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1 Introduction

The identification of structural parameters of stylized models is one of the central tasks of

applied economics. Unfortunately, most models omit various frictions that make agents

deviate systematically from their theoretical predictions. For instance, canonical models of

labor supply or consumption behavior do not permit adjustment costs, inattentive agents,

or status quo biases. How can structural parameters be identified when agents face such

optimization frictions?

One natural solution is to estimate the structural parameters of a model that incorporates

the frictions. This approach has two limitations in practice. First, it is diffi cult to incorporate

all frictions in a tractable model. Second, estimating even simple dynamic models with fric-

tions, such as Ss adjustment, requires strong econometric assumptions and is computationally

challenging (Attanasio 2000). Motivated by these limitations, I propose an alternative solu-

tion in this paper: bounding structural preference parameters without identifying how frictions

affect behavior.

I analyze a neoclassical dynamic model in which agents have isoelastic demand functions

with different intercepts but a common price elasticity ε. The parameter ε is a structural

primitive of utility, and fully determines the effect of price changes on demand without fric-

tions. I introduce optimization frictions into this nominal model through an error term in

the demand function whose conditional expectation is unknown. These optimization errors

generate differences between mean observed demand and the mean optimal demand predicted

by the frictionless model. Because the optimization errors need not be orthogonal to the price,

the observed elasticity ε̂ estimated from demand responses to a price change will generally dif-

fer from the structural elasticity parameter ε. Intuitively, the observed elasticity ε̂ confounds

preferences (ε) with the effect of the frictions (e.g. adjustment costs). For example, agents

may under-react to a price increase in the short-run because of adjustment costs.

This paper seeks to identify ε from estimates of ε̂. I focus on identifying ε because it

is important for both positive and normative analysis. Long run effects of price changes

are determined purely by ε in many models because the effect of frictions diminishes over

time. Moreover, the recovery of preference parameters is essential for welfare analysis. I

derive bounds on ε from observations of ε̂ by assuming that agents choose points near the
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frictionless optimum. Specifically, I allow agents to deviate arbitrarily from the nominal

model’s prediction as long as the expected utility cost of doing so is less than δ percent of

expenditure.1 This property is satisfied by standard dynamic models with adjustment costs,

where agents remain on average within some utility threshold of their optimum. In the case

of other frictions such as inattention or status quo biases, this restriction requires that agents

respond to incentives that are suffi ciently important.

Given an exogenously specified value of δ, the support of agent’s optimization errors is

bounded. This bounded support condition in turn produces bounds on the values of ε consis-

tent with an observed elasticity ε̂. I derive a closed-form representation for bounds on ε as a

function of the observed elasticity ε̂, the degree of frictions δ, and the size of the price change

used for identification ∆ log p. The bounds have several properties that shed light on what

can be learned from reduced-form elasticity estimates in an environment with frictions. The

bounds shrink at a quadratic rate with ∆ log p —studies identified from larger price changes

contain much more information about ε. If ε̂ > 0, the lower bound on the structural elasticity

ε is strictly positive. If ε̂ = 0, the upper bound on ε can be conveniently expressed in terms of

the utility cost of ignoring the price change. This permits straightforward calculations of the

range of elasticities consistent with zero behavioral response, analogous to power calculations

used to evaluate statistical precision.

One can obtain tighter bounds on ε by calculating the least upper bound and the largest

lower bound implied by a set of observed elasticities. The sensitivity of estimates of ε to

frictions can be evaluated by computing these unified bounds as a function of δ. The smallest

level of frictions δmin that reconciles a set of observed elasticities provides a quantitative

measure of the “economic significance” of differences in estimates across studies. If δmin is

small, the differences are not economically significant in that they can be explained by allowing

for small frictions without making changes in the model’s key assumptions. When δ = δmin,

ε is point identified and can be expressed as a weighted average of observed elasticities, with

greater weight placed on the elasticities identified using larger price changes. This result

underscores a general lesson about identification with optimization frictions: pooling several

small price changes —although useful in improving statistical precision —yields less information

1Permitting such deviations should be viewed as a minimal robustness requirement, as it is unlikely that any
economic model predicts (average) behavior perfectly.
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about the structural elasticity than studying a few large price changes.

I apply these methods to investigate what can be learned about the structural labor supply

elasticity from the literature on taxation and labor supply. The application consists of three

components. First, I show that various disparate findings in the microeconometric labor supply

literature can be synthesized by introducing small frictions into the simplest constant-elasticity

neoclassical labor supply model. I calculate the utility costs of ignoring the tax reforms most

commonly used for identification in microeconometric studies. I find that observed elasticities

are large when the utility costs of failing to respond are large. For instance, the flow utility

costs of ignoring the Tax Reform Act of 1986 (TRA86) are less than 2% of consumption for

all except top income earners. Accordingly, empirical studies find changes in labor supply

around TRA86 only for top incomes. In addition to explaining the heterogeneity in observed

elasticities across income groups, frictions can also explain why we observe larger elasticities on

the extensive margin than the intensive margin, limited bunching at kink points in non-linear

budget set models, sharp responses to notches in budget sets, and converging elasticities across

primary and secondary earners.

Second, I calculate bounds on the labor supply elasticity using estimates from twenty

studies that span various methodologies, ranging from microeconometric quasi-experiments to

macroeconomic calibrations. Even though the observed elasticity estimates vary widely, all

twenty estimates are consistent with a single structural elasticity ε if one permits frictions of

δ > δmin = 0.8% of consumption in choosing labor supply. Pooling the twenty studies yields

bounds on ε of (0.47, 0.54) when δ = 1%.

Finally, I show that frictions can explain the longstanding puzzle of why microeconometric

elasticity estimates are much smaller than macro estimates. Micro studies estimate short-

run responses to tax changes whereas macro studies estimate long-run responses. Frictions

can attenuate short-run elasticities: for instance, if individuals draw low job switching costs

once every ten years, micro estimates of changes over a one year horizon could be an or-

der of magnitude smaller than long-run macro estimates. The bounds derived here show

quantitatively that frictions of just 1% of consumption can generate the substantial observed

differences between micro and macro elasticities. This reconciliation complements the well

known explanation proposed by Richard Rogerson and others (e.g. Rogerson 1988, Rogerson
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2006, Rogerson and Wallenius 2009).2 These papers argue that macro elasticities are larger

because they incorporate both extensive and intensive margin labor supply responses, whereas

micro studies focus on the intensive margin. While this insight clearly explains part of the

puzzle, much of the difference in labor supply across countries with different tax regimes is

driven by hours worked conditional on employment. That is, intensive margin macro elasticity

estimates are much larger than their microeconometric counterparts. In contrast, micro and

macro estimates of the extensive margin elasticity are actually quite similar. I show that

optimization frictions generate precisely this pattern. Observed short-run extensive margin

elasticities remain close to structural elasticities even with small frictions because the utility

costs of failing to reoptimize are first-order on the extensive margin. In contrast, small fric-

tions can attenuate observed short-run intensive margin responses substantially because the

costs of failing to reoptimize on the intensive margin are second-order.

This paper builds upon and relates to the partial identification, near rationality, robust con-

trol, and durable goods literatures. The econometrics literature on partial or set identification

considers problems such as missing data or imperfect instruments, where point identification

is infeasible barring strong assumptions (Manski 2007, Nevo and Rosen 2008). The present

paper uses set identification to estimate structural parameters with model mis-specification.

Papers in the partial identification literature typically derive bounds by making assumptions

such as stochastic dominance of wage distributions for labor force participants relative to

non-participants or exploiting necessary conditions for Nash equilibria (Blundell et al. 2007,

Pakes et al. 2007). Here, I derive bounds by assuming that agents are “near rational,” as

in the menu cost and near rationality literature in macroeconomics (Akerlof and Yellen 1985,

Mankiw 1985, Cochrane 1989).3 The focus on a class of models around a pre-specified nominal

model parallels the robust control literature (Hansen and Sargent 2007). The robust control

literature analyzes optimal policy with a minimax criterion and model uncertainty, whereas I

2Others have proposed that differences in regulations (Alesina, Glaeser, Sacerdote 2005) or social insurance
systems (Ljungvist and Sargent 2006) between countries with low and high tax rates bias macro elasticity
estimates upward . These explanations complement the one offered here, and could in particular help explain
the largest values obtained by macro studies that do not account for such factors (e.g. Prescott 2004).

3Cochrane (1989) shows how to assess whether a given model is consistent with data if one permits small
frictions. I develop a method of identifying the set of structural parameters consistent with the data with
frictions. The difference between the two papers is analogous to the difference between hypothesis testing and
confidence intervals in statistics.
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consider identification of the nominal model’s parameters in the same setting.4 Finally, the

bounds provide an alternative method of estimating preferences or production functions in

models with adjustment costs. The approach proposed here requires fewer assumptions than

existing methods of identifying such models (e.g. Eberly 1994, Attanasio 2000) because the

observed elasticities it uses as inputs can be estimated using quasi-experimental techniques.

However, it does not permit as rich an analysis of short-run counterfactuals because it only

partially identifies the model’s parameters.

The paper is organized as follows. The next section sets up a dynamic model with frictions.

The bounds on price elasticities are derived in Section 3. Section 4 presents the application

to labor supply and taxation. Section 5 concludes.

2 Demand Models with Frictions

Consider a dynamic model with N individuals who have heterogeneous tastes over two goods,

x and y. Individual i has wealth Zi and time-separable utility

T∑
t=0

vi,t(xt, yt) (1)

with flow utility

vi,t(xt, yt) = yt + ai,t
x

1−1/ε
t

1− 1/ε
if ε 6= 1 (2)

vi,t(xt, yt) = yt + ai,t log xt if ε = 1

This quasilinear utility specification has two convenient properties: (1) it is a money metric and

(2) it permits heterogeneity in the levels of demand across agents and periods but generates a

constant price elasticity of demand. I focus on this particular utility primarily for analytical

convenience; a more general utility specification can be permitted by using equivalent-variation

measures and computing the bounds numerically.5

Letting pt denote the price of x in period t, the agent solves:

max
xt

T∑
t=0

[ai,t
x

1−1/ε
t

1− 1/ε
− ptxt]

4Like the robust control results, the methods proposed here do not provide an excuse for failing to build an
accurate model. The bounds are valid only if the nominal model is correct up to optimization frictions.

5Although I focus on a consumption problem here, the analysis below can be adapted to other problems
such as an individual’s choice of labor supply or a profit-maximizing firm’s choice of quantity with a simple
change of notation.
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Solving this problem yields the following demand function for good x:

x∗i,t(pt) = (
ai,t
pt

)ε (3)

Let α =
∑

i

∑
t log x∗i,t(pt = 1)/N(T + 1) denote the mean log demand in the population when

pt = 1 and νi,t = log x∗i,t(pt = 1)− α denote the deviation of individual i in period t from the

mean. Then we can write agent i’s demand function as

log x∗i,t(pt) = α− ε log pt + νi,t

Our objective is to identify ε, the structural preference parameter that controls the price

elasticity of demand. More compactly, I shall refer to ε as the “structural elasticity.” Under

the quasilinear utility specification in (2), the Frisch, Hicksian, and Marshallian elasticities are

all equal to ε because x∗i,t depends only upon pt and not on prices in other periods or wealth

(Browning 2005). Hence, the bounds derived below apply to all of these elasticities under this

utility. For more general utilities, the three elasticities will differ and different types of price

variation (e.g. anticipated vs. unanticipated) identify different elasticities. I revisit this issue

below in section 4.4.

Consider identification of ε using a price change from pA in period A to pB 6= pA in

period B.6 The standard assumption made to identify ε from such variation is the following

orthogonality condition on the error term vi,t in the demand function.

A1 Taste shocks vi,t are orthogonal to the identifying price variation: Eνi,A = Eνi,B.

Assumption A1 permits arbitrary changes in tastes ai,t across periods for any given agent,

but requires that the aggregate distribution of tastes is identical in periods A and B. Under

A1, which I assume holds throughout this paper,

ε = −
E log x∗i,B(pB)− E log x∗i,A(pA)

log pB − log pA
(4)

Equation (4) shows that the observed demand response to a price change point identifies ε in

the frictionless model in (1). I refer to the model in (1) as the “nominal”model, following

the robust control literature. I now explore how the link between ε and the observed demand

response in the nominal model is affected by optimization frictions using two examples.

6The analysis is unaffected if the identifying price variation is cross-sectional, provided that the variation in
pt is orthogonal to the variation in tastes across individuals νi,t.
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Frictions - Example 1: Adjustment Costs. In many markets, an agent must pay a search

or switching cost to change his level of consumption. Suppose that the path of the adjustment

cost ki,t evolves deterministically and that tastes ai,t and prices pt follow arbitrary stochastic

processes. Let Et denote the conditional expectation operator over prices and tastes given

information available in period t. In this model, agent i chooses consumption xi,t in period t

by solving:

max
xs
Et

T∑
s=t

[ai,s
x

1−1/ε
s

1− 1/ε
− psxs − ki,s · (xs 6= xs−1)]. (5)

Observed demand in this model, xi,t, differs from the frictionless optimum x∗i,t. Let the

observed elasticity estimated from a price change between periods A and B be denoted by

ε̂ = −E log xi,B(pB)− E log xi,A(pA)

log pB − log pA
(6)

In this model, ε̂ no longer identifies the structural elasticity ε. The observed elasticity ε̂ may

be smaller or larger than ε depending upon the evolution of prices, adjustment costs, and

tastes. For instance, suppose A = 0, B = T = 1, and agents do not anticipate any price or

taste changes in period 1, so that the change from pA to pB is a surprise. Then ε̂ = f · ε,

where f denotes the fraction of agents whose flow utility gain from choosing x∗(pB) instead

of x∗(pA) exceeds their adjustment cost ki,B. In this example, the observed elasticity ε̂ ≤ ε

because agents start at their optima (xi,A = x∗i,A). In contrast, suppose a history of small

price increases before period A has led to xi,A(pA) > x∗i,A(pA) for all agents. Here, a further

price increase to pB > pA could induce a large observed demand response, leading to ε̂ > ε.

Although ε̂ generally differs from ε, the structural elasticity ε plays a central role in de-

termining the long-run effects of changes in prices. For example, the effect of a permanent

price change starting in period 0 is determined purely by ε. As another example, suppose

all agents have zero adjustment costs from time to time (ki,t = 0) and that mean observed

demand equals mean optimal demand in period A (E log xi,A = E log x∗i,A). Then the observed

effect of a permanent, unanticipated price change in period A + 1 approaches ε as B grows

large irrespective of the path of tastes and adjustment costs. Intuitively, adjustment costs

affect observed elasticities primarily in the short-run, as agents may delay adjustment until

periods when they face low switching costs. Hence, studies that estimate long-run or steady

state responses —such as macroeconomic studies that make cross-country comparisons —are
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more likely to identify ε. Unfortunately, such studies are also the most prone to omitted

variable problems because of the lack of good counterfactuals. As a result, most modern

microeconometric studies focus on estimating short-run responses.

How can one identify the structural elasticity ε from observed short-run responses to price

changes when agents face adjustment costs? One natural approach is to estimate the model

that incorporates adjustment costs in (5) instead of the frictionless model in (1), as in Eberly

(1994) or Caballero, Engel and Haltiwanger (1995). Although refining the model to incorpo-

rate frictions is an ideal solution, the identification of dynamic models with adjustment costs

runs into serious limitations in practice. Strong parametric assumptions on the evolution

of adjustment costs ki,t and the stochastic processes governing tastes ai,t and prices pt are

required to derive tractable decision rules such as Ss behavior (Grossman and Laroque 1990).

Even given these strong assumptions, estimating the model requires considerable data and is

numerically demanding (Attanasio 2000).

Frictions - Example 2: Price Misperceptions. A growing body of evidence indicates that

individuals misperceive prices in many domains (DellaVigna 2009). For instance, individuals

are inattentive to tax rates and confuse average with marginal tax rates (Fujii and Hawley 1988,

Chetty, Looney, and Kroft 2009, Chetty and Saez 2009). To model this class of deviations

from (1), let p̃i,t(pt) denote agent i’s perceived price as a function of the true price in period

t. The agent chooses xi,t by solving

max
T∑
s=t

[ai,s
x

1−1/ε
s

1− 1/ε
− p̃i,s(ps) · xi,s] (7)

The resulting demand function is

log xi,t(pt) = α− ε log p̃i,t(pt) + νi,t

and the observed elasticity is

ε̂ = ε
E log p̃i,B(pB)− E log p̃i,A(pA)

log pB − log pA

Again, the observed elasticity ε̂ confounds the structural elasticity of interest ε with other

parameters, in this case the effect of the price change on mean perceived prices. But if

perceptions converge to the truth over time, long run responses are determined solely by ε.
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Identifying ε by estimating the structural parameters of (7) requires specification of a

theory of perceptions p̃i,t(pt). Unfortunately, there is little consensus on what determines

perceptions. Perceptions may be determined by rational information acquisition (Stigler

1961, Sims 2003), advertisements (Nelson 1974), or persuasion by other agents (Mullainathan,

Shleifer, and Schwartzstein 2008, DellaVigna and Gentzkow 2009). Each of these theories

requires estimation of a different set of structural parameters, ranging from cost of acquiring

information to the stochastic processes that govern triggers of attention.

Optimization Frictions and Partial Identification. The two examples above suggest that it

is very challenging to accurately model and identify all the frictions that may cause agents to

deviate systematically from standard stylized models. The challenge is compounded when one

considers the array of other factors that may lead to deviations from the nominal model, such

as status quo biases (Samuelson and Zeckhauser 1988) or satisficing behavior (Simon 1957).

This problem motivates a less ambitious strategy: identifying ε without fully identifying the

structure of optimization frictions. Identifying ε itself is useful (though not always suffi cient)

for both positive and normative analysis. As noted in the examples above, the effect of

frictions diminishes in the long run under plausible conditions, making ε suffi cient to predict

long-run responses. For welfare analysis, it is essential to recover preferences, i.e. to identify ε.

The structural elasticity ε and the observed elasticity ε̂ are together suffi cient for approximate

welfare calculations in many applications (Chetty, Looney, and Kroft 2009).7

The problem of identifying ε with unknown frictions can be viewed as a partial identification

problem. Define agent i’s “optimization error” as the log difference between his optimal

demand as predicted under the nominal model in (3) and his observed demand:8

φi,t = log xi,t(pt)− log x∗i,t(pt)

Then observed demand for agent i can be written as

log xi,t(pt) = α− ε log pt + νi,t + φi,t (8)

7For questions that require full identification of the model’s structure —such as predicting short-run responses
to policy changes — it is still useful to start by identifying ε using as little structure as possible to obtain the
most reliable estimates. One can then impose more structure to identify the model’s remaining parameters.

8The optimization error is an error from the econometrician’s perspective but not necessarily from the agent’s
perspective. In the adjustment cost model, the agent optimizes by choosing xi,t according to (5) instead of
x∗i,t.
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Define xt(pt) = [
N∏
i=1

xi,t(pt)]
1/N and x∗t (pt) = [

N∏
i=1

x∗i,t(pt)]
1/N as the geometric means of ob-

served and optimal demands. Mean observed (log) demand is

log xt(pt) = E log xi,t(pt) = α− ε log pt + Eφi,t

= log x∗t (pt) + Eφi,t

The optimization errors φi,t generated by frictions are not orthogonal to changes in prices.

For example, in the adjustment cost model, mean observed demand may be at the optimum

in period A (Eφi,A = 0), but above the new optimum following a price increase in period B

(Eφi,B > 0). This is the fundamental difference between φi,t and the preference heterogeneity

error νi,t, which is plausibly orthogonal to certain types of price changes. Imposing the

orthogonality condition in A1 on νi,t but leaving Eφi,t unrestricted, the observed demand

response to a price change is

E log xi,B − E log xi,A = −ε[log pB − log pA] + [Eφi,B − Eφi,A] (9)

Without assumptions on φi,t, ε is unidentified by the observed response because the Eφi,B −

Eφi,A is unknown. Intuitively, if one places no restrictions on perceptions or adjustment costs,

an observed response to a price change can be reconciled with any structural price elasticity.

Restricting the Degree of Frictions. As in the partial identification literature, one can

obtain bounds on ε by bounding the support of φi,t without making specific assumptions

about Eφi,t. The orthogonality condition on the error term can be dropped in exchange for

a bounded support condition if one is willing to settle for set identification instead of point

identification. I restrict the support of φi,t by requiring that agents make choices “near”the

optimal choice under the nominal model. Because the consumption path for y is indeterminate

with quasilinear utility, assume without loss of generality that agents divide wealth equally

across periods and set yi,t = Zi/(T + 1) − ptxi,t. Let flow utility as a function of demand for

good x in period t be denoted by

ui,t(xi,t) = vi,t(xi,t, Zi/(T + 1)− ptxi,t).

I impose the simple requirement that agents’deviations from the frictionless optimum cannot

have too large of a utility cost (calculated under the nominal model):

ui,t(x
∗
i,t)− ui,t(xi,t) = ui,t(x

∗
i,t)− ui,t(x∗i,teφi,t) < Di,t
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where Di,t is an exogenously specified threshold. It is convenient to normalize the dollar value

Di,t by the optimal flow expenditure on good x and define δi,t = Di,t/ptx
∗
i,t. The parameter

δi,t measures the utility loss that agent i tolerates as a percentage of his expenditure on good

x in period t.

To obtain bounds on mean observed demand in the population, log xt, I restrict the average

value of δi,t across agents in any period t to be below an exogenously specified threshold δ.

For instance, δ = 1% permits deviations from optimal demand with an average utility cost of

up to 1% of expenditure in each period. Formally, the bounded support condition I impose

is that the optimization errors in every period t, φt = {φ1,t, ..., φN,t}, lie within the set

Φδ = {φt : ui,t(x
∗
i,t)− ui,t(x∗i,teφi,t) ≤ δi,tptx∗i,t ∀i with

∑
i δi,t/N ≤ δ} (10)

The parameter δ measures the degree of optimization frictions that one permits, and will vary

across applications. A lower value of δ is appropriate when examining responses over longer

horizons if agents converge to their new optima over time. In the context of inattention, a

higher δ may be suitable for price changes that are less salient.

I refer to the models that generate optimization errors φi,t ∈ Φδ as a “δ class of models”

around the nominal model. A δ class of models contains many models of behavior. The

adjustment cost model in (5) lies in the δ class of models around (3) if the average adjustment

cost as a percentage of consumption 1
N

∑
i ki,t/ptx

∗
i,t ≤ δ/2 in all periods t. The model of price

misperceptions in (7) lies in the δ class of models around (3) if the expected utility losses due

to misperceptions are less than δ —that is, if perceptions are not too inaccurate on average.

A δ class of models is more general than any of these specific models of behavior because

it does not generate a 1-1 mapping from prices to observed demand. A single model maps a

price path p = (p1, ..., pT ) to a single level of mean demand xt in each period. A δ class of

models instead maps a price path p to a set of mean demand levels in each period. Let

Xt(pt, δ) = {xt : φt ∈ Φδ}

denote the set of mean demands predicted by a δ class of models. When there is no heterogene-

ity in preferences and frictions across agents and over time (δi,t = δ, ai,t = a, Zi = Z ⇒ ui,t = u

for all i, t), the choice set can simply by written as the set of demands that yield utility within
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δ units of the optimum x∗(pt) = x∗i,t(pt):

X(pt, δ) = {x : u(x∗(pt))− u(x) ≤ δptx∗(pt)}

I focus on this special case with homogeneous preferences and frictions (omitting time and

agent subscripts) when illustrating the key results graphically. However, all the results below

are established formally in the general case with heterogeneity. Figure 1 illustrates the con-

struction of the choice set X(pt, δ) when δi,t = δ = 1% and ai,t = a = e3.5. The figure plots

u(xt) when ε = 1, log pt = 1, and Z/(T +1) = 100. The set of choices that yield utility within

δ = 1% of the optimum, X(pt, δ) = [10.2, 14], is shown by the red interval on the x axis.

Now consider how a price increase from pA to pB affects mean observed demand in a δ

class of models. Figure 2a illustrates the choice sets at the two prices, X(pA, δ) and X(pB, δ),

with the same homogeneous preference parameters as in Figure 1. The structural elasticity

ε controls the movement of the choice sets with the price p, as illustrated by the dashed blue

line. The black lines illustrate that various mean demand changes [log xB(pB) − log xA(pA)]

may be observed for a given value of ε. Each black line is generated by a different model. For

instance, the flat black line could be generated by a model with status quo bias or satisficing

consumers. Over-reaction could be observed in a model with adjustment costs, as discussed

above. One may even observe an increase in demand, for instance if the price increase reflects

a change in tax policy that raises tax rates but makes taxes less salient.

These examples show that optimization frictions destroy the 1-1 map from the observed

response to the structural elasticity in (4). Let the range of structural elasticities consistent

with a given observed elasticity ε̂ in a δ class of models be denoted by (εL(ε̂, δ), εU (ε̂, δ)).

The objective of this paper is to characterize εL and εU in terms of empirically estimable

parameters. The bounds (εL, εU ) measure the uncertainty in the structural elasticity due to

potential mis-specification of the behavioral model, much as a statistical confidence interval

measures the uncertainty in the parameter estimate due to sampling error. I focus on the range

of ε rather than other measures of dispersion because we typically lack a prior distribution

over the models within the δ class. A natural approach in such cases is to adopt a minimax

criterion, focusing on worst-case scenarios (Hansen and Sargent 2007).

12



3 Bounds on Price Elasticities

The characterization of the bounds proceeds in three steps. I first characterize Xt(pt, δ), the

set of mean observed demands at a price pt for a given value of ε. I then identify the set of

structural elasticities ε consistent with an observed elasticity ε̂. Finally, I present methods of

combining multiple observed elasticities to obtain more informative bounds on ε. Throughout,

I provide results only on identification of bounds on ε. I briefly discuss below how inference

about the bounds in finite samples can be handled using the techniques proposed in the recent

partial identification literature.

3.1 Bounds on the Choice Set

The following lemma analytically characterizes Xt(p, δ) for small δ using a quadratic approxi-

mation to utility ui,t(x).

Lemma 1. For small δ, the set of mean observed demands is approximately

Xt(pt, δ) = {xt : | log xt − log x∗t | < [2εδ]1/2} (11)

Proof. Taking a quadratic approximation to ui,t(x) = ui,t(e
log x) around log x∗i,t and exploiting

the first-order condition under the nominal model u′i,t(x
∗
i,t) = 0 yields

ui,t(x
∗
i,t)− ui,t(x) ' −1

2
(x∗i,t)

2u′′i,t(x
∗
i,t)(log x− log x∗i,t)

2 (12)

The definition of a δ class of models in (10) requires that

ui,t(x
∗
i,t)− ui,t(xi,t) ≤ δi,tptx∗i,t

⇒ | log xi,t − log x∗i,t| ≤ [−2δi,t
pt
x∗i,t

1

u′′i,t(x
∗
i,t)

]1/2 (13)

With the quasilinear utility specification in (2), u′′i,t =
∂2vi,t
∂x2 and the first order condition in the

nominal model for xi,t is
∂vi,t
∂x (x∗i,t(pt)) = pt. Implicitly differentiating this first order condition

yields

u′′i,t(x
∗
i,t)

dx∗i,t
dpt

= 1 (14)

Substituting (14) into (13) gives the following restriction on demand for each agent:

| log xi,t − log x∗i,t| ≤ [2εδi,t]
1/2
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To derive bounds on mean observed demand xt, use Jensen’s inequality to obtain:

| log xt − log x∗t | = |E log xi,t − E log x∗i,t| ≤ E[2εδi,t]
1/2 ≤ [2εEδi,t]1/2 = [2εδ]1/2

It follows that mean observed demand xt in a δ class of models satisfies

| log xt − log x∗t | ≤ [2εδ]1/2

Note that the approximation error in this equation vanishes as δ → 0 because the remainder

of the Taylor approximation in (12) involves higher-order terms.

Lemma 1 captures three intuitions. First, the width of the choice set, which is 2[2εδ]1/2

log units, shrinks at a square-root rate as δ goes to zero. The choice set therefore becomes

large relative to the degree of frictions as δ → 0:

lim
δ→0

log max(Xt(pt, δ))− log min(Xt(pt, δ))

δ
=∞

This result implies that even small optimization frictions δ can generate substantial variation

in observed behavior. For example, with a price elasticity of ε = 1 and δ = 1%, the choice

set extends approximately +/-14% around x∗(pt), as illustrated in Figure 1. The root-δ

shrinkage of the choice set is driven by the second-order losses of deviating from the maximum

of a smooth function (Akerlof and Yellen 1985, Mankiw 1985).

Second, equation (13) shows that the width of the choice set is inversely related to the

curvature of the objective function at the optimum, u′′i,t(x
∗
i,t). More curved utilities generate

a narrower choice set around the optimum because utility falls more sharply as one deviates

from the optimum. A very useful property of the model is that u′′i,t(x
∗
i,t) is pinned down by ε,

the structural parameter of interest. Highly curved utilities generate small elasticities because

the agent has a strong preference to locate near x∗i,t. For example, suppose the demand for

an essential medicine is perfectly price inelastic at a level x∗i,t. The price elasticity of demand

approaches zero as the curvature of the utility function approaches infinity —agents demand

the medicine at any price only if they lose infinite utility by not having it. Because the utility

costs of deviating from x∗i,t are infinitely large, the choice set Xt(pt, δ) collapses to the singleton

x∗t for any δ when ε = 0, as illustrated in Figure 2b. The choice set expands as ε rises. This

connection between ε and the curvature of utility is critical because it eliminates the need to

estimate the additional parameter u′′i,t(x
∗
i,t) when bounding ε.
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Finally, the set of mean observed demands depends only upon the mean level of frictions

δ, and not the distribution of δi,t in the population. Because each individual’s choice set is

proportional to [δi,t]
1/2, the potential difference between mean observed and optimal demand

is maximized when δi,t = δ for all i, t. Given that we do not place any restrictions on the

distribution of δi,t, the worst case of δi,t = δ determines the width of Xt(pt, δ).

3.2 Bounds on the Structural Elasticity

Figure 3a depicts the largest structural elasticity ε that could have generated an observed

elasticity ε̂. This elasticity εU generates the maximal shift in the choice sets consistent with

the observed change in demand. When ε = εU , mean observed demand lies at the bottom of

the choice set at price pA (log xA(pA) = log x∗A(pA) − (2εδ)1/2) and the top of the choice set

at price pB (log xB(pB) = log x∗B(pB) + (2εδ)1/2). The upper bound εU therefore satisfies the

condition

ε̂ = − log xB(pB)− log xA(pA)

log(pB)− log(pA)
= − log x∗B(pB)− log x∗A(pA) + 2(2εδ)1/2

log(pB)− log(pA)
= εU − 2

(2εUδ)
1/2

∆ log p
(15)

where ∆ log p = log(pB)− log(pA). Similarly, the lower bound structural elasticity εL consis-

tent with ε̂, illustrated in Figure 3b, is defined by the equation

ε̂ = εL + 2
(2εLδ)

1/2

∆ log p
(16)

The following proposition characterizes the solutions to (15) and (16).

Proposition 1. Under assumption A1, for small δ, the range of structural elasticities consis-

tent with an observed elasticity ε̂ is approximately (εL, εU ) where

εL = ε̂+
4δ

(∆ log p)2
(1− ρ) and εU = ε̂+

4δ

(∆ log p)2
(1 + ρ) (17)

with ρ = (1 +
1

2

ε̂

δ
(∆ log p)2)1/2 (18)

Proof. Equations (15) and (16) both reduce to the quadratic equation (ε̂ − ε)2 = 8εδ
(∆ log p)2 .

The upper and lower roots of this quadratic equation are the bounds.

Equation (17) maps the price change used for identification (∆ log p), the observed elasticity

ε̂, and the degree of frictions δ to bounds on the structural elasticity. Figure 4 plots the
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bounds (εL, εU ) vs. ε̂ for four combinations of δ and ∆ log p. The top two panels consider

δ = 1%, while the lower two panels consider δ = 0.5%. The left panels have a price change

of ∆ log p = 20%, while the right panels have ∆ log p = 40%. These bounds are computed

using the formula in Proposition 1, which relies on a quadratic approximation to utility. To

evaluate the quality of the approximation, I calculated the exact bounds with the utility in

(2) numerically for a range of values of ε̂ < 1, ∆ log p < 100%, and δ = 1%. In all cases, the

exact and approximate bounds differ by less than 0.001, indicating that the simple analytical

bounds in Proposition 1 are suffi ciently accurate for most applications.9

The bounds in Proposition 1 cannot be directly applied to finite sample estimates of ε̂.

When ε̂ is a finite-sample estimate, a 95% confidence set for ε can be obtained by computing

εL using the lower limit of the 90% confidence interval for ε̂ and εU using the upper limit of

the 90% confidence interval under certain regularity conditions (Imbens and Manski 2004).

Proposition 1 recovers information about a structural parameter of the true model (ε)

using estimates of a mis-specified nominal model that ignores frictions. This approach is

useful for three reasons. First, it permits identification of ε in standard adjustment cost

models without placing structure on the taste shocks ai,t, adjustment costs ki,t, or expectations

about price changes. Second, it permits identification of ε in environments where agents’

choices differ systematically from the predictions of the nominal model in ways that we are

unable to model. Finally, it extracts information about structural parameters of complex

dynamic models purely from reduced-form estimates of observed elasticities, which can often

be identified using transparent, quasi-experimental research designs.

Properties of the Bounds. The bounds offer some insights into what can be learned about

structural elasticities from reduced-form estimates of observed elasticities. First, larger price

changes are much more informative about ε because the bounds shrink at a quadratic rate

with ∆ log p. With a price change of 20%, an observed elasticity of ε̂ = 0.2 is consistent with

structural elasticities up to εU = 2.3. With ∆ log p = 40% and ε̂ = 0.2, εU = 0.85. The

reason for this rapid shrinkage is that the movement in the choice sets for a given value of ε

is larger when ∆ log p is larger, resulting in a narrower set of observed responses ε̂ consistent

with any given ε.

9Exact bounds can be computed numerically for any utility function by calculating choice sets and the
minimal and maximal shifts in these sets consistent with a given observed elasticity.
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Second, the bounds are asymmetric around the observed elasticity: εU − ε̂ > ε̂− εL. This

asymmetry is driven by the proportional relationship between the width of the choice sets and

ε, as shown in Lemma 1. Small structural elasticities are inconsistent with large observed

values of ε̂, making the lower bound relatively tight. Large structural elasticities generate

wide choice sets —because they imply a relatively flat utility function around the optimum —

and are consistent with many values of ε̂, making εU large. A related implication is that if ε

is small, there will be little dispersion in observed elasticities across studies, whereas a large ε

may lead to substantial variation in observed elasticities.

Third, the lower bound is strictly positive (εL > 0) whenever ε̂ > 0, irrespective of δ. If

ε = 0, the choice sets collapse to a single point x∗t (pA) = x∗t (pB) as shown in Lemma 1, and

one will therefore never observe positive values of ε̂. Agents intent on maintaining a fixed

value of x must face very large costs of deviating from the optimum and therefore will never

do so. The following corollary of Proposition 1 establishes this result.10

Corollary 1. Under assumption A1, if ε̂ > 0, the hypothesis that ε = 0 is rejected for any δ:

ε̂ > 0⇒ εL(ε̂, δ) > 0.

Proof. Follows directly from the expression for εL in (17), where the second term can be

shown to be strictly less than ε̂ for ε̂ > 0.

Finally, consider the converse case of a study that detects zero observed behavioral response

(ε̂ = 0).11 When ε̂ = 0, the bounds take a particularly simple form. The lower bound is

εL = 0. The upper bound can be conveniently expressed in terms of the utility cost of

ignoring the price change for an optimizing agent with time-invariant preferences. Consider a

hypothetical agent who has fixed tastes ai,t across periods A and B (ui,B(x) = ui,A(x) = ui(x))

and is initially at his nominal optimum x∗i (pA). Using a quadratic approximation analogous

to that in Lemma 1, this agent’s flow utility loss from failing to change demand to x∗i (pB) is

∆ui ≡ ui(x∗i (pB))− ui(x∗i (pA)) ' −1

2
u′′i (x

∗
i,A)(log x∗i,B − log x∗i,A)2(x∗i,A)2.

Using equation (14), for any ai, the utility loss from failing to reoptimize in response to a price

10The same reasoning implies that an estimate of ε̂ < 0 implies ε > 0, as one could never observe a negative
response if ε = 0. Note that negative structural elasticities (ε < 0) are ruled out by agent optimization.
11Among the feasible responses in a δ class of models, a zero response is perhaps the most likely outcome, as

it requires no adjustments or attention.
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change as a percentage of the original expenditure level is

∆u%(ε) =
∆ui

pAx∗i (pA)
=

1

2
ε(∆ log p)2 (19)

The utility loss ∆u%(ε) is an increasing function of the structural elasticity ε. The following

result shows that the upper bound on ε when ε̂ = 0 can be expressed in terms of ∆u%(εU ).

Corollary 2. Under assumption A1, when ε̂ = 0, the upper bound structural elasticity

εU (ε̂ = 0, δ) satisfies

∆u%(εU ) = 4δ (20)

Proof. When ε̂ = 0, (17) implies

εU = 8δ/(∆ log p)2. (21)

Combining (21) with (19) yields (20).

Corollary 2 provides a simple method of determining the range of structural elasticities

for which one can be sure to detect a behavioral response, analogous to a statistical power

calculation. Starting from the optimum, the percentage utility cost of ignoring a price change

given an elasticity of ε must exceed 4δ to guarantee an observed elasticity ε̂ > 0. The intuition

for the 4δ condition is illustrated in Figure 5 for a case with no heterogeneity across agents.

Let d = x∗A(pA) − min(XA(pA, δ)) denote the difference between the mean optimal demand

and the lowest mean demand in the initial choice set. Panel A shows that at the upper bound

εU , the difference between the optimal demands at the two prices is x∗(pA) − x∗(pB) = 2d.

By definition, the percentage utility cost of choosing min(XA(pA, δ)) instead of x∗(pA) is δ.

Given that the utility cost of deviating by d units is δ, the utility cost of deviating by 2d units

is 4δ, as illustrated in Panel B. The 4δ condition is obtained because the cost of deviating

from the optimum rises at a quadratic rate.

Equation (21) shows that εU shrinks at a quadratic rate with ∆ log p but only a linear rate

with δ when ε̂ = 0, as can be seen in Figure 4. Studying a price change that is twice as large

yields more information about ε even if frictions are also twice as large, underscoring the value

of placing greater weight on large treatments for identification.
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3.3 Combining Multiple Observed Elasticities

One can obtain more information about the structural elasticity by combining multiple ob-

served elasticities. Suppose we have a set of observed elasticities {ε̂1, ..., ε̂J} from J empirical

studies. Let ∆ log pj denote the size of the price change used to identify observed elasticity j.

Let εjL and ε
j
U denote the lower and upper bounds implied by study j, derived using Propo-

sition 1. Let εmax
L = max(εjL) denote the largest lower bound and εmin

U = min(εjU ) denote the

least upper bound. Then it follows that ε ∈ (εmax
L , εmin

U ).

Inference for the unified bounds (εmax
L , εmin

U ) can be handled using the techniques pro-

posed by Chernozhukov, Hong, and Tamer (2007). Constructing a 95% coverage region for

(εmax
L , εmin

U ) is more diffi cult than constructing a confidence interval for bounds from a single

study because of an order statistics problem. Intuitively, a confidence interval constructed

only from the estimates of the studies that deliver εmax
L and εmin

L is too narrow because these

studies may have obtained large or small elasticities purely due to sampling error.

By calculating (εmax
L , εmin

U ) as a function of δ, one can assess how sensitive estimates of ε

are to frictions. One value of special interest is the smallest δ that reconciles the observed

elasticities, δmin. When δ = δmin, the structural elasticity ε is point identified. To characterize

this minimum-δ value of ε, let study 1 denote the study with the least upper bound when

δ = δmin and study 2 that with the highest lower bound, i.e. ε1
U (δmin) = εmin

U (δmin) and

ε2
L(δmin) = εmax

L (δmin). The minimum-δ estimate of ε satisfies

ε = ε1
U (δmin) = ε2

L(δmin).

Using the definitions of εU and εL in (15) and (16) and solving these two equations for δmin

and ε yields the following estimator under assumption A1:

εδ-min =
∆ log p1

∆ log p1 + ∆ log p2
ε̂1 +

∆ log p2

∆ log p1 + ∆ log p2
ε̂2 (22)

The minimum-δ estimate is a weighted average of observed elasticities from the pivotal studies.

Studies identified from larger price changes receive more weight in this estimator both because

they are more likely to be pivotal and because (22) places greater weight on the pivotal study

that is identified from the larger price change. An advantage of this estimator for ε relative

to calculating unified bounds is that it does not require exogenous specification of δ. This

approach is attractive when deviations from the nominal model are known to be small and one
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therefore aims to identify the structural elasticity for the smallest level of frictions consistent

with the data.

The value δmin is itself of interest because it can be used to formalize the notion of “econom-

ically significant”differences that is used loosely in the existing literature. A small δmin shows

that small frictions can explain the differences across estimates, implying that modifications

in the fundamental economic model are not necessary to reconcile the evidence. Economically

significant differences in estimates require large δmin to be reconciled. In analogy with the

standard practice of reporting the statistical significance of differences between estimates, re-

porting the δmin required to reconcile estimates may be a useful way to quantify the economic

significance of a new finding.

In applications with large δ and uninformative unified bounds, one can obtain sharper

identification of ε by imposing parametric assumptions on how frictions affect behavior. As

an illustration, in Appendix A, I consider the assumption that the difference between mean

observed and optimal demand is independently distributed across periods and has zero mean.

Under this assumption, it is straightforward to establish that for any δ, the best (minimum-

variance) linear unbiased estimate of ε is εBLUE =
∑

j(∆ log pj)
2ε̂j/

∑
j(∆ log pj)

2. In future

work, it would be useful to identify other restrictions implied by models with frictions in order

to obtain sharper identification of ε.

4 Application: Labor Supply and Taxation

The wage (or net-of-tax) elasticity of labor supply is a parameter of central interest for tax

policy analysis and macroeconomic models. A large literature in labor economics, macroeco-

nomics, and public finance estimates this elasticity using historical variation in tax rates in the

United States and other developed countries. This section applies the methodology developed

above to explain a set of puzzles in this literature and identifies bounds on the labor supply

elasticity using estimates from existing studies.

The labor supply literature estimates many different types of elasticities. I focus primarily

on the intensive margin elasticity —the effect of tax changes on hours of work or earnings for

those who are already in the labor force. I analyze extensive margin elasticities in section 4.2,

showing that the bounds on extensive margin elasticities are an order of magnitude tighter
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than those on intensive margin elasticities. I restrict attention to studies that estimate

Hicksian (income-constant) elasticities, but discuss the implications of the analysis for the

Frisch elasticity in section 4.4. Finally, the literature measures “labor supply” in different

ways. Traditional studies measure hours worked, but modern studies focus on taxable income

(Feldstein 1995, Saez, Slemrod, and Giertz 2009). Taxable income elasticities may be larger

than labor supply elasticities because they incorporate changes in reporting and avoidance

behavior as well as changes in work effort (Slemrod 1995). I analyze a model where the hours

and taxable income elasticities are the same, and pool estimates from both types of studies to

bound the structural labor supply elasticity in this model.

4.1 Nominal Labor Supply Model

I begin by adapting the demand model above to labor-leisure choice. Consider a lifecycle

model in which agents choose consumption (ct) and hours of work (lt) to solve

max

T∑
t=0

vt(ct, lt) s.t.
T∑
t=0

[Yi,t + (1− τ t)wlt − ct] = 0 (23)

where τ t denotes the tax rate in period t, w denotes the wage rate, and Yi,t denotes unearned

(non-wage) income.12 Assume that the flow utility function is quasilinear and iso-elastic:

vi,t(ct, lt) = ct − ai,t
l
1+1/ε
t

1 + 1/ε
(24)

The optimal level of hours is l∗i,t =
(

(1−τ t)w
ai,t

)ε
, or equivalently,

log l∗i,t = αi,t + ε log(1− τ t)w (25)

where αi,t = −ε log ai,t. Let log l∗t = E log l∗i,t denote the mean level of (log) labor supply in

period t. Under the orthogonality assumption A1, the structural preference parameter ε is

identified by the hours response to a change in tax rate from τA to τB:

ε =
log l∗B − log l∗A

log(1− τB)− log(1− τA)

Earnings (or taxable income) are given by wl∗t . In this one-dimensional model of labor

supply, the hours elasticity ε is equal to the taxable income elasticity: ε =
logwl∗B−logwl∗A

log(1−τB)−log(1−τA) .

12 I assume that w is constant to simplify notation. Variation in w across individuals and time is isomorphic
to variation in ai,t and does not affect the results below.
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I shall therefore refer to ε simply as the structural labor supply elasticity. Identifying ε is

important for designing optimal income tax policies (e.g. Saez 2001), predicting steady state

effects of taxation on output and revenue (e.g. Trabandt and Uhlig 2009), and calibrating

macroeconomic models (e.g. Prescott 2004).

Let agent i’s observed level of labor supply in period t be denoted by li,t and define mean

observed labor supply as log lt = E log li,t . The observed labor supply elasticity is

ε̂ =
log lB(τB)− log lA(τA)

log(1− τB)− log(1− τA)
.

There are many frictions that may make ε̂ differ from ε, including costs of switching jobs (e.g.

Altonji and Paxson 1992), costs of switching consumption plans (Del Boca and Lusardi 2003),

inertia (Jones 2008), and inattention (Chetty and Saez 2009). However, virtually none of the

existing studies that estimate labor supply elasticities account for such frictions. The methods

developed above are therefore well suited to extracting the information these studies contain

about ε.

Let ui,t(l) = (1−τ t)wl−ai l
1+1/ε

1+1/ε denote flow utility in period t as a function of labor supply.

I define a δ class of models around the nominal model in (23) by requiring that agents’average

flow utility loss is less than δ percent of consumption c∗i,t(τ t) = (1− τ t)wl∗i,t in every period t:

ui,t(l
∗
i,t)− ui,t(li,t) ≤ δi,tc∗i,t ∀i with

∑
i δi,t/N ≤ δ (26)

In this model, Proposition 1 can be immediately applied to obtain bounds on ε, with ∆ log p =

∆ log(1−τ) and δ measuring frictions in choosing labor supply as a percentage of consumption.

4.2 Costs of Ignoring Tax Changes: A Synthesis of Micro Evidence

Before calculating bounds on ε, I show that frictions can explain several divergent findings in

the labor supply literature. Motivated by Corollary 2, I calculate the utility costs of ignoring

the tax changes used for identification in the microeconometric literature. I find that observed

elasticities are large when the utility costs of ignoring tax changes are large, suggesting that

frictions could explain the variation in observed elasticities.

Calculating Utility Costs: Methodology. Corollary 2 shows that the utility cost relevant for

calculating bounds on ε is for an agent with time-invariant preferences. Therefore, I assume

that agents’ tastes are time-invariant (ai,t = ai) throughout this subsection. To calculate
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the utility costs of ignoring changes in a progressive income tax system, let Tt(wl) denote an

agent’s tax liability as a function of his taxable income in year t. An agent with taste ai has

flow utility ui(l;Tt) = wl−Tt(wl)−ai l
1+1/ε

1+1/ε . I consider tax changes over a three year interval,

following the convention in the literature (Gruber and Saez 2002). The utility loss in dollars

from ignoring the tax changes that occur between years t− 3 and t for an individual who sets

labor supply at the optimum in year t− 3 is:13

∆ui,t = ui(l
∗
i,t;Tt)− ui(l∗i,t−3;Tt) (27)

I calculate tax rates Tt(wl) using the NBER TAXSIM calculator, including both employer

and employee payroll taxes but ignoring state taxes. I consider a single tax filer with two

children who has only labor income and no deductions other than those for children. I adjust

for inflation in the wage w using the CPI over the relevant three-year period. Under these

assumptions, I numerically calculate l∗i,t and ∆ui,t for various values of ai and years t with a

structural elasticity of ε = 0.5, the midpoint of the bounds calculated in the next section. I

also compute ∆ui,t,% = ∆ui,t/c
∗
i,t−3, the utility loss from failing to reoptimize as a percentage

of pre-reform consumption, which corresponds to the measure used in Corollary 2.14

A small complication in using Corollary 2 to evaluate whether frictions could produce zero

observed elasticities is that it only applies to linear budget sets. For individuals who are at an

interior optimum both before and after the tax change, Corollary 2 still holds. In particular, a

tax change could produce an observed elasticity ε̂ = 0 if the level of frictions δ > ∆ui,t,%(ε)/4.

For individuals who optimally locate at kinks between tax brackets, the tangency conditions

used to derive Corollary 2 do not hold. However, even for those who would choose kinks, it

is easy to see that a tax change could produce ε̂ = 0 if δ > ∆ui,t,%(ε). Hence, the utility cost

of ignoring tax changes remains useful for assessing which reforms will generate behavioral

responses even with a progressive tax system.

I now calculate the utility costs of ignoring some of the major tax reforms studied in

13To be clear, the results below do not assume that all agents are at the optimum in the base year; they only
require that choices in the base year lie within a δ class of models. I calculate utility costs for agents who start
at the optimum in year t because this calculation tells us whether ε̂ = 0 is consistent with a given structural
elasticity (Corollary 2).
14A stata program TAXCOST.ado that calculates the utility cost of ignoring tax reforms has been posted on

the NBER server. TAXCOST takes exactly the same inputs as TAXSIM. By running TAXCOST instead of
TAXSIM, researchers can calculate the utility costs of ignoring the tax changes they are using for identification.
See http://obs.rc.fas.harvard.edu/chetty/taxcost.html for further information.
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the empirical literature. Each reform highlights a different set of stylized facts that can be

explained by frictions.

Tax Reform Act of 1986: Low vs. High Incomes. Figure 6 evaluates the costs of ignoring

the Tax Reform Act of 1986 (TRA86), one of the largest reforms in the U.S. tax code and the

focus of many empirical studies. Panel A shows the marginal tax rate schedules in 1985 (thick

red line) and 1988 (thin blue line). The dashed blue line, which is replicated in all the panels

as a reference, shows the percentage change in the marginal net-of-tax rate (NTR). TRA86

increased the NTR by 15-20% for those with incomes below $100,000 and by nearly 40% for

those with incomes close to $200,000.

Panel B plots the utility cost (measured in dollars) of ignoring the tax change (∆ui) vs.

base year taxable income.15 For instance, an individual whose taste parameter ai placed

him at an optimal taxable income of $100,000 prior to TRA86 would lose $1,000 by failing to

reoptimize labor supply in response to the change in the tax code. Panel C plots the cost

of ignoring the tax reform as a percentage of consumption, ∆ui,%. Most individuals earning

less than $100,000 lose less than 1% of consumption by ignoring TRA86 when choosing labor

supply in 1988 with ε = 0.5. These small utility losses reflect the second-order costs of

deviating from an optimum and are consistent with the formula in (19), which predicts that

∆u% = 1
2ε · (0.2)2 = 1% for a 20% change in the NTR. These calculations imply that frictions

of δ < 1% could lead to an observed elasticity of ε̂ = 0 even if the underlying structural

elasticity is ε = 0.5.

Finally, Panel D plots the change in taxable income (wl∗i,t+3−wl∗i,t) required to reoptimize

relative to TRA86. With ε = 0.5, a taxpayer earning $100,000 prior to the reform would

have to increase his pre-tax earnings by $13,000 in order to reach his new optimum. This

substantial change would yield a utility gain (net of the disutility of added labor) of only

$1,000. Given that the search costs of finding additional work that pays an extra $13,000

could well exceed $1,000, it is plausible that many individuals would not respond to TRA86

within a three-year horizon. This could explain why empirical studies of TRA86 find little or

no change in earnings for low and middle income wage earners between 1985 and 1988 (e.g.

Gruber and Saez 2002, Saez 2004).16

15Values at non-convex kinks in the base year are interpolated to obtain a continuous curve. Since no
individual would optimally locate at a non-convex kink, the utility cost is undefined at these points.
16The total lifetime gain from reoptimizing labor supply is much larger because the agent gains $1,000 every
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The costs of ignoring TRA86 are considerably larger for high income earners. An individual

earning $200,000 in 1985 would lose $4,500 per year (4% of consumption) by ignoring the tax

reform. High income individuals gain a lot more from reoptimizing both because the dollars

at stake rise with income and because the change in tax rates was larger for high incomes.

This is consistent with the much larger elasticities observed for high income earners in studies

of TRA86 (e.g. Auten and Carroll 1999, Saez 2004).17

EITC Expansions: Intensive vs. Extensive Margin. Figure 7 considers another important

episode in U.S. tax policy —the expansion of the Earned Income Tax Credit under the Clinton

administration. Panel A shows that between 1993 and 1996, net-of-tax wage rates rose by

20% for single tax filers with two children earning below $10,000 as the phase-in subsidy was

increased. In contrast, net-of-tax wages fell by roughly 15% for those with incomes between

$15,000 and $30,000 because of the increase in the phase-out tax rate.

Panel B, which is analogous to Figure 6c, shows that most individuals lose less than 2%

of consumption by ignoring the EITC expansions entirely. Corollary 2 therefore implies an

observed response of ε̂ = 0 would be consistent with ε = 0.5 if one permits δ = 1% frictions in

reoptimizing labor supply. Correspondingly, most studies find virtually no changes in labor

supply in response to EITC expansions for individuals on the intensive margin (Meyer and

Rosenbaum 2001, Hotz and Scholz 2003, Eissa and Hoynes 2006). The same empirical studies,

however, do find a substantial response on the extensive margin: labor force participation rates

for single women with children surged as a result of the EITC expansion. I now show that

this difference between observed extensive and intensive margin elasticities can be explained

by frictions.

I begin by introducing fixed costs into the nominal linear tax model in (23) to generate

an extensive margin. Suppose that an individual must pay a fixed cost k to enter the labor

force. Let ui(l) = (1− τ t)wl − ai l
1+1/ε

1+1/ε − k · [l > 0] denote the utility obtained from choosing

l units of labor supply, and let l∗i (τ t) denote the optimal labor supply choice. Letting l̃i(τ t)

year. The key point here is that because the flow utility gains are relatively small, many agents may delay
adjustment until a period where frictions (e.g. job switching costs) are lower. Thus, micro studies might not
detect much change in labor supply between 1985 and 1988 even if TRA86 induced individuals to reoptimize
in the long run.
17High income individuals may also be more responsive because they have lower adjustment costs or higher

structural elasticities. The analysis here is not intended to rule out these other explanations. It merely shows
that the simple model in (23) with a constant elasticity ε across individuals can explain the data if one permits
small frictions. One does not necessarily need more complex models to explain the evidence available to date.
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denote the optimal labor supply choice conditional on working, individuals with ai such that

ui(l̃i(τ t)) = (1− τ t)wl̃i(τ t)− ai
(l̃i(τ t))

1+1/ε

1 + 1/ε
− k < 0 (28)

will not work in period t. This condition implicitly defines a threshold a(τ t) such that

individuals with disutility of labor ai > a(τ t) set l∗i (τ t) = 0. Let the distribution of ai in

the population be given by a smooth cdf F (ai) with positive support for all ai > 0. Let

θ∗(τ t) = F (a(τ t)) denote the optimal labor force participation rate and θt(τ t) denote the

observed labor force participation rate. The structural extensive margin labor supply elasticity

for a tax change from τA to τB is

εext(τA, τB) ≡ log θ∗(τB)− log θ∗(τA)

log(1− τB)− log(1− τA)
' f(a(τA))a

F (a(τA))

d log a

d log(1− τ t)

The corresponding observed extensive margin elasticity is ε̂ext(τA, τB) ≡ log θ(τB)−log θ(τA)
log(1−τB)−log(1−τA) .

Note that the structural intensive and extensive margin elasticities are independent parame-

ters: the structural primitive that controls the intensive-margin elasticity is ε, whereas εext

depends on the taste distribution (F ). Because the density f(a(τA)) varies with the tax rate,

εext(τA, τB) varies with tax rates.

Now consider the utility costs of ignoring tax changes in this augmented model with fixed

costs. For agents with l∗i (τB) > 0, the utility cost of ignoring a tax cut to τB < τA depends

upon whether they were in the labor force before the tax change:

∆ui = {ui(l̃i(τB); τB)− ui(l̃i(τA); τB)}+ I[l∗i (τA) = 0]ui(l̃i(τA); τB) (29)

' 1

2
(

∆τ

1− τA
)2c̃i,Aε+ I[l∗i (τA) = 0](

−∆τ

1− τA
c̃i,A + ui(l̃i(τA); τA)) (30)

where the first term in the second line uses a quadratic approximation similar to that in

Corollary 2. To convert this measure into percentage units, I normalize ∆ui by optimal

consumption when working, c̃i,A:

∆ui,% ≡
∆ui
c̃i,A

=
1

2
(

∆τ

1− τA
)2ε+ I[l∗i (τA) = 0](

−∆τ

1− τA
+
ui(l̃i(τA); τA)

c̃i,A
) (31)

The first term in this expression, ∆ui,int,% = 1
2( ∆τ

1−τA )2ε, reflects the loss from working l̃i(τA)

hours instead of l̃i(τB) hours. This expression is equivalent to that obtained in the pure

intensive margin model in (23). The second term, ∆ui,ext,% = − ∆τ
1−τA + ui(l̃i(τA);τA)

c̃i,A
, arises

only for agents who were not working prior to the tax cut. This term reflects the utility loss
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from failing to reoptimize on the extensive margin — that is, from failing to enter the labor

force.

The extensive margin utility loss ∆ui,ext,% is linear in ∆τ whereas the intensive margin

utility loss ∆ui,int,% is proportional to (∆τ)2. As a result, some agents on the extensive

margin can bear very large utility costs from ignoring tax cuts (or increases). For instance,

for the agent who has ui(l̃i(τA); τA)) = 0 and is just on the margin of entering the labor force

at tax rate τA, the utility cost of ignoring a 10% increase in his net-of-tax wage is 10% of

consumption if he were initially not working. However, the cost of ignoring the same tax cut

would be only 0.25% if he were initially working l̃i(τA) hours with ε = 0.5. The reason for

this 40-fold difference is that agents on the extensive margin are not near their post-reform

optimum to begin with. The first-order gains from a tax cut (e.g. a larger EITC refund) are

automatically obtained on the intensive margin even if a worker does not change his hours.

But non-workers get the first-order benefits of the tax cut only if they reoptimize and start to

work.

Because of the first-order utility costs, the range of structural elasticities consistent with

zero observed response is much smaller on the extensive margin. To see this, let δ denote

the degree of frictions permitted as a fraction of consumption c̃i,A for all agents, so that each

agent’s labor supply choice li,t satisfies u(l∗i,t) − u(li,t) < δc̃i,A.18 Consider an agent with ai

such that ui(l̃i(τA);τA)
c̃i,A

= −δ, so that he falls just outside his choice set by working at the initial

tax rate τA. To observe ε̂ext = 0, this agent must remain within his choice set in period B

without entering the labor force. This requires that his percentage utility cost from ignoring

the tax change is less than δ:

∆ui,ext,% = − ∆τ

1− τA
+
ui(l̃i(τA); τA)

c̃i,A
< δ

⇒ − ∆τ

1− τA
< 2δ (32)

This result is the analog of Corollary 2 for the extensive margin. If the percentage change

in the net-of-tax rate exceeds 2δ, we must see ε̂ext > 0. A 20% change in the net-of-tax wage

18Heterogeneity in δi,t across agents does not affect the result in (32) provided that Eδi,t|ai < δ for each
ai to ensure that the choice set has the same width for the marginal agents at each level of the tax rate τ t.
This condition was not necessary in the intensive margin case because the marginal agent did not vary with τ t
there. Allowing the choice set to vary in width with c̃i,t, so that u(l∗i,t)−u(li,t) < δc̃i,t complicates the algebra
significantly but simply changes the condition in (32) to − ∆τ

1−τB
< 2δ.
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would produce no behavioral response on the extensive margin only with frictions of δ > 10%

of consumption. In contrast, Corollary 2 shows that a 20% change in the net-of-tax wage

could produce ε̂ = 0 on the intensive margin with a structural elasticity of ε = 0.5 even if

δ = 0.25% of consumption.

Equation (32) can be restated as requiring that ∆ui,ext,% < δ for the agent who has

ui(l̃i(τA); τA)) = 0 and is just on the margin of entering the labor force at tax rate τA.

Hence, the utility cost of ignoring tax changes again sheds light on whether they will generate

behavioral responses in an environment with frictions.19 Motivated by this result, Panels

C and D of Figure 7 plot the costs of ignoring the Clinton EITC expansion for agents on

the extensive margin. The x axis of these figures is the taxable income that the individual

would optimally earn (wl̃i(τ1993)) were he to work prior to the EITC expansion. On the

extensive margin, the relevant tax rates are average rather than marginal tax rates. Panel

C therefore plots the average tax rate vs. income prior to the EITC expansion and after the

EITC expansion. The blue curve shows that individuals earning less than $10,000 experienced

a 20% increase in their net-of-tax earnings as a result of this reform.

Panel D shows the utility cost of ignoring the EITC expansion for individuals on the margin

of entering the labor force at various income levels in 1993. The figure plots the difference

in utility between choosing labor supply optimally in 1996 and remaining out of the labor

force in 1996 for individuals indifferent between working and not working in 1993.20 The

denominator used to calculate the percentage utility cost is the consumption level if the agent

works in 1993, as in (31). For a marginal individual who would earn $10,000 when working

in 1993, the gain from entering the labor force in response to the Clinton EITC expansion

exceeds 20% of consumption ($2,000). The intuition is straightforward: this individual would

not have gotten the extra $2,000 EITC refund if he had stayed out of the labor force. The

utility cost exceeds the change in the net-of-tax rate because it incorporates both the extensive

(∆ui,ext,%) and intensive margin utility costs (∆ui,int,%).

Because the utility losses from ignoring tax changes are so large for agents on the extensive

margin, small tax changes are likely to induce rapid changes in labor force participation even

19The critical threshold is δ instead of 4δ as on the intensive margin because the utility losses from ignoring
price changes are first-order on the extensive margin.
20For each income level shown on the x axis, I find the taste parameter ai that would make that earnings

level optimal in 1993. I then choose a fixed cost k so that this individual’s net utility from working in 1993 zero,
placing him on the extensive margin. The figure plots the net utility from working in 1996 for such agents.
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with frictions. Hence, small frictions can explain why microeconometric studies of short-run

responses have consistently found much larger labor supply elasticities on the extensive margin

than the intensive margin (Pencavel 1986, Blundell and MaCurdy 1999).

Tax Reforms from 1970-2006. Figure 8 extends the analysis of tax reforms to cover all

tax changes from 1970-2006. I compute the percentage utility loss (∆u%) from ignoring tax

changes at the 20th, 50th, and 99.5th percentile of the household income distribution. The

value plotted for year t is the percentage utility cost of choosing the level of labor supply

that was optimal given the tax system in year t − 3.21 Panel A shows that on the intensive

margin, there is no tax change since 1970 for which the utility cost of failing to reoptimize

exceeds 1% of consumption for the median individual. The utility costs of ignoring tax reforms

are substantial only for the top 1% of income earners around TRA86. Correspondingly, the

largest observed elasticities in the historical time series are for top incomes around TRA86;

for other groups, intensive margin elasticities are near zero (Saez 2004). Panel B shows

that in contrast, there are several tax changes that would generate utility losses of 5-10% of

consumption if ignored on the extensive margin.22 The utility costs are particularly large

for individuals who earn low incomes when working, consistent with the literature finding the

largest extensive margin responses for this group.

While the flow utility costs of ignoring the tax changes that have occurred over the past

four decades in the U.S. are small on the intensive margin, the utility costs of ignoring taxes

in steady state are large. For example, the utility cost of ignoring a marginal tax rate of

τ = 40% and working l∗(τ = 0) hours is approximately 1
2 ·

1
2 · (0.4)2 = 4% of consumption

per year when ε = 0.5. This calculation underscores the point that short-run responses to

tax reforms in the U.S. may not be very informative about how the tax system affects labor

supply on the intensive margin in steady state.

Bunching at Kinks and Non-Linear Budget Set Models. A basic challenge in estimating

non-linear budget set models of labor supply (e.g. Hausman 1985, Blomquist and Newey 2002)

is that they predict far more bunching at kinks in the tax schedule than what is observed

in practice. This is illustrated in Figure 9, which plots the income tax schedule in 2006

21For the extensive margin calculations, I assume that the marginal worker is in the labor force in cases where
the average tax rates rises over the three years and out of the labor force for cases where it falls. This is the
relevant calculation to determine the utility costs of failing to reoptimize on the extensive margin.
22 I exclude the 99.5 percentile from this figure for scaling reasons and because few individuals enter the labor

force at the 99.5 percentile of the income distribution.
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(dashed blue line) for a single filer with two children. The solid grey curve shows the income

distribution predicted by the frictionless model in (23) when ε = 0.5 and tastes ai are uniformly

distributed. The frictionless model predicts sharp spikes at each kink in a kernel density plot

of the income distribution.23 However, empirical income distributions for wage earners exhibit

no such bunching at kinks (Saez 2002, 2009). The lack of bunching leads to the rejection of

NLBS models, and has forced researchers to adopt various ad hoc solutions, such as smoothing

the budget set to remove kinks or restricting the compensated elasticity to be positive (e.g.

MaCurdy et al. 1990, Ziliak and Kniesner 1998).

Optimization frictions provide a simple explanation for why individuals do not bunch at

kinks: the utility losses from ignoring kinks are very small for most individuals. The number

next to each convex kink in Figure 9 shows the utility gain (as a percentage of consumption)

from locating at that kink point relative to optimizing under the incorrect assumption that

the rate in the previous bracket continues into the next bracket.24 The utility losses are

around 1% of consumption even at kinks that are predicted to produce large spikes in the

income distribution. Hence, introducing small frictions in choosing l could generate income

distributions that exhibit no bunching at kinks, a conjecture that is verified by simulations

in Chetty et al. (2009). More generally, introducing optimization errors — by permitting

agents to deviate systematically from their frictionless optima provided that the utility losses

fall below some threshold —could provide a more disciplined and widely applicable method of

estimating NLBS models.

Saez (2009) documents that the one kink at which there is bunching is the first kink in the

tax schedule, generated by the end of the phase-in region of the EITC. The bunching at this

kink is driven entirely by individuals who report self-employment income, which audit stud-

ies indicate is frequently misreported on tax returns because of the lack of double reporting.

Unlike changes in hours of work, misreporting generates a first-order utility gain because it

transfers resources from the government to the taxpayer. The large utility gains from misre-

porting taxable income could explain why the self-employed bunch at this kink. Interestingly,

Saez finds no bunching at the second kink of the EITC schedule (where the phase-out region

23Adding noise to the income process can make the spikes (which arise from point masses) more diffuse, but
plausible levels of noise do not eliminate bunching in the frictionless model (Saez 2002).
24There are many values of ai that can induce individuals to locate at each kink. The numbers in the figure

are (unweighted) mean percentage losses for agents who would optimally locate at the kink.
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begins) even for the self-employed. The first kink in the EITC schedule maximizes the size of

the EITC refund while minimizing payroll tax liabilities. There is no reason to locate at the

second kink if bunching is driven by the first-order gains from income manipulation.

Other Findings. In addition to the results described above —(1) larger observed elasticities

for top incomes, (2) larger extensive margin elasticities, (3) rejection of NLBS models and no

bunching at kinks for wage earners in the U.S., and (4) bunching at kinks for the self-employed

—frictions can also explain the following findings:

(5) Notches in budget sets, where a $1 change in earnings leads to a discontinuous jump

in consumption, generate substantial behavioral responses. For example, income cutoffs to

qualify for Medicaid (Yelowitz 1995) and social security benefits in some pension systems

(Gruber and Wise 1999) induce sharp reductions in labor supply. To calculate the utility

cost of ignoring a notch, suppose that earning wlt > K leads to a penalty of P . Then the

utility cost of setting lt > K/w for an individual with l∗t ≤ K/w is ∆u > P . Because the

utility cost of ignoring a notch increases at a first-order rate with the size of the penalty P ,

eligibility cutoffs for large transfer programs will affect observed behavior substantially even

with frictions.

(6) Elasticities are historically larger for secondary earners than primary earners, but have

converged over time (Eissa and Hoynes 2004, Blau and Kahn 2007). The utility cost calcula-

tions above indicate that small variations in frictions could explain the differences in observed

elasticities across primary and secondary earners even if they have the same structural elastic-

ity. For instance, primary earners hold full-time jobs that tend to have rigid schedules (e.g.

manufacturing jobs) while secondary earners traditionally held more flexible, part-time jobs.

As secondary earners take up full-time jobs similar to those of primary earners, their observed

elasticities shrink, even though the preferences of men and women (ε) may be constant and

identical.25

(7) Chetty and Saez (2009) show that providing information about the tax code amplifies

observed responses. If information reduces optimization frictions, it may amplify observed

behavioral responses for a given structural elasticity ε.

25Recent studies have called for lower tax rates on women because they are more elastic (Alesina et al. 2007,
Kleven et al. 2009). If the differences in observed elasticities are due to frictions rather than tastes, taxes
may distort the behavior of men as much as women in the long run, and there is no effi ciency rationale for
gender-based taxation.
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(8) Using Danish data, Chetty et al. (2009) document that larger tax changes generate

larger observed elasticties. The analysis here shows that larger tax changes are much less

likely to generate ε̂ = 0, consistent with this finding.

4.3 Bounds on the Labor Supply Elasticity

Having shown that frictions provide a useful method of synthesizing the findings in the labor

supply literature, I now calculate the bounds on the intensive margin elasticity implied by

twenty representative studies. One should keep three caveats in mind when interpreting

the results of this exercise. First, I assume a common structural elasticity across all the

studies, ignoring potential variation in preferences across income levels, demographic groups,

or countries. Second, I take the estimates of each study at face value by assuming that

they provide unbiased estimates of observed elasticities. Econometric issues such as omitted

variables, mean reversion, and endogeneity of tax variation across countries may bias some of

the elasticity estimates (Saez, Slemrod, and Giertz 2009). Any such biases would pass through

to the bounds. Finally, I do not correct the bounds for the non-linearities in agents’budget

sets created by the progressive tax system. Instead, I assume that agents face a linear budget

set whose slope is given by their marginal tax rate (MTR) and apply Proposition 1 using

∆ log(1−MTR) in place of ∆ log p. With quasilinear utility, this simple approach produces

valid bounds on ε for agents who remain in the interior of budget segments. However, the

bounds cannot be directly applied to agents who locate at kinks. Given that most of the

modern labor supply literature estimates elasticities from changes in the behavior of agents

away from kinks, this problem is unlikely to affect the bounds calculated below significantly.26

Table 1 lists the studies, divided into four groups based on methodological approach: (A)

studies that use hours to measure labor supply; (B) studies that use taxable income to measure

labor supply and focus on workers in the middle of the income distribution; (C) studies that

use taxable income but focus exclusively on top income earners; and (D) macroeconomic

studies that rely on cross-country comparisons or long-term trends for identification of hours

26Recent studies that identify near-zero observed elasticities from bunching at kinks (e.g. Saez 2009, Chetty
et al. 2009) are an exception. I incorporate these studies into the linear-demand framework by exploiting the
fact that they also study movements in the kinks over time, which create reductions in marginal rates for the
subgroup of individuals located between the old and new bracket cutoffs. The results of these studies imply
that these individuals do not increase labor supply significantly when their marginal tax rates are lowered.
This constitutes an observed elasticity estimate based on choices at interior optima, permitting application of
Proposition 1.
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elasticities. The table lists the point estimate and standard error of the observed elasticity from

the authors’preferred specification and the change in the net-of-tax rate used for identification.

To calculate ∆ log(1−MTR), I either use the reported percentage change in the net-of-tax rate

for the “treatment”group in the study or calculate it based on the variation in marginal tax

rates in the authors’sample. Details on the calculations and sources for each study are given

in Appendix B.

The observed elasticity estimates vary substantially across the four categories. Micro-

econometric studies of the full population almost uniformly find very small elasticities: the

mean observed hours elasticity among the studies considered in the table is 0.17 and the mean

observed taxable income elasticity is 0.08. Interestingly, the largest observed elasticity in each

of these two groups is obtained from the study that focuses on the largest change in tax policy:

the abolition of the income tax for a year in Iceland (Bianchi, Gudmundson, and Zoega 2001)

and a Swedish tax reform in 1991 termed the “tax reform of the century”(Gelber 2009). This

pattern is consistent with the view that frictions are less likely to attenuate short-run responses

to very large price changes. Studies of top income earners find much larger elasticities, with

a mean of 0.85. Macroeconomic studies also find large elasticities, with a mean of 0.71. Note

that the differences in point estimates of observed elasticities across the studies cannot be

explained by statistical imprecision. The upper limits of the 95% confidence intervals for ε̂

for the studies in groups A and B are virtually all below the lower limits of the 95% confidence

intervals for ε̂ for the studies in groups C and D.

Columns 6-7 of Table 1 show the bounds (εL, εU ) implied by each study’s point estimate of

the observed elasticity with frictions in choosing labor supply of δ = 1% of consumption. The

bounds are calculated using the formula in (17). The width of the bounds varies tremendously

with the size of the variation used for identification. Traditional studies in the labor economics

literature produce very wide bounds because they pool relatively small variation in wage and

tax rates for identification. For instance, even though MaCurdy (1981) estimates an intensive

margin elasticity of only 0.15, his estimate is consistent with a structural elasticity as large as

ε = 5.63. The reason is that MaCurdy’s estimates are identified from changes in wage rates of

approximately 10%, which are not big enough to overcome small frictions. The studies in the

more recent taxable income literature tend to yield narrower bounds because they use sharp

changes in tax policy as quasi-experiments.
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Figure 10 gives a visual representation of the bounds in columns 6-7 of Table 1. For

scaling purposes, I exclude studies that use variation in net-of-tax rates of less than 20%

for identification. The figure has two lessons. First, none of the intervals plotted in the

figure are disjoint — that is, the lower bound of every study falls below the upper bound of

every other study. Even though there is substantial dispersion in the elasticity estimates, all

twenty elasticities are consistent with a single structural elasticity ε if one permits 1% frictions.

Second, when pooled together, the twenty studies in Table 1 yield informative bounds on the

labor supply elasticity. The unified lower bound across the twenty studies when δ = 1% is

εL = 0.47, obtained from Goolsbee’s (1999) analysis of TRA86. The unified upper bound is

εU = 0.54, obtained from Gelber’s (2009) analysis of the Swedish tax reform of 1991. This

exercise shows that combining several studies can yield informative bounds even though any

one study by itself produces wide bounds. By estimating elasticities in a broad range of

environments, one can narrow the bounds on ε sharply.

Figure 11 shows how the unified bounds vary with the degree of frictions. The dark

shaded region (between the solid red lines) shows the values of ε consistent with the observed

elasticities in column 3 of Table 1 for δ ∈ (0, 5%). The bounds naturally widen as δ rises, but

remain somewhat informative even with δ = 5%, where εL = 0.21 and εU = 1.23. Given that

individuals are unlikely to tolerate utility losses equivalent to 5% of consumption on average,

we can rule out ε < 0.21 (as suggested by some microeconometric studies) or ε > 1.23 (as

used in some macro calibrations) based on existing evidence. The smallest value of δ that

can reconcile the twenty observed elasticities is δmin = 0.8%. That is, the differences in the

observed elasticity estimates are “economically significant”only if frictions in choosing labor

supply are less than 0.8% of consumption on average. The corresponding minimum-δ point

estimate of the structural elasticity is εδ-min = 0.50.

The calculations above ignore statistical imprecision in the point estimates of ε̂. Columns

8-9 of Table 1 show a 95% confidence set for the ε implied by each study. These columns

use the lower endpoint of the 90% confidence interval (CI) for ε̂ to calculate εL and the upper

endpoint of the 90% CI to calculate εU (Imbens and Manski 2004). In many cases, the

95% confidence sets are only slightly wider than the bounds obtained when ignoring sampling

error. For instance, εU for Gelber’s study rises from 0.54 to 0.6. Pooling the twenty studies,

the unified lower bound constructed from the lower endpoints of the 95% CI’s (the largest
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εL in Column 8) is 0.32 when δ = 1%. The analogous unified upper bound constructed

from the upper endpoints of the 95% CI’s is (the smallest εU in Column 9) is 0.6. While

these calculations suggest that accounting for statistical imprecision would widen the bounds

modestly, the unified bounds of (0.32, 0.6) do not provide a 95% confidence set for ε because

of the order-statistics problem in inference with multiple moment inequalities noted above.27

The dashed blue lines in Figure 11 display analogous calculations of the unified bounds as a

function of δ. The set of ε consistent with the observed elasticities expands modestly if one

uses the lower and upper endpoints of the 90% CI’s for ε̂ to calculate the bounds on ε in lieu

of the point estimates of ε̂.

Overall, these calculations suggest that the greater source of imprecision about ε is uncer-

tainty about the economic model of behavior due to frictions rather than noise due to sampling

error. Many recent studies in Table 1 obtain extremely precise estimates of ε̂ by pooling mul-

tiple reforms or using large micro datasets, but are not much more informative about ε than

prior work. To obtain more information about ε, it would be best to examine steady state

responses to large tax changes that involve minimal frictions —e.g. examining the effects of a

widely publicized tax policy on a subgroup with adjustable labor supply.

4.4 Reconciliation of Micro and Macro Elasticities

I now build on the preceding findings to tackle the puzzle of why micro elasticity estimates

are smaller than macro elasticities. I begin by summarizing the key stylized facts to be

explained. The macro elasticity is the elasticity of aggregate labor supply with respect to net-

of-tax rates. Let h denote average hours worked conditional on working and N the number

of individuals who work. Then aggregate labor supply is L = Nh and the macro elasticity is

η ≡ d logL
d log(1−τ) = d logN

d log(1−τ) + d log h
d log(1−τ) = εext + ε, where εext and ε are the structural extensive

and intensive margin elasticities in the nominal labor supply model specified in section 4.2.

Intensive and extensive margin elasticities have both been estimated using microeconomet-

ric methods (e.g. tax reforms and lifecycle wage variation) and macro methods (e.g. cross-

country comparisons and trends). Let ε̂m denote the observed intensive margin elasticity

estimated using micro methods and ε̂M denote the observed intensive margin elasticity esti-

27A 95% confidence set for the unified bounds could be constructed numerically using the methods proposed
by Chernozhukov, Hong, and Tamer (2007).

35



mated using macro methods. Similarly, let ε̂mext and ε̂
M
ext denote the observed extensive margin

elasticities in micro and macro studies. Finally, let η̂ denote the observed macro elasticity

estimated using macro methods. The stylized facts on micro and macro elasticities that we

seek to explain are the following:

1. [η̂ > ε̂m] Microeconometric estimates of intensive margin elasticities (ε̂m) are much

smaller than observed macro elasticities. Davis and Henrekson (2005) estimate an elasticity

of η̂ = 0.6 using cross-country variation in tax rates and Prescott (2004) and Ohanian et

al. (2008) find that elasticities near 1 fit time series trends in total hours worked across

countries with different changes in tax rates. In contrast, the mean value of ε̂m = 0.12 among

the microeconometric studies in Table 1, if one excludes studies of top income earners, who

constitute a small fraction of hours in the economy.

2. [̂εMext = ε̂mext] Micro and macro studies agree on the magnitude of extensive margin elas-

ticities. Nickell (2003) and Davis and Henrekson (2005) use data on labor force participation

across countries to estimate ε̂Mext = 0.2. Microeconometric studies of low income individ-

uals, secondary earners, and retirees also find observed extensive margin elasticities around

ε̂mext = 0.2 (Gruber and Wise 1999, Coile and Gruber 2000, Eissa and Hoynes 2004, Blau and

Khan 2007).

3. [̂εM > ε̂m] Facts 1 and 2 imply that most of the difference between micro and macro

elasticities is driven by difference in intensive margin responses. As shown in Table 1, macro

estimates of intensive-margin elasticities are much larger than micro estimates both in the

traditional labor supply literature and the more recent taxable income literature for all but

very top incomes.

Explaining the Facts. Rogerson and Wallenius (2009) show that small intensive margin

elasticities ε are consistent with large macro elasticities η if the extensive margin elasticity εext

is large enough. This insight —namely that macro elasticities combine extensive and intensive

margin responses —is clearly central for understanding fact 1. It does not, however, directly

explain facts 2 and 3. In particular, the extensive margin elasticities that the Rogerson

and Wallenius simulations require to explain the gap between micro and macro elasticities are

considerably larger than both micro and macro estimates of ε̂ext. Moreover, as they note, their

model does not explain the differences between micro and macro intensive margin elasticity

estimates.
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Optimization frictions can explain these facts. Micro studies examine short-run responses

to tax changes, whereas macro studies focus on long-run or steady state responses. Frictions

such as job switching costs, status quo biases, or inattention can lead to delayed responses and

attenuate short-run elasticity estimates. For instance, suppose 10% of agents in the economy

have low job switching costs each year and the remainder have large switching costs. Then

micro studies that examine changes in labor supply over a one year horizon could underestimate

the long-run elasticity by an order of magnitude. Moreover, micro studies typically focus

on relatively small tax changes that apply to subgroups of the population, whereas macro

studies examine larger economy-wide changes. Large, economy-wide changes are more likely

to overcome frictions because they induce coordinated changes in work patterns (Chetty et al.

2009).

Frictions can attenuate short-run intensive margin elasticities substantially because the

utility gain from reoptimizing labor supply in response to tax changes on the intensive-margin is

second-order. The bounds in Table 1 show that frictions of 1% of consumption can generate the

observed quantitative differences between micro and macro elasticities on the intensive margin.

But the same 1% frictions do not affect short-run estimates of ε̂mext significantly because the

gains from reoptimizing on the extensive margin are first-order, exceeding 10% of consumption

for some of the tax changes studied in the micro literature. This explains why micro and

macro studies find similar elasticities on the extensive margin: ε̂mext = ε̂Mext = εext = 0.2. Thus,

combining frictions with the insight that the macro elasticity η incorporates both εext and ε

reconciles all three facts. This synthesis of micro and macro evidence suggests that η ' 0.7

when δ = 1%.

Implications for the Frisch Elasticity. The analysis above reconciles micro and macro

estimates of the Hicksian (income-constant) elasticity of labor supply. While the Hicksian

elasticity is relevant for welfare analysis and predicting long-run effects of tax policies, the

Frisch (marginal utility constant) elasticity is more relevant for understanding business-cycle

fluctuations. An analogous puzzle exists in the context of Frisch elasticities: micro studies

(e.g., MaCurdy 1981, Altonji 1982, Ziliak and Kniesner 1999, Blundell, Duncan, and Meghir

1998) find much smaller elasticities than macro studies (e.g., Kydland and Prescott 1982, King

and Rebelo 1999, Chang and Kim 2007).

Can optimization frictions reconcile the differences in observed Frisch elasticities? At first
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brush, the answer may appear to be no. The mean fluctuations in wage rates at business

cycle frequencies are small and temporary, as in micro studies, and thus would appear to

be no more likely to overcome frictions. However, this simple view neglects two important

factors: heterogeneity and extensive margin responses. Although mean changes in wage rates

are small, recessions reduce wage rates for certain individuals very sharply. Frictions could

explain why such large concentrated shocks generate substantial changes in intensive margin

labor supply while the smaller fluctuations in wage rates over the life cycle used in micro

studies do not. Moreover, most of the change in hours over the business cycle is driven by

changes in labor force participation (Coleman 1984, Rogerson 1988, Cho and Cooley 1994).

Frictions could explain why most of the observed response to fluctuations in wages over the

business cycle is on the extensive rather than the intensive margin.

I defer a quantitative exploration of whether frictions can reconcile differences in observed

Frisch elasticities across micro and macro studies to future work.28 Instead, I conclude

by calculating the structural intensive margin Frisch elasticity that should be used in such

analyses. What can be learned about the structural Frisch elasticity εF from the bounds

obtained on the Hicksian elasticity εH above?

The answer to this question depends upon the assumptions one imposes on preferences.

Under the quasilinear utility specification in (24), there are no income effects and εF = εH . In

an intertemporal labor supply model with arbitrary time-separable utility of the form in (23),

the Frisch labor supply elasticity is related to the Hicksian elasticity by the following equation

(Ziliak and Kniesner 1999, Browning 2005):

εF = εH + ρ(
d[wl∗i,t]

dYi,t
)2 Yi,t
wl∗i,t

(33)

where ρ is the elasticity of intertemporal substitution (EIS),
d[wl∗i,t]

dYi,t
measures the effect of non-

wage (unearned) income on labor supply (the marginal propensity to earn out of unearned

income), and Yi,t
wl∗i,t

is the ratio of non-wage income to wage income. This equation shows that

εF > εH , a restriction generated by optimization with concave utilities. Therefore we know

28Chang and Kim (2007) and Gourio and Noual (2009) show that models with heterogeneity and extensive-
margin responses can generate substantial differences between micro and macro elasticities. Adding frictions to
such models could potentially help explain why (1) most of the response is on the extensive margin and (2) the
intensive-margin macro response is non-trivial even though most micro studies find intensive-margin elasticities
very close to zero.
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εF > 0.47 using the lower bound on the Hicksian elasticity from Table 1 without placing any

restrictions on the flow utility function.

One can obtain more information about εF by calibrating the other parameters in (33). In

the aggregate economy, the ratio of non-wage to wage income is approximately Yi,t
wl∗i,t

= 1
2 . Table

2 shows the values of the Frisch elasticity implied by a Hicksian elasticity of εH = 0.5 and Yi,t
wl∗i,t

=

1
2 for various combinations of ρ and −

d[wl∗i,t]

dYi,t
. To calibrate these two parameters, note that

balanced growth requires that income and substitution effects cancel, implying
d[wl∗i,t]

dYi,t

Yi,t
wl∗i,t

=

εH ⇒
d[wl∗i,t]

dYi,t
= −0.25. Both micro and macro studies find an EIS of ρ ≤ 1 (Hall 1988,

Vissing-Jorgensen 2002, Guvenen 2006). The largest Frisch elasticity consistent with these

parameters is εF = 0.63.29

I conclude that for plausible parametrizations of time-separable utilities, the structural

intensive margin Frisch elasticity is close to the structural Hicksian elasticity of εH = 0.5. In

future work, it would be useful to verify this result by directly bounding εF using micro and

macro estimates of observed Frisch elasticities.

5 Conclusion

There are many frictions that induce agents to deviate from the optimal choices predicted

by standard economic models. This paper has shown that the model mis-specification that

arises from the omission of these frictions can be handled using the tools of set identification.

Abstractly, I exchange the standard orthogonality condition on the error term for a bounded

support condition based on the utility costs of errors. I derive an analytical representation

for bounds on structural price elasticities that is a function of the observed elasticity, size of

the price change used for identification, and the degree of optimization frictions.

Applying the bounds to the literature on taxation and labor supply offers a critique and

synthesis of this literature. The critique is that many microeconometric studies of labor

supply are uninformative about the labor supply elasticity because they cannot reject very

large values of ε with frictions of even 1% of consumption in choosing labor supply. The

synthesis is that several patterns in this literature can be reconciled by allowing for such small

29This estimate of εF does not suffer from Imai and Keane’s (2004) critique that microeconometric estimates
of εF using lifecycle wage variation (e.g. Altonji 1982) are biased downward because they ignore the returns to
human capital accumulation. Here, εF is identified from studies that use variation in taxes that is orthogonal
to returns to human capital.
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frictions. Most importantly, frictions can explain the large differences between micro vs.

macro elasticities and extensive vs. intensive margin elasticities. Combining estimates from

twenty studies yields bounds on the intensive margin elasticity of ε ∈ (0.47, 0.54) with frictions

of 1% of consumption. Even with frictions as large as 5% of consumption, existing estimates

imply ε < 1.23. In sum, frictions justify a substantially larger ε than the estimates of most

micro studies but not the very large values of ε used to calibrate some macro models.

The bounding methodology developed here can be applied in other contexts where the

values of key parameters are debated, such as the elasticity of intertemporal substitution, the

marginal propensity to consume out of income, or the effects of the minimum wage on employ-

ment. Such analyses would shed light on which disagreements are economically significant

and which can be reconciled simply by allowing for small frictions.
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Appendix A: Point Identification of Structural Elasticity

In cases where the unified bounds remain uninformative, one may wish to compute a single
“best”estimate of ε. This appendix illustrates how point identification of ε can be obtained at
the expense of additional parametric assumptions. There are many parametric assumptions
that could be imposed, each of which would yield a different point estimator for ε.

A widely used criterion for defining the “best”estimate of a parameter is to minimize the
mean squared error of the estimate. Defining this metric in the context of optimization errors
requires that we place some structure on the distribution of observed mean demands xt(pt).
I place the following restriction on the distribution of observed demands.

A2 The difference between observed and optimal mean demand zt(pt) ≡ log xt(pt)− log x∗t (pt)
is distributed according to a cdf F (z) with mean 0 and variance σ2

z(ε, δ).

This assumption restricts the class of models under consideration in two ways. First,
mean observed demand reflects mean optimal demand in expectation. Second, the variance
of log(xt(pt)) − log(x∗t (pt)) depends only on the determinants of the width of the choice set
Xt(pt, δ), which are ε and δ according to Lemma 1. Note that Lemma 1 implies that z(p) ∈
[−[2δε]1/2, [2δε]1/2]. Hence, any symmetric distribution F (ε, δ) on [−[2δε]1/2, [2δε]1/2] satisfies
A2.

Under assumptions A1-A2,

Eε̂j = −E log xB − E log xA
log pB − log pA

= − log x∗B − log x∗A
log pB − log pA

= ε.

Therefore, any linear estimator
∑
αj ε̂j must have weights such that

∑
αj = 1 in order to be

an unbiased estimate of ε. To compute the variance of ε̂j , we must specify the covariance of
x(pA) and x(pB). I assume that the covariance is zero:

A3 The deviation from optimal demand is independent across price levels: zA(pA) ⊥ zB(pB).

Assumption A3 is an analytically convenient baseline; in practice, frictions are likely to
generate correlations between zA(pA) and zB(pB).30 Under A3, the variance of observed
elasticity j is

var(ε̂j) =
2σ2

z

(∆ log pj)2

The best linear unbiased estimate of ε solves:

min
αj
E[ε−

∑
αj ε̂j ]

2 s.t.
∑
αj = 1

Solving this problem yields optimal weights α∗j =
(∆ log pj)

2∑
j
(∆ log pj)2

. Hence, under assumptions

A1-A3, the best linear unbiased estimate of ε is

εBLUE =

∑
j(∆ log pj)

2ε̂j∑
j(∆ log pj)2

(34)

30For instance, models with fixed adjustment costs will generate a higher probability of zero change in demand.
One can impose alternative distributional assumptions to derive estimators for ε better suited to specific models
of frictions.
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The best estimate of ε is a weighted average of the observed elasticities, with weights propor-
tional to the square of the price change used for identification. Studies that use larger price
changes for identification contain more signal about ε relative to noise due to frictions, and
therefore warrant greater weight.31

Equation (34) provides the best linear estimate of ε for any value of δ, so one does not
need to specify a value of δ to compute εBLUE. The optimal weights do not depend on δ
because the relative information of the studies is unaffected by δ. Note, however, that εBLUE
may not lie within the bounds (εmax

L , εmin
U ) for any given δ. This reflects the fact that εBLUE

is effi cient only among the set of linear estimators. If the unified bounds are tight, there is
little value in imposing the added parametric assumptions needed to compute εBLUE. Hence,
εBLUE is most attractive in applications where δ is large.

Appendix B: Sources and Calculations for Studies in Table 1

This appendix describes how the values in columns 3—5 of Table 1 are calculated for each
study. The studies do not always directly report the relevant inputs, especially for the net-
of-tax change ∆ log(1 − τ). I adhere to the following principles to obtain consistent values
of ∆ log(1− τ) across the studies: (1) for studies whose estimates are identified from a single
quasi-experiment (e.g. Feldstein 1995), I define ∆ log(1− τ) as the change in the NTR for the
group that the authors’define as the “treated”group; (2) for studies that pool multiple short
run changes and do not explicitly isolate a treatment group (e.g. Gruber and Saez 2002), I
define ∆ log(1− τ) as the 90th percentile of the distribution of changes in net-of-tax rates in
the sample; and (3) for studies that pool time series and cross-sectional variation in the level
of the tax rate (e.g. Davis and Henrekson 2005) rather than focusing on short-run changes, I
define ∆ log(1− τ) as the difference between the NTR at the 10th and 90th percentile in the
sample.

A. Hours Elasticities
1. MaCurdy (1981): ε̂: reported in text on page 1083. s.e.(ε̂): imputed from the t-statistic

for δ reported in row 5 of Table 1 as 0.15/0.98 because estimate of compensated elasticity is
approximately equal to δ. ∆ log(1− τ): mean change in wage rates W (t)−W (t− 1) reported
in second block of Table A1 of NBER working paper number 421.

2. Eissa and Hoynes (1998): ε̂: average of the compensated wage elasticities for married
men and women with children from 1984 to 1996, computed using the Slutsky equation εlc,w =
εl,w − wl

y εl,y, where εl,w and εl,y are reported in Table 8, IV2 for men and Table 9, IV2 for
women. Mean values of y and wl are computed from summary statistics reported in Table
3. s.e.(ε̂): calculated from standard errors reported in Table 8, IV2 and Table 9, IV2 for
coeffi cients on log(net wage) and virtual income. ∆ log(1 − τ): unweighted mean percent
change in the net-of-tax rate in the phase-in and phase-out regions of the EITC schedule for
the reforms reported in Table 1 (TRA 1986, OBRA 1990, and OBRA 1994).

3. Blundell, Duncan, and Meghir (1998): ε̂, s.e.(ε̂): Table 4, row 1. ∆ log(1− τ): defined
as ∆ log(wage×NTR) = ∆ log(wage) + ∆ log(NTR) in order to incorporate both wage and tax

31Equation (34) implies that it is best to weight each observation by the square of the size of its treatment
effect in a regression. Observations with larger treatments (∆ log p) already receive greater weight (∆ log p)2

in OLS estimators to maximize effi ciency in statistical inference. Optimization frictions call for placing even
more weight on these observations, because doing so has benefits for both identification and inference.
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variation, where ∆ log(wage) is the mean percentage change in annual wage rate computed
from Table 15 and ∆ log(NTR) is the difference between the 10th and 90th percentiles of log
NTR’s across all the cohort-year-education cells listed in Table 2.

4. Ziliak and Kniesner (1999): ε̂, s.e.(ε̂): Table 1, column 3. ∆ log(1 − τ): change in
net-of-tax rate between the 10th and 90th percentiles, calculated as log(1−.292+1.64·0.069)−
log(1− .292− 1.64 · 0.069) where 0.069 is the standard deviation of the tax rates and 0.292 is
the mean marginal tax rate reported in row 6 of Table D1.

5. Bianchi, Gudmundsson, and Zoega (2001): ε̂, s.e.(ε̂): mean percent change in hours for
men and women (columns 3-4 of Table 5) divided by the percent change in the net-of-tax rate.
Standard error computed from the standard errors reported for the changes in hours. Note
that the elasticity estimates provided by the authors are computed using average tax rates,
necessitating use of the computation described above. ∆ log(1− τ): log change from tax rate
of 0 in 1987 to a 35 percent flat tax in 1988 as described in the text.

B. Taxable Income Elasticities
6. Gruber and Saez (2002): ε̂, s.e.(ε̂): average of the estimates in column 2 of Table 9 for

individuals with taxable income between $10,000 and $50,000 and those with taxable income
between $50,000 and $100,000. ∆ log(1 − τ): 90th percentile of distribution of changes in
net-of-tax rate for individuals with taxable income between $10,000 and $100,000, computed
as unweighted mean of 90th percentiles implied by means and standard deviations in each cell
of columns 3 and 4 of Table 3.

7. Saez (2004): ε̂, s.e.(ε̂): Table 4B, column 6 for the top 5 to 1 percent of tax units.
∆ log(1− τ): difference between 10th and 90th percentiles of NTR’s for the top 5 to 1 percent
of tax units listed in column 8 of Table B2.

8, 9. Chetty et al. (2009): ε̂, s.e.(ε̂): observed elasticities at middle and top kinks reported
in section 5. ∆ log(1− τ): size of tax changes at the middle and top tax kinks as reported in
section 5.

10. Gelber (2009): ε̂, s.e.(ε̂): Table 3, column 2. ∆ log(1−τ): percent change in net-of-tax
rate from 1989 to 1991 for the highest tax brackets reported in Table 1.

11. Kleven and Schultz (2009): ε̂, s.e.(ε̂): reported in text. ∆ log(1 − τ): change in
net-of-tax rate for 1987 Danish tax reform reported in text.

12. Saez (2009): ε̂, s.e.(ε̂): Table 2, column 6 for wage earners with two or more children.
∆ log(1− τ): change in NTR at first kink in the EITC benefit schedule from 1995 to 2004.

C. Top Income Elasticities
13. Feldstein (1995): ε̂: high minus medium tax rate specification in Table 2. s.e.(ε̂):

not reported in the paper; computed by rescaling the standard error in Auten and Carroll
(1999) by the ratio of sample sizes in the two studies (14,425

3,735 ) cited by Feldstein on page 566.
∆ log(1− τ): reported in Table 2 for the high tax rate group.

14. Auten and Carroll (1999): ε̂, s.e.(ε̂): Table 2, Col 6. ∆ log(1− τ): change in NTR for
high tax rate group in Table 2 of Feldstein (1995).

15. Goolsbee (1999): ε̂, s.e.(ε̂): Table 2b, column 1. There is a typographical error in the
standard error reported in Table 2b, so I use the standard error reported in the text on page
21 instead. ∆ log(1− τ): Table 2b, row C for 1985 to 1989.

16. Saez (2004): ε̂, s.e.(ε̂): Table 2C, column 3 for the top 1 percent of tax units. ∆ log(1−
τ): difference between the 10th and 90th percentiles of NTR’s for the top 1 percent of tax
units listed in column 3 of Table B2.
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17. Kopczuk (2009): ε̂, s.e.(ε̂): reported as estimates from preferred specification in text.
∆ log(1 − τ): change in the predicted marginal net-of-tax rate for individuals predicted to
switch to the flat tax regime based on 2002 (pre-reform) earnings levels.

D. Macroeconomic/Trend-Based Elasticities
18. Prescott (2004): ε̂: computed from hours and tax changes reported in Table 2, treating

the United Kingdom and United States as control groups. I first compute the differences in
log(1−tax rate) between 1993-1996 and 1970-1974 for each country. I then take the differences
in the log of predicted hours in 1993-1996 and 1970-1974 for each country and divide by
the corresponding percent change in the net-of-tax rate to define a country-specific observed
elasticity. Finally, I compute the average of these country-level elasticities (excluding the U.K.
and U.S.) to obtain ε̂. s.e.(ε̂): not reported because Prescott calibrates a model to fit these
data rather than directly estimating ε̂. ∆ log(1 − τ): computed as the mean absolute value
of the country-level differences in log(1−tax rate) as described above, excluding the U.K. and
U.S.

19. Davis and Henrekson (2005): ε̂: Figure 2.2 reports dl
d(1−τ) = 9.1; ε̂ = 9.1100%−50.8%

1140

computed at sample means of l = 1140 hours and τ = 50.8% reported in Table 2.1 for Sample
A. s.e.(ε̂): calculated from the standard error reported for the regression coeffi cient in Figure
2.2. ∆ log(1 − τ): computed as the change in tax rates from the 10th to the 90th percentile
of observations shown in Figure 2.2.

20. Blau and Kahn (2005): ε̂, s.e.(ε̂): average of the elasticities with respect to own log
wage reported in column 3 (1989-91 to 1979-81) and column 7 (1999-2001 to 1989-91) of Table
10. ∆ log(1 − τ): average change in own log imputed wage reported in columns 4 and 5 of
Table 2.
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FIGURE 1
Choice Set in a  Class of Models
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NOTE–This figure illustrates the choice set Xpt, in a  class of models when all agents have i,t   1% and
ai,t a exp 3.5. The blue curve plots flow utility uxt  100 − ptxta log xt with logpt 1. The set of demand
levels that yield utility within 0.01ptx

∗pt dollars of the maximum is shown by the red interval on the x axis.



FIGURE 2
Identification with Optimization Frictions
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NOTE–This figure plots the choice sets at two price levels, XpA, and XpB,, with logpA 1 and logpB 1.2. In
panel A,   1; in panel B,   0. All other parameters are specified as in Figure 1. The dashed blue line shows the
optimal demand x∗pt. The black lines in Panel A illustrate some of the responses (log xBpB − log xApA) that may
be observed for a price increase from pA to pB with a structural elasticity of   1 and frictions of   1% of
consumption.



FIGURE 3
Bounding the Structural Elasticity with Optimization Frictions
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b) Lower Bound on Structural Elasticity

NOTE–The solid black line in each panel depicts the observed demand response for a price increase from pA to pB with an
observed elasticity ̂  0.3, logpA 1, and logpB 1.4. Panel A depicts the highest structural elasticity, U 1, that
could have generated this observed response with   1%. The blue dashed line depicts the optimal demand x∗pt with
  1. Panel B analogously depicts the lowest structural elasticity, L 0.1, that could have generated the same observed
response.



FIGURE 4
Bounds on Structural Elasticities as a Function of Observed Elasticities
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NOTE–This figure plots the bounds L,U vs. ̂ for four combinations of  and Δ logp, computed using the formula in
Proposition 1. In the top two panels, the degree of optimization frictions is   1%. The lower two panels consider
  0.5%. The left panels have a price change of Δ logp  20%, while the right panels have Δ logp  40%.



FIGURE 5
Upper Bound on Structural Elasticity with Zero Observed Response
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NOTE–This figure illustrates the result in Corollary 2. Panel A shows the largest structural elasticity (U 0.5, dashed
blue line) consistent with zero observed response ( 0, solid black line) to a price increase from pA to pB when   1%.
Panel A shows that under a quadratic approximation to ux, x∗pB − x∗pA  2d, where d is the difference between
the optimal demand and the lowest demand in the choice set. Panel B replicates Figure 1 and shows that the utility cost of
being 2d units away from the optimum equals 4.



FIGURE 6
Tax Reform Act of 1986
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NOTE–These figures are based on the Tax Reform Act of 1986. Panel A shows how marginal tax rates changed between
1985 and 1988 for single filers with two children. Panel B plots the utility cost Δui, measured in dollars of consumption,
from failing to reoptimize labor supply on the intensive margin in response to the tax change with   0.5. Panel C plots
the same utility cost as a percentage of pre-reform consumption (Δui,%), defined as the dollar cost in Panel B divided by
the agent’s consumption in 1985. Panel D shows the change in earnings (wli,1988

∗ −wli,1985
∗ ) required to reoptimize relative

to the tax change. In Panels B-D, the dashed blue line (right y axis) replicates the percentage change in the net-of-tax rate
(1-MTR) shown in Panel A.



FIGURE 7
Clinton Earned Income Tax Credit Expansion
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NOTE–These figures are based on the Clinton EITC Expansion enacted between 1993 and 1996. Panel A shows how
marginal tax rates changed over this period for single filers with two children. Panel B plots the utility cost as a percentage
of pre-reform consumption (Δui,%) from failing to reoptimize labor supply in response to the tax change for agents who
were already working in 1993 with   0.5. Panels C and D are the extensive margin analogues to Panels A and B. Panel
C shows changes in average tax rates by taxable income levels from 1993 to 1996. Panel D plots the utility cost (Δui,ext,%)
from failing to reoptimize labor supply in response to these tax changes for agents at the margin of entering the labor force
prior to the reform. This panel plots the utility gain from entering the labor force in 1996 for agents whose taste ai and
fixed cost k made them indifferent between working and not working in 1993 at the income levels on the x axis. This
dollar utility gain is divided by optimal consumption when working in 1993 to obtain a percentage measure.



FIGURE 8
Utility Cost of Ignoring Tax Changes by Year
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NOTE–These figures plot the utility cost of ignoring changes in taxes over three-year periods from the 1970 to 2006 for
selected percentiles of the income distribution. In each year y, the point that is plotted shows the utility loss (as a
percentage of consumption) from choosing labor supply optimally according to the tax system in year y − 3 instead of year
y. Panel A depicts the utility cost of failing to reoptimize labor supply on the intensive margin (Δui,int,%) with a structural
intensive-margin elasticity of   0.5, calculated as in Figure 6c. Panel B depicts the percentage utility cost of failing to
reoptimize labor supply on the extensive margin (Δui,ext,%), calculated as in Figure 7d.



FIGURE 9
Gains from Bunching at Kinks in 2006 Tax Schedule
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NOTE–The dashed blue curve shows the 2006 marginal tax rate schedule in the U.S. The solid grey curve shows the
distribution of taxable income predicted by the frictionless labor supply model with   0.5. This curve assumes a
uniform distribution of ai and plots an Epanechnikov kernel density of the simulated earnings distribution with a
bandwidth of $1000. The numbers near each convex kink are the percentage utility gain (Δu%) from locating at that kink
when   0.5. To compute Δu% at a given kink, I first define Δui,% as the utility gain for an individual with taste
parameter ai from locating at that kink relative to optimizing under the (incorrect) assumption that the tax rate in the
previous bracket continues into the next bracket. I then define Δu% as the unweighted mean of Δui,% over all individuals
whose ai would make it optimal for them to locate at that kink. The first two kinks (1.66% and 0.66%) correspond to the
end of the phase-in and start of the phase-out regions of the EITC.



FIGURE 10
Bounds on Intensive-Margin Labor Supply Elasticities with   1%
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NOTE–The red intervals show the bounds on the structural intensive-margin elasticity  implied by each of the studies
with corresponding numbers listed in Table 1. The blue squares show the point estimate of each study. The x axis is the
log change in the net of tax rate (Δ log1 − ) used for identification in each study. Papers with Δ log 1 −   20% are
excluded from this figure for scaling purposes. The shaded region shows the range of structural elasticities consistent with
all the observed elasticities (the unified bounds).



FIGURE 11
Unified Bounds on Labor Supply Elasticity vs. Degree of Frictions
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NOTE–This figure shows how the unified bounds on the structural intensive-margin elasticity  vary with the level of
frictions . The solid red lines plot the unified bounds implied by point estimates of the twenty observed elasticities ̂ in
Table 1. These unified bounds are defined only for   min 0.8% because ’s below this threshold cannot reconcile the
observed elasticities. The dotted blue lines plot the unified bounds constructed from the upper and lower endpoints of each
study’s 90% confidence interval.



Study Identification s.e. Δlog(1-τ)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. Hours Elasticities
1. MaCurdy (1981) Lifecycle wage variation, 1967-1976 0.15 0.15 0.12 0.00 5.63 0.00 6.11
2. Eissa and Hoynes (1998) US EITC Expansions, 1984-1996 0.14 0.05 0.11 0.00 6.56 0.00 6.72
3. Blundell, Duncan, and Meghir (1998) UK Tax Reforms, 1978-1992 0.14 0.09 0.19 0.01 2.54 0.00 2.81
4. Ziliak and Kniesner (1999) Lifecycle wage, tax variation 1978-1997 0.15 0.07 0.32 0.02 1.05 0.00 1.24
5. Bianchi, Gudmundson, and Zoega (2001) Iceland 1987 Zero Tax Year 0.29 0.03 0.43 0.09 0.91 0.07 0.98

Mean observed elasticity 0.17

B. Taxable Income Elasticities
6. Gruber and Saez (2002) US Tax Reforms 1979-1991 0.14 0.14 0.13 0.00 5.02 0.00 5.44
7. Saez (2004) US Tax Reforms 1960-2000 0.09 0.04 0.23 0.00 1.75 0.00 1.88
8. Chetty et al. (2009) Denmark, Top Kinks, 1994-2001 0.03 0.01 0.30 0.00 0.95 0.00 0.97
9. Chetty et al. (2009) Denmark, Middle Kinks, 1994-2001 0.00 0.01 0.10 0.00 8.00 0.00 8.02
10. Gelber (2009) Sweden, 1991 Tax Reform 0.25 0.03 0.71 0.12 0.54 0.09 0.60
11. Kleven and Schultz (2009) Denmark, 1987 Tax Reform 0.01 0.01 0.30 0.00 0.91 0.00 0.94
12. Saez (2009) US, 1st EITC Kink, 1995-2004 0.00 0.02 0.34 0.00 0.70 0.00 0.77

Mean observed elasticity 0.08

C. Top Income Elasticities
13. Feldstein (1995) US Tax Reform Act of 1986 1.04 0.26 0.26 0.37 2.89 0.17 3.50
14. Auten and Carroll (1999) US Tax Reform Act of 1986 0.66 0.16 0.26 0.19 2.32 0.09 2.70
15. Goolsbee (1999) US Tax Reform Act of 1986 1.00 0.15 0.37 0.47 2.14 0.32 2.47
16. Saez (2004) US Tax Reforms 1960-2000 0.50 0.18 0.41 0.20 1.28 0.05 1.69
17. Kopczuk (2009) Poland, 2002 Tax Reform 1.07 0.28 0.21 0.31 3.64 0.13 4.32

Mean observed elasticity 0.85

D. Macroeconomic/Trend-Based Elasticities
18. Prescott (2004) Cross-country Tax Changes, 1970-1996 1.18 0.24 0.42 3.34
19. Davis and Henrekson (2005) Cross-country Tax Variation, 1995 0.39 0.04 0.80 0.23 0.69 0.17 0.77
20. Blau and Kahn (2007) US cohort wage trends, 1980-2000 0.56 0.14 0.16 0.07 4.33 0.03 4.74

Mean observed elasticity 0.71

Unified Bounds: 0.47 0.54 0.32 0.60
Note: Values in columns 6-9 are calculated using formula in Proposition 1.  See Appendix B for sources and details underlying calculations in columns 3-5.

TABLE 1
Bounds on Intensive-Margin Labor Supply Elasticities with δ = 1% Frictions

95% CI
LεLεε̂ Uε Uεˆ( )ε



TABLE 2
Frisch Elasticities Implied by Hicksian Elasticity of εΗ  = 0.5

Income Effect: -d [wl* ]/dY
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.20 0.50 0.50 0.50 0.51 0.52 0.53 0.54 0.55
0.40 0.50 0.50 0.51 0.52 0.53 0.55 0.57 0.60

EIS 0.60 0.50 0.50 0.51 0.53 0.55 0.58 0.61 0.65
 (ρ) 0.80 0.50 0.50 0.52 0.54 0.56 0.60 0.64 0.70

1.00 0.50 0.51 0.52 0.55 0.58 0.63 0.68 0.75
1.20 0.50 0.51 0.52 0.55 0.60 0.65 0.72 0.79
1.40 0.50 0.51 0.53 0.56 0.61 0.68 0.75 0.84

Note: This table shows the Frisch elastictity implied by various combinations of the EIS and 
income effect.  The calculations assume that the ratio of unearned to earned income is 
Y/wl* = 1/2 and the Hicksian (compensated) elasticity is εH  = 1/2.  The values are 
computed using the equation εF =εH +ρ(d [wl* ]/dY )²(Y/wl* ).




