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Abstract

It is widely recognized that the economics of distant-future events, like climate

change, is critically dependent upon the choice of a discount rate. Unfortunately, it

is unclear how to discount distant-future events when the future discount rate itself

is unknown. In previous work, an analytically-tractable approach called �gamma

discounting�was proposed, which gave a declining discount rate schedule as a simple

closed-form function of time. This paper extends the previous gamma approach by

using a Ramsey optimal growth model, combined with uncertainty about future pro-

ductivity, in order to �risk adjust�all probabilities by marginal utility weights. Some

basic numerical examples are given, which suggest that the overall e¤ect of risk-adjusted

gamma discounting on lowering distant-future discount rates may be signi�cant. The

driving force is a �fear factor� from risk aversion to permanent productivity shocks

representing catastrophic future states of the world.

1 Introduction: Discounting Climate Change

The concept of discounting is central to economics, since it allows e¤ects occurring at di¤erent

future times to be compared by converting each future dollar into the common currency of

equivalent present dollars. Because of this centrality, the choice of an appropriate discount

rate is one of the most critical issues in economics. It represents an especially acute dilemma

for projects involving long time horizons, because in such situations the results of cost-bene�t

analysis (CBA) can depend enormously on the choice of a discount rate.

The problem of an unsure discount rate has long bedeviled CBA, but it has acquired

renewed relevance lately because economists are increasingly being asked to analyze en-

vironmental projects or activities whose e¤ects will be felt very far out into the future.

�Department of Economics, Harvard University (mweitzman@harvard.edu). Without necessarily tying
them to the contents of this paper, I am extremely grateful for critical comments by Christian Gollier.
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Examples include nuclear waste management, loss of biodiversity, groundwater alterations,

minerals depletion, and many others. The most prominent example by far is the economics

of climate change, which will be used throughout this paper as the prototype application.

The e¤ects of global warming and climate change will be spread out over what might

be called the �distant future��centuries and even millennia from now. The logic of com-

pounding a constant positive interest rate forces us to say that what one might conceptualize

as monumental �even earth-shaking �events do not much matter when they occur in the

distant future. Perhaps yet more disconcerting, when exponential discounting is extended

over very long time periods there is a truly extraordinary dependence of CBA on the choice

of a discount rate. Seemingly insigni�cant di¤erences in discount rates can make an enor-

mous di¤erence in the present discounted value of distant-future payo¤s. In many long-run

situations, including climate change, almost any answer to a CBA question can be defended

by one particular choice or another of a discount rate.

Answers to questions thrown up by climate-change CBA therefore hinge critically on the

core issue of how to discount the distant future. There is a high degree of uncertainty

about what should be taken as the appropriate real rate of return on capital in the long

run, accompanied by much controversy about its implications for long-run discounting. For

speci�city, the investigation of this paper is focused sharply on CBA of small investments

that might incrementally impact distant-future events. However, there are broader welfare

rami�cations as well. Choosing the �right�distant-future discount rate is emblematic of a

whole series of thorny issues concerning how to conceptualize and how to evaluate actions

spanning across many generations.

I think it is important to begin by recognizing that there is no deep reason of principle

that allows us to extrapolate past rates of return on capital into the distant future. The

industrial revolution itself began some two centuries ago, and only slowly thereafter perme-

ated throughout most of the globe. The seeming trendlessness of some past rates of return

is a purely empirical reduced-form observation, which is not based on any underlying theory

that would con�dently allow projecting the past far into the future. There are a great many

fundamental non-extrapolatable factors, just one example of which is the unknown future

rate of technological progress. Even leaving aside the question of how to project future in-

terest rates, additional issues for climate change involve which interest rate to choose out

of a multitude of di¤erent rates of return that exist in the real world. Furthermore, there

is a strong normative element having to do with what is the �right� rate, which includes

an ethical dimension to discounting climate change across many future generations that is

di¢ cult to evaluate and incorporate into standard CBA.

A large number of additional examples of economic and non-economic features could be
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given that would be highly relevant to determining the distant-future discount rate, including

the e¤ects of climate change itself on productivity via what is sometimes called a �damages

function.� (Having the damages to output be an uncertain function of temperature is loosely

analogous to having an uncertain real rate of return on capital.) The fundamental point is

that there is enormous uncertainty and controversy about choosing the appropriate real rate

of return on capital for discounting distant-future events, like climate change. Moreover, the

great uncertainty about how to discount the distant future is not just an academic curiosity,

but it has critically important implications for climate change policy. This disturbing

ambiguity has given rise to a great deal of controversy and a variety of proposed solutions.

My purpose here is to focus sharply on clarifying the long-run discounting issue by using a

super-simple super-crisp formulation that abstracts away from all other elements of CBA,

many of which may also be important in practice.

Climate change is so complicated, and it involves so many sides of so many di¤erent disci-

plines and viewpoints, that no analytically-tractable model or paper can aspire to illuminate

more than but a facet of this problem. Because the climate-change problem is so complex,

there is frequent reliance on numerical computer simulations. These can be indispensable,

but sometimes they do not provide a simple intuition for the processes they are modeling.

In this paper, I go to the opposite extreme by focusing exclusively on analytically tractable

solutions to the pure discounting problem �in order to get to the core essence of this par-

ticular issue as directly as possible. There is no good substitute for seeing clearly before

one�s eyes the basic structure of a model laid bare. What I am presenting here is a kind of

fable or parable about how to approach discounting the distant future when discount rates

are uncertain, which is several steps removed from practical implementation. This paper

is more about conceptualizing the distant-future discounting problem and conveying some

rough sense of the magnitudes involved. It is less about giving decisive numerical values for

actual practical discount rate schedules. The beauty of this approach is that the formulas I

will derive are so simple and transparent that readers can easily plug in di¤erent parameter

values, or attach the model to other frameworks �and draw their own conclusions.

The core mathematical foundation, which undergirds the entire paper, is easy enough to

state formally.1 Suppose that discount rate ri > 0 will occur with �probability-like weight�

wi > 0, where
P
wi = 1. Mechanically de�ne the average or expected discount factor at

time t to be

�(t) =
X

wi exp(�ri t); (1)

whose corresponding discount rate R(t) satis�es exp(�R(t) t) = �(t), which can be rewritten
1See Weitzman (1998) for further details.
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as

R(t) =
� ln (

P
wi exp(�ri t))
t

: (2)

It is not di¢ cult to show that

�(0) = 1; _�(t) < 0; �(1) = 0; (3)

and that

R(0) =
X

wi ri; _R(t) < 0; R(1) = minfrig: (4)

The discount rates in (4) decline over time starting from their average value and going

down over time to approach their lowest possible value. Over time, the impact of the higher

discount rates in formulas (1) and (2) diminishes because the higher rates e¤ectively discount

themselves exponentially out of existence, leaving the �eld to the lower discount rates (and,

eventually, to the lowest).

The formulas (1), (2), (3), (4) are the building blocks for this paper. To them I attach a

simple Ramsey optimal growth model, whose future productivity of capital is unknown. I

then use this apparatus for analyzing how to discount the distant future for an investment

decision that must be made now, when the future productivity of capital is as yet an uncertain

random variable having some probability density function (PDF). The future productivity

of capital comes in the form of a permanent productivity shock that is drawn from its PDF

immediately after the investment decision is made. Then the deterministic economy adjusts

instantaneously to the then-known realization of the real rate of return on capital. I do

not defend this model for its realism and immediate applicability to such long-term issues as

CBA of climate change. Rather, I defend this particularly simple example of decision making

under uncertainty for its ability to isolate cleanly and clarify sharply a set of controversial

issues that have bedeviled the discounting of distant-future events like climate change.

I derive the relevant future discount rate schedule as a simple closed-form function of

time. One of the key simplifying assumptions leading to this analytically tractable formula

is that uncertain future productivity is a random variable whose PDF is a gamma distrib-

ution. In previous work, the gamma-distributed probabilities of future discount rates were

simply taken as given.2 The approach of this paper probes perhaps a little deeper by

�risk adjusting� these raw gamma probabilities with the marginal utility weights that are

endogenously determined from the solution to an optimal growth problem. It then emerges

2Weitzman (2001).

4



that even moderate risk aversion can enhance signi�cantly the e¤ect of gamma discount-

ing by increasing the risk-adjusted probabilities of low-productivity states, thereby putting

more probability weight on scenarios with low discount rates and low endogenously-chosen

consumption levels.

The paper works with a constant relative risk aversion (CRRA) utility function whose

coe¢ cient of relative risk aversion will be denoted �. The standard normative interpreta-

tion of the famous deterministic Ramsey formula is that an exogenously-given growth rate

g determines the endogenous future discount rate r. Under this usual non-optimizing inter-

pretation, higher values of � cause higher discount rates. This kind of partial-equilibrium

argument has underpinned much of the thinking and the debate concerning what discount

rates should be used in climate-change CBA. I believe that this standard partial-equilibrium

interpretation may not be the best way of looking at the normative discounting problem.

In the normative general-equilibrium model of this paper, the direction of causality is re-

versed. I think that it may make more economic sense to have the primitive driver be the

exogenously-given future productivity of capital r. Then any given value of r subsequently

determines the endogenous future growth rate g and endogenous consumption level C as the

solution to a Ramsey optimal growth problem (given that value of r). The paper shows that

when future productivity r is uncertain, then higher values of � are associated with lower

future discount rates, thereby reversing the conventional wisdom. A base-case numerical

example will be given, using what I believe are conventional parameter values. This example

�which is based on numbers that conform more or less with real-world observations �ap-

pears to indicate that the risk-aversion e¤ects of uncertain future productivity on lowering

distant-future discount rates might be quite powerful. The driving force is a �fear fac-

tor�associated with the possibility of low-probability but catastrophically-high permanent

damages to future productivity.

2 Ramsey Optimal Deterministic Growth with Linear

Production and CRRA Utility

The solution to the deterministic Ramsey optimal growth problem with a linear production

function and a constant relative risk aversion (CRRA) utility function is well known. Follow-

ing what Ramsey proposed, I take the rate of pure time preference (or the so-called �utility

discount rate�) in this paper to be zero. As Ramsey famously put the issue, �it is assumed

that we do not discount later enjoyments in comparison with earlier ones, a practice which

is ethically indefensible and arises merely from the weakness of the imagination.� Many
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other eminent economists concur with this Ramsey interpretation of intergenerational eq-

uity.3 Taken together, quotations from these �eminent economists�sound to me much more

like a normative judgement about intergenerational ethics than a description of short-run

individual behavior. I think that the Ramsey case of zero discounting of future utilities is

the appropriate abstraction for a normative analysis of climate change. Ethically or morally,

the Ramsey abstraction treats the utility of di¤erent generations equally, while taking full

account of the fact that economic growth will make future generations richer and less needy

than the present generation.

The notion of capital at time t, denoted K(t), is intended here to be all-inclusive, in-

corporating human capital, knowledge capital, R&D capital, skill capital, health capital,

ecosystem capital, and so forth. The economy produces net output Y (t) at time t accord-

ing to the linear technology Y (t) = rK(t), where, for the deterministic model of this section,

r is a given positive constant. (In the literature, such kind of linear production function

is known as a so-called �AK�technology, but for the purposes of this paper I will use the

symbol r in place of A to remind us that the linear coe¢ cient multiplying K is always the

relevant real rate of return on capital, irrespective of the utility or welfare side.) Capital

here is essentially a vehicle for transferring consumption between the present and the future

at interest rate r. Later in the paper r will be considered a random variable representing the

unknown future productivity of capital, but for now r is treated as a given known constant.

Net output Y (t) can be divided between consumption C(t) and net investment _K(t) =

dK=dt according to the schedule

C(t) + _K(t) = r K(t): (5)

The utility of consumption is taken to be of the isoelastic or CRRA form

U(C) =
C1��

1� � ; (6)

where � > 1 is the coe¢ cient of relative risk aversion or, equivalently, the elasticity of

marginal utility. Ramsey�s �bliss level�for utility function (6), with �>1, is B = 0. The

marginal utility of consumption is

U 0(C) = C��: (7)

3Pigou: [pure time preference] �implies ... our telescopic faculty is defective.� Harrod: �pure time
preference [is] a polite expression for rapacity and the conquest of reason by passion.� Koopmans: �[I have]
an ethical preference for neutrality as between the welfare of di¤erent generations.� Solow: �in solemn
conclave assembled, so to speak, we ought to act as if the social rate of pure time preference were zero.�
(All quotes are taken from Arrow (1999).) I think it should be clear that the above citations refer to a
normative or prescriptive, rather than a positive or descriptive, view of the world.
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The deterministic Ramsey optimal growth problem is to choose as control variable a

consumption trajectory fC(t)g to maximize

V (fC(t)g) =
Z 1

0

C(t)1��

1� � dt; (8)

subject to the production constraint (5) and the initial condition that K(0) is given. Let

the maximized value of V in (8) be denoted V �r .

It is well known4 that the solution to the above Ramsey optimal growth problem has

consumption, and also investment and capital, all growing at the same constant steady-state

rate g satisfying the fundamental Ramsey equation

r = � g: (9)

It is readily shown that the solution corresponding to equation (9) obeys the simple linear

optimal-consumption rule

C�r (t) =

�
� � 1
�

�
r K(t): (10)

Due to the linear production possibilities frontier (5), reducing C�r (0) marginally by one

small unit would result in exp(rt) extra units available for increased consumption at future

time t (without altering the rest of the optimal trajectory fC�r (t)g). From this simple

perturbation argument, the optimal trajectory must satisfy the �rst-order marginal condition

U 0(C�r (0)) = exp(rt)U
0(C�r (t)) (11)

for all t and for all r. With the CRRA utility function (7), equation (11) translates into

(C�r (t))
�� = (C�r (0))

�� exp(�rt): (12)

As was previously mentioned, the standard normative interpretation of the Ramsey for-

mula (9) is that the future growth rate g is more or less exogenously given and, for pos-

tulated �, it determines the appropriate r for CBA via (9). In this paper the causality is

reversed. For any exogenously given productivity r, CRRA coe¢ cient � implies a corre-

sponding endogenously-chosen value of the growth rate g = r=� and initial consumption

level C�r (0). As will be shown later, under uncertainty it turns out that the direction of

causality between r and g matters.

Real rates of return on investments vary from r � 1% for relatively riskfree U.S. T-Bills

4See, e.g., Weitzman (2003).
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up to r � 10 + % for public health or education in underdeveloped regions of the world.

The base case for this paper is r=6% per year. This is approximately the average after-tax

real rate of return on capital throughout much of the world. For a CBA of the economics

of climate change, r=6% would be considered a very high discount rate. I personally would

be inclined toward a much lower climate-change discount rate than 6% per annum, but the

ultimate goal of this paper, to which this deterministic section is leading, will be to show that

under uncertainty, even with expected discount rates as high as 6%, the �e¤ective�discount

rate, which �ought� to be used, can be much lower than 6%. Back to the deterministic

case of this section, with projected r=6%, the relevant discount factor �(t), which would be

used to convert money values from future year t into money values today (at time zero), is

given by the formula

�(t) = exp(�:06 t): (13)

Some distant future values of �(t) from formula (13) are given in the following table.

future year t = 50 100 150 200 300 500 1,000

discount factor �(t) = .05 .002 .0001 6�10�6 2�10�8 9�10�14 9�10�27

Table 1: Discount Factor �(t)=exp(�:06 t) for Future Year t

It should be emphasized strongly that the numbers in Table 1 would be construed by

most people as severely biasing CBA toward minimizing into near-nothingness the present

discounted value of distant-future events, like climate change. This kind of exponential

discounting, perhaps more than anything else, makes scientists and the general public sus-

picious of the standard economist�s CBA of climate change, since it trivializes even truly

enormous distant-future impacts. To be honest, I think that among economists there are

but few who do not feel uneasy about evaluating distant-future climate-change impacts this

way. As will be shown later, the introduction of uncertainty in the form of future r being a

random variable from a mean-preserving spread (so that the measure of central tendency re-

mains E[r]=6%) can radically alter the discounting picture by causing �(t) to be signi�cantly

higher than the values given in Table 1.

To set forth a deterministic numerical example here, which will later be extended to a

situation of uncertainty, as just mentioned my base-case point-estimate real rate of return

on capital is r=6% per year. My base-case CRRA coe¢ cient is �=3. My base-case point-

estimate future growth rate of per capita consumption is g=2% per year.5 Notice that these
5These values are close to those that were proposed by Dasgupta (2008), and were considered fully

acceptable by Nordhaus (2008, pp. 61 and 187).
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base-case values are consistent with the fundamental Ramsey equation (9). Were � to be

changed substantially, then r and g would not mesh quite so nicely with past reality. If �=2

and r=6%, then (9) implies g=3% �probably too high. If �=4 and g=2%, then (9) implies

r=8%, also probably too high. So I think it is fair to say that this proposed �package�

of base-case point-estimate values (r=6%, �=3, g=2%) looks more or less realistic and is

internally consistent. The implied net savings rate is 1
3
, which I would consider to be very

roughly synchronous with a concept of generalized all-inclusive capital, whose investments

include not only traditional forms of savings, but also expenditures on education, training,

R&D, health, and so forth.

When the rate of pure time preference (or �utility discount rate�) is � > 0, then the

deterministic Ramsey formula (9) generalizes to r = � + �g. It is then often argued that

combinations of � and � calibrated to the same values of r and g are more or less equally

legitimate. According to this logic, the package (�=0, �=3, r=6%, g=2%) is not essentially

di¤erent from the package (�=2%, �=2, r=6%, g=2%). However, this paper shows that,

under uncertain permanent productivity shocks, the Ramsey-normative case �=0 has a spe-

cial status because it does not allow the negative consequences of low-r states to be pushed

forward onto distant future generation, as would happen, say, with �=2%. Instead, zero

pure time preference forces current generations to look more favorably upon CBA oppor-

tunities that might transfer current costs into distant-future bene�ts. In the uncertainty

formulation of this paper, the normative choice �=0 can have substantive consequences.

Henceforth, the paper considers only the �ethical�case of a zero rate of pure time pref-

erence �=0. I now introduce exogenous uncertainty in r and, by (9), (10), endogenous

uncertainty in g and in C (for given �).

3 Uncertain Future Rates of Return on Capital

To state loosely the issue at hand in this super-simple expository model6, a decision must

taken now, just before time zero (call it time 0�), about whether or not to make an investment

that costs � now but will yield a bene�t payo¤ � at future time t. Right now, at time 0�,

it is unknown what will be the real rate of return on capital in the economy because the

future productivity of capital r is uncertain. A decision must be made now (at time 0�, just

before the �true�state of the world r is revealed at time t = 0+) about whether or not to

invest in the proposed project. To pose the problem sharply, it is assumed that immediately

after the investment decision is made, at time 0+, the true rate of return r becomes known

6The model of this section is a particular application of the more general framework of Gollier and
Weitzman (2009), which itself was based on earlier work by Gollier (2009).
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and the productivity of capital will thenceforth permanently be r, from time t = 0+ to time

t = 1. The idea that productivity shocks are permanent (and materialize overnight) is

very extreme, but it seems to me like an allowable initial abstraction for buying simplicity

in analyzing the appropriate distant-future discount rate. In the case of climate change

a recent study7 found that a signi�cant amount of the CO2 above pre-industrial-revolution

levels remains in the atmosphere for centuries, and even millennia � long after all CO2
emissions cease entirely. This might be construed as partial justi�cation for damages to

productivity acting like permanent shocks in an abstract super-simple model. In any event,

and most importantly, the simplistic abstract model of this paper will give a structural

framework with some useful insights that can be used as a point of departure for further

re�nements.

It is critical in this model to understand the exact timing sequence concerning what

information is available at what time, and when decisions are made. To restate the setup

more formally, at time 0� the inherited capital stock is given as K(0�) and the permanent

future value of r is a random variable whose realization is unknown. At time 0+, the

productivity of capital will be known precisely to be some r > 0, which has been drawn from

a given PDF f(r). Suppose that an investment opportunity suddenly arises at time t = 0�,

just before the �true�value of r is drawn from the PDF f(r) and revealed at time t = 0+.

This take-it-or-leave-it investment opportunity expends marginal cost � now in order to yield

a marginal bene�t � at future time t. Of course the representative agent wishes that the

investment decision could be made with the precise information available at time t = 0+,

just after the �true� state of the world is revealed and the relevant future productivity of

capital (from time t = 0+ to time t =1) is known with certainty. But the abstract essence
of the problem of doing CBA with an uncertain future discount rate is that the investment

decision must be made at a time when the future productivity of capital is unknown.

If the investment opportunity is accepted, it means that the inherited initial capital stock

K(0+) will be diminished by �. The corresponding loss of utility from lowering the initial

capital stock K(0+) by � is equivalent to lowering C(0+) by � (this well-known equivalence

follows from the envelope condition). Therefore, the expected loss of welfare from investing

� now, probability averaged over all r, is

�

1Z
0

U 0(C�r (0)) f(r) dr

24= � 1Z
0

(C�r (0))
�� f(r) dr

35 : (14)

Using the same logic, the expected gain of overall welfare from having � extra units of

7Solomon et al (2009).
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consumption available at time t, probability averaged over all r, is

�

1Z
0

U 0(C�r (t)) f(r) dr

24= � 1Z
0

(C�r (t))
�� f(r) dr

35 : (15)

Therefore, the proposed investment will increase overall expected welfare if and only if

�

1Z
0

(C�r (t))
�� f(r) dr > �

1Z
0

(C�r (0))
�� f(r) dr: (16)

Combining (12) with (16), the investment should be made if and only if

�

1Z
0

(C�r (0))
�� exp(�rt) f(r) dr > �

1Z
0

(C�r (0))
�� f(r) dr: (17)

De�ne the risk-adjusted discount factor �(t) to be

�(t) �

1Z
0

(C�r (0))
�� exp(�rt) f(r) dr

1Z
0

(C�r (0))
�� f(r) dr

: (18)

Combining (18) with (17), the proposed investment (incurring a marginal cost � at time

0�, in order to yield a marginal bene�t � at future time t) should be made if and only if

��(t) > �: (19)

Condition (19) establishes in this setup that �(t) de�ned by (18) is the relevant CBA dis-

count factor for time t. The corresponding discount rate R(t) satis�es �(t) = exp(�R(t) t),
which can be rewritten as

R(t) =
� ln( �(t))

t
: (20)

Equations (18) and (20) must obey the corresponding continuous versions of (3) and (4).

What now remains is to assume some reasonable functional form of f(r) that yields a simple

closed-form expression for R(t) and �(t), and to try out some numerical experiments.
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4 Risk-Adjusted Gamma Discounting

In previous work I used a gamma distribution of discount rates8, which, for the purpose

at hand, seemed like an ideal compromise among �exibility, generality, transparency, and

analytical tractability. This gamma PDF was originally applied directly to the distribution

of future discount rates. A possible justi�cation for this direct approach is a variant of

the so-called �Lucas fruit-tree model.� In this story, applied to the present setup, both the

initial value of consumption C(0) and its growth rate g are exogenously given by the process

C(t) = C(0)egt; (21)

where g is the realization of a random variable representing a permanent growth-rate shock.

Suppose that the growth rate g has a gamma distribution with mean E[g] and variance V [g].

Then from the Ramsey equation (9), the discount rate r also has a gamma PDF, but with

mean E[r] = �E[g] and variance V [r] = �2V [g]. This is a rigorous story that could be used

to justify using directly an as-if-given gamma distribution of discount rates with given mean

E[r] and given variance V [r].

However, this partial-equilibrium �Lucas fruit-tree model�is not really in the normative

spirit of the Ramsey general-equilibrium model, because there is no place for optimizing

behavior. Instead, once the uncertainty is resolved, the consumption growth trajectory

(21) is exogenous �with given g and given C(0) � rather than being the solution of an

optimal growth problem à la Ramsey. A drawback of this fruit-tree exogenous-growth story

is that it appears to reverse the appropriate causality. I think that it may make more

sense to consider future productivity r as the given primitive (in the form of a random

variable), whose realization then induces both g and C�r (0) in equation (21). The key

distinction is that a permanent productivity shock to r will cause C�r (0) (as well as g) to

be endogenously determined.9 When realized productivity r is low, then, by (10), C�r (0)

will also be chosen to be low, in proportion to r. Low-r states force current generations to

repress their consumption in favor of higher savings to compensate future generations for loss

of output. The normative model of this paper takes full account of such an endogenous e¤ect

on the chosen level of consumption C�r (0). I thereby extend the previous closed-form gamma

PDF approach to include risk-adjusted marginal-utility-weighted probability densities from

a Ramsey optimal growth solution, as they appear in (18).

8Weitzman (2002).
9As was emphasized early on by Gollier (2009), and elaborated further in Gollier and Weitzman (2009),

in this kind of endogenous-growth setup it is incorrect to use the original PDF of r without a risk adjustment
for the di¤erent marginal utilities associated with di¤erent values of r.
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The gamma PDF for the random variable r is of the form

f(r) =
��

�(�)
r��1e��r; (22)

with positive parameters � and �. The mean and variance of the PDF (22) are

� =
�

�
; �2 =

�

�2
: (23)

Now plug (10) (for t = 0) and (22) into (18). After canceling from the numerator and

denominator all identical terms, (18) becomes

�(t) =

1Z
0

r����1 e�(�+t) r dr

1Z
0

r����1 e��r dr

: (24)

(Equation (24) holds for � < �. If � � �, then a limiting argument for the lower part of

the ratio of inde�nite integrals as r ! 0 shows that �(t) = 1 for all t.)

Now it is a fact of calculus that

1Z
0

xa�1 e�bx dx =
�(a)

ba
: (25)

In (25), substitute the values a = � � � (assumed positive) and b = � + t, which makes
(25) equal to the numerator of (24). Likewise substitute the values a = � � � and b = �
into (25), which makes (25) equal to the denominator of (24). Next make use of the right

hand side of (25) to evaluate the numerator of (24) (for values a = �� � and b = � + t) and
the denominator of (24) (for values a = � � � and b = �). After simpli�cation, equation

(24) then gets transformed into

�(t) =

�
�

� + t

����
: (26)

Because � and � have economically intuitive meanings, while � and � have no economic

signi�cance per se, it will be more appealing in this paper to work with the inverse of (23),

namely

� =
��
�

�2
; � =

�

�2
: (27)
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After substituting from (27), the relevant discount factor (26) can be rewritten as

�(t) =

 
1

1 + �2

�
t

!(�� )2��
: (28)

From (20), the relevant discount rate corresponding to (28) is

R(t) =

h�
�
�

�2 � �i ln�1 + �2

�
t
�

t
: (29)

Equations (29) and (28) give simple closed-form expressions for discounting a future

whose discount rates are themselves uncertain. Note from formulas (28) and (29) that

�(t) ! exp(��t) and R(t) ! � in the limit as � ! 0. Note also that �(t) ! 0 and

R(t) ! 0 in the limit as t ! 1. Finally, and most importantly, notice the sensitivity of

both formulas (28) and (29) to �. Higher risk aversion causes higher discount factors and

lower discount rates. This e¤ect can be quite pronounced, as a numerical example in the

next section will demonstrate. Actually, as previously indicated, a limiting argument applied

directly to (24) shows that su¢ ciently high risk aversion � � �2=�2 implies that �(t) = 1

and R(t) = 0 for all t.

What remains is to calibrate �reasonable�values of �, �, and �, followed by a plausible

numerical exercise that conveys some implications of risk-adjusted gamma discounting for

the distant future.

5 A Simple Numerical Gamma Example

The primitive exogenous driver in this paper is the uncertain future productivity of capital

r, which is assumed to be a random variable distributed as a gamma PDF with mean � and

standard deviation �. As previously mentioned, my base-case point-estimate deterministic

values were (r=6%, �=3, g=2%). Now I investigate what happens when r is turned into

a random variable by a mean-preserving spread in the form of a gamma distribution with

� > 0. Thus, under uncertainty, my base-case average real rate of return on capital is

E[r]=6% per year. (Again, I personally view E[r]=6% as being much too high, but the

�shock value�of the numerical example is to show that even with E[r] as high as 6% there

might be strong e¤ects.) My base-case CRRA coe¢ cient remains �=3. My base-case

average growth rate is E[g]=2% per year. Notice that these base-case expected values are

consistent with the fundamental Ramsey equation (9). Were � to be changed substantially,

then E[r] and E[g] would not mesh quite so nicely with past reality. If �=2 and E[r] = 6%,
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then (9) implies E[g] = 3%, which is perhaps too high. If �=4 and E[g] = 2%, then (9)

implies E[r]=8%, which is also perhaps too high. So I think it is fair to say that this

proposed package of base-case values (E[r]=6%, �=3, E[g]=2%) is internally consistent and

looks more or less �realistic��even though the zero rate of pure time preference is a tip-o¤

that the analysis is intended to be normative.

What remains to fully specify my base case under uncertainty is to choose �. I choose

for my base case � = 3% per year. Aside from having some desirable calibration properties

(as will be shown), �=3% also has the useful quality of being a round number that will

simplify numerical calculations. The Stern Review used a deterministic discount rate of r

not very much above 1% per year10, which was widely criticized by other economists as being

much too low.11 The value � = 3% (along with � = 6%) implies from gamma cumulative

distribution functions for (22), (27) that P [r < 1%] � :005 = 1=200, which I would regard
as an extraordinarily small probability that the future rate of return r will be less than 1%.

Speaking loosely, I am assigning a subjective con�dence level of 99.5% to r being above

1%, thereby, I hope, forestalling criticisms that the results of this paper are coming from

assuming too-high probabilities of too-low rates of return in the left tail of the gamma PDF.

The numerical results of this paper are de�nitely sensitive to the choice of �. If � > 3%,

then the striking outcomes of the numerical examples to be presented will become yet more

pronounced, thus making my case stronger. (Even just choosing � = 3:5% makes a big

di¤erence in strengthening my numerical results.) Therefore, I do not explore further in the

direction of � > 3%. In the other direction, if � is chosen to be even a little bit lower than

3% then the implied probabilities of low-r values become almost ridiculously small. For

example, if � = 2:5%, then P [r < 1%] � 1=1300, which I would regard as an incredibly

low probability. (Even my base case P [r < 1%] � 1=200 seems to me to be bending over

backwards to assign tiny probabilities to low values of r.)

With �=6% and �=3%, the implied gamma PDF is shown as the curve in Figure 1. The

mean is 6%, the median is 5.5%, and the mode is 4.5%.

10Stern (2006) actually chose as base case r �1.4% per year, which, taking literary licence here, I am
interpreting as �not very much above 1% per year.�
11Among many other such criticisms, see, e.g., Dasgupta (2008), Nordhaus (2007) or Weitzman (2007).
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Figure 1. Gamma PDF of y=f(r) and x=r for base-case example.

With �=6% and �=3%, some numbers describing the cumulative distribution function

of r at the lower end of its range are given in the following table.

br = .5% 1% 1.5% 2% 3%

P [r � br] = .04% .49% 1.9% 4.6% 14.3%

Table 2: Lower-End Probabilities of Future Capital Productivity

I think it is fair to say that the numbers in Table 2 portray a situation where especially

low values of the future productivity of capital are extremely unlikely. Nevertheless, it

turns out that, even with these arguably much-too-small probabilities, there is su¢ cient fear

of catastrophic low-productivity states to drive the strong numerical results that follow.

Plugging the base case � = 3, �=6%, and �=3% into (28) and (29) gives the super-simple

formulas

�(t) =

�
1

1 + :015 t

�
: (30)

and

R(t) =
ln (1 + :015 t)

t
: (31)

Some numerical values of R(t) and �(t) from (30) and (31) are given in the following

table.
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t = 50 100 150 200 300 500 1,000

R(t) = 1% .9% .8% .7% .6% .4% .3%

�(t) = 57% 40% 31% 25% 18% 12% 6%

Table 3: R(t) and �(t) as functions of future year t

Even considering the enormous magnitude of the simpli�cations that have gone into this

model, I �nd the numbers given in Table 3 to be striking. The reader should con�rm

that the di¤erences between the discount factors �(t) from Table 1 and �(t) from Table 3

are enormous. I will not clutter up the paper further by considering too many alternative

numerical variants of Table 3, but su¢ ce it here to say that results are still notable when

parameter values are reasonably close to my base case. As just one example, consider

the e¤ect of di¤erent coe¢ cients of relative risk aversion on the discount factor �(t) from

choosing �=2:5 or �=3:5 (instead of the base case �=3). In the interest of saving space,

I will not reproduce two supplementary versions of Table 3 for alternative values �=2:5 or

�=3:5, but content myself here with showing what happens for a �representative� time of

two centuries hence (t=200). From Table 3, �(200 j � = 3) = 25%. Simple calculations

from (28) indicate that �(200 j � = 2:5) = 12:5%, while �(200 j � = 3:5) = 50%. So there is
genuine sensitivity of � to �, with higher values of � giving higher values of �. But I think

it is fair to say that the �big picture�is not dramatically altered. Note that it is very easy

to perform sensitivity analysis here. Given the simple closed-form solutions (29) and (28),

readers can readily plug in their own favorite parameter values and calculate what happens.

Why do such striking results as shown in Table 3 emerge from the small amount of

probability calibrated (via choosing �=3%) to P [r � 1%] � 1=200? The answer is that

the moderate degree of relative risk aversion represented by �=3 is su¢ cient (along with the

empirically-compatible zero rate of pure time preference) to make a representative agent fear

greatly catastrophic states of low-r productivity, even though their probabilities of occurrence

(from Table 2) are tiny. As was already pointed out in connection with (1)-(4), over time

the higher rates of return discount themselves exponentially out of existence, enhancing

over time the impact of lower and lower rates of return. This type of e¤ect is enormously

magni�ed after risk-adjusted weighting of probabilities by marginal utilities. What drives the

striking results of Table 3 is the great fear (via �=3) of catastrophic damages to productivity

contained in the far left tail of the gamma PDF. This example seems to be hinting that the

�fear factor� associated with low-probability high-impact catastrophic states may play a

signi�cant role in long-term discounting. In a sense, low e¤ective discount rates and high

e¤ective discount factors are being applied to CBA as a kind of insurance policy against the

possibility of really bad future outcomes.
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A simple numerical illustration of the e¤ect of this �fear factor�is the following. Consider

the value r<0:5%, which from Table 2 occurs with probability�1/2500. Because the r<0:5%
state occurs only with a seemingly negligible probability, it might be reasonable to expect

a negligible impact on the discount factor. However, this r<0:5% state is catastrophic

because, in optimal Ramsey growth with no time preference, it forces current generations to

severely repress consumption to save capital for future generations. A zero �utility discount

rate�prohibits shifting the bad consequences onto the far-distant future. It turns out that

E[r j r � :5%] = :4%. In what follows, for an illustrative exercise I use this :4% number

as a certainty equivalent. Compared with the base case r=6%, from equation (10) the ratio

of the two initial consumptions is 6=:4 = 15, meaning that C�6%(0) = 15 � C�:4%(0). With

�=3, this factor of 15 for consumption ratios translates into a factor of 153 = 3375 for the

ratio of initial marginal utilities. This huge factor of 3375 for the ratio of initial marginal

utilities makes itself felt strongly even though P [r � :5%] � 1=2500. Apparently, a relative
risk aversion coe¢ cient of �=3 is powerful enough (via its cubic leverage e¤ect on marginal

utility) to make a sizable impact on distant-future discounting.

The risk-adjusted gamma discounting examples of this paper have C�r (0) being strongly

reactive to catastrophically-low values of r because C�r (0) _ r. It is here that Ramsey�s

zero discounting of future utilities makes itself most felt. With no time preference, there is

no incentive to shift the burden of limited consumption prospects forward to distant future

generations. Rather, low-r states cause present generations to sacri�ce consumption in the

present. This feature, when greatly leveraged by risk aversion into marginal-utility-adjusted

probabilities, largely drives the numerical results of Table 3. As for interpretation, I believe

that the results of this paper should be understood in the normative spirit of the Ramsey

model itself (with its �ethical�zero rate of pure time preference), rather than in any literal

descriptive sense.

An especially insightful way to understand what is happening is to ask what is the risk

adjusted PDF that corresponds to (22). Let this risk-adjusted PDF, where the probabilities

are weighted by marginal utilities, be denoted h(r). From combining (22) and (27) with (7)

and (10) (for t=0), the relevant marginal utility weighted PDF corresponding to (22) is also

a gamma distribution of form

h(r) =
ba

�(a)
ra�1e�br; (32)

where, here,

a =
�2

�2
� �; b =

�

�2
: (33)

Fortuitously for giving strong insights, in the base case here (�=3, �=6%, �=3%), the

PDF h(r) takes an especially simple form. When these particular base-case parameter
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values (�=3, �=6%, �=3%) are plugged into (33), then a = 1 and b = 1=:015. The PDF

(32) then becomes the especially simple exponential form

h(r) = � exp (��t) (34)

with �=662
3
, which is depicted in Figure 2.
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Figure 2. Risk Adjusted PDF of y=f(r) and x=r for base-case example.

What is happening here is quite remarkable. The risk-adjusted version of the gamma

distribution for the base case (�=3, �=6%, �=3%) becomes the exponential distribution

(34), whose mean is 1.5% and median is �1%. Compared with the gamma distribution of
Figure 1, the exponential distribution in Figure 2 shifts the marginal-utility-adjusted PDF

extremely strongly toward putting large risk-adjusted probability weights on very low values

of r. To see what it is doing in the marginal-utility-weighted PDF (34), some numbers

describing the risk-adjusted cumulative distribution function of r at the lower end of its

range are given in the following table.

br = .5% 1% 1.5% 2% 3%

P [r � br] = 33% 55% 70% 80% 91%

Table 4: Lower-End Risk Adjusted Probabilities of Future Capital Productivity
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The risk-adjusted results of Table 4 should be compared with the non-risk-adjusted results

of Table 2. Because the lower-tail probabilities of r in Table 4 are so much higher than the

lower-tail probabilities of r in Table 2, the risk adjustment of probabilities by marginal utility

weights makes an extraordinary di¤erence on raising signi�cantly distant-future discount

factors.

6 Discussion

Needless to say, an overwhelming number of caveats apply to the super-simple model of this

paper. When layers of reality are piled on, there is no way that such strong results as those

shown in Table 3 will continue to apply.

For one thing, the idea that the future productivity of capital is set in stone tomorrow,

and consumption is instantaneously adjusted immediately after making the CBA decision

today, is very extreme, to put it mildly. Nevertheless, I believe that some of the �avor of

the model of this paper should remain even after waiting a reasonable amount of time for

the future rate of return to reveal itself. If the permanent productivity shock occurs after

T years, then one should multiply the �(t) values in Table 3 by some appropriate discount

factor of form �T = exp(�r0T ) < 1, thereby lowering the applicable discount factors in

Table 3. Even so, I believe that the e¤ects of this paper will likely show themselves, albeit

in dampened form.

The suggestive results of Table 3 seem as if they might be su¢ ciently powerful that

an appropriately mu­ ed version would likely survive some other modest modi�cations to

the basic model. For example, there will presumably be a mu­ ed version that describes

situations of weak mean reversion where low productivity can persist for a very long time,

but not forever. All in all, I suspect that it may be di¢ cult to dislodge the �nding that, at

least for some reasonable speci�cations, risk-adjusted gamma discounting might have some

very di¤erent implications for evaluating the distant future than discounting at a constant

rate.

As was mentioned earlier, under uncertainty the e¤ect of higher or lower risk aversion

embodied in the coe¢ cient � has the opposite e¤ect on discounting than what is convention-

ally believed. The conventional normative interpretation, whether implicitly or explicitly,

begins by postulating some growth rate g, and then infers from the fundamental Ramsey

equation (9) what is the implied discount rate r, given the assumed degree of relative risk

aversion �.12. Seen in this light, the conventional wisdom is that, other things being equal

(i.e., for given projected g), higher values of risk aversion � imply higher discount rates r.

12See, e.g., Arrow et al (1995)
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Thus, proponents of low discount rates for climate change CBA typically favor low values

of relative risk aversion (as well as near-zero rates of pure time preference). For example,

the Stern Review13 proposed g � 1:3% per year, � � 1, and � � :1% per year (as a symbolic
proxy for � = 0), which implied that r � 1:4% per year. Since discounting at r � 1:4% can

give a very di¤erent CBA from discounting at a rate which is closer to real-world average

annual rates of return (say, for example, r � 6%), a �restorm of controversy swirled around

whether or not Stern�s results were due primarily to discounting at such a low rate.14

This paper is hinting that it might matter whether a general-equilibrium or a partial-

equilibrium approach is taken in interpreting the normative Ramsey discounting equation

under uncertainty. It seems to me that the fundamental unknown for the distant future is

productivity. The realized future productivity of capital r then induces (via an assumed

value of �) the endogenously-chosen future growth rate and the endogenously-chosen con-

sumption level, more than the other way around. In the climate-change application, the

uncertainty about the distant-future productivity of capital is likely exacerbated by the

unknown e¤ects of climate change itself, because the impact of the relevant �damages func-

tion� on distant-future productivity seems so fundamentally uncertain, especially at high

temperatures.15

When an uncertain future real rate of return on capital r drives an uncertain future

growth process of the form C(t) = C(0) exp(gt), where both C(0) and g are endogenously

chosen to maximize Ramsey welfare, the e¤ect of the risk aversion coe¢ cient � on discounting

is reversed from the situation where both C(0) and g are viewed as exogenous and there is no

optimization. Within the uncertainty framework of this paper, higher value of � cause lower

�e¤ective�discount rates. As was shown by numerical example, the impact of uncertain r

on lowering the �e¤ective�distant-future discount rate can be quite pronounced, even for

modest degrees of relative risk aversion corresponding to � � 3. Under this interpretation,
the Stern Review might have made a stronger case for low �e¤ective�discount rates if, in

addition to a near-zero rate of pure time preference, it had postulated � � 3 along with

uncertainty about future productivity (including damages under climate change). Such an

approach might have been more di¢ cult to criticize on grounds of not matching reality-based

projections, because it would be consistent with E[r] � 6% per year and E[g] � 2% per year.
13Stern (2006).
14Among many other such criticisms, see, e.g., Dasgupta (2008), Nordhaus (2007) or Weitzman (2007).
15This argument, however, requires a tricky �xed-point reinterpretation of the reduced form PDF of r,

because higher growth rates can cause higher emissions, which make future temperatures higher, which drives
down future productivity.
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7 Concluding Remarks

When future discount rates are uncertain but have a permanent component, then the nor-

mative discount rate declines over time toward its lowest possible value. The present paper

has applied this basic idea to risk-adjusted gamma discounting. The core model is so crude

that its implications are nowhere near to being de�nitive, but rather should be seen as sug-

gestive at best. Some simple numerical examples hint that adjustments for risk, in the form

of marginal-utility-weighted probabilities in a Ramsey optimal growth setting, may exert a

possibly strong e¤ect on raising the normative distant-future discount factor. Empirically,

this feature might have rami�cations for climate-change CBA �by weighting the distant

future more heavily than is done by standard exponential discounting at a constant rate.16

In the context of climate change, where reduced-form productivity is itself an uncertain

function of future temperature increases, the �ndings of this paper constitute yet another

warning that the results of CBA can be largely driven by the �fear factor�associated with

low-probability high-impact catastrophes.17
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