is associated with

better economic prospects and with a higher importance of the transitory component of the SDF.

C How Pricing Stocks and Bonds Jointly Can Go Wrong

Consider two factors F i
t , i = 1, 2, with innovations ηi

t+1. We normalize σ
(

ηi
t+1

)

= 1. Let cov
(

η1
t+1, η

2
t+1

)

=

ρ = corr
(

η1
t+1, η

2
t+1

)

. We also have two cross-sections of test assets with excess, geometric returns rki
t+1,

i = 1, 2 and k = 1, ...,Ki, with innovations εki
t+1. We assume that these returns include the Jensen’s

correction term. Suppose that both cross-sections exhibit a one-factor pricing structure:

E
(

rki
t+1

)

= cov
(

εki
t+1, η

i
t+1

)

λi, i = 1, 2.

The first factor perfectly prices the first set of test assets, whereas the second factor prices the second set

of test assets. We show below that this does not imply that there exists a single SDF that prices both

sets of assets.

Consider the following model of unexpected returns for both sets of test assets:

εk1
t+1 = E

(

rk1
t+1

)

η1
t+1,

εk2
t+1 = E

(

rk2
t+1

)

η2
t+1 + α2kη

3
t+1,

with cov
(

η2
t+1, η

3
t+1

)

= 0. Unexpected returns on the first set of test assets are completely governed

by innovations to the first factor, whereas unexpected returns on the second set of test assets contain a

component α2kη
3
t+1 that is orthogonal to the component governed by innovations to the second factor.

These η3 shocks are not priced (by assumption). We assume that they are correlated with the η1 shocks:

cov
(

η1
t+1, η

3
t+1

)

6= 0.

This structure implies:

cov
(

εki
t+1, η

i
t+1

)

= E
(

rki
t+1

)

var
(

ηi
t+1

)

= E
(

rki
t+1

)

,
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and hence λi = 1, i = 1, 2. Then we have:

cov
(

εk1
t+1, η

1
t+1

)

= E
(

rk1
t+1

)

, cov
(

εk1
t+1, η

2
t+1

)

= E
(

rk1
t+1

)

ρ,

cov
(

εk2
t+1, η

1
t+1

)

=
(

rk2
t+1

)

ρ+ α2kcov
(

η1
t+1, η

3
t+1

)

, cov
(

εk2
t+1, η

2
t+1

)

= E
(

rk2
t+1

)

.

The main point is that, if α2k is not proportional to E
(

rk2
t+1

)

, then there exist no Λ1 and Λ2 such that:

E
(

rki
t+1

)

= cov
(

εki
t+1, η

1
t+1

)

Λ1 + cov
(

εki
t+1, η

2
t+1

)

Λ2.

On the other hand, if there is proportionality and α2k = αE
(

rk2
t+1

)

, then we have:

cov
(

εk2
t+1, η

1
t+1

)

= E
(

rk2
t+1

)

(

ρ+ αcov
(

η1
t+1, η

3
t+1

))

= E
(

rk2
t+1

)

ξ,

and Λ1 and Λ2 are given by:

Λ1 =
1 − ρ

1 − ξρ
, and Λ2 =

1 − ξ

1 − ξρ
.

This setup is satisfied approximately in our model, where the first set of test assets are the book-to-

market portfolios, η1 are CP innovations, the second set of test assets are the bond portfolios, and η2

are level innovations. Unexpected bond returns contain a component η3 that is uncorrelated with level

innovations, but that is correlated with CP innovations. Unexpected book-to-market portfolio returns,

in contrast, are largely uncorrelated with level innovations. The result above illustrates that consistent

risk pricing is possible because unexpected bond returns’ exposure to CP shocks has a proportionality

structure. This can also be seen in the top panel of Figure 3.
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Table 1: Unified SDF Model for Stocks and Bonds - Pricing Errors

Panel A of this table reports pricing errors on 10 book-to-market sorted stock portfolios, the value-weighted market portfolio, and five

bond portfolios of maturities 1, 2, 5, 7, and 10 years. They are expressed in percent per year. Each column corresponds to a different

stochastic discount factor (SDF) model. The first column contains the risk-neutral SDF and therefore reports the average pricing errors

that are to be explained. The second column presents our SDF model with three priced factors (Our Model). The third column presents

the results for a bond pricing model, where only the level factor is priced (Level). In the fourth column, we only use the bond returns

as moments to estimate the same SDF as in the third column (Level-only bonds). The SDF model of the fifth column only allows the

innovations to the dividend-price ratio on the aggregate market portfolio to be priced, and therefore is a CAPM-like model (DP). The

sixth column allows for both the prices of DP and level risk to be non-zero (Level + DP). The last column refers to the three factor

model of Fama and French (1992). The last row of Panel A reports the mean absolute pricing error across all 16 securities (MAPE).

Panel B reports the estimates of the prices of risk. The first six columns report market prices of risk Λ̂0 for (a subset) of the following

pricing factors : εCP (CP ), εL (Level), and εDP (DP ). In the last column, the pricing factors are the innovations in the excess market

return (MKT), in the size factor (SMB), and in the value factor (HML), where innovations are computed as the residuals of a regression

of these factors on the lagged dividend-price ratio on the market. The data are monthly from June 1952 through December 2008.

RN SDF Our Model Level Level-only bonds DP Level + DP FF
Panel A: Pricing Errors (in % per year)

1-yr 1.11 -0.43 -0.41 0.69 1.00 0.68 0.91
2-yr 1.31 -0.55 -1.62 0.50 1.15 0.53 0.97
5-yr 1.69 -0.19 -4.10 0.09 1.43 0.19 1.08
7-yr 1.99 0.38 -4.82 0.11 1.61 0.15 1.22
10-yr 1.62 0.17 -6.02 -0.49 1.09 -0.54 0.56

Market 6.00 -0.74 4.22 5.51 -1.55 -0.06 -0.06

BM1 4.97 0.02 3.38 4.53 -3.28 -3.15 0.53
BM2 5.86 -0.36 3.79 5.29 -1.85 -1.85 0.07
BM3 6.65 0.04 4.52 6.06 -0.83 -0.86 0.03
BM4 6.37 -0.06 4.39 5.82 -0.99 -0.99 -0.84
BM5 7.30 0.79 5.39 6.77 0.55 0.52 -0.17
BM6 7.35 0.25 5.08 6.72 0.40 0.31 -0.30
BM7 7.32 -1.17 5.13 6.72 0.76 0.66 -1.01
BM8 9.10 0.28 7.20 8.58 2.34 2.32 0.05
BM9 9.69 0.70 7.94 9.20 2.76 2.78 0.95
BM10 10.12 0.27 9.25 9.88 2.35 2.61 0.41

MAPE 5.53 0.40 4.83 4.81 1.50 1.23 0.57

Panel B: Prices of Risk Estimates
CP 0 88.06 0 0 0 0 MKT 5.08
Level 0 -23.98 -42.22 -11.69 0 -9.18 SMB -4.76
DP 0 -1.98 0 0 -3.46 -3.26 HML 6.93
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Table 2: Unified SDF Model for Stocks, Treasuries, and Corporate Bonds

Panel A of this table reports pricing errors on 10 book-to-market-sorted stock portfolios, the value-weighted market portfolio, five

Treasury bond portfolios of maturities 1, 2, 5, 7, and 10 years, and four corporate bond portfolios sorted by S&P credit rating (AAA,

AA, A, and BBB). They are expressed in percent per year. Each column corresponds to a different SDF model, as described in the text.

The last row reports the mean absolute pricing error across all 20 securities (MAPE). Panel B reports the estimates of the prices of risk

Λ̃0. The estimation period for stocks and Treasury bonds is June 1952 through December 2008, while the corporate bond portfolio data

are available only from January 1980 until December 2008.

RN SDF Our Model Our Model FF SDF
not re-estimated re-estimated

Panel A: Pricing Errors (% per year)
1-yr 1.11 -0.44 -0.20 0.84
2-yr 1.31 -0.56 -0.19 0.81
5-yr 1.69 -0.19 0.35 0.68
7-yr 1.99 0.39 0.96 0.66
10-yr 1.62 0.17 0.77 -0.02

Market 6.00 -0.75 -0.81 0.18

BM1 4.97 0.02 -0.32 0.79
BM2 5.86 -0.34 -0.46 0.18
BM3 6.65 0.04 -0.01 -0.15
BM4 6.37 -0.05 -0.12 -1.10
BM5 7.30 0.78 0.78 -0.78
BM6 7.35 0.26 0.32 -0.65
BM7 7.32 -1.16 -0.93 -1.63
BM8 9.10 0.28 0.51 -0.32
BM9 9.69 0.69 0.91 1.10
BM10 10.12 0.27 0.42 1.26

Credit1 3.47 -1.60 -0.59 1.17
Credit2 3.47 -1.00 -0.09 1.09
Credit3 3.46 -1.16 -0.26 1.01
Credit4 3.48 -1.53 -0.71 0.90

MAPE 5.12 0.58 0.49 0.77

Panel B: Prices of Risk Estimates
CP/Market 88.16 79.61 6.36
Level/SMB -24.03 -18.84 -10.88
DP/HML -1.96 -2.15 8.08
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Table 3: Other Stock Portfolios - Pricing Errors

This table reports robustness with respect to different stock market portfolios, listed in the first row. Panel A of this table reports

pricing errors (in % per year) on various stock portfolios, the value-weighted market portfolio, and five bond portfolios of maturities 1,

2, 5, 7, and 10 years. Each column corresponds to a different stochastic discount factor (SDF) model. The first column contains the

risk-neutral SDF. The second column presents our SDF model with three priced factors (Our). The third column refers to the three

factor model of Fama and French (FF). The last row of Panel A reports the mean absolute pricing error across all securities (MAPE).

Panel B reports the estimates of the prices of risk. The data are monthly from June 1952 through December 2008.

10 Size Portfolios 10 Earnings-Price Portfolios 25 Size and Value Portfolios
Assets RN SDF Our FF Assets RN SDF Our FF Assets RN SDF Our FF

Panel A: Pricing Errors (in % per year)
1-yr 1.11 0.13 0.85 1.11 -0.31 1.04 1.11 -0.96 0.96
2-yr 1.31 0.05 0.95 1.31 -0.41 1.25 1.31 -0.99 1.12
5-yr 1.69 0.21 1.26 1.69 -0.07 1.73 1.69 -0.13 1.49
7-yr 1.99 0.56 1.64 1.99 0.51 2.13 1.99 0.82 1.83
10-yr 1.62 0.15 0.75 1.62 0.31 1.55 1.62 0.89 1.14

S1 8.97 1.59 -0.25 EP1 3.30 0.80 0.41 S1B1 2.87 -3.36 -5.01
S2 8.70 0.28 0.22 EP2 2.14 -1.07 -1.02 S1B2 9.10 -0.12 0.36
S3 9.14 0.89 0.28 EP3 3.25 -0.60 -0.20 S1B3 9.32 0.55 0.43
S4 8.55 0.46 0.27 EP4 2.63 -1.84 -0.99 S1B4 11.94 4.27 2.51
S5 8.65 0.21 0.42 EP5 3.01 -1.68 -1.03 S1B5 12.99 3.83 1.74
S6 8.01 -0.04 -0.18 EP6 4.77 -0.15 0.09 S2B1 4.74 -1.52 -1.72
S7 7.95 -0.24 0.04 EP7 4.71 -0.35 -0.03 S2B2 8.25 0.51 -0.04
S8 7.45 -0.96 -0.53 EP8 5.04 0.18 -0.42 S2B3 10.60 2.20 1.67
S9 6.85 -0.60 -0.72 EP9 6.45 0.59 0.36 S2B4 11.09 1.65 1.13
S10 5.46 -0.97 0.32 EP10 7.74 1.75 0.34 S2B5 12.32 2.51 0.54

S3B1 5.84 -1.51 0.44
S3B2 8.65 0.49 0.80
S3B3 9.25 0.44 0.35
S3B4 10.17 0.30 0.36
S3B5 11.61 1.28 0.24
S4B1 6.41 0.02 1.77
S4B2 6.81 -1.14 -0.87
S4B3 8.89 -0.39 0.05
S4B4 9.49 -2.25 -0.01
S4B5 9.56 -2.00 -1.76
S5B1 5.42 1.14 2.19
S5B2 6.22 0.59 0.38
S5B3 6.64 0.24 0.10
S5B4 6.60 -2.85 -2.08
S5B5 7.59 -2.90 -2.62

Market 6.00 -1.05 -0.13 6.00 1.89 1.93 6.00 -0.66 0.27

MAPE 5.84 0.52 0.55 3.55 0.78 0.91 7.29 1.37 1.16

Panel B: Market Prices of Risk
CP/Market 48.21 6.22 81.22 2.19 134.73 4.04
Level/SMB -15.59 1.25 -22.84 4.19 -29.83 2.16
Market/HML -2.56 17.48 -0.83 5.37 -1.45 8.82
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Table 4: Other Sample periods - Pricing Errors

This table reports robustness with respect to different sample periods. It is otherwise identical to Table 1. The data are monthly from

January 1963 through December 2008 in the left columns and from December 1978 until December 2008 in the right columns.

1963-2008 1980-2008
RN kernel Our kernel FF kernel RN kernel Our kernel FF kernel

Panel A: Pricing Errors (in % per year)
1-yr 1.18 -0.36 0.95 1.55 0.10 1.22
2-yr 1.34 -0.66 0.97 2.09 -0.17 1.40
5-yr 1.89 0.03 1.23 3.16 0.11 1.64
7-yr 2.27 0.45 1.47 3.82 0.18 1.70
10-yr 1.98 0.05 0.85 3.88 0.03 1.19

Market 4.73 -0.90 -0.19 5.80 -1.14 0.54

BM1 3.40 -0.18 0.75 4.43 -1.27 0.28
BM2 4.90 -0.07 0.22 6.74 0.69 0.80
BM3 5.51 0.01 0.11 7.10 0.32 -0.12
BM4 5.54 0.63 -0.85 7.59 1.46 -0.38
BM5 5.25 0.03 -1.25 6.57 0.63 -1.60
BM6 6.29 0.18 -0.43 6.50 -0.28 -1.07
BM7 7.10 -0.74 -0.30 7.62 -0.42 -1.04
BM8 7.74 -0.63 -0.24 7.01 -1.32 -1.01
BM9 8.90 0.69 0.87 8.90 0.46 0.64
BM10 9.99 0.87 0.80 9.79 0.85 2.36

MAPE 4.88 0.40 0.72 5.78 0.59 1.06

Panel B: Market Prices of Risk
CP/Market 61.39 4.19 41.12 5.40
Level/SMB -24.83 -2.23 -24.90 -12.03
DP/HML -0.83 6.73 -1.35 4.40
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Table 5: Maximum Sharpe Ratio on Bonds

This table reports annualized Sharpe ratios (SR) on bonds in model and data. Panel A shows Sharpe ratios on the CRSP bond

portfolios of maturities one- through ten-years. The left columns report the time-series average and standard deviation (in parentheses)

in the model, while the two most right columns report the same moments in the data. Sharpe ratios are annualized by multiplying

the monthly Sharpe ratios by
√

12. We use the CRSP bond portfolios to form the moments in the data, and form conditional Sharpe

ratios by taking into account that conditional expected returns depend on lagged CP . The data are from June 1952 until December

2008. Panel B reports model-implied annualized Sharpe ratios on unconstrained and constrained bond portfolios. These portfolios are

formed by combining bonds of maturities one- through four-years (any four bonds would do). The unconstrained portfolio achieves the

maximum Sharpe ratio in the economy. The last three rows report Sharpe ratios for constrained bond portfolios, where the constraints

are of the form −α ≤ wj ≤ 1, and we study α = 0, .5, and 1.

Model Data
mean st.dev. mean st.dev.
Panel A: SR on individual bonds

1-yr 0.81 (0.28) 0.71 (0.28)
2-yr 0.71 (0.31) 0.48 (0.32)
5-yr 0.45 (0.33) 0.33 (0.30)
7-yr 0.33 (0.33) 0.33 (0.29)
10-yr 0.24 (0.32) 0.22 (0.30)

Panel B: SR on bond portfolios

unconstr. 2.62 (0.07)

α = 0.0 0.77 (0.28)
α = 0.5 0.94 (0.17)
α = 1.0 0.94 (0.17)
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Figure 1: Exposure of value and growth portfolio returns to CP innovations

The figure shows the covariance of innovations to CP and innovations to returns on 10 portfolios sorted on the BM ratio. Portfolio 1 is
the extreme growth portfolio; portfolio 10 the extreme value portfolio. Innovations are constructed as described in Section 3.1.
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Figure 2: Economic activity and the CP Factor

The top panel displays the predictive coefficient in (17), the middle panel the t-statistic, and the bottom panel the corresponding
R-squared value. We consider k = 1, . . . , 36 lags and the standard errors are computed using Newey-West standard errors with k − 1
lags. The sample is for March 1967 until December 2008.
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Figure 3: Exposure of Portfolio Excess Returns to Priced Innovations

The figure plots the risk premium decomposition into risk compensation for exposure to the CP factor, the level factor, and the DP

factor. The top panel is for the market portfolio (first set of three bars) and the five bond portfolios (last five sets of bars) whereas the
bottom panel is for the book-to-market decile portfolios. The three bars for each asset are computed as Σ′

XRΛ̃0, which is a five-by-one
vector containing three non-zero elements. The data are monthly from June 1952 until December 2008.
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Figure 4: Implied Predictive Coefficients of the Ten Book-to-Market Portfolios

The figure plots the predictive coefficients implied by the SDF model and the ones implied by running a predictive regression in the
data. The returns are on the ten book-to-market portfolios and the log dividend yield on the aggregate stock market is used to predict
future returns. The data run from June 1952 until December 2008.
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Figure 5: Implied Predictive Coefficients of Bond Returns

The figure plots the coefficients in model and data obtained from predictive regressions of annual holding period returns on bonds of
two-year, three-year, four-year, and five-year maturity in excess of one-year bond returns on the one-year lagged CP factor. To compute
the predictive coefficients in the model, we simulate 5,000 samples of the same length as our data and estimate the CP factor and the
predictive regressions in each of these samples. We report the average, across 5,000 samples, predictive coefficient. The data run from
June 1952 until December 2008.
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Figure 6: Expected Excess Returns on Stocks and Bonds

The figure plots the expected log excess return on the aggregate stock market (solid line) and the expected log excess return on an
equally-weighted portfolio of bond returns (dashed line). Expected excess stock returns are modeled as a linear function of the log
dividend-price ratio on the aggregate stock market. Expected excess bond returns are modeled as a linear function of Cochrane and
Piazzesi’s CP factor. The excess returns are annualized by multiplication by 12. The data run from June 1952 until December 2008.
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Figure 7: SDF Model-Implied Bond Yields

This figure plots annual yields on nominal bonds of maturities 1- through 5 years as implied by stochastic discount factor model estimated
in Section 3.4. The top panel is for the 1-year bond yield, the bottom panel for the 5-year bond yield. The data are Fama-Bliss yields
on nominal bonds of maturities 1- through 5 years for June 1952 until December 2008.
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Figure 8: SDF Decomposition and the CP Factor

The top panel plots the ratio ωt of the conditional variance of the permanent component of the stochastic discount factor to the
conditional variance of the (entire) stochastic discount factor; see equation (14). The bottom panel plots the CP factor, constructed as
in Cochrane and Piazzesi (2005). The two series have a correlation of -0.99. The sample is for July 1952 until December 2008.
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Figure 9: Implied Predictive Coefficients of the Ten Book-to-Market Portfolios

The figure plots the predictive coefficients implied by the SDF model and the ones implied by running a predictive regression in the
data. The returns are for the ten book-to-market portfolios; they are regressed on the lagged log dividend yield on the aggregate stock
market DP and the lagged CP factor. The left panel plots the coefficients on DP from the multi-variate regression while the right panel
plots the coefficients on CP . The data run from June 1952 until December 2008.
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