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1. Introduction

Active asset management remains popular, even though its track record has long been unimpres-

sive. Consider equity mutual funds, which manage trillions of dollars. Numerous studies report

that these funds have provided investors with returns significantly below those on passive bench-

marks, on average.1 While this track record could help explain the growth of index funds, the total

size of index funds is still modest compared to that of actively managed funds.2 Given the negative

track record, one might be puzzled by the enormous size of the active management industry.

We argue that the popularity of active management is not puzzling despite its poor track record.

Key to this conclusion is to realize that the active management industry exhibits decreasing returns

to scale: any fund manager’s ability to outperform a passive benchmark declines as the industry’s

size increases. As more money chases opportunities to outperform, prices are impacted and such

opportunities become more elusive. A simple way of modeling returns to scale is as follows:

α = a− b
S

W
, (1)

where α denotes the industry’s expected return in excess of passive benchmarks and S/W is the

industry’s size scaled by investable wealth. Decreasing returns to scale are captured by b > 0. If

the benchmarks are sufficient for pricing assets in an efficient market, α reflects asset mispricing.

In that case, our modeling of decreasing returns to scale is equivalent to assuming that mispricing

is reduced as more money seeks to exploit it.

Decreasing returns to scale help us understand the continued popularity of active management.

Investors are uncertain about the industry’s α, and they learn about it from realized returns. Af-

ter observing negative benchmark-adjusted returns, investors infer that α is lower than expected,

and they reduce their allocation to active management. This reduction in S/W is cushioned by

decreasing returns to scale because a lower S/W implies a higher α going forward. Investors infer

that α is too low at the current level of S/W , but they know that α will go up after they reduce

S/W , so they disinvest less than they would if returns to scale were constant. Under decreasing

returns to scale, past underperformance does not imply future underperformance; it only implies

that investors should allocate less to active management. After a period of underperformance, the

1See Jensen (1968), Malkiel (1995), Gruber (1996), Wermers (2000), Pástor and Stambaugh (2002a), Fama and

French (2009), and many others. Fama and French report that, over the past 23 years, an aggregate portfolio of U.S.

equity mutual funds underperformed various benchmarks by about 1% per annum.
2The Investment Company Institute (2009, p. 20) reports that assets of equity mutual funds total $3.8 trillion at the

end of 2008. They also report (ibid., p. 33) that about 87% of those assets are under active management, as opposed to
being index funds. Institutions seem more inclined than retail investors to invest passively, but their active allocations

are still large, between 47% and 71% of their U.S. equity investments in 2006 (French (2008, Table 3)).
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optimal allocation to active management should be smaller than it was at the beginning of the

period, but it may remain substantial.

To explore the quantitative implications of the above story, we develop an equilibrium model

of active management featuring utility-maximizing investors and fee-maximizing fund managers.

We model decreasing returns to scale in a way similar to equation (1), with unknown parameters a

and b. After deriving the model’s implications for the size of the active management industry, we

relate this size to the industry’s historical performance.

In our first analysis, we take the familiar perspective on the active-management puzzle, ask-

ing whether the industry’s size is consistent with its overall level of historical performance. We

summarize performance by the t-statistic of the industry’s historical alpha, and we construct the

posterior distribution for the end-of-sample equilibrium S/W conditional on this t-statistic. We

find that the equilibrium S/W can exceed 70% even if the industry’s historical alpha is signifi-

cantly negative (t = −2 or less). Intuitively, the t-statistic leaves the researcher quite uncertain

about how much historical active returns would have improved had investors allocated less to ac-

tive management. Given this uncertainty, the confidence region for the equilibrium S/W is wide

and it includes allocations that are large. If researchers think that the rational investors in our

model could choose a large allocation to active management, it should not puzzle them that actual

investors have chosen one.

Whereas our first analysis shows that the active management industry could be large despite

its poor track record, our second analysis implies that it actually should be large. Instead of con-

ditioning on just the overall t-statistic, we now condition year-by-year on the previous history of

the industry’s returns, as proxied by the returns on the aggregate portfolio of actively managed

U.S. equity mutual funds. At the beginning of each year between 1963 and 2006, we solve for

the equilibrium S/W that investors in our model would choose if they observed the actual fund

returns. We find that this equilibrium allocation drops surprisingly slowly over time—from its

assumed value of S/W = 0.9 in 1962 to about S/W = 0.7 in 2006. This striking result shows

that despite substantial past underperformance, active management should remain popular among

rational investors facing decreasing returns to scale.

In contrast, active management’s popularity would seem quite puzzling under the more tradi-

tional assumption of constant returns to scale (b = 0 in equation (1)). This assumption is routinely

adopted by performance evaluation studies, in which alphas are generally treated as constants, un-

related to the industry’s size. We find that under constant returns to scale, the current size of the

active management industry should be zero. With b = 0, the industry’s track record quickly leads

investors to perceive α < 0 at any S/W , even if their prior beliefs about α are more optimistic
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than those leading to the results mentioned above under decreasing returns to scale. With α < 0,

any positive investment in active management would be undesirable for mean-variance investors;

they would instead go short if they could. Our year-by-year analysis with b = 0 shows that the

equilibrium S/W drops to zero after just seven years and stays there. In other words, if our ratio-

nal investors thought returns to scale were constant, the active management industry would have

disappeared in 1969!

Our proposed reconciliation of the active management industry’s large size with its poor track

record is the main contribution of this paper. Our second contribution is to show that learning

about returns to scale in active management is slow. Investors in our model face endogeneity that

limits their learning about a and b in equation (1). As investors update their beliefs about a and b,

they adjust S/W . They learn about a and b by observing the industry’s returns that follow different

allocations. The extent to which they learn is thus endogenous—what they learn affects how much

they allocate, but what they allocate affects how much they learn. If S/W ceases to change from

one period to the next, learning about a and b essentially stops. Interestingly, we find this is

usually the case. The equilibrium S/W converges to the level producing an alpha for the industry

that appropriately compensates investors for non-diversifiable risk. Investors eventually learn the

alpha at that level of S/W , but they do not accurately learn a and b, even after thousands of years.

Convergence of S/W occurs quickly, after just a few years, when b is large. When b is small,

though, the industry’s size can fluctuate at suboptimal levels for a long time before converging.

Our reliance on decreasing returns to scale in active management owes a debt to the innovative

use of this concept by Berk and Green (2004), although our focus and implementation are quite

different. Berk and Green assume that an individual fund’s returns are decreasing in its own size

rather than in the total amount of active management. In their model, as investors update their

beliefs about each manager’s skill, funds with positive track records attract new money and grow

in size, while funds with negative track records experience withdrawals and shrink in size. In

reality, actively managed funds have a significantly negative aggregate track record, yet the active

management industry remains large. We address this apparent puzzle. Departing from Berk and

Green’s cross-sectional focus, we analyze the aggregate size of the active management industry.

Another difference from Berk and Green (2004) is our treatment of net fund alphas. Perceived

alphas are zero in their model, but they are generally positive in our model, for three reasons. First,

alpha reflects compensation for non-benchmark risk that cannot be completely diversified across

funds. Such risk is consistent with empirical estimates as well as with the notion that profit oppor-

tunities identified by skilled managers are likely to overlap. Second, alpha reflects compensation

for uncertainty about the parameters governing the returns to scale in the active management indus-

3



try. Third, alpha is positive if the number of investors is finite, due to an externality that is inherent

to active investing under decreasing returns to scale: each additional investor imposes a negative

externality on the existing investors by diluting their returns. When the number of competing in-

vestors is large, their lack of coordination drives alpha down, but when their number is small, each

investor internalizes a part of the reduction in profits that would result from his own increased

investment. We do obtain zero alpha as the limit in the special case in which non-benchmark risk

can be completely diversified away (as Berk and Green assume), there is no parameter uncertainty,

and the number of investors is infinite.

The equilibrium size of the active management industry depends critically on competition

among fund managers. Consider the setting in which there are many investors and many fund

managers—the setting on which we mainly focus. The importance of managerial competition is

particularly clear in the special case in which investors are risk neutral. The net alpha investors

receive in that case is zero whether or not managers compete, but the industry is significantly larger

under competition. When managers compete, they become price-takers with respect to their fees,

and the industry’s equilibrium size produces zero active profit net of those fees. When managers

collude, acting monopolistically as one fund, they set the fee rate that produces the fee-maximizing

size of the industry in equilibrium. The competitive size exceeds the monopolistic size. In fact, the

industry’s competitive size is twice its monopolistic size if decreasing returns are modeled as in

equation (1). If more active management implies less mispricing, then competition among active

managers also provides a positive externality to asset markets.

Our study is not alone in trying to explain the puzzling popularity of active management. In

our explanation, investors do not expect negative past performance to continue, but in other ex-

planations they do. Gruber (1996) suggests that some “disadvantaged” investors are influenced by

advertising and brokers, institutional arrangements, or tax considerations. Glode (2009) presents

an explanation in which investors expect negative future performance as a fair tradeoff for counter-

cyclical performance by fund managers. Savov (2009) argues that active funds underperform pas-

sive indices but they do not underperform actual index fund investments, because investors buy in

and out of index funds at the wrong time. We do not imply that such alternative explanations play

no role in resolving the puzzle. We simply suggest that the same job can be accomplished with

rational investors who do not expect underperformance going forward.

A number of studies address learning about managerial skill, but none of them consider learning

about returns to scale, nor do they analyze the size of the active management industry. Baks,

Metrick, and Wachter (2001) examine track records of active mutual funds and find that extremely

skeptical prior beliefs about skill would be required to produce zero investment in all funds. They
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solve the Bayesian portfolio problem fund by fund, whereas Pástor and Stambaugh (2002b) and

Avramov and Wermers (2006) construct optimal portfolios of funds. Other studies that model

learning about managerial skill with a focus different from ours include Lynch and Musto (2003),

Berk and Green (2004), Huang, Wei, and Yan (2007), and Dangl, Wu, and Zechner (2008).

Our study is also related to that of Garcia and Vanden (2009), who analyze mutual fund forma-

tion in a general equilibrium setting with private information. In their model, the size of the mutual

fund industry follows from the agents’ information acquisition decisions. Asset prices are deter-

mined endogenously in their model but not in ours; in that sense, our approach can be described as

partial equilibrium, similar to Berk and Green (2004).3 Recent models of mutual fund formation

also include Mamaysky and Spiegel (2002) and Stein (2005). Neither these models nor Garcia and

Vanden examine the roles of learning and past data. A number of studies examine equilibrium fee

setting by money managers, which occurs in our model as well. Nanda, Narayanan, and Warther

(2000) do so in a model in which a fund’s return before fees is affected by liquidity costs that in-

crease in fund size. Fee setting is also examined by Chordia (1996) and Das and Sundaram (2002),

among others. Finally, whereas our approach is theoretical, Khorana, Servaes, and Tufano (2005)

empirically analyze the determinants of the size of the mutual fund industry across countries.

The paper is organized as follows. Section 2 presents our model. After describing the general

setting, we first examine the case in which investors are risk neutral. The simple results obtained

there for alphas, fees, and industry size clearly reveal the role of competition among managers

and investors. The risk-averse case is presented next, followed by the discussion of priors and the

updating of beliefs in equilibrium. Section 3 presents the model’s quantitative implications for the

industry’s size given its track record, where we condition first on the overall level of performance

and then year-by-year on the previous return history. Section 4 discusses learning about returns to

scale. Section 5 relates our model to that of Berk and Green (2004). Section 6 concludes.

2. Model

2.1. Setting

We model two types of agents—fund managers and investors. There are M active fund managers

who have the potential ability to identify and exploit opportunities to outperform passive bench-

3In addition to Garcia and Vanden (2009), recent examples of studies that analyze the effect of delegated portfolio

management on equilibrium asset prices also include Cuoco and Kaniel (2007), Dasgupta, Prat, and Verardo (2008),

Guerrieri and Kondor (2008), He and Krishnamurthy (2008), Vayanos and Woolley (2008), and Petajisto (2009).
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marks. There are N investors who allocate their wealth across the M active funds as well as the

passive benchmarks. The active fund managers’ potential outperformance comes at the expense of

other investors whose trading decisions are not modeled here.4

The rates of return earned by investors in the managers’ funds, in excess of the riskless rate,

obey the regression model

rF = α +BrB + u, (2)

where rF is the M × 1 vector of excess fund returns, α is the M × 1 vector of fund alphas, rB is

a vector of excess returns on passive benchmarks, and u is the M × 1 vector of the residuals. We

suppress time subscripts throughout, to simplify notation. Define the benchmark-adjusted returns

on the funds as r ≡ rF − BrB, so that

r = α+ u. (3)

The elements of the residual vector u have the following factor structure:

ui = x+ εi, (4)

for i = 1, . . . ,M , where all εi’s have a mean of zero, variance of σ2
ε , and zero correlation with

each other. The common factor x has mean zero and variance σ2
x. The values of B, σx, and σε are

constants known to both investors and managers.

The factor structure in equation (4) means that the benchmark-adjusted returns of skilled man-

agers are correlated, as long as σx > 0. Skill is the ability to identify opportunities to outperform

passive benchmarks, so the same opportunities are likely to be identified by multiple skilled man-

agers. Therefore, multiple managers are likely to hold some of the same positions, resulting in

correlated benchmark-adjusted returns.5 As a result, the risk associated with active investing can-

not be fully diversified away by investing in a large number of funds.

The expected benchmark-adjusted dollar profit received in total by fund i’s investors and man-

ager is denoted by πi. Our key assumption is that πi is decreasing in S/W , where S is the aggregate

4The latter investors are required by the fact that alphas (before costs) must aggregate to zero across all investors,

an identity referred to as “equilibrium accounting” by Fama and French (2009). These other investors might trade

for exogenous “liquidity” reasons, for example, or they could engage in their own active (non-benchmark) investing

without employing the M managers. They could also be “misinformed” (Fama and French, 2007) or “irrational”
in that they might make systematic mistakes in evaluating the distributions of future payoffs. Such investors might

retain a significant fraction of wealth even in the long run, and they can affect asset prices even if their wealth is very

small (Kogan, Ross, Wang, and Westerfield, 2006). Good candidates for such investors are individuals who invest in

financial markets directly. The proportion of U.S. equity held directly by individuals is substantial: in 1980–2007, this

proportion ranged from 22% in 2007 to 48% in 1980 (French, 2008).
5This correlation can be amplified if the managers employ leverage because then negative shocks to the commonly

employed strategy lead cash-constrained managers to unwind their positions, magnifying the initial shock.
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size of the active management industry, andW is the total investable wealth of theN investors. Di-

viding S by W reflects the notion that the industry’s relative (rather than absolute) size is relevant

for capturing decreasing returns to scale in active management.6 In order to obtain closed-form

equilibrium results, we assume the functional relation

πi = si

(

a− b
S

W

)

, (5)

where si is the size of manager i’s fund, with S =
∑M
i=1 si. The parameters a and b in equation (5)

are unknown. We denote their first and second conditional moments by

E

([

a
b

]

| D
)

=

[

ã

b̃

]

(6)

Var

([

a
b

]

| D
)

=

[

σ2
a σab

σab σ2
b

]

, (7)

where D denotes the set of information available to investors.

The parameter a represents the expected return on the initial small fraction of wealth invested

in active management, net of proportional costs and managerial compensation in a competitive

setting. It seems likely that a > 0, although we do not preclude a < 0. If no money were invested

in active management, no managers would be searching for opportunities to outperform the passive

benchmarks, so some opportunities would likely be present. The initial active investment picks

low-hanging fruit, so it is likely to have a positive expected benchmark-adjusted return.

The parameter b determines the degree to which the expected benchmark-adjusted return for

any manager declines as the fraction of total wealth devoted to active management increases. We

allow b ≥ 0, although it is likely that b > 0 due to decreasing returns to scale in the active

management industry. As more money chases opportunities to outperform, prices are impacted,

and such opportunities become more difficult for any manager to identify. Prices are impacted by

these profit-chasing actions of active managers unless markets are perfectly liquid. In that sense, b

is related to market liquidity: b = 0 in infinitely liquid markets but b > 0 otherwise.

We specify the relation (5) exogenously, but decreasing returns to aggregate scale can also

arise endogenously in a richer model. In the model of Grossman and Stiglitz (1980), for example,

traders can choose to become informed by paying a cost, and the proportion of informed traders is

determined in equilibrium. As this proportion rises, expected utility of the informed traders falls

relative to that of the uninformed traders, similar in spirit to equation (5).

6An alternative way of computing the industry’s relative size is S/F , where F denotes the total size of the financial
markets. It would seem plausible to assume that πi is decreasing in S/F . This alternative assumption is equivalent to

ours if W grows in fixed proportion to F , which seems like a plausible approximation.
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Manager i charges a proportional fee at rate fi. This is a fee that the fund manager sets while

taking into account its effect on the fund’s size. The value of fi, known to investors when making

their investment decisions, is chosen by manager i to maximize equilibrium fee revenue,

max
fi

fisi. (8)

Combining this fee structure with (5), we obtain the following relation for the ith element of α:

αi = a− b
S

W
− fi. (9)

The relation between αi and the amount of active investment is plotted in Figure 1.

Investors are assumed to allocate their wealth across the active funds, the benchmarks, and a

riskless asset so as to maximize a single-period mean-variance utility function. We also assume for

simplicity that the N investors have identical risk aversion γ ≥ 0 and the same levels of investable

wealth. Let δj denote the M × 1 vector of the weights that investor j places on the M funds. For

each investor j the allocations to the funds solve the problem

max
δj

{

δ′jE(r|D) − γ

2
δ′jVar(r|D)δj

}

, (10)

if, as we assume, the allocations to the benchmarks and riskless asset are unrestricted.7 We impose

the restriction that the elements of the M × 1 vector δj are non-negative (no shorting of funds).

2.2. Equilibrium under risk neutrality

We first explore the model when γ = 0. We solve for a symmetric Nash equilibrium among

investors, wherein each investor solving (10) takes the optimal decisions of other investors as

given. Conditional on the managers’ fees, each investor chooses the same vector of allocations,

δj = δ, for all j = 1 . . . , N . That solution is then used to compute the equilibrium fees charged by

the M managers, who are solving (8). The following proposition gives the equilibrium values of

the key quantities in the model.

Proposition 1. In equilibrium for investors and managers when γ = 0 and ã > 0, we have

E(αi|D) = α̃ and fi = f for all funds i receiving positive investment. For M = 1,

f =
ã

2
(11)

7As shown in the Appendix, a mean-variance objective for the investor’s overall portfolio gives (10) as the relevant

problem involving the active funds.
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α̃ =
(

1

2

)
ã

N + 1
(12)

S

W
=

(
1

2

)
ã

b̃

(
N

N + 1

)

. (13)

For M > 1,

f = 0 (14)

α̃ =
ã

N + 1
(15)

S

W
=

ã

b̃

(
N

N + 1

)

. (16)

When ã ≤ 0, then S/W = 0. Proof: See Appendix.

With monopolistic fund management (M = 1), the positive fee in (11) is set so that the resulting

equilibrium fund size maximizes fee revenue. With competing managers (M > 1), the equilibrium

fee is f = 0. If the fee were instead equal to some positive value, any fund manager setting an

infinitesimally lower fee would attract all investment from other funds to that lower-fee fund. Note

that f is the portion of a manager’s fee that he sets while taking into account its effect on his

fund’s size. In that sense it is analogous to the part of the price that a supplier sets while taking

into account its effect on his sales. Under perfect competition, suppliers and managers are price

takers, and such discretionary quantities vanish. That doesn’t mean that that suppliers set a zero

price or that managers work for nothing. Any competitive proportional fee, which isn’t under a

manager’s discretion, is simply part of a. In other words, a is a rate of return net of proportional

costs of producing that return, where the latter costs (not under the manager’s discretion) include

competitive compensation to the manager and other inputs to producing alpha.

We should note that having f drop to zero as soon as there are even two managers is a result

confined to risk neutrality. When M exceeds one but is finite, risk-averse investors do not transfer

all of their investments to a manager who sets an infinitesimally lower fee than his competitors,

because the other funds still provide diversification that risk-averse investors value. As M → ∞,

however, a similar competition argument implies that f → 0. A manager who then sets a fee

greater than a common value of f = 0 would receive no investment, because investors receive no

diversification value from his fund when there are infinitely many other funds.

Competition among the N investors also plays an interesting role. Observe that in both (12)

and (15), as N → ∞, α̃→ 0. Alphas become smaller with more investors because each additional

investor imposes a negative externality on the existing investors by diluting their returns. Each

additional investor does not fully internalize the reduction in alphas caused by the greater amount
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invested: his private cost of reducing alphas is less than his private gain from investing. As a result,

the greater the number of investors, the larger is the amount of total investment, as is evident in the

expressions for S/W in both (13) and (16).

When managers compete, the equilibrium size of the industry in (16) converges to

S

W
=
ã

b̃
(17)

as N → ∞. With a monopolistic manager, the corresponding limit of (13) is given by

S

W
=
(

1

2

)
ã

b̃
, (18)

or an industry size only half as large as under competition. The monopolistic size in (18) is also

the value that maximizes expected total profit. That is, using equation (5), expected total profit is

Π =
M∑

i=1

πi = S
(

ã− b̃
S

W

)

, (19)

which is maximized at the value in (18). In contrast, the competitive industry size in (17) produces

zero expected profit in (19). The active management industry in that competitive setting can nev-

ertheless provide a positive externality to asset markets. Suppose the benchmarks are “correct” in

an asset-pricing context, in that securities with non-zero alphas with respect to these benchmarks

are mispriced. Opportunities to outperform the benchmarks then reflect mispricing. If no money

actively chased mispricing (S = 0), some mispricing would likely exist. By moving prices toward

fair values, the industry provides a positive externality.

In the maximization in (10), we impose the lower bound of zero on the elements of δj, but until

now we have not imposed any upper bound. A reasonable alternative is to impose the constraint

M∑

i=1

δi,j ≤ δ∗, (20)

where δi,j denotes the i-th element of δj, or the fraction of investor j’s wealth invested in fund

i. The constraint (20) states that the fraction of each investor’s wealth placed in actively managed

funds is at most δ∗. When (20) binds, S/W in equation (13) or (16) exceeds δ∗, and the equilibrium

value of S/W instead equals δ∗. Also, as in the earlier unconstrained setting, f = 0 for M > 1:

competition among managers drives the discretionary portion of the fee to zero even when the

constraint (20) binds. When M > 1 and the constraint binds, however, α̃ is a positive value

independent of N . In essence, the leverage constraint then prevents investors from increasing the

size of the industry to the point at which all profit is eliminated. In contrast, when M = 1 and

(20) binds, the manager earns a fee greater than the value in (11) and, as in the unconstrained case,

α̃→ 0 as N → ∞. The Appendix includes a treatment of the case in which (20) binds.
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2.3. Equilibrium under risk aversion

We now turn to a setting with γ > 0 in the mean-variance objective in (10). To keep the analysis

tractable, we confine our attention to the limiting case in which the numbers of managers and

investors are both infinite. Relying on the condition f = 0 in this competitive setting, we solve

for a symmetric Nash equilibrium among investors, each of whom maximizes (10). We obtain an

analytic solution for S/W , but the explicit expression—the solution to a cubic equation—is fairly

cumbersome. We instead simply present that cubic equation in the following proposition:

Proposition 2. In equilibrium for an infinite number of investors and managers, if ã > 0, then

S/W is given by the (unique) real positive solution to the equation

0 = ã− S

W

[

b̃+ γ(σ2
a + σ2

x)
]

+
(
S

W

)2

2γσab −
(
S

W

)3

γσ2
b . (21)

If investors also face the constraint in (20) and the solution to (21) exceeds δ∗, then S/W = δ∗. If

ã ≤ 0, then S/W = 0. Proof: See Appendix.

When the equilibrium value of S/W lies between 0 and 1, it obeys a familiar mean-variance

relation. Let rA denote the benchmark-adjusted return on the aggregate portfolio of all funds. The

aggregate analog to the individual investor’s problem in (10) is

max
S/W

{(
S

W

)

E(rA|D) − γ

2

(
S

W

)2

Var(rA|D)

}

. (22)

The solution to this problem is given by

S

W
=

E(rA|D)

γVar(rA|D)
. (23)

To see that (23) characterizes the solution to (21), first note that given the equilibrium value of

S/W , the benchmark-adjusted aggregate active fund return is given by

rA =
1

M

M∑

i=1

ri =
1

M

M∑

i=1

αi + x+
1

M

M∑

i=1

εi

= a− b
S

W
+ x+

1

M

M∑

i=1

εi , (24)

using equations (3), (4), and (9), and the result that f = 0 in equilibrium. Thus, as M → ∞,

rA = a− b
S

W
+ x (25)
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since the variance of the last term in (24) goes to zero. It follows from (25) that

E(rA|D) = ã− b̃
S

W
(26)

and

Var(rA|D) = σ2
a + σ2

x − 2
(
S

W

)

σab +
(
S

W

)2

σ2
b . (27)

Equation (21) can then be rewritten in the image of the mean-variance relation in (23):

S

W
=

ã− b̃(S/W )

γ [σ2
a + σ2

x − 2(S/W )σab + (S/W )2σ2
b ]

(28)

=
E(rA|D)

γVar(rA|D)
, (29)

where the second equality uses (26) and (27).

We can also write equation (25) as rA = α + x, with α = a − b(S/W ), so that Var(rA|D) =

σ2
x + σ2

α, where σ2
α = Var(α|D). Equation (29) can then be rewritten as

S

W
=

α̃

γ (σ2
x + σ2

α)
=
ã− b̃(S/W )

γ (σ2
x + σ2

α)
, (30)

which gives
S

W
=

ã

b̃+ γ (σ2
x + σ2

α)
. (31)

Note that σ2
α depends on S/W , thus requiring the solution to the cubic equation in (21). In the

special case where a and b are known, σ2
α = 0 and the right-hand side of (31) yields the solution

directly, so solving the cubic equation is then unnecessary.

As before in the risk-neutral solution (17), we see in (31) that greater profitability of the first

dollar invested (higher ã) makes the equilibrium industry size larger, while more strongly de-

creasing returns to scale (higher b̃) makes the industry smaller. We also see in (31) that greater

uncertainty and risk aversion, reflected in the term γ (σ2
x + σ2

α), make the industry smaller. In

the rest of this study, we specify risk aversion as γ = 2 and the volatility of the aggregate active

benchmark-adjusted return as σx = 0.02, or 2% per year. The latter value is approximately equal to

the annualized residual standard deviation from a regression of the value-weighted average return

of all active U.S. equity mutual funds on the three factors of Fama and French (1993), using data

for the 1962–2006 period.8 With these values of γ and σx, the value of γ (σ2
x + σ2

α) is often small

compared to b̃, especially after some learning about α occurs. As a result, the equilibrium value

8The annualized residual standard deviation in that regression, which uses monthly returns, is 1.94%. In a regres-
sion of the aggregate active fund return on just the value-weighted market factor, the residual standard deviation is

2.17%. We thank Ken French for providing the series of mutual fund returns, which ends in September 2006.
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of S/W is well approximated by (17). The exact values of γ and σx do not matter for our study’s

conclusions; for example, when either value is multiplied by two or divided by two, our results are

very similar.

The industry’s expected alpha, α̃ = E(rA|D), can be obtained by combining equations (31)

and (26) to give

α̃ = ã

(

γ (σ2
x + σ2

α)

b̃+ γ (σ2
x + σ2

α)

)

. (32)

When investors are risk averse, we see from (32) that α̃ > 0, because investors require compensa-

tion for the non-diversifiable risky component x as well as for uncertainty about α.

2.4. Beliefs and Updating

2.4.1. Prior beliefs

We consider a single prior distribution for a but two different prior distributions for b. The first

prior for b, or Prior 1, assumes b = 0. Prior 1 is a dogmatic belief that returns to scale are constant.

The second prior, Prior 2, views b as an unknown quantity satisfying b ≥ 0. Prior 2 is a belief

that returns are decreasing in scale at an uncertain rate. We show below that the two priors lead

investors to make very different investment decisions after observing the same evidence.

Both priors can be nested within the joint prior distribution of a and b that is specified below.

This joint prior is bivariate normal, truncated to require that b ≥ 0. That is,

[

a
b

]

∼ N (E0, V0) I(b ≥ 0), (33)

where N(E0, V0) denotes a bivariate normal distribution with mean E0 and covariance matrix V0,

and I(c) is an indicator function that equals 1 if condition c is true and 0 otherwise. Denote

E0 =

[

Ea
0

Eb
0

]

, V0 =

[

V aa
0 V ab

0

V ab
0 V bb

0

]

. (34)

Both priors specify Eb
0 = V ab

0 = 0, for simplicity. Prior 1 also specifies V bb
0 = 0, which implies a

degenerate marginal prior distribution for b at b = 0. Prior 2 specifies the prior mean of b as b0 =

0.2. Given the properties of the truncated normal distribution, this prior mean implies V bb
0 = 0.063

and a prior standard deviation for b equal to σ0
b = 0.15. Both marginal prior distributions for b are

plotted in the top right panel of Figure 2. Prior 1 appears as a spike at b = 0. Prior 2 is the right

half of a zero-mean normal distribution truncated below at zero.
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Figure 2 also plots the marginal prior distribution for a, in the top left panel. This distribution,

which is the same for both Priors 1 and 2, is normal. Its mean and standard deviation, a0 and σ0
a,

are specified to imply a given prior mean of α at the level of S/W that is optimal under Prior 2.

We specify S/W = 0.9 as that initial level, so that investors with Prior 2 optimally invest 90% of

their wealth in active management before observing any active returns. We choose the prior mean

of α equal to α0 = 0.1, or 10% per year, when evaluated at S/W = 0.9. Since α = a− b(S/W ),

the prior mean of a is then equal to a0 = α0 + b0(S/W ) = 0.28. We choose the prior standard

deviation of a such that S/W = 0.9 is optimal for investors with Prior 2. Following equation (29),

we choose σ0
a =

√

α0/(0.9γ) − σ2
x − (0.9)2(σ0

b )
2 = 0.19. Given this large standard deviation, the

prior distribution for a is rather disperse, with the 5th percentile at -4% and the 95th percentile at

59% per year. The prior probability that a < 0 is 7.2%.

Given the prior distributions for a and b, we can examine the implied priors for α. Since

α = a− b(S/W ), the prior for α generally depends on S/W . The bottom panels of Figure 2 plot

selected percentiles of the prior for α as a function of S/W , which ranges from zero to one. When

b = 0 (Prior 1, bottom left panel), the distribution of α is invariant to S/W . When b ≥ 0 (Prior

2, bottom right panel), the distribution of α shifts toward smaller values as S/W increases. The

priors for α are fairly noninformative: α might be as large as 60% and as small as -40% per year.

Depending on S/W , between 7.2% and 36% of the prior mass of α is below zero.

Importantly, for S/W = 0, the prior distribution of α is the same under both priors (because

α = a in both cases), but for any S/W > 0, α is smaller under Prior 2. In other words, Prior

2 is always more pessimistic about α than Prior 1, at any positive level of S/W . In fact, Prior 1

is so optimistic that in the absence of an upper bound on S/W , investors with that prior would

allocate 378% of their wealth to active management before observing any data, as compared to the

corresponding allocation of 90% for Prior 2. Despite this prior handicap, investors with Prior 2

generally want to invest more in active management than investors with Prior 1 after observing a

negative track record, as we show in Section 3. The reason is that the two priors are updated very

differently after observing the same evidence. This updating is described in the following section.

2.4.2. Updating beliefs and equilibrium allocations

Investors update their beliefs in a Bayesian fashion. After each return realization, they compute

new posterior moments of a and b, which then yield the updated equilibrium allocation that solves

(21). Under Prior 1, where b = 0, only the beliefs about a are updated, following the standard result

for updating the mean of a normal distribution. Given a history of returns, yt = [rA,1 . . . rA,t]
′ with
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sample average r̄A,t, the posterior moments of a (and α) are given by

α̃ = ã =

(

1

V aa
0

+
t

σ2
x

)−1 (
Ea

0

V aa
0

+
tr̄A,t
σ2
x

)

. (35)

σ2
α = σ2

a =

(

1

V aa
0

+
t

σ2
x

)−1

. (36)

When b = 0, the cubic equation in (21) simplifies to a linear equation. In this case, σ2
α does not

depend on S/W , so the new allocation (S/W )t+1 is then given directly by the first equality in (30).

The active-management allocation problem in this case is essentially equivalent to the setting in

Treynor and Black (1973), but with the addition of parameter uncertainty.

Under Prior 2, investors must infer the coefficients in a time-series regression of returns on the

equilibrium allocations. After observing rA,t, which is the return following investors’ equilibrium

allocation (S/W )t, the available data in D consist of yt and zt = [(S/W )1 . . . (S/W )t]
′. In a re-

gression of yt on −zt and a constant, the intercept is a and the slope is b (see equation (25)). Recall

that investors’ prior beliefs for a and b are given by the bivariate truncated normal distribution in

equation (33), whose non-truncated moments are E0 and V0. In year t, those moments are updated

by using standard Bayesian results for the multiple regression model,

V =

(

V −1
0 +

1

σ2
x

(Z ′
tZt)

)−1

(37)

E = V −1

(

V −1
0 E0 +

1

σ2
x

Z ′
tyt

)

, (38)

where Zt = [ ιt −zt ]. The posterior distribution of a and b is bivariate truncated normal as

in equation (33), except that E0 and V0 are replaced by E and V from equations (37) and (38).9

Having the updated momentsE and V of the non-truncated bivariate normal distribution, we apply

the relations in Muthen (1991) to obtain the updated moments of the truncated bivariate normal

distribution, defined in equations (6) and (7).10 Those moments are then used to solve the cubic

equation in (21) to obtain (S/W )t+1.

9In deriving the posterior of a and b from the regression of yt on −zt, it is useful to note that (S/W )t is a

deterministic function of its initial value and returns prior to time t, so there is no randomness in S/W beyond what
is in past returns. The likelihood function is obtained simply by transforming the density of {xs; s = 1, . . . , t} to

the density of {rA,s; s = 1, . . . , t}, where the Jacobian of that transformation equals 1. As a result, the likelihood

function is identical to what would arise if the observations of S/W were treated as nonstochastic.
10Earlier results for such moments appear in Rosenbaum (1961), but the published article contains some errors in

signs that we verified through simulation.
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3. Is the industry’s size puzzling given its track record?

In this section, we use our model to ask whether it is puzzling that the active management industry

remains large, given its historical performance. We use historical performance in two different

ways. First, we take the perspective of a researcher who computes the t-statistic of the industry’s

historical alpha. Conditioning on this measure considers the active-management puzzle in its tradi-

tional context, wherein the overall level of poor performance for the industry, summarized here by

the t-statistic, seems at odds with the substantial size the industry still enjoys. Second, we go be-

yond this traditional perspective and condition on the industry’s actual year-by-year performance.

In each year of the historical sample, we solve for the equilibrium allocation to active management,

conditional on the history of active returns and equilibrium allocations.

We use the same priors for a and b as presented earlier, Prior 1 (b = 0) and Prior 2 (b ≥ 0).

Allowing decreasing returns to scale, as does Prior 2, plays a crucial role in judging the industry’s

continued popularity, whether we condition on just the t-statistic or on the full year-by-year return

series. Of particular interest is S/W at the end of the sample period, which corresponds to the

allocation to active management at the present time. When conditioning on just the t-statistic,

that equilibrium value of S/W is described by a posterior distribution. We show below that this

distribution includes substantial allocations, in excess of 0.7, even when the t-statistic equals −2.

Even more striking are the results obtained by conditioning on the entire year-by-year series of

actual returns on actively managed U.S. mutual funds. In that case, the equilibrium allocation is

given by a single value, which is equal to about 0.7. In other words, not only do we find that the

industry could still be relatively large given its overall level of negative performance, we find that

it should still be large given the evolution of that track record. This conclusion critically depends

on decreasing returns to scale. If we use the constant-returns-to-scale Prior 1 instead, the current

equilibrium size of the industry is zero under either form of conditioning, even though Prior 1 is

more optimistic than Prior 2 about active management’s α (as discussed earlier).

3.1. Conditioning on the overall level of performance (t-statistic)

We first take the perspective of a researcher who uses the posterior distribution of the current

equilibrium S/W , conditional on an overall summary measure of the industry’s track record, to

judge the reasonableness of the current actual S/W . The researcher knows that the latter quantity is

substantial, but he does not observe it precisely. Measuring S/W is difficult from the researcher’s

perspective, especially because W is difficult to measure. First, W includes cash. Recall that W

is allocated across active funds, passive benchmarks, and cash (the riskless asset). The investors’
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cash holdings are difficult to pin down. Second, W is only a subset of total wealth; it is the wealth

of our N investors. It seems difficult to empirically separate the wealth of these investors from the

wealth of the other unmodeled investors discussed at the beginning of Section 2. We do assume

that the researcher’s prior beliefs about a and b are the same as those held by our investors.

In computing the posterior distribution for the equilibrium S/W conditional on the overall

track record, we characterize the track record by the t-statistic of the industry’s historical alpha.

This historical alpha, or α̂, is simply the sample average benchmark-adjusted return. Its t-statistic

is computed as t = α̂
√
T/σx for T = 50 years.11 For each prior, the posterior distribution of

(S/W )T in year T = 50 is obtained by simulating 300,000 samples. To simulate a sample, a and b

are drawn from the prior, and then in each year t = 1, . . . , T a return is drawn following equation

(25) as rA,t = a− b(S/W )t+xt, where xt ∼ N(0, σ2
x). The new equilibrium allocation (S/W )t+1

is then computed using the updating procedure described in Section 2. Note that under Prior

2, (S/W )t+1 affects rA,t+1: the more investors allocate to active management, the lower is their

subsequent return. In contrast, there is no such relation under Prior 1. The posterior distribution

for (S/W )T conditional on a given value t0 of the t-statistic is constructed as the distribution of

the (S/W )T values in all simulated samples producing t-statistics within a small neighborhood of

t0. Figure 3 plots the resulting posterior distributions for t0 ranging from −4 to 4.

Panel A of Figure 3 displays the posterior distribution of S/W obtained under Prior 1 (b = 0),

according to which there are constant returns to scale. The posterior distribution collapses to a

single value because the t-statistic is a sufficient statistic for S/W in this case. The optimal allo-

cation is a steep linear function of past performance as long as that performance is mildly positive

(t-statistics between 0 and 0.25). If past performance is more positive (t > 0.25), the optimal allo-

cation is S/W = 1. If past performance is negative, we obtain the other corner solution, S/W = 0.

The cutoff value of the t-statistic that produces S/W = 0 is just below zero. It is not exactly zero

because the prior for a is slightly informative (see Figure 2), but it is very close to zero. So it is

a reasonable approximation to state that investors observing negative past performance optimally

choose to invest nothing in active management. This implication of b = 0 does not seem to match

the reality, in which the active management industry continues to attract substantial investment

despite having delivered negative performance relative to passive indices.

The puzzling coexistence of negative past performance and substantial investment is easier to

understand when there are decreasing returns to scale. Panel B of Figure 3 plots the posterior

distribution of S/W conditional on the t-statistic under Prior 2 (b ≥ 0). Unlike in Panel A, the

t-statistic is no longer a sufficient statistic for S/W . Panel B shows that S/W increases with past

11The results for other values of T , such as 20 or 30 years, are very similar.

17



performance, though not as steeply as in Panel A. When the historical alpha is zero (t = 0), the

middle 90% of the distribution of S/W (between the 5th and 95th percentiles) lies in the wide

range between 0.26 and 0.97. When the historical t-statistic is t = −2, indicating statistically

significant underperformance, the median S/W is 0.27 and the middle 90% of the distribution

ranges from 0.02 to 0.71. Note that S/W < 0.02 is as unlikely as S/W > 0.71: observing

very little investment in active management would be equally puzzling as observing too much

investment. Even when the t-statistic is t = −3, which is more negative than the observed evidence

for mutual funds, the median S/W is 0.13 and the 95th percentile is 0.43. Panel B clearly shows

that when b ≥ 0, substantial investment in active management can be optimal even when past

performance is significantly negative.

Investors are willing to invest despite poor past performance because past underperformance

does not imply future underperformance. Under decreasing returns to scale, the expected return in

any given period is conditional on the investment level S/W in that period. Historical benchmark-

adjusted returns are earned at various investment levels, which can be quite different from the cur-

rent investment level. After a period of underperformance, investors reduce their investment until

their expected return going forward converges to the positive equilibrium level of α in equation

(32). If past performance is sufficiently poor, investors will choose to invest nothing in active man-

agement; this happens if investors infer that a is nonpositive, in which case α cannot be positive

either. Such an event occurs with only 13% probability even when t = −3, and active management

does not seem to have underperformed quite that badly. For the 1962–2006 period, the regression

(mentioned earlier) of the value-weighted active U.S. equity fund excess return on the three Fama-

French factors produces t = −1.7, while a regression on just the market factor produces t = −2.6.

At such levels of underperformance, the optimal investment in active management can be substan-

tial. For example, when t = −1.5, the median S/W is 0.37 and the 95th percentile is 0.84, and

when t = −2.5, the median is 0.19 and the 95th percentile is 0.56.

It is important to note that optimism about active management’s abilities is not our story. If the

prior for a in Figure 2 strikes one as optimistic, one should recall that the same prior leads investors

who set b = 0 to invest nothing in active management given its negative track record, even though

the implied prior about α is then more optimistic. Our results are instead driven by the prior on b.

Further support for this statement is provided by results we obtain for an alternative set of priors

that are less optimistic. Specifically, while keeping the same priors for b as before, we modify the

prior for a so that the optimal initial value of S/W under Prior 2 is now 0.5 instead of 0.9. This

prior assigns a 26% probability to a < 0, compared to the 7.2% probability in Figure 2. Naturally,

the implied prior for α is then more pessimistic as well, with the median ranging from 0 to 0.2 and

the 5th percentile ranging from -0.6 to -0.3 for 0 ≤ S/W ≤ 1. Under this alternative specification,
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conditional on t = −2, the median S/W after 50 years is 0.10 and the 95th percentile is 0.65.

These values are smaller than their counterparts in Figure 3, but that is not surprising. Before

seeing any data, investors under this alternative prior allocate only half of their investable wealth

to active management, so following a negative track record, they generally allocate less than half.

Nevertheless, substantial allocations still lie within the posterior distribution. As before, of course,

the same track record implies S/W = 0 when investors set b = 0.

3.2. Conditioning on the year-by-year returns of U.S. mutual funds

We now take a perspective akin to that of the investors in our model. Recall that investors determine

(S/W )t as a function of the previous active returns {rA,1, . . . , rA,t−1} and equilibrium allocations

{(S/W )1, . . . , (S/W )t−1}. For each year t from 1963 through 2006, we set rA,t−1 equal to the

return on the aggregate portfolio of actively managed U.S. equity mutual funds, net of the return

attributable to the portfolio’s estimated exposures to the three factors of Fama and French (1993).

As in the model, each (S/W )t is then determined by the returns and allocations through period

t− 1. Priors are again as specified in Figure 2.

Figure 4 displays the resulting path of S/W over the sample period. When b = 0, the value

of S/W , which starts at the upper limit of 1 given the prior in this case, bounces between 0 and 1

during the first 7 years but then settles at S/W = 0 thereafter. We thus see that, when b = 0, not

only is S/W equal to 0 conditional on a negative overall track record, as in the previous analysis,

but S/W converges to 0 after just 7 years of the track record as it actually occurred. In other

words, if one believes investors preclude the possibility of decreasing returns to scale, the active

management puzzle becomes even deeper than previously recognized.

In sharp contrast to the b = 0 case, the prior with b ≥ 0 yields an equilibrium allocation that

drops rather smoothly and modestly over time, from its initial value of S/W = 0.9 to a final value

of about S/W = 0.7. The intuition behind the slow decline in S/W is simple. When investors

observe negative benchmark-adjusted returns, they revise downward their beliefs about the active

management’s α at the current level of S/W . As a result, investors reduce their allocation to active

management. However, this reduction in S/W is mitigated by decreasing returns to scale because

a lower S/W implies a higher α going forward. Due to decreasing returns, investors disinvest less

in response to poor performance than they would if returns to scale were constant.

The plot in Figure 4 seems plausible. As discussed earlier, it is difficult to measure S/W

empirically, but even casual observation would surely indicate that it has been substantial over

time and remains so today. At the same time, it seems likely that S/W has declined somewhat

over time, given the growth of indexing. For equity mutual funds, indexing has grown from its
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inception in the 1970’s to its recent share of about 13 percent of total assets (Investment Company

Institute, 2009). Among institutional investors, the growth of indexing has been greater, to a recent

share between 31 and 53 percent, depending on investor classification (French, 2008). Consistent

with these facts, Figure 4 shows an allocation that has dropped somewhat but is still substantial.

The striking message from Figure 4 is that rather than the industry’s size being a puzzle given

its track record, the year-by-year track record actually implies that active management should not

have shrunk dramatically from an initially substantial allocation of investor wealth.

4. Learning About Returns to Scale

In this section, we analyze how investors learn about decreasing returns to scale in active manage-

ment. We find that this learning is slow, hampered by an interesting endogeneity faced by compet-

ing investors who cannot coordinate their investment decisions. Even though investors eventually

learn the industry’s α, they never accurately learn a and b in equation (1). We also find that when

b is large, the equilibrium allocation to active management stabilizes quickly, but when b is small,

the industry’s size can fluctuate at suboptimal levels for a long time.

As investors learn, their posterior standard deviations of a, b, and α decline through time. For

a given prior, the manner in which these posterior standard deviations decline depends on the true

values of a and b. The probability distributions of a and b thus give rise to distributions of the

posterior standard deviations of a, b, and α. Figure 5 displays the evolution of these distributions

over time. Each panel plots selected percentiles of the distribution of the given standard deviation

across the 300,000 samples described earlier near the beginning of Section 3.1.

The three left panels of Figure 5 correspond to Prior 1 (b = 0). In this case, a and α coin-

cide, which is why the top and bottom left panels of Figure 5 look identical. (The middle left

panel looks empty because the posterior standard deviation of b is zero.) The learning process

is straightforward. With b = 0, the value of a (and α) is simply the unconditional mean return.

The posterior mean of a is a weighted average of the historical average return and the prior mean,

where the weight on the prior mean quickly diminishes as t increases because the prior for a is

fairly noninformative (Figure 2). The posterior standard deviation of a declines at the usual
√
t

rate, regardless of the particular sample realization. Since there is no dispersion in the standard

deviations across the simulated samples, the distribution of the standard deviations collapses into

a single line. In short, when b = 0, learning is simple and well understood. In contrast, learning is

much more interesting when b ≥ 0, as explained next.
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The three right panels of Figure 5 represent Prior 2 (b ≥ 0). Under this prior, the posterior

standard deviations of a and b fall sharply in the first few years but then flatten out surprisingly

quickly. For the median sample, investors learn much more about a and b in the first two or three

years than in the subsequent 50 years! Moreover, even after 50 years, investors remain highly

uncertain about a and b: for the median sample, the posterior standard deviations of a and b both

exceed 7%. For comparison, the posterior standard deviation of a is 25 times smaller when b = 0.

The speed of learning about a is clearly very different when b ≥ 0 than when b = 0 (compare the

top two panels in Figure 5).

Investors learn differently under the two priors for b because the level and variation in (S/W )t

affect learning when b ≥ 0 but not when b = 0. We discuss this difference in Section 4.1. This

difference is absent, however, when S/W is persistently equal to zero. In 6.3% of all samples,

(S/W )t = 0 for all t between 3 and 50 years. These are samples in which investors quickly learn

that it is optimal for them to invest nothing at all in active management (because they perceive

a < 0). In these samples, S/W does not affect learning, just like when b = 0, so the results for

these samples should look the same between 3 and 50 years whether b ≥ 0 or b = 0. Indeed,

Figure 5 shows that the 5th percentile of the posterior standard deviation of a in the top right panel

(b ≥ 0) looks the same as in the top left panel (b = 0) after year 3. The same 5th percentile also

looks very similar to the 5th percentile of the posterior standard deviation of α in the bottom right

panel, again because more than 5% of all samples exhibit S/W = 0 and hence also α = a.

In contrast to the difference in speeds at which investors learn about a under Prior 1 versus

Prior 2, investors learn about α at essentially the same rate under both priors. This similarity

in learning speeds is evident in a comparison of the bottom two panels of Figure 5. As will be

discussed later, the equilibrium value of S/W under Prior 2 (b ≥ 0) typically does not change

much after just a few years. If S/W stops changing, so does α, so investors with Prior 2 are then

able to learn α at that stable S/W about as quickly as investors with Prior 1 learn the value of

α that they assume to be constant. In the earlier discussion of equation (31), we noted that the

term γ (σ2
x + σ2

α) makes a relatively small contribution compared to the other denominator term

b̃, especially after some learning about α has occurred. We now see in the bottom right panel of

Figure 5 that σα is typically about 2%—the same as σx—after the first year’s return is observed,

and then σα drops at essentially the same
√
t rate as it does in the bottom left panel with b = 0.

Thus, as t increases, the term γ (σ2
x + σ2

α) is soon well approximated by γσ2
x, which is generally

small compared to b̃ for the values of γ and σ2
x considered.
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4.1. Endogeneity in Learning

The key message from Figure 5 is that most of the time, learning about a and b essentially stops

after just a few years. The reason is the endogeneity in the way investors learn—what they learn

affects how much they invest, and how much they invest affects what they learn. If the amount

invested stops changing from one period to the next, investors stop learning about returns to scale.

Recall that investors essentially run the time-series regression of active returns, rA,t, on the equi-

librium allocations to active management, (S/W )t. If the right-hand side variable in the regression

stops changing, investors stop learning about the true values of the intercept and slope. Indeed, we

find that in most cases, (S/W )t ceases to change much after just a few years.

The fact that the aggregate active allocation (S/W )t typically ceases to change reflects equi-

librium among competitive investors. If investors could instead coordinate, they might well find

it useful to continue varying the aggregate active allocation for additional periods, so as to con-

tinue learning about a and b. In a multiperiod setting, such investors would trade off near-term

optimality of their current allocation against the potential future value of additional learning by

experimenting with different allocations. The additional learning could be valuable, for example,

if investors could experience a future preference shock making their previous allocation subopti-

mal. With learning about a and b shut down, investors are uncertain about α at any allocation other

than the current one. The prospect of wanting to change their allocation in the future creates an

incentive for additional learning about a and b.

To illustrate the endogenous nature of learning in our competitive setting, Figure 6 plots repre-

sentative examples of learning paths for various random samples. The figure has 12 panels, each

of which plots returns rA,t against (S/W )t for t = 1, . . . , 300 years. The three columns of panels

correspond to three different values of b: “low” (5th percentile of the prior distribution, 0.02), “me-

dian” (50th percentile, 0.17), and “high” (95th percentile, 0.49). Given the value of b, the value of

a is computed so that the “true” value of S/W that would obtain if the true values of a and b were

known is either S/W = 0.5 (the top six panels) or S/W = 0.7 (the bottom six panels). The true

value of S/W is given by a/(b+ γσ2
x), which is a special case of equation (31) when a and b are

known. The (a, b) pair obtained above is then used to generate random samples of active returns,

which are used to update Prior 2. All panels of Figure 6 represent examples of learning paths that

commonly occur for the given values of a and b. The starting point (t = 1) is indicated with a

circle; its x coordinate is always (S/W )1 = 0.9.

The intuition for why (S/W )t tends to stop changing comes across most clearly when b is

high. Consider the top right panel of Figure 6. Since the initial allocation exceeds the true value,
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that is (S/W )1 = 0.9 > 0.5, investors initially overinvest in active management, so their true

expected return is negative (even though they subjectively expect a positive return). The first

realized return is about -19%. Upon observing such a large negative return, investors sharply revise

their prior beliefs and dramatically cut their allocation, to about (S/W )2 = 0.3. This represents

underinvestment relative to the true S/W , so the realized return in the second year tends to be

larger than investors expect, about 9%.12 From this high return, investors infer they should invest

more than 0.3. Their investment in year three, (S/W )3, is already close to the true value of 0.5. In

all four panels in which b is high, S/W “converges” to its true value after only three or four years,

in that only small deviations from the true value appear over the following 300 years.

Why does the equilibrium allocation approach the true S/W so quickly when b is high? The

reason is that after two years, investors already have a lot of information about the true S/W , which

is equal to a/(b+γσ2
x), as mentioned earlier. When b is high, the true value is approximately equal

to a/b.13 This approximate relation can be visualized in Figure 1. When b is high, the equilibrium

true S/W is very close to S̄/W = a/b. The true S/W is slightly smaller than S̄/W (and α is

slightly positive) because investors demand compensation for nondiversifiable risk (i.e., because

γσ2
x > 0). However, since γσ2

x is small compared to b, α is close to zero and S/W ≈ S̄/W .

To understand why investors know a lot about S̄/W after two years, recall that S̄/W represents

the point at which the line in Figure 1 intersects the x axis. After two years, investors observe two

datapoints, ((S/W )1, rA,1) and ((S/W )2, rA,2), which are far from each other, both vertically and

horizontally (because investors update their relatively noninformative prior beliefs substantially

after the first observation). Fitting a line through these two distant points allows investors to pin

down the intersection point S̄/W reasonably well. As a result, approximate convergence to the

true S/W tends to occur quickly when b is high.

This logic also helps us understand the L-shaped pattern in the posterior standard deviations of

a and b in Figure 5. As noted earlier, a and b are estimated from the regression of rA,t on (S/W )t.

This regression can be visualized as fitting a line through the datapoints plotted in Figure 6, a line

whose intercept is a and whose slope is −b. In the first few years, investors learn a lot about a

and b due to substantial initial variation in S/W . Fitting a line through the first two datapoints

already substantially reduces the prior uncertainty about the intercept and the slope. This is why

the posterior standard deviations of a and b in Figure 5 exhibit a sharp initial drop.

12This systematic underinvestment appears from our perspective because we know the true value of S/W . In

contrast, there is no underinvestment (or overinvestment) from the perspective of our investors who do not know the

true S/W . The investors always invest optimally given their information set.
13Our high value of b, the 95th percentile of the prior for b, is equal to 0.49, which far exceeds γσ2

x = 0.0008.
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After the first few years, however, S/W exhibits very little variation when b is high, thereby

precluding investors from getting much new information about the intercept and slope. Facing

the 300-year data pattern in the top right panel of Figure 6, investors fit a line through what are

effectively only three datapoints: ((S/W )1, rA,1) from year 1, ((S/W )2, rA,2) from year 2, and the

midpoint of the cluster of points at S/W ≈ 0.5 from years 3 through 300. Therefore, investors

do not know much more about a and b after 300 years compared to what they knew after 3 years.

The same logic also applies when b is not high, albeit to a lesser extent. S/W often settles at a

given value for a long period of time, thereby slowing down learning about a and b. This is why

the posterior standard deviations in Figure 5 decline so slowly after just a few years.

In the preceding discussion of why (S/W )t converges quickly, we focus on the high value of b.

The four middle panels of Figure 6 show examples of learning paths when b is at its prior median.

The main difference from the high b case is that S/W typically fluctuates for several decades

rather than years before converging. The convergence of S/W generally takes longer when the

initial S/W is closer to the true S/W because learning is then slower due to a smaller magnitude

of the initial realized return. (In the middle column, compare examples 1 and 2, in which the true

S/W = 0.5, with examples 3 and 4, in which the true S/W = 0.7.)

4.2. Departures from Optimal Industry Size

To further analyze the convergence of S/W , we examine the distribution across the 300,000 sam-

ples of the difference between the equilibrium (S/W )t and the true S/W . This distribution shrinks

as time passes. The difference between its 5th and 95th percentiles is 4% after 10 years and 2%

after 50 years. After 10 years, the probability that the equilibrium S/W differs from the true S/W

by at least 0.01 is 18% and the probability of at least a 0.05 difference is just under 3%. After 50

years, these probabilities are smaller, 9% and 1%, respectively. These results show that most of the

time, investors gradually converge to the true optimal allocation, but the convergence can be slow.

Slow convergence is common especially when b is low, as described next.

The left panels of Figure 6 show examples of learning paths when b is low. The first major

difference from the case of high b is that it generally takes much longer for S/W to settle in a

narrow range, if it settles at all during the first 300 years. For example, in the second panel on

the left, S/W travels across the whole range of zero to one, and it continues moving even after

300 years. This difference is due to the fact that when b is close to 0, S/W has little effect on

α = a− b(S/W ). It is α, the conditional expected return, that investors learn about by observing

realized returns. When b ≈ 0, the variation in S/W does not cause much variation in realized
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returns; the latter variation is mostly due to noise (x in equation (25)). Since realized returns do

not help investors much in finding the optimal investment level, S/W keeps wandering around.

Another feature of low b is that S/W often settles at a level substantially different from the

true S/W . For example, in the top left panel, S/W settles around 0.7, well above the true level

of 0.5. To understand this result, recall that realized returns allow investors to learn about α that

is conditional on the current level of S/W . If S/W were to stay constant forever, investors would

eventually perfectly learn the value of α at that level of S/W . However, they would not learn a

and b individually, so they would forever remain uncertain about α at any other level of S/W . This

intuition helps us understand the path dependence in the left panels of Figure 6. After staying at

a given level of S/W for a while, investors have learned more about α at that level of S/W than

about α at any other level. As a result, they find it costly to change S/W because doing so would

increase the uncertainty they face. Being stuck at a suboptimal level of S/W is costly as well, but

the cost diminishes as b approaches zero. When b is close to zero, the cost of changing S/W may

well exceed the cost of staying at a suboptimal level of S/W . In such cases, we observe S/W

settling down at a level different from the true S/W , even after 300 years.

It would appear from Figure 6 that when b is low, investors can get stuck at the wrong invest-

ment level forever. They cannot, but convergence of S/W to 0.5 can take thousands of years.14 To

illustrate this fact, we run a single simulation exercise for one million years, using the true values

of a = 0.015 and b = 0.016 (the 5th percentile of the prior distribution for b), which imply a true

S/W of 0.9. We keep the same initial S/W of 0.9 as before, as well as the same priors. In this

simulation, a few early negative return draws quickly push the equilibrium S/W down, and given

the low value of b, S/W takes a long time to climb back up. We find that the equilibrium S/W is

equal to 0.72 after 100 years, 0.77 after 500 years, and 0.78 after 1,000 years, well below the true

value of 0.9. Even after 3,000 years, S/W is only 0.85. After 10,000 years, S/W = 0.894, and

after a million years, S/W is only 0.0003 away from the true value. In short, convergence in S/W

takes place eventually, but it can take so long that it is practically irrelevant. We conclude that

when b is low, rational investors can get stuck at a suboptimal investment level. In other words, the

equilibrium size of the active management industry can be suboptimal for a long period of time.

Let us briefly summarize the key findings from Figure 6. When b is high, investors find the

optimal level of investment quickly. They learn a lot about a and b initially while S/W varies,

14To see that convergence to a different value cannot occur, note that at any interior value to which S/W converges,

(29) holds. After infinitely many realizations of returns at a given S/W , there is no uncertainty about alpha at that

value of S/W , so that σα = 0. As a result, E(rA|D) = α, the true value of alpha at that S/W , and Var(rA|D) = σ2

x.

Equation (29) then implies that S/W converges to α/(γσ2

x). It then follows from equations (31) and (32) that the
value to which S/W converges must be the true value, a/(b + γσ2

x).
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but their learning all but stops after S/W settles down at or near the true S/W . When b is low,

learning is highly path-dependent. S/W fluctuates much longer before it settles in a narrow range,

if it settles at all. This narrow range need not include the true S/W , and investors can get stuck at

a suboptimal investment level for a very long time.

In our final analysis, we let our investors learn from the year-by-year series of actual mutual

fund returns. We use Prior 2 (b ≥ 0) and the same data as in Figure 4. The results are plotted in

Figure 7. The first three panels plot the time series of the posterior distributions of a, b, and α. All

of these distributions shrink as time passes, but the distributions of a and b shrink only modestly

compared to the distribution of α. By 2006, investors are confident that the annual α at the current

S/W is within 1% of zero, but they remain quite uncertain about a and b. As before, we see that

learning about decreasing returns to scale is slow. Some insight into the low speed of learning is

provided by the learning path plotted in the bottom right panel of Figure 7. That plot is similar to

the examples in Figure 6 (middle column, lower rows) in which b is at its median prior value and

the true S/W = 0.7. Many of the S/W values cluster in the neighborhood of 0.7. As a result,

when a regression line is fitted through the scatter of points, the intercept and slope clearly remain

very uncertain even after observing 44 years of data.

5. Relation to Berk and Green (2004)

A central feature of our model is that active managers face decreasing returns to scale in their

abilities to generate alpha. In this respect our approach follows Berk and Green (2004), but there

are important differences. First, Berk and Green (hereafter BG) assume that decreasing returns

apply at the level of individual funds, whereas we assume they apply to the active management

industry as a whole. That is, we assume an individual fund’s alpha is decreasing in the total

amount invested by all active funds.15 It seems reasonable that even a small fund finds it more

difficult to identify profitable investment opportunities as the overall amount of actively-invested

capital grows and thereby moves prices to eliminate such opportunities.16 Assuming decreasing

returns at the individual fund level seems plausible as well, though it encounters the question of

15It is easy to show that our assumption of decreasing returns to scale at the aggregate level also implies decreasing

returns to scale at the individual fund level. However, this implication weakens as the number of funds grows larger.

Empirical evidence indicating decreasing returns to scale at the fund level, especially among small-cap mutual funds,

is provided by Chen, Hong, Huang, and Kubik (2004) and Pollet and Wilson (2008). Related evidence for hedge
funds, at the fund level as well as aggregate level, is provided by Fung, Hsieh, Naik, and Ramadorai (2008).

16A similar perspective is adopted by Glode and Green (2010) who argue that fund returns can be decreasing in

the size of a sector or trading strategy, as well as in the size of the fund itself. Glode and Green develop a model of

information spillovers that can rationalize performance persistence in hedge funds.
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what happens if multiple funds merge or additional managers are hired. Presumably, in the absence

of aggregate effects, such mergers or hires would simply keep increasing the fund size at which

decreasing returns take their bite.

A second difference in our treatment of decreasing returns to scale is that we do not assume

that investors know the degree to which alpha drops as the amount of active management increases.

In our parameterization of decreasing returns in (5), the values of both a and b are unknown. In

contrast, the model in BG corresponds to a setting in which a is unknown but b is known.17 As

discussed earlier, when both a and b in (5) are unknown, investors face an interesting learning

problem in which the true values of those parameters are never fully learned.

Another difference from BG is that their investors face α̃ = 0, whereas our investors perceive

α̃ > 0. We solve for the Nash equilibrium among investors maximizing (10). BG do not solve

the investors’ optimization problem explicitly; instead, they fix α̃ = 0 by invoking the assumption

that non-benchmark risk can be completely diversified away across many funds. BG argue that

if a large number of funds were to have positive alphas, one could combine them in a portfolio

with a positive alpha and zero non-benchmark risk; α̃ = 0 is therefore a necessary condition for

equilibrium. Recall from Proposition 1 that our model implies α̃ = 0 as well if investors are risk

neutral and the number of investors is infinite. With a finite number of investors, however, α̃ > 0

because investors internalize some of the reduction in alpha caused by their own investment.

Even with an infinite number of investors, α̃ > 0 if investors are risk-averse because they then

require compensation for both non-diversifiable risk (σx > 0) and uncertainty about α (σα > 0).

These effects are clear from equation (32), which applies when N → ∞ and M → ∞. However,

we do not wish to leave readers with the impression that alpha in that setting is necessarily large.

Equations (31) and (32) imply that α̃ = (S/W )γ(σ2
x + σ2

α). This value is small once learning

proceeds to the point where σα ≈ 0. Even with S/W = 1, the values of γ and σx specified

in our numerical investigation (2 and 0.02, respectively) then imply a value of α̃ equal to only

8 basis points per annum. Uncertainty about α increases the equilibrium value of α̃, but only

slightly unless learning is just beginning. Thus, even though our modeling of the determinants

of equilibrium alpha is rather different from that of BG, their zero-alpha condition is not at sharp

odds, in practical terms, with a setting in which σx > 0, σα > 0, and there are many funds and

investors.18

17BG denote the quantity corresponding to our “b” as “a” in their quadratic parameterization, and they view this

quantity as known. Their “α” corresponds to our “a”—they use “α” to denote the expected return gross of fees and

costs, whereas we use “α” to denote the expected benchmark-adjusted return received by investors (see equation (2)).
18A closely related statement is that in our model, past performance predicts future performance, but only slightly.
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In their diversification argument justifying zero alpha, BG rely on the presence of many funds.

This assumption is at some tension with BG’s treatment of fund managers as monopolists. In the

BG model, each manager sets a proportional fee rate by taking into account its effect on the amount

of assets under management. That amount ends up maximizing expected profit received in total by

managers and investors; the analogous aggregate amount in our setting is given in equation (18).19

In our model, with multiple competing funds, that discretionary component of the fee disappears

(f = 0), and managers become price takers with respect to their equilibrium fees. When there are

many competing investors as well, the amount invested under risk neutrality is twice as large as in

the BG model; investment reaches the level that produces zero expected profit.

The specification that brings our model closest to that of BG involves a single manager (M = 1)

and many risk-neutral investors (N → ∞, γ = 0). With M = 1, we obtain f = ã/2, as in BG.20

With N → ∞, the externality present with fewer investors, which is absent from BG, disappears.

With γ = 0, we obtain BG’s zero-alpha condition because there is no compensation for risk.

Equation (18) shows that equilibrium under the above specification produces a profit-maximizing

size of the industry that is analogous to the profit-maximizing fund size obtained in BG.

6. Conclusion

It seems puzzling that active management remains popular despite its track record. We propose

a potential resolution to this puzzle. In a model with competing investors and fund managers,

we find that the equilibrium size of the active management industry can be large even after a

significantly negative track record. The key to this result is the belief that active managers face

decreasing returns to scale. If investors instead believed that returns to scale were constant, they

would allocate nothing to active management even if they were initially more optimistic about

active managers’ abilities.

Under decreasing returns to scale, investors adjust their allocation in response to performance

until the expected return going forward is sufficiently attractive. Given the observed year-by-year

performance of active mutual funds over the past four decades, our model makes two predictions

about the investors’ proportional allocation to active management: this allocation should have

decreased over time, but it should also remain substantial. Consistent with the first prediction,

19Our equation (18) corresponds to BG’s equation (26), q∗t (φt) = φt/2a. BG’s a corresponds to our b̃, their φt

corresponds to our ã, and their q∗t corresponds to our expected-profit-maximizing S/W .
20Here we refer to the special case of BG in which the profit/cost function is quadratic, as it is in our model. BG

analyze not only this special case but also the more general case of convex costs.
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passive investing has grown dramatically since its humble beginnings in the 1970s. Consistent

with the second prediction, active investing remains more popular than passive investing.

Investors in our model face endogeneity that limits their learning—what they learn affects how

much they allocate to active management, but what they allocate affects how much they learn. The

equilibrium allocation typically ceases to fluctuate after just a few years, at which point learning

about returns to scale essentially stops. As a result, investors never accurately learn the degree

of decreasing returns to scale. We also find that when active returns are not very sensitive to the

industry’s size, this size can fluctuate at suboptimal levels for a long time.

Future research can explore additional aspects of learning about parameters governing returns

to scale. These parameters are held constant in our model, for simplicity, but they could plausibly

vary due to exogenous shocks. For example, shocks to liquidity would likely induce changes in the

degree of decreasing returns to scale. In such a setting, parameter uncertainty gets refreshed every

so often, so that learning is always at a relatively early stage. The probability that the industry size

is suboptimal at any point in time is then higher than in the constant-parameter framework, and so

is the probability of observing unusually large positive or negative t-statistics. Future work could

also further explore the economic importance of the incomplete learning about returns to scale. We

have a lot yet to learn about learning in active management.
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Appendix

In this appendix, we derive Propositions 1 and 2. After first justifying the objective in (10), we

analyze the risk-neutral setting in which γ = 0 and then turn to the risk-averse setting with γ > 0.

A.1. Objective function

The total return on investor j’s portfolio is given by

Rj = (1 − δ′jιN − φ′
jιK)Rf + δ′jRF + φ′

jRB

= Rf + δ′j(RF − ιNRf ) + φ′
j(RB − ιKRf)

= Rf + δ′jrF + φ′
jrB (A1)

where Rf denotes the interest rate, RF and RB denote total rates of return on the N funds and K

benchmarks, rF and rB denote returns in excess of the interest rate, ιn denotes an n-vector of 1’s,

and δj and φj denote the vectors of weights on the funds and benchmarks. (Note that the weights

across all assets sum to 1 by construction.) We assume investor j solves the problem

max
δj ,φj

{

E(Rj|D) − γ

2
Var(Rj|D)

}

, (A2)

where the allocations to the benchmarks and riskless asset are unrestricted. Combining (A1) with

equations (2) and (3) gives

Rj = Rf + δ′j(α+BrB + u) + φ′
jrB

= Rf + δ′jr + (δ′jB + φ′
j)rB

= Rf + δ′jr + ψ′
jrB, (A3)

where

ψj = B ′δj + φj. (A4)

From (A3) we obtain

E(Rj) = Rf + δ′jE(r|D) + ψ′
jE(rB|D) (A5)

Var(Rj) = δ′jVar(r|D)δj + ψ′
jVar(rB |D)ψj, (A6)

recalling that r and rB are uncorrelated. Because we do not constrain φj, the weights on the

benchmarks, we see from (A4) through (A6) that the maximization in (A2) is equivalent to

max
δj ,ψj

{

Rf + δ′jE(r|D) + ψ′
jE(rB|D) − γ

2

(

δ′jVar(r|D)δj + ψ′
jVar(rB |D)ψj

)}

. (A7)
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We then see that (A7) separates into two maximation problems: one is given by

max
ψj

{

ψ′
jE(rB|D) − γ

2
ψ′
jVar(rB|D)ψj

}

, (A8)

and the other—the relevant problem for our purposes—is given by (10).

A.2. Risk Neutrality

Let s denote the M × 1 vector whose i-th element is si. Observe that

s =
W

N

N∑

j=1

δj (A9)

S = ι′Ms =
W

N

N∑

j=1

ι′Mδj, (A10)

where ιM is an M × 1 vector of ones. The vector of benchmark-adjusted fund returns is given by

r = aιM − b
S

W
ιM − f + u, (A11)

so expected fund returns can be written as

E(r|D) = ãιM − b̃

N

N∑

j=1

ι′MδjιM − f (A12)

where f is an M × 1 vector whose i-th element is fi. Substituting into (10), setting γ = 0, gives

investor j’s problem as

max
δj






δ′j



ãιM − b̃

N

∑

n6=j

ι′MδnιM − f



 − δ′j
b̃

N
ιM ι

′
Mδj






, (A13)

subject to the restrictions

ι′Mδj ≤ δ∗ (A14)

δi,j ≥ 0 ∀i, j, (A15)

where δi,j denotes the i-th element of δj. We here impose the leverage constraint in (A14) from the

outset and then consider the separate cases where it does and does not bind.

In a Nash equilibrium, wherein each investor takes the optimal decisions of other investors as

given, investor j’s first-order condition from (A13) is given by

ãιM − f − b̃

N
ιM ι

′
M (

N∑

n=1

δn + δj) − λ1ιM − λ2 = 0, (A16)
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where the scalar λ1 and theM × 1 vector λ2 contain the multipliers associated with the constraints

in (A14) and (A15). AllN investors are identical, and we confine attention to symmetric equilibria,

δj = δ, j = 1, . . . , N. (A17)

Imposing (A17) on the first-order conditions in (A16) then implies

0 = ãιM − f − (N + 1)

N
b̃ιM ι

′
Mδ − λ1ιM − λ2

=

(

ã− (N + 1)

N
b̃ (ι′Mδ)− λ1

)

ιM − f − λ2. (A18)

From (A18) we see that for any δ satisfying (A18), all other values of δ giving the same value of

ι′Mδ also satisfy (A18). We thus define the scalar,

δ̄ =
1

M
ι′Mδ. (A19)

We also see from (A18) that, for all funds receiving a positive investment, the elements of f are

equal to a common scalar value f , since the corresponding elements of λ2 for those funds are equal

to zero. If all M funds receive some positive investment, then

f = fιM . (A20)

From (A18) through (A20) we thus obtain the condition that, when all funds receive positive in-

vestment and the leverage constraint in (A14) does not bind,

δ̄ =
ã− f

b̃

(
1

M

)(
N

N + 1

)

, (A21)

or
S

W
= Mδ̄ =

ã− f

b̃

(
N

N + 1

)

. (A22)

When ã ≤ 0, then S/W = 0.

The M managers, aware of the above equilibrium conditions, set their fees before investors

make their decisions. If M = 1, then the monopolistic manager chooses f so that his resulting

equilibrium fund size s maximizes fee revenue,

fs = f
W

N

N∑

j=1

δj = f
W

N
Nδ = fW δ̄ = fW

ã− f

b̃

(
N

N + 1

)

, (A23)

which gives his optimal fee when ã > 0 as

f =
ã

2
. (A24)
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If ã < 0, then the fund receives no investment for any non-negative fee. WhenM > 1, competition

among the (non-cooperative) multiple managers results in

f = 0. (A25)

To see this, suppose instead that two or more funds receive positive investment with f > 0. If

any manager then lowers his fee infinitesimally below f , the risk neutral investors would simply

transfer all investments currently allocated to the other funds to that lower-fee fund.

Combining the above observations about f with (A22) gives the equilibrium allocation to active

management. When ã > 0 the equilibrium allocation to active management is

S

W
=
(

1

2

)
ã

b̃

(
N

N + 1

)

for M = 1, (A26)

and
S

W
=
ã

b̃

(
N

N + 1

)

for M > 1. (A27)

When the right-hand side of either (A26) or (A27) exceeds δ∗, so that the leverage constraint in

(A14) binds, then S/W = δ∗. In the latter case, when M = 1, the manager relies on (A21) to set

f = ã− δ∗b̃
(
N + 1

N

)

, (A28)

which then exceeds the value in (A24). The value of f is still zero for M > 1, for the same reason

given earlier.

The above analysis also implies that, when ã > 0, E(r|D) = α̃ιM . When the leverage con-

straint in (A14) does not bind,

α̃ =
(

1

2

)
ã

N + 1
for M = 1, (A29)

and

α̃ =
ã

N + 1
for M > 1. (A30)

When the leverage constraint binds,

α̃ =
(

1

N

)

b̃δ∗ for M = 1, (A31)

and

α̃ = ã− b̃δ∗ for M > 1. (A32)

When the leverage constraint binds and there are competing managers, then investors earn a non-

trivial positive α̃ even for large N . Otherwise, α→ 0 as N → ∞.
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A.3. Risk Aversion

The benchmark-adjusted fund returns in (A11) can be written as

r = ãιM − b̃
S

W
ιM − f + u+ (a− ã)ιM − (b− b̃)

S

W
ιM

= ãιM − b̃
1

N

N∑

n=1

ι′MδnιM − f +

{

u+ (a− ã)ιM − (b− b̃)
1

N

N∑

n=1

ι′MδnιM

}

,

and taking the variance gives

Var(r|D) = σ2
xιM ι

′
M + σ2

ε IM
︸ ︷︷ ︸

σ2
u

+σ2
aιM ι

′
M − 2σab(

1

N

N∑

n=1

ι′Mδn)ιM ι
′
M + σ2

b

1

N2

[
N∑

n=1

ι′Mδn

]2

ιM ι
′
M

= σ2
1ιM ι

′
M + σ2

ε IM − 2σab(
1

N

N∑

n=1

ι′Mδn)ιMι
′
M + σ2

b

1

N2

[
N∑

n=1

ι′Mδn

]2

ιMι
′
M ,

where

σ2
1 = σ2

x + σ2
a. (A33)

When facing the problem in (10), each investor j recognizes that, since all funds are identical, the

solution will be of the form δj = δ(j)ιM , where δ(j) is a scalar. Investors also recognize that since

they are all identical, the other N − 1 investors will all have solutions of the form δn = δ∗ιM ,

where δ∗ is a scalar. As a result, we can write

N∑

n=1

ι′Mδn = ι′M
[

δ(j)ιM + (N − 1)δ∗ιM
]

= M
(

δ(j) + (N − 1)δ∗
)

.

Since it is known to managers and investors that the values of a and b are identical across funds, we

assume that investors face fees of the form f = fιM , where f is a scalar. Therefore, each investor

j solves for δ(j) that maximizes the quantity

δ′jE(r|D) − γ

2
δ′jVar(r|D)δj

= δ(j)ι
′
ME(r|D) − γ

2
δ2
(j)ι

′
MVar(r|D)ιM

= δ(j)ι
′
M

[

ιM (ã− f) − b̃
1

N
ιMM

(

δ(j) + (N − 1)δ∗
)]

−

γ

2
δ2
(j)ι

′
M

[

σ2
1ιMι

′
M + σ2

ε IM − 2σab
M

N

(

δ(j) + (N − 1)δ∗
)

ιM ι
′
M + σ2

b

M2

N2

(

δ(j) + (N − 1)δ∗
)2
ιM ι

′
M

]

ιM

subject to the constraints (A14) and (A15). This is equivalent to maximizing

δ(j)M(ã− f) − δ2
(j)b̃

M2

N
− δ(j)b̃

M2(N − 1)

N
δ∗

−γ
2
δ2
(j)M

2σ2
1 −

γ

2
δ2
(j)Mσ2

ε + γδ3
(j)σab

M3

N
+ γδ2

(j)σab
M3(N − 1)

N
δ∗

−γ
2
δ4
(j)σ

2
b

M4

N2
− γδ3

(j)σ
2
b

M4(N − 1)

N2
δ∗ − γ

2
δ2
(j)σ

2
b

M4(N − 1)2

N2
(δ∗)2 − λ1

(

Mδ(j) − δ̄
)

− λ2δ(j).
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Taking the first derivative with respect to δ(j), we obtain the first-order condition:

0 = M(ã− f) − 2δ(j)b̃
M2

N
− b̃

M2(N − 1)

N
δ∗

−γδ(j)M2σ2
1 − γδ(j)Mσ2

ε + 3γδ2
(j)σab

M3

N
+ 2γδ(j)σab

M3(N − 1)

N
δ∗

−2γδ3
(j)σ

2
b

M4

N2
− 3γδ2

(j)σ
2
b

M4(N − 1)

N2
δ∗ − γδ(j)σ

2
b

M4(N − 1)2

N2
(δ∗)2 −Mλ1 − λ2.

Dividing through by M and recognizing that, in equilibrium, δ(j) = δ∗ for all j, we have

0 = ã− f − λ1 −
λ2

M
− 2δ∗b̃

M

N
− b̃

M(N − 1)

N
δ∗

−γδ∗Mσ2
1 − γδ∗σ2

ε + 3γδ∗2σab
M2

N
+ 2γδ∗2σab

M2(N − 1)

N

−2γδ∗3σ2
b

M3

N2
− 3γδ∗3σ2

b

M3(N − 1)

N2
− γδ∗3σ2

b

M3(N − 1)2

N2

= ã− f − λ1 −
λ2

M
−Mδ∗

[

b̃(N + 1)

N
+ γσ2

1 +
γσ2

ε

M

]

+ (Mδ∗)2γσab
N

[2N + 1]

−(Mδ∗)3γσ
2
b (N + 1)

N
.

Note that
S

W
= ι′M

s

W
= ι′M

1

N

N∑

n=1

δn = ι′M
1

N
Nδ∗ιM = Mδ∗. (A34)

As M → ∞ and N → ∞, the first-order condition then becomes, using (A34),

0 = ã− f − λ1 −
S

W

[

b̃+ γσ2
1

]

+
(
S

W

)2

2γσab −
(
S

W

)3

γσ2
b . (A35)

Following the earlier discussion, we set f = 0 when the number of funds (M) is infinite. When the

constraint in (A15) does not bind and thus λ1 = 0, (A35) is identical to equation (21) in Proposition

2, noting (A33). It can be verified that this equation has one positive real solution for S/W . If that

solution exceeds δ∗, then S/W = δ∗.
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Figure 1. Decreasing returns to scale in the active management industry. This figure plots the theoretical

relation between the expected benchmark-adjusted excess fund return before fees against the relative size

of the active management industry. Specifically, it plots equation (9): α + f = a − b SW , where α is the

expected benchmark-adjusted excess fund return earned by investors, f is the proportional fee charged by

the fund manager, S is the aggregate size of the active management industry, and W is the investors’ total

investable wealth. As long as b > 0, the industry exhibits decresing returns to scale. The values of α, f , and

S are determined in equilibrium. At S = S, we have α = f = 0.
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Figure 2. Prior distributions. This figure plots the prior distributions for the parameters of the function in

equation (9). Panel A plots the prior for a, which is normal with the mean of 0.28 and standard deviation

of 0.19. Panel B plots two different prior distributions for b: b = 0 (constant returns to scale), and b ≥ 0
(decreasing returns to scale). The former prior is a spike at b = 0. The latter prior is truncated normal

with the mode of zero, mean of 0.2, and standard deviation of 0.15. Under this prior, the initial equilibrium

allocation to active management is S/W = 0.9. The parameters a and b are independent a priori. Panels

C and D plot the 5th, 25th, 50th, 75th, and 95th percentiles of the implied prior distributions for α =

a − b(S/W ) as a function of S/W (in the competitive case with f = 0). Panel C corresponds to the prior

b = 0, for which the distribution of α is invariant to S/W . Panel D corresponds to the prior b ≥ 0, for which

the distribution of α shifts toward smaller values as S/W increases.
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Figure 3. The posterior distribution of the equilibrium allocation to active management conditional

on various levels of overall past performance. This figure plots selected percentiles of the posterior dis-

tribution of S/W , the equilibrium allocation to active management, conditional on the t-statistic associated

with the industry’s historical alpha computed over a period of T = 50 years. Panel A corresponds to the

prior b = 0 (constant returns to scale); the distribution of S/W then collapses into a single value because

the t-statistic is a sufficient statistic for S/W . Panel B corresponds to the prior b ≥ 0 (decreasing returns

to scale). Note that when b = 0, investors observing negative past performance optimally choose to invest

nothing in active management, but when b ≥ 0, they invest substantial amounts.
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Figure 4. Equilibrium allocations to active management based on the year-by-year series of actual

mutual fund returns. For each year from 1962 through 2006, the figure plots the equilibrium allocation

to active management, S/W , computed given the previous histories of equilibrium allocations and actual

returns on the aggregate portfolio of U.S. actively managed mutual funds. The fund returns are adjusted

for exposures to the three Fama-French factors. The first year’s allocation is based on the prior distribution.

Two priors are considered: b ≥ 0 (decreasing returns to scale) and b = 0 (constant returns to scale).
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Figure 5. Posterior standard deviations. This figure plots the posterior standard deviations of a, b, and α
as a function of time. The three panels on the left correspond to the prior b = 0 (constant returns to scale);

the three panels on the right represent the prior b ≥ 0 (decreasing returns to scale). Each panel on the right

plots selected percentiles of the distribution of the given standard deviation across many simulated samples.

Under the prior b = 0, there is no dispersion in this distribution, so the three panels on the left plot single

lines. Also when b = 0, a and α coincide, so the top and bottom left panels look identical. The middle left

panel looks empty because the posterior standard deviation of b is zero when b = 0.
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Figure 6. Examples of learning paths under decreasing returns to scale. This figure plots representative

examples of learning paths for various random samples under the b ≥ 0 prior. Each of the 12 panels

plots aggregate active fund returns rA,t against the aggregate allocation to the active industry (S/W )t for

t = 1, . . . , 300 years. The three columns of panels correspond to three different values of b: “low” (5th

percentile of the prior distribution, 0.02), “median” (50th percentile, 0.17), and “high” (95th percentile,

0.49). Given the value of b, the value of a is computed so that the true S/W is either S/W = 0.5 (first two

rows of panels) or S/W = 0.7 (last two rows). The (a, b) pair is then used to generate random samples of

active returns, which are then used to update the b ≥ 0 prior. Each of the three columns contains four rows

of panels representing examples of learning paths that commonly occur for the given values of a and b. The

starting point (t = 1) is indicated with a circle; its x coordinate is always (S/W )1 = 0.9.
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Figure 7. Results based on the year-by-year series of actual mutual fund returns under decreasing

returns to scale. The first three panels plot the time series from 1962 through 2006 of selected percentiles

of the posterior distributions of a, b, and α = a−b(S/W ). The prior distribution is the b ≥ 0 prior displayed

in Figure 2. The data consist of actual annual returns on the aggregate portfolio of U.S. actively managed

mutual funds, adjusted for exposures to the three Fama-French factors. The bottom right panel plots the

sequence of equilibrium allocations and actual active fund returns. The starting allocation and first-year

return are designated by the small circle.
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