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Introduction
While it is intuitive that the volatilities and comovements of stocks and bonds are strongly

related to the state of economic fundamentals, it is surprising that the financial literature has been

unable to empirically demonstrate such a strong link between them, as evidenced in the following

quote from a recent paper by Nobel prize laureate Robert Engle.

“After more than 25 years of research on volatility, the central unsolved problem is

the relation between the state of the economy and aggregate financial volatility. The

number of models that have been developed to predict volatility based on time series

information is astronomical, but the models that incorporate economic variables are

hard to find. Using various methodologies, links are found but they are generally much

weaker than seems reasonable. For example, it is widely recognized that volatility is

higher during recessions and following announcements but these effects turn out to be

a small part of measured volatility.” [Engle and Rangel (2008)]

For example, in a seminal paper, Schwert (1989) notes that stock market volatility is higher

during recessions, which is now a widely accepted and influential stylized fact for volatility. While

it is true that volatility is countercyclical, the regression of stock market volatility on the NBER

recession indicator over 1960 – 2008, has a fairly low R2 of only about 13%. For bond volatilities

the regression R2s are only around 15% for alternative maturity bonds. In fact, the R2 of virtually

all the macroeconomic variables that have been tested in the literature, which we will discuss in

more detail in this paper, jointly explain a very small proportion of stock market volatility.

In this paper we argue that the relation between volatility and the macroeconomy is in fact very

complex and goes beyond the simple boom-bust business cycle variation. This fact can be seen by

looking at the top panel of Figure 1, which shows the massive variation, both in magnitude and in

direction, of the correlation between stock return volatility and the price/earning (P/E) ratio. While

conventional wisdom and most asset pricing models would predict a negative correlation between

aggregate volatility and P/E ratio,1 in line with the empirical finding that volatility tends to rise

during recessions while the P/E ratio tends to drop, the top panel of Figure 1 shows that this is not

really the case in the data. In fact, the correlation between volatility and P/E ratio is often strongly
1 For instance, both the habit formation model of Campbell and Cochrane (1999) [see Figures 3 and 5] and

the long-run risk model of Bansal and Yaron (2004) [see Section II.C.3] imply a negative relation between

valuation ratios and volatility.
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positive.2 What kind of economic mechanism generates this massive variation in the correlation

between prices and volatility? Why is such mechanism unrelated to macroeconomic information?

Why does this correlation switch sign?

Interestingly, the same economic mechanism that generates the time variation in the relation

between stock prices and volatility is likely at play also for Treasury bonds, as the middle panel

of Figure 1 shows. This panel plots the correlation between the yield of the 5-year Treasury bond

and its return volatility. While the correlation has been mainly positive in the sample, it dipped

to negative occasionally, and it has became strongly negative in the current decade spurring the

question as to what has changed in this decade. Indeed, relatedly, the bottom panel of Figure 1 shows

one additional interesting empirical fact, recently discussed in Baele, Bekaert, and Inghelbrecht

(2009) and Campbell, Sunderam, and Viceira (2009), namely, that the covariance between stocks

and bonds, normally positive, also changes substantially over time, as it became strongly negative

around the two recessions of the new millennium. Once again, then, what economic model is

consistent with this variation in the sign of the covariance between stock and bond prices? Is

this economic mechanism consistent with the time variation in the relation between prices and

volatilities, documented in the first two panels of Figure 1? The understanding of the economic

mechanism driving asset prices, volatilities and correlations, is central to asset pricing and macro

finance, and yet, as pointed out above is at odds with the most popular asset pricing models.

In this paper we argue that these stochastic changes in the relation between asset prices, volatil-

ities, and cross-covariance, are due to market participants’ variation in their beliefs about economic

growth and future inflation. More specifically, we assume that the drift rates of earnings growth and

inflation follow a joint n−state regime-switching model but that market participants cannot observe

the current state of the economy and thus must learn about it by observing fundamentals and other

signals. We obtain closed form formulas for stock prices, bond prices, their volatilities and cross-

covariances. Because we, as econometricians, do not have full information about the signals used

by market participants to form their beliefs, we exploit our analytical asset pricing formulas and

estimate the time series of beliefs from fundamentals as well as prices, volatilities, and covariances.

The estimated model shows that Bayesian learning leads to a non-monotonic, V −shaped re-

lation between valuation ratios and volatilities, both for stocks and bonds, an empirical regularity
2Using data from Bob Shiller’s web site, daily returns from 1926 to 2008 from CRSP, and daily returns before

1926 from Bill Schwert’s data set, a similar time variation can be observed for the longer sample 1880 - 2008.

The correlation between volatility and the price/earning ratio turned positive in the late 1920s, in the postwar

period, and in the 1950s.
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that we verify in the data. The intuition can be summarized as follows: Roughly speaking, there

are “middle” economic states that are far more common than others. For instance, medium real

growth is more common than very low growth and very high growth. Similarly, low/medium infla-

tion is more common than very high inflation or deflation. Because of these characteristics, when

the economy settles on the more common states, Bayesian learning induces a decline in uncertainty

and thus of volatility for both stocks and bonds. However, when investors perceive a large deviation

from these “regular” states, either positive or negative, they increase the subjective probability that

the economy entered into a more unusual state. As a consequence, investors’ uncertainty about

the true economic state increases and so does stock return volatility, as a natural consequence of

the dynamics of Bayesian learning. Bond and stock valuation ratios, however, mainly react to the

direction of the change, that is, to whether investors believe the transition is to a better or worse

economic state. This decoupling of the direction of the change in beliefs and Bayesian uncertainty

leads to a V −shaped relation between return volatility and price valuation ratios.

As a consequence of the endogenous non-monotonic relation between volatility and valua-

tion ratios, our asset pricing model combined with the estimated time series of beliefs is able to

largely explain the observed time variation in stock and bond prices, their volatilities, and cross-

covariances. For instance, while the estimated model implies on average a negative correlation

between the P/E ratios and return volatility (the conventional wisdom), it also explains why some-

times this relation may switch sign and become positive, as it did in the late 1990s. According to

our estimates, this switch to a positive relation between volatility and prices during this time was

due to a cautious increase in market participants’ beliefs about the US entering into a sustained high

growth period. These beliefs increased both the P/E ratio, as they increased expected cash flows,

and volatility, as they increased the uncertainty on whether this transition to a high growth state was

true or not.

Similarly, the same economic mechanism explains the strong time variation in the relation be-

tween bond return volatility and yields. For instance, while in the late 1970s investors’ uncertainty

about whether the economy would enter into a persistent stagflation (high inflation and low growth)

state pushed up both bond return volatility and yields, the relation reversed in the new millennium

because of an increase in uncertainty about whether the economy will enter into a persistent defla-

tionary phase. The model then provides a consistent story of two periods that are characterized by

a fundamentally different relation between bond yields and volatility.

Besides explaining the time-varying relation between valuation ratios and volatility of bonds

and stocks individually, our model also explains the time variation in their comovement. Indeed, for
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instance, while the estimated model produces on average a positive correlation between bonds’ and

stocks’ yields (the conventional wisdom, also called the “Fed model”3), it also implies a negative

correlation in the last decade, as investors’ beliefs moved to give a somewhat higher probability that

U.S. will enter a deflationary-low growth state. This belief lowered the P/E ratio and raised bond

prices. Moreover, our estimated model suggests that the large uncertainty in the second half of 2008

about whether the transition to such a negative state in fact occurred caused a massive burst in the

volatility of beliefs, which explains to a large extent the (negative) correlation between stocks and

bonds, and record-setting stock volatility in this period.4

Our model not only provides a unified economic framework explaining several facts about the

puzzling dynamic relation between prices, volatilities, and correlations, but it also improves sub-

stantially the predictability of future volatilities and covariances, even at relatively long horizons.

For instance, the structural forecast of stock return volatility, whose construction we will discuss

further below, explains over 42% of the 1-year ahead volatility, against only 5% of macro-variables

and 15% of lagged volatility. The relatively limited success of macro variables is in line with the

quote by Robert Engle at the beginning of the paper. In contrast to stocks, for bonds our model

forecasts, macro variables, and lags, each forecast a similar amount, of nearly 60%, of the 1-year

ahead realized return volatility. We return below on the explanation of the relative difference in

performance of our model and macro variables for stocks and bonds. Finally, the structural model

forecasts also perform well in predicting more than half the future variation of the covariance be-

tween stocks and bonds, slightly higher that lags and macro variables. The gap between the model

and lags for each case improves substantially at longer horizons such as 2 years. The fact that the

model forecasts future volatility and covariances shows that it aggregates relevant macroeconomic

information, and provides additional evidence in support of the learning mechanism put forward in

this paper.

It is important to emphasize why our model’s forecast is more successful than forecasts based

on past volatility or macroeconomic variables. First, our model and estimation strategy utilizes

the information aggregation property of asset prices to capture the forward-looking information of

investors in the economy. This information includes also expected future volatility, although the re-
3Some authors have called the inverse relationship between P/Es and Treasury yields the “Fed Model,” a term

that has been attributed to Prudential Securities strategist Ed Yardeni. The relationship seems to hold in several

countries across varying time samples [see, for example Aubert and Giot (2007) and Bekaert and Engstrom

(2009)]. These papers however have failed to document the reversal of the relationship in the current decade.
4We thus provide a macroeconomic explanation for a large proportion of the high volatility in this period,

which was in all probability boosted by the failures of Lehman Brothers and AIG.
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lation is strongly non-linear due to the learning mechanism. Second, our structural learning model

in a cash-flow discounting framework endogenously formulates stock and bond market volatilities

as weighted averages of earnings and inflation uncertainty, so that macroeconomic information im-

pacts volatility in a non-linear way. These endogenous weights crucially depend on both investors’

beliefs about the state of the economy, and their subjective price valuations of stocks and bonds

in those states, as determined by their preferences (summarized by their state price density in our

model). It follows that while uncertainty about the state of the economy is a key determinant of

volatility, there is also an important amplification mechanism generated by investors’ marginal val-

uations of the various economic states, which may generate high volatility even when uncertainty

is relatively low, and vice versa. Our calibrated model reveals that the weight investors place to

earnings (inflation) news in stock market volatility is strongly pro (countercyclical), while the cor-

responding weights in bond market volatility are far more stable.5 Therefore, even though the same

fundamental information is useful in predicting both volatilities, due to the greater stability in the

weights, bond volatility is better forecasted by simple linear regressions on lagged fundamentals

than is stock market volatility.

Third, our model distinguishes among the fundamental conditions in the past several economic

cycles on a finer filtration than the simple boom/bust states of a macroeconomic business cycle,

which also affect market volatility. For instance, as mentioned, in the late 1990s and in the period

between the two recessions in the current decade, investors’ optimism that the U.S. economy had

entered a new growth phase, which has also led to lofty stock price valuations, led to a burst of

volatility due to uncertainty about the transition itself. This occasional positive correlation between

volatility and stock prices defies the conventional wisdom, but it is naturally generated by our model.

Similarly, variation in investors’ expectations about inflation and deflation, and their uncertainty

about it, changes both the sign of the relation between yield and bond return volatility, as well as

the direction of stocks and bonds comovement.

This paper contributes to the asset pricing literature also from a methodological standpoint, as

we put forward a new and different equilibrium structural form approach to volatility forecasting.

In contrast to the GARCH literature, which effectively entails predicting future volatility by using

lagged volatility and macroeconomic variables in a possibly non-linear regression, our approach

starts from an economic specification of fundamentals and investors’ pricing kernel – the main
5These weights imply that generally discount rate news is relatively more important prior to recessions, which

have generally been periods of rising inflation expectations, while cash flow news is relatively more important

during boom periods.
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ingredients of an asset pricing model – and explicitly solves for the equilibrium asset price levels

and their volatilities in closed-form as functions of the state variables of the model. The model is

then fit not only to fundamental data, but also to asset price levels and their volatilities with the use

of overidentifying moments. Thus, in our framework the impact of the macroeconomic variables

on volatility is explicit and completely specified.

It is important to note that our approach is different from the traditional GARCH literature

in not only specifying a functional form for the volatilities of assets returns, but also in the way

we fit our model parameters to financial data. In the former literature, the volatility of historical

asset returns is not observed by the econometrician, who formulates alternative theoretical dynamic

relationships for the volatility process to maximize the likelihood of observing the asset returns

process. We instead follow an alternative approach in the volatility literature of treating realized

volatility as an observed process.6 This permits us to use volatility as an overidentifying moment

in our estimation procedure described above. Forecasts of volatility can be optimally constructed

using Monte Carlo simulations, a method that allow us to exploit the correct dynamics of beliefs as

implied by Bayes rule, given the closed-form expression of the impact of beliefs on volatility and

the estimated parameters of the structural form model. In addition, our estimation procedure allows

for the econometrician’s information set to be quite different from that of investors, by allowing for

signals and state variables being observed only by the latter. Thus in our model, prices aggregate

the information received by investors, and the econometrician extracts it and uses it to construct

volatility forecasts.

Our paper is related to numerous strands of literature. First, it is related to the previous literature

about Bayesian learning and asset prices, and especially the early purely theoretical contributions

of David (1997), Veronesi (1999), and Veronesi (2000). In this paper we consider a much richer

environment in which return volatility depends not only on investors’ state-uncertainty, but crucially

also on investors’ marginal valuations of those economic states. This additional feature allows us to

uncover a V-shaped relation between stock volatility and the P/E ratio against the inverted U−shape

implied by Veronesi (1999). In addition, and differently from previous work, we also exploit the
6In this sense we follow the approach of Schwert (1989), who approximates volatility at the monthly and quarterly

frequencies as the squared daily average returns in these periods, but does not have a structural specification of

volatility. More recently, there has been increasing interest in using higher frequency intraday data to approximate

volatility in any given period [see, for example, Anderson, Bollerslev, Diebold, and Labys (2003)]. We continue

to use daily returns to construct our volatility measures since we are interested in studying the relationship

between volatility and the macroeconomy for a long sample during which intradaily data are not available.
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model’s implications to estimate the model’s parameters from prices and volatilities, in addition to

fundamentals, and form forecasts of future volatility. This estimation methodology is key to the

success of the model. From this perspective, our methodology is closer to the recent paper of David

(2008), who uses a similar model to ours, though he focuses on leverage and the level and variation

of corporate credit spreads. The paper is also related to Pastor and Veronesi (2006) (henceforth

PV), who also argue that uncertainty about long-term profitability pushed up both the NASDAQ

index and its volatility in the late 1990s. It is crucial to observe that our model differs from PV in 3

key respects: First, our focus is on aggregate volatility, and not idiosyncratic volatility, which was

the focus of PV. Second, we emphasize the time variation in the sign of the relation between prices

and volatility, while PV do not have anything to say about these dynamics, as they mainly focus

on the uncertainty and price level at one particular point in time, March 2000. Finally, unlike all

these papers, our paper focuses not only on stocks, but also on Treasury bonds, uncovering a similar

relation, and on the stock and bond comovement.

The paper is clearly related also to the large literature on time varying volatility, of which we

do not attempt an exhaustive survey. See Bollerslev, Chou, and Kroner (1992) for a relatively early

survey of its applications and Anderson, Bollerslev, and Diebold (2004) for more recent advances.

As mentioned, we propose here a different and new methodology to use the asset prices implied by

a structural model to improve upon the forecasting ability of macroeconomic information.

The paper develops as follows. In Section 1 we provide our economic model of fundamentals,

asset prices, and asset price volatilities. In Section 2 we describe our empirical methodology to

estimate the model and discuss its implications for the time series of fundamentals and asset prices.

Section 3 shows that the estimated model fits well the data, and provides an intuitive explanation of

the puzzling dynamics highlighted at the beginning of the introduction. Section 4 provides further

evidence in favor of the model, as it performs the empirical tests on the forecastability of volatility

and the covariation of asset returns. Section 5 concludes. An appendix contains the details of our

empirical methodology to estimate the parameters of our continuous time model with discrete data

using the Simulated Method of Moments (SMM).
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1. Structure of the Model
Inflation is a key state variable in our model. We assume that the price of the single homogeneous

good in the economy, Qt, follows the process

dQt

Qt
= βt dt + σQ dWt, (1)

where Wt = (W1t,W2t,W3t,W4t)
′ is a four-dimensional vector of independent Weiner processes,

the 1× 4 constant vector σQ = (σQ,1, 0, 0, 0) is assumed to be known by investors, and the process

followed by βt is described below.

The only real fundamental in the economy is the aggregate real earnings of all corporations, Et,

which follows the process
dEt

Et
= θt dt + σE dWt, (2)

where the 1×4 constant vector σE = (0, σE,2, 0, 0) is assumed known by investors and the process

for θt is described below.7 Investors learn about the hidden state of real earnings by observing its

past history as well as an unbiased signal, St that they receive. The signal follows the process

dSt

St
= θt dt + σS dWt, (3)

where the 1×4 constant vector σS = (0, 0, 0, σS,4) is assumed known by investors. The signals are

not observed by the econometrician.

To simplify our analysis, we assume that market participants’ preferences are summarized by a

state price density (SPD) Mt, which evolves over time according to the process:8

dMt

Mt
= −ktdt − σM dWt, (4)

where σM = (σM,1, σM,2, σM,3, σM,4) is a 1 × 4 constant vector of the market prices of risk,

and kt = α0 + αθ θt + αβ βt is the real short rate of interest conditional on the hidden state

variables θt and βt. We restrict the conditional real rate of interest kt to be a linear function of

the two (hidden) state variables of the model, a restriction partly motivated by the drift in general

equilibrium models with aggregate consumption. For example, in a Lucas (1978) economy where
7By setting σE,1 = 0 we are assuming that the covariance between inflation and earnings is zero. We indeed

find this to be the case for our inflation and earnings series described in Section 2.
8See e.g. Duffie and Kan (1997), Duffie and Singleton (1999) for seminal papers in the term structure and

credit risk literature, respectively, Berk, Green, and Naik (1999) for an equilibrium theory determining the

Fama-French factors, and Piazzesi (2005) for a theory of the Federal Reserve’s monetary policy and bond

yields, for prominent asset pricing contributions that use such a simplifying assumption.
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investors have power utility U (C, t) = e−φt C1−γ

1−γ
, we would have Ct = Et, Mt = U ′(Et, t), and

hence ki = φ + γθi + 1
2γ (1 − γ) σEσ′

E and σM = γσE . In this case, the real rate is not affected

by the inflation drift, that is, αβ = 0. In general, however, the real rate may depend on the drift rate

of inflation [see e.g. Feldstein (1980a), Feldstein (1980b), Auerbach (1979), Cohen and Hassett

(1999) for micro-based motivations, and Cooley and Hansen (1989), Bakshi and Chen (1996) for

macro and asset pricing models] and we leave the sign and magnitude of αβ as an empirical issue.

Note that while the state price density Mt (e.g. = Uc(Et, t)) is observed by investors, its drift rate

kt is not, as it depends on hidden state variables. In addition, we assume that Mt is not observed by

the econometrician, who has to estimate it from data.

Given the state price density Mt and their information Ft at time t, agents price a generic real

payout flow of {Dt} as

MtPt = E

[∫ ∞

t

Ms Ds ds|Ft

]
, (5)

To streamline the notation in a paper we stack the fundamental processes and write Xt =

(Qt, Et,Mt, St)
′, which has the drift vector νt = (βt, θt,−kt, θt)

′, and volatility matrix Σ =

(σ′
Q, σ′

E ,−σ′
M , σ′

S)′. The drift vector νt follows an n-state, continuous-time Markov chain with

generator matrix Λ. We denote the states vectors as ν1, · · · , νn. Thus, over the infinitesimal time

interval of length dt the probability to move from state i to j is

λijdt = prob
(
νt+dt = νj|νt = νi

)
, for i 6= j, λii = −

∑

j 6=i

λij .

The transition matrix over states in a finite interval of time, s, is exp(Λs) [see, for example, Karlin

and Taylor (1982)]. It is important to note that we model joint shifts in inflation and real vari-

ables, which implies that as in the “proxy hypothesis” of Fama (1981), inflation signals future real

economic activity.

We assume that investors do not observe the realizations of νt but know all the parameters of the

model. They update their beliefs about the current state of νt from the observations of past earnings,

inflation, the signal, and the state price density Mt. Their learning process results in the time series

of conditional probabilities of the hidden states,

πit = prob(νt = νi|Ft).

Given an initial condition π0 = π̂ with
∑n

i=1 π̂i = 1 and 0 ≤ π̂i ≤ 1 for all i, the probabilities πit

satisfy the n−dimensional system of stochastic differential equations:

dπit = µi(πt)dt + σi(πt)dW̃t, (6)
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where,

µi(πt) = [πtΛ]i, (7)

σi(πt) = πit [ νi − ν(πt)]
′ Σ′−1

, (8)

ν(πt) =

n∑

i=1

πit νi = Et

(
dXt

Xt
|Ft

)
. (9)

In (6), dW̃ are Brownian motions adapted to the investors’ filtration, defined by the normalized

expectation errors

dW̃t = Σ−1

[
dXt

Xt
− E

(
dXt

Xt
|Ft

)]
= Σ−1 (νt − ν(πt))dt + dWt. (10)

The belief processes were first derived in Wonham (1964), and first introduced to the finance

literature in David (1997). In particular, as was pointed out in that paper, the conditional variance

of investors’ expectations fluctuates indefinitely in this model, while in the more commonly used

Kalman filter, it is deterministic and converges to a constant. These fluctuations in uncertainty are

key to understanding the dynamics of volatility in this paper. An important generalization in this

paper is that the econometrician estimates investors beliefs when her information set is smaller than

the agents’ since it does not contain the investors’ state price density, or the additional signals about

real growth received by agents. It is useful to note that investors’ beliefs change with their inferred

shocks, dW̃ , in equation (10) as opposed to the true shocks, dW, that affect fundamentals.

1.1. Stock Prices and the Term Structure of Interest Rates

The following proposition provides expressions for the price-earnings (henceforth P/E) ratio and

the nominal bond price:

Proposition 1.

(a) The P/E ratio at time t is
Pt

Et
(πt) =

n∑

j=1

Cj πjt ≡ C · πt, (11)

where for each j = 1, .., n the constant Cj is given by

Cj = E

[∫ ∞

t

Ms

Mt

Es

Et
ds|νt = νj ,Ft

]
(12)

In addition, the vector C = (C1, .., Cn) satisfies C = A−1 · 1n,

A = Diag(k1 − θ1 + σM σ′
E , · · · , kn − θn + σM σ′

E) − Λ. (13)

10



(b) The price of a nominal zero-coupon bond at time t with maturity τ is

Bt(πt, τ) =

n∑

i=1

πit Bi(τ), (14)

where the n × 1 vector valued function B(τ) with element Bi(τ) = E
(

Mt+τ

Mt
· Qt

Qt+τ
|νt = νi

)
is

given by

B(τ) = Ω eω τ Ω−1 1n. (15)

In (15), Ω and ω denote the matrix of eigenvectors and the vector of eigenvalues, respectively, of the

matrix Λ̂ = Λ − Diag(r1, r2, · · · , rn), where each ri = ki + βi − σMσ′
Q − σQσ′

Q, is the nominal

rate that would obtain in the ith state, were the states observable. In addition, eωτ denotes the

diagonal matrix with eωiτ in its (i, i) position.

Proof. See the appendix.

In (a), we refer to the each constant Ci as the conditional P/E ratio, as it represents investors’ P/E

valuation of the stock conditional on the state being ν i today. As in the classic Gordon model, the

valuation depends on the expected growth of earnings, the real rate, and the equity premium. Since

investors do not observe the state ν i, they weight each conditional P/E ratio Ci by its conditional

probability πi thereby obtaining (11). Notice in particular that because ki = α0 + αθθ
i + αββi,

the form of the constant vector C suggests that:9 (i) if αθ < 1, a higher growth rate of earnings

implies a higher P/E, (ii) if αβ > 0, a higher inflation state implies a lower P/E, which is the real

rate effect of inflation, and (iii) in addition, the P/E ratio in a given state of growth depends on the

future sustainability of the growth rate and is determined by the transition probabilities λij as shown

in the solution to the n-equations in (a).

Similarly, in (b) the bond price is a weighted average of the nominal bond prices that would

prevail in each state ν i, Bi(τ), which we refer to as the conditional bond price. Again, since

investors do not actually observe the current state, they price the bond as a weighted average. Ceteris

paribus, both higher inflation and higher growth rate of earnings lead to lower long term bond prices

when αβ > −1 and αθ > 0.10 It is useful to notice that all asset prices follow continuous paths

even though the drift rates for earnings and inflation jump between a discrete set of states. This

results from the continuous updating process.
9Implications (i) and (ii) can be easily seen for the special case Λ = 0, which implies Ci = 1/[α0 + αθ(θ

i −
1) + αββi + σMσ′

E ].
10This can be easily seen in the special case Λ = 0, as in this case Bi(τ) =

exp
(
−[α0 + αθ θi + (αβ + 1) βi − σMσ′

Q − σQσ′
Q]τ
)
.
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Let P N
t = Pt · Qt be the nominal value of stock, where Pt is the real value of stocks in

Proposition 1. Using the dynamics of the inflation and earnings processes under the observed

filtration, we now formulate the nominal return processes for stocks and bonds.

Proposition 2.

(a) The nominal stock return process under the investor’s filtration is given by

dP N
t

PN
t

(πt) = (µN (πt) − δ(πt)) dt + σN (πt) dW̃t,

where δ(π) is the dividend yield, and the nominal stock price volatility is

σN (πt) = σE + σQ +

∑n
i=1 Ci πit (νi − ν(πt))

′(Σ′)−1

∑n
i=1 Ci πit

. (16)

(b) The nominal zero-coupon bond return process is

dBt(πt, τ)

Bt(πt, τ)
= µB(πt, τ) dt + σB(πt, τ) dW̃t,

where the nominal bond price volatility is

σB(πt, τ) =

∑n
i=1 Bi(τ)πit (νi − ν(πt))

′(Σ′)−1

∑n
i=1 Bi(τ)πit

. (17)

Proof. Follows from an application of Ito’s Lemma to the pricing formulas in Proposition 1.

Stock price volatility has an exogenous component due to noise in the fundamental process and

a learning-based endogenous component, which depends on the volatility of each state probability

πi. However, the volatility of stock prices depends additionally on the valuation of stocks in each

state as measured by the conditional P/E vector, C . For a given news content, states in which

valuations are higher contribute more to the total volatility. Since the valuations vary with both

expected earnings growth and discount rates, stock price volatility in our model will endogenously

load differently on news about these components in different stages of the business cycle as found

in Boyd, Hu, and Jagannathan (2005). To provide an intuition, suppose that at some time t there are

two states i and j for which πit ≈ (1 − πjt). In this case, the volatility in (16) can be written as

σN (πt) ≈ σE + σQ +
(Ci − Cj)πit (1 − πit)

(
νi − νj

)′
(Σ′)−1

P/E (πt)
(18)

It follows that if the conditional P/E ratios in the two states are similar to each other, Ci ≈ Cj , then

even a large uncertainty on the states, πit ≈ πjt ≈ 0.5, would still generate a small learning-induced

volatility. Vice versa, if Ci and Cj are very different from each other, even a milder uncertainty on

the states may generate a high learning-induced volatility, especially if P/E(πt) is small. These

findings highlight that stock return volatility depends on a complex interaction of uncertainty across
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states (e.g. πit(1 − πit) in (18)) and market participants’ price valuations of those states (e.g.

(Ci − Cj) in (18)), which in turn depend on market participants’ preferences through the state price

density Mt, as shown in (12). The dynamics of volatility becomes much more complex when

multiple states have positive posterior probability. In general, if in state i the earnings drift is far

from its value in other states, so that the volatility of the probability of this state is most reactive to

earnings news, then stock volatility will give a larger (smaller) weight to this earnings news if the

conditional P/E ratio Ci is high (low) in this state. We will discuss this point further in Section 2

for our calibrated model.

The form of the bond volatility equation is very similar to the stock volatility equation, except

that the conditional P/E ratio Ci in any state i is replaced by the conditional bond price Bi(τ) in

that state. In addition, there is no exogenous fundamental component to bond volatility. The two

volatility equations (16) and (17) are the heart of this paper. From these, covariances between

stocks and bonds, and bonds of different maturities, are derived straightforwardly. To simplify the

exposition of the covariances as well as to develop sufficient conditions to determine their signs, we

use the following “value-adjusted” probabilities:

πC
it =

πit Ci∑n
j=1 πjt Cj

and π
B(τ)
it =

πit Bi(τ)∑n
j=1 πjt Bj(τ)

. (19)

Notice that the two sets of probabilities weight investors’ true probabilities by the conditional val-

uations of stocks and bonds in each state, respectively. The normalizations ensure that each of

the sets of probabilities sum to 1. Further, we define the expectation of the fundamental vec-

tor ν as ν̄C
t =

∑n
i=1 πC

it νi, using the value adjusted probability for stocks, and analogously for

bonds. Using this notation we can write the stock volatility in (16) with the compact notation:

σN (πt) = σE+σQ+(ν̄C
t −ν̄t)Σ′−1, and the bond volatility in (17) as σB(πt) = (ν̄

B(τ)
t −ν̄t)Σ′−1.

In addition, we can write the covariance between stock and τ -period bond returns as

Cov
(

dP N
t (πt)

PN
t (πt)

,
dBt(πt, τ)

Bt(πt, τ)

)
= (β̄

B(τ)
t −β̄t)+(θ̄

B(τ)
t −θ̄t)+(ν̄C

t −ν̄t)(ΣΣ′)−1(ν̄
B(τ)
t −ν̄t)

′. (20)

While it is hard to place a sign on the stock-bond covariance in general, we can do so at points

of time when only 2 of the n states have positive probability. In particular, we are interested in

finding intuitive sufficient conditions for the covariance to be negative, which are provided in the

following proposition.

Proposition 3. Let there be 2 states i and j such that at date t πit + πjt = 1. If the following

conditions are met:

(a) βi > βj ; (b) θi > θj; (c) Ci > Cj; (d) Bi(τ) < Bj(τ)., (21)
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and all elements of the volatility matrix σQ,1, σE,2, σM,j , for j = 1, · · · , 4, and σS,4 are positive,

then, Cov
(

dP N
t (πt)

P N
t (πt)

, dBt(πt,τ)
Bt(πt,τ)

)
< 0.

Proof. See the appendix.

This proposition shows that the covariance between stocks and bonds is negative if the earnings

and inflation drift vectors θ and β are positively correlated between the two states i and j (conditions

(a) and (b)), while the conditional P/E ratios C and bond prices B(τ) are negatively correlated

(conditions (c) and (d)). The latter is intuitive, if stock valuations increase and bond valuations

decrease, stock and bond returns will have a negative covariance. The interesting point of our

model is that these conditions are tied to the fundamental drifts of earnings and inflation. The result

can be theoretically extended to the case where all n state probabilities are non-zero, however, in

our estimated model, we find that the fundamental vectors and price valuations do not have perfect

correlations as required, so that in general it is hard to sign the covariance.

2. Estimation
In this section we provide a brief description of the estimation methodology and the parameter

estimates of our model. Details are in the Appendix.

2.1 Estimation Methodology

We use both fundamentals as well as the first and second moments of financial variables to estimate

the model’s parameters as well as the time series of investors’ beliefs over fundamental states. We

employ a Simulated Method of Moments (SMM) method to carry out the estimation, as described

next.

Let Ψ denote the set of structural parameters in the fundamental processes of inflation, earnings,

earnings signals, and the state price density in equations (1), (2), (3), and (4), respectively. Let the

marginal likelihood function for the fundamentals data observed at discrete points of time (quar-

terly) be L, which we compute by simulating several sample paths of the state variables in smaller

discrete subintervals using the Euler discretization scheme [see e.g. Kloeden and Platen (1992)

and Brandt and Santa-Clara (2002)]. To extract information about investors’ beliefs from the first

and second moments of asset prices we use the pricing formulae for the P/E ratio and Treasury

bond prices in Proposition 1, their volatilities in equations (16) and (17), and covariances in (20)

to generate model-determined moments. Let {e(t)} denote the errors of the pricing and volatility
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variables, and define ε(t) =
(
e(t)′, ∂L

∂Ψ(t)′
)′

, where the second term is the score of the likelihood

function of fundamentals with respect to Ψ. We minimize the usual SMM objective, given in (43)

in the Appendix. The details of the procedure are in the Appendix.

It is worth emphasizing three key points about our choice of the SMM method of estimation.

First, a simulation-based approach is necessary in our case since the likelihood function for the

fundamental data observed at discrete points in time is not available in closed-form. In addition,

series-based approximations of the likelihood function as in Ait-Sahalia (2002) are cumbersome

given the high dimensionality of our state space (6 dimensions for the beliefs and 2 for fundamen-

tals). Second, our SMM approach allows for the fact that the econometrician observes data only

on fundamentals while investors in addition observe their marginal utility (state price density) and

signals about earnings, and hence update their beliefs about fundamental drifts based on a finer

information filtration. The simulation procedure ensures that we respect the dynamics of beliefs

that are implied by the proper filter, explicitly given in (6). Finally, the procedure combines infor-

mation in asset price and volatility moments with the information in fundamental data so that the

extracted investors’ beliefs are potentially quite different from estimation methods that rely only on

fundamental information [see, for example, Hamilton (1989)].

2.2 Estimation Results for the Regime Switching Model

In this subsection, we briefly describe the results of the estimation of our model. Our data sample

runs from 1958 to 2008. Our filtering process is started by using the stationary beliefs implied by the

parameter values at the starting date. Since investors’ beliefs at the initial date are likely influenced

more strongly by most recent data received, as is standard in Bayesian econometric methods, we

use a burn-in period of 8 quarters and thus report all results for the sub-sample from 1960-2008.

We start with the description of the data series used.

Aggregate earnings for the economy are approximated as the operating earnings of S&P 500

firms, and these data are obtained from Standard and Poor’s.11 Similarly, the aggregate P/E ratio

is estimated as the equity value of these firms divided by their operating earnings. Dividends for
11Operating earnings typically exclude certain expense or income items that are nonrecurring or unusual in

nature, such as restructuring charges and capital gains/losses on unusual asset sales, and are hence used in

industry to assess the long term fundamentals of firms. For example, I/B/E/S uses this concept of earnings

in analyst surveys. Sharpe (2002) uses operating earnings and analysts estimates of these earnings to study

stock P/E valuations and returns. To adjust for seasonal factors we take the 4-quarter moving average of these

earnings, which is also used in the construction of the P/E ratios.
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these firms, also obtained from Standard and Poor’s, are used with the prices to compute returns.

We use the Consumer Price Index (CPI), obtained from the Federal Reserve Bank of St. Louis,

as our inflation series, which is also used to discount nominal earnings. The time series of zero-

coupon yields and returns on bonds of different maturities are obtained from the Fama-Bliss data

set available at the University of Chicago. Finally, the realized volatilities of stocks and bonds

are estimated as squared average of daily returns in any given quarter. Returns are not demeaned,

although the demeaning of the series does not significantly affect our results. Use of such daily

averages has a long tradition in finance [see, for example, Schwert (1989)]. More recently, authors

such as Anderson, Bollerslev, Diebold, and Labys (2003) use higher frequency intradaily data to

estimate realized volatilities; however, such data are not available for the long sample that we use.

We estimate a model with 4 regimes for inflation characterized by the states β 1 < 0 < β2 <

β3 < β4 and 3 for earnings growth θ1 < 0 < θ2 < θ3, which lead to 12 composite states

overall. In our estimation, we find that the unconstrained estimates of the transition matrix led

to several zero elements, leading to a more parsimonious 6 state model with the following states:

{(β1, θ1), (β2, θ2), (β3, θ1), (β3, θ2), (β4, θ1), (β2, θ3)}, which we also refer to as (D-LG), (LI-

HG), (MI-LG), (MI-HG), (HI-LG), and (LG-NG), respectively. The letters I, and G, stand for

inflation and growth, D for deflation, and L, M, H, and N stand for low, medium, high, and new

economy, respectively. For example, the state (MI-LG) stands for medium inflation and low growth.

We find that the remaining 6 states have close to zero probability of occurring in the sample. Overall,

the 6-state and 12-state models lead to almost the same value for the SMM objective function. Gray

(1996) and Bansal and Zhou (2002) use a similar criterion for the choice among alternative regime

specifications.

The top 2 panels of Table 1 reports estimates of the drifts and volatilities of fundamentals and

signals. The 3rd panel reports the transition probability (generator) matrix, while the 4th panel

reports the estimates of the parameters of investors’ SPD. We estimate that during deflationary

periods the CPI on average declines 0.1 percentage points, and inflation averages 2%, 4%, and

8.1% in low, medium, and high states, respectively. Earnings growth averages -5%, 2.5%, and

6.1%, in the low, high, and “new economy” growth rate state, respectively.

The 2nd panel reports the volatilities of inflation and earnings and the earnings signal, which

account for unexpected variation in the fundamentals. Notably, earnings are about 4 times as volatile

as inflation. It is also worth noting that the instantaneous covariance between the two fundamentals

is estimated to be close to zero, so that any nominal-real interaction in our model arises purely from
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learning about the drift rates of earnings and inflation, which have a low frequency correlation.12

The earnings signal, as suggested previously, accounts for information that investors obtain about

earnings that is not reflected in historical earnings. Including the signal in the estimation enables us

to better calibrate investors’ belief response to earnings shocks, which affects all asset volatilities.

We estimate volatility of the earnings signal is 9.6%, which is of similar magnitude to the earnings

volatility itself.

In the interest of parameter parsimony, we estimate only 6 jump intensities describing the in-

finitesimal generator Λ, namely, λ1 < · · · < λ6 for i = 1, .., 6, and restrict the infinitesimal

generator to be characterized by these 6 intensities, or zero. Table 1 reports the resulting estimated

infinitesimal generator. Table 2 reports the implied annual transition densities, which are easier to

describe, and so we defer the discussion of our estimates to the next section, where we discuss the

beliefs dynamics.

We finally turn to the SPD parameter estimates, the 4th set of parameters in Table 1. We notice

immediately that αθ is very close to zero, which implies that the real rate does not depend on the

state of real fundamentals (earnings), and that αβ = 0.685, which is significantly positive, which

means that the real rate is higher in states of higher inflation. A positive relation between the real

rate and expected inflation has been documented by, among others, Geske and Roll (1983), Evans

(1998), and Brennan and Xia (2002). It is interesting to note that our estimate is close from that of

Sharpe (2002), who estimates that a 1% increase in expected inflation of forecasters increases the

required long term rate of return on stocks 0.75%. Ceteris paribus, these estimates imply lower P/E

ratios and higher Treasury yields during periods with higher expected inflation. This real rate effect

of expected inflation is further boosted by the signaling effect of inflation, which we discuss below,

further strengthening the inverse relation between P/Es and Treasury yields.

Using the scores of the likelihood function and the errors of the price and volatility variables,

we evaluate the SMM objective function, which serves as an omnibus test statistic [see for example

Gray (1996) and Bansal and Zhou (2002)]. The overall SMM objective function value, which has a

chi-squared distribution with 11 degrees of freedom, is 18.401, implying a p-value larger than 7%,

so we fail to reject our model.
12 This distinguishes our approach from that of Campbell, Sunderam, and Viceira (2009), who assume that real

and nominal shocks in the economy have a time-varying and non-trivial quarterly correlation.
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2.3 The Dynamics of Investors’ Beliefs

The estimated dynamics of investors’ beliefs are key to understanding the puzzling behavior of

stock and bond return volatility, their relation with valuation ratios, and macroeconomic variables.

We first provide some intuition for the dynamics of investors’ beliefs by looking at the transition

probability matrices and the stationary (long-run) beliefs of investors in Table 2, which are derived

from the generator elements in Table 1. Notice first that the regular high growth rate of earnings,

θ2, is far more persistent in the low inflation state: from the (LI-HG) state, there is only a 1.8% of

chance of growth slowing in the following year. In contrast, from the (MI-HG) state, the chance of a

slowdown in earnings increases more than 4-fold to 8.2%. This is the signaling role of inflation – it

provides an early warning signal of an unsustainable high growth rate of fundamentals. In addition,

the state of new economy growth can only be reached under the state of low inflation, so that either a

pickup from the normal rate, or a substantial decline that triggers deflation fears will lower investors

confidence of the new economy growth rate. Second, as can be seen from the middle panel of Table

2, even at the 5-year horizon there is only about a 2.3% chance of the economy entering the NG state

from any other state. The bottom panel of Table 2 shows that the stationary (long run) probability

of the NG state is only about 3.9%. However, as we will discuss in Section 4.1, the low probability

of this event helps explain the spectacular contemporaneous rise of stock prices and stock volatility

in the late 1990s, and their equally spectacular fall in the first half of the current decade. Finally,

the dynamics of investors’ worries about deflation accompanied by low growth (state 1) enables our

model to explain the shift in the current decade to both a negative correlation between stocks and

bonds, as well as the co-existence of low yields but high bond return volatility. Table 2 shows that

the stationary probability of this state is only 3.8%, and once again the low probability of this state

generated tremendous fundamental uncertainty and extremely high volatility at the end of 2008.

Moving to the time series, the 6 panels of Figure 2 report investors’ beliefs over the 6 states,

estimated from both fundamentals, asset prices, and their volatilities, as described in Section 2.1.

As shown in the top-right panel, over the sample period investors have held fairly strong views

that the U.S. economy has remained in the LI-HG states. For most of the decade of the 1960s this

probability hovered around 85%, while in the 1990s it was lower and averaged around 70%. There

were several switches within the medium inflation states in the 1970s, with two bouts of stagflation

(high inflation and low growth) in the mid-1970s and early 1980s, as seen in the bottom-left panel.

The mid-to-late 1980s were characterized by high (nearly 40%) probabilities of the MI-HG state,

which steadily declined through the end of the 1990s, although the probabilities of this state rose
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substantially to about 35% before the recession in 1990. This trend decline in expected inflation

has also been noted by other authors [see, for example Sargent, Williams, and Zha (2006)]. In the

current decade, the probability of the MI-HG state slowly trended up and averaged over 9% between

2004 and 2006, before falling again in the current recession.

One of the more striking aspects of the figure is that the large belief movements in the past 2 re-

cessions have been very different from the previous 6 in our sample. In particular, the pre-recession

pickup of the MI probability has been smaller than in the past 6 recessions in our sample. Instead, in

both recessions there have been major corrections in investors’ beliefs of the new economy growth

rate (more dramatic in the 2001 recession), and rapid spikes of the deflation-low growth state prob-

ability (more dramatic in the current recession).13 In fact, by our model estimates, investors’ held

close to a 50% chance that the economy was experiencing deflation at the end of 2008. This large

movement of beliefs between the two states (LI, NG) and (D-LG) between 1995 and 2008 are

largely responsible for the intriguing empirical regularities that have characterized the last 15 years:

A positive relation between stock volatility and P/E ratio in the late 1990s, the negative relation

between bond volatility and yields in the last decade, and the negative correlation between stock

and bond returns around the last two recessions. The next section further illustrates these effects.

3 Volatilities, Valuations, and Fundamentals
The complex non-linear dynamics of beliefs and their relation to fundamentals explain the puzzling

time varying relation existing between asset volatilities and their valuations. In addition, these

dynamics also explain the time variation in the size and sign of the comovement between asset

prices. This section discusses the performance of the model in accounting for this time-variation,

and the intuition behind it. The next section shows that the model is in fact able to improve upon

the forecast of future volatilities and covariances compared to lagged volatilities or macroeconomic

variables lending additional evidence in favor of our economic mechanism.
13This panel also shows an increase in beliefs about deflation around the 2001 reces-

sion, providing support for the Fed concerns about the (small) risk of deflation at that

time, as evidenced by Chairman Greenspan’s remarks on December 19, 2002, available at

http://www.federalreserve.gov/BOARDDOCS/SPEECHES/2002/20021219/default.htm.
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3.1 Stock Volatility and P/E Ratio

Figure 1 in the introduction documents that the relation between stock return volatility and the P/E

ratio is strongly time varying, and apparently not explained by simple macroeconomic variables.

Our model explains why.

First, we note that our model fits well both the time series of P/E ratio and return volatility.

Table 3 shows that the R2 of a regression of historical P/E ratio on our fitted P/E ratio is about 62%,

although notably, the model fails to fully fit the high valuations of the late 1990s, as investors were

not fully convinced of the new economy growth state.14 In particular, the model correctly fits a P/E

in the high teens for most of the 1960s and low teens for much of the 1970s and early 1980s, as

shown in the top-left panel of Figure 4.

Similarly, Table 3 shows the fitted stock return volatility explains 45% of the variation in his-

torical volatility over the full sample and 59% if the fourth quarter of 1987 is excluded. Several

authors have noted that the extreme volatility in this quarter was largely related to a breakdown in

trading mechanisms rather than fundamental shocks [see, for example, Kyrillos and Tufano (1995)].

The top-right panel of Figure 4 shows that our model volatility is consistent with nearly all other

episodes of historical volatility, and in particular, explains a large proportion of realized volatility in

the second half of 2008. Realized volatility hits its record in our sample in the 4th quarter of 2008,

rising to about 68% an annual rate, while our model fitted value was at 48%. This is consistent with

our model measured earnings uncertainty being at its record level in our sample. Finally, consistent

with the observation in Schwert (1989), stock market volatility is higher during recessions, however,

the regression R2 of the historical volatilities on the NBER recession indicator is quite low at only

13%, which underscores the need for writing more sophisticated models that explain its dynamics.

The fitted model reveals a V −shaped relation between stock return volatility and the P/E ratio,

as can be seen from the top-right panel of Figure 5. This panel shows the scatter plot of the model

fitted stock return volatility (y−axis) and the fitted P/E ratio (x−axis). As can be seen, the volatility

is higher both when the P/E ratio is low and when the P/E ratio is high, while the volatility is

typically lower when the P/E ratio is in an intermediate range. This V −shaped pattern of return

volatility and P/E ratios is also visible in the data as can be seen in the top-left panel of Figure 5

that plots the measured quarterly return volatility against the end-of-quarter P/E ratio. There are

two exceptions, namely, the high measured volatility implied by the two price jumps in October
14Recall that in our model the market price of risk is assumed constant, while there is some evidence of that

lower expected return were partly responsible for the high valuations in the late 1990s (see e.g. Pastor and

Veronesi (2006)).
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1987 and in October 2008, which occurred when the P/E ratio was not (yet) low. Interestingly,

and consistently with this last observation, also the fitted model contains occasions of high return

volatility for intermediate P/E ratios, demonstrating that the dynamics of return volatility and its

relation to prices is actually very complex.15

How can the model be consistent with both a positive and a negative relation between P/E ratios

and aggregate volatility, as evidenced in the top-right panel of Figure 5? Isn’t higher aggregate

stock return volatility a symptom of higher “risk” in the economy and thus shouldn’t it lead to

lower P/E ratios, rather than higher P/E ratios? Indeed, this negative relation is predicted by leading

asset pricing models, such as the habit formation model of Campbell and Cochrane (1999), and the

long-run risk model of Bansal and Yaron (2004). What is then the intuition behind a V −shaped

relation between volatility and P/E ratios in the context of our model?

In a nutshell, the answer is simply that uncertainty is higher at the extremes. More specifically,

the high growth (HG) state of the economy is far more common that both a low growth (LG)

state and a very high growth (NG) state. This fact can be seen from the stationary probabilities

π∗ in the bottom panel of Table 2. This fact implies that when the economy settles on any of

the high growth states, volatility tends to decrease as learning reduces uncertainty. However, a

sufficiently large piece of news, positive or negative, that move beliefs away from the current state

will increase uncertainty, as investors now assign relatively more weight than before to a state of

the economy, higher or lower, that is more unusual. In particular, bad news will move beliefs

towards the LG regime while good news will move beliefs toward a NG regime. Either way, the

uncertainty increases and with it also return volatility. However, the level of P/E ratios will follow

the direction of the news: an increase in beliefs that the LG state is true decreases the P/E ratio,

while an increase in beliefs that the NG state is true increases the P/E ratio. These dynamics imply

that return volatility tends to be higher at the extremes, compared to the middle P/E.

Consistent with this explanation, the top panel of Figure 1 in the introduction provides evidence

of the strong time variation in the correlation between P/E ratios and stock return volatility. The top

panel of Figure 6 provides additional evidence of the Bayesian learning mechanism just discussed,

as it plots the model-implied correlation between P/E and return volatility, along with the 95%
15The empirical finding of a V −shape relation between volatility and P/E ratio, also distinguishes this paper

from Veronesi (1999), which instead predicts an inverted U-shaped relation. In that paper, with only two

states, uncertainty is the only driver of volatility, and thus stock volatility is low at the two extremes cases

when investors learn that the state is either very good or very bad, which command a high P/E ratio or a low

P/E ratio, respectively.
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confidence bands already displayed in Figure 1. The figure suggests that the model is able to

capture most of the variation in the correlation between P/E ratios and return volatility, with the

main exception being the early 1960s. In this period, stock prices fluctuated from the political

events surrounding the Cuban missile crisis and the assassination of JFK so that the data correlation

between P/E and volatility was negative, as is the pattern in most periods of uncertainty from bad

news.16 In contrast, the model correlation was positive since the fundamentals entering this period

were strong, and there were rising expectations of the very strong growth rate state, which increases

uncertainty and thus volatility. Apart from this episode, the fitted model explains over 37% of the

variation of the historical correlation.

It is useful to provide some additional intuition on this lack of monotonicity between P/E ratios

and volatility by concentrating on the late 1990s. From the bottom right panel of Figure 2, the late

1990s saw a sharp rise in the posterior probability of the Low Inflation-New Economy growth state

(LI, NG). This increase came at the expense of a lower posterior probability weight assigned to the

Medium Inflation-High Growth state (MI, HG), as shown in the top-right panel of Figure 2. From

the bottom panel in Table 2, the (LI, NG) state is characterized by a conditional P/E ratio C6 = 34.1,

against the much smaller C4 = 12.3 in the (MI, HG) state. That is, the contemporaneous decrease

in inflation and increase in real earnings in the late 1990s increased market participants’ assessed

probability that the U.S. economy would enter into a sustained high growth state to almost 22%.

This change in probabilities increase both the expected future earnings, and thus the stock P/E ratio,

as well as the uncertainty about future earnings growth, as probability shifted from a “HG” state to

the higher “NG” state. The spectacular increase in volatility, however, is compounded by the fact

that the conditional P/E ratio in the (LI, NG) state is so large compared to the (MI HG) state, a

fact that acts as a multiplier effect on uncertainty. This empirical finding is reminiscent of a similar

point made in Pastor and Veronesi (2006) (PV), but it is key to notice 3 important differences: First,

PV concentrate only on the price and volatility of NASDAQ, which in their model is considered

as idiosyncratic volatility, and not the price and volatility of the aggregate market. Second, in

our model the increase in P/E ratio is mainly due to an increase in expected cash flow, and not

uncertainty per se. Third, PV’s model cannot generate an increase in uncertainty and volatility,

without relying to some external, out-of-the model mechanism, while our model endogenizes all of

the variation.

The model also explains the spectacular decrease in both P/E ratios and volatilities that fol-
16In a recent paper, Bloom (2009) lists these political events as some of the largest uncertainty shocks in post-

war data.
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lowed the late 1990s, as the probability of the New Economy state dropped, but the probability

of Deflation/Low Growth state (D,LG) increased, as shown in the top-left panel of Figure 2. The

conditional P/E ratio corresponding to this latter state is again low, of around C1 = 12.9, explaining

the drop in both the P/E ratio and volatility (again, a positive relation between the two variables). It

is interesting to note from the bottom-right panel of Figure 2 that the bull market between the two

recessions of the current decade was due to again an increase in the probability Low Inflation / New

Economy growth, which again pushed up volatility, although to a much lower extent than in the late

1990s.

We conclude this section with an important caveat about uncertainty and return volatility, namely,

the fact that while uncertainty is key in determining the variation in volatility, it is not sufficient,

because return volatility not only depends on the level of uncertainty about the economic states, but

also on the conditional P/E ratio attached to each state, as shows in expression (16) and discussed

then. To clarify this important point, we compute model-based measures of fundamental uncer-

tainty. Given investors’ beliefs, πt, at any point of time we can construct model-based measures of

inflation and earnings uncertainty as

RMSEI (t) =

√√√√
n∑

i=1

πit

(
βi − β(πt)

)2 and RMSEE (t) =

√√√√
n∑

i=1

πit

(
θi − θ(πt)

)2
, (22)

respectively. For our estimated parameters, we find that the earnings and inflation uncertainty mea-

sures explain only 2% and 10% of the variation in historical volatility, respectively, while the model

volatility explains 44%. This finding shows two facts: First, that the non-linearities built into the

structural form model are extremely important for the understanding the volatility dynamics. Sec-

ond, the size of conditional P/E ratios across the various states play a central role in determining the

volatility level, an observation that directly links return volatility to asset valuations. As an example

of this mechanism at work, consider again the example about the late 1990s. Uncertainty in that

period was not extremely high, because investors only gave about 20% probability to be in the (LI,

NG) state, while the remaining 80% was still assigned to the regular (LI,HG) state. Yet, volatility

was extremely high. The reason is that the difference in conditional P/E ratios is large: From Table

2 the conditional P/E ratios are about 17.5 and 34.1 in the (LI,HG) and (LI, NG) states, respectively.

From expression (18) the high state uncertainty as captured in the term πit(1 − πit), was further

amplified by the difference in the valuation multiplies (Cj − Ci), which was very large.
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3.2 Bond Volatility and Long Term Yields

The model fits the variation in bond yields and volatilities well. Table 3 shows that the model

explains between 64% to 67% of the variation of yields, and between 52% and 64% of the variation

of bond return volatility. In what follows we concentrate only on the results for the long-maturity

(5-year) bond. The results for the 1-year bond are similar, and in fact, stronger. The bottom-left

panel of Figure 4 shows the fitted and actual 5-year yield, while the bottom-right panel shows the

volatility of bond returns. We note that our model yield was at its record level in the early 1980s as

in the data, however, it fails to fully explain the high yields in this period. It is relevant to note that

the Federal Reserve experiment with targeting money growth as opposed to interest rates had a role

to play in generating tight credit conditions that led to higher rates in this period than predicted by

our model.17 Outside this period, the model does capture the main time variation in the long term

yield, be it in the 4% range until mid 70s, in the 8% range until the late 70s, again the 4% range in

the 1990s, and below that thereafter.

Like stock market volatility, the bond return volatility is countercyclical, although the R2s of

the historical volatilities on the NBER recession indicator are again low at around 15%. More

interestingly, while the volatility was at its highest levels during the periods of high interest rates in

the early 1980s, it was remarkably high also in the two recessions of the current decade, in which

interest rates and inflation expectations have been far lower. These trends highlight a non-linear

relationship between yields and bond volatilities, which our model explains. Indeed, the bottom

panels of Figure 5 plot the scatter plot of bond return volatility and yield in the data (left panel) and

implied by the model (right panel). As was the case with P/E ratio and stock volatility, the relation

is not monotonic, as the volatility was the smallest for intermediate long-term yields, and higher

for high and low yields. Our model is able to replicate well this time varying conditional relation

between these two variables.

The economic intuition of this finding is the same as for the case of stock return volatility and

P/E ratios: uncertainty is larger at the extremes. In this case, the regular states are the medium/low

inflation (MI and LI) states, while the unusual states are the high inflation (HI) and deflation (D)

states. Uncertainty is relatively low when the economy is in the usual states, but increases when
17It is worth pointing out that most term structure models that have an endogenous equilibrium short interest

rate process have trouble matching the high rates in this period. For example, Campbell and Viceira (2001)

report parameter estimates prior to and post the Fed experiment years. In this paper, we are mostly interested

in understanding the dynamic comovement of yields and bond return volatility, making the exact fitting of

asset prices in each time period less critical for our main results.
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there is news pointing to the two unusual states. This increase in uncertainty pushes up bond return

volatility. However, if news is about entering a HI inflation period, long-term yields reflect such

an expectation, and thus yields are high. Vice versa, if news is about entering a deflation, then

long-term yields are low. Therefore, high volatility occurs for both high and low bond yields.

Further evidence in favor of the learning mechanism is offered by the middle panel of Figure 6.

This panel shows the correlation between bond return volatility and long-term yields from the model

along with the confidence bands from the data, as shown already in Figure 1 in the introduction. As

can be seen, the model successfully replicates the main time variation in this correlation. Indeed,

the correlation from the data and from the model track each other well, as the model explains over

38% variation of the historical movement in the correlation. Moreover, the correlation was clearly

positive in the mid 1970s and negative in the more recent history.

To provide some concrete intuition of the learning mechanism leading to a positive and negative

relation between yields and bond return volatility, we contrast the dynamics of beliefs during the

mid 1970s, when the correlation between yields and volatility was positive, with the dynamics of

beliefs during the current decade, when the correlation was negative. From the middle panels and

the bottom left panel of Figure 2, the mid 1970s were characterized by high probabilities assigned to

medium and high inflation states. This expectation of high inflation generates a high long-term yield

in our model, as can be seen from the bottom panel of Table 2. At the same time, the uncertainty

to enter into a sustained high inflationary period increase the uncertainty of bond returns. The

opposite effect occurred in the current decade, which is instead characterized by worries to enter

into a deflationary state, as shown by the top-left panel in Figure 2. When the probability of the

deflationary state increases, the long-term yield decreases but the uncertainty about future inflation

(or, better, deflation) increases. This climb in deflation uncertainty then pushes up bond return

volatility exactly when yields are lower, leading to a negative correlation between the two. The

economic mechanism underlying our dynamic model then makes consistent with each other two

historical periods that are characterized by a diametrically opposite behavior of yields and volatility.

3.3 The Stock-Bond Comovement and the Breakdown of the Fed Model

The same learning mechanism highlighted in the previous two sections explains also the time vari-

ation in the relative valuation of stocks and bonds (the Fed Model) and the dramatic time variation

in the comovement between stocks and bonds, as shown in Figure 1 in the introduction. To shed

further light on the issue, we explicitly plot the historical (top panel) and model implied (bottom
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panel) Fed model in Figure 7. As evident, the relation between the earnings yield and the 5-Year

Treasury yield was strongly positive of around 0.75 both for the model and data in the sub-sample

from 1960-1999. However, in the current decade the correlation is negative of around -0.6 both in

the data and the model. This breakdown of the Fed model has important implications for the sign

of the correlation between stocks and bonds, which also changed sign in the current decade and we

discuss this further below.

Indeed, the bottom panel of Figure 6 reports the realized covariance between stocks and the

long-term bonds, and the fitted value from the model’s estimate. Realized covariances were at

their highest levels in the early 1980s, at about the same periods as the bond volatilities. It is

immediately evident from the plots that the stock-bond covariance changes sign, going from being

mainly positive in the period from 1960-1999, to being mostly negative in the current decade, and

our model captures this change in sign quite accurately. The fitted values explain around 50% of

the variation of the covariance series (see Table 3).

The main intuition behind the success of the model to track the time variation in covariances

between stocks and bonds relies on the time varying signaling role of inflation. More specifically,

a period of rising but positive inflation expectations lead to higher Treasury yields, but due to the

adverse impact of higher inflation on future earnings growth, they also lead to lower P/E ratios of

stocks. Thus, bond and stock returns comove positively. Moreover, a large state-uncertainty implies

a fast updating of beliefs, which drives up the covariance as beliefs act as a highly volatile common

factor between stocks and bonds. However, when investors’ expectations of deflation increase, bond

yields decline, but since deflationary periods are also periods of low earnings growth, the signaling

channel of inflation reverses, so that the P/E ratio also declines. Thus, the correlation between

stock and bonds yields becomes negative. Similarly, deflationary expectations lead to higher bond

returns and lower stock returns, reversing the normally positive relation. The higher the uncertainty,

moreover, the larger is the impact of news on beliefs, and thus the more negative is the negative

covariance between stocks and bonds. Because uncertainty was larger during the two most recent

recessions, and especially in the 2007-2008 recession, the negative covariance between stocks and

bonds became large during this period. More formally in the context of our model, Proposition 3

implies that the stock-bond covariance becomes negative when investors are concerned about the

transitions between states in which stock and bond valuations are negatively related. As can be seen

in Figure 2, the probabilities that investors assess of the economy being in the deflation and regular

boom states (states 1 and 2) sum to about 95 percent in each of the recessions of the current decade.

The bottom panel of Table 2 shows that the conditions in Proposition 3 are met during these periods
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so that the model stock-bond covariance is negative in them.

As mentioned in the introduction, a number of recent papers have tried to explain the variation in

the stock-bond covariance, and it is important to note the difference with our economic mechanism

based on learning. Campbell, Sunderam, and Viceira (2009) build a quadratic term structure model

whose distinctive feature is the introduction of a state variable which can change sign and has a

direct impact on the covariance between inflation and real shocks. In this sense realized inflation

signals real activity in their model as well, albeit in a Gaussian shock world rather than the regime

switching framework of our model. A key difference between their model and ours is that in our

model, the correlation between inflation and real growth is determined by investors learning about

their hidden fundamental states, while in the Campbell, Sunderam, and Viceira (2009), the state

variable is essentially unrelated to fundamentals. For example, we show that our estimated model

directly implies that the covariance of stock and bond returns becomes negative in periods when

the economy moves between regular expansion states and states with deflationary expectations, but

is positive otherwise. Baele, Bekaert, and Inghelbrecht (2009) attribute the negative covariance

between stocks and bonds in the current decade to liquidity factors in these markets, a channel

that further contribute to the negative covariance related to fundamentals that is uncovered by our

model. Both these papers use partial equilibrium models, in which the market prices of risk follow

exogenous processes, which are in the spirit of time-varying risk aversion (e.g. Campbell and

Cochrane (1999)). Our model instead, has constant prices of risk, which is consistent with a constant

relative risk aversion framework with a homoskedastic consumption process. This assumption helps

to identify the specific channel that we address in this paper — changing investors’ uncertainty

about fundamentals — in explaining the dynamics of volatilities and covariances in the absence

of changing risk aversion. Finally, Hasseltoft (2009) builds a consumption-based model in which

inflation has constant negative correlations with dividend and consumption growth. The model is

able to fit the Fed model and the stock-bond correlation until 1999, but has trouble in replicating the

breakdown of the Fed model and the negative stock-bond correlation in the current decade. Finally,

while the main focus of all the aforementioned papers is chiefly the time variation in the correlation

between stocks and bonds, our model also explains other facts of stocks and bonds, such as the

variation in their volatility, and the changes in the relation between volatility and prices.
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4 Volatility Forecasts
In this section we demonstrate that our approach is useful not only for understanding the fluctuations

of these second moments of asset prices but also for forecasting their future values for medium-to-

long term horizons ranging from 1 to 8 quarters. The success of our modeling approach relies on

the predictability of business cycles and some subtle but important differences in the cycles of the

past 5 decades. The success of the model in forecasting future volatility provides further support

for the economic mechanism presented in this paper

We begin by providing a summary of our forecasting methodology. We use the dynamics of the

fundamentals, signals, SPD and beliefs, and the derived closed-form expression for stock and bond

volatilities to formulate optimal forecasts of volatilities and covariances over a finite horizon. Opti-

mal forecasts are essentially the expected quadratic variations over the forecast interval of interest.

In particular for a volatility forecast of asset A the optimal forecast of volatility between quarters

T1 and T2 given the information that investors have at time t is

V ∗(T1, T2; t) =

√
E

[∫ T2

T1

σA(πs)σA(πs)′ds|Ft

]
. (23)

Similarly, the optimal forecast of covariance of returns of assets A and B is given by

C∗(T1, T2; t) = E

[∫ T2

T1

σA(πs)σ
B(πs)

′ds|Ft

]
. (24)

We approximate the expectations by Monte Carlo simulations sampling several paths of the state

variables at small discrete intervals. Details are provided in the Appendix.

To compare our results to the existing volatility literature, and add to the intuition of the model,

we provide results for regressions of the form:

Vol (t + 1, t + k) = b0 + b1 Vol (t − k + 1, t) + b2V
∗ (t + 1, t + k; t) +b3 X (t)+ ε (t + 1, t + k)

(25)

for k = 1, · · · , 8. The dependent variable, Vol(t + 1, t + k) , is the realized volatility between quar-

ters t+1 and t+k, Vol(t − k + 1, t) is the realized volatility of the current and past k− 1 quarters,

and V ∗(t + 1, t + k; t) is the optimal forecast of future volatility in the following k quarters, con-

ditional on investors’ beliefs at t. The vector X (t) contains the following set of macroeconomic

control variables:

1. A business cycle dummy variable taking value one during expansions, as defined by the

NBER, NBER(t).
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2. Current returns on the asset in periods when that return is negative, R
(−)
A (t), where A is the

asset under consideration (S for stock and 5y for the 5-year bond).

3. Term structure variables that include the short (3-month) Treasury Bill rate, r(t), and the slope

of the yield curve measure as the difference between the 5-year and 1-year Treasury yields,

term(t).

4. The current volatilities of inflation and earnings growth computed by fitting a GARCH(1,1)

model to inflation or earnings growth, σI(t) and σE(t), respectively.

5. The dispersion of inflation and earnings growth forecasts from the Survey of Professional

Forecasters, σI
PF (t) and σE

PF (t), respectively. These forecasts are obtained from the Federal

Reserve Bank of Philadelphia. Details about the construction of dispersion measures are in

the Appendix.

Including lag volatility improves the R̄2 of volatility forecasts, but begs the question as to what

causes volatility. The effects of persistent explanatory variables will result in the lag having a sig-

nificant coefficient without increasing our understanding of the economic forces driving volatility.

We therefore present results of regressions with and without volatility lags. In our regressions with

controls we leave out lagged volatility to see which economic variables best explain the dynamics

of volatilities.

4.1 Stock Market Volatility

We now present our results on forecasting stock market volatility. The forecast values with 4-quarter

lagged data are shown in Figure 8. It is quite remarkable that besides the stock market crash, our

model has successfully forecasted all the major increases and decreases in stock market volatility

in our sample. The forecasting power prior the current decade came mainly from the increases

in inflation uncertainty prior to recessions. Periods of low inflation were followed by low stock

market volatility. The volatility in the two most recent recessions was also forecastable 4-quarters

earlier from milder increases in inflation uncertainty, but the effect was even larger than in the past

recessions due to the larger earnings uncertainty from investors’ optimism of the NG state.

Formal results at the 1-year ahead forecast horizon are presented in Table 4. The forecasted

value is the fitted value of the regression in (25) with b1 and all elements of b3 set equal to zero so

that the forecast is based only on the optimal model-based forecast. As seen in the table, the model-

based forecast is the only variable that is able to improve on pure lag-based volatility forecasts, and

even makes lagged volatility insignificant in a joint regression. Lagged volatility explains about
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15% of the variation in future volatility, while the model explains about 42%. Excluding the 4th

quarter of 1987 increases the R̄2 of the model forecast to 54%, but has little affect on the R̄2 of the

lag-only forecast. We have a single measure of cumulated four-quarter lagged volatility, but using

several other combinations of lagged volatility fail to change the results significantly.

Line 5 of Table 4 shows that the six macroeconomic variables can jointly forecast less than 6%

of the variation in future volatilities. The control list includes the popular term-structure variables,

the short rate and the slope that are used in past studies. The former proxies for inflation risk that

leads to macroeconomic instability and higher volatility in the future [see Glosten, Jagannathan,

and Runkle (1993)], while the latter is known to proxy for risk premiums in the economy. In

particular, note from Figures 4 and 8 that the episode of high stock volatility that started around

1996 was not immediately preceded by high rates. Line 6 of the table shows that using all the control

variables and the model-based forecast increases the R̄2 to 44%, an improvement of only about 3.5

percentage points. Lagged stock returns (in periods when negative) are significant in forecasting

at the 10% level, but provide only a modest increase in the R̄2 suggesting that any bad news that

increases volatility is captured in the model-based forecast, which therefore subsumes the leverage

effect in the literature. All other macroeconomic variables, including the NBER recession indicator

and fundamental volatilities are also insignificant in the joint regression. Several authors now use

survey-based dispersion measures of inflation and earnings to explain stock market volatility. Line

8 shows that survey-based dispersion measures of inflation and earnings can together explain only

1% of the variation in future volatility over the shorter sample in which they are available. In the

presence of our model-based forecast, their forecasting power is insignificant (line 10).

Therefore, somewhat surprisingly, neither lags, nor the entire range of macroeconomic control

variables, can forecast stock market volatility at the 4-quarter horizon while our model-based fore-

cast has far greater success. We find similar results for horizons from 1-8 quarters. While we do

not present analogous tables for each horizon for space considerations, in Figure 10, we report the

R2 for the lag only and model forecast only regressions analogous to those in lines 1 and 2 of Table

4. For stock volatility, as seen in the top left panel of this figure, the R2 of the lag only regression

declines monotonically with the horizon starting at 30% at the 1-quarter horizon, and declining to

about 4% at the 8-quarter horizon. The model only R2 peaks at 4-quarters, but remains high at

about 40% up to 8 quarters. The declining forecasting power of the lag has been noted by other

authors, e.g., Diebold and Christoffersen (2000), who question the relevance of lag-based models

for intermediate term decisions and risk management.

Our model volatility equation is built upon real and nominal macroeconomic variables, which
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have clearly been used in the past literature, yet it performs better than simply including these

variables in a linear way. As discussed below Proposition 2, the stock volatility equation puts

time varying weights on the alternative shocks in the model. For our fitted model, we report the

weights of each fundamental shock on stock variance (since the volatilities can change sign) in

Figure 9.18 The time varying weights arise from Bayesian updating and rational valuation effects

as previously discussed. In particular, as seen in the plot, the weight given to earnings is the highest

for stocks, averaging about 70% for the full sample, but it is pro-cyclical. In particular, prior to and

during recessions, the weight to earnings shocks falls, while the weight to the SPD shocks increases.

Therefore, the increases in inflation uncertainty prior to and during recessions has a larger impact on

stock market volatility in these periods. The time variation in these weights in addition shows how

investors’ concerns about alternative macroeconomic shocks has varied through past cycles, and is

critical to understanding volatility dynamics. The strength of our learning based model is that the

changing relative importance to alternative economic shocks arises endogenously from Bayes’ law

alone. Our model thus provides an economic rationale for the different impact of real news on the

stock market in different stages of the business cycle in Boyd, Hu, and Jagannathan (2005). Finally,

simply using lags of volatility without accounting for the relative weight changes for alternative

shocks will not substitute for the information content of our model.

4.2 Treasury Bond Market Volatility

Table 5 reports the performance of our model in forecasting volatility of the 5-year Treasury bonds

at the 4-quarter horizon.19 Figure 8 shows that our model forecasts all the major episodes of bond

market volatility prior to the current recession, except for the immense surge in volatility in 2008,

as it failed to forecast the massive decline in the CPI with information received 4-quarter earlier,

which triggered off deflationary expectations. As seen in Figure 5, our model does fit this episode

of volatility after investors observed the CPI declines in 2008. Still, the model-based forecasts

explain 60% of the variation in future volatilities for the two maturities. In addition, the model-
18The weight on inflation is the sum of the 1st and 3rd components of stock variance. The 1st component is

the direct effect of inflation on stock returns, while the 3rd component is from shocks to the SPD, which by

assumption are modeled as a linear combination inflation and earnings shocks. However, for our estimated

model αθ ' 0, so that the real rate in the model reacts mainly to inflation news. The weight on earnings news

is the sum of the direct effect from observed earnings shocks and the inferred effect from the signals, which

are unobserved by the econometrician.
19Again, we only report results for the long-term bond. Results for the 1-year bond are similar, and, in fact,

stronger.
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based forecast improves on the lag-based forecast, although the improvement is smaller than for

stocks. The six macroeconomic control variables can together explain an additional 4 percentage

points in the adjusted-R2 relative to the model-only regression (lines 5). We also find that the lagged

short rate as well as lagged returns help to forecast future volatility. Still, the model only forecasts is

better than lagged volatility plus macro variables (lines 2 and 4). Finally, in lines 7-9 we look at the

forecasting power of the survey based measures, and find that inflation based measures in particular

are indeed useful in forecasting bond volatility, but the forecasting power is already present in either

the lags or the model based forecasts.

We note that the macroeconomic control variables do a much better job at forecasting bond

market volatility than stock market volatility. Our model again sheds light on why there is this

difference. Looking at the weights given to the alternative shocks in the bottom panel of Figure 9,

we notice that the weights given to earnings shocks is low (around 20%) and very stable. Most of

the variation in the weights is from the inflation shocks that affect volatility directly and through

their impact on the SPD. The stability in the weights implies that the non-linearities that are critical

for forecasting stock market volatility are less important for the bond market.

Finally, we consider the forecasts for the bond volatilities at alternative horizons in Figure 10.

The figures show that up to the 4-quarter horizon, the lagged volatilities are indeed as successful

as the model in forecasting, but the model-based forecasts outperforms lagged volatility for longer

horizons.

4.3 Covariance of Stocks and Bonds

As in the previous subsection, we run the following forecasting regressions:

Cov (t + 1, t + k) = b0+b1 Cov (t − k + 1, t) + b2 C∗ (t + 1, t + k; t)+b3X (t) + ε (t + 1, t + 4) ,

(26)

where Cov(t + 1, t + k) is the realized covariance between the two return series between quarters

t + 1 and t + k calculated from daily returns, and the other variables are as defined below equation

(25). The historical series and their forecast values based on the optimal model-based forecast are

shown in Figure 8. The regressions are reported in Table 6.20

The covariance between stocks and long term bonds is quite persistent and thus the lagged co-
20We only report results for the covariance between stocks and the long-term bonds. The results related to the

covariance between stocks and short term bonds, and between bonds of different maturity are similar, and

omitted to safe space. They are available in the on-line appendix to the paper.
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variance in itself can forecast nearly 46% of the future variation (line 1). Our model forecasts are

about 10 percentage points more accurate, though. Including both the lag and our model forecast

makes the lag insignificant, implying that our model picks up the information that makes covari-

ances persistent. Next, using the 7 macroeconomic control variables does not lead to much improve-

ment in the forecast R̄2, and including controls, and our model lead to only modest improvements

in the forecast. The survey based variables also have some forecasting power when our model or

lag is not included in the regressions. As seen from Figure 8, the covariance forecasts of the model

are fairly accurate for most of our 48 year sample, with the notable exception of the 2001 to 2003

period and 2008, when realized covariances were very negative, while our model-predicted covari-

ances, though negative, are much closer to zero. Figure 10 shows our model forecasts covariances

quite accurately for longer horizons up to 8 quarters as well, while lag based forecasts decline in

accuracy.

We shed further light on the stock-bond covariance and comparing to existing research by study-

ing the relation between the stock-bond covariance and stock market volatility. Using the historical

data series, the regression of covariance of stock and 5-year bond on stock variance for data gives:

Covdata(t) = 0.000 − 0.048 Vardata(t) (27)

(3.120) (−2.75) R2 = 0.215. (28)

Regression of covariance of stock and 5-year bond on stock variance for model gives:

Covmodel(t) = 0.005 − 0.105 Varmodel(t) (29)

(1.240) (−7.192) R2 = 0.347. (30)

The regressions (t-stats in parenthesis) show that unconditionally, the stock-bond covariance be-

comes more negative in periods of higher stock market volatility, and our model has this feature

as well. Connolly, Sun, and Stivers (2005) report a similar relationship, using implied volatility on

S&P 500 options (the CBOE VIX index) and the stock-bond covariance and attribute it to a flight-

to-quality phenomenon: in periods of high market turbulence, investors flee stocks for the safety of

bonds, so that stocks have a negative return and bonds have a positive return. While this is certainly

a plausible explanation, it fails to explain why most episodes of high stock market volatility prior

to 1999, were not accompanied by a negative stock-bond covariance. Our model covariance, which

arises from learning and valuation effects, and does not rely on portfolio reallocation effects, instead

shows that the bad news signaled by high inflation in 1960-1999 hurt both stocks and bonds, but

deflationary expectations in the current decade had opposite effects in the two markets.
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5 Conclusion
What ties return volatilities to price valuations and fundamentals? Investors’ learning about the

current earnings growth/inflation state. Such learning dynamics about fundamentals allows us to

provide a unified framework that contemporaneously explains the major variation in stocks and

bonds volatilities in the last 50 years, their non-monotonic V −shaped relation with price valuations

– an empirical finding that defies conventional wisdom and many extant asset pricing models –

as well as the time variation in bonds and stocks comovement. Our economic mechanism is also

supported by the fact that the model is successful in predicting future volatilities and covariances,

above standard lagged values or macroeconomic variables.

The main intuitive mechanism at play in the model is that there are “middle” economic states

that are much more common than others, such as moderately high earnings growth being more

common than very low growth or very high growth, and low/medium inflation being more common

that very high inflation or deflation. This fact implies that when the economy settles to one of these

more common states, learning makes uncertainty decline and thus return volatility declines as well.

However, when the state of the economy departs from these “normal” states in either direction

(i.e. roughly speaking, to a worse or better state), then Bayesian learning implies an increase in

uncertainty and thus an increase in return volatility. Because this increase occurs both when the

transition is to a worse or better state, asset prices instead move with the direction of the change (as

suggested by the learning dynamics as well) and not with the direction of the change in uncertainty.

This decoupling of prices and volatility implied by the learning dynamics generates the V −shaped

relation between prices and volatilities. Although this is the intuitive economic mechanism, the

model does much more than this, as it shows the importance of market participants’ price valuations

of the various hidden states, which depend on their preferences through the state price density, and

their key role in shaping the volatility of stock and bond returns, their relation to prices, and their

time varying comovement. The learning dynamics, moreover, provides the correct frequency of the

variation of state variables (beliefs) for long term forecasting.

From an empirical perspective, this paper introduces a new equilibrium structural form method-

ology for understanding the fluctuations and predictability of volatilities and covariances of asset

returns. The methodology tests a particular economic mechanism – learning – by formulating exact

functional forms of the second moment matrix on these asset returns and it thus explicitly quantifies

the effects generated by the model. An important feature of our methodology is that the information

set of the econometrician is smaller than that of investors in the economy, but the econometrician
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uses the information aggregation property of asset prices to back out the information of investors.

Our results help provide a new perspective to the huge literature on modeling volatility.

A significant empirical contribution of our paper is in providing an understanding of the major

moves in stock market volatility over the past 50 years. Important as this statistic is, it appears that

stock market volatility has a life of its own, and cannot be understood with simple regressions on

macroeconomic variables, which is perhaps why the literature using lags has had such tremendous

success. Our results indicate that once we use our model-based, optimally constructed volatility

forecast, lagged volatility no longer matters. On its own, lagged volatility picks up some of the

information that causes investors’ uncertainty. The latter is in itself a persistent process since fun-

damental information is noisy and investors’ rational learning of underlying trend shifts is gradual.

The closed-form solution for stock volatility in our model reveals that investors assign pro (counter)

cyclical weights to earnings (inflation) news through business cycles. The time-varying weights

explain why linear regressions on fundamental news do not forecast stock market volatility well.

Our model also forecasts the volatilities of Treasury bonds and the covariances of stocks and bonds

of different maturities. In particular, it sheds light on the non-monotonic relation between interest

rates and bond market volatility, and the success of macroeconomic fundamentals in forecasting

bond market volatility with simple linear regressions.

Perhaps the most valuable insights of our model are the joint relationships between asset val-

uations and volatilities. In particular, the model explains that in the late 1990s the uncertainty of

the new economy state of growth was strong enough to cause a conditional positive relationship

between uncertainty, volatility, and price-earnings ratios, while for most of the remainder of our

sample, these variables were negatively related. Similarly, the learning dynamics implies the rever-

sal of the relation between volatility and yields, generally positive in the sample, but which turned

strongly negative in the last decade. Learning and uncertainty about deflationary state explains the

fact. Indeed, the same economic mechanism explain the simultaneous reversal of the sign of the

covariance of stocks and bonds and the breakdown of the Fed model in the current decade.

In this paper we only considered one particular channel, learning about the drift rate of earnings

growth and inflation, to explain the variation in prices and volatilities. In particular, risk prices are

constant in our model. It seems a fruitful avenue of future research to investigate the case with time

varying risk prices, either within a reduced form approach by modeling a stochastic variation in the

market price of risk embedded in the state price density, or by explicitly introducing preferences,

such as habit formation or long run risk. Such an extension would possibly bring about a better fit

of both P/E ratios and the term structure of interest rates, and would allow a distinction between
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volatility due to uncertainty versus volatility due to risk prices. However, this avenue presents seri-

ous challenges, not last the fact that there are additional state variables and parameters to estimate.

While interesting for future research, we refrained from such an investigation in this paper, as our

aim is to present the simplest possible explanation for the empirical facts outlined in the introduc-

tion. In particular, we find it quite appealing that a relatively simple learning mechanism with only

6 unobserved drift states is able to generate the large variation in bond and stock volatilities and

covariances documented in the data, and offer a relatively simple and intuitive explanation of their

variation and comovement in the last 50 years.

Still, we conclude by noting that our model is just one example of a broader structural form

approach that explicitly incorporates the impact of a particular economic channel on asset volatil-

ities and their covariances. Indeed, our results suggest that the line of research can be extended to

incorporate the impact of additional economic channels, such as time varying risk prices, or models

of flight-to-quality and flight-to-liquidity, which are natural and interesting extensions for future

work.

Appendix
1. Proofs of Propositions

Proof of Proposition 1. The proof of part (a) follows from an extension of the proof in Veronesi
(2000). To prove part (b), consider the process of the nominal stochstic discount factor Nt = Mt/Qt

dNt

Nt
= −rtdt − σNdW

where rt = κt + βt − σMσ′
Q − σQσ′

Q and σN = σM + σQ. From the process for Nt we find

Nt+τ = Nt exp

[∫ t+τ

t

ru − 1

2
σQσ′

Qdu + σQ (Wt+τ − Wt)

]

Hence, the bond at time t with maturity τ is

B(πt, τ) = E

[
Nt+τ

Nt
|Ft

]
=

n∑

i=1

[
Nt+τ

Nt
|νt = νi

]
πit

Consider now a small interval δ and define Bi(τ) = E
[

Nt+τ

Nt
|νt = νi

]
. We have:

Bi(τ) = E

[
Nt+τ

Nt
|νt = νi

]
= E

[(
Nt+δ

Nt

)(
Nt+τ

Nt+δ

)
|νt = νi

]

= E

[(
e(−ri− 1

2
σQσ′

Q)δ+σQ(Wt+δ−Wt)
)(Nt+τ

Nt+δ

)
|νt = νi

]

= e−riδE

[
Nt+τ

Nt+δ

|νt = νi

]
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= e−riδ



(1 + λiiδ)Bi(τ − δ) +

∑

j 6=i

λijδBj(τ − δ)





= e−riδ



Bi(τ − δ) +

n∑

j=1

λijδBj(τ − δ)





Rearranging, we obtain that

Bi(τ) − Bi(τ − δ)

δ
=

e−riδ − 1

δ
Bi(τ − δ) + e−riδ





n∑

j=1

λijBj(τ − δ)





Taking the limit as δ −→ 0, and rearranging

B′
i(τ) =

(
λii − ri

)
Bi (τ) +

∑

j 6=i

λijVj(τ)

In vector form
B′(τ) = Λ̂B(τ)

whose solution is (15).�

Proof of Proposition 3. From (21) we have Ci > Cj so that Ci >
∑

j πjCj, which implies that
πC

i > πi. Using these probabilities in computing expectations, (21) implies that θ̄C > θ̄ and
(15) implies that β̄C > β̄. Similar logic using the relative bond valuations in the two states in
(21) imply that πB

i (τ) < πi, so that θ̄B < θ̄ and β̄B < β̄. The first element of the covariance,
(β̄B(τ) − β̄) + (θ̄B(τ) − θ̄) is therefore clearly negative. To establish the sign of the second term,
notice that the matrix inverse of the fundamental variance-covariance matrix

(ΣΣ′)−1 =




σ2
M,1+σ2

M,3

σ2
M,3σ2

Q,1

σM,1σM,2

σ2
M,3σQ,1σE,2

σM,1

σ2
M,3σQ,1

σM,1σM,4

σS,4σ2
M,3σQ,1

σM,1σM,2

σ2
M,3σQ,1σE,2

σ2
M,2+σ2

M,3

σ2
M,3σ2

E,2

σM,2

σ2
M,3σE,2

σM,2σM,4

σS,4σ2
M,3σE,2

σM,1

σ2
M,3σQ,1

σM,2

σ2
M,3σE,2

1
σ2

M,3

σM,4

σS,4σ2
M,3

σM,1σM,4

σS,4σ2
M,3σQ,1

σM,2σM,4

σS,4σ2
M,3σE,2

σM,4

σS,4σ2
M,3

σ2
M,3+σ2

M,4

σ2
S,4σ2

M,3




,

has all positive elements so that the sign of the second element in (20) is the same as the sign of
(ν̄C − ν̄)(ν̄B(τ)− ν̄)′. This last term can be written as α2

θ (θ̄C − θ̄) (θ̄B − θ̄) + αθ αβ (θ̄C − θ̄) (β̄B −
β̄) + αθ αβ (β̄C − β̄) (θ̄B − θ̄) + α2

β (β̄C − β̄) (β̄B − β̄), but we have already established above that
each of these products is negative, so that the entire stock-bond covariance is negative as claimed.
�

2. SMM Estimation of the Regime Switching Model
The SMM procedure is similar to that in David (2008) and we provide the details here only to

make this paper self-contained for the reader. Despite the similar structure, there are 4 essential
differences from the estimation procedure to the above paper:

1. The most important distinction is the inclusion of realized quarter volatility and covariance
moments in the overidentification of the model. Thus the estimation procedure puts weights
on fundamental processes, asset price valuations (stock P/E ratios and Treasury Bond Yields),
and well as the second moments above. The current specification does not include credit
spreads, nor does it model leverage or credit risk, which was the main focus David (2008).
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2. The model has a 6-state specification as opposed to the 4-state specification in David (2008).
The 4-state specification is rejected due to (a) the inclusion of the short term stock volatility,
which was not important for fitting spreads on defaultable bonds with maturities of 10 years
and (b) the extension of the sample period to the current decade in which the emergence of
expectations of deflation in the US economy requires the modeling of such a state to capture
important dynamics of all asset prices. We note that we use the same χ2 criterion standard in
the GMM/SMM methodology to select the number of regimes, but the inclusion of different
moments and different sample period requires a richer regime specification.21

3. The current model specification includes the earnings signal observed by investors, but unob-
servable to the econometrician. This assumption opens up the gap between the information
set of the econometrician and the investors in the economy.

4. To reduce the number of estimated parameters, we use only 6 parameters for the entire gen-
erator matrix as shown in the note to Table 1. We follow a 2-step estimation methodology. In
the first step we estimate using the full set of generator elements, and in the second step we
group the elements into 6 parameters according to their estimated values and reestimate the
model with equality constraints estimated for generator elements within each group.

Since not all fundamentals are observed by the econometrician, we denote Yt = (Qt, Et)
′, and

write
dYt

Yt
= %t dt + Σ2 dWt, (31)

where dYt

Yt
is to be interpreted as “element-by-element” division, %t = (βt, θt)

′, and Σ2 = (σ′
E , σ′

Q)′.
Since fundamentals are stationary in growth rates, we start by defining logs of variables: yt =

log(Yt), st = log(St), and mt = log(Mt), we can write

dyt = (%̄(πt) −
1

2
(σQσ′

Q, σEσ′
E)′)dt + Σ2 dW̃t, (32)

dst = (θ̄(πt) −
1

2
σEσ′

E)dt + σS dW̃ , (33)

dmt = (−k̄(πt) −
1

2
σMσ′

M )dt − σM dW̃t. (34)

It is immediate that investors’ beliefs πt completely capture the state of the system (yt, st,mt)
for forecasting future growth rates. The specification of the system is completed with the belief
dynamics in (6).

The econometrician has data series {yt1 , yt2 , · · · , ytK}. Let Ψ be the set of parameters of the
model. We start by specifying the likelihood function over data on fundamentals observed discretely
using the procedure in the SML methodology of Brandt and Santa-Clara (2002). See also Duffie
and Singleton (1993). Adapting their notation, let

L(Ψ) ≡ p(yt1 , · · · , ytK ; Ψ) = p(πt0 ; Ψ)

K∏

k=1

p(ytk+1
− ytk , tk+1|πtk , tk; Ψ),

where p(ytk+1
− ytk , tk+1|πtk , tk; Ψ) is the marginal density of fundamentals at time tk+1 con-

ditional on investors’ beliefs at time tk. Since {πtk} for k = 1, · · · ,K is not observed by the
21Complete tests of the number of regimes are computationally extremely demanding and beyond the scope of

this paper (see Garcia (1998)). Instead, we follow the simpler and more practical methodology of using the
overidentified SMM objective to determine a stopping rule on the number of regimes used in a number of
papers modeling regimes shifts (e.g. Gray (1996), Bansal and Zhou (2002)).
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econometrician, we maximize

E[L(Ψ)] =

∫
· · ·
∫

L(Ψ)f(πt1 , πt2 , · · · , πtK )dπt1 , dπt2 , · · · , dπtK , (35)

where the expectation is over all continuous sample paths for the fundamentals, ỹt, such that ỹtk =
ytk , k = 1, · · · ,K. In general, along each path, the sequence of beliefs {πtk} will be different.

As a first step, we need to calculate p(ytk+1
−ytk , tk+1|πtk , tk; Ψ). Following Brandt and Santa-

Clara (2002), we simulate paths of the state variables over smaller discrete units of time using the
Euler discretization scheme (see also Kloeden and Platen (1992)):

ỹt+h − ỹt = (%̄(πt) −
1

2
(σQσ′

Q, σEσ′
E)′)h + Σ2

√
hε̃t; (36)

st+h − st = (−θ̄(πt) −
1

2
σS σ′

S)h + σS

√
hε̃t; (37)

mt+h − mt = (−k̄(πt) −
1

2
σM σ′

M )h + σM

√
hε̃t; (38)

πt+h − πt = µ(πt)h + σ(πt)
√

hε̃t (39)

where ε̃ is a 4 × 1 vector of standard normal variables, and h = 1/M is the discretization interval.
The Euler scheme implies that the density of the 2 × 1 fundamental growth vector yt over h is
bivariate (since σQ,3 = σQ,4 = σE,3 = σE,4 = 0) normal.

We approximate p(·|·) with the density pM (·|·), which obtains when the state variables are
discretized over M subintervals. Since the drift and volatility coefficients of the state variables in
(6), and (32) to (34) are infinitely differentiable, and ΣΣ′ is positive definite, Lemma 1 in Brandt
and Santa-Clara (2002) implies that pM (·|·) → p(·|·) as M → ∞.

The Chapman-Kolmogorov equation implies that the density over the interval (tk, tk+1) with
M subintervals satisfies pM (ytk+1

− ytk , tk+1|πtk , tk; Ψ) =

∫ ∫
φ
(
ytk+1

− y; %(π)h,Σ2Σ
′
2 h; Ψ

)
× pM (y − ytk , π,m, tk + (M − 1)h|πtk , tk) dπ dy,

(40)
where φ(y; mean, variance), denotes a bivariate normal density. Now pM (·|·) can be approximated
by simulating L paths of the state variables in the interval (tk, tk + (M − 1)h) and computing the
average

p̂M

(
ytk+1

− ytk , tk+1|πtk , tk; Ψ
)

=
1

L

L∑

l=1

φ
(
ytk+1

− y(l); %(π(l))h,Σ2Σ
′
2 h; Ψ

)
. (41)

The Strong Law of Large Numbers (SLLN) implies that p̂M → pM as L → ∞.
To compute the expectation in (35), we simulate S paths of the system (36) to (39) “through”

the full time series of fundamentals. Each path is started with an initial belief, πt0 = π∗, the
stationary beliefs implied by the generator matrix Λ. In each time interval (tk, tk+1) we simulate
(M-1) successive values of ỹ

(s)
t using the discrete scheme in (36), and set ỹ

(s)
tk

= ytk . The results
in the paper use M = 90 for quarterly data, so that shocks are approximated at roughly a daily
frequency. The SPD and beliefs along the entire path of the sth simulation are obtained by iterating
on (38) and (39). We approximate the expected likelihood as

L̂(S)(Ψ) =
1

S

S∑

s=1

K−1∏

k=0

p̂M (y
(s)
tk+1

− y
(s)
tk

, tk+1|π(s)
tk

, tk; Ψ), (42)
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where p̂M (·|·) is the density approximated in (41). The SLLN implies that L̂(S)(Ψ) → E[L(Ψ)]

as S → ∞. We often report π̄tk = 1/S
∑S

s=1 π
(s)
tk

, which is the econometrician’s expectation of
investors’ belief at tk.

To extract investors’ beliefs from data on price levels and volatilities in addition to fundamentals
we add overidentifying moments to the SML method above. From Proposition 1, we can compute
the time series of model-implied price-earning ratios and bond yields at the discrete data points tk,
k = 1, · · · ,K as

P̂/Etk = C · π̄tk , îtk(τ) = −1

τ
log (B (τ) · π̄tk) .

We note that the constants Cs and the functions B (τ) both depend on the parameters of the funda-
mental processes, Ψ. Hence, we let the pricing errors be denoted

eP
tk

=
(

P̂/Etk − P/Etk , îtk (0.25) − itk (0.25) , îtk (1) − itk (1) , îtk (5) − itk (5)
)

.

Also note that since the pricing formulas are linear in beliefs, 1/S
∑S

s=1 C · π(s)
tk

= C · π̄tk (and
similarly for the bond yields) and no information is lost by simply evaluating the errors at the
econometrician’s conditional mean of beliefs. We similarly formulate the volatility errors as

eV
tk

=
(
σ̂N

tk
− σN

tk
, σ̂B

tk
(1) − σB

tk
(1), σ̂B

tk
(5) − σB

tk
(5)
)

,

where the model-implied nominal stock volatility is obtained from the derived expression σN (π) in
(16) and averaged over the simulations as σ̂N

tk
= 1

S

∑S
s=1 σN (π

(s)
tk

). Similarly, the model-implied
nominal bond volatility is obtained from the derived expression σB(π, τ) in (17) and averaged over
the simulations as σ̂B

tk
(τ) = 1

S

∑S
s=1 σB(π

(s)
tk

, τ), for τ = 0.25, 1, 5. Using the model’s market
price of risk and estimated stock volatility at each date, we construct the Sharpe ratio at each date as
(σM σ̂N

tk
)/(||σ̂N

tk
||). We construct its time-series average and take its difference from an empirical

unconditional estimate of 0.3 [see, e.g. Cochrane (2001)], although our results are not affected
much by varying its exact value in a wide range from 0.2 to 0.5.

To estimate Ψ from data on fundamentals as well as financial variables, we form the overiden-
tified SMM objective function

c =

(
1

T

T∑

t=1

εt

)′

· Ω−1 ·
(

1

T

T∑

t=1

εt

)
. (43)

The moments used are the scores of the log likelihood function from fundamentals, the pricing
errors from financial variables, and their volatilities. Since the number of scores in ∂ log(L̂)

∂Ψ (tk)
equals the number of parameters driving the fundamental processes in Ψ, the number of pricing
errors is 4, the number of volatility and covariance errors is 6, and the mean unconditional Sharpe
Ratio imposed imply that the statistic c in (43) has a chi-squared distribution with 11 degrees of
freedom. We correct the variance covariance matrix for autocorrelation and heteroskedasticity using
the Newey-West method [see, for example, Hamilton (1994) equation 14.1.19] using a lag length
of q = 12. A long lag length is chosen since interest rates and P/E ratios used in the error terms are
highly persistent processes with autocorrelations at the 12-quarter horizon in excess of 0.5.

3. Optimal Volatility and Covariance Forecasts

As for the likelihood function we formulate the expected quadratic variations in equation (23)
and (24) across sample paths by Monte Carlo simulation while discretizing the dynamics of the state
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variables of our system as in (36) to (39). We divide each quarter into M equally sized intervals of
length h = 1/M . Then the volatility forecast for asset A is approximated as

V M ∗(T1, T2, t) =

√√√√√ 1

S

(T2−T1) M∑

j=1

σA(π
(s)
T1+j h)σA(π

(s)
T1+j h)

′
h,

where on each sample the process for the state variables is simulated starting with π
(s)
t = πt, the

assumed beliefs of investors at time t. The covariance forecasts in (24) are analogously formulated.
We report forecasts for M = 90.

4. Survey-Based Measures of Uncertainty

We obtain survey data from the Survey of Professional Forecasters, available at the Federal
Reserve Bank of Philadelphia. The data are available since 1968, but we drop the first three years in
our analysis since we find several missing entries, therefore restricting attention to the sample from
1971 to 2006. Forecasts are for horizons of τ = 0, 1, .., 4 quarters ahead, where τ = 0 indicates
the forecast for the current quarter, which typically ends 1.5 months after the deadline to submit the
questionnaire. The number of forecasters varies between 75 and 9 (for one quarter), and the mean
number of forecasters is about 34.

We use the cross-sectional dispersion of the percentage inflation and earnings growth of individ-
ual forecasts as a measure of forecasters’ uncertainty. Specifically, for each quarter t, let FI i (t, τ)
be the forecast of individual i of the price index level at time t + τ, where τ is the horizon, and let
I (t) be its current level (made available to the forecaster). If nt is the number of individuals at time
t, we then define the time t “uncertainty” on the inflation at time t + τ as

σI
PF (t, τ) =

√√√√ 1

nt − 1

nt∑

i=1

((
FIi (t, τ)

I (t)

)
− 1

nt

nt∑

i=1

(
FIi (t, τ)

I (t)

))2

. (44)

To safeguard against typos and mistakes, we delete observations for FIi (t, τ) /I (t) that are four
standard deviations away from the mean forecast.

A similar procedure is used for the forecast of real future corporate profits. Let FDi (t, τ) be the
forecast of individual i about the level of corporate profits at time t + τ and let D (t) be its current
level (again, provided to the forecaster). We then define FRDi (t, τ) = FDi (t, τ) /FIi (t, τ) as
a measure of the forecasted real future earnings by individual i and RD (t) = D (t) /I (t) as the
current real earnings.22 Then the empirical measure of uncertainty for profits (earnings) growth is

σE
PF (t, τ) =

√√√√ 1

nt − 1

nt∑

i=1

((
FRDi (t, τ)

RD (t)

)
− 1

nt

nt∑

i=1

(
FRDi (t, τ)

RD (t)

))2

, (45)

where again, we eliminate the observations of individuals that are more than four standard devia-
tions away from the mean.

The two measures σI
PF (t, τ) and σE

PF (t, τ) introduced above are really measures of dispersion
rather than uncertainty. However, there is an a priori reason to believe the two measures should

22It should be noted that the measure of forecasted real earnings defined as FRDi (t, τ) =
FDi (t, τ) /FIi (t, τ) effectively uses the formula Et [D (t + τ)] /Et [I (t + τ)] , which is biased compared
to the correct measure Et [D (t + τ) /I (t + τ)] due to Jensen’s inequality. However, since we are interested
in the cross-sectional standard deviation of the forecasts, if the bias is reasonably constant across individuals,
it is likely it will affect the measured “uncertainty” only very marginally.
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be highly correlated: if all forecasters are uncertain about the future value of a macroeconomic
variable, then it is also likely that their point forecasts have greater relative dispersion. Zarnowitz
and Lambros (1987) find a positive relationship between similar disagreement and uncertainty mea-
sures.

We compare the 4-quarters-ahead survey-based measures of uncertainty with the asset-pricing-
based measures of uncertainty obtained in Section 2. Figure 11 in the on-line appendix plots the
survey-based measures alongside the model-based measures. In simple regressions the model-based
uncertainty explains 58% and 24% of the variation in the survey-based measures. It must be noted
that earnings growth is about four times more volatile as inflation, which leads to a lower R2 for the
earnings series. The results are remarkable since we make no attempt to fit our model parameters
to the survey measures, and hence the results are out-of-sample implications of our model.



Table 1: 6-State Model Estimated Parameters

Fundamental Drifts β1 β2 β3 β4 θ1 θ2 θ3

-0.001 0.020 0.040 0.081 -0.050 0.025 0.061
(0.001) (0.002) (0.002) (0.008) (0.004) (0.001) (0.018)

Volatilities σQ,1 σE,2 σS,4

0.021 0.085 0.096
(0.007) (0.003) (0.003)

Generator Elements λ1 λ2 λ3 λ4 λ5 λ6

0.004 0.014 0.033 0.105 0.157 0.263
(0.000) (0.009) (0.002) (0.016) (0.027) (0.073)

State Price Density (Real Rate) α0 αβ αθ

0.013 0.685 0.000
(0.005) (0.068) (0.000)

State Price Density (Prices of Risk) σM,1 σM,2 σM,3 σM,4

0.324 0.535 0.324 0.000
(0.010) (0.003) (0.011) (0.004)

SMM Error Value (χ2(11)): 18.401 P-Value: 0.073

The table reports SMM estimates of the following model for CPI, Qt, real earnings, Et, earnings signals, St,
and the SPD, Mt :

dQt

Qt

= βt dt + σQ dWt,

dEt

Et

= θt dt + σE dWt,

dMt

Mt

= −ktdt − σM dWt,

dSt

St

= θtdt + σS dWt,

where σQ = (σQ,1, σQ,2, 0), σE = (0, σE,2, 0) , σM = (σM,1, σM,2, σM,3) , σS = (0, 0, 0, σS,4) , kt =
α0 + αθθt + αββt, and the vector νt = (βt, θt,−kt, θt)

′
, follows a 6-state regime switching model whose

composite states are: {(β1, θ1), (β2, θ2), (β3, θ1), (β3, θ2), (β4, θ1), (β2, θ3)}, which we also refer to as (D-
LG), (LI-HG), (MI-LG), (MI-HG), (HI-LG), and (LG-NG), respectively. The generator matrix Λ determining
transitions between states uses the estimated parameters λi, i = 1, · · · , 6 above to determine the elements Λij

as

(D-LG) (LI-HG) (MI-LG) (MI-HG) (HI-LG) (LI-NG)
(D-LG) −∑j 6=1 Λ1j λ5 λ3 0 λ3 0
(LI-HG) λ2 −∑j 6= Λ2j 0 λ3 0 λ1

(MI-LG) λ2 λ3 −∑j 6=3 Λ3j λ5 λ6 0
(MI-HG) 0 0 λ4 −∑j 6=4 Λ4j 0 0
(HI-LG) λ2 0 λ6 0 −∑j 6=5 Λ5j 0
(LI-NG) λ2 0 0 λ2 0 −∑j 6=6 Λ6j

The SPD, Mt, and the signal St, is observed by investors but not by the econometrician. Assets are priced us-
ing the formulas in Proposition 1. The moments used in the SMM procedure are the scores of the fundamental
processes, 4 asset price valuations (stock P/E ratios and 3 Treasury yields), 3 price volatilities (stocks, and 1-
and 5-year Treasury bonds) and the 3 covariances between these variables. We also include a moment of the
model’s Sharpe ratio to match its historical average. Details of the SMM methodology are in the Appendix.
Standard errors are in parentheses.



Table 2: Model Implied Transition Probabilities, Stationary Probabilities, and Stock and Bond Price
Valuations

Implied 1-Year Transition Probability Matrix
(D-LG) (LI-HG) (MI-LG) (MI-HG) (HI-LG) (LI-NG)

(D-LG) 0.801 0.138 0.027 0.004 0.029 0.000
(LI-HG) 0.012 0.951 0.002 0.031 0.000 0.004
(MI-LG) 0.012 0.027 0.656 0.121 0.184 0.000
(MI-HG) 0.000 0.001 0.080 0.906 0.010 0.000
(HI-LG) 0.013 0.004 0.184 0.0158 0.783 0.000
(LI-NG) 0.012 0.001 0.001 0.0131 0.000 0.972

Implied 5-Year Transition Probability Matrix
(D-LG) (LI-HG) (MI-LG) (MI-HG) (HI-LG) (LI-NG)

(D-LG) 0.345 0.420 0.075 0.066 0.087 0.005
(LI-HG) 0.037 0.793 0.022 0.120 0.011 0.017
(MI-LG) 0.032 0.084 0.291 0.289 0.304 0.001
(MI-HG) 0.009 0.022 0.188 0.675 0.105 0.000
(HI-LG) 0.037 0.053 0.304 0.160 0.445 0.000
(LI-NG) 0.039 0.017 0.011 0.054 0.008 0.869

Implied Stationary Probabilities, P/E Ratio, and Treasury Yields
No. State π∗ C i0.25 i1 i5
1. (D-LG) 0.038 13.209 0.008 0.012 0.026
2. (LI-HG) 0.232 17.537 0.042 0.042 0.044
3. (MI-LG) 0.174 9.832 0.078 0.082 0.088
4. (MI-HG) 0.352 12.256 0.076 0.076 0.078
5. (HI-LG) 0.170 8.545 0.142 0.136 0.115
6. (LI-NG) 0.034 34.114 0.042 0.042 0.042
The top and middle panels report the 1-year and 5-year implied transition probability
matrices between the 6 states implied from the generator matrix elements displayed in
Table 1. Rows may not sum to one due to rounding. The bottom panel report the implied
stationary probabilities and implied prices of the variables used in the SMM estimation
procedure in the 6 states. C is the P/E ratio and iT is the Treasury yield with maturity T .
The P/E ratio and bond yields are computed as shown in Proposition 1.



Table 3: Model Fits for Expected Fundamental Growth, Asset Prices, and Asset Volatilities from SMM
Procedure

Variable a b R2

Inflation -0.002 2.076 0.504
[-2.528] [7.880]∗

Earnings -0.03 2.710 0.125
[ -1.41] [4.277]∗

P/E Ratio -0.007 1.424 0.623
[ -2.226] [6.998]∗

3-Month Yield -0.002 1.209 0.642
[-2.071] [7.956]∗

1-Year Yield -0.002 1.306 0.656
[ -1.946] [7.581]∗

5-Year Yield -0.002 1.313 0.674
[ -1.579] [5.989]∗

Stock Volatility −1 · 10−4 0.848 0.445
[0.805] [9.324]∗

Stock Volatility (EC) −1 · 10−6 1.201 0.589
[-0.083] [4.447]∗

1-Year T. Bond Volatility 2 · 10−4 0.759 0.646
[1.256] [4.960]∗

5-Year T. Bond Volatility 2 · 10−4 0.812 0.520
[1.546] [5.545]∗

Covariance of Stocks and 1-Y T. Bond 3 · 10−6 0.532 0.483
[2.549] [6.525]∗

Covariance of Stocks and 5-Y T. Bond 9 · 10−6 0.979 0.495
[1.038] [4.928]∗

Covariance of 1-Y and 5-Y T. Bonds 3 · 10−5 0.820 0.520
[0.384] [3.959]∗

We display the fits of the variables used in our SMM procedure: the fundamentals, and the 10 of its overi-
dentifying financial variables. The 11th overidentifying moment is the unconditional Sharpe Ratio for stocks,
which is 0.32 for the model. For the two fundamentals we provide the regression results for the equation
x(t) = a+ b E[x|Ft]+ ε(t), where x(t) is the realized growth and E[x|Ft] is investors’ conditional expected
growth of the fundamental under consideration. The conditional expected growth is obtained from the filtered
probabilities π(t) displayed in Figure 2, and for earnings, for example, is given by

∑N

i θi πi(t). For the price
(volatility) series, we present the regression results for the equation p(t) = α + β p(π(t)) + ε(t), where p(t)
and p(π(t)) are the realized and model price (volatilities) conditional on investors’ beliefs at t respectively.
T-statistics are in parenthesis and are adjusted for heteroskedasticity and autocorrelation. The symbols * de-
notes significance at the 1% level. The term EC stands for ex-crash to denote that the fourth quarter of 1987
is removed from the sample.



Table 4: Forecasts of 4-Quarter Cumulative Volatility of Stocks and Macroeconomic Controls

No. Sample Const. Vol (t − 4, t) V ∗(t + 1, t + 4) NBER(t) R
(−)
S (t) r(t) Term(t) σI (t) σE(t) σI

PF (t) σE
PF (t) R̄2

1 1962-2008 0.082 0.429 0.153
[4.072]∗ [2.873]∗

2 1962-2008 -0.008 1.393 0.416
[-3.373]∗ [8.877]∗

3 1962-2008 (EC) -0.008 1.241 0.542
[-3.319]∗ [8.821]∗

4 1962-2008 -0.007 0.123 1.259 0.419
[-3.087]∗ [1.986] [7.099]∗

5 1962-2008 0.171 -0.037 -0.459 0.195 -0.447 -0.989 -0.16 0.057
[4.511]∗ [-2.060] [-1.621] [0.609] [-0.442] [-0.639] [-0.105]

6 1962-2008 -0.004 1.435 -0.016 -0.359 -0.183 -1.235 -0.428 -0.274 0.45
[-1.477] [9.161]∗ [-1.170] [-1.735] [-0.736] [-1.578] [-0.364] [-1.185]

7 1962-2008 -0.039 0.063 1.407 -0.017 -0.339 -0.175 -1.281 -0.525 -0.293 0.447
[-1.408] [0.782] [8.626]∗ [-1.232] [-1.606] [-0.688] [-1.670] [-0.437] [-1.230]

8 1971-2008 0.166 0.069 -0.236 0.009
[7.816]∗ [0.339] [-0.882]

9 1971-2008 -0.12 1.461 2.499 -0.075 0.352
[-3.206]∗ [7.760]∗ [1.482] [-0.485]

10 1971-2008 -0.114 0.139 1.417 2.425 -0.139 0.362
[-3.147]∗ [2.483] [6.753]∗ [1.529] [-0.913]

This table reports the time series regressions Vol (t + 1, t + 4) = b0 + b1Vol (t) + b2V
∗ (t + 1, t + 4; t) + b3X (t) + ε (t + 1, t + 4) , where Vol(t + 1, t + 4) is

the realized volatility between quarters t +1 and t+ 4, V ∗(t +1, t +4; t) is the optimal forecast of future volatility in the following four quarters in (23), and X (t)

contains a vector of the following controls: NBER(t) is a business cycle dummy variable taking value = 1 during expansions as defined by the NBER; R
(−)
S (t) is

the return on the S&P 500 index in quarter t if it is negative and zero otherwise; r(t) is the 3-month Treasury Bill rate; Term(t) is the slope of the term structure
defined as the five-year Treasury yield less the one-year Treasury yield; σI (t) and σE(t) are the current volatilities of inflation and earnings growth, respectively,
computed by fitting a GARCH(1,1) model to inflation or earnings growth; and σI

PF (t) and σE
PF (t) are the dispersion of forecasts from the Survey of Professional

Forecasters. T-statistics are in parenthesis and are adjusted for heteroskedasticity and autocorrelation. The symbols * denotes significance at the 1% level. The term
EC on line 3 stands for ex-crash to denote that the fourth quarter of 1987 is removed from the sample.



Table 5: Forecasts of 4-Quarter Cumulative Volatility of 5-Year Treasury Bonds and Macroeconomic Controls

No. Sample Const. Vol (t − 4, t) V ∗(t + 1, t + 4) NBER(t) R
(−)
5Y (t) r(t) Term(t) σI(t) σE(t) σI

PF (t) σE
PF (t) R̄2

1 1962-2008 0.014 0.746 0.572
[2.864]∗ [7.126]∗

2 1962-2008 0.099 0.941 0.594
[1.113] [5.208]∗

3 1962-2008 0.009 0.632 0.707 0.610
[1.762] [5.110]∗ [3.045]∗

4 1962-2008 -0.005 0.004 -0.492 0.535 0.654 5.591 0.828 0.584
[-0.401] [0.424] [-2.977]∗ [5.111]∗ [2.198] [2.201] [0.621]

5 1962-2008 -0.008 0.813 0.008 -0.441 0.201 -0.172 2.074 0.026 0.653
[-0.571] [3.764]∗ [0.898] [-2.622]∗ [1.211] [-0.371] [2.293] [0.262]∗

6 1962-2008 0.003 0.475 0.608 0.005 -0.363 -0.008 -0.684 1.375 0.011 0.704
[0.234] [3.414]∗ [2.552] [0.565] [-2.345] [-0.052] [-1.697] [1.436] [0.146]

7 1971-2008 0.002 2.697 0.126 0.171
[2.090] [1.790] [1.271]

8 1971-2008 0.665 1.734 0.007 0.523
[2.983]∗ [1.433] 0.081

9 1971-2008 0.001 0.619 0.604 1.514 -0.101 0.595
[1.156] [5.279]∗ [2.665]∗ [1.612] ]-1.350]

This table reports the time series regressions

Vol (t + 1, t + 4) = b0 + b1Vol (t − 4, t) + b2V
∗ (t + 1, t + 4; t) + b3X (t) + ε (t + 1, t + 4) ,

where Vol(t + 1, t + 4) is the realized volatility between quarters t + 1 and t + 4, V ∗(t + 1, t + 4; t) is the optimal forecast of future volatility in the following
four quarters in (23), and X (t) contains a vector of the following controls: NBER(t) is a business cycle dummy variable taking value = 1 during expansions as
defined by the NBER; R

(−)
5Y (t) is the return on the five-year Treasury Bond in quarter t if it is negative and zero otherwise; r(t) is the 3-month Treasury Bill rate;

Term(t) is the slope of the term structure defined as the five-year Treasury yield less the one-year Treasury yield; σI(t) and σE(t) are the current volatilities of
inflation and earnings growth, respectively, computed by fitting a GARCH(1,1) model to inflation or earnings growth; and σI

PF (t) and σE
PF (t) are the dispersion

of forecasts from the Survey of Professional Forecasters. T-statistics are in parenthesis and are adjusted for heteroskedasticity and autocorrelation. The symbols *
denotes significance at the 1% level.



Table 6: Forecasts of 4-Quarter Cumulative Covariance of Stocks and 5-Year Treasury Bonds and Macroeconomic Controls

No. Sample Const. Cov (t − 4, t) C∗(t + 1, t + 4) NBER(t) R
(−)
5Y (t) RSY (t) r(t) Term(t) σI (t) σE(t) σI

PF (t) σE
PF (t) R̄2

1 1962-2008 -0.001 0.795 0.428
[-0.004] [4.265]∗

2 1962-2008 -0.119 0.752 0.529
[-2.072] [6.183]∗

3 1962-2008 -0.099 0.339 0.538 0.551
[-1.841] [2.032] [3.997]∗

4 1962-2008 -0.6 0.167 -2.434 1.843 0.083 0.119 0.102 -0.026 0.474
[-2.807]∗ [1.581] [1.127] [1.022] [4.961]∗ [2.289] [1.193] [-2.229]

5 1962-2008 -0.324 0.694 0.237 -2.257 1.097 0.008 -0.004 0.004 -0.002 0.58
[-1.707] [4.029]∗ [2.329] [-1.137] [0.872] [0.426] [-0.699] [0.661] [-1.297]

6 1962-2008 -0.246 0.247 0.607 0.219 -2.452 0.575 -0.675 -0.007 -0.014 0.067 0.059 0.593
[-0.883] [1.539] [3.636]∗ [2.256] [-1.327] [0.449] [-0.417] [-.417] [-0.883] [0.977] [1.029]

7 1971-2008 -0.419 0.357 0.276 0.185
[-2.23] [2.877]∗ [1.067]

8 1971-2008 -0.258 0.833 -0.038 1.526 0.576
[1.939] [5.154]∗ [-0.345] [1.002]

9 1971-2008 -0.246 0.282 0.632 -0.021 0.015 0.59
[-1.967] [1.662] [3.456]∗ [-0.209] [1.051]

This table reports the time series regressions

Cov (t + 1, t + k) = b0 + b1Cov (t − 4, t) + b2C
∗ (t + 1, t + 4; t) + b3X (t) + ε (t + 1, t + 4) ,

where Cov(t + 1, t + k) is 100 times the realized covariance in between quarters t + 1 and t + k, C∗(t + 1, t + 4; t) is 100 times the optimal forecast of future covariance in
the following four quarters in (24), and X (t) contains a vector of the following controls: NBER(t) is a business cycle dummy variable taking value = 1 during expansions as
defined by the NBER; R5Y (t) is the return on the five-year Treasury Bond in quarter t; R

(−)
S (t) is the return on the S&P 500 in quarter t if it is negative and zero otherwise;

R
(−)
5y (t) is the return on the five-year Treasury Bonds in quarter t if it is negative and zero otherwise; r(t) is the 3-month Treasury Bill rate; Term(t) is the slope of the term

structure defined as the five-year Treasury yield less the one-year Treasury yield; σI (t) and σE(t) are the current volatilities of inflation and earnings growth, respectively,
computed by fitting a GARCH(1,1) model to inflation or earnings growth; and σI

PF (t) and σE
PF (t) are the dispersion of forecasts from the Survey of Professional Forecasters.

T-statistics are in parenthesis and are adjusted for heteroskedasticity and autocorrelation. The symbols * denotes significance at the 1% level.



Figure 1: Asset Price Valuations and Volatilities and the Stock-Bond Correlation (1960-2008)
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Correlation Between Stock Volatility and P/E Ratio

The top panel shows the quarterly time series of the correlation between the S&P 500 P/E ratio measured at the end of
the quarter, and realized stock market volatility in that quarter constructed from daily returns. The correlation is based on
a rolling sample of 5 years. The middle panel shows the analogous correlation between the 5-year Treasury bond yield
and its realized volatility in the quarter. The bottom panel shows the quarterly realized correlation between stock and bond
returns obtained from daily stock and bond returns. All data definitions are in Section 2.



Figure 2: Conditional Probabilities of Six States (1960-2008)
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The states are numbered as (β1, θ1), (β2, θ2), (β3, θ1),(β3, θ2), (β4, θ1), (β2, θ3), and (β1, θ1), where βi, i = 1, 2, 3, 4 are
the deflation, and low, medium, and high states of inflation, respectively, and θ1, θ2, and θ3, are the regular low and high
states, and the “new economy” rates of earnings growth. The filtered beliefs are obtained from the SMM procedure in the
Appendix. The estimated values of the parameters are shown in Table 1. Shaded areas represent NBER-dated recessions.



Figure 3: Fundamental Variables: Empirical and Model Fitted (1960-2008)
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Historical values of financial and fundamental variables series (D) are in solid lines and their fitted values (M) from the
SMM estimation procedure in the Appendix are in dashed lines. The estimated values of the parameters are shown in Table
1 and the implied asset price valuations are in Table 2 The filtered beliefs series of investors used to generate the fitted
values are shown in Figure 2. Shaded areas represent NBER-dated recessions.



Figure 4: Fundamental and Financial Variables: Empirical and Model Fitted (1960-2008)
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Historical values of financial and fundamental variables series (D) are in solid lines and their fitted values (M) from the
SMM estimation procedure in the Appendix are in dashed lines. The estimated values of the parameters are shown in Table
1 and the implied asset price valuations are in Table 2 The filtered beliefs series of investors used to generate the fitted
values are shown in Figure 2. Shaded areas represent NBER-dated recessions.



Figure 5: Relation between Stock and Bond Valuations and Volatilities (1962 - 2008)
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Historical realized values of volatilities and covariances (D) are in dotted lines and their fitted values (M) from the SMM
estimation procedure in the Appendix are in dashed lines. Stock and bond volatilities in each quarter are calculated using
the closed-form expressions in (16) and (17), respectively, and covariances are calculated as in (20) using estimated values
of the parameters are shown in Table 1 and the filtered beliefs shown in Figure 2. Shaded areas represent NBER-dated
recessions.



Figure 6: Valuation, Volatilities, and Comovement: Empirical and Model Fitted (1960-2008)
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Historical values of financial and fundamental variables series (D) are in solid lines and their fitted values (M) from the
SMM estimation procedure in the Appendix are in dashed lines. The estimated values of the parameters are shown in Table
1 and the implied asset price valuations are in Table 2 The filtered beliefs series of investors used to generate the fitted
values are shown in Figure 2. Shaded areas represent NBER-dated recessions.



Figure 7: ‘Fed Model’: Data and Model Fitted (1960-2008)
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Historical values of the S&P 500 earnings yield (EY, solid line) and the 5-year Treasury Bond yield (TY, dashed lines) are
in the top panel, while their model fitted values are in the bottom panel. The model values are obtained from the SMM
estimation procedure in the Appendix. The estimated values of the parameters are shown in Table 1 and the implied asset
price valuations are in Table 2 The filtered beliefs series of investors used to generate the fitted values are shown in Figure
2. Shaded areas represent NBER-dated recessions.



Figure 8: Optimal Data and and 4-Quarter Ahead Model Forecasts of Volatilities and Covariance (1962
- 2008)
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The volatility forecast for each variable is the fitted value from the regression: Vol (t + 1, t + 4) = b0 +

b2V
∗ (t + 1, t + 4; t) + ε (t + 1, t + 4) , where the optimal model-based forecast V ∗ (t + 1, t + 4; t) is formulated as

in (23). Similarly, the covariances are forecasted as the fitted values of the regression Cov (t + 1, t + k) = b0 +

b2 C∗ (t + 1, t + 4; t) + ε (t + 1, t + 4) , where the optimal covariance forecast is formulated as in (24). The estimated
values of the parameters are shown in Table 1. The filtered beliefs series of investors used to generate the fitted values are
shown in Figure 2. Shaded areas represent NBER-dated recessions.



Figure 9: Weights Given to Earnings and Inflation Shocks in Stock Variance
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The weights given to inflation and earnings shocks at time t for asset A

wI (t) =
(σA

1 (πt))
2 + (σA

3 (πt))
2

||σA(πt)||
, and wE(t) =

(σA
2 (πt))

2 + (σA
4 (πt))

2

||σA(πt)||
,

respectively, where the volatilities for stocks and bonds are given in Proposition 2. The volatilities are evaluated using the
estimated values of the parameters are shown in Table 1, and conditional on investors filtered beliefs, which are shown in
Figure 2.



Figure 10: R
2 of Full Sample Forecasts at 1 to 8 Quarters Ahead (1962 - 2008)
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The volatility forecast for each variable is the fitted value from the regression: Vol (t + 1, t + k) = b0 +

b2V
∗ (t + 1, t + k; t) + ε (t + 1, t + 4) , where the optimal model-based forecast V ∗ (t + 1, t + k; t) is formulated as

in (23). Similarly, the covariances are forecasted as the fitted values of the regression Cov (t + 1, t + k) = b0 +

b2 C∗ (t + 1, t + k; t) + ε (t + 1, t + k) , where the optimal covariance forecast is formulated as in (24). The estimated
values of the parameters are shown in Table 1. The filtered beliefs series of investors used to generate the fitted values are
shown in Figure 2.
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