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At the onset of the 2008 financial crisis, stock return volatility skyrocketed to new record

levels as stock prices plunged. At the same time, the price of Treasury bonds shot up,

as investors dumped risky stocks and purchased safe Treasuries. The correlation between

stocks and Treasury bonds turned strongly negative. This behavior of stocks and bonds in

the Great Recession stands in sharp contrast with their behavior during the equally severe

1981-82 recession, when investors dumped both stocks and Treasuries, and their correlation

was strongly positive (see Panel A of Figure 1).1 Indeed, over the years several properties of

the relation between stock and bond prices and their volatilities have changed. For instance,

Treasury bonds’ volatilities and their yields were positively related in the 1980s, while they

have been negatively related in the last decade (see Panel B of Figure 1). Similarly, and

perhaps even more puzzingly, while the stock market volatility is mostly negatively related

to its price-earnings ratio, it occurs at times that volatility increases when prices increase,

as for instance in the late 1990s (see Panel C of Figure 1).2 In this paper we show that all

of these stochastic changes in the relation between stock and bond prices, volatilities, and

cross-covariance, are in fact interconnected, and generated by market participants’ variation

in their beliefs about economic and inflation regimes.

We study an endowment economy in which the drift rates of real earnings growth, real

consumption, and inflation follow a joint regime-switching model. Market participants can-

not observe the current regime and thus must learn about it by observing real fundamental

growth, inflation, and other signals. Investors also suffer from some degree of “money illu-

sion,” that is, they partly discount future real cash flows using a nominal stochastic discount

factor. This latter assumption embedded in our learning-based model allows us to study the

relative importance of the “proxy hypothesis” of Fama (1981) and the “money illusion hy-

pothesis” of Modigliani and Cohn (1979) as competing explanations of the joint comovement

of stocks and bonds. We obtain closed-form formulas for stock and Treasury bond prices,

their volatilities and cross-covariances. Because we, as econometricians, do not have full

information about the signals used by market participants to form their beliefs, we exploit

our analytical formulas and estimate the time series of beliefs from fundamentals as well as

prices, volatilities, and covariances.

Our empirical results suggest that while some degree of money illusion is important to fit

1See also Baele, Bekaert, and Inghelbrecht (2011) and Campbell, Sunderam, and Viceira (2009).
2Most asset pricing models predicts a negative relation between aggregate volatility and price valuations.

For instance, both the habit formation model of Campbell and Cochrane (1999) [see Figures 3 and 5] and
the long-run risk model of Bansal and Yaron (2004) [see Section II.C.3] imply a negative relation between
valuation ratios and volatility (see also Beeler and Campbell (2012)). Using data from Bob Shiller’s web
site and daily returns from 1926 to 2008 from CRSP we find that correlation between volatility and the
price/earnings ratio turned positive also in the late 1920s, in the postwar period, and in the late 1950s.
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asset prices, the bulk of the (co)variation over time of stocks and Treasury bonds is chiefly

explained by the learning dynamics. The latter also generates a strong time variation of the

conditional relation between return volatilities and price valuations. Indeed, our estimated

model provides a coherent quantitative explanation behind the dynamic nature of stock and

bond prices, volatilities and comovement.

Consider first the time varying comovement between stocks and bonds returns shown

in Panel A of Figure 1. Our estimated model suggests that in the early 1980s, investors

faced large uncertainty about whether the U.S. would enter a persistent stagflation regime.

Any CPI reading above market expectations was then taken as an indication that the U.S.

was transiting into such regime, which brings about low growth and high inflation. The

former makes stock prices decline, the latter makes long-term yields increase, and thus

bond prices decrease. Thus, data-driven fluctuations in investors’ beliefs about a stagflation

regime make the prices of stocks and Treasuries move in the same direction, and increase

the volatility of both. In the last decade the opposite is happening. The market now fears a

deflationary regime, which is accompanied by zero or negative inflation and low growth. In

this case, CPI news above expectations are good news for the economy, as investors interpret

them as signals that the bad deflationary regime could be averted. Stock markets rise at

higher-than-expected CPI, and Treasury yields increase in expectation of higher inflation.

Thus, data-driven beliefs about entering a deflationary regime push the prices of stocks and

Treasuries in opposite directions. That is, the same economic mechanism – the signaling role

of inflation – generates diametrically opposite implications about the comovement of stock

and bonds, depending on market beliefs about the current regime.

This time-varying signaling role of inflation not only brings about a strong time-variation

in the joint behavior of stocks and bonds, but it also helps explain other phenomena as well.

Consider for instance the time varying relation between yields and bond return volatility,

documented in Panel B of Figure 1. In late 1970s - early 1980s, higher inflation realizations

brought about an increase in the beliefs of transiting to a high inflation regime. The increase

in expected inflation pushed up yields while the increase in uncertainty pushed up volatility.

In the 1990s, inflation uncertainty subsided, and agents’s beliefs settled for middle regimes,

again leading to a positive correlation between yields and volatility, both of them lower.

As discussed in the previous paragraph, the new millennium, in contrast, brought about a

renewed uncertainty about the inflation regime, this time on whether a deflationary regime

may occur. Such uncertainty increases bond return volatility, while yields decrease because

of lower expected inflation, leading to a negative relation between bond volatility and yields.

4



Indeed, a similar economic mechanism explains the strong time variation in the relation

between stock return volatility and the P/E ratio. For instance, according to our estimates,

the positive relation between volatility and prices in the late 1990s was due to an increase in

investors’ beliefs about the U.S. entering into a sustained high growth regime. These beliefs

increased both the P/E ratio, as they increased expected cash flows, and volatility, as they

increased the uncertainty on whether this transition to a high growth state was true or not.

Our model not only provides a unified economic framework explaining several facts about

the dynamic relations between stock and bond prices, volatilities, and correlations, but it

also generates additional testable predictions, which we quantify by running Monte Carlo

simulations. For instance, the time varying signaling role of inflation predicts that the

covariance between stocks and bonds should be related to expected inflation, and especially to

“extreme inflation” probabilities, that is, the probability of very high and very low inflation.

Using data from the Survey of Professional Forecasters (SPF) we find strong evidence about

both channels: Stock-bond covariance is higher when expected inflation is higher, when the

probability of high future inflation is higher, and when the probability of a low/negative

inflation is lower. Similarly, we find evidence that inflation uncertainty is also related to

the comovement of stocks and bonds, as is earnings uncertainty once it is interacted with

the extreme inflation probabilities, as predicted by the model. Finally, the regime switching

model with learning also predicts that the relation between stock and bond covariances are

non-linearly related to asset prices. We find evidence of such non-linearities in the data.

Similar empirical results hold for bond and stock return volatility. For the former, con-

sistently with the model’s main mechanism, we find that bond return volatility is related to

expected earnings, to extreme inflation probabilities, and to inflation and earnings uncer-

tainty, although the statistical significance of the latter depend on proxies. Intriguingly, and

consistently with the model’s prediction, we find that bond return volatility is non-linearly

related to the long-term yield, being higher when the long-term yield is both high or low.

This result is consistent with agents’ uncertainty about entering either the hyper-inflation

regime or the deflationary regime, as explained earlier. In either case, bond return volatility

is high because uncertainty is high, but the level of long-term yields are at their opposite ex-

tremes. This insight may also explain the weak evidence in favor of a linear relation between

volatility and bond yields (see e.g. Collin-Dufresne and Goldstein (2002)).

Finally, we also find empirical support for the model’s prediction that stock return volatil-

ity should be higher when expected earnings are lower, when extreme inflation probabilities

are higher, and when earnings uncertainty is higher, although in all these cases, the R2 is
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relatively low, in the range of 10% to 20%. Interestingly, however, Monte Carlo simulations

of the model indeed show that it is extremely hard to forecast stock return volatility, using

either fundamentals or prices. For instance, even in simulations when there is no noise in

the volatility estimate, the model produces a modest R2 = 12% when we consider a linear

regression of volatility onto bond yields and log P/E ratios. The R2 in simulations increases

considerably when non-linear terms are added, to an adjusted R2 = 34%, but it is far from

perfect. The empirical data show a similar pattern, namely, that a linear regression of in-

tegrated stock return volatility on long-term yields and log P/E ratio gives insignificant

coefficients, while once non-linear terms are included, they are all strongly significant. These

nonlinearities are naturally generated by the learning model we propose in this paper.

Our paper is related to numerous strands of literature. First, it is related to the previous

literature about Bayesian learning and asset prices, and especially David (1997), Veronesi

(1999), Veronesi (2000), and David (2008). Compared to these articles, we consider a much

richer environment to investigate the joint dynamics of stocks and Treasury bonds. Through

a careful estimation of the model, we identify one specific novel mechanism, the time-varying

signaling role of inflation, as the main driver of the co-movement of stocks and bonds, for

which we provide additional empirical evidence. Uncertainty about inflation also features in

Piazzesi and Schneider (2006), who embed learning dynamics in a recursive utility framework,

and show that high inflation shocks signal bad news for consumption growth, which in turn

explain a positive term structure of interest rates. In our model, however, inflation may

signal bad times or good times, depending on current beliefs about composite regimes.

Our paper is also related to the literature on consumption-based models to explain the

dynamics of stock and/or bonds and their second moments (e.g. Campbell and Cochrane

(1999), Bansal and Yaron (2004), Wachter (2006).) These articles do not examine the

joint dynamics of stocks and bonds. Brandt and Wang (2003) and Bekaert and Grenadier

(2010) use habit formation models to study stocks and bonds, but they do not focus on

the dynamics of their conditional covariance, and, in particular, what economic mechanism

is responsible for its sign changes. Our paper offers a novel explanation, the time varying

signaling role of inflation, which we find support for in the data. Our model also produces

additional implications on the ever changing relation between yields, price-earnings ratios,

and conditional volatilities which we test in the data.

Our empirical investigation of time varying second moments also connects our paper to

the vast empirical literature on time varying volatility, of which we do not attempt a survey,

but refer to Anderson, Bollerslev, and Diebold (2010) for recent advances and references,
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and to Engle and Rangel (2008) and Ludvigson and Ng (2007) for recent contributions on

the relation between stock return volatility and fundamentals. Unlike this literature, we

introduce and estimate a general equilibrium model to obtain new predictions about the

joint dynamics of stocks and bonds, and their relation to fundamentals and price valuations.

Finally, our work relates to the literature on money illusion and asset prices. Our mod-

eling device is borrowed from Basak and Yan (2010), who show that money illusion can

explain several patterns of stock and bond returns. Our model with learning about compos-

ite regimes, however, highlights an amplification mechanism that explains several additional

facts about the dynamics of second moments. Piazzesi and Schneider (2008) show that money

illusion can explain why nominal interest rates and the price-dividend ratio on housing are

sometimes positively correlated (as in late 1970s/early 1980s) and sometimes negatively cor-

related (as during 2000’s housing boom). While our model also generates dynamic variation

in correlations, the channel is different, ours being due to learning about composite regimes,

which in turn induces the time varying signaling role of inflation.

The paper develops as follows. Section I describes our general equilibrium model and our

main asset pricing formulas. Section II discusses our empirical methodology, while Section

III describes the empirical results. Section IV tests the model’s main predictions about the

comovement of stocks and bonds, while Section V focuses on the volatility of stocks and

bonds. Section VI contains an out-of-sample forecast exercise, and Section VII concludes.

An appendix contains the proofs of the propositions, as well as details of our empirical

methodology.

I. Structure of the Model

We consider a standard endowment economy populated by consumers/investors who are

endowed with constant relative risk aversion (CRRA) preferences

U(C, t) = e−ρt C1−γ

1 − γ
(1)

γ is the coefficient of relative risk aversion, and ρ is the parameter of time preference.

There are three fundamental variables: the representative agent’s real consumption Ct,

aggregate real earnings Et, and the nominal price of aggregate consumption Qt. Their

stochastic variation is described by the joint diffusion processes

dCt

Ct
= κt dt + σC dWt, (2)
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dEt

Et
= θt dt + σE dWt, (3)

dQt

Qt
= βt dt + σQ dWt, (4)

where Wt = (W1t, W2t, W3t, W4t)
′ is a four-dimensional vector of independent Brownian pro-

cesses, and σi, for i = C, Q, and E, are 1 × 4 constant vectors, known by investors.

Investors do not observe the drift rates κt, θt, and βt, whose joint dynamics are described

below, but learn about them by observing realized consumption growth dCt/Ct, inflation

dQt/Qt and earnings growth dEt/Et. Investors also observe an unbiased signal, St, on

earnings’ drift:
dSt

St
= θt dt + σS dWt, (5)

where σS is known by investors. To streamline the notation let Xt = (Ct, Qt, Et, St)
′, which

has the drift vector νt = (κt, βt, θt, θt)
′, and volatility matrix Σ = (σ′

C, σ′
Q, σ′

E, σ′
S)′.

The drift vector νt follows a continuous-time Markov chain with n composite regimes and

generator matrix Λ. Each composite regime is a vector collecting the drifts of fundamentals

νi = (κi, βi, θi, θi), for i = 1, ..., n. The probability to move from regime i to j in the

infinitesimal time interval dt is

λijdt = prob
(
νt+dt = νj |νt = νi

)
, for i �= j, λii = −

∑
j �=i

λij.

Denote investors’ subjective probability of regime i as

πit = prob(νt = νi|Ft).

Given an initial condition π0 = π̂ with
∑n

i=1 π̂i = 1 and 0 ≤ π̂i ≤ 1 for all i, from Wonham

(1964) the probabilities πt = (π1t, .., πnt)
′ follow the Vector Autoregressive process

dπt = Λ′πt dt + Σπ(πt) dW̃t, (6)

where Σπ(πt) is a (n × 4) matrix, with i− th row given by

σi(πt) = πit [ ν
i − ν(πt)]

′ Σ′−1
, (7)

ν(πt) =
n∑

i=1

πit ν
i = E

(
dXt

Xt
|Ft

)
. (8)
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In (6), W̃t is a 4×1 vector of Brownian motions defined by normalized expectation errors:

dW̃t = Σ−1

[
dXt

Xt
− E

(
dXt

Xt
|Ft

)]
= Σ−1 (νt − ν(πt))dt + dWt. (9)

From this last equation, we can rewrite the process for fundamentals as

dXt

Xt
= ν(πt) dt + Σ dW̃t (10)

The vector processes in (10) and (6) fully characterize the economic environment, now

conditional on agents information Ft. Note that the same 4× 1 vector of Brownian motions

drive both fundamentals and agents’ beliefs. In particular, the quadratic diffusion term of

(6) is endogenously due to Bayes law: Intuitively, when investors’ current (prior) beliefs are

spiked around one regime, then the diffusion Σπ(πt) ≈ 0, that is, from Bayes rule we need

large news (dW̃ ) to move the posterior probabilities. Vice versa, if current (prior) beliefs

display large uncertainty (e.g. πt uniform across regimes), then Σπ(πt) is large, and even

small news move the posterior probabilities. This variation in the sensitivity of posterior

probabilities to news, and its dependence on current beliefs, is the key feature of the model.3

A. Money Illusion

Given CRRA preferences the real state price density is given by the marginal utility of

consumption e−ρtC−γ
t . Thus, the real and nominal stochastic discount factors (SDF) are:

Real SDF = e−ρ(τ−t)

(
Cτ

Ct

)−γ

;

Nominal SDF = e−ρ(τ−t)

(
Cτ

Ct

)−γ (
Qt

Qτ

)
Rational investors use the real SDF to discount real quantities, while agents suffering from

money illusion use the nominal SDF to discount real quantities. We follow Basak and Yan

(2010) and assume the mixed SDF

Mτ

Mt
= e−ρ(τ−t)

(
Cτ

Ct

)−γ (
Qt

Qτ

)δ

(11)

3Alternative learning models with an exogenous time-variation of signal’s precision would also generate
a time varying variance of state variables. Such model would require assumptions about the exogenous time
variation in signal precision, while in our model such variation is endogenous from the learning dynamics.
We verify that the beliefs stemming from our model conform to evidence from Surveys in Section III.A
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where δ ∈ [0, 1]. The two extremes δ = 0 and δ = 1 correspond to the rational and fully

illusioned investor, respectively. When 0 < δ < 1, we obtain an intermediate case in which

the representative agent suffers from incomplete money illusion, in the sense that inflation

only partly affects the real stochastic discount factor. We estimate the illusion parameter δ

along with the other parameters in Section III.

Given (11), the price of any asset with real payoff Dτ is obtained by the pricing formula

Pt = Et

[∫ ∞

t

e−ρ(τ−t)Mτ

Mt
Dτdτ

]
where the expectation is taken with respect to the agents’ information set.

B. Stock and Bond Prices

From (11) the stochastic discount factor follows the process

dMt

Mt
= −rf,t dt − σM dW̃t, (12)

where the market prices of risks are constant

σM = γσC + δσQ (13)

and the real rate is given by rf,t =
∑n

i=1 πitk
i with

ki = ρ + γκi + δβi − 1

2
γ (γ + 1) σCσ′

C − 1

2
δ (δ + 1) σQσ′

Q − γδσQσ′
C (14)

Exploiting (12), we obtain the following proposition:

Proposition 1. (a) The P/E ratio at time t is

Pt

Et
(πt) =

n∑
i=1

Gi πit (15)

where the constants Gi are given in closed form in equation (34 ) in the Appendix.

(b) The price of a nominal zero-coupon bond at time t with time to maturity τ is

Bt(πt, τ ) =

n∑
i=1

πit Bi(τ ), (16)
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where Bi(τ ) are functions of τ and are given in closed form in equation (37) in the Appendix.

In (a), we refer to each constant Gi as the conditional P/E ratio, as it represents investors’

P/E valuation conditional on regime νi. As in the classic Gordon growth model, we find

the conditional P/E ratio Gi depends on earnings’ drift rate θi, the conditional real rate ki,

the equity premium σMσ′
E , as well as the payout ratio, which we assume constant. Since

investors do not observe the regime νi, they weight each conditional P/E ratio Gi by its

conditional probability πit thereby obtaining (15).

Similarly, in (b) the bond price is a weighted average of the nominal bond prices that

would prevail in each regime νi, Bi(τ ), which we refer to as the conditional bond price. Again,

since investors do not actually observe the current regime, they price the bond as a weighted

average. Notwithstanding the regime shifts in drift rates, all asset prices follow continuous

paths, a result of the continuous updating of beliefs.

Let the nominal log stock price be given by

log
(
PN

t

)
= log (Qt Pt) = log(Qt) + log(Et) + log

(
n∑

i=1

πitGi

)
(17)

From Ito’s Lemma, we obtain the following proposition:

Proposition 2. (a) The volatility of nominal stock returns is:4

σN(πt) = σQ + σE +

∑n
i=1 Gi πit (ν

i − ν(πt))
′(Σ′)−1

P/E (πt)
. (18)

(b) The volatility of nominal bond returns is

σB(πt, τ ) =

∑n
i=1 Bi(τ )πit (ν

i − ν(πt))
′(Σ′)−1

B(τ )
. (19)

Intuitively, from the nominal price (17) there are three sources of variation in returns:

shocks to fundamentals (Qt and Et) and shocks to beliefs (
∑n

i=1 πitGi). The volatility of

stock returns in (18) reflects these different sources of variation. In particular, the last term

in (18) is a learning-based, time-varying endogenous component that depends on beliefs πit.

To provide an intuition for (18), suppose that at some time t there are two regimes i and j

4With some abuse of terminology, we refer to the diffusion of a return process as its volatility. Equations
(18) and (19) show the diffusion vectors of the return processes. Strictly speaking, the “volatility” of stock
returns, for instance, is the scalar given by

√
σN (π)σN (π)′.
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for which πjt ≈ (1 − πit). In this case, we can rewrite (18) as

σN(πt) ≈ σE + σQ +
(Gi − Gj)πit (1 − πit) (νi − νj)

′
(Σ′)−1

P/E (πt)
(20)

Expression (20) shows that if the conditional P/E ratios in the two regimes are similar

to each other, Gi ≈ Gj, then the last term is close to zero, even when investors have a large

uncertainty on which regime holds, i.e. even if πit ≈ πjt ≈ 0.5. Vice versa, if Gi and Gj

are very different from each other, even mild uncertainty on the regimes may generate a

high learning-induced volatility, especially if P/E(πt) is small. This special case highlights

that volatility depends on a complex interaction of uncertainty across regimes (the term

πit(1 − πit) in (20)) and market participants’ price valuations of those regimes (the term

(Gi −Gj) in (20)). The volatility dynamics are more complex when investors give positive

probability to many regimes, but the general intuition is similar.

The form of the bond’s volatility in (19) is similar to the stock’s volatility in (18), except

that the conditional P/E ratio Gi in any regime i is replaced by the conditional bond price

Bi(τ ) in that regime. In addition, there is no exogenous fundamental component.

The two diffusion terms (18) and (19) are the heart of this paper. From these, we can

easily derive the covariances between stocks and bonds of different maturities as

Cov

(
dPN

t (πt)

PN
t (πt)

,
dBt(πt, τ )

Bt(πt, τ )

)
= σN(πt)σB(πt, τ )′ (21)

While it is hard to place a sign on the stock-bond covariance in general, we can do so

at points of time when only two of the n regimes have positive probability. In particular,

we are interested in finding intuitive sufficient conditions for the covariance to be positive or

negative. Such conditions will be useful to interpret the empirical results in Section II.

Proposition 3. Let there be 2 regimes i and j such that at date t πit + πjt = 1. Then

the covariance between stocks and bonds can be decomposed as

Cov

(
dPN

PN
,
dB(πt, τ )

B(πt, τ )

)
=

(Bi(τ ) −Bj(τ ))πit(1 − πit) [(θi − θj) + (βi − βj)]

B(πt, τ )

+
(Bi(τ )− Bj(τ )) (Gi − Gj) (πit(1 − πit))

2 × c0

B(πt, τ ) × P/E (πt)
(22)

and c0 = (νi − νj) (ΣΣ′)−1 (νi − νj)
′ > 0 is a constant.
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The first component of the stock-bond return covariance in equation (22) captures the

covariance between bond returns and the fundamental volatility of stock returns, namely,

σB(π, τ ) (σE + σQ)′. The second component in (22) captures instead the learning effect.

To further the intuition assume without loss of generality that the growth rate in regime

j is smaller than in regime i: θj < θi. Assume also that, quite naturally, the conditional

price/earnings ratio is smaller in the regime with lowest growth: Gj < Gi. The following

corollary provides a further characterization:

Corollary 1. Let θj < θi and Gj < Gi. The covariance between stocks and bonds

returns is

(a) negative if βj < βi and Bj(τ ) > Bi(τ );

(b) positive if βi < βj < βi + (θi − θj) and Bj(τ ) < Bi(τ ).

Condition (a) in Corollary 1 assumes that the low growth regime j corresponds to low

inflation and, quite naturally, the nominal bond price is thus higher in such a regime, Bj(τ ) >

Bi(τ ). In this case, both covariance terms in (22) are negative. The first term is negative

because negative shocks to earnings or inflation not only decrease directly the stock price

(as PN
t = Et Qt

(∑n
j=1 πjtGj

)
), but they also increase the probability to be in regime j

(low inflation), which in turn pushes up the bond price, as Bj(τ ) > Bi(τ ). The second term

is negative because an increase in the probability of being in regime j also reduces the P/E

ratio itself (as Gj < Gi), exactly when the bond price increases (as Bj(τ ) > Bi(τ )).

Condition (b) assumes the low growth regime j now corresponds to a high inflation

regime, βj > βi – although not too high – as well as again that the bond price in high inflation

regime is lower than in the low inflation regime, Bj(τ ) < Bi(τ ). Under these conditions, both

covariance terms in (22) are positive. The intuition is similar as in case (a): a negative shock

to earnings decreases the stock price (directly because earnings are lower and indirectly

because P/E is also lower), but it increases the probability to be in regime j which now

has high inflation. This change in belief push down bond prices, and generates a positive

covariance. Compared to case (a), though, there is a little difference in intuition in what

pertains to inflation shocks, which explains why βj has to be smaller than the upper bound

βi+(θi−θj). Indeed, a positive shock to inflation has the direct effect of pushing the nominal

stock price PN
t up (through Qt), but also to push the nominal bond price down, as investors

increase the probability to be in a high inflation state. An upper bound on βj limits the

impact of this inflation learning effect and thus ensures a positive covariance.
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The case with multiple regimes is more complex, and recall that (a) and (b) are only

intuitive sufficient conditions, but not necessary. The next section contains a numerical

example that puts together numerous effects in still a simplified setting. These results are

useful to understand the intuition of the empirical results in later sections.

C. A Numerical Example

The formulas in Propositions 1, 2, and 3 highlight that the regime shift model with learn-

ing generates strongly non-linear relations between stocks and bonds prices, their volatilities,

and their cross-covariances, which can also flip signs depending on conditions. Before turning

to the estimation, however, we illustrate such effects within a simplified example.

Let there be two real growth regimes with θL < θH , κL < κH , and three inflation regimes

βL < βM < βH. Suppose that recessions occur either in high inflation regimes (e.g. the

1980s) or in low/negative inflation regime (e.g. the Great Depression). That is, there are

only three composite regimes, paired as follows ν1 =
(
θL, κL, βL

)
, ν2 =

(
θH , κH, βM

)
and

ν3 =
(
θL, κL, βH

)
. To yield simple interpretable closed-form pricing formulas, assume here

that there are no regime shifts, i.e. Λ = 0. It follows that the conditional P/E ratios are:

G1 =
c

K + γκL + δβL − θL
; G2 =

c

K + γκH + δβM − θH
; G3 =

c

K + γκL + δβH − θL

where K = ρ− 1
2
γ (γ + 1) σCσ′

C − 1
2
δ (δ + 1) σQσ′

Q − γδσQσ′
C + (γσC + δσQ) σ′

E, and c is the

dividend/earnings payout ratio.

To simplify further, assume κL ≈ κH , so the main difference among the conditional P/E

ratios is due to inflation and expected earnings growth. Even if both regimes 1 and 3 have low

real earnings growth θL, note that G3 < G1: Because of money illusion, the conditional P/E

ratio during stagflation is lower than during low inflation, although real growth is the same.

Assume further than the high growth rate θH is sufficiently high such that the conditional

P/E ratio is highest in this regime. We thus have the ordering G2 > G1 > G3.

Similarly, conditional bond prices are

B1 (τ ) = e−(γκL+(1+δ)βL+J)τ ; B2 (τ ) = e−(γκH +(1+δ)βM+J)τ ; B3 (τ ) = e−(γκL+(1+δ)βH+J)τ

where J = ρ − γ
2
(1 + γ)σCσ′

C − (1 + ρ) γσCσ′
Q − (1+ρ)(2+ρ)

2
σQσ′

Q. In this case, if κL ≈ κH,

then B1 (τ ) > B2 (τ ) > B3 (τ ), as higher inflation lowers the conditional bond price.

The rankings of conditional P/E ratios and conditional bond prices are different in the
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three regimes. In particular, if there is uncertainty between boom and recession, it matters

greatly whether the recession is accompanied by high inflation or low inflation. In the former

case, we have G2 > G3 and B2 (τ ) > B3 (τ ). Thus, from Corollary 1 we should expect

a positive correlation between bond and stock returns. In contrast, if there is uncertainty

between boom and recession, but the latter is accompanied by low inflation, we have G2 > G1

and B2 (τ ) < B1 (τ ), and thus Corollary 1 implies a negative correlation.

With only three regimes we effectively have a two factor model, as the three probabilities

must sum to one. The low dimensionality of the economy in this example allows us to illus-

trate its properties by plotting three dimensional surfaces on the probability simplex, which

we do in Panel A - F of Figure 2. In each panel, we label the corners of the simplex accord-

ing to their characteristics: High Growth/Medium Inflation (HG, MI), Low Growth/High

Inflation (LG, HI), and Low Growth/Low Inflation (LG, LI).

Panel A plots the P/E ratio, which is highest in the (HG, MI) regime, the lowest in the

(LG, HI) regime, and somewhat in the middle in the (LG, LI) regime . As mentioned, the

difference in P/E ratio in the two Low-Growth regimes is due to money illusion. Panel B

plots the yield of the 5-year zero coupon bond, which is increasing in expected inflation, and

thus is highest in (LG, HI), intermediate in (HG, MI), and lowest in (LG, LI) regime.

Panel C shows the volatility of stock returns. As it can be seen, the volatility is the

smallest at the corners of the simplex. However, in real data, such corners are typically not

reached as learning takes time and regime changes make the posterior beliefs move away

from the corners. Return volatility is highest when there is uncertainty between regimes

(HG, MI) and (LG, HI) than when there is uncertainty between any other two pairs. The

reason is that the conditional P/E ratios are most apart from each other for the former two

regimes than any other pair of regimes, and thus the result follows from the discussion after

equation (20). Comparing the shape of volatility in Panel C with the P/E ratio in Panel

A, we see that as we move to the (HG, MI) regime, the P/E ratio increases and volatility

decreases. That is, in this example, booms are correlated with low volatility. However, we

also note that there are areas in which both the P/E and volatility increase, if good news

on economic growth are correlated with an increase in uncertainty, for instance.

Panel D shows the volatility bond returns. Once again, we see large non-linearities

compared to the yield in panel B. In particular, while lower yields are correlated with lower

volatility in general, we also see areas in which higher bond return volatility occurs when

yield are quite low, especially around the (LG, LI) corner. If beliefs hover around this corner,

we should observe a positive relation between bond return volatility and yields.
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Finally, Panels E and F report the covariance and correlation between stock and bond

returns. Focusing the discussion on Panel F for simplicity, the correlation is clearly positive

in the area closer to (LG, HI) corner. That is, if beliefs are moving around a period of low

growth and high inflation, stocks and bonds are moving in the same direction. As explained,

positive shocks to inflation increase expected inflation (which decrease bond prices) and

decrease expected future earnings (which decrease stock prices.) In sharp contrast, the

correlation turns negative around the edge between (HG, MI) and (LG, LI) corners. As

explained in Corollary 1, the reason is that in this case positive inflation shocks, which

decrease bond prices, are signals that the dreaded (LG, LI) regime may be averted, which

increase stock prices. The correlation between stocks and bonds is then negative.

Figure 3 plots the second moments described in Panels C to F against the log P/E ratios

and 5-year yield in Panels A and B. As it can be seen, even in this simple setting with

only three composite regimes, the relation between volatilities, covariances and asset prices

is strongly non-linear. For instance, in Panel A stock return volatility may be increasing or

decreasing in log P/E as well as in long-term yields. Covariances and correlations in Panels C

and D are also non-linearly related to prices and yields, and they turn negative for low yields

and medium high log P/E. Indeed, from Panel F of Figure 2 the negative correlation occurs

for probabilities between (HG, MI) and (LG, LI): The first regime has high P/E and medium

yields, while the second regime has low P/E and low yields, yielding the result. These non-

linear relations imply, for instance, that simple linear regression of second moments on asset

prices would not capture all of the information that the latter contain.

II. Estimation Methodology

A. Data

Aggregate earnings for the economy are approximated as the operating earnings of S&P

500 firms, and these data are obtained from Standard and Poor’s.5 Similarly, the aggregate

P/E ratio is estimated as the S&P 500 index at the end of quarter divided by operating

earnings. We use the Consumer Price Index (CPI), obtained from the Federal Reserve Bank

of St. Louis, as our inflation series, which is also used to discount nominal earnings. We

5Operating earnings typically exclude certain expense or income items that are nonrecurring or unusual
in nature, such as restructuring charges and capital gains/losses on unusual asset sales, and are hence used in
industry to assess the long term fundamentals of firms. For example, I/B/E/S uses this concept of earnings
in analyst surveys. Before 1988, only 4-quarter moving averages of earnings are available from Standard and
Poor. For consistency and to deal with seasonalities, we compute 4-quarter moving average of earnings also
for the remaining 1988-2010 period. Such earnings are used in the construction of the P/E ratio. Finally,
we winsorize the real earnings growth data at the 1% level to reduce the impact of extreme observations, as
observed in the recent crisis.
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fix the dividend/earnings payout ratio to c = 0.5. The time series of daily stock returns

is obtained from the Center for Research in Security Prices (CRSP), and the time series of

daily zero-coupon yields are from Gurkaynak, Sack, and Wright (2007). Realized volatilities

of stocks and bonds are estimated as squared average of daily returns in any given quarter.

Returns are not demeaned, although the demeaning of the series does not significantly affect

our results. BlueChip forecasts of aggregate earnings growth are from Buraschi and Welhan

(2013). All other survey data are from the Survey of Professional Forecasters (SPF) from

the Federal Reserve Bank of St. Louis.

One important issue is the definition of real consumption growth to use as fundamental

variable in the estimation procedure. While historically the “risk premium” puzzle litera-

ture concentrated on aggregate real non-durable consumption and services obtained from

the National Income and Products Accounts (NIPA) from the Bureau of Economic Analy-

sis, the more recent literature has questioned whether these consumption data are in fact

appropriate for asset pricing calculations. The skepticism stems from numerous sources:

First, NIPA quarterly data have been shown to be “managed” and smoothed using numer-

ous filters, which substantially dampens its volatility and increases its autocorrelation (see

Savov (2011)). Second, aggregate consumption may poorly reflect the consumption of the

representative investor in asset pricing models. For instance, low stock market participa-

tion hints at the necessity to use stock-holder consumption in asset pricing tests (see e.g.

Vissing-Jorgensen(2002), Malloy, Moskowitz, and Vissing-Jorgensen (2009)). Finally, per-

ceived consumption volatility may be higher than the realized volatility of NIPA consumption

due to fat tails or potential crashes (Barro (2006), Weitzman (2007)).

In this paper, we do not take a stand on this issue and rather proceed through a dif-

ferent route. Namely, we explicitly take into account that we, as econometricians, cannot

observe the true consumption of the representative investor. However, we can exploit NIPA

consumption growth as a noisy signal (for us) about the true consumption growth of the rep-

resentative investor. More formally, keeping the continuous time notation for convenience,

we treat the NIPA consumption growth
(
dĈt/Ĉt

)
as a signal for the true unobservable (to

us) consumption growth (dCt/Ct), a signal that we model simply as a linear regression:(
dĈt

Ĉt

)
= α0 + α1

(
dCt

Ct

)
+ σN dWN,t (23)

where dWN,t is a Brownian motion uncorrelated with other stochastic variables. Because

the representative agent’s consumption growth dCt/Ct affects the state price density and
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thus is reflected in asset prices, the estimation procedure described in Section II.B allows

us to estimate the coefficients α0, α1 and the signal noise σN . Clearly, the characteristics of

the consumption process that we estimate will also reflect the preferences we employ in the

model, but given the widespread use of CRRA utility in asset pricing, this choice offers a

solid benchmark to evaluate the empirical results, and assess any potential bias.

Our sample runs from 1958 to 2010. Our filtering process is started by using the sta-

tionary beliefs implied by the parameter values at the starting date. Since investors’ beliefs

at the initial date are likely influenced more strongly by most recent data received, as is

standard in Bayesian econometric methods, we use a burn-in period of 8 quarters and thus

report all results for the sub-sample from 1960-2010. Daily Treasury yields are only avail-

able since 1961Q3, and thus the sample for second moments of bonds only runs from 1962

to 2010. Finally, the Survey of Professional Forecasters’ dataset starts in 1968Q4, although

some variables are available for a shorter sample.

B. Estimation Methodology

We use both fundamental and financial variables to estimate the model’s parameters and

the time series of investors’ beliefs over fundamental composite regimes. For fundamentals,

we use inflation, real earnings growth, and real NIPA consumption growth. For financial

variables, we employ the time series of the S&P500 P/E ratios, the 3-month Treasury bill

rate, the 1- and 5-year Treasury bond yields, as well as, the stock return volatility, the 1- and

5-year bond return volatility, and their cross-covariances. Thus, inference is based on three

fundamental time-series and nine financial time series. We employ a Simulated Method of

Moments (SMM) method for inference, as described next.

Let Ψ denote the set of structural parameters in the fundamental processes of consump-

tion, inflation, earnings, signals, and NIPA consumption in equations (2) to (5), and (23).

We denote by L the likelihood function for the fundamentals data observed at discrete points

of time (quarterly), which we compute by simulating several sample paths of the state vari-

ables in small discrete subintervals using the Euler discretization scheme [see e.g. Brandt

and Santa-Clara (2002)].

The discretization to small subintervals approximate our continuous time specification,

which is required to obtain closed form formulae for the second moments of stocks and bonds.

The latter are key input to our empirical strategy. Indeed, we then use the pricing formulae

for the P/E ratio and Treasury bond prices in Proposition 1, their volatilities in equations

(18) and (19), and covariances in (21) to generate model-determined moments. Let {e(t)}
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denote the errors of the pricing and volatility variables, and define ε(t) =
(
e(t)′, ∂L

∂Ψ
(t)′
)′

,

where the second term is the score of the likelihood function of fundamentals with respect

to Ψ. We minimize the usual SMM objective, given in (49) in the Appendix. The details

are in the Appendix.

It is worth emphasizing three key aspects of our choice of the SMM method of estimation.

First, a simulation-based approach is necessary in our case since the likelihood function for

the fundamental data observed at discrete points in time is not available in closed-form.

Moreover, simulations allow us to construct the likelihood function of the data that we

actually observe, such as the four-quarter moving average of earnings growth that we have

available. By simulating four-quarter moving averages of earnings growth when we build

the likelihood function, we can address concerns related to time aggregation, for instance.

Second, our SMM approach allows us to account for the fact that the econometrician observes

only three fundamental variables, while investors in addition observe their true consumption

and signals about earnings, and hence update their beliefs about fundamental drifts based

on a finer information filtration. The simulation procedure ensures that we respect the

dynamics of beliefs that are implied by investors’ filter, explicitly given in (6), that we use

observable fundamental shocks (inflation, earnings, and consumption) as the main drivers

of such beliefs, and that we thus formulate the marginal likelihood of the data as perceived

by the econometrician. We note that this SMM procedure implies that beliefs are mainly

driven by observable fundamental shocks, providing an economic interpretation to our state

variables (“beliefs”), as it will be apparent in Section III.A.

Finally, the SMM simulation approach easily deal with the strong non-linearities embed-

ded in the Bayes updating formula for beliefs (equation (6)) and in the conditional second

moments of asset prices (equations (18), (19), and (21)). This capability allows to com-

bine information in asset price and volatility moments with the information in fundamental

data so that the extracted investors’ beliefs are potentially quite different from estimation

methods that rely only on fundamental information [see, for example, Hamilton (1989)].

B. Number of Regimes

Before we discuss our empirical results, we comment on our methodology to choose a

proper number of regimes. As is well known, formal tests on the number of regimes are

difficult and lack power (see e.g. discussion in Hamilton (2008)). Moreover, such tests only

rely on fundamental variables, and not on asset prices, and thus they are not suited to deal

for instance with “Peso Problems”, that is, the fact that asset prices depend on potential

regimes that may not occur in sample. Given our interest in estimating the model using both
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fundamentals and asset prices, we must take this problem into account. Because our SMM

estimation combines in one vector both scores from the likelihood function and pricing errors

from financial variables, we follow Gray (1996) and Bansal and Zhou (2002) and make use

of the GMM-based χ2 criterion to determine an appropriate number of composite regimes.

We settle on six composite regimes, whose parameters are discussed in the next section.

III. Estimation Results

Table 1 contains the estimates of our model. Panel A reports the preferences parameters.

Both the time discount coefficient ρ = 1.965% and the risk aversion coefficient γ = 10.56

are not dissimilar from findings in the recent literature. The money illusion coefficient is

δ = 0.8084, which highlights that nominal quantities directly impact the real stochastic

discount factor. Indeed, from (14) we obtain that the real rate of interest is related to

expected inflation, a finding consistent with e.g. Evans (1998). In subsection IV.C we

discuss the results when we do not impose money illusion.

Panel B reports the six composite regimes. Our estimates reveal that three composite

regimes have very low, in fact negative, earnings growth (θ1 = −5.18%), two regimes have

medium earnings growth (θ2 = 3.26%), and one regime has very high earnings growth

(θ3 = 5.41%). We denote these three growth rates as LG, MG, and HG, respectively. Panel

B also shows that negative earnings growth is accompanied by either medium (MI) or high

(HI) inflation (β3 = 4.67% or β4 = 10.19%), or (close to) zero inflation (ZI) β1 = 0.43%. In

contrast, low inflation (LI) β2 = 2.53% occurs only during booming periods (MG and HG).

Notable in Panel B is that the drift rates of the representative agent’s consumption

(dCt/Ct) are equal to each other, κi = 2.04% across the six regimes. Left unconstrained,

the SMM procedure led to very small differences in consumption drifts across regimes, vis-

ible only at the 3rd decimal point, and thus we opted to constrain them to be equal to

each other. That is, the representative agent’s true consumption growth is well described

by a simple i.i.d. process with no regime changes. While this finding contrasts with some

mild predictability observed in NIPA consumption, it is instead consistent with recent em-

pirical evidence that uses alternative proxies for consumption growth: For instance, Savov

(2011) finds that “garbage” consumption growth displays no serial correlation at the an-

nual frequency. Similarly, Malloy, Moskowitz, and Vissing-Jorgensen (2009) stockholder’s

consumption growth displays much weaker serial correlation than NIPA consumption.

Panel C of Table 1 reports the diffusion matrix of the fundamental variables. Earnings’

volatility, at 10.5% per year, is far more volatile than inflation, at 3.31%. The two series are
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instantaneously negatively correlated (correlation = -56%). The additional signal on earnings

drift is slightly less informative than earnings growth itself, as it has a larger volatility (12%).

Including the signal in the estimation enables us to better calibrate investors’ belief response

to earnings shocks, which affects all asset volatilities.

We estimate the volatility of the representative agent’s real consumption growth at 6.34%,

which is much higher than the NIPA consumption volatility during our sample (= 1.22%).

Recall the relation between NIPA consumption and true consumption growth of the represen-

tative agent (unobservable to the econometrician) is given by equation (23) whose estimated

regression coefficient α1 = 0.18 suggests that NIPA consumption growth is far smoother

than the representative agent’s consumption growth. To put our estimated volatility in per-

spective, Savov (2011) reports a volatility of “garbage consumption” of 2.88%, while Malloy,

Moskowitz, and Vissing-Jorgensen (2009) find stockholders’ consumption growth has 6.05%

volatility (and 18.5% for the top 30% of the distribution). Recent literature also suggests

to consider additional sources of consumption, such as durables (volatility 5.56%, e.g. Yogo

(2006)) or luxury goods (volatility ranging between 6% and 36%, e.g. Ait-Sahalia, Parker,

and Yogo (2004)), together with non-homothetic preferences. Finally, fat tails in the con-

sumption distribution, as in Barro (2006) and Weitzman (2007) would also lead to an effective

higher volatility (dispersion) of consumption growth.

Panel D of Table 1 reports the infinitesimal generator matrix Λ. In the interest of

parameter parsimony, we restrict Λ to depend only six jump intensities 0 = λ0 < λ1 < · · · <

λ5. The position of the λi in Λ was decided after a first estimation round with unconstrained

parameters. Using the scores of the likelihood function and the errors of the price and

volatility variables, we evaluate the SMM objective function, which serves as an omnibus

test statistic [see for example Gray (1996) and Bansal and Zhou (2002)]. The overall SMM

objective function value, which has a chi-squared distribution with 19 degrees of freedom, is

22.991, implying a p-value of 23.77%, so we fail to reject our model.6

B. The Dynamics of Beliefs

Figure 4 plots the time series of the conditional beliefs for each composite regime. The

left-hand side panels report the growth regimes, while the right-hand side panels report the

medium and high growth regimes. The visible patterns are in line with historical events:

The low growth probabilities spike at around NBER recession bands, although in different

6The on-line appendix compares our 6 composite regime model with a 4-regime model with two inflation
and two real earnings growth regimes. The 4-regime model is rejected (p-value = 2.77%). A 5-regime model
similar to our 6-regime model but without the zero-inflation regime is also rejected (p-value = 4.19%).
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panels depending on the time period. In the 1980s, the low-growth spike occurs in the high

inflation and medium inflation regimes (Panels A and C), while in the last decade they occur

in the zero-inflation regime (Panel E). The most common regime is the medium-growth, low

inflation regime (Panel B). The very high growth regime, in Panel F, only saw a mild increase

in probability in the late 1990s, and then again between the dot-com bubble crash and the

next recession. The posterior probability of this high growth regime never exceeded 25%.

While the beliefs extracted from fundamentals and financial variables are reasonable and

line up with historical events, we also compare them to the mean probability assessments

from the Survey of Professional Forecasters (SPF). Long time series of such SPF probabilities

are available only for a few series, one of which is inflation, specifically the growth rate of

GDP deflator (GNP deflator before 1992), and another is the probability of a recession. The

Appendix discusses the construction of such series, but in a nutshell, SPF also asks forecasters

to provide their probability assessment that the variable of interest (e.g. inflation) will be

in given intervals in following year. SPF then aggregates the data and provides the average

probabilities across forecasters for each interval. Panels A to D of Figure 5 compare the

marginal probabilities of each inflation regime (HI, MI, LI, ZI) from our model (black lines)

with the SPF probabilities (grey lines). Keeping in mind that the SPF probabilities are

about next year’s inflation and not of inflation regimes, it is still reassuring to see that the

correlations across the four panels range between 79% to 49%.7 Panel E reports instead the

SPF probability to be in a recession next quarter together with the marginal probability of

low growth (LG) from the model. Once again, the two series have a high correlation of 48%.

Panel A of Figure 6 plots realized inflation during the quarter (grey line) together with

model’s expectation (black solid line). As can be seen, the model’s expected inflation was

low in the early part of the sample, grew steadily up to early 1980s, move downward again

in the 1990s, and it dipped close to zero occasionally in the last decade. The plot also

reveals, however , that the model’s expectation does not match the high CPI inflation of the

late 1970s/early 1980s, but it is instead closer to the SPF consensus forecast of the GDP

deflator (dashed line), the only survey-based inflation forecast from SPF available for the

long sample. Panel A of Table 2 shows that a regression of CPI inflation on model’s expected

inflation gives an R2 = 52%, demonstrating that the model captures the main variation in

7There is by necessity some arbitrariness in the definition of the inflation ranges corresponding to
High, Medium, Low, and Zero inflation in SPF probabilities. In Figure 5 we defined cutoffs for
each inflation range as the middle point between the estimated inflation regimes, resulting in intervals
(−∞, 1.47),(1.47, 3.59),(3.59, 7.43),(7.43,∞). Small changes to these intervals do not change the results, and
in fact often increase the correlations with model probabilities. For instance, a High Inflation cutoff of 8%
instead of 7.43% increases the correlation in Panels A and B to 80% and 66%, respectively.
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average inflation. Panel B shows that the model’s expected inflation is highly correlated

with both the SPF GDP deflator expectation (93%) and the SPF CPI inflation expectation

(89%), where the latter is only available from 1981.Q3.

Panel B of Figure 6 plots realized real earnings growth (grey line) together with the

model’s expected earnings (black solid line). For comparison, we also plot the SPF real

GDP growth (dashed line). The model’s expected earnings is much smoother than realized

earnings, but a regression of realized earnings on model’s expected earnings still provides a

R2 = 25%, as shown in Panel A of Table 2. Panel B of the Table shows that the model’s

expected earnings is positively correlated with other proxies from surveys, such as SPF real

GDP, SPF real corporate profits, BlueChip earnings growth, although such correlations are

lower than in the case of inflation due to the higher volatility of real earnings.

B. The Dynamics of Asset Prices

We now discuss the model’s implications for the dynamics of asset prices. First, Panel

B of Table 1 reports the model-implied conditional P/E ratios and bond yields across the

six composite regimes. Recall that these are prices conditional on knowing which regime is

currently in force. For instance, if investors knew for certainty that the regime was medium

growth, low-inflation (MG,LI), then the P/E ratio would be 16.33, the 3-month yield 4.57%

and the long-term yield 4.64%, demonstrating a rather flat term structure. As intuition

would have it, higher growth generates a higher P/E ratio. The three low-growth (LG)

regimes have different P/E ratios depending on the inflation regime, with higher inflation

implying a lower P/E ratio. The difference is mainly due to money illusion, as the effective

real rate increases with higher inflation regime, which pushes down the P/E ratio (a small

effect also comes from different transition probabilities). The conditional bond yields also

have an intuitive pattern, with higher yields in higher-inflation regimes. The slope of the

term structure is negative in the high-inflation regime, positive in the zero-inflation regime,

and otherwise only mildly positive or essentially flat.

In terms of dynamics, Panel C of Figure 6 shows that the model’s implied P/E ratio

tracks well the realized P/E ratio, with the exception of the extreme valuations in the dot-

com period. Indeed, as in the data, the model’s beliefs (in Figure 4) imply a model P/E

ratio in the 15 - 17 range in 1960s/early 1970s, a much lower P/E around 10 in the late

1970s/early 1980s, and a steady increase to a P/E around 20 - 25 in the late 1990s, with

an abrupt drop and bounce back both after the dot-com bubble and in the 2008 crisis. A

regression of the realized P/E onto the model P/E reveals an R2 of 53%, showing that the

belief variations captures much of the variation in P/E ratios. Similarly, Panels A and B of
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Figure 7 show that the model’s implied 3-month and 5-year yield track well their realized

counterparts, with the exception of the 5-year yield missing the extremely high yields during

the early 1980s. Regressions of realized yields on model-generated yields produces R2 of 69%

and 67% for 3-month and 5-year yields, respectively, showing that the beliefs dynamics in

Figure 4 generate most of the variation in yields through the bond pricing formula (16).

Panels D of Figure 6, and C and D of Figure 7 show that the model-implied second

moments (black lines) track well the data counterparts (grey line). Indeed, regressions of

realized second moments onto the model’s counterparts gives R2 of 36%, 51% and 38%

for stock return volatility (ex-crash), the 5-year bond return volatility, and the covariance

between stocks and bonds, respectively. We focus on the economics of these dynamics in

the next section, but we notice here that the beliefs dynamics in Figure 4 not only are

able to capture economically significant amounts of the variation in fundamentals (inflation

and earnings) and prices (P/E ratios and yields), but also the variation in volatilities and

covariances. That is, our model whose five state-variables (beliefs) are mainly driven by

fundamental shocks (earnings, inflation, and consumption) contemporaneously capture the

variation of eleven time series.8

IV. The Time Varying Signaling Role of Inflation

Our model provides a relatively simple economic explanation for the dramatic time varia-

tion of the conditional covariance between stocks and bonds documented in Panel A of Figure

1: Inflation news are positive or negative signals of future economic growth depending on

investors current beliefs about the underlying composite regime.

To better quantify this mechanism and obtain predictions on empirically observable quan-

tities, we perform two simulation exercises: First, we simulate 5000 years of quarterly data

from the model using the parameter estimates in Table 1 and we use them to provide a

number of implications about the dynamics of conditional moments and prices. Second, we

also simulate 100 samples of 200 quarterly data each – the length of our sample – to glean

the effect of small sample on the statistics. We then compare the results of simulations to

the empirical data. In particular, in each of Tables 3 to 6, Panel A contains the results of the

simulations for each parameter of interest, both the “population value” from the single run

of 5000 years of data (the stand-alone coefficient) and the [5%-95%] percentiles from the 100

8Figures 6 and 7 only report eight series. In addition, we fit the model to the 1-year bond volatility,
the covariance between stocks and 1-year bond returns, and the covariance across bonds. Results are not
reported for brevity, but are similar to the 5-year bond returns. The model explains the dynamics of only
eleven time series, and not twelve that we use, as real consumption growth turned out to be i.i.d.
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simulated samples. Panel B reports the model’s predictions in the specific 1960-2010 sample,

that is, it reports the results of the analysis where model quantities are used but fitted to

the sample. This exercise is informative as it provides precise model’s predictions for the

sample actually analyzed in the data. Finally, Panel C reports the results in empirical data.

A. Stock-Bond Covariance versus Fundamentals

We first consider the relation between the conditional covariance of stock and bond

returns, and a number of fundamental-based explanatory variables suggested by our model.

More specifically, we run in simulations and in the data the contemporaneous regression

(Covariance)t = b0 + b1Xt + εt (24)

where Xt is a vector of explanatory variables, discussed below, and “(Covariance)t” is either

given by our theoretical formula in equation (21) (Panels A and B of Table 3), or is computed

from daily stock and bond returns over the quarter (Panel C of Table 3). All the results

in this section use the 5-year bond return to compute the covariance, although very similar

results also hold for the 1-year bond.

1. Model’s Implications

The time-varying signaling role of inflation mechanism discussed earlier suggests that

expected inflation should be an important driver of the time variation in the conditional

covariance, and that expected real earnings growth should not have much of an impact.

We thus run regression (24) with Xt given by expected inflation and expected real earnings

growth. Column (1) of Panel A of Table 3 shows that indeed in simulations expected inflation

and expected earnings growth explain 46% of the variation in the stock-bond covariance

(between 20% and 85% in 90% of the short samples). In fact, expected inflation alone

explains over 45% of the stock-bond covariance while expected earnings only explain 6%

(results not reported for brevity). The dominant effect of expected inflation is also evident

in small samples: while the coefficient on expected inflation is always positive (in 90% of

samples), the coefficient on expected earnings is both positive and negative. Such simulation

results are in line with the earlier intuition about the time-varying signaling role of inflation.

To dig deeper, column (2) reports the results of regression (24) when the explanatory

variables are “extreme probabilities of inflation”, that is, the probability of high inflation

PHI,t and the probability of zero inflation PZI,t. These two probabilities by themselves

explain 40% of the variation in the conditional covariance (between 20% and 92% in small
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samples), and their opposite signs highlight that in the model much of the variation in

conditional covariance has to do with extreme regimes. That is, an increase in PHI increases

the covariance while an increase in PZI decreases it to make it more negative.

Finally, in our model, uncertainty about fundamentals plays an important role. In the

regressions, we define uncertainty as the posterior variance of inflation or earnings growth:

UncInft = Et

[
(β − Et(β))2

]
=

n∑
i=1

πit

(
βi − βt

)2
(25)

UncEarnt = Et

[
(θ − Et(θ))

2
]

=
n∑

i=1

πit

(
θi − θt

)2
(26)

As we see in column (3), inflation and earnings uncertainty have a high explanatory power

for the conditional covariance. Inflation uncertainty enters positively and is the strongest

driver of covariance as it explains over 72% of the variation by itself (result not reported).

Earnings uncertainty, by contrast, on average decreases (i.e. makes it more negative) the

covariance between stocks and bonds and does not explain as much of its variation. A

similar result is also visible in the simple example in Section I.C. As discussed, from Panel E

of Figure 2 uncertainty between (HG, MI) and (LG, LI) makes the covariance more negative,

while the uncertainty between (HG, MI) and (LG, HI) makes the covariance more positive.

However, covariance is also increasing in inflation uncertainty when the latter is between

(LG, HI) and (LG, LI). Thus, on average, in the example, inflation uncertainty tends to

increase covariance, while earnings uncertainty has more of an ambiguous effect.

The previous intuition suggests there should be a differential effect of earnings uncertainty

when it occurs during high inflationary periods or during low inflationary periods. Column

(4) of Panel A of Table 3 shows the result of regression (24) when we interact earnings

uncertainty “UncEarn” with the extreme inflation probabilities PHI,t and PZI,t. As expected,

the coefficient on UncEarn×PZI,t is strongly negative, while the coefficient of UncEarn×PHI,t

is positive, although its sign is not uniform in the [5%, 95%] interval. The R2 for the long

simulation increases to 84%, but importantly, the 5% lowest R2 moves from 52% to 75%

when we replace earnings uncertainty with its two components, showing the importance of

distinguishing between high and low inflation periods..

Panel B of Table 3 shows that similar results as in Panel A hold in the model for the

specific sample 1960-2010. In particular, column (1) shows that according to the model

expected inflation and expected earnings should explain 74% of the variation on the condi-

tional covariance between stocks and bonds, which is even higher than the population value
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in Panel A, but still within the 90% bounds of the small samples distribution. This difference

is likely due to the large increase in inflation in the mid 1970s as well as the deflationary

bouts in the last decade, events that in this sample seem to be driving the stock-bond co-

variance by a great deal. Indeed, consistent with this interpretation, column (2) shows that

the extreme inflation probabilities explain 72% of the variation in the conditional covariance

between stocks and bonds, against 40% in population. Even in this shorter sample and

consistent with the mechanism of the model, the extreme probabilities have opposite signs.

Interestingly, column (3) shows that in the 1960 - 2010 sample, inflation and earnings uncer-

tainty do not explain as much of the variation of the conditional covariance as fundamentals

do (65% R2 using uncertainty versus 72-74% using fundamentals). However, column (4) of

Panel B also highlights that decomposing earnings uncertainty between high inflation and

low inflation periods does generate an increase of the role of uncertainty, as the coefficient of

the interaction UncEarn×PZI,t is significantly negative, and the adjusted R2 jumps to 85%.

2. Empirical Tests

Moving to the empirical tests, Panel C of Table 3 runs the same regressions (24) but

on empirical proxies for the various explanatory variables. Specifically, in columns (1a) to

(1c) expected inflation is proxied by the SPF consensus forecasts of GDP deflator, which is

the expected inflation series with the longest sample. For real earnings growth, we use the

SPF consensus forecasts of real corporate profits (column 1a), real GDP (column 1b), or

the probability of a boom (column 1c). Across all columns (1a) - (1c), expected inflation is

significant (t-stats between 2.8 - 3.0), expected earnings – however proxied – is not significant,

and overall R2’s range between 19% and 24%. Column (1d) reports the regression results

when we use the model’s expectations as explanatory variables. Again expected inflation is

significant while expected real earnings growth is not. The R2 in this case is 26%.

Column (2a) - (2c) in Panel C test whether “extreme inflation probabilities” can explain

the variation of the conditional covariance between stocks and bonds. Columns (2a) and

(2b) proxy for the extreme probabilities using the SPF probabilities for high inflation and

zero inflation in the following year (t + 1) and in the current year (t), respectively,9 while

column (2c) uses model’s fitted beliefs. As predicted by the model, the results show the two

extreme probabilities have opposite signs, they are mostly significant and explain between

22% and 30% of the variation in the conditional covariance.

To test for the effect of uncertainty on the conditional covariance, we need to find suitable

9Inflation probabilities for the following year (t+1) are available only after 1981.Q2. Before then, we still
use the probability of the current year (t) instead of (t + 1).
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proxies for uncertainty. While it is customary to use the dispersion in forecasters’ expecta-

tions to proxy for uncertainty, such dispersion better proxies for difference of opinions, which

we do not have in our model. In contrast, the availability of inflation probabilities from SPF

allows us to directly compute a proxy for inflation uncertainty as the conditional variance

of future inflation. In particular, as discussed in the appendix, from the original SPF data

we compute the probabilities that inflation will lie in unit intervals from -4% to 16% (which

are the extreme boundaries over the overall sample). In subsection III.A we aggregated such

probabilities to compare them to the model-implied beliefs (see Figure 5). Here, we can use

such probabilities to compute the conditional variance

UncInft = Vt [I ] =
n∑

j=1

pj,t

(
I j − Et[I ]

)2
(27)

where I j are midpoints of inflation unit intervals. One benefit of this procedure is that such

proxy of inflation has the same units as the conditional variance used in simulations (see

Equation (25)), and thus coefficients are directly comparable.

A similar procedure can be exploited to compute a proxy for real economic growth un-

certainty starting from the probability of a recession. We note that because in this case

SPF measures only the probability pt of a decline in real GDP, without specifying the exact

amount of the decline (or the increase in case of growth), we rely on the following proxy:10

UncEarnt = pt(1 − pt) (28)

Column (3a) uses these SPF-based uncertainty measures as proxies for inflation and

earnings uncertainty. In addition, we also use in column (3b) the model-implied earnings

and inflation uncertainty, already used in Panel B of the same table. In either case, infla-

tion uncertainty is positive, significant, and with a similar coefficient as predicted by the

model in Panels A and B. In contrast, earnings uncertainty has a negative coefficient and

is insignificant. Moreover, with an R2 of 13% and 18%, variation in uncertainty is impor-

tant to explain the variation in stock and bond covariances, although not as important as

fundamentals, consistently with the result in Panel B.

In column (4a) and (4b) we finally check whether the lack of power of earnings growth

uncertainty is due to the mixing of its positive and negative impact on covariance depending

10We note that (28) is proportional to the conditional variance of GDP growth in the case of two regimes
(“decline” and “no decline”), as Vt[θ] =

∑2
i=1 pit

(
θi − Et[θ]

)2 = p1t(1 − p1t)(θ1 − θ2)2.
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on whether we are in high inflation or low inflation periods. As was the case in column (4) of

Panels A and B, we find in column (4a) that the interaction UncEarn×PHI,t is significantly

positive, UncEarn×PZI,t is significantly negative, and the adjusted R2 increases to 37%.

Using model probabilities in column (4b) yields similar, albeit weaker results. These results

are consistent with the economic model proposed in this paper.

B. Stock-Bond Covariance versus Stock and Bond Prices

While the previous subsection looked at the direct impact of fundamentals to explain

the time variation of the conditional covariance between stock and bonds returns, motivated

by the example in Subsection I.C and especially Figure 3, in this subsection, we test the

model’s predictions about the relation between conditional covariance, the P/E ratio and

the 5-year yields. Indeed, insofar as the 5-year yield contains information about expected

future inflation – an implication of our model – then it should explain the time series variation

in conditional covariance between stocks and bonds as well.

We start by looking at simulated data. Column (1) of Panel A of Table 4 shows the

regression results in simulations of model-implied conditional covariance on the 5-year yield

and log P/E ratio. As can be seen, consistently with the time varying signaling role of

inflation, the yield and the log P/E ratio explain about 41% of the time variation in the

conditional covariance. Moreover, most of the predicting power comes from the 5-year yield,

and indeed, in small samples, the coefficient on the 5-year yield is always positive, while the

coefficient on log P/E has ambiguous sign. The adjusted R2 increases to 46% when we include

some non-linear terms, such as the square of the 5-year yield and log P/E ratio, and their

product. Non-linear terms are to be expected given the results in Section I.C. Interestingly,

in small samples, the [5% − 95%] intervals spans zero for all parameters, implying that the

signs of the non-linear terms can be positive or negative. This implies that depending on the

“type of sample,” different non-linear effects are picked up by the regression. However, non-

linear terms are important. In fact, across the small samples, the 5% lowest adjusted R2 more

than doubles, moving from 16% to 34%, when we add non-linear terms, which demonstrates

that even if across samples coefficients have different signs, they are both statistically and

economically important in each sample.

In the previous section we documented that the conditional stock/bond covariance de-

pends on inflation and earnings uncertainty. We use here the variance of stock returns as

an alternative proxy of uncertainty. The simulation results are in column (3) of Panel A. In

the long sample, the regression coefficient on the variance is positive, although the R2 is just

35%. Indeed, in small samples, the coefficient on the variance is both positive and negative,
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and the R2 goes from 0 to 92%. That is, depending on the sample, everything can happen.

The results are different if we interact the variance of stock returns with the probability to

be in the high inflation regime or low inflation regime (column 4). In this case, consistently

with the results of previous section, the interaction Stock Vol ×PHI,t is positive and the

interaction Stock Vol ×PZI,t is negative (although “weakly” in small samples). Important,

with the interaction terms, the R2 increases from 35% to 75% in the long simulations, and in

small samples, the 5% lowest R2 increases from 0% to 62%. This latter result underscores the

need to control for high or low inflation to increase the explanatory power of stock variance.

Focusing now on the realized 1960-2010 sample, column (1) of Panel B shows that the

fitted model predicts a strong relation between conditional covariance and the 5-year yield

(t-stat 6.19), while also the log P/E is significant (t-stat 2.70). Column (2) also shows that

in this sample, non-linear terms marginally increase the fit of the conditional covariance,

with the squared log P/E ratio significant and the adjusted R2 increasing from 67% to

70%. Interestingly, column (3) shows that in this 1960-2010 sample we should expect an

unconditional negative relation between conditional covariance and stock return variance,

although the R2 is just 25%. However, interacting the stock volatility with extreme inflation

probabilities increases the R2 considerably to 77% (column 4), with both interaction terms

Stock Vol ×PHI,t and Stock Vol ×PZI,t significant and with opposite signs.

The empirical tests in Panel C largely confirm the predictions of the model. In column

(1), the 5-year yield is strongly significant as an explanatory variable of the conditional

covariance, highlighting that when expected inflation is high, and thus the yield is high, the

covariance between stocks and bonds is also high. A drop in expected inflation that decreases

the long term yields moves the conditional covariance lower, possibly negative as it was the

case around the last two recessions. In addition, as predicted by the model, including non-

linear terms increases the (adjusted) R2 of the regression, and the squared log P/E enters

significantly. We also note that with R2 = 47%, the yield and log P/E ratio have the highest

explanatory power for conditional covariance than any of the fundamentals.

In column (3) we find that unconditionally, the covariance of bonds and stocks is nega-

tively related to stock return variance. Similar results have been interpreted as evidence of

“flight to quality,” according to which in times of troubles, investors dump stocks and buy

Treasuries (see Connolly, Sun, and Stivers (2005)). However, such evidence is also consis-

tent with the time varying signaling role of inflation. Indeed, consistently with the latter

explanation, columns (4a) and (4b) show that the interaction of variance with the extreme

inflation probabilities yield a substantial increase in the adjusted R2 (from 20% in column
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(3) to 38% and 27% in columns (4a) and (4b), respectively), with regression coefficients of

opposite signs. The two economic explanations are clearly not competing with each other,

but our model highlights that “flight-to-quality” must assume that Treasury bonds are in

fact safe assets, which may not during stagflationary periods.

Panels C and D of Figure 8 highlight the extent of the non-linearities in the relation

between conditional covariance and correlation of stocks and bonds and the long-term yield

and log P/E in the data. In particular, the panels plot two dimensional Gaussian kernel

regressions of realized covariances (or correlation) on log P/E and the 5-year yield. The

plots show that the covariance and correlation turn negative for low-medium values of the

5-year yield and medium-high price/earning ratios, which, interestingly, was a characteristic

of the simple example discussed in Section I.C (see Panels C and D in Figure 3).

In summary, the data strongly support the model’s predictions about the dynamic rela-

tion between the stock/bond covariance and both fundamentals and asset prices. We now

discuss the impact of money illusion on the performance of the model.

C. Money Illusion versus Inflation Signals

Our results shed some light on the distinct roles that two competing hypothesis, the

“money illusion hypothesis” of Modigliani and Cohn (1979) and the “proxy hypothesis”

of Fama (1981), play in explaining the comovement of stocks and Treasury bonds. First,

money illusion on its own tends to generate a positive covariance between stocks and bonds.

Indeed, positive inflation shocks increase expected inflation, which lower bond prices, and

also increase the effective discount rate, which decreases stock prices. Such a mechanism

would explain the strong comovement of stocks and bonds in the late 1970s. However, the

events in the last decade, which witness a strong negative covariance between stocks and

bonds, show that the real-rate effect must be a small component of the covariation in stock

and bond prices. Why then do we estimate a relatively high and significant coefficient of

money illusion δ = 0.8084 (see Table 1)? There are two reasons: First, money illusion

implies a lower P/E ratio and a higher long-term yield when expected inflation is high,

thereby helping the model match the level of prices and yields in the late 1970s. The effect

of money illusion on the level of prices is shown in Panels A and B of Figure 9, which plots

the fitted P/E ratio and yields with and without money illusion (we re-estimate the model

in the latter case).

Second, Panel C of the figure also shows that the model with money illusion actually

produces a stronger pattern of negative covariance during the last decade compared to the
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model without money illusion, a finding that may appear puzzling at first given that money

illusion per se’ tends to generate a positive covariance between stocks and bonds. The

reason is that money illusion generates different real rates across regimes, which increases

the differences across conditional bond prices. As a consequence, money illusion has the

indirect effect of increasing the impact of learning on bond prices, thereby generating a

stronger positive covariance in the 1970s, and a stronger negative covariance in the last

decade. Indeed, the volatility of bond returns is also higher compared to the case of no

money illusion during the late 1970s and the last two recessions, as shown in Panel D. Thus,

perhaps paradoxically, the money illusion not only helps match the level of bonds and stock

prices in the 1970s, and their higher positive covariance, but also match the higher negative

covariance in the last decade, as it works as an amplifier of the Bayesian learning effects.

V. Volatility, Price Valuations, and Fundamentals

In this section we show that the same mechanism that produces time variation in con-

ditional covariance of stock and bond returns has also strong implications for the relation

between return volatilities, and their relation to price valuations (yields and log P/E ratios).

A. Bond Volatility

As in earlier sections, we run both in simulations and in the data regressions of the type

(Bond Volatility)t = b0 + b1Xt + εt (29)

where Xt is a vector of explanatory variables, and “(Bond Volatility)t” is either given by our

theoretical formula
√

σB(πt, τ )σB(πt, τ )′ in equation (19) (Panels A and B of Table 5), or is

computed from daily bond returns over the quarter (Panel C). All the results in this section

pertain to the 5-year bond, although very similar results also hold for the 1-year bond.

Panel A of Table 5 reports the simulation results. The explanatory variables we use

are the same we described in Sections IV.A and IV.B. Column (1) shows that expected

inflation and expected earnings have an impact on the volatility of long-term bond, albeit

with opposite signs, with a “population” R2 of 51%. Interestingly, expected earnings seems

to have most of the impact, as in small sample its coefficient is always negative in the 5%-

95% range of the distribution, and R2 range between 27% and 84%. This result is consistent

with a business cycle effect on bond volatility, that becomes higher when expected earnings

are lower. While column (2) shows the extreme probabilities explain a large part of the

variation in volatility, we also see in column (3) that the main drivers of bond volatility are
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inflation and earnings uncertainty. Of the two, inflation uncertainty is the most important,

as it explains over 86% of the variation on its on (result not reported).

From column (4), the simulations show that although the 5-year yield and log P/E ratio

are useful to explain the variation in conditional volatilities, with a population R2 of 37%

they are far from perfect. Column (5) underscores the importance of non-linearities, as the

5% lower threshold of the adjusted R2 moves from 9% with only linear elements to 32% with

non-linear terms. There results are consistent with the intuition in Section I.C.

Panel B reports the same regression results but on model-implied quantities that are

fitted to the specific 1960-2010 sample. As in simulations, expected earnings is a strongly

significant explanatory variable (t-stat. of −6.56), as is though also expected inflation itself

(t-stat of 4.63). In the 1960-2010 fitted data, the expected earnings and inflation explain

about 77% of the conditional variation in bond volatility. We also see in column (2) that

the probability of very high inflation PHI is also strongly significant, (t-stat of 8.22), but the

probability of zero inflation PZI is not. Also in this realized sample, uncertainty strongly

affects bond return volatility (column (3)). Interestingly, we see in column (4) that while

the log P/E ratio is a significant explanatory variable for bond return volatility (t-stat. of

-3.32) with an R2 of 53%, including non-linear terms does not increase much the fit. Indeed,

all coefficients result insignificant and the adjusted R2 increases modestly to 57%.

Turning to the empirical data in Panel C, and using the same proxies discussed in Sections

IV.A and IV.B, we find that expected earnings is a significant explanatory variable for

the conditional volatility of bond returns (columns 1b - 1d), except when the proxy is the

consensus forecasts of real corporate profits (column 1a). R2’s are in the area of 16% to

42%, the latter when model expectations are used. Extreme inflation probabilities are also

significant (columns (2a) - (2c)), but PHI is only marginally significant when it is proxied

by SPF inflation probabilities. R2s are between 22% and 44%, the latter again when model

beliefs are used. A similar result holds for uncertainty: earnings uncertainty is significant

using SPF beliefs, and inflation uncertainty is significant using model’s beliefs. R2 are 24%

and 45%, respectively.

Finally, column (4) shows only that bond volatility is only mildly related to the 5-year

yield and the log P/E ratio when only linear regressors are used, but column (5) shows that

the adjusted R2 increases to almost 50% using non-linear regressors. These non-linear rela-

tions are predicted by the model. Especially noteworthy is the significant positive coefficient

on “Y(5)2”, which shows that volatility of bond returns is high both when yields are high

and when they are low, in contrast to classic models such as Cox, Ingersoll, and Ross (1985).
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Indeed, as shown in Panel C of Figure 7, bond return volatility was certainly high in the

mid 1970s, when yields were high, but the volatility was also high in the last decade, when

yields were very low, a pattern that is consistent with the intuition of our model, as well

as the empirical findings about conditional covariance in Section IV. Panel A of Figure 10

plots the 5-year rolling correlation of bond return volatility and yields, both in the data and

fitted from the model, and show that the two series track well each other (correlation =

67%), showing that the model is consistent with this time variation. The non-linear relation

between bond return volatility with respect to the long-term yield and the log P/E ratio is

also visible in Panel B of Figure 8, which plots the result of a bivariate kernel regression of

bond volatility on log P/E and long-term yield. From the figure, bond volatility dips to its

lowest points for medium levels of log P/E and long-term yields.

B. Stock Volatility

As in earlier sections, we run both in simulations and in the data regressions of the type

(Stock Volatility)t = b0 + b1Xt + εt (30)

where Xt is a vector of explanatory variables, and “(Stock Volatility)t” is either given by

our theoretical formula
√

σN (πt, τ )σN(πt, τ )′ in equation (18) (Panels A and B of Table 6),

or is computed from daily stock returns over the quarter (Panel C).

Panel A of Table 6 shows the results in simulations. As is well known, volatility is very

hard to explain in the data, and thus what is interesting of Panel A is not only what the model

predicts about the relation between volatility and fundamentals, but also how difficult it is to

explain volatility, notwithstanding our use of exact volatility formulas and no measurement

errors. Indeed, column (1) shows that expected earnings and expected inflation are important

drivers of volatility, but they only explains 22% of volatility in population (and the R2 is as

low as 7% with 95% probability in small samples). Similarly, extreme probabilities do not

explain much of stock return volatility. Instead, inflation and earnings uncertainty explain

59% of volatility, although the [5%-95%] small sample interval for R2 is very wide, between

22% and 97%.

Most interestingly, column (4) of Panel A shows that a linear regression of stock volatility

on long-term yield and log P/E ratio does not explain much of the volatility in population

(only 12%), with the 90% interval for R2 between 4% and 72% in small samples. However,

column (5) shows that non-linear terms are quite important: the population adjusted R2

almost triples to 34%, and even in small samples, the 5% lowest adjusted R2 increases to 21%
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from 4% (and the highest reaches 94%). That is, we should find a special role of non-linear

terms of yields and log P/E ratios as explanatory variables of stock return volatility.

Panel B of Table 6 shows that similar results pertain to the special 1960 - 2010 sample:

In particular, the fitted model shows that volatility is explained by expected inflation and

earnings (t-stats. of -3.10 and -5.00, respectively) and extreme probabilities PHI and PZI

(t-stats. of 2.21 and 6.55, respectively). Interestingly, in this 1960-2010 sample inflation

and earnings uncertainty have low explanatory power for stock return volatility, even in the

fitted model, as only earnings uncertainty is significant (t-stat 2.35) and the R2 is just 26%.

Column (4) shows that even the fitted model shows that a linear regression of volatility on

the long-term yield and log P/E gives a low R2 (= 6%) but that non-linear terms are very

important in sample, as the adjusted R2 increases to 35% and many non-linear terms are

significant.

Panel C reports the same regression results in the empirical data. Consistently with

previous literature, and the model, we find that return volatility is higher when expected

earnings is lower (t-stats ranging between -3.56 to -2.15, R2 ranging between 12% and 33%).

Lower expected inflation also seems to have some explanatory power, consistently with Panel

B, but only for two of the proxies. Extreme probabilities (column (2)) also explain the

variation, although to a less of an extent than expected earnings growth. Interesting, the

three SPF probabilities PHI ,PZI and PBoom explain together 26% of the conditional variation

of return volatility (result not reported). In column (3), earnings uncertainty enters strongly

significantly (t-stats = 3.66) but with still a low R2 = 17%.

Finally, we see that a linear regression of volatility on the long-term yield and log P/E

ratio results in insignificant coefficients and R2 = 0%, but that the inclusion of non-linear

terms increases the fit to R2 = 17% and most non-linear terms are significant. This result is

in line with the predictions of the model. Although the R2 is smaller than in the simulations,

we should recall that simulations use our formula for instantaneous volatility, and not a noisy

proxy such as the integrated volatility from daily observations.11 Panel B of Figure 10 plots

the 5-year rolling correlation of stock return volatility and the P/E ratio, both in the data and

fitted from the model. The correlation between to the two series is 36%. Most importantly,

the figure shows that the model is capable of generating a time varying relation between

volatility and log P/E, as shown in Section I.C. Indeed, the non-linear relation between

return volatility with respect to the long-term yield and the log P/E ratio is also visible

in Panel A of Figure 8, which plots the fitted volatility from a kernel regression of stock

11Using realized volatility in simulations, R2 = 19% in population and between 8% - 48% in small samples.
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volatility on log P/E and long-term yield. The figure suggests in fact a significantly lower

volatility for intermediate values of both log P/E and long-term yield, and higher volatility

for the extremes of both.

VI. Out-of-Sample Forecasts

In this final section we show that our model not only provides a unified economic frame-

work to understand the variation in the comovement of stocks and bonds, and their volatil-

ities, but its quantitative nature also help predict future variation in volatilities and covari-

ances. This feature of the model is important as it shows that the learning dynamics implied

by our regime-shift model captures the variation in asset prices and volatilities at the proper

frequency. One important problem in performing out-of-sample forecasts, however, is that

we cannot implement a rolling estimation of our regime shift model, as our SMM procedure is

very time consuming. We settle to re-estimate the model every five years, starting from 1984

(which is the middle point in our 1958 - 2010 sample). We keep throughout our six-regimes.

For every set of parameters estimated at time t and given the current values of beliefs πt,

we then simulate the beliefs πs, s > t and use our closed-form formulas for volatilities and

covariances, in expressions (18), (19), and (21), to determine model-forecasts. More specifi-

cally, for a given asset A, the optimal forecast of volatility between quarters T1 and T2 given

the information that investors have at time t is

V ∗(T1, T2; t) =

√
E

[∫ T2

T1

σA(πs)σA(πs)′ds|Ft

]
. (31)

Similarly, the optimal forecast of covariance of returns of assets A and B is given by

C∗(T1, T2; t) = E

[∫ T2

T1

σA(πs)σ
B(πs)

′ds|Ft

]
. (32)

Table 7 provide out of sample forecasts of the model volatilities and covariances at three

different horizons, 2-quarters, 4 quarters, and 8-quarters ahead. The table reports the R2 of

realized volatilities over forecasted volatilities, as well as the forecasts’ mean absolute errors

(MAE). In order to have a solid benchmark of comparison, columns 3 and 4 report the

same statistics from a similar out-of-sample linear regression using a number of explanatory

variables put forward in the literature, namely, the NBER recession indicator, lagged stock

return when negative, the P/E ratio, the 3-month yield, the 5-year yield, the volatility of

inflation and earnings, estimated from simple GARCH models.12 Columns 6 and 7 also add

12We also added some quadratic terms in the benchmark specification but with no improvement.
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lagged volatility or covariance in the group of controls. Finally, to compare quantitatively

the model’s forecasts against the benchmarks we also report the t-statistics obtained from

Diebold - Mariano tests (see Diebold and Mariano (1995)), which formally tests whether

absolute errors under the model are lower or higher than under the benchmark alternatives.

Concentrating on the 4-quarter horizon, we see that our consumption-based model per-

forms rather well compared to the benchmarks, as it produces a higher R2 and lower MAE

for most of the cases analyzed. In particular, the model performs especially well in forecast-

ing the stock return volatility, the 5-year bond return volatility, and the covariance between

stocks and 5-year bond returns. The R2 are higher than the alternatives and the MAE are

smaller. Interestingly, while the model does not fare as well as the benchmark for the 1-year

bond return volatility and the covariance between 1-year bond and stocks under the MAE

metric (DM tests significantly positive), we still do find higher adjusted R2 under the model

than under the alternatives. That is, the model may not capture the exact levels of the 1-

year bond return volatilities / covariance with stocks, but with an out-of-sample R2 = 35%

the model seems to captures well their time variation.

VII. Conclusion

We show that the time varying comovement of stocks and bonds over the years can be

mainly attributed to the changes over time of inflation shocks as signals about future real

economic growth. The recessionary periods in the 1980s led to large positive comovement in

stocks and bonds, while the reverse was true in the last decade. These changes in pattern

across the two time periods are consistent with positive inflation shocks signaling a transi-

tion toward a stagflationary regime in the early 1980s, while signaling the avoidance of a

deflationary regime in the last decade. In the first case, such shocks are bad news for the

economy, while in the latter they are good news for the economy.

We propose a regime switching model with learning in which CRRA agents are affected

by money illusion to explain the observed variations in the data. The key to the model

is that agents learn about “composite regimes”, that is, each regime has a special pairing

between inflation, earnings growth, and consumption growth. Indeed, our estimate of the

model parameters reveal that the two extreme inflation regimes, very high and very low

inflation, only occur with negative economic growth in the data. Thus, as investors increase

the probability to move to either a very high or very low inflation regime, they also naturally

increase the probability to move to a regime with negative economic growth. The fitted

model is indeed capable of replicating the time variation in conditional covariance over time,

and its relation to asset prices and fundamentals.
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The main mechanism identified by the model provides several additional testable impli-

cations, such as that the covariance between stocks and bonds should be related to expected

inflation, to the probabilities of extreme inflation (either very low or very high), to uncer-

tainty, non-linearly to long-term yields and log P/E ratios. Using Survey of Professional

Forecaster’s data, we find considerable evidence in support of the predictions of the model.

In addition, the learning dynamics has numerous implications for the dynamics of the

volatility of bonds and stock returns. In particular, the model shows that bond return

volatility is non-linearly related to its long-term yield, a fact that implies that sometimes

volatility increases with yields but sometimes decreases with yields. Similarly, the model

shows that even in simulations and without estimation noise, it is hard to explain stock

return volatility. Indeed, the model shows that the volatility of stock returns is non-linearly

related to both the log P/E ratio and long-term yield. This implies that return volatility

may be at times positively related to the log P/E ratio, as agents learn about a potentially

very high growth rate of the economy. Empirical evidence support the predictions of the

model.
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Appendix

A. Proofs of Propositions

Proposition 1 (a) The P/E ratio at time t is

Pt

Et

(πt) =
n∑

j=1

Gj πjt ≡ G · πt, (33)

where for each j = 1, .., n the constant Gj is given by

Gj = c E

[∫ ∞

t

Ms

Mt

Es

Et
ds|νt = νj,Ft

]
(34)

where c is the payout ratio. In addition, the vector G = (G1, .., Gn) satisfies G = cA−1 ·1n,

A = Diag(k1 − θ1 + σM σ′
E , · · · , kn − θn + σM σ′

E) − Λ. (35)

(b) The price of a nominal zero-coupon bond at time t with maturity τ is

Bt(πt, τ ) =
n∑

i=1

πit Bi(τ ), (36)

where the n×1 vector valued function B(τ ) with element Bi(τ ) = E

(
Mt+τ

Mt
· Qt

Qt+τ
|νt = νi

)
is

B(τ ) = Ω eω τ Ω−1 1n. (37)

In (37), Ω and ω denote the matrix of eigenvectors and the vector of eigenvalues, respec-

tively, of the matrix Λ̂ = Λ−Diag(r1, r2, · · · , rn), where each ri = ki +βi−σM σ′
Q−σQσ′

Q, is

the nominal rate that would obtain in the ith regime, were regimes observable. In addition,

eωτ denotes the diagonal matrix with eωiτ in its (i, i) position.

Proof of Proposition 1. The proof of part (a) follows from an extension of the proof

in Veronesi (2010), where Dt = cEt, and it is contained in the on-line appendix for com-

pleteness. To prove part (b), consider the process of the nominal stochastic discount factor

Nt = Mt/Qt

dNt

Nt

= −rtdt − σNdW
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where rt = κt + βt − σMσ′
Q − σQσ′

Q and σN = σM + σQ. From the process for Nt we find

Nt+τ = Nt exp

[∫ t+τ

t

−ru − 1

2
σNσ′

Ndu − σN (Wt+τ − Wt)

]
Hence, the bond at time t with maturity τ is

B(πt, τ ) = E

[
Nt+τ

Nt
|Ft

]
=

n∑
i=1

E

[
Nt+τ

Nt
|νt = νi

]
πit

Consider now a small interval Δ and define Bi(τ ) = E

[
Nt+τ

Nt
|νt = νi

]
. We have:

Bi(τ ) = E

[
Nt+τ

Nt
|νt = νi

]
= E

[(
Nt+Δ

Nt

)(
Nt+τ

Nt+Δ

)
|νt = νi

]
= E

[(
e(−ri− 1

2
σN σ′

N)Δ−σN (Wt+Δ−Wt)
)(Nt+τ

Nt+Δ

)
|νt = νi

]
= e−riΔE

[
Nt+τ

Nt+Δ
|νt = νi

]
= e−riΔ

{
(1 + λiiΔ)Bi(τ − Δ) +

∑
j �=i

λijΔBj(τ − Δ)

}

= e−riΔ

{
Bi(τ − Δ) +

n∑
j=1

λijΔBj(τ − Δ)

}

Rearranging, we obtain that

Bi(τ ) −Bi(τ − Δ)

Δ
=

e−riΔ − 1

Δ
Bi(τ − Δ) + e−riΔ

{
n∑

j=1

λijBj(τ − Δ)

}

Taking the limit as Δ −→ 0, and rearranging

B ′
i(τ ) =

(
λii − ri

)
Bi (τ ) +

∑
j �=i

λijBj(τ )

In vector form B ′(τ ) = Λ̂B(τ ) whose solution is (37).�

Proof of Proposition 2. Follows from Ito’s Lemma applied to the prices in Proposition 1.

�

Proof of Proposition 3. With only two regimes with positive probability, the diffusions
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are

σN(πt) = σE + σQ +
(Gi − Gj) πit (1 − πit)(ν

i − νj))′(Σ′)−1

P/E (πt)
(38)

σB(πt, τ ) =
(Bi(τ ) − Bj(τ )) πit (1 − πit)(ν

i − νj))′(Σ′)−1

B (πt, τ )
(39)

Recalling that we can write σE = ιEΣ and σQ = ιQΣ, where ιE and ιQ are rows of the

identity matrix corresponding to the earnings and inflation regimes. The result then follows

directly from the covariance formula Cov
(

dPN

PN , dB(πt,τ )
B(πt,τ )

)
= σN(πt) σB(πt, τ )′. Q.E.D.

B. SMM Estimation of the Regime Switching Model

The SMM procedure is similar to that in David (2008), but it is expanded to take into

account the unique features of our model. In particular, (a) the model uses stock and bond

volatilities, and covariances, as moments in the estimation; (b) there is a difference between

the information sets of the econometrician and the investors, stemming from the observation

of the additional signal about earnings’ drift and their true consumption, compared to the

econometrician’s observation of NIPA consumption; (c) we address the issue of time aggrega-

tion in observed fundamentals, as Standard and Poor’s provides the aggregate four quarter

moving average of earnings, as opposed to the quarterly earnings. Here we make adjustments

to the simulated likelihood function to account for the aggregation; (d) we impose long run

equilibrium in the stock market by imposing equality in the long run growth rates of earnings

and consumption; (e) we use only five parameters for the entire generator matrix to reduce

the number of estimated parameters, as shown in Table 1. We follow a 2-step estimation

methodology. In the first step we estimate using the full set of generator elements, and in

the second step we group the elements according to their estimated values and reestimate

the model with equality constraints estimated for generator elements within each group.

Our procedure carefully distinguishes between the information sets of investors and the

econometrician. Investors beliefs evolve as they observe the vector Xt as in the belief process

in (6). The econometrician’s information set differs by a) not observing the signal process,

and b) observing the smoothed consumption process (23).

Since the econometrician does not observe all fundamentals, we denote Yt = (Ĉt, Qt, Et)
′,

with
dYt

Yt
= �t dt + Σ3 dŴt, (40)

where Ŵt = (W1t, W2t, W3t, W4t, WNt)
′ is the vector of shocks augmented by the noise in the
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observed consumption process. dYt

Yt
is to be interpreted as “element-by-element” division,

�t = (α0 + α1 κt, βt, θt)
′, and Σ̂3 = ((α1 σC, σN)′, (σE, 0)′, (σQ, 0)′)′. Since fundamentals are

stationary in growth rates, we can write

dyt = [�̄(πt) − 1

2
(α2

1 σCσ′
C + σ2

N , σQσ′
Q, σEσ′

E)′]dt + Σ̂3 dŴt, (41)

The specification of the system is completed with the belief dynamics in (6), which depends

on the state vector Xt observed by investors.

The econometrician has data series {yt1, yt2, · · · , ytK}. Let Ψ be the set of parameters

determining the fundamental processes of the model. We start by specifying the likelihood

function over data on fundamentals observed discretely using the procedure in the SML

methodology of Brandt and Santa-Clara (2002). Adapting their notation, let

L(Ψ) ≡ p(yt1, · · · , ytK ; Ψ) = p(πt0 ; Ψ)
K∏

k=1

p(ytk+1
− ytk, tk+1|πtk , tk; Ψ),

where p(ytk+1
− ytk, tk+1|πtk , tk; Ψ) is the marginal density of fundamentals at time tk+1 con-

ditional on investors’ beliefs at time tk. Since {πtk} for k = 1, · · · , K is not observed by the

econometrician, we maximize

E[L(Ψ)] =

∫
· · ·
∫

L(Ψ)f(πt1 , πt2, · · · , πtK)dπt1, dπt2, · · · , dπtK , (42)

where the expectation is over all continuous sample paths for the fundamentals, ỹt, such that

ỹtk = ytk , k = 1, · · · , K. In general, along each path, the sequence of beliefs {πtk} will be

different.

As a first step, we need to calculate p(ytk+1
− ytk , tk+1|πtk, tk; Ψ). Following Brandt and

Santa-Clara (2002), we simulate paths of the state variables over smaller discrete units of

time using the Euler discretization scheme:

ỹt+h − ỹt = [�̄(πt) − 1

2
(α2

1 σCσ′
C + σ2

N , σQσ′
Q, σEσ′

E)′] h + Σ̂3

√
hε̃t; (43)

πt+h − πt = μ(πt)h + σ(πt)
√

hε̃t (44)

where ε̃ is a 5 × 1 vector of standard normal variables, and h = 1/M is the discretization

interval. The Euler scheme implies that the density of the 3× 1 fundamental growth vector

yt over h is trivariate normal.
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We approximate p(·|·) with the density pM (·|·), which obtains when the state variables

are discretized over M subintervals. Since the drift and volatility coefficients of the state

variables in (6) and (41) are infinitely differentiable, and ΣΣ′ is positive definite, Lemma 1

in Brandt and Santa-Clara (2002) implies that pM (·|·) → p(·|·) as M → ∞.

First consider the case where earnings are observed quarterly. The Chapman-Kolmogorov

equation implies that the density over the interval (tk, tk+1) with M subintervals satisfies

pM (ytk+1
− ytk , tk+1|πtk, tk; Ψ) =∫ ∫

φ
(
ytk+1

− y; �(π)h, Σ̂3Σ̂
′
3 h; Ψ

)
× pM (y − ytk , π, m, tk + (M − 1)h|πtk , tk) dπ dy, (45)

where φ(y; mean, variance), denotes a trivariate normal density, and y denotes the simulated

growth rate of the state vector Y after M − 1 subintervals. We discuss below how we will

calculate φ(·) when the observed earnings growth rate is not a quarterly growth rate, but

instead the growth rate of the four quarter moving average of earnings.

Now pM (·|·) can be approximated by simulating L paths of the state variables in the

interval (tk, tk + (M − 1)h) and computing the average

p̂M

(
ytk+1

− ytk , tk+1|πtk, tk; Ψ
)

=
1

L

L∑
l=1

φ
(
ytk+1

− y(l); �(π(l))h, Σ̂3Σ̂
′
3 h; Ψ

)
. (46)

The Strong Law of Large Numbers (SLLN) implies that p̂M → pM as L → ∞.

To compute the expectation in (42), we simulate S paths of the system (43) to (44)

“through” the full time series of fundamentals. Each path is started with an initial belief,

πt0 = π∗, the stationary beliefs implied by the generator matrix Λ. In each time interval

(tk, tk+1) we simulate (M-1) successive values of ỹ
(s)
t using the discrete scheme in (43), and

set ỹ
(s)
tk

= ytk . The results in the paper use M = 90 for quarterly data, so that shocks are

approximated at roughly a daily frequency. We approximate the expected likelihood as

L̂(S)(Ψ) =
1

S

S∑
s=1

K−1∏
k=0

p̂M (y
(s)
tk+1

− y
(s)
tk

, tk+1|π(s)
tk

, tk; Ψ), (47)

where p̂M (·|·) is the density approximated in (46). The SLLN implies that L̂(S)(Ψ) →
E[L(Ψ)] as S → ∞. We often report π̄tk = 1/S

∑S
s=1 π

(s)
tk

, which is the econometrician’s

expectation of investors’ belief at tk.

We now return to the issue of density of observed fundamentals φ(·) in (45). Since
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S&P provides the four quarter moving average of earnings, our observed vector contains the

quarterly growth rates of consumption and inflation, but the growth rate of four-quarter

moving average of earnings. Our simulated system of observables in (43) instead computes

the quarterly growth rate of all fundamentals when aggregated over all the subintervals. To

deal with the aggregation of earnings, we instead compute

φ
(
ĉtk+1

− c, qtk+1
− q, êtk+1

− 1/4 (e + e
(s)
tk

+ e
(s)
tk−1

+ e
(s)
tk−2

)
)

, (48)

where e
(s)
tk

is the model’s simulated quarterly earnings growth rate in the interval ending at

time tk along the s-th sample path in the previous paragraph, and c, q, and e denote the

simulated growth rate for the period ending at tk+1 after (M − 1) subintervals.13

The likelihood function identifies only the parameters of the fundamental processes, which

we denote as Ψ. To identify the preference parameters, which we collectively call Φ, we

need to augment the likelihood function with some moments of asset prices. Let ε(t) =(
e(t)′, ∂L1

∂Ψ
(t)′
)′

where the second term is the score of the likelihood function of fundamentals

with respect to Ψ. An additional advantage of including pricing errors is that prices depend

on beliefs, and as opposed to fundamentals, are forward looking. This helps us extract beliefs

and estimate all the parameters with some forward looking information. We now discuss the

pricing errors.

From Proposition 1, we can compute the time series of model-implied price-earnings

ratios and bond yields at the discrete data points tk, k = 1, · · · , K as

P̂/Etk
= C · π̄tk , îtk(τ ) = −1

τ
log (B (τ ) · π̄tk) .

We note that the constants Cs and the functions B (τ ) both depend on the parameters of

the fundamental processes, Ψ. Hence, we let the pricing errors be denoted

eP
tk

=
(
P̂/Etk

− P/Etk
, îtk (0.25) − itk (0.25) , îtk (1) − itk (1) , îtk (5) − itk (5)

)
.

13We log linearize the model’s growth rate of the moving average. In particular the first order approxima-
tion of the growth rate is

log
[
exp(w + z + y + x) + exp(y + z + w) + exp(z + w) + exp(w)

exp(y + z + w) + exp(z + w) + exp(w) + 1

]

 1

4
(w + z + y + x).

For the subset of the earnings data, where we have the quarterly growth rates available, the approximation
leads to growth rate very close to the growth rate of the moving average.
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Also note that since the pricing formulas are linear in beliefs, 1/S
∑S

s=1 C · π(s)
tk

= C · π̄tk

(and similarly for the bond yields) and no information is lost by simply evaluating the errors

at the econometrician’s conditional mean of beliefs. We similarly formulate the volatility

errors as

eV
tk

=
(
σ̂N

tk
− σN

tk
, σ̂B

tk
(1) − σB

tk
(1), σ̂B

tk
(5) − σB

tk
(5)
)

,

where the model-implied nominal stock volatility is obtained from the derived expression

σN(π) in (18) and averaged over the simulations as σ̂N
tk

= 1
S

∑S
s=1 σN(π

(s)
tk

). Similarly, the

model-implied nominal bond volatility is obtained from the derived expression σB(π, τ ) in

(19) and averaged over the simulations as σ̂B
tk

(τ ) = 1
S

∑S
s=1 σB(π

(s)
tk

, τ ), for τ = 1, 5. Addi-

tionally, we construct similar covariance errors as

eC
tk

=
(

̂σN
tk

σB
tk

(1) − σN
tk

σB
tk

(1), ̂σN
tk

σB
tk

(5) − σN
tk

σB
tk

(5), ̂σB
tk

(1)σB
tk

(5) − σB
tk

(1)σB
tk

(5)
)

,

Finally, we construct the Sharpe ratio errors at each date as follows: using the model’s

market price of risk and estimated stock volatility at each date, we construct the Sharpe ratio

at each date as (σM σ̂N
tk

′
/

√
σ̂N

tk
σ̂N

tk

′
, and we take its difference from an empirical unconditional

estimate of 0.25, which is close to the Sharpe ratio on the S&P 500 index for our sample

from 1958 to 2010.

We now form the GMM objective:

c =

(
1

T

T∑
t=1

εt

)′

· Ω−1 ·
(

1

T

T∑
t=1

εt

)
. (49)

The number of scores in ∂ log(L̂)
∂Ψ

equals the number of parameters driving the fundamental

processes in Ψ. In addition, we have three preference parameters, and ten additional moments

(three prices, three volatilities, three covariances, and the Sharpe Ratio). Finally, we have 11

equality constraints, ten for the elements of the generator matrix, and one for the long run

equilibrium condition for consumption and earnings growth rates. Overall, therefore, the

statistic c in (49) has a chi-squared distribution with 19 degrees of freedom. We correct the

variance covariance matrix for autocorrelation and heteroskedasticity using the Newey-West

method using a lag length of q = 8.

The asymptotic distribution of the constrained GMM estimator satisfies

√
T (θ̂ − θ0) ∼ N [ 0, B−1/2 M B−1/2],
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where M = I − B−1/2 A′ (A B−1 A′)−1 A B−1/2, A = ∇θa(θ0), B = G′ Ω−1 G, and G =

E[∇θg(zt, θ0)]. a(θ0) is the 2× k vector of constraints on the parameters, and g(zt, θ0) is the

vector of moment conditions using data point zt. The estimate of G as

GT =

[
1
T

∑T
t=1

∂e′
∂Φ

1
T

∑T
t=1

∂e′
∂Ψ

0 1
T

∑T
t=1

[
∂L1

∂Ψ
(t)′ ∂L1

∂Ψ
(t)
] ] (50)

C. Survey of Professional Forecasters Probability

For a limited number of variables, the Survey of Professional Forecasters (SPF) reports

forecasters’ probability assessment that a given variable will be in predefined intervals (bins)

in the next quarter or year (depending on the variable). For GNP/GDP deflator variables,

such series are available from 1968.Q4. We obtain our four inflation beliefs series in Figure 5

by proceeding in two steps: First, we use simple linear interpolation to convert the available

data into probabilities on unit intervals from -4% to 16%, which represent the minimum and

maximum bins available in the overall sample.14 Second, we then aggregate probabilities

from the unit bins into probabilities for coarser intervals to match the number of regimes.

More specifically, we take the middle point between our inflation regime estimates in Table

1, and use such middle points to define four adjacent intervals: (−∞, 1.47), (1.47, 3.59),

(3.59, 7.43), (7.43,∞).

14We also used a more elaborate Gaussian fitting for each quarter, and results were very similar.
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Table 1

Parameter Estimates

Panel A: Preference Parameters

ρ γ δ ρ γ δ
Coeff. 0.01965 10.56 0.8084 st. err. 0.002 .028 0.007

Panel B: Composite Regimes and Conditional Prices

Coefficients (%) standard errors (%) Conditional Prices
Earn. Infl. Cons. Earn. Infl. Cons. P/E y(0.25) y(5)

(MG,LI) 3.26 2.53 2.04 0.84 0.10 0.05 16.33 4.57% 4.64%
(LG, MI) -5.18 4.67 2.04 2.97 0.30 0.05 11.40 8.52% 8.48%
(MG,MI) 3.26 4.67 2.04 0.84 0.30 0.05 11.58 8.46% 8.69%
(LG,HI) -5.18 10.19 2.04 2.97 2.71 0.05 9.57 18.03% 12.71%
(HG,LI) 5.41 2.53 2.04 2.91 0.10 0.05 35.90 4.58% 4.75%
(LG,ZI) -5.18 0.43 2.04 2.97 0.88 0.05 13.45 0.89% 2.32%

Panel C: Diffusion Matrix and NIPA Consumption Signal
Coefficients (%) standard errors (%)

Earnings 10.50 0 0 0 0.26
Inflation -1.86 2.74 0 0 0.21 0.11

Consumption 3.54 0 5.26 0 0.37 0.22
Signal 0 -6.77 0 9.80 8.46 118.54

α0 α1 σN α0 α1 σN

Coeff. 0.0168 0.1801 0.37% st. err - 0.27 0.20%

Panel D: Infinitesimal Generator

(MG,LI) (LG, MI) (MG,MI) (LG,HI) (HG,LI) (LG,ZI) St.Prob. coeff. st. error
(MG,LI) λ1 λ2 0 0 λ2 60.80% λ1 0.30% 0.08%
(LG, MI) λ3 λ5 λ4 λ2 λ2 5.707% λ2 1.96% 6.90%
(MG,MI) 0 λ3 λ2 0 0 18.60% λ3 12.24% 0.10%
(LG,HI) λ3 λ4 0 0 0 4.469% λ4 14.79% 1.31%
(HG,LI) λ1 0 λ2 0 0 4.945% λ5 23.74% 0.55%
(LG,ZI) λ5 0 0 0 0 5.477%

Notes: Simulated Methods of Moments (SMM) estimates of the regime-switching model’s parameters.
The methodology combines the scores of the (simulated) likelihood function from fundamentals (real earnings,
inflation, and NIPA consumption) with pricing errors from financial variables (S&P500 index P/E ratio, 3-
months and 5-year Treasury yields, the quarterly empirical volatilities of S&P 500 index, the 1-year and the
5-year bonds, and the quarterly empirical covariance between the S&P 500 returns, the 1-year and 5-year
bonds.) The last three columns of Panel B also report the conditional P/E ratios and conditional yields
across the six composite regimes. The data sample is 1958 - 2010, except for volatilities and covariances
whose sample is 1962 - 2010.
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Table 2

Model Fit and Data

Panel A: Model’s Fit to Fundamentals and Financial Variables

constant slope t(constant) t(slope) R2

Inflation -0.71 2.00 -4.62 10.78 0.52
Earnings Growth -1.99 5.32 -3.11 6.31 0.25
P/E ratios -5.14 1.35 -1.41 5.59 0.53
3m Yield -1.76 1.15 -2.26 8.39 0.69
5y Yield -2.05 1.41 -1.71 6.10 0.67
Stock Volatility -0.02 1.15 -0.54 3.70 0.30
Stock Volatility (ex crash) -0.03 1.16 -0.61 3.73 0.36
1-Y Bond Volatility 0.00 0.52 3.34 8.08 0.57
5-Y Bond Volatility 0.01 0.90 1.10 4.87 0.51
Stock - 1Y Bond Covariance 0.00 0.25 -0.32 5.72 0.34
Stock - 5Y Bond Covariance 0.00 0.47 -0.14 4.98 0.38

Panel B: Correlations across Measures of Expected Fundamentals (%)

Inflation Model Exp. Inf. SPF PGDP SPF CPI
Inflation 100 73 69 39
Model Exp. Inf. 73 100 93 89
SPF PGDP 69 93 100 98
SPF CPI 39 89 98 100

Earnings Model Exp. Earn. Blue Chip SPF RGDP SPF RCP
Earnings 100 49 63 52 54
Model Exp. Earn. 49 100 51 34 29
Blue Chip 63 51 100 66 65
SPF RGDP 52 34 66 100 61
SPF RCP 54 29 65 61 100

Notes: Panel A reports the results of the regressions

(Fundamentals) = b0 + b1Et[Fundamentals] + εt

(Financial Variable)Data
t = b0 + b1 (Financial Variable)Model

t + εt

where “Fundamentals” is either real earnings growth of inflation rate, and financial variables are identified
in each row. In these regressions, both expected fundamentals and model-implied financial variables are
conditional on the fitted beliefs. The sample is 1960 - 2010, except for volatilities and covariances, whose
sample is 1962-2010. All t-statistics are Newey-West adjusted for heteroskedasticity and autocorrelation
using 12 lags. Panel B reports the cross-correlation among measures of expected fundamentals, where the
correlation is computed in the longest available sample: Inflation, Model Exp. Inf., Earnings, and Model
Exp. Earnings from 1958Q1 to 2010Q4, SPF PGDP, SPF RGDP and SPF RCP from 1968Q3 to 2010Q4,
SPF CPI from 1981Q2 to 2010Q4, Blue Chip from 1984Q1 to 2010Q4.
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Table 3

Stock-Bond Covariance versus Fundamentals

Panel A. Model: Simulations Panel B. Model: Fitted

(1) (2) (3) (4) (1) (2) (3) (4)
Const -0.71 0.13 -.09 -0.15 -1.44 0.11 -0.03 -0.16

[ -2.40, 0.40] [ -0.07,0.38] [ -0.22,0.02 [-0.31, 0.04] (-5.92) (2.21) (-0.60) ( -5.38)
ExpInf 0.28 0.40

[0.02, 0.73] (7.31)
ExpEarn -0.01 0.08

[-.014, .011] (2.37)
PHI 2.27 2.85

[1.40, 15.85] (7.17)
PZI -0.83 -2.25

[-5.48 -0.30] (-3.87)
UncInf 34.28 25.36 32.24 21.82

[ 18.90, 41.89] [-2.84,36.47] (6.05) (6.98)
UncEarn -4.12 -5.77

[-6.90,-0.48] (-2.71)
UncEarn×PHI 1.56 -2.77

[ -14.61, 156.73] (-1.03))
UncEarn×PZI -11.31 -18.18

[ -33.45, -6.21] (-5.18)
Adj R2 0.46 0.40 0.81 0.84 0.74 0.72 0.65 0.85

[ 0.20, 0.85] [0.20, 0.92] [0.52, 0.93] [ 0.75, 0.95]

Panel C. Data
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (3a) (3b) (4a) (4b)
Exp Exp Exp
Earn: Earn: Earn: Model Beliefs: Beliefs: Beliefs: Beliefs: Beliefs: Beliefs: Beliefs:
RCP RGDP Boom Exp. SPF(t+1) SPF(t) Model SPF(t+1) Model SPF(t+1) Model

Const -0.34 0.43 -0.97 -0.62 0.14 0.08 0.06 -0.16 -0.04 -0.41 -0.14
(-1.94) (-1.64) (-1.70) (-2.79) (2.25) (1.08) (1.07) (-1.53) (-0.71) (-2.38) ( -1.57)

ExpInf 0.10 0.10 0.11 0.18
(2.99) (2.80) (2.94) (3.83)

ExpEarn 0.00 0.04 0.01 0.02
(1.24) (1.04) (1.43) (0.91)

PHI 0.22 0.29 1.03
(1.71) (2.11) (5.09)

PZI -3.30 -1.99 -1.11
(-4.75) (-4.28) (-4.54)

UncInf 22.89 12.84 10.59 14.87
(3.00) (2.57) (2.88) (2.80)

UncEarn -1.12 -1.93
(-0.83) (-1.21)

UncEarn×PHI 0.01 -7.37
( 2.00) ( -1.51)

UncEarn×PZI -0.21 -8.10
( -4.10) ( -3.56)

Adj R2 0.19 0.20 0.24 0.26 0.30 0.22 0.23 0.13 0.18 0.37 0.29

Notes: Regression of (Covariance)t = b0 + b1Xt + εt , where “Covariance” is the theoretical formula (Panels A and B)
or estimated from daily bond and stock returns (Panel C). Explanatory variables Xt are identified on each row: ExpInf and
ExpEarn are expected inflation and earnings, PHI and PZI are the probabilities of high inflation or zero (or lower) inflation,
UncInf and UncEarn are the inflation and earnings uncertainty. In Panels A and B, all the quantities are computed from the
regime shift model. In Panel C, these quantities are proxied using either the Survey of Professional Forecasters (SPF) or the
model’s fitted probabilities, as indicated on the heading of each column. The sample in Panel B is 1960-2010. The sample in
Panel C is also 1960 - 2010, except when SPF data are used (columns 1a, 1b, 1c, 2a, 2b, and 3a), in which case the sample is
1968-2010. All t-statistics are Newey-West adjusted for heteroskedasticity and autocorrelation using 12 lags.
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Table 4

Stock-Bond Covariance versus Asset Prices

Panel A. Model: Simulations Panel B. Model: Fitted

(1) (2) (3) (4) (1) (2) (3) (4)
Const -1.86 -9.73 -0.41 0.11 -4.51 -56.94 1.19 0.08

[ -16.56, 4.29] [ -336.13,740.11] [-0.85, 0.46] [-0.02, 0.25] (-3.69) (-2.83) (3.35) (1.78)
Y(5) 0.22 -0.31 0.34 0.37

[0.13, 0.68] [-13.27, 3.37] (6.19) (1.03)
pe 0.26 7.99 0.92 37.31

[ -2.11,5.09] [-516.62, 235.85] (2.70) (2.80)
Y(5)2 -.03 0.03

[-70.73, 63.62] (1.15)
pe2 -1.62 -6.34

[ -41.35,90.54] (-2.84)
Y(5)2×pe2 0.12 -0.00

[ -0.08,0.25] (-0.49)
Stock Vol 37.34 -7.65

[-45.24, 75.07] ( -2.80)
Stock Vol×PHI 107.43 125.29

[89.56,899.65] (12.95)
Stock Vol×PZI -54.74 -35.69

[ -146.15,86.99] (-4.35)
Adj R2 0.41 0.46 0.35 0.75 0.67 0.70 0.25 0.77

[0.16, 0.80] [0.34, 0.94] [0.00,0.92] [0.63,0.89]

Panel C. Data
(1) (2) (3) (4a) (4b)

Beliefs: Beliefs:
SPF(t+1) Model

Const -1.04 -6.97 0.38 0.01 0.03
(-2.38) (-2.48) (3.24) (1.60) ( 0.48)

Y(5) 0.10 0.39
(4.20) (3.22)

pe 0.15 3.43
(1.42) (2.20)

Y(5)2 -0.00
(-1.32)

pe2 -0.52
(-2.19)

Y(5)2×pe2 -0.00
(-1.80)

Stock Vol -2.42
(-2.13)

Stock Vol×PHI 8.44 48.59
( 1.45) (6.12)

Stock Vol×PZI -45.39 -7.43
( -4.04) (-9.33)

Adj R2 0.40 0.47 0.20 0.38 0.27

Notes: Regression of (Covariance)t = b0 + b1Xt + εt, where “Covariance” is the theoretical formula (Panels A and B) or
estimated from daily bond and stock returns (Panel C). Explanatory variables Xt are identified on each row. Y(5) denotes
the 5-year zero coupon bond yield, pe is the log P/E ratio, Stock Vol is the stock return volatility, and PHI and PZI are
the probabilities of high inflation or zero (or negative) inflation. In Panel A and B all quantities are computed from the
model using the closed-form formulas. In Panel C, all quantities are observed from the data. Stock Vol refers to the quarterly
volatility computed from daily returns, and the extreme inflation probabilities PHI and PZI are computed from the Survey of
Professional Forecasters. The sample in Panel B is 1960-2010. The sample in Panel C is also 1960 - 2010, except when SPF data
are used (columns 4a), in which case the sample is 1968-2010. All t-statistics are Newey-West adjusted for heteroskedasticity
and autocorrelation using 12 lags.
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Table 5
Bond Return Volatility

Panel A. Model: Simulations Panel B. Model: Fitted
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Const 1.38 2.78 0.88 14.03 0.85 2.81 3.49 1.51 20.83 149.55
[ -5.85,7.19] [1.13,4.15] [ 0.16,1.60] [-38.91,135.78] [ -3913.9 3144.5] (3.32) (10.29) (5.67) (2.99) (1.01)

ExpInf .10 0.92
[-.011,3.94] (4.63)

ExpEarn -.58 -0.81
[ -1.82,-.22] (-6.56)

PHI 12.32 16.86
[7.54, 155.01] (8.22)

PZI 1.84 4.38
[-8.36,23.75] (1.97)

UncInf 128.41 85.82
[101.31, 213.30] (8.41)

UncEarn 10.93 15.21
[-3.08, 23.55] (3.73)

Y(5) 0.62 -2.26 0.38 -2.60
[ -1.39,2.52] [ -56.12 14.29] (1.23) (-1.32)

pe -5.23 -41.21 -6.80 -87.32
[ -46.48, 12.19] [ -2047.3 2856.2] (-3.32) (-0.85)

Y(5)2 -0.21 -0.06
[ -3.41,4.58] (-0.35)

pe2 4.59 13.34
[ -519.00 344.77] (0.76)

Y(5)2×pe2 0.07 0.04
[ -0.54 1.28] (1.37)

Adj R2 0.51 0.36 0.89 0.37 0.43 0.77 0.56 0.87 0.53 0.57
[ 0.27, 0.84] [0.24, 0.77] [0.78, 0.97] [ 0.09, 0.81] [0.32, 0.95]

Panel C. Data
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (3a) (3b) (4) (5)
Exp Exp Exp
Earn: Earn: Earn: Model Beliefs: Beliefs: Beliefs: Beliefs: Beliefs:
RCP RGDP Boom Exp. SPF(t+1) SPF(t) Model SPF(t+1) Model

Const 3.93 5.20 9.14 3.37 4.50 4.64 3.92 2.28 2.59 0.84 21.17
(3.79) (5.02) (4.69) (3.15) (14.79) (15.58) (10.30) (2.54) (5.03) (0.18) (0.96)

ExpInf 0.45 0.39 0.32 0.87
(1.26) (1.20) (0.98) (2.33)

ExpEarn -0.04 -0.48 -0.06 -0.74
(-1.40) (-3.11) (-2.90) (-5.49)

PHI 4.85 4.72 19.02
(1.95) (1.92) (6.77)

PZI 5.64 3.23 4.60
(2.54) (2.32) (6.29)

UncInf 43.51 100.03
(1.39) (4.02)

UncEarn 19.17 5.41
(2.54) (1.00)

Y(5) 0.58 -1.24
(2.13) (-1.70)

pe 0.11 -11.73
(0.09) (-0.89)

Y(5)2 0.12
(3.48)

pe2 2.36
(1.15)

Y(5)2×pe2 -0.00
(-0.01)

Adj R2 0.16 0.22 0.25 0.42 0.22 0.23 0.44 0.24 0.45 0.28 0.49

Notes: Regression of (Bond Volatility)t = b0 + b1Xt + εt, where “Bond Volatility” is the theoretical formula (Panels A
and B) or estimated from daily bond returns (Panel C). Explanatory variables Xt are identified on each row. ExpInf and
ExpEarn are expected inflation and earnings, PHI and PZI are the probabilities of high inflation or zero (or lower) inflation,
UncInf and UncEarn are the inflation and earnings uncertainty, Y(5) denotes the 5-year zero coupon bond yield, and pe is the
log P/E ratio. In Panels A and B, all the quantities are computed from the regime shift model. In Panel C, these quantities
are empirical proxies either directly observable (Y(5) and pe), or computed from the Survey of Professional Forecasters (SPF)
or from the model’s fitted probabilities, as indicated on the heading of each column. The sample in Panel B is 1960-2010. The
sample in Panel C is also 1960 - 2010, except when SPF data are used (columns 1a, 1b, 1c, 2a, 2b, and 3a), in which case the
sample is 1968-2010. All t-statistics are Newey-West adjusted for heteroskedasticity and autocorrelation using 12 lags.
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Table 6
Stock Return Volatility

Panel A. Model: Simulations Panel B. Model: Fitted
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Const 11.52 11.67 9.60 -0.75 -1.08 20.78 12.92 11.90 29.41 587.16
[ 6.48,20.10] [9.43,13.77] [ 8.52 12.27] [-60.78, 160.58] [ -3599.2 3167.1] (10.44) (26.06) (18.06) (1.46) (3.65)

ExpInf .49 -1.23
[-1.32,2.51] (-3.10)

ExpEarn -.50 -1.25
[-2.41,-.14] (-5.00)

PHI 7.48 4.71
[ 2.08, 79.01] (2.21)

PZI 2.61 18.91
[ -0.29,45.95] (6.55)

UncInf 57.56 -66.77
[-71.23,110.88] (-1.36)

UncEarn 29.28 42.22
[9.28, 46.56] (2.35)

Y(5) 0.76 -7.11 -0.81 -13.03
[ -2.61,2.43] [ -70.31 12.19] (-0.98) (-4.96)

pe 3.11 33.13 -3.76 -351.36
[-50.93, 21.20] [ -2200.3 2625.4] (-0.68) (-3.35)

Y(5)2 -31.30 -0.40
[-4.10,5.85] (-1.42)

pe2 -8.51 57.00
[ -475.49 396.24] (3.29)

Y(5)2×pe2 0.15 0.19
[-0.75 1.18] (3.02)

Adj R2 0.22 0.13 0.59 0.12 0.34 0.39 0.52 0.26 0.06 0.35
[0.07, 0.85] [ 0.06, 0.79] [0.22, 0.97] [0.04, 0.72] [0.21, 0.94]

Panel C. Data
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (3a) (3b) (4) (5)
Exp Exp Exp
Earn: Earn: Earn: Model Beliefs: Beliefs: Beliefs: Beliefs: Beliefs:
RCP RGDP Boom Exp. SPF(t+1) SPF(t) Model SPF(t+1) Model

Const 18.96 23.15 41.52 21.90 12.45 13.27 12.45 10.41 12.15 14.28 275.74
(7.04) (6.17) (5.46) (4.84) (10.70) (11.16) (11.42) (5.14) (7.97) (0.99) (3.52)

ExpInf -0.85 -0.95 -1.37 -1.51
(-1.83) (-2.01) (-3.31) (-1.70)

ExpEarn -0.22 -1.83 -0.26 -1.44
(-2.84) (-2.82) (-3.56) (-2.15)

PHI 3.28 2.16 4.21
(1.34) (0.92) (1.29)

PZI 46.87 29.48 24.06
(4.03) (3.77) (3.41)

UncInf -144.02 -75.01
(-1.56) (-1.01)

UncEarn 50.35 38.76
(3.66) (1.50)

Y(5) -0.23 -8.66
(-0.38) (-2.75)

pe 0.43 -154.97
(0.11) (-3.53)

Y(5)2 -0.03
(-0.34)

pe2 24.92
(3.74)

Y(5)2×pe2 0.09
(2.94)

Adj R2 0.12 0.19 0.33 0.12 0.14 0.10 0.18 0.17 0.04 0.00 0.17

Notes: Regression of (Stock Volatility)t = b0 + b1Xt + εt, where “Stock Volatility” is the theoretical formula (Panels A and
B) or estimated from daily stock returns (Panel C). Explanatory variables Xt are identified on each row. ExpInf and ExpEarn
are expected inflation and earnings, PHI and PZI are the probabilities of high inflation or zero (or lower) inflation, UncInf
and UncEarn are the inflation and earnings uncertainty, Y(5) denotes the 5-year zero coupon bond yield, and pe is the log
P/E ratio. In Panels A and B, all the quantities are computed from the regime shift model. In Panel C, these quantities are
empirical proxies either directly observable (Y(5) and pe), or computed from the Survey of Professional Forecasters (SPF) or
from the model’s fitted probabilities, as indicated on the heading of each column.The sample in Panel B is 1960-2010. The
sample in Panel C is also 1960 - 2010, except when SPF data are used (columns 1a, 1b, 1c, 2a, 2b, and 3a), in which case the
sample is 1968-2010. All t-statistics are Newey-West adjusted for heteroskedasticity and autocorrelation using 12 lags.
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Table 7

Out-of-Sample Forecasts

2-Quarter Ahead Forecast
Model Forecast Controls Controls + Lag

(1) (2) (3) (4) (5) (6) (7) (8)
Adj. R2 MAE Adj. R2 MAE DM Adj R2 MAE DM

Stock Vol. 26.46 3.54 15.66 3.74 -5.03 21.85 3.29 0.73
Stock Vol. (Ex-Crash) 32.54 3.22 3.45 3.45 -5.33 35.41 2.85 1.20
1Y Bond Vol. 6.39 0.33 0.33 0.26 5.83 5.00 0.19 2.74
5Y Bond Vol. 10.68 1.22 1.22 1.49 -3.77 2.75 1.02 1.27
Stock / 1Y Bond Cov. 32.38 0.04 0.04 0.02 4.24 17.34 0.02 2.74
Stock / 5Y Bond Cov. 47.14 0.12 0.12 0.13 -1.99 33.02 0.13 0.64
1Y / 5Y Bond Cov. 3.91 0.02 0.02 0.02 1.56 0.65 0.01 2.39

4-Quarter Ahead Forecast
Model Forecast Controls Controls + Lag
Adj. R2 MAE Adj. R2 MAE Adj R2 MAE DM

Stock Vol. 35.35 4.85 10.20 5.46 -4.10 12.83 4.96 -0.25
Stock Vol. (Ex-Crash) 41.69 4.29 26.68 5.00 -4.28 26.43 4.47 -2.45
1Y Bond Vol. 2.01 0.48 -2.27 0.36 4.49 -2.66 0.33 1.59
5Y Bond Vol. 9.96 1.58 -2.25 2.25 -3.33 -2.52 1.58 -0.03
Stock / 1Y Bond Cov. 35.15 0.05 3.99 0.04 3.67 10.34 0.04 2.77
Stock / 5Y Bond Cov. 55.60 0.23 24.97 0.25 -2.68 30.65 0.25 -0.60
1Y / 5Y Bond Cov. 1.07 0.04 -2.28 0.04 0.90 -2.36 0.04 1.02

8-Quarter Ahead Forecast
Model Forecast Controls Controls + Lag
Adj R2 MAE Adj. R2 MAE DM Adj R2 MAE DM

Stock Vol. 34.78 6.87 3.31 8.18 -3.09 3.74 8.74 -3.70
Stock Vol. (Ex-Crash) 35.21 5.89 23.77 7.31 -3.14 19.91 7.70 -2.91
1Y Bond Vol. 0.16 0.65 1.60 0.39 2.39 3.37 0.57 0.67
5Y Bond Vol. 4.85 2.13 -2.29 2.81 -2.78 -0.60 2.81 -2.39
Stock / 1Y Bond Cov. 35.39 0.14 0.05 0.09 3.08 2.85 0.09 1.63
Stock / 5Y Bond Cov. 54.48 0.47 24.74 0.50 -2.26 25.08 0.49 -1.65
1Y / 5Y Bond Cov. 0.21 0.07 -2.34 0.08 -0.56 -1.35 0.07 0.08

Notes: Out-of-Sample forecast of second moments from model (columns 1 and 2), from controls (columns 3 and 4), and
from controls, including lag of forecasted variable (columns 6 and 7). Model forecasts are computed by estimating the six-regime
shift models every five years starting in 1984 (the middle of our overall sample), and feeding fundamentals to the estimated
model to compute the model’s beliefs over the following 5-year period. From beliefs, forecasts of future second moments
are computed as the average across simulations of future model-implied second moments, the latter obtained by exploiting
our analytical formulas, as described in equations (31) and (32). Forecasts from controls are obtained using a similar rolling
regression estimate of realized second moments on variables used to forecast future volatility, given by NBER recession indicator,
lagged stock return when negative, the P/E ratio, the 3-month yield, the 5-year yield, inflation volatility (from GARCH fit), and
earnings volatility (from GARCH fit). Adj. R2 is the R2 of realized versus predicted variables, while MAE denotes the mean
absolute errors. Columns 5 and 8 report the Diebold Moreno t-statistics on equality of absolute errors: A negative number
indicates that the model has significant lower MAE than the controls.
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Figure 1. The Comovement of Bonds and Stocks, and their Volatilities. Panel A: Quarterly
covariance between the S&P 500 index returns and the 5-year Treasury zero-coupon bond returns. Panel B:
5-year trailing correlation between the 5-year zero-coupon bond return volatility and its yield to maturity.
Panel C: 5-year trailing correlation between the S&P 500 index return volatility and its price-earnings ratio.
Shaded bands reflect NBER-dated recessions.
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Figure 2. Prices, Volatilities and Comovement with Three Composite Regimes. Panel A: Price-
earnings ratio. Panel B: Yield of a 5-year zero-coupon bond. Panel C: Stock return volatility. Panel D:
5-year bond return volatility. Panel E: Covariance between stock return and 5-year bond return. Panel F:
Correlation between stock return and the 5-year bond return. All quantities are plotted on the probability
simplex. Corners (HG,MI), (LG, LI) and (LG, HI) represents regimes with (High Growth, Medium Inflation),
(Low Growth, Low Inflation), and (Low Growth, High Inflation), respectively. Parameters are as follows: risk
aversion γ = 10, time preference ρ = 0.02, money illusion δ = 0.8, dividend/earnings payout ratio c = 0.5,
low growth θLG = −2%, high growth θHG = 5%, low inflation βLI = 0%, medium inflation βMI = 4%,
high inflation βHI = 9%, consumption drift κLG = κHG = 2%, earnings diffusion σE = [.1, 0, 0], inflation
diffusion σQ = [−.02, .03, 0], consumption σC = [.03, 0, .05].
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Figure 3. Volatilities and Comovement versus Bond Yield and log P/E Ratio with Three
Composite Regimes. Panel A: Stock return volatility. Panel B: 5-year bond return volatility. Panel C:
Covariance between stock return and 5-year bond return. Panel D: Correlation between stock return and 5-
year bond return. All quantities are plotted against the log P/E ratio and the 5-year bond yield. Parameters
are as follows: risk aversion γ = 10, time preference ρ = 0.02, money illusion δ = 0.8, dividend/earnings
payout ratio c = 0.5, low growth θLG = −2%, high growth θHG = 5%, low inflation βLI = 0%, medium
inflation βMI = 4%, high inflation βHI = 9%, consumption drift κLG = κHG = 2%, earnings diffusion
σE = [.1, 0, 0], inflation diffusion σQ = [−.02, .03, 0], consumption σC = [.03, 0, .05].
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Figure 4. Composite Regime Probabilities. Model’s fitted beliefs about each of six composite regimes
from 1960 to 2010. Shaded areas correspond to NBER-dated recessions. The estimates of the six composite
regimes are in Table 2.
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Figure 5. Marginal Probability of Inflation Regimes and Low Growth. Panels A to D: Model’s
fitted marginal posterior probabilities about the four possible inflation regimes (black lines) and professional
forecasters’ probability assessments of similar levels of next-year inflation (grey lines). Panel E: model’s
fitted marginal probability of low growth (black line) and professional forecasts’ beliefs of a recession in the
following quarter (grey line). Shaded areas correspond to NBER-dated recessions.
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Figure 6. Fitted and Data Series. Panel A: Realized CPI inflation (grey line), model fitted expected
inflation (black line), and consensus forecast of the following year GDP deflator (dashed line). Panel B:
Realized real operating earnings growth (grey line), model’s fitted expected earnings (black line), and the
consensus forecasts of real GDP growth. Realized real earnings growth data are winsorized to 1% level.
Panel C: Realized price-earnings ratio of S&P 500 index (grey line) and model-fitted price-earnings ratio
(black line). Panel D: Realized quarterly volatility of the S&P 500 index return (grey line) and model-fitted
stock return volatility (black line). Shaded areas correspond to NBER-dated recessions.
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Figure 7. Fitted and Data Series. Panel A. Realized 3-month U.S. Treasury bill rate (grey line) and
model-fitted 3-month rate (black line). Panel B. Realized 5-year U.S. Treasury zero-coupon yield (grey line)
and model fitted 5-year yield (black line). Panel C. Realized annualized volatility of the 5-year zero coupon
bond (grey line) and model fitted volatility (black line). Panel D. Realized covariance between the S&P 500
index return and the 5-year zero-coupon bond return (grey line) and model- fitted covariance (black line).
Shaded areas correspond to NBER-dated recessions.
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Figure 8. The Non-linear Relation between Second Moments, 5-year Yield and log P/E. Panel
A. Stock return volatility. Panel B. 5-year bond return volatility. Panel C. Covariance between stock returns
and 5-year bond returns. Panel D. Correlation between stock returns and 5-year bond returns. Each panel
plots the fitted value of a bivariate kernel regression of each quantity on contemporaneous 5-year yield and
log price-earnings ratio.
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Figure 9. Money Illusion versus No Money Illusion. Panel A plots the fitted P/E ratio under the
model with money illusion (black line) and the restricted model without money illusion (dashed line), along
with the realized P/E ratio (grey line). The case without money illusion is re-estimated under the parameter
constraint δ = 0. Panel B, C, and D plot the time series of the 5-year bond yield, the stock/bond covariance,
and the bond return volatility, respectively.
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Figure 10. The Time-Varying Correlation between Volatility and Asset Prices. Panel A plots
5-year trailing correlation between the 5-year yield and the 5-year bond return volatility in the data (black
line) and in the fitted model (grey line). The correlation between the two series is 67%. Panel B plots the
5-year trailing conditional correlation between the P/E ratio and stock return volatility in the data (black
line) and in the fitted model (grey line). The correlation between the two series is 36%.
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