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1. Introduction

Active portfolio management remains popular, even though its overall track record has long been

unimpressive. Consider equity mutual funds, which manage trillions of dollars. Numerous studies

report that these funds have provided investors with net returns below those on passive benchmarks,

on average.1 While this track record could help explain the growth of index funds, the total size of

index funds is still modest compared to that of actively managed funds.2

We analyze the size of the active management industry in an equilibrium setting. Of particular

interest is the role of historical data—how rational investors use it in theory and how researchers

use it in practice. Rational investors use historical data to learn about how much they should invest

in active management. Researchers use historical data to assess whether actual investor behavior is

reasonable. We use our model in the first context to discover interesting endogeneity in the process

by which investors learn. We use our model in the second context to ask whether researchers

should be puzzled by the size of the active management industry.

We find that researchers need not be puzzled by the fact that active management remains pop-

ular despite its negative track record. Key to this conclusion is to realize that there are decreasing

returns to scale in the active management industry—any manager’s ability to outperform a bench-

mark declines as the industry’s size increases. In contrast, active management’s popularity would

seem puzzling under the assumption of constant returns to scale, wherein a manager’s ability to

outperform would be the same at any size of the active management industry. The reason why ac-

tive management’s popularity is puzzling under constant returns but not under decreasing returns

is that the industry’s track record delivers very different messages under those two scenarios.

Under decreasing returns to scale, investors in our model learn about the degree of these de-

creasing returns and thereby determine the industry’s equilibrium size. Researchers ask whether

the industry’s actual size is reasonable, given the unimpressive track record of the industry’s re-

turns. That track record leaves researchers quite uncertain about how much historical active returns

would have improved had investors allocated less to active management. Given this uncertainty,

researchers have a fairly wide confidence region for the active allocation that the investors in the

model would currently choose. That confidence region includes active allocations that are sub-

1See Jensen (1968), Malkiel (1995), Gruber (1996), Wermers (2000), Pástor and Stambaugh (2002a), Fama and
French (2009), and many others. Fama and French report that, over the past 23 years, an aggregate portfolio of U.S.

equity mutual funds significantly underperformed various benchmarks by about 1% per annum.
2The Investment Company Institute (2009, p. 20) reports that assets of equity mutual funds total $3.8 trillion at the

end of 2008. They also report (ibid., p. 33) that about 87% of those assets are under active management, as opposed to

being index funds. Institutions seem more inclined than retail investors to invest passively, but their active allocations
are still large, between 47% and 71% of their U.S. equity investments in 2006 (French (2008, Table 3)).
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stantial. For example, we show that the active allocation can exceed 70% of investable wealth

even if the industry’s historical alpha is significantly negative. If researchers think that the rational

investors in our model could choose a large allocation to active management, it should not puzzle

them that actual investors have chosen one.

Under constant returns to scale, the industry’s track record would lead investors to perceive

a negative net alpha at any size for the industry, even if their prior beliefs about alpha were more

optimistic than those leading to the results mentioned above under decreasing returns to scale. With

the negative alpha, any positive investment in active management would be undesirable for mean-

variance investors; they would instead go short if they could. Most studies that estimate mutual

fund performance treat alphas as constant, unrelated to the industry’s size. Under that scenario of

constant returns to scale, the negative average alphas such studies typically report would make the

industry’s popularity puzzling, unlike under decreasing returns to scale.

Investors in our model face endogeneity that limits their learning about returns to scale in the

active management industry. As they update their beliefs about the parameters governing returns

to scale, they adjust the fraction of their investable wealth allocated to active management. They

learn by observing the industry’s returns that follow different allocations. The extent to which

they learn is thus endogenous—what they learn affects how much they allocate, but what they

allocate affects how much they learn. If the equilibrium allocation ceases to change from one

period to the next, learning about returns to scale essentially stops. Interestingly, we find this is

usually the case. The allocation converges to the level producing an alpha for the industry that

appropriately compensates investors for non-benchmark risk. Investors eventually learn the alpha

at that allocation, but they do not accurately learn the degree of decreasing returns to scale, even

after thousands of years. Convergence of the allocation occurs quickly, after just a few years, when

active returns are steeply decreasing in the industry’s scale. When that relation is flatter, though,

the industry’s size can fluctuate at suboptimal levels for a long time before converging.

It seems reasonable to believe that a fund manager’s ability to outperform a benchmark is

decreasing in the aggregate amount of active management. As more money chases opportunities

to outperform, prices are impacted and such opportunities become more elusive. If the benchmarks

are sufficient for pricing assets in an efficient market, outperformance of the benchmarks reflects

asset mispricing. In that case, our modeling of decreasing returns to scale is equivalent to assuming

that mispricing is reduced as more money seeks to exploit it.

Our reliance on decreasing returns to scale in active management owes a debt to the innovative

use of this concept by Berk and Green (2004), although our focus and implementation are quite

different. Berk and Green assume that an individual fund’s returns are decreasing in its own size
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rather than in the total amount of active management. In their model, as investors update their

beliefs about each manager’s skill, funds with positive track records attract new money and grow

in size, while funds with negative track records experience withdrawals and shrink in size. In

reality, actively managed funds have a significantly negative aggregate track record, yet the active

management industry remains large. We address this apparent puzzle. Departing from Berk and

Green’s cross-sectional focus, we analyze the aggregate size of the active management industry.

Another difference from Berk and Green (2004) is our treatment of net fund alphas. Berk and

Green set alphas to zero, whereas the alphas perceived by investors in our model are generally

positive. Our model features competition among utility-maximizing investors and fee-maximizing

fund managers, and the implications for alpha are derived in equilibrium. The equilibrium alpha

is positive for three reasons. First, alpha reflects compensation for non-benchmark risk that cannot

be completely diversified across funds. Such risk is consistent with empirical estimates as well

as with the notion that profit opportunities identified by skilled managers are likely to overlap.

Second, alpha reflects compensation for uncertainty about the parameters governing the returns

to scale in the active management industry. Third, alpha is positive if the number of investors is

finite, due to an externality that is inherent to active investing under decreasing returns to scale:

each additional investor imposes a negative externality on the existing investors by diluting their

returns. When the number of competing investors is large, their lack of coordination drives alpha

down, but when their number is small, each investor internalizes a part of the reduction in profits

that would result from his own increased investment. We do obtain zero alpha as the limit in the

special case in which non-benchmark risk can be completely diversified away (as Berk and Green

assume), there is no parameter uncertainty, and the number of investors is infinite.

The equilibrium size of the active management industry depends critically on competition

among fund managers. Consider the setting in which there are many investors and many fund

managers—the setting on which we mainly focus. The importance of managerial competition is

particularly clear in the special case in which there is no parameter uncertainty and non-benchmark

risk can be completely diversified away. The net alpha investors receive in that case is zero whether

or not managers compete, but the industry is significantly larger under competition. With many

competing managers, managers become price-takers with respect to their fees, and the industry’s

equilibrium size produces zero active profit net of those fees. When managers collude, acting

monopolistically as one fund, they set the fee rate that produces the fee-maximizing size of the

industry in equilibrium. The competitive size exceeds the monopolistic size. In fact, the industry’s

competitive size is twice its monopolistic size if (as in our model) decreasing returns are such that

the expected active return each manager produces declines linearly in the aggregate amount of

active management. If more active management implies less mispricing, then competition among
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active managers also provides a positive externality to asset markets.

Our study is not alone in trying to explain the puzzling popularity of active management. In

our explanation, investors do not expect negative past performance to continue, but in other ex-

planations they do. Gruber (1996) suggests that some “disadvantaged” investors are influenced by

advertising and brokers, institutional arrangements, or tax considerations. Glode (2009) presents

an explanation in which investors expect negative future performance as a fair tradeoff for counter-

cyclical performance by fund managers. Savov (2009) argues that active funds underperform pas-

sive indices but they do not underperform actual index fund investments, because investors buy in

and out of index funds at the wrong time. We do not imply that such alternative explanations play

no role in resolving the puzzle. We simply suggest that the same job can be accomplished with

rational investors who do not expect underperformance going forward.

A number of studies address learning about managerial skill, but none of them consider learning

about returns to scale, nor do they analyze the size of the active management industry. Baks,

Metrick, and Wachter (2001) examine track records of active mutual funds and find that extremely

skeptical prior beliefs about skill would be required to produce zero investment in all funds. They

solve the Bayesian portfolio problem fund by fund, whereas Pástor and Stambaugh (2002b) and

Avramov and Wermers (2006) construct optimal portfolios of funds. Other studies that model

learning about managerial skill with a focus different from ours include Lynch and Musto (2003),

Berk and Green (2004), Huang, Wei, and Yan (2007), and Dangl, Wu, and Zechner (2008).

Our study is also related to that of Garcia and Vanden (2009), who analyze mutual fund forma-

tion in a general equilibrium setting with private information. In their model, the size of the mutual

fund industry follows from the agents’ information acquisition decisions. Asset prices are deter-

mined endogenously in their model but not in ours; in that sense, our approach can be described as

partial equilibrium, similar to Berk and Green (2004).3 Recent models of mutual fund formation

also include Mamaysky and Spiegel (2002) and Stein (2005). Neither these models nor Garcia and

Vanden examine the roles of learning and past data. A number of studies examine equilibrium fee

setting by money managers, which occurs in our model as well. Nanda, Narayanan, and Warther

(2000) do so in a model in which a fund’s return before fees is affected by liquidity costs that in-

crease in fund size. Fee setting is also examined by Chordia (1996) and Das and Sundaram (2002),

among others. Finally, whereas our approach is theoretical, Khorana, Servaes, and Tufano (2005)

empirically analyze the determinants of the size of the mutual fund industry across countries.

3In addition to Garcia and Vanden (2009), recent examples of studies that analyze the effect of delegated portfolio

management on equilibrium asset prices also include Cuoco and Kaniel (2007), Dasgupta, Prat, and Verardo (2008),

Guerrieri and Kondor (2008), He and Krishnamurthy (2008), Vayanos and Woolley (2008), and Petajisto (2009).
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The paper is organized as follows. Section 2 describes the general setting of our model. Section

3 explores the model’s equilibrium implications for alpha, fees, and the size of the active manage-

ment industry in the absence of parameter uncertainty. The effects of parameter uncertainty are

explored in Section 4. Section 5 discusses learning about returns to scale. Section 6 conducts

inference about the size of the active management industry conditional on the industry’s historical

performance. Section 7 relates our model to that of Berk and Green (2004). Section 8 concludes.

2. Fund managers and investors: General setting

We model two types of agents—fund managers and investors. There are M active fund managers

who have the potential ability to identify and exploit opportunities to outperform passive bench-

marks. There are N investors who allocate their wealth across the M active funds as well as the

passive benchmarks. The active fund managers’ potential outperformance comes at the expense of

other investors whose trading decisions are not modeled here.4

The rates of return earned by investors in the managers’ funds, in excess of the riskless rate,

obey the regression model

rF = α + BrB + u, (1)

where rF is the M × 1 vector of excess fund returns, α is the M × 1 vector of fund alphas, rB is

a vector of excess returns on passive benchmarks, and u is the M × 1 vector of the residuals. We

suppress time subscripts throughout, to simplify notation. Define the benchmark-adjusted returns

on the funds as r ≡ rF − BrB, so that

r = α + u. (2)

The elements of the residual vector u have the following factor structure:

ui = x + εi, (3)

for i = 1, . . . , M , where all εi’s have a mean of zero, variance of σ2
ε , and zero correlation with

4The latter investors are required by the fact that alphas (before costs) must aggregate to zero across all investors,

an identity referred to as “equilibrium accounting” by Fama and French (2009). These other investors might trade
for exogenous “liquidity” reasons, for example, or they could engage in their own active (non-benchmark) investing

without employing the M managers. They could also be “misinformed” (Fama and French, 2007) or “irrational”

in that they might make systematic mistakes in evaluating the distributions of future payoffs. Such investors might

retain a significant fraction of wealth even in the long run, and they can affect asset prices even if their wealth is very

small (Kogan, Ross, Wang, and Westerfield, 2006). Good candidates for such investors are individuals who invest in
financial markets directly. The proportion of U.S. equity held directly by individuals is substantial: in 1980–2007, this

proportion ranged from 22% in 2007 to 48% in 1980 (French, 2008).
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each other. The common factor x has mean zero and variance σ2
x. The values of B, σx, and σε are

constants known to both investors and managers.

The factor structure in equation (3) means that the benchmark-adjusted returns of skilled man-

agers are correlated, as long as σx > 0. Skill is the ability to identify opportunities to outperform

passive benchmarks, so the same opportunities are likely to be identified by multiple skilled man-

agers. Therefore, multiple managers are likely to hold some of the same positions, resulting in

correlated benchmark-adjusted returns.5 As a result, the risk associated with active investing can-

not be fully diversified away by investing in a large number of funds.

The expected benchmark-adjusted dollar profit received in total by fund i’s investors and man-

ager is denoted by πi. Our key assumption is that πi is decreasing in S/W , where S is the aggregate

size of the active management industry, and W is the total investable wealth of the N investors. Di-

viding S by W reflects the notion that the industry’s relative (rather than absolute) size is relevant

for capturing decreasing returns to scale in active management.6 In order to obtain closed-form

equilibrium results, we assume the functional relation

πi = si

(

a − b
S

W

)

, (4)

where si is the size of manager i’s fund, with S =
∑M

i=1 si. The values of a and b can be either

known or unknown, but we assume investors know that the values are identical across managers.

The parameter a represents the expected return on the initial small fraction of wealth invested

in active management, net of proportional costs and managerial compensation in a competitive

setting. It seems likely that a > 0, although we do not preclude a < 0 in the setting in which a

is unknown. If no money were invested in active management, no managers would be searching

for opportunities to outperform the passive benchmarks, so some opportunities would likely be

present. The initial active investment picks low-hanging fruit, so it is likely to have a positive

expected benchmark-adjusted return.

The parameter b determines the degree to which the expected benchmark-adjusted return for

any manager declines as the fraction of total wealth devoted to active management increases. We

allow b ≥ 0, although it is likely that b > 0 due to decreasing returns to scale in the active

management industry. As more money chases opportunities to outperform, prices are impacted,

and such opportunities become more difficult for any manager to identify. Prices are impacted by

5This correlation can be amplified if the managers employ leverage because then negative shocks to the commonly

employed strategy lead cash-constrained managers to unwind their positions, magnifying the initial shock.
6An alternative way of computing the industry’s relative size is S/F , where F denotes the total size of the financial

markets. It would seem plausible to assume that πi is decreasing in S/F . This alternative assumption is equivalent to

ours if W grows in fixed proportion to F , which seems like a plausible approximation.
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these profit-chasing actions of active managers unless markets are perfectly liquid. In that sense, b

is related to market liquidity: b = 0 in infinitely liquid markets but b > 0 otherwise.

We specify the relation (4) exogenously, but decreasing returns to aggregate scale can also

arise endogenously in a richer model. In the model of Grossman and Stiglitz (1980), for example,

traders can choose to become informed by paying a cost, and the proportion of informed traders is

determined in equilibrium. As this proportion rises, expected utility of the informed traders falls

relative to that of the uninformed traders, similar in spirit to equation (4).

Manager i charges a proportional fee at rate fi. This is a fee that the fund manager sets while

taking into account its effect on the fund’s size. The value of fi, known to investors when making

their investment decisions, is chosen by manager i to maximize equilibrium fee revenue,

max
fi

fisi. (5)

Combining this fee structure with (4), we obtain the following relation for the ith element of α:

αi = a − b
S

W
− fi. (6)

The relation between αi and the amount of active investment is plotted in Figure 1.

Investors are assumed to allocate their wealth across the active funds, the benchmarks, and a

riskless asset so as to maximize a single-period mean-variance utility function. We also assume for

simplicity that the N investors have identical risk aversion γ > 0 and the same levels of investable

wealth. Let δj denote the M × 1 vector of the weights that investor j places on the M funds. If

the allocations to the benchmarks and riskless asset are unrestricted, then for each investor j the

allocations to the funds solve the problem

max
δj

{

δ′jE(r|D) − γ

2
δ′jVar(r|D)δj

}

, (7)

where D denotes the set of information available to investors. We impose the restriction that the

elements of the M ×1 vector δj are non-negative (no shorting of funds). The next section analyzes

the model in its simplest setting, in which a and b are assumed to be known. Subsequent sections

then explore a setting where a and b remain uncertain after conditioning on D.

3. Equilibrium with a known profit function

In this section we explore the model when a and b are known, i.e. when D is sufficient to infer

exactly the expected profit function in (4). We assume in this case that a > 0. Otherwise the

non-negativity restriction on the elements of δj binds and there is no investment in the funds.
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We solve for a symmetric Nash equilibrium among investors, wherein each investor solving (7)

takes the optimal decisions of other investors as given. Conditional on the managers’ fees, each

investor chooses the same vector of allocations, δj = δ, for all j = 1 . . . , N . That solution is then

used to compute the fees in a symmetric Nash equilibrium among managers, who are solving (5).

In equilibrium, all managers have the same alpha and charge the same fee, and all investors spread

their wealth equally across all funds. That is, the M elements of δ are all identical, and the fraction

of total wealth invested in active management, S/W , is given by the sum of those M elements.

The following proposition gives the equilibrium values of the key quantities in the model.

Proposition 1. In equilibrium for investors and managers when the values of a and b are known,

we have αi = α and fi = f for i = 1, . . . , M , where

f =
aγσ2

ε

2γσ2
ε + (M − 1)p

(8)

α = a

(

1 − γσ2
ε

2γσ2
ε + (M − 1)p

)(

1 − Mb

γσ2
ε + Mp

)

(9)

S

W
=

Ma

γσ2
ε + Mp

(

1 − γσ2
ε

2γσ2
ε + (M − 1)p

)

, (10)

where

p =
N + 1

N
b + γσ2

x. (11)

Proof: See Appendix.

All three quantities on the left-hand sides of (8) through (10) are positive. These quantities are

analyzed in more detail in the following three subsections.

3.1. Fees

Equation (8) shows that the equilibrium fee f decreases in the number of managers, M , due to

competition among managers. In the limit, the fees disappear: f → 0 as M → ∞. Note that f is

the portion of the manager’s fee that he sets while taking into account its effect on his fund’s size.

In that sense it is analogous to the part of the price that a supplier sets while taking into account

its effect on his sales. Under perfect competition, the supplier and manager are price takers, and

such discretionary quantities vanish. That doesn’t mean that that the supplier sets a zero price

or that the manager works for nothing. Any competitive proportional fee, which isn’t under the

manager’s discretion, is simply part of a. In other words, a is a rate of return net of proportional
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costs of producing that return, where the latter costs (not under the manager’s discretion) include

competitive compensation to the manager and other inputs to producing alpha.

Equation (8) also shows that the highest possible fee obtains for M = 1, in which case the

single manager sets the monopolistic fee f = a/2. In general, the equilibrium fee f increases with

a. For M > 1, f also increases with σε and N , and it decreases with both σx and b.

3.2. Alphas

To obtain some insight into equilibrium alphas, consider a scenario with many funds, M → ∞. In

this limiting case, equation (9) simplifies into

α = a

(

(1/N)b + γσ2
x

[(N + 1)/N ]b + γσ2
x

)

. (12)

Alpha in equation (12) increases with γσ2
x and decreases with b and N . It does not depend on σε

because such risk can be fully diversified away across managers (unlike when M is finite).

Equation (12) helps us understand the interesting role that the number of investors, N , plays in

determining fund alphas. In the limiting case N → ∞, equation (12) simplifies into

α = a

(

γσ2
x

b + γσ2
x

)

. (13)

In this case, α > 0 only because investors demand compensation for residual risk. If this risk is

completely diversifiable (σ2
x → 0), then α → 0. In contrast, when N is finite, α remains positive

even if σ2
x → 0, as long as b > 0. Specifically, when σ2

x → 0, α in equation (12) simplifies into

α =
a

N + 1
. (14)

Note that α decreases in N . Alphas become smaller with more investors because each additional

investor imposes a negative externality on the existing investors by diluting their returns. The ad-

ditional investor does not fully internalize the reduction in alphas caused by the greater amount

invested: his private cost of reducing alphas is less than his private gain from investing. This

externality also explains the above-mentioned positive relation between f and N . When N in-

creases, the aggregate active investment increases, reducing the total profit earned by investors and

managers. To induce less investment, the managers raise their fees.

A scenario with fewer funds brings into play two additional effects that work in opposite direc-

tions. On the one hand, a lower M results in higher fees, which push alphas down. On the other

hand, a lower M requires higher alphas to compensate risk-averse investors for σε. The net effect

can go either way, depending on the magnitudes of the other quantities entering equation (9).
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3.3. Size of the active management industry

When the number of investors is large, the size of the active management industry is governed by

a familiar mean-variance result. Let rA denote the benchmark-adjusted return on the aggregate

portfolio of all funds. The aggregate analog to the individual investor’s problem in (7) is

max
S/W

{(
S

W

)

E(rA|D) − γ

2

(
S

W

)2

Var(rA|D)

}

. (15)

The solution to this problem is given by

S

W
=

E(rA|D)

γVar(rA|D)
. (16)

It is readily seen that the relation in (16) prevails in equilibrium as N grows large. When M is

large as well, the size of the active management industry relative to investable wealth approaches

S

W
=

a

b + γσ2
x

, (17)

which is the limit of (10) as M → ∞ and N → ∞. The size of the industry therefore increases

with a and decreases with b and γσ2
x, which is intuitive. Combining (17) with (13) gives

S

W
=

α

γσ2
x

. (18)

Equations (16) and (18) coincide because E(rA|D) = α and Var(rA|D) = σ2
x. These relations

follow from equations (2) and (3) and the fact that all elements of δ are identical:

rA =
1

M

M∑

i=1

ri = α + x +
1

M

M∑

i=1

εi. (19)

The mean of rA in equation (19) is α. In this case with many funds, the variance of rA is σ2
x because

when M → ∞, the variance of the last term in (19) goes to zero.

With fewer funds, diversifiable risk also plays a role, but the relation in (16) still holds. For

example, with N → ∞ but M = 1, it is readily verified using (9) and (10) that

S

W
=

α

γ(σ2
x + σ2

ε )
, (20)

which again conforms to (16), noting from (19) that in this case Var(rA|D) = σ2
x + σ2

ε . In general,

it can be shown that the equilibrium value of S/W in equation (10) is smaller than or equal to

the mean-variance solution in equation (16). The equality between (10) and (16) occurs only if
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b/N → 0, which is the case in the above examples with N → ∞. When N is finite, (10) is smaller

than (16) because investors internalize some of the externality discussed earlier.

The equilibrium size of the active management industry can also be measured relative to the

size that maximizes expected total profit. Using equation (4), expected total profit is

Π =
M∑

i=1

πi = S
(

a − b
S

W

)

, (21)

which is maximized at
S∗

W
=

a

2b
. (22)

Combining (22) with (10) and (11) gives

S

S∗
= 2




Mb

M
(

N+1
N

b + γσ2
x

)

+ γσ2
ε








(M − 1)

(
N+1
N

b + γσ2
x

)

+ γσ2
ε

(M − 1)
(

N+1
N

b + γσ2
x

)

+ 2γσ2
ε



 ≤ 2. (23)

When M = 1,
S

S∗
=

b
N+1
N

b + γ(σ2
x + σ2

ε )
≤ 1. (24)

A single manager is underinvested relative to the profit-maximizing size S∗ unless σ2
x+σ2

ε → 0 and

N → ∞. One reason behind this underinvestment is the fee charged by the manager–monopolist.

The underinvestment also reflects risk aversion of investors, who care not only about expected

profits but also about the associated risk. If N is small, the underinvestment also reflects the fact

that investors internalize some of the effect of decreasing returns to scale.

When M → ∞,
S

S∗
=

2b
N+1
N

b + γσ2
x

, (25)

so there can be underinvestment (S < S∗) or overinvestment (S > S∗). Overinvestment occurs

when γσ2
x is sufficiently small. One reason is that when managers reduce their fees, they do not

fully internalize the reduction in expected profit that occurs when the lower fees induce higher

investment. In the special case when there is no risk, σ2
x → 0, equation (25) simplifies into

S

S∗
=

2N

N + 1
. (26)

Full investment obtains only for N = 1; otherwise there is overinvestment. Investors invest more

than the profit-maximizing amount because they do not fully internalize the reduction in profits

caused by the greater amount invested. When N → ∞, S/S∗ → 2, so that S → S̄, where

S̄ = aW/b is the size that equates the expected profit in (21) to zero (see Figure 1). As discussed
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earlier, the equilibrium α in equation (14) goes to zero as N → ∞. That is, the many investors

invest up to the point at which all expected profit has been eliminated.

This special case with S = S̄ and α = 0 warrants a note. Even though the active management

industry then provides no superior returns to investors, it can provide a positive externality to asset

markets. Suppose the benchmarks are “correct” in an asset-pricing context, in that securities with

non-zero alphas with respect to these benchmarks are mispriced. Opportunities to outperform

the benchmarks then reflect mispricing. If no money actively chased mispricing (S = 0), some

mispricing would likely exist. When the industry’s size is S̄, its expected future profit is zero

because its actions have eliminated some of that mispricing. By moving prices toward fair values,

the industry provides a positive externality to asset markets.

In the maximization in (7), we impose the lower bound of zero on the elements of δj, but until

now we have not imposed any upper bound. A reasonable alternative is to impose the constraint

M∑

i=1

δi,j ≤ δ̄, (27)

where δi,j denotes the i-th element of δj, or the fraction of investor j’s wealth invested in fund i.

The constraint (27) states that the fraction of each investor’s wealth placed in actively managed

funds is at most δ̄. When (27) binds, S/W in equation (10) exceeds δ̄, and the equilibrium value

of S/W instead equals δ̄. Also, as in the earlier unconstrained setting, f → 0 as M → ∞:

perfect competition among managers drives the discretionary portion of the fee to zero even when

the constraint (27) binds. When the constraint binds, however, alpha exceeds the level consistent

with the mean-variance relation in (18) that otherwise obtains under perfect competition among

managers and investors (i.e., with infinite M and N). That is,

α > γσ2
x

S

W
, (28)

where α = a − δ̄b. The Appendix includes a treatment of the case where (27) binds.

4. Uncertainty about returns to scale

We now analyze the model when the parameters a and b in equation (4) are unknown. We denote

the expectation and the covariance matrix of a and b conditional on the available data by

E

([

a
b

]

| D
)

=

[

ã

b̃

]

(29)

Var

([

a
b

]

| D
)

=

[

σ2
a σab

σab σ2
b

]

. (30)

12



To keep the analysis tractable, we confine our attention to the limiting case in which the num-

bers of managers and investors are both infinite. Relying on the condition f = 0 in this compet-

itive setting, we solve for a symmetric Nash equilibrium among investors, each of whom maxi-

mizes the mean-variance objective in (7). We obtain an analytic solution for S/W , but the explicit

expression—the solution to a cubic equation—is fairly cumbersome. We instead simply present

that cubic equation in the following proposition:

Proposition 2. In equilibrium for an infinite number of investors and managers, if ã ≤ 0, then

S/W = 0. If ã > 0, then S/W is given by the (unique) real positive solution to the equation

0 = ã − S

W

[

b̃ + γ(σ2
a + σ2

x)
]

+
(

S

W

)2

2γσab −
(

S

W

)3

γσ2
b . (31)

If investors also face the constraint in (27) and the solution to (31) exceeds δ̄, then S/W = δ̄.

Proof: See Appendix.

When the equilibrium value of S/W lies between 0 and 1, it obeys the same mean-variance

relation in (16) as before. To see this, first note that given the equilibrium value of S/W , the

benchmark-adjusted aggregate active fund return from equation (19) is given by

rA = a − b
S

W
+ x, (32)

using (6) and the fact that the last term in (19) vanishes as M → ∞. It follows from (32) that

E(rA|D) = ã − b̃
S

W
(33)

and

Var(rA|D) = σ2
a + σ2

x − 2
(

S

W

)

σab +
(

S

W

)2

σ2
b . (34)

Equation (31) can then be rewritten in the image of the mean-variance relation in (16):

S

W
=

ã − b̃(S/W )

γ [σ2
a + σ2

x − 2(S/W )σab + (S/W )2σ2
b ]

=
E(rA|D)

γVar(rA|D)
, (35)

where the second equality uses (33) and (34). Also note that equation (33) represents the perceived

alpha of the active management industry, and that an alternative expression for equation (34) is

Var(rA|D) = σ2
x + σ2

α, where σα represents uncertainty about the industry’s alpha.

Our analysis of learning explores a simple setting in which the single-period model developed

above is applied repeatedly in successive periods. We assume that investors’ risk aversion is γ = 2.
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We also specify the volatility of the aggregate active benchmark-adjusted return as σx = 0.02, or

2% per year. That value is approximately equal to the annualized residual standard deviation from

a regression of the value-weighted average return of all active U.S. equity mutual funds on the

three factors constructed as in Fama and French (1993), using data for the 1962–2006 period.7

4.1. Prior beliefs

We consider a single prior distribution for a but two different prior distributions for b. The first

prior for b, or Prior 1, assumes b = 0. Prior 1 is a dogmatic belief that returns to scale are constant.

The second prior, Prior 2, views b as an unknown quantity satisfying b ≥ 0. Prior 2 is a belief

that returns are decreasing in scale at an uncertain rate. We show below that the two priors lead

investors to make very different investment decisions after observing the same evidence.

Both priors can be nested within the joint prior distribution of a and b that is specified below.

This joint prior is bivariate normal, truncated to require that b ≥ 0. That is,

[

a
b

]

∼ N (E0, V0) I(b ≥ 0), (36)

where N(E0, V0) denotes a bivariate normal distribution with mean E0 and covariance matrix V0,

and I(c) is an indicator function that equals 1 if condition c is true and 0 otherwise. Denote

E0 =

[

Ea
0

Eb
0

]

, V0 =

[

V aa
0 V ab

0

V ab
0 V bb

0

]

. (37)

Both priors specify Eb
0 = V ab

0 = 0, for simplicity. Prior 1 also specifies V bb
0 = 0, which implies a

degenerate marginal prior distribution for b at b = 0. Prior 2 specifies the prior mean of b as b0 =

0.2. Given the properties of the truncated normal distribution, this prior mean implies V bb
0 = 0.063

and a prior standard deviation for b equal to σ0
b = 0.15. Both marginal prior distributions for b are

plotted in the top right panel of Figure 2. Prior 1 appears as a spike at b = 0. Prior 2 is the right

half of a zero-mean normal distribution truncated below at zero.

Figure 2 also plots the marginal prior distribution for a, in the top left panel. This distribution,

which is the same for both Priors 1 and 2, is normal. Its mean and standard deviation, a0 and σ0
a,

are specified to imply a given prior mean of α at the level of S/W that is optimal under Prior 2.

We specify S/W = 0.9 as that initial level, so that investors with Prior 2 optimally invest 90% of

their wealth in active management before observing any active returns. We choose the prior mean

7The annualized residual standard deviation in that regression, which uses monthly returns, is 1.94%. In a regres-
sion of the aggregate active fund return on just the value-weighted market factor, the residual standard deviation is

2.17%. We thank Ken French for providing the series of mutual fund returns and factors.
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of α equal to α0 = 0.1, or 10% per year, when evaluated at S/W = 0.9. Since α = a − b(S/W ),

the prior mean of a is then equal to a0 = α0 + b0(S/W ) = 0.28. We choose the prior standard

deviation of a such that S/W = 0.9 is optimal for investors with Prior 2. Following equation (35),

we choose σ0
a =

√

α0/(0.9γ) − σ2
x − (0.9)2(σ0

b )
2 = 0.19. Given this large standard deviation, the

prior distribution for a is rather disperse, with the 5th percentile at -4% and the 95th percentile at

59% per year. The prior probability that a < 0 is 7.2%.

Given the prior distributions for a and b, we can examine the implied priors for α. Since

α = a − b(S/W ), the prior for α generally depends on S/W . The bottom panels of Figure 2 plot

selected percentiles of the prior for α as a function of S/W , which ranges from zero to one. When

b = 0 (Prior 1, bottom left panel), the distribution of α is invariant to S/W . When b ≥ 0 (Prior

2, bottom right panel), the distribution of α shifts toward smaller values as S/W increases. The

priors for α are fairly noninformative: α might be as large as 60% and as small as -40% per year.

Depending on S/W , between 7.2% and 36% of the prior mass of α is below zero.

Importantly, for S/W = 0, the prior distribution of α is the same under both priors (because

α = a in both cases), but for any S/W > 0, α is smaller under Prior 2. In other words, Prior 2

is always more pessimistic about α than Prior 1, at any positive level of S/W . Despite this prior

handicap, investors with Prior 2 generally want to invest more in active management than investors

with Prior 1 after observing a negative track record, as we show in Section 6. The reason is that

the two priors are updated very differently after observing the same evidence. This updating is

described in the following section.

4.2. Updating beliefs and equilibrium allocations

To analyze the learning mechanism and the resulting posterior distributions, we simulate 300,000

samples of active management returns and optimal allocations to active management. For each

sample, we randomly draw the values of a and b from their prior distribution and hold them constant

throughout the sample. In each year t, beginning with t = 1, we perform three steps.

First, we have investors use Proposition 2 to solve for (S/W )t, the equilibrium allocation to

active management, given their current beliefs about a and b. We bound the allocations between

0 and 1, so any equilibrium values exceeding one are set equal to one and any equilibrium val-

ues smaller than zero are set equal to zero. For t = 1, investors with Prior 2 optimally choose

(S/W )1 = 0.9, as discussed earlier. Investors with Prior 1 optimally choose a larger initial alloca-

tion, (S/W )1 = 1, since Prior 1 is more optimistic about α. In fact, Prior 1 is so optimistic that in

the absence of an upper bound on S/W , investors would invest 378% of their wealth actively.
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Second, we construct the benchmark-adjusted active management return following equation

(32) as rA,t = a − b(S/W )t + xt, where xt is drawn randomly from the normal distribution with

mean zero and variance σ2
x. Note that under Prior 2 (b ≥ 0), the return investors earn, rA,t, is

affected by their choice of (S/W )t: the more they invest, the lower their subsequent return. In

contrast, there is no such relation under Prior 1 (b = 0).

Third, we let investors update their beliefs about a and b in a Bayesian fashion. They do so

by running a time-series regression of returns on the equilibrium allocations. After observing rA,t

and (S/W )t, the available data in D consist of yt = [rA,1 . . . rA,t]
′ and zt = [(S/W )1 . . . (S/W )t]

′.

Investors regress yt on −zt and a constant; the regression’s intercept is a and the slope is b (see

equation (32)). Recall that investors’ prior beliefs for a and b are given by the bivariate truncated

normal distribution in equation (36), whose non-truncated moments are E0 and V0. In year t, those

moments are updated by using standard Bayesian results for the multiple regression model,

V =

(

V −1
0 +

1

σ2
x

(Z ′
tZt)

−1

)−1

(38)

E = V −1

(

V −1
0 E0 +

1

σ2
x

Z ′
tyt

)

, (39)

where Zt = [ ιt −zt ]. The posterior distribution of a and b is bivariate truncated normal as

in equation (36), except that E0 and V0 are replaced by E and V from equations (38) and (39).8

Having the updated moments E and V of the non-truncated bivariate normal distribution, we apply

the relations in Muthen (1991) to obtain the updated moments of the truncated bivariate normal

distribution, defined in equations (29) and (30).9 These moments are then used to choose the equi-

librium allocation (S/W )t+1 in the following year, and the learning process continues by repeating

the same three steps in year t + 1.

5. Learning About Returns to Scale

As investors learn, their posterior standard deviations of a, b, and α decline through time. For a

given prior, the manner in which these posterior standard deviations decline depends on realized

returns and the true values of a and b. The probability distributions of possible values for those

8In deriving the posterior of a and b from the regression of yt on −zt, it is useful to note that (S/W )t is a

deterministic function of its initial value and returns prior to time t, so there is no randomness in S/W beyond what

is in past returns. The likelihood function is obtained simply by transforming the density of {xs; s = 1, . . . , t} to

the density of {rA,s; s = 1, . . . , t}, where the Jacobian of that transformation equals 1. As a result, the likelihood

function is identical to what would arise if the observations of S/W were treated as nonstochastic.
9Earlier results for such moments appear in Rosenbaum (1961), but the published article contains some errors in

signs that we verified through simulation.
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quantities thus give rise to distributions of the posterior standard deviations of a, b, and α. Fig-

ure 3 displays the evolution of these distributions across time periods. Each panel plots selected

percentiles of the distribution of the given standard deviation across the 300,000 samples.

The three left panels of Figure 3 correspond to Prior 1 (b = 0). In this case, a and α coin-

cide, which is why the top and bottom left panels of Figure 3 look identical. (The middle left

panel looks empty because the posterior standard deviation of b is zero.) The learning process

is straightforward. With b = 0, the value of a (and α) is simply the unconditional mean return.

The posterior mean of a is a weighted average of the historical average return and the prior mean,

where the weight on the prior mean quickly diminishes as t increases because the prior for a is

fairly noninformative (Figure 2). The posterior standard deviation of a declines at the usual
√

t

rate, regardless of the particular sample realization. Since there is no dispersion in the standard

deviations across the simulated samples, the distribution of the standard deviations collapses into

a single line. In short, when b = 0, learning is simple and well understood. In contrast, learning is

much more interesting when b ≥ 0, as explained next.

The three right panels of Figure 3 represent Prior 2 (b ≥ 0). Under this prior, the posterior

standard deviations of a and b fall sharply in the first few years but then flatten out surprisingly

quickly. For the median sample, investors learn much more about a and b in the first two or three

years than in the subsequent 50 years! Moreover, even after 50 years, investors remain highly

uncertain about a and b: for the median sample, the posterior standard deviations of a and b both

exceed 7%. For comparison, the posterior standard deviation of a is 25 times smaller when b = 0.

The speed of learning about a is clearly very different when b ≥ 0 than when b = 0 (compare the

top two panels in Figure 3). In contrast, the speed of learning about α is quite similar in these two

cases (compare the bottom two panels in Figure 3). Despite being unable to learn a and b very

well, investors are able to learn α about as easily as when they know b = 0 a priori.

Investors learn differently under the two priors for b because the level and variation in (S/W )t

affect learning when b ≥ 0 but not when b = 0. We discuss this difference in Section 5.1. This

difference is absent, however, when S/W is persistently equal to zero. In 6.3% of all samples,

(S/W )t = 0 for all t between 3 and 50 years. These are samples in which investors quickly learn

that it is optimal for them to invest nothing at all in active management (because they perceive

a < 0). In these samples, S/W does not affect learning, just like when b = 0, so the results for

these samples should look the same between 3 and 50 years whether b ≥ 0 or b = 0. Indeed,

Figure 3 shows that the 5th percentile of the posterior standard deviation of a in the top right panel

(b ≥ 0) looks the same as in the top left panel (b = 0) after year 3. The same 5th percentile also

looks very similar to the 5th percentile of the posterior standard deviation of α in the bottom right
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panel, again because more than 5% of all samples exhibit S/W = 0 and hence also α = a.

Further results on learning when b ≥ 0 are plotted in Figure 4. The top panels plot the distribu-

tions of the differences between the perceived and true values, ã − a and b̃− b, across the 300,000

samples. These distributions shrink rapidly in the first couple of years, reflecting initial learning

about a and b, but they quickly flatten out. In contrast, the distribution of α̃ − α, plotted in the

bottom left panel, continues shrinking at the
√

t rate as learning about α carries over beyond the

first few years. These results are consistent with the posterior standard deviations in Figure 3.

We define the “true” S/W as the value that obtains when a and b are known, as given in equa-

tion (17). The final panel of Figure 4 plots the distribution of the differences between the equi-

librium (S/W )t and the true S/W . These differences continue shrinking over time well beyond

the first few years, resembling the pattern for α rather than a and b. The 25th and 75th percentiles

meet at zero, indicating that both the equilibrium and the true S/W ’s are at the corner solutions of

zero or one for at least half of all samples. The difference between the 5th and 95th percentiles is

4% after 10 years and 2% after 50 years. After 10 years, the probability that the equilibrium S/W

differs from the true S/W by at least 0.01 is 18% and the probability of at least a 0.05 difference is

just under 3%. After 50 years, these probabilities are smaller, 9% and 1%, respectively. Investors

seem to gradually converge to the true optimal allocation, although the convergence can be slow.

5.1. Endogeneity in Learning

The key message from Figures 3 and 4 is that most of the time, learning about a and b essentially

stops after just a few years. The reason is the endogeneity in the way investors learn—what they

learn affects how much they invest, and how much they invest affects what they learn. If the

amount invested stops changing from one period to the next, investors stop learning about returns

to scale. Recall that investors essentially run the time-series regression of active returns, rA,t, on

the equilibrium allocations to active management, (S/W )t. If the right-hand side variable in the

regression stops changing, investors stop learning about the true values of the intercept and slope.

Indeed, we find that in most cases, (S/W )t ceases to change much after just a few years.

The fact that the aggregate active allocation (S/W )t typically ceases to change reflects equi-

librium among competitive investors. If investors could instead coordinate, they might well find

it useful to continue varying the aggregate active allocation for additional periods, so as to con-

tinue learning about a and b. In a multiperiod setting, such investors would trade off near-term

optimality of their current allocation against the potential future value of additional learning by

experimenting with different allocations. The additional learning could be valuable, for example,
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if investors could experience a future preference shock making their previous allocation subopti-

mal. With learning about a and b shut down, investors are uncertain about α at any allocation other

than the current one. The prospect of wanting to change their allocation in the future creates an

incentive for additional learning about a and b.

To illustrate the endogenous nature of learning in our competitive setting, Figure 5 plots repre-

sentative examples of learning paths for various random samples. The figure has 12 panels, each

of which plots returns rA,t against (S/W )t for t = 1, . . . , 300 years. The three columns of pan-

els correspond to three different values of b: “low” (5th percentile of the prior distribution, 0.02),

“median” (50th percentile, 0.17), and “high” (95th percentile, 0.49). Given the value of b, the

value of a is computed from equation (17) so that the true value of S/W that would obtain under

knowledge of the true parameters is S/W = 0.5. The (a, b) pair is then used to generate random

samples of active returns, which are used to update Prior 2. Each of the three columns in Figure 5

contains four rows of panels representing examples of learning paths that commonly occur for the

given values of a and b. The starting point (t = 1) is indicated with a circle; its x coordinate is

always (S/W )1 = 0.9.

The intuition for why (S/W )t tends to stop changing so quickly comes across most clearly

when b is high. Our discussion here focuses on the four right-most panels of Figure 5, in which

b is high. The learning paths in these four panels look very similar, so one description fits them

all. Since (S/W )1 = 0.9 > 0.5, investors initially overinvest in active management, so their true

expected return is negative (even though they subjectively expect a small positive return). The

first realized return is typically around -18%. Upon observing such a negative return, investors

sharply revise their prior beliefs and dramatically cut their allocation, to about (S/W )2 = 0.3.

This represents underinvestment relative to the true S/W , so the realized return in the second year

tends to be larger than investors expect, typically around 9%.10 From this high return, investors

infer they should invest more than 0.3. Their investment in year 3, (S/W )3, is already close to the

true value of 0.5. In all four panels, S/W “converges” to its true value after about 3 years, in that

only small deviations from 0.5 appear over the following 300 years.

Why does the equilibrium allocation approach the true S/W so quickly when b is high? The

reason is that after two years, investors already have a lot of information about the true S/W , which

is equal to a/(b + γσ2
x) (equation (17)). When b is high, the true value is approximately equal to

a/b.11 This approximate relation can be visualized in Figure 1. When b is high, the equilibrium

10This systematic underinvestment appears from our perspective because we know the true value of S/W . In

contrast, there is no underinvestment (or overinvestment) from the perspective of our investors who do not know the
true S/W . The investors always invest optimally given their information set.

11Our high value of b, the 95th percentile of the prior for b, is equal to 0.49, which far exceeds γσ2

x = 0.0008.
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true S/W is very close to S̄/W = a/b. The true S/W is slightly smaller than S̄/W (and α is

slightly positive) because investors demand compensation for nondiversifiable risk (i.e., because

γσ2
x > 0). However, since γσ2

x is small compared to b, α is close to zero and S/W ≈ S̄/W .

To understand why investors know a lot about S̄/W after two years, recall that S̄/W represents

the point at which the line in Figure 1 intersects the x axis. After two years, investors observe two

datapoints, ((S/W )1, rA,1) and ((S/W )2, rA,2), which are far from each other, both vertically and

horizontally (because investors update their relatively noninformative prior beliefs substantially

after the first observation). Fitting a line through these two distant points allows investors to pin

down the intersection point S̄/W reasonably well. As a result, approximate convergence to the

true S/W tends to occur in year 3 when b is high.

This logic also helps us understand the L-shaped pattern in the posterior standard deviations of

a and b in Figure 3. As noted earlier, a and b are estimated from the regression of rA,t on (S/W )t.

This regression can be visualized as fitting a line through the datapoints plotted in Figure 5, a line

whose intercept is a and whose slope is −b. In the first few years, investors learn a lot about a

and b due to substantial initial variation in S/W . Fitting a line through the first two datapoints

already substantially reduces the prior uncertainty about the intercept and the slope. This is why

the posterior standard deviations of a and b in Figure 3 exhibit a sharp initial drop.

After the first few years, however, S/W exhibits very little variation when b is high, thereby

precluding investors from getting much new information about the intercept and slope. Facing

the 300-year data pattern from the right panels of Figure 5, investors fit a line through what are

effectively only three datapoints: ((S/W )1, rA,1) from year 1, ((S/W )2, rA,2) from year 2, and the

midpoint of the cluster of points at S/W ≈ 0.5 from years 3 through 300. Therefore, investors

do not know much more about a and b after 300 years compared to what they knew after 3 years.

The same logic also applies when b is not high, albeit to a lesser extent. S/W often settles at a

given value for a long period of time, thereby slowing down learning about a and b. This is why

the posterior standard deviations in Figure 3 decline so slowly after just a few years.

In the preceding discussion of why (S/W )t converges quickly, we focus on the high value of

b. The story is similar when b is at its prior median, as shown in the four middle panels of Figure

5. Investors learn a lot initially while S/W exhibits substantial variation, but the speed of learning

slows down considerably after a decade or so when S/W settles down to a narrow range close to

the true S/W . The datapoints exhibit more dispersion compared to the high b case, but the basic

patterns are similar. Therefore, the intuition presented for high b is relevant for the median sample

as well. To various degrees, this intuition fits most of our samples. It does not fit the samples for

which b is low, however, as discussed next.
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5.2. Departures from Optimal Industry Size

The left panels of Figure 5 contain the results when b is low. The learning paths in these left panels

are quite different from those in the middle and right panels. The first major difference is that

it generally takes much longer for S/W to settle in a narrow range, if it settles at all during the

300-year period analyzed here. For example, in the third panel on the left, S/W travels across

the whole range of zero to one, and it continues moving even after 300 years. This difference

is due to the fact that when b is close to 0, S/W has little effect on α = a − b(S/W ). It is α,

the conditional expected return, that investors learn about by observing realized returns. When

b ≈ 0, the variation in S/W does not cause much variation in realized returns; the latter variation

is mostly due to noise (x in equation (32)). Since realized returns do not help investors much in

finding the optimal investment level, S/W keeps wandering around.

Another unique feature of low b is that S/W often settles at a level that is substantially different

from the true S/W . For example, in the second panel on the left, S/W settles around 0.7, well

above the true level of 0.5. To understand this result, recall that realized returns allow investors to

learn about α, the expected return conditional on the current level of S/W . If S/W were to stay

constant forever, investors would eventually perfectly learn the value of α at that level of S/W .

However, they would not learn a and b individually, so they would forever remain uncertain about α

at any other level of S/W . This intuition helps us understand the path dependence in the left panels

of Figure 5. After staying at a given level of S/W for a while, investors have learned more about

α at that level of S/W than about α at any other level. As a result, they find it costly to change

S/W because doing so would increase the uncertainty they face. Being stuck at a suboptimal level

of S/W is costly as well, but the cost diminishes as b approaches zero. When b is close to zero, the

cost of changing S/W may well exceed the cost of staying at a suboptimal level of S/W . In such

cases, we can observe S/W settling down at a level different from 0.5, even after 300 years.

It would appear from Figure 5 that when b is low, investors can get stuck at the wrong invest-

ment level forever. They cannot, but convergence of S/W to 0.5 can take thousands of years.12 To

illustrate this fact, we run a single simulation exercise for one million years, using the true values

of a = 0.015 and b = 0.016 (the 5th percentile of the prior distribution for b), which imply the

same true S/W , 0.9, as before. We find that the equilibrium S/W is equal to 0.72 after 100 years,

0.77 after 500 years, and 0.78 after 1,000 years, well below the true value of 0.9. Even after 3,000

years, S/W is only 0.85. After 10,000 years, S/W = 0.894, and after a million years, S/W is

12To see that convergence to a different value cannot occur, note that at any interior value to which S/W converges,

(35) holds. After infinitely many realizations of returns at a given S/W , E(rA|D) = α, the true alpha in equation (18)
at that value of S/W . With no uncertainty about alpha, Var(rA|D) = σ2

x, which appears in the denominator of (18).

Therefore the value to which S/W converges must be the “true” value that satisfies (18) and thus (17).
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only 0.0003 away from the true value. In short, convergence in S/W takes place eventually, but

it can take so long that it is practically irrelevant. For all practical purposes, we can conclude that

when b is low, rational investors can get stuck at a suboptimal investment level. In other words, the

equilibrium size of the active management industry can be suboptimal for long periods of time.

Let us briefly summarize the key findings from Figure 5. When b is high, investors find the

optimal level of investment quickly. They learn a lot about a and b initially while S/W varies,

but their learning all but stops after S/W settles down at or near the true S/W . When b is low,

learning is highly path-dependent. S/W fluctuates much longer before it settles in a narrow range,

if it settles at all. This narrow range need not include the true S/W , and investors can get stuck at

a suboptimal investment level for a very long time.

6. Is the industry’s size puzzling given its track record?

In this section, we take the perspective of a researcher who asks whether it is puzzling how large

the active management industry is, given its poor historical performance. Conditional on that

performance, the researcher forms a posterior distribution for the current equilibrium S/W based

on our model. We show that this posterior crucially depends on the researcher’s prior beliefs about

b, the parameter governing returns to scale in the industry. The researcher’s prior beliefs about a

and b are assumed to be the same as the investors’, for simplicity.

The researcher uses the posterior distribution for the current equilibrium S/W to judge the rea-

sonableness of the current actual S/W . The researcher knows that the latter quantity is substantial,

but he does not observe it precisely. Measuring S/W is difficult from the researcher’s perspective,

especially because W is difficult to measure. First, W includes cash. Recall that W is allocated

across the active funds, passive benchmarks, and the riskless asset. The investors’ holdings of the

riskless asset, or cash, are difficult to pin down. Second, W is only a subset of total wealth; it is the

wealth of our N investors. It seems difficult to empirically separate the wealth of these investors

from the wealth of the other unmodeled investors discussed at the beginning of Section 2.

In computing the posterior for S/W conditional on the track record, we characterize the track

record by the t-statistic of the industry’s historical alpha. This historical alpha, or α̂, is simply the

sample average benchmark-adjusted return. The t-statistic is computed as t = α̂
√

T/σx for T = 50

years.13 The posterior distribution is obtained from simulated samples generated as described

earlier: for each sample, a and b are drawn from the prior, and then in each year of the sample a

13The results for other values of T , such as 20 or 30 years, are very similar.
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return is drawn and the new S/W is computed. The posterior distribution for S/W conditional on

a given value t0 of the t-statistic is constructed as the distribution of the S/W values for year 50

in all samples producing t-statistics within a small neighborhood of t0. Figure 6 plots the resulting

posterior distributions for t0 ranging from −4 to 4.

Panel A of Figure 6 displays the posterior distribution of S/W obtained under Prior 1 (b = 0),

according to which there are constant returns to scale. The posterior distribution then collapses

to a single value because the t-statistic is a sufficient statistic for S/W under this prior. The

optimal allocation is a steep linear function of past performance as long as that performance is

mildly positive (t-statistics between 0 and 0.25). If past performance is more positive (t > 0.25),

the optimal allocation is S/W = 1. If past performance is negative, we obtain the other corner

solution, S/W = 0. The cutoff value of the t-statistic that produces S/W = 0 is just below

zero. It is not exactly zero because the prior for a is slightly informative (see Figure 2), but it is

very close to zero. So it is a reasonable approximation to state that investors observing negative

past performance optimally choose to invest nothing at all in active management. This theoretical

result, obtained under b = 0, does not seem to match the reality, in which the active management

industry continues to attract substantial investment despite having delivered negative performance

relative to passive indices.

The puzzling coexistence of negative past performance and substantial investment is easier to

understand when there are decreasing returns to scale. Panel B of Figure 6 plots the posterior

distribution of S/W conditional on the t-statistic under Prior 2 (b ≥ 0). Unlike in Panel A, the

t-statistic is no longer a sufficient statistic for S/W . Panel B shows that S/W increases with past

performance, though not as steeply as in Panel A. When the historical alpha is zero (t = 0), the

middle 90% of the distribution of S/W (between the 5th and 95th percentiles) lies in the wide

range between 0.26 and 0.97. When the historical t-statistic is t = −2, indicating statistically

significant underperformance, the median S/W is 0.27 and the middle 90% of the distribution

ranges from 0.02 to 0.71. Note that S/W < 0.02 is as unlikely as S/W > 0.71: observing

very little investment in active management would be equally puzzling as observing too much

investment. Even when the t-statistic is t = −3, which is more negative than the observed evidence

for mutual funds, the median S/W is 0.13 and the 95th percentile is 0.43. Panel B clearly shows

that when b ≥ 0, substantial investment in active management can be optimal even when past

performance is significantly negative.

Investors are willing to invest despite poor past performance because past underperformance

does not imply future underperformance. Under decreasing returns to scale, the expected return in

any given period is conditional on the investment level S/W in that period. Historical benchmark-
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adjusted returns are earned at various investment levels, which can be quite different from the cur-

rent investment level. After a period of underperformance, investors reduce their investment until

their expected return going forward converges to the positive equilibrium level of α in equation

(13). If past performance is sufficiently poor, investors will choose to invest nothing in active man-

agement; this happens if investors infer that a is nonpositive, in which case α cannot be positive

either. Such an event occurs with only 13% probability even when t = −3, and active management

does not seem to have underperformed quite that badly. For the 1962–2006 period, the regression

(mentioned earlier) of the value-weighted active U.S. equity fund excess return on the three Fama-

French factors produces t = −1.7, while a regression on just the market factor produces t = −2.6.

At such levels of underperformance, the optimal investment in active management can be substan-

tial. For example, when t = −1.5, the median S/W is 0.37 and the 95th percentile is 0.84, and

when t = −2.5, the median is 0.19 and the 95th percentile is 0.56.

To summarize, given a track record representative of active U.S. equity mutual funds, investors

who believe that b = 0 would invest nothing in active management. However, it seems more

reasonable to allow for decreasing returns to scale, or b ≥ 0. Following the same track record,

investors with such prior beliefs often find it optimal to invest a substantial fraction of their wealth

in active management, even though their prior beliefs about α are more pessimistic than the beliefs

of the b = 0 investors. In short, it is not a puzzle that active management remains popular, despite

its track record.

6.1. Robustness

Figures 2 through 6 present results for two particular sets of prior beliefs about a and b. The

prior for a in Figure 2 might seem optimistic, but optimism is not the driving force behind our

results. After all, we have seen that this same prior leads investors with b = 0 to invest nothing

in active management given its negative track record. Our results are instead driven by the prior

on b. To support this statement, we also present results for an alternative set of priors, which are

less optimistic than the priors plotted in Figure 2. Specifically, while keeping the same priors for

b as before, we modify the prior for a so that the optimal initial value of S/W under Prior 2 is

now 0.5 instead of 0.9. This alternative prior for a is plotted in Figure 7. This prior assigns a 26%

probability to the event that a < 0, which is substantially larger than the 7.2% probability in Figure

2. The implied prior for α is also more pessimistic, with the median ranging from 0 to 0.2 and the

5th percentile ranging from about -0.6 to -0.3.

The results for this alternative prior are plotted in Figure 8. Similar to Figure 6, under b = 0,
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S/W = 0 when the track record is negative, whereas under b ≥ 0, the equilibrium S/W is

substantial. For example, conditional on t = −2, the median S/W is 0.10 and the 95th percentile

is 0.65. These values are smaller than their counterparts in Figure 6, but that is not surprising:

before seeing any data, investors allocate only half of their investable wealth to active management,

so after seeing a negative track record, they generally allocate less than half. More important, the

results based on this more pessimistic prior confirm that with decreasing returns to scale, active

management can remain popular in equilibrium despite its negative track record.

7. Relation to Berk and Green (2004)

A central feature of our model is that active managers face decreasing returns to scale in their

abilities to generate alpha. In this respect our approach follows Berk and Green (2004), but there

are important differences. First, Berk and Green (hereafter BG) assume that decreasing returns

apply at the level of individual funds, whereas we assume they apply to the active management

industry as a whole. That is, we assume an individual fund’s alpha is decreasing in the total

amount invested by all active funds.14 It seems reasonable that even a small fund finds it more

difficult to identify profitable investment opportunities as the overall amount of actively-invested

capital grows and thereby moves prices to eliminate such opportunities. Assuming decreasing

returns at the individual fund level seems plausible as well, though it encounters the question of

what happens if multiple funds merge or additional managers are hired. Presumably, in the absence

of aggregate effects, such mergers or hires would simply keep increasing the fund size at which

decreasing returns take their bite.

A second difference in our treatment of decreasing returns to scale is that we do not assume

that investors know the degree to which alpha drops as the amount of active management increases.

In our parameterization of decreasing returns in (4), the values of both a and b are unknown. In

contrast, the model in BG corresponds to a setting in which a is unknown but b is known.15 As

discussed earlier, when both a and b in (4) are unknown, investors face an interesting learning

problem in which the true values of those parameters are never fully learned.

Another difference from BG is that their investors face α = 0, whereas our investors perceive

14It is easy to show that our assumption of decreasing returns to scale at the aggregate level also implies decreasing

returns to scale at the individual fund level. However, this implication weakens as the number of funds grows larger.

Empirical evidence indicating decreasing returns to scale at the fund level, especially among small-cap mutual funds,

is provided by Chen, Hong, Huang, and Kubik (2004) and Pollet and Wilson (2008).
15BG denote the quantity corresponding to our “b” as “a” in their quadratic parameterization, and they view this

quantity as known. Their “α” corresponds to our “a”—they use “α” to denote the expected return gross of fees and

costs, whereas we use “α” to denote the expected benchmark-adjusted return received by investors (see equation (1)).
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α > 0. We solve for the Nash equilibrium among investors maximizing (7). BG do not solve

the investors’ optimization problem explicitly; instead, they fix α = 0 by invoking the assumption

that non-benchmark risk can be completely diversified away across many funds. BG argue that

if a large number of funds were to have positive alphas, one could combine them in a portfolio

with a positive alpha and zero non-benchmark risk; α = 0 is therefore a necessary condition for

equilibrium. Recall from equations (13) and (14) that our model implies α → 0 as well if there

are many funds (M → ∞) and all non-benchmark risk is diversifiable (σx → 0), as long as the

number of investors is very large (N → ∞). With a smaller number of investors, however, α > 0

because investors internalize some of the reduction in alpha caused by their own investment.

As discussed earlier, it seems reasonable that non-benchmark risk cannot be fully diversified

across actively managed funds, so that σx > 0. As a result, α > 0 even with many funds and many

investors. However, we do not wish to leave readers with the impression that alpha in that setting is

necessarily large. Once learning proceeds to the point where uncertainty about alpha is small, the

non-benchmark variance is essentially just σ2
x, and alpha is then equal to γσ2

x times the equilibrium

allocation S/W , as implied by equation (18). Even with S/W = 1, the values of γ and σx specified

in our numerical investigation (2 and 0.02, respectively) imply a value of α equal to only 8 basis

points per annum.16 Thus, even though our modeling of the determinants of equilibrium alpha is

rather different from that of BG, their zero-alpha condition is not at sharp odds, in practical terms,

with a setting where σx > 0 and there are many funds and investors.17

In their diversification argument justifying α = 0, BG rely on the presence of many funds.

This assumption is at some tension with BG’s treatment of fund managers as monopolists. In

the BG model, each manager sets a proportional fee rate by taking into account its effect on the

amount of assets under management. That amount ends up maximizing expected profit received

in total by managers and investors; the analogous aggregate amount is S∗ in our setting.18 In our

model, with many competing funds, that discretionary component of the fee disappears (f = 0),

and managers become price takers with respect to their equilibrium fees. When there are many

competing investors as well, BG’s assumption that σx = 0 implies that the amount invested is

S̄ = 2S∗. That is, the industry’s size then reaches the level that produces zero expected profit.

16If α remains uncertain, this calculation is modified by replacing σ2

x with σ2

x + σ2

α, where σ2

α denotes the posterior

variance of α (see equations (33) through (35)). Uncertainty about α thus increases the equilibrium value of α, but

for realistic parameter values, this increase amounts to only a few basis points per annum. The value of α increases
further when the number of investors is finite (equation (14)), but that effect is small unless N is very small.

17A closely related statement is that in our model, past performance predicts future performance, but only slightly.
18This profit-maximizing amount of active management for a given fund is denoted as q∗t by BG. Their equation

(26), q∗t (φt) = φt/2a, corresponds directly to our equation (22). Their a corresponds to our b, their φt corresponds to

(the expected value of) our a, and their qt corresponds to our S/W .
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The specification that brings our model closest to that of BG involves many investors (N →
∞), a single manager (M = 1), and no risk (σε → 0 and σx → 0). With M = 1, we obtain

f = a/2, as in BG.19 With N → ∞, the externality present with fewer investors, which is absent

in BG, disappears. To obtain BG’s condition that α = 0 when there is a single fund (M = 1),

that fund can have no risk; otherwise investors would require α > 0. The absence of risk requires

σx → 0 as well as σε → 0. With M → ∞, σε would drop out (this is BG’s diversification

argument), but since we need M = 1 to replicate BG’s value for f , we also need σε → 0 to

obtain α = 0. Finally, using (24), we see that equilibrium under the above specification produces

S = S∗, the profit-maximizing size of the industry that is analogous to the profit-maximizing fund

size obtained in BG.

8. Conclusion

It seems puzzling that active management remains popular despite its track record. We propose

a potential resolution to this puzzle. In a model with competing investors and fund managers,

we find that the equilibrium size of the active management industry can be large even after a

significantly negative track record. The key to this result is the belief that active managers face

decreasing returns to scale. If investors instead believed that returns to scale were constant, they

would allocate nothing to active management even if they were initially more optimistic about

active managers’ abilities.

Under decreasing returns to scale, investors adjust their allocation in response to performance

until the expected return going forward is sufficiently attractive. Given the observed underperfor-

mance of active funds over the past few decades, our model predicts that the investors’ proportional

allocation to active management should have decreased over time. Indeed, passive indexing has

grown dramatically since its beginnings in the 1970s, consistent with the model.

Investors in our model face endogeneity that limits their learning—what they learn affects how

much they allocate to active management, but what they allocate affects how much they learn. The

equilibrium allocation typically ceases to fluctuate after just a few years, at which point learning

about returns to scale essentially stops. As a result, investors never accurately learn the degree

of decreasing returns to scale. We also find that when active returns are not very sensitive to the

industry’s size, this size can fluctuate at suboptimal levels for a long time.

19Here we refer to the special case of BG in which the profit/cost function is quadratic, as it is in our model. BG

analyze not only this special case but also the more general case of convex costs.
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Future research can explore additional aspects of learning about parameters governing returns

to scale. These parameters are held constant in our model, for simplicity, but they could plausibly

vary due to exogenous shocks. For example, shocks to liquidity would likely induce changes in the

degree of decreasing returns to scale. In such a setting, parameter uncertainty gets refreshed every

so often, so that learning is always at a relatively early stage. The probability that the industry size

is suboptimal at any point in time is then higher than in the constant-parameter framework, and so

is the probability of observing unusually large positive or negative t-statistics. Future work could

also further explore the economic importance of the incomplete learning about returns to scale. We

have a lot yet to learn about learning in active management.
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Appendix

In this appendix we derive the relations given in Propositions 1 and 2. We first analyze the case

in which the parameters a and b of the profit function are known.

A.1. Known Profit Function

Let s denote the M × 1 vector whose i-th element is si. Observe that

s =
W

N

N∑

n=1

δn (A1)

S = ι′Ms =
W

N

N∑

n=1

ι′Mδn, (A2)

where ιM is an M × 1 vector of ones. We can express the first two moments of fund returns as

E(r|D) = α = aιM − b

N

N∑

n=1

ι′MδnιM − f (A3)

Var(r|D) = Ω, (A4)

where α is an M × 1 vector whose i-th element is αi, f is an M × 1 vector whose i-th element is

fi, and Ω denotes the covariance matrix of u (since a and b are known), given by

Ω = σ2
xιMι′M + σ2

ε IM . (A5)

Above, IM denotes the M × M identity matrix. Substituting these relations into (7) then gives

investor j’s problem as

max
δj






δ′j



aιM − b

N

∑

n6=j

ι′MδnιM − f



− δ′j
b

N
ιM ι′Mδj −

γ

2
δ′jΩδj






, (A6)

subject to the restrictions

ι′Mδj ≤ δ̄ (A7)

δi,j ≥ 0 ∀i, j, (A8)

where δi,j denotes the i-th element of δj. We here impose the leverage constraint in (A7) from the

outset and then simply obtain Proposition 1 as the case when it does not bind.

In a Nash equilibrium, wherein each investor takes the optimal decisions of other investors as

given, investor j’s first-order condition is

aιM − f − b

N
ιM ι′M (

N∑

n=1

δn + δj) − γΩδj − λ1ιM − λ2 = 0, (A9)
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where the scalar λ1 and the M × 1 vector λ2 contain the multipliers associated with the constraints

in (A7) and (A8). Since all investors are identical, so are their equilibrium allocations across funds:

δj = δ, j = 1, . . . , N (A10)

Imposing (A10) on the first-order conditions then implies

aιM − f − (N + 1)

N
bιM ι′Mδ − γΩδ − λ1ιM − λ2 = 0, (A11)

which yields δ as a function of f :

δ = G(aιM − f − λ1ιM − λ2), (A12)

where

G =
(

N + 1

N
bιM ι′M + γΩ

)−1

. (A13)

The M managers, who understand the relation in (A12), set their fees before investors make

their decisions. Each manager i chooses fi to maximize

fisi = fi
W

N

N∑

n=1

δi,n = fi
W

N
Nδ(i) = fiWδ(i), (A14)

where δ(i) is a scalar denoting the amount that each investor invests in fund i. It follows from

equation (A12) that

δ(i) = g′
i(aιM − f − λ1ιM − λ2), (A15)

where g′
i denotes the i-th row of G. Each manager i thus solves

max
fi

{

fig
′
i(aιM − f − λ1ιM − λ2)

}

. (A16)

The first-order condition, taking other managers’ fees as given, is

g′
i(aιM − λ1ιM − λ2) − g′

i(f + eifi) = 0, (A17)

where ei is an M × 1 vector whose i-th element is one and the other M − 1 elements are zero.

Since all managers are identical, their equilibrium fees are the same:

fi = f, i = 1, . . . , M, (A18)

so that f = fιM . As a result, all funds are held in equilibrium in nonnegative amounts, so the

constraint (A8) does not bind and we can set λ2 = 0 throughout. Substituting into the first-order

condition, we obtain

g′
i(aιM − λ1ιM) = g′

i(ιM + ei)f. (A19)
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This equation must hold for all i = 1, . . . , M , so that

G(aιM − λ1ιM ) = [G + diag(G)] ιMf, (A20)

from which we obtain

f = [G + diag(G)]−1 G(a − λ1). (A21)

To invert the matrix, we make use of the easily verified relation,

(p1IM + p2ιMι′M )
−1

=
1

p1
IM − p2

p1(p1 + Mp2)
ιM ι′M . (A22)

Based on equations (A5) and (A13), we can write

G−1 =
N + 1

N
bιMι′M + γ

(

σ2
xιMι′M + σ2

ε IM

)

(A23)

= p1IM + p2ιM ι′M , (A24)

where

p1 = γσ2
ε (A25)

p2 =
N + 1

N
b + γσ2

x. (A26)

Using the relation in (A22), we obtain

G =
1

p1
IM − p2

p1(p1 + Mp2)
ιM ι′M . (A27)

Since

diag(G) =

(

1

p1
− p2

p1(p1 + Mp2)

)

IM , (A28)

we have

G + diag(G) = p3IM + p4ιM ι′M , (A29)

where

p3 =
2

p1
− p2

p1(p1 + Mp2)
(A30)

p4 = − p2

p1(p1 + Mp2)
. (A31)

Invoking (A22) again, we have

[G + diag(G)]
−1

=
1

p3
IM − p4

p3(p3 + Mp4)
ιM ι′M . (A32)
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We also have

GιM =

(

1

p1
IM − p2

p1(p1 + Mp2)
ιM ι′M

)

ιM (A33)

=

(

1

p1
− Mp2

p1(p1 + Mp2)

)

ιM (A34)

=
1

p1 + Mp2
ιM . (A35)

Combining equations (A32) and (A34), we have

[G + diag(G)]−1 GιM =
1

p1p3

(

IM − p4

p3 + Mp4
ιM ι′M

)(

1 − Mp2

p1 + Mp2

)

ιM (A36)

=
1

(p1 + Mp2)(p3 + Mp4)
ιM . (A37)

From the definitions of p3 and p4 in (A30) and (A31), we have

p3 + Mp4 =
2

p1
− p2

p1(p1 + Mp2)
− Mp2

p1(p1 + Mp2)
(A38)

=
1

p1

(

2 − (M + 1)p2

p1 + Mp2

)

. (A39)

Substituting this into (A37) and rearranging terms, we obtain

(G + diag(G))
−1

GιM =
p1

2p1 + (M − 1)p2
ιM . (A40)

Combining equations (A21) and (A40), we obtain

f =
p1(a − λ1)

2p1 + (M − 1)p2
. (A41)

Substituting this into (A12), recalling that λ2 = 0, gives

δ = G(aιM − p1(a − λ1)

2p1 + (M − 1)p2
ιM − λ1ιM)

= (a − p1(a − λ1)

2p1 + (M − 1)p2

− λ1)GιM

=

(

a − λ1

p1 + Mp2

)(

1 − p1

2p1 + (M − 1)p2

)

ιM , (A42)

where the last equality uses (A35).

When the constraint in (A7) does not bind, we can set λ1 = 0 in (A41) and (A42) to obtain,

s = δW =

(

aW

p1 + Mp2

)(

1 − p1

2p1 + (M − 1)p2

)

ιM (A43)

S

W
=

ι′Ms

W
=

(

aM

p1 + Mp2

)(

1 − p1

2p1 + (M − 1)p2

)

(A44)

f =
ap1

2p1 + (M − 1)p2
, (A45)
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where the first two equations also invoke (A1) and (A2). Substituting (A43) through (A45) into

(6) and rearranging then gives α = αιM , where

α = a

(

1 − bM

p1 + Mp2

)(

1 − p1

2p1 + (M − 1)p2

)

. (A46)

Equations (8) through (10) in Proposition 1 follow immediately from (A44) through (A46). Also

note that p defined in (11) is identical to p2 in (A26).

When the constraint in (A7) binds, we can substitute δ from equation (A42) into the constraint

δ̄ = ι′Mδ, giving

δ̄ = ι′Mδ =
M(a − λ1)

p1 + Mp2

(

1 − p1

2p1 + (M − 1)p2

)

. (A47)

Solving for λ1 yields

λ1 = a − δ̄(p1 + Mp2)

M

(

2p1 + (M − 1)p2

p1 + (M − 1)p2

)

, (A48)

which when substituted in (A41) gives, after simplifying,

f =
δ̄p1

M

p1 + Mp2

p1 + (M − 1)p2
. (A49)

Note also that δ = (1/M)δ̄ιM since ι′Mδ = δ̄, and thus

s = δW =
δ̄W

M
ιM (A50)

S

W
=

ι′Ms

W
= δ̄. (A51)

Substituting from (A49) through (A51) into (6) gives α = αιM , where

α = a − δ̄

M

[

Mb + p1
p1 + Mp2

p1 + (M − 1)p2

]

. (A52)

For M → ∞, α → a− δ̄b, and α satisfies the inequality in (28) that otherwise holds as an equality

when S/W satisfies (10).

A.2. Unknown Profit Function

When a and b are unknown, with their conditional moments given in (29) and (30), the vector of

benchmark-adjusted fund returns is given by

r = aιM − b
S

W
ιM − f + u (A53)

= ãιM − b̃
S

W
ιM − f + u + (a − ã)ιM − (b − b̃)

S

W
ιM

= ãιM − b̃
1

N

N∑

n=1

ι′MδnιM − f +

{

u + (a − ã)ιM − (b − b̃)
1

N

N∑

n=1

ι′MδnιM

}

,

33



so that

E(r|D) = ãιM − b̃
1

N

N∑

n=1

ι′MδnιM − f

Var(r|D) = σ2
xιM ι′M + σ2

ε IM
︸ ︷︷ ︸

σ2
u

+σ2
aιM ι′M − 2σab(

1

N

N∑

n=1

ι′Mδn)ιM ι′M + σ2
b

1

N2

[
N∑

n=1

ι′Mδn

]2

ιM ι′M

= σ2
1ιM ι′M + σ2

ε IM − 2σab(
1

N

N∑

n=1

ι′Mδn)ιMι′M + σ2
b

1

N2

[
N∑

n=1

ι′Mδn

]2

ιMι′M ,

where

σ2
1 = σ2

x + σ2
a. (A54)

When facing the problem in (7), each investor j recognizes that, since all funds are identical, the

solution will be of the form δj = δ(j)ιM , where δ(j) is a scalar. Investors also recognize that since

they are all identical, the other N − 1 investors will all have solutions of the form δn = δ∗ιM ,

where δ∗ is a scalar. As a result, we can write

N∑

n=1

ι′Mδn = ι′M
[

δ(j)ιM + (N − 1)δ∗ιM
]

= M
(

δ(j) + (N − 1)δ∗
)

.

Since it is known to managers and investors that the values of a and b are identical across funds, we

assume that investors face fees of the form f = fιM , where f is a scalar. Therefore, each investor

j solves for δ(j) that maximizes the quantity

δ′jE(r|D) − γ

2
δ′jVar(r|D)δj

= δ(j)ι
′
M E(r|D) − γ

2
δ2
(j)ι

′
MVar(r|D)ιM

= δ(j)ι
′
M

[

ιM (ã − f) − b̃
1

N
ιMM

(

δ(j) + (N − 1)δ∗
)]

−

γ

2
δ2
(j)ι

′
M

[

σ2
1ιMι′M + σ2

ε IM − 2σab
M

N

(

δ(j) + (N − 1)δ∗
)

ιM ι′M + σ2
b

M2

N2

(

δ(j) + (N − 1)δ∗
)2

ιM ι′M

]

ιM

subject to the constraints (A7) and (A8). This is equivalent to maximizing

δ(j)M(ã − f) − δ2
(j)b̃

M2

N
− δ(j)b̃

M2(N − 1)

N
δ∗

−γ

2
δ2
(j)M

2σ2
1 −

γ

2
δ2
(j)Mσ2

ε + γδ3
(j)σab

M3

N
+ γδ2

(j)σab
M3(N − 1)

N
δ∗

−γ

2
δ4
(j)σ

2
b

M4

N2
− γδ3

(j)σ
2
b

M4(N − 1)

N2
δ∗ − γ

2
δ2
(j)σ

2
b

M4(N − 1)2

N2
(δ∗)2 − λ1

(

Mδ(j) − δ̄
)

− λ2δ(j).

Taking the first derivative with respect to δ(j), we obtain the first-order condition:

0 = M(ã − f) − 2δ(j)b̃
M2

N
− b̃

M2(N − 1)

N
δ∗
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−γδ(j)M
2σ2

1 − γδ(j)Mσ2
ε + 3γδ2

(j)σab
M3

N
+ 2γδ(j)σab

M3(N − 1)

N
δ∗

−2γδ3
(j)σ

2
b

M4

N2
− 3γδ2

(j)σ
2
b

M4(N − 1)

N2
δ∗ − γδ(j)σ

2
b

M4(N − 1)2

N2
(δ∗)2 −Mλ1 − λ2.

Dividing through by M and recognizing that, in equilibrium, δ(j) = δ∗ for all j, we have

0 = ã − f − λ1 −
λ2

M
− 2δ∗b̃

M

N
− b̃

M(N − 1)

N
δ∗

−γδ∗Mσ2
1 − γδ∗σ2

ε + 3γδ∗2σab
M2

N
+ 2γδ∗2σab

M2(N − 1)

N

−2γδ∗3σ2
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M3

N2
− 3γδ∗3σ2
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M3(N − 1)
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− γδ∗3σ2
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M3(N − 1)2

N2

= ã − f − λ1 −
λ2

M
− Mδ∗

[

b̃(N + 1)

N
+ γσ2

1 +
γσ2

ε

M

]

+ (Mδ∗)2 γσab

N
[2N + 1]

−(Mδ∗)3 γσ2
b (N + 1)

N
.

Note that
S

W
= ι′M

s

W
= ι′M

1

N

N∑

n=1

δn = ι′M
1

N
Nδ∗ιM = Mδ∗. (A55)

As M → ∞ and N → ∞, the first-order condition then becomes, using (A55),

0 = ã − f − λ1 −
S

W

[

b̃ + γσ2
1

]

+
(

S

W

)2

2γσab −
(

S

W

)3

γσ2
b . (A56)

Following the earlier analysis, we set f = 0 when the number of funds (M) is infinite. When the

constraint in (A8) does not bind and thus λ1 = 0, (A56) is identical to equation (31) in Proposition

2, noting (A54). It can be verified that this equation has one positive real solution for S/W . If that

solution exceeds δ̄, then (A50) and (A51) apply as before.
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Figure 1. Decreasing returns to scale in the active management industry. This figure plots the theoretical

relation between the expected benchmark-adjusted excess fund return before fees against the relative size

of the active management industry. Specifically, it plots equation (6): α + f = a − b S
W , where α is the

expected benchmark-adjusted excess fund return earned by investors, f is the proportional fee charged by

the fund manager, S is the aggregate size of the active management industry, and W is the investors’ total

investable wealth. As long as b > 0, the industry exhibits decresing returns to scale. The values of α, f , and

S are determined in equilibrium. At S = S, we have α = f = 0.
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Figure 2. Prior distributions. This figure plots the prior distributions for the parameters of the function in

equation (6). Panel A plots the prior for a, which is normal with the mean of 0.28 and standard deviation of

0.19. Panel B plots two different prior distributions for b: b = 0 (constant returns to scale, known b), and

b ≥ 0 (decreasing returns to scale, unknown b). The former prior is a spike at b = 0. The latter prior is

truncated normal with the mode of zero, mean of 0.2, and standard deviation of 0.15. Under this prior, the

initial equilibrium allocation to active management is S/W = 0.9. The parameters a and b are independent

a priori. Panels C and D plot the 5th, 25th, 50th, 75th, and 95th percentiles of the implied prior distributions

for α = a − b(S/W ) as a function of S/W (in the competitive case with f = 0). Panel C corresponds to

the prior b = 0, for which the distribution of α is invariant to S/W . Panel D corresponds to the prior b ≥ 0,

for which the distribution of α shifts toward smaller values as S/W increases.
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Figure 3. Posterior standard deviations. This figure plots the posterior standard deviations of a, b, and α
as a function of time. The three panels on the left correspond to the prior b = 0; the three panels on the right

represent the prior b ≥ 0. Each panel on the right plots the 5th, 25th, 50th, 75th, and 95th percentiles of the

distribution of the given standard deviation across many simulated samples. Under the prior b = 0, there is

no dispersion in this distribution, so the three panels on the left plot single lines. Also when b = 0, a and

α coincide, so the top and bottom left panels look identical. The middle left panel looks empty because the

posterior standard deviation of b is zero when b = 0.
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Figure 4. Deviations from true values. Panels A, B, and C plot the distributions of the differences between

the perceived and true values, ã − a, b̃ − b, and α̃ − α, respectively, across many simulated samples under

the b ≥ 0 prior. Panel D plots the distribution of the differences between the equilibrium (S/W )t and the

“true” S/W , where the latter quantity is computed from the true values of a and b.
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Figure 5. Examples of learning paths. This figure plots representative examples of learning paths for

various random samples under the b ≥ 0 prior. Each of the 12 panels plots aggregate active fund returns

rA,t against the aggregate allocation to the active industry (S/W )t for t = 1, . . . , 300 years. The three

columns of panels correspond to three different values of b: “low” (5th percentile of the prior distribution,

0.02), “median” (50th percentile, 0.17), and “high” (95th percentile, 0.49). Given the value of b, the value

of a is computed so that the true S/W = 0.5. The (a, b) pair is then used to generate random samples of

active returns, which are then used to update the b ≥ 0 prior. Each of the three columns contains four rows

of panels representing examples of learning paths that commonly occur for the given values of a and b. The

starting point (t = 1) is indicated with a circle; its x coordinate is always (S/W )1 = 0.9.
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Figure 6. The posterior distribution of the equilibrium allocation to active management conditional on

past performance. This figure plots selected percentiles of the posterior distribution of S/W , the equilib-

rium allocation to active management, conditional on the t-statistic associated with the industry’s historical

alpha computed over a period of T = 50 years. Panel A corresponds to the prior b = 0 (constant returns to

scale); the distribution of S/W then collapses into a single value because the t-statistic is a sufficient statis-

tic for S/W . Panel B corresponds to the prior b ≥ 0 (decreasing returns to scale). Note that when b = 0,

investors observing negative past performance optimally choose to invest nothing in active management, but

when b ≥ 0, they invest substantial amounts.
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Figure 7. Alternative prior distribution. This figure plots alternative prior distributions for a, b, and

α. The priors for b in Panel B are the same as in the baseline prior in Figure 2, but the prior for a in

Panel A is more pessimistic. This alternative prior assigns a 26% probability to the event that a < 0,

which is substantially larger than the 7.2% probability in Figure 2. The prior is chosen such that the initial

equilibrium allocation to active management is S/W = 0.5 instead of 0.9 as in the baseline prior under

decreasing returns to scale. Panels C and D plot the selected percentiles of the implied prior distributions

for α as a function of S/W under the priors b = 0 and b ≥ 0, respectively.
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Figure 8. The posterior distribution of the equilibrium allocation to active management conditional

on past performance under the alternative prior. This figure plots selected percentiles of the posterior

distribution of S/W , the equilibrium allocation to active management, conditional on the t-statistic associ-

ated with the industry’s historical alpha computed over a period of T = 50 years. The figure is analogous to

Figure 6, except that the prior from Figure 2 is replaced by the prior from Figure 7. Panel A corresponds to

the prior b = 0 (constant returns to scale); the distribution of S/W then collapses into a single value because

the t-statistic is a sufficient statistic for S/W . Panel B corresponds to the prior b ≥ 0 (decreasing returns

to scale). Note that when b = 0, investors observing negative past performance optimally choose to invest

nothing in active management, but when b ≥ 0, they invest substantial amounts.
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