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1.  Introduction 

 Government officials around the globe are currently mapping a course of action to deal 

efficiently with terrorism risk, chemical plant security, potential nuclear accidents, climate change, 

and biodiversity loss.  One common thread linking these high-profile issues is that most experts 

agree they are small probability, high loss events.  In the U.S., the Bush Administration and both 

Houses continue to debate the most proficient level of government action in each of the specific 

cases with one ubiquitous line of reasoning: the expected costs and expected benefits of the various 

policy proposals must be compared and contrasted.  Such an approach, which has become the 

hallmark of public policy decision making around the globe, implicitly assumes that citizens 

maximize expected utility (see, e.g., Chichilnisky and Heal, 1993). 

 While the expected utility (EU) approach conveniently models probabilistic choice, a great 

deal of experimental evidence calls into question the empirical validity of the EU maximization 

paradigm (see, e.g., Machina, 1987; Viscusi, 1992; Thaler, 1992).1  An influential group of 

commentators has argued that the experimental evidence warrants a major revision to the current 

public policy framework, but it is important to recognize that the body of evidence is based largely 

on student behavior over positive outcomes (see, e.g., Starmer, 2000).  Since many important public 

policies involve small probability, high loss events, it is important to understand individual 

preferences over lotteries for considerable losses; and since the cost-benefit approach is linked 

critically to ability to pay, it is of great import to understand affluent citizens’ preferences over small 

probability, high loss events. 

With the goal of procuring a subject pool that would be on the opposite end of the 

                                                 
1.   Perhaps of greater importance for our purposes is that the preponderance of evidence points to a tendency for the 

EU model to fail when the uncertain events include an outcome that is relatively unlikely to occur, but has large 
payoff implications (Lichtenstein et al., 1978; Baron, 1992). 
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“experience spectrum” from undergraduate students in terms of evaluating and dealing with risky 

outcomes, while at the same time allowing an analysis of high stakes decision making among the 

relatively affluent, we set out searching for such opportunities.  Our search concluded when 

board members at the Costa Rica Coffee Institute (ICAFE) extended an invitation to their annual 

conference, at which we would have (i) access to chief executive officers (CEOs) and (ii) 

conference time and floor space on ICAFE grounds to carry out experiments.  To ensure that the 

CEOs were compelled to treat the experimental lottery outcome as a true loss, we had them 

participate in other unrelated experiments over a one-hour period to earn their initial endowments.  

Our experiment, therefore, could be thought of as a first test of the empirical accuracy of the 

expected utility model over losses for agents who are players in the international marketplace.  In 

light of the recent arguments in Harrison and List (2004) and Levitt and List (2007), such an 

artefactual field experiment represents a useful advance in the area of risky decisionmaking.2 

Making use of Costa Rican undergraduate students as our experimental control group, we 

find that both cohorts exhibited behavior inconsistent with expected utility theory.  In fact, 

observed departures from expected utility theory suggest that a policy approach based solely on 

expected benefits and expected costs would significantly understate society’s actual willingness 

to pay to reduce risk in low probability, high loss situations.  Our results indicate that for a 

typical CEO, willingness to pay to reduce the chance of the worst event is very similar to the 

corresponding willingness to pay for a typical student.  Yet, we do find some important 

differences in behavior across subject pools; for example, as the extreme events become more 

                                                 
2 Making use of professionals in controlled experiments is not novel to this study—see List’s field experiment 
website that lists more than 100 artefactual field experiments as well as reviews in Harrison and List (2004) and List 
(2006).  For example, Burns (1985) uses Australian wool traders to explore bidding patterns in auctions.  More 
recently, Fehr and List (2004) use these same Costa Rican CEOs to explore trust and trustworthiness; Haigh and List 
(2005) use traders from the Chicago Board of Trade to explore myopic loss aversion.   
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likely CEOs exhibit greater aversion to risk.   

The remainder of our study is crafted as follows.  Section 2 provides a brief background 

and summarizes our experimental design.  In Section 3, we present our empirical findings.  

Section 4 concludes. 

2.  Background and Experimental Design 

 We begin with a brief discussion of the traditional expected utility model and note some 

recent literature concerning violations of the underlying modeling assumptions.  Consider three 

events, x1, x2, and x3, where the monetary magnitudes of the events are situated as follows:  x1 < 

x2 < x3.  If pi is the probability that outcome xi will be realized, then the lottery p is the vector of 

probabilities (p1,p2,p3).  The EU hypothesis postulates that there is an increasing function u(•) 

over wealth such that an agent prefers lottery p to lottery q if and only if V(p) > V(q), where 

    V(p) = ∑=

3

1
p)(u

i iix .              (1) 

Behind this framework lie three axioms: ordering, continuity, and independence, which together 

imply that preferences can be represented by a numerical utility index.  We focus exclusively on 

the third axiom, as it is the independence axiom that implies linear indifference curves in 

probability space (i.e., indifference curves are parallel straight lines in the Marschak-Machina 

triangle (Marschak, 1950)).  

Several experimenters have tested this axiom using experiments with degenerate gambles 

over certain outcomes.3  For example, Harless (1992), Hey (1995), and Hey and Orme (1994) 

present econometric estimates of indifference curves under risk at the individual level (in gain 

space).  Many of the proposed variants on expected utility maximization imply a representation 

that is quadratic in probabilities (as opposed to the linear representation induced by expected 

                                                 
3.    For an insightful overview see Starmer (2000). 
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utility).  The general conclusion is that neither expected utility theory nor the non-expected 

utility alternatives do a satisfactory job of organizing behavior at the individual level.  In 

particular, considering shapes of indifference curves in the Marschak-Machina triangle, some 

“stylized facts” concerning individual choice include: (i)  indifference curves vary in slope from 

risk-averse to risk-seeking; (ii) indifference curves are not straight, and indeed fan in and out in a 

systematic, complex pattern; and (iii) indifference curves are most curved near the boundaries of 

the triangle.  Similar patterns have also been found in market settings:  Evans (1997) examined 

the role of the market in reducing expected utility violations and found that while it did indeed 

reduce violations, the improved performance may have been induced by the market price 

selection rules.   

To our best knowledge, the experiments we design and examine below are novel to the 

literature in that they are based on lotteries over losses that span the individual experience 

spectrum (in terms of evaluating and dealing with risky outcomes), while simultaneously 

providing a glimpse at preferences of the relatively affluent over high stakes.  Such an artefactual 

field experiment has not been attempted to our best knowledge.  By examining the pattern of 

subjects’ choices, we can determine whether their choices are consistent with the expected utility 

representation.  And, we are provided with a sense of the preference structure of economic actors 

who are in prestigious roles within the international economy.  Beyond its practical import, we 

find such an analysis important in establishing a dialogue on how self-selection effects might 

importantly influence behaviors.  As Fehr and List (2004) note, one common criticism of 

laboratory experiments is that the use of a student subject pool might compromise 

generalizability. 

Experimental Design 
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Our student lottery sessions included 101 subjects from the undergraduate student body at 

the University of Costa Rica.  Each student session was run in a large classroom on the campus 

of the University of Costa Rica.  To ensure that decisions remained anonymous the subjects were 

seated far apart from each other.  The CEO subject pool included 29 CEOs from the coffee 

beneficio (coffee mill) sector who were gathered at the Costa Rica Coffee Institute’s (ICAFE) 

annual conference.4  The conference is funded by ICAFE and presents the CEOs with 

information related to the most recent technological advances in the coffee processing sector, 

regulations within Costa Rica as well as abroad, and general market conditions, among other 

agenda items.  Each of the CEO treatments was run in a large room on-site at the institute.  As in 

the case of the students, communication between the subjects was prohibited and the CEOs were 

seated such that no subject could observe another individual’s decision.  Our student treatment 

was run in the two days directly preceding the CEO treatment. 

To begin the experiment, subjects signed a consent form and were informed that the 

entire experiment would last about two hours, and that after all parts of the experiment were 

completed, their earnings (losses and gains) would be determined and would constitute their 

take-home pay.  In the first part of the experiment, student (CEO) subjects participated in 

unrelated treatments (reported in Fehr and List, 2004) in which they earned at least $10 ($100). 

Once subjects had earned their funds, we informed them that they were now entering the 

final stage of the experiment, and that this stage would present subjects with 40 pairs of lotteries, 

which we called “options” (see Appendix 3).  Following the notation above, we defined the 

lotteries as follows:  x1, x2, and x3 represent the magnitudes of the three losses, where x1 < x2 < 

x3—suggesting that the first possible outcome entails the largest loss, while the third outcome 

                                                 
4.   ICAFE was created in 1948, and is a semi-autonomous institution in charge of providing technical assistance, 
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entails the smallest loss.  In our experiment, we make x1 = $80, x2 = $30, and x3 = $0 for CEOs 

and x1 = $8, x2 = $3, and x3 = $0 for students.  Given what we observed during the experiment 

and received in feedback via post-experimental interviews, we are confident that both subject 

pools considered these stake levels as considerable.5  

We built the set of lotteries around three reference lotteries, which we selected to reflect 

specific low probability risk scenarios.  In lottery A, the ‘less bad’ outcome obtains with a small 

probability.  This describes a situation in which both the worst outcome and the less bad outcome 

are not very likely to occur.  In lottery B, the less bad outcome is more likely than the other 

events, but still is not highly probable.  This corresponds to a situation with a substantial chance 

of medium-size losses.  In lottery C, losses are quite likely, but they are overwhelmingly more 

likely to be modest than large.  These different scenarios are suggestive of different types of 

potential catastrophes.  

Figure 1 illustrates our method for selecting lotteries.  The three probabilities for lottery 

A in this example are p1 = .05, p2 = .35, and p3 = .6.  The three probabilities for B are p1 = .05, p2 

= .55, and p3 = .4. The three probabilities for C are p1 = .05, p2 = .75, and p3 = .2.  Notice that in 

each of these three lotteries, the probability of the worst event (lose $80) is quite small.  Each of 

these reference lotteries was compared to twelve other points; four where p1 was reduced to .01, 

four where p1 was increased to .1, and four where p1 was increased to .2.  The decrease in p1 

from .05 to .01 was combined with a decrease in p3.  Conversely, the increase in p1 from .05 to 

either .1 or .2 was combined with an increase in p3.  The decreases (and increases) in p3 followed 

                                                                                                                                                             
undertaking field research, supervising receipts and processing of coffee, and recording export contracts. 

 
5.   Note that it is the loss associated with an event, and not the expected loss that is large.  This interpretation of 

large-stakes events is in keeping with the traditional approach to modeling decision making under uncertainty 
(Hirschleifer and Riley, 1992). 
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a specific path.  For example, the four points where p1 was increased from .05 to .1 are labeled as 

points B1 (.1,.49,.41), B2 (.1,.45,.45), B3 (.1,.4,.5), and B4 (.1,.3,.6). 

We ran the experiment in four stages.  In the first stage the monitor read the instructions, 

while subjects followed along on their copy.6  Subjects were told that no communication 

between them would be allowed during the experiment.  After reading the instructions and 

having all of their questions answered, subjects began stage 2.  In stage 2, each subject was given 

an option sheet with 40 pairs of options, and circled his or her preferred option for each of the 40 

pairs; thus our experimental design provided us with more than 1,000 (4,000) CEO (student) 

lottery choices.  Each option was divided into 3 probabilities: 

p1 is the probability of losing $80; 

p2 is the probability of losing $30; and 

p3 is the probability of losing $0. 

For example, if an option has p1 = 20%, p2 = 50%, and p3 = 30%, this implies a subject has a 

20% chance to lose $80, a 50% chance to lose $30, and a 30% chance to lose $0.  For each 

option, the three probabilities always sum to 100% (p1 + p2 + p3 = 100%).   

 After all the subjects had filled out the option sheet, stage 3 began.  In stage 3, the 

monitor had a subject choose one slip of paper out of an envelope that contained 40 slips of 

paper, numbered from 1 to 40.  The number on the slip of paper determined which of the 40 

options on the option sheet would be played.  For example, if slip #6 was drawn, everyone in the 

experiment played the option she had circled for the pair #6 on her option sheet.  Once the option 

to be played was determined, a different subject then drew a slip of paper from a different 

                                                 
6.    See Appendix 1 for a copy of the experimental instructions, which followed Mason et al. (2005).  Note that we 

took great care to ensure that the experimental instructions were understood.  They were first written in English 
and then translated into Spanish. This translation was performed by a Costa Rican expert. To control for 
translation biases, a different translator located in Arizona then translated the Spanish instructions back into 
English.  We then cross-checked the translated experimental instructions for internal consistency. 
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envelope that contained 100 slips of paper, numbered 1 to 100.  The number on this slip of paper 

determined the actual outcome of the option:  -$80, -$30, or $0.  Continuing with our example, 

suppose Lottery A (option #6) is to be played, thus, P1=5%, P2=75%, P3=20%.  If the slip of 

paper drawn is numbered between 1 and 5, event 1 obtains, so that the subject loses $80; if the 

slip of paper is numbered between 6 and 80, he loses $30; or if a slip is numbered between 81 

and 100, a $0 outcome obtains. 

In the fourth and final stage, each subject was paid his or her take-home earnings in cash 

and was asked a few follow-up questions.  For example, we probed into whether they interpreted 

the stakes as large and whether they had understood the experimental instructions.   

3.  Experimental Results 

Before discussing the formal results of our econometric analysis, we first present some 

summary information.  For each of the 40 lottery comparisons, we identified the percentage of 

subjects within each cohort (students or CEOs) that indicated a preference for option A over 

option B, and then computed the difference between the fraction of CEOs that preferred option A 

and the fraction of students that preferred option A.  For each of the 40 comparisons, we also 

calculated the difference between the probability ascribed to the worst outcome under the two 

options (i.e., p1d = p1
A - p1

B, where p1
k is the probability ascribed to event 1 under option k = A 

or B).  A graphical representation of the relation between these two differences is contained in 

Figure 2.  In that diagram, we plot the difference in probabilities, p1d, on the x-axis, and the 

difference between the fraction of CEOs and the fraction of students selecting option A for a 

given comparison (denoted aved) on the y-axis.  A trend line is overlaid on this scatter plot.  

While this characterization of the data is quite rough, it does point to an important relationship.  

Specifically, there seems to be an indication that students are slightly less likely than CEOs to 
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choose options with a larger probability on the worst outcome.  This might indicate an overall 

pattern of students exhibiting a greater degree of risk aversion than CEOs, or it might be 

associated with differences in tendencies to exhibit non-expected utility maximization between 

the two groups. 

To better understand the explanatory power of each possibility, we first analyze a 

regression model that assumes subject behavior is consistent with expected utility maximization.  

If subject i makes her choice on the basis of expected utility, then the criterion for selecting 

option A is 

(p1
A – p1

B)ui1 + (p2
A – p2

B)ui2 + (p3
A – p3

B)ui3 > 0,          (2) 

where pj
k is the probability that event j = 1, 2 or 3 will occur under option k = A or B, and uij is 

the von Neumann–Morgenstern (VNM) utility that agent i ascribes to event j.  Since probabilities 

must sum to one, we can simplify the expression on the left side of equation (2).  Moreover, 

because the VNM utility function is only uniquely defined up to a monotonic transformation, we 

impose the normalization ui1 = 0.  The resulting criterion becomes 

ui3(p3
A – p3

B) + ui2(p3
B – p3

A + p1
B – p1

A) > 0.          (3) 

We note that a measure of the risk aversion associated with agent i’s VNM utility function is7  

qi = ui3/ui2.              (4) 

 To obtain information on agents’ risk attitudes, we use a logit estimation approach.8  

Such an approach produces estimates of the parameters ui3 and ui2 for each agent i; we then 

                                                 
7.  The index of absolute risk aversion is typically defined by the ratio of second derivative to first derivative; given 

the discrete nature of our problem, that is approximately [(ui3 – ui2)/(x3 – x2) - (ui2 – ui1)/(x2 – x1)]/(ui2 – ui1)/(x2 – 
x1).  With the normalization ui1 = 0, this approximation can be reduced to (ui3/ui2)[(x2 – x1)/(x3 – x2)] – (x3 – 
x1)/(x3 – x2).  As the fractions involving differences in the x’s are constant across subjects, it follows that the 
ratio ui3/ui2 summarizes the relevant information on agent i’s aversion to risk. 

 
8.  One can think of this approach as emerging naturally from a random utility model, wherein the agent’s true 

criterion is to choose option A when the left-hand side of equation (3) exceeds a random variable that follows 
the logistic distribution.   
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construct the index of risk aversion qi using equation (4).  Following this approach for each of 

the subjects in our sample yields a set of estimates of risk attitudes for the entire population.  The 

main question of interest using this approach is whether students tend to exhibit greater risk 

aversion than do CEOs.  To evaluate this hypothesis, we compare the average estimated 

measures of risk aversion between the two groups.  The relevant information for this test is 

contained in Table 1.  The key finding in Table 1 is that there is no evidence of a statistically 

important difference in risk attitudes between CEOs and students, assuming agents’ behavior is 

consistent with the expected utility paradigm.   

For these purposes, we ran a set of OLS regressions, all of which used the induced 

measure of the subject’s risk attitude as the dependent variable.  Explanatory variables are taken 

from the ancillary data collected in our post-experiment survey (see Appendix 2).  The first 

regression, reported in the second column of Table 2, included information on gender, whether 

the subject had formal training in statistics (coded as a 1 if yes, otherwise 0), family income, and 

whether the subject was from the CEO pool (coded as a 1 for CEOs, otherwise 0).  Empirical 

results from this model continue to suggest a lack of significant difference between subject 

pools.  That said, the coefficients on gender, statistics, and CEO are each qualitatively larger than 

their respective standard errors, hinting at the possibility that a different specification might 

uncover a significant effect.  With this in mind, we consider three variants of this baseline 

specification, each of which allows for slope differences as well as intercept heterogeneity 

between subject pools.  These are the regressions listed as models 2, 3, and 4 in Table 2.   

Important slope differences do emerge for statistics in each variant; there is also some 

evidence of a potentially important difference in slopes for gender.  With respect to statistics, it 

appears that CEOs have significantly smaller risk attitudes than students, as evidenced by the 
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negative coefficient on the interaction effect.  Alternatively, there is some indication that male 

CEOs are more risk averse than their female counterparts, though the latter group is not well 

represented in our sample.  

As indicated above, however, there is considerable experimental evidence that suggests 

the expected utility paradigm may not be valid.  Accordingly, we investigate an expanded 

discrete choice model where we allow (i) divergences from the expected utility model and (ii) 

differences across subjects.  Because we are interested in identifying the importance of non-

linear effects, a natural approach is to specify Vk as a non-linear function of the probabilities.  In 

particular, we assume that the representation V is a cubic function of the probabilities.9  This 

may be regarded as a third-order Taylor’s series approximation to a more general non-linear 

form.  We parameterize the cubic as: 

V(p) = α + β1p1 + β2 p3 + β3p1
2 + β4p1p3 + β5p3

2 + β6p1
3 + β7p1

2p3 + β8p1p3
2 + β9p3

3.     (5) 

Let Y1 = q1 - p1, Y2 = q3 - p3, Y3 = q1
2 - p1

2, Y4 = q1q3 - p1p3, Y5 = q3
2 - p3

2, Y6 = q1
3 - p1

3, Y7 = 

q1
2q3 - p1

2p3, Y8 = q1q3
2 - p1p3

2, and Y9 = q3
3 - p3

3.  Based on this specification, the agent prefers 

lottery p over lottery q if 

ε > β1Y1 +β2Y2 + β3Y3 + β4Y4 + β5Y5 + β6Y6 + β7Y7 + β8Y8 + β9Y9,        (6) 

where ε is a disturbance term that captures unobservable features.   

The approach we take towards identifying summary information for each group is based 

on the average agent.  Under this approach, we regard each individual’s taste parameters (the 

coefficients in our regression) as drawn from a population; this approach is termed “mixed 

Logit” (Revelt and Train, 1998; Train, 1998, 1999; McFadden and Train, 2000).  Under the 

                                                 
9.   Chew et al. (1991) were the first to propose the quadratic utility approach.   They replace the independence 

axiom with the weaker mixture symmetry axiom that allows for indifference curves to be non-linear so that 
predicted behavior matches up reasonably well with observed behavior.  We generalize their approach. 
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mixed Logit approach, the econometrician identifies the sample mean of the coefficient vector.  

This mean vector then provides the summary information for the cohort, which we use to 

identify behavior of a typical subject in each cohort. 

 The vector (β1, …, β9) summarizes each agent’s tastes, which we regard as a draw from a 

multi-variate distribution. Once the distribution for this vector is specified,10 the joint likelihood 

function can be made explicit.  This likelihood function depends on the first two sample 

moments of the distribution over the parameters, and the stipulated distribution over the error 

term (e.g., extreme value for the logit application).  Estimates of the mean and standard error 

parameter vectors are then obtained through maximum likelihood estimation.   

Unfortunately, exact maximum likelihood estimation is generally impossible (Revelt and 

Train, 1998; Train, 1998).  The alternative is to numerically simulate the distribution over the 

parameters, use the simulated distribution to approximate the true likelihood function, and then 

maximize the simulated likelihood function.   

Table 3 shows the results from such a procedure; we report estimated mean and standard 

error parameter vectors for each cohort.  For students, the mean population effect for the two 

non-linear terms Y3 and Y6 (corresponding to the squared and cubic terms in p1) are statistically 

significant at the p < .01 level.  In addition, the population standard error associated with the 

variables Y3 and Y5 are also significant at the p < .01 level, indicating the presence of important 

heterogeneities among the population of students with respect to the quadratic term in p1.  Each 

of these parameter estimates is also significant at the p < .01 level for CEOs; in addition, the 

mean effects associated with the variables Y2 and Y7 are also statistically significant at better 

than the p < .10 level, and the standard error associated with the variable Y5 is significant at 

                                                 
10    We assume the parameter vector is multi-normally distributed.   
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better than the p < .05 level.  A key point in these estimates is that many of the parameters 

corresponding to the non-linear effects are both numerically and statistically important.  We infer 

that the expected utility paradigm does not do a particularly good job of explaining the data from 

our experiment, either for students or for CEOs. 

We are also interested in possible differences between the behavior of students and 

CEOs.  To investigate the hypothesis of statistically indistinguishable behavior, we compare the 

maximized likelihood function under the restriction that the mean parameter vector is identical 

for the two cohorts against the corresponding maximal value of the likelihood function when we 

allow for differences between the two cohorts.  We report this statistic at the bottom of Table 3.  

Under the null hypothesis that behavior is indistinguishable between the cohorts, the test statistic 

(twice the difference between the maximal log-likelihood values) follows a central chi-square 

distribution with number of degrees of freedom equal to the number of restrictions.  In the case at 

hand there are 18 restrictions (the first two moments are restricted to be equal for the two cohorts 

for each of the nine parameters).  As our test statistic is substantially larger than conventional 

critical values, we conclude that there are statistically important differences in behavior between 

the two cohorts.   

As aforementioned, many of the earlier experimental analyses of possible deviations from 

the expected utility paradigm focused on representations that were quadratic in probabilities.  

Such representations can be nested within our analysis; if the coefficients on the terms Y6, Y7, 

Y8, and Y9 are all zero.  Such a restriction is easily imposed on the analysis, by running a variant 

of the mixed logit regressions reported in Table 3, excluding the last 4 explanatory variables; the 

results from this restricted regression are reported in Table 4.  One can then test the joint 

hypothesis that none of these last four coefficients is important by means of a likelihood ratio 
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test.  We report this test statistic at the bottom of Table 4, for each of the subject pools.  The 

interesting thing to note here is the null hypothesis – that none of the four coefficients is 

important – is soundly rejected for each cohort.  Accordingly, we believe our results have 

important implications for possible alternative forms for the representation of agents’ 

preferences.11 

While the results we discuss above point to statistical differences in behavior, they do not 

necessarily imply important economic differences.  To address this related issue, one must ask 

whether the regression model that applies to one cohort differs from the regression model for the 

other cohort in some significant way.  We interpret the notion of “significant differences” as 

meaning the two models would imply different behavior.  From a geometric perspective, such 

differences are manifested in terms of clear differences in the preference maps for the two 

groups.   

To investigate the possibility of such a phenomenon, we used the regression models 

reported in Table 3 to numerically generate indifference curves within the Machina-Marschak 

probability triangle.  Four such level curves were generated for both students and CEOs.  These 

four curves all begin from the same combination of probabilities (p1,p3), and then trace out the 

combinations with the same induced level of value, based on the parameters reported in Table 3, 

for the cohort in question.  We plot these sets of level curves in Figure 3.  For each of the four 

starting combinations of (p1,p3), the solid curve represents the induced level curve for students 

while the dashed curve represents the induced level curve for CEOs.  There are two noteworthy 

features.  First, for probability combinations with middling values of p3 (say, between .25 and 

                                                 
11  A referee suggested that Yaari’s (1987) dual model might provide such an explanation.  While the spirit of 

Yaari’s approach might be apropos, a literal application is not:  Yaari’s model leads to a representation that is 
linear in income or wealth; as we shall see below this does not appear to be consistent with our results.  

 



 

 15

.65) and relatively small values of p1 (say, smaller than .15),12 the level curves for CEOs tend to 

be flatter, and to lie below the level curves for students.  Accordingly, CEOs would generally 

accept a smaller increase in p3 for a given increase in p1, for this range of probability 

combinations.  This phenomenon is roughly the same as the idea that CEOs are “less risk averse” 

than students, though strictly speaking that related notion would make sense only in the context 

of the expected utility model.  Second, it appears that the level curves for CEOs are more convex 

than the level curves for students.  Thus, when we look at probability combinations closer to the 

counter-diagonal, the level curves for CEOs have a larger slope than the level curves for 

students, suggesting that CEOs may exhibit behavior akin to greater aversion to risk at 

probability combinations where p2 is relatively small.  This second phenomenon seems most 

marked for the level curves starting from the combination p1 = .04, p3 = .5 (the pair of curves 

highest up in the triangle).   

It is interesting to contrast this observation with earlier studies, which tended to find that 

the most important departures from the expected utility paradigm appear in the corners of the 

triangle, where one probability is quite large and the others quite small.  Our results would seem 

to suggest that CEOs are relatively more likely to exhibit similar behavior. 

4.  A Monetary Interpretation 

In this section, we use results from the mixed logit model to investigate a functional form 

that allows us to infer willingness to pay for a specified change in a lottery faced by the average 

subject.  This discussion is motivated by the following idea: Suppose an agent’s choices are 

consistent with the expected utility paradigm.  Then we can use the data on his choices to 

estimate a linear representation over probabilities, and this linear form can be used to infer a Von 

                                                 
12  We note that this range of probability combinations largely conforms to the range of probabilities to which 

subjects were exposed in our experimental design.   
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Neumann–Morgenstern utility function over prizes.  If the lotteries in question are defined over 

three prizes, as in our experiments, the inferred utility function is quadratic.   This suggests an 

interpretation with non-linear representations over probabilities wherein the parameters on the 

various polynomial terms involving probabilities can be linked to some function of the 

associated prize.  We can then use this link between parameters and prize to estimate the 

representative agent’s ex ante willingness to pay for a change in risk. 

In our application, with a cubic representation over probabilities, there are 18 terms 

involving probabilities:   

        V(p;y) = u1p1 + u2p2 + u3p3 + u4p1
2 + u5p2

2 + u6p3
2 + u7p1p2 + u8p1p3 + u9p2p3 +  

 (7) 
       u10p1

3 + u11p1
2p2 + u12p1

2p3 + u13p1p2
2 + u14p1p3

2 + u15p2
3 + u16p2

2p3 + u17p2
2p3 + u18p3

3,  
 
where the ui’s are functions of the prizes yi.  Since the probabilities sum to one, we reduce this 

specification to nine parameters, as in equation (5).  The resultant parameters (the β’s in equation 

(5)) are therefore tied to the original functions in a specific manner.  Next, we propose a 

functional relation between the parameters ui in equation (7) and the associated prizes.  The 

functional representation we propose is motivated by the observation that the highest-order 

function that can be employed with three prizes is quadratic, and by the constraint that there are 

only nine parameters estimated in the mixed logit application.  Accordingly, we explore the 

functional relations: 

ui  = γ1yi + γ2yi
2, i = 1, 2, and 3; 

ui  = φ1yi-3 + φ2yi-3
2, i = 4, 5, and 6; 

u7 = ηy1y2, u8 = ηy1y3, and u9 = ηy2y3; 

u10  = ω1y1 + ω1y1
2, u15  = ω1y2 + ω1y2

2, and u18  = ω1y3 + ω1y3
2; 
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u11  = ξ1y1y2 + ξ2y1
2y2, u12  = ξ1y1y3 + ξ2y1

2y3, u13  = ξ1y1y2 + ξ2y1y2
2,  

u14  = ξ1y1y3 + ξ2y1y3
2, u16  = ξ1y2y3 + ξ2y2

2y3, and u17  = ξ1y2y3 + ξ2y2y3
2. 

The goal is to obtain estimates of the parameters γ1, γ2, φ1, φ2, η, ω1, ω2, ξ1, and ξ2 from the 

estimated parameters β1 through β9, for both students and CEOs.  Such a process is tedious, 

involving substantial algebraic manipulation; in the interest of brevity we do not reproduce these 

calculations here.  Table 5 lists the estimates of the nine new parameters of interest, based on the 

result of those manipulations and the parameter estimates from Table 3.  Interestingly, these 

representations appear to be quite similar for the two groups.  As we will see below, the 

similarity in these parameter vectors induces strong similarities in monetary valuations.13 

Armed with these values, we describe a monetary value of a policy change.  For example, 

suppose a certain intervention could reduce the probability of the worst outcome from p1 to p1′, 

with an offsetting increase in the probability of the middle outcome from p2 to p2′.  The monetary 

value of this intervention is the value of OP that solves 

V(p1,p2,p3;y) = V(p1′,p2′,p3;y-OP).      (8) 

The monetary value OP is the agent’s ex ante willingness to pay, irrespective of the ultimate 

state of nature that obtains, to influence the change in probabilities.   

We consider two examples to illustrate the point.  First, suppose we start from the 

combination (p1,p2,p3) = (.1, .3, .6) and reduce p1 by .05, moving to (p1,p2,p3) = (.05, .3, .6).   

This change increases the expected value of the lottery by $2.50.  Using the parameters in Table 

5, we calculate the ex ante monetary value of this change as OP = $1.7028 for both students and 

CEOs.  Similarly, a change that completely eliminates the risk associated with the worst outcome 

                                                 
13   We also conducted a parallel but restricted investigation, based on the quadratic representation whose estimates 

are given in Table 4.  The monetary value induced by this alternative investigation is similar to that reported in 
the text, and is available from the authors on request.  
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(i.e., moving .10 from p1 to p2) has an expected value of $5.  Based on the parameters in Table 3, 

we calculate that the monetary value of this change is OP = $3.5340 for both students and CEOs.  

For both hypothetical changes, then, we conclude that there is no discernible difference in 

willingness to pay for the two groups.  

As a second example, suppose the initial combination is (p1,p2,p3) = (.05, .45, .5); again, 

we reduce p1 by 50% (here, to .025), moving to (p1,p2,p3) = (.025, .45, .5).   This change 

increases the expected value of the lottery by $1.25.  Using the parameters in Table 3, we 

calculate the ex ante monetary value of this change as OP = $1.3504 for both students and CEOs.  

Similarly, a change that completely eliminates the risk associated with the worst outcome (i.e., 

moving .10 from p1 to p2) has an expected value of $5.  Based on the parameters in Table 5, we 

calculate that the monetary value of this change is OP = $2.6922 for both students and CEOs.  

Again, we conclude that there is no discernible difference in willingness to pay for the two 

groups.  

5.  Concluding Remarks 

 Small probability, high loss events are ubiquitous.  Whether individual behavior in such 

situations follows the postulates of expected utility theory merits serious consideration from both 

a positive and normative perspective since it remains the dominant paradigm used throughout the 

public sector and it remains the most popular model of choice under uncertainty.  In this study, 

we combined high stakes experiments with a unique subject pool—CEOs—to examine 

individual preferences over lotteries for losses.  Examining more than 1,000 (4,000) CEO 

(student) lottery choices, we found significant departures from expected utility theory both in the 

student data as well as in the CEO data.  In particular, our findings suggest that a policy approach 

based solely on expected benefits and expected costs would significantly understate society’s 
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actual willingness to pay to reduce risk in low probability, high loss events.  Our econometric 

results indicate that representations of the typical subject are quite similar for the two groups.  

Specifically, based on the estimated parameters, we find that willingness to pay to reduce the 

chance of the worst event for a typical CEO is very similar to the corresponding willingness to 

pay for a typical student.  Yet we do find interesting subtle differences in behavior across subject 

pools. 

 This study represents but a first step outside of the typical laboratory exercise to more 

fully understand behavior over small probability, high loss events.  While we have explored how 

results vary across students and CEOs, representativeness of the situation has been put on the 

sidelines.  Given that List (2006) argues that representativeness of the environment, rather than 

representative of the sampled population, is the most crucial variable in determining 

generalizability of results for a large class of experimental laboratory games, it is important to 

note that we examine behavior in one highly stylized environment, potentially far removed from 

domains and decision tasks present in certain markets.  We trust that future research will soon 

begin these important next steps.   
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Figure 1:  Comparison of Lotteries in Our Experimental Design 
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Figure 2: Differences in Tendency to Choose Option A, CEOs vs. Students 
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Figure 3: Level Curves Implied by Cubic Representation over Lotteries 
(students’ curves are solid, CEOs’ curves are dashed) 
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TABLE  1: Comparison of Average Estimated Risk Indices, CEOs vs. Students 
 

CEOs   Students 

Average Value   1.670   1.528  

Population s.e.   1.161   0.6495 

s.e. of mean   0.0430   0.0072 

Note:  t-statistic on differences in means = .8049.  The table population estimates are derived from 
equation (4).  Note that these estimates are garnered from logit estimation that assumes subject behavior 
is consistent with expected utility maximization.   



 

 26

 

TABLE 2:  OLS regression analysis of risk attitudes 
 

 

 Regression Model 
regressor 1 2 3 4 

 
male 

 
.1761 

(.1651) 

 
.1287 

(.1651) 

  

 
Stat. 

 
-.2930 
(.1560) 

 
-.0836 

(.1806) 

  

 
income 

 
2.71E-08 

(2.03E-08) 

 
 

  

 
CEO 

 
.2802 

(.1947) 

 
.7590** 
(.2809) 

 
.5417+ 
(.2861) 

 
.7308** 
(2.669) 

 
male*CEO 

  
1.330+ 

(.8068) 

 
1.233 

(.7948) 

 
1.459+ 
(.7857) 

 
stat*CEO 

  
-.8807* 
(.3643) 

 
-.9521** 

(0.3130) 

 
-.964 3** 

(0.3147) 
 

income*CEO 
   

4.97E-08 
(3.24E-08) 

 

 
Constant 

 

 
1.491** 
(.1194) 

 
1.499** 
(.1159) 

 
1.528** 
(.0805) 

 
1.528** 
(.0805) 

 

R2 

 

.057 

 

.104 

 

.097 

 

.097 

 

Notes:  standard errors in parentheses 
+: significant at 10% level or better; *: significant at 5% level or better; **: significant at 
1% level or better 
The dependent variable in these models is the induced measure of the subject’s risk attitude as 
computed in Table 1.  Explanatory variables are taken from the ancillary data collected in our 
post-experiment survey, as described in the text.   
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TABLE 3:  Mixed LOGIT Results, cubic version 
 

 

 Students CEOs 
regressor First 

moment 
Second 
moment 

First 
moment 

Second 
moment 

 
Y1 

 
111.5** 
(15.13) 

 
1.317 

(1.811) 

 
115.5** 
(25.76) 

 
0.216 

(0.611) 
 

Y2 

 
0.937 

(0.647) 

 
.2609 
(.355) 

 
2.211+ 

(1.327) 

 
0.065 

(0.208) 
 

Y3 

 
-1542** 
(205.4) 

 
22.11** 
(5.74) 

 
-1584** 
(343.1) 

 
7.092** 
(3.267) 

 
Y4 

 
-0.257 
(2.357) 

 
0.030 

(0.726) 

 
2.406 

(5.797) 

 
1.913 

(1.668) 
 

Y5 

 
-0.206 
(0.893) 

 
1.206** 
(0.504) 

 
-1.375 
(1.944) 

 
1.713** 
(0.717) 

 
Y6 

 
5003** 
(673.7) 

 
1.634 

(26.19) 

 
5181** 
(1119) 

 
50.11** 
(11.56) 

 
Y7 

 
-7.965 
(20.02) 

 
14.70 

(11.55) 

 
-5.178+ 

(2.720) 

 
0.924 

(1.007) 
 

Y8 

 
4.609 

(6.577) 

 
2.460 

(2.354) 

 
9.315 

(8.597) 

 
3.090 

(2.929) 
 

Y9 

 
-0.057 
(0.860) 

 
0.044 

(0.651) 

 
-1.198 
(1.524) 

 
0.099 

(0.382) 
     

Log-likelihood 
statistic 

 
-2600.41 

 
-750.14 

Test statistic on H0 
(no differences) 

45.28  
(5% = 28.87; 1% = 34.81) 

Notes: Asymptotic standard errors in parentheses 
+: significant at 10% level or better; *: significant at 5% level or better; **:  significant at 
1% level or better 
Estimates in the table are from an expanded discrete choice model where we allow (i) 
divergences from the expected utility model and (ii) differences across subjects.  Because we are 
interested in identifying the importance of non-linear effects, we assume a representation that is a 
cubic function of the probabilities (see equation 5). 
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TABLE 4:  Mixed LOGIT Results, quadratic version 
 

 

 Students CEOs 
regressor First 

moment 
Second 
moment 

First 
moment 

Second 
moment 

 
Y1 

 
2.140 

(1.862) 

 
0.152 

(2.409) 

 
 5.631* 
(2.250) 

 
0.541 

(0.658) 
 

Y2 

 
-0.280 
(0.488) 

 
0.161 

(1.304) 

 
0.401 

(1.173) 

 
0.061 

(0.219) 
 

Y3 

 
-28.29** 
(8.227) 

 
 22.99** 
(3.351)  

 
-37.11** 
(11.69) 

 
11.35** 
(3.418) 

 
Y4 

 
-2.640 
(1.744) 

 
0.532 

(1.015) 

 
-4.929 
(3.937) 

 
0.774 

(0.582) 
 

Y5 

 
1.889** 
(0.682) 

 
0.834 

(0.959) 

 
0.983 

(1.458) 

 
1.584* 
(0.692) 

     

Log-likelihood 
statistic 

 
-2683.90 

 
-777.00 

Test statistic on 
H0 (no impact 

from cubic 
terms) 

 
166.98** 

  
53.72** 

 

Notes: Asymptotic standard errors in parentheses 
*:  significant at 5% level or better; **:  significant at 1% level or better 
The regression model for these results is identical to the model used to generate Table 3, except in 
this case Y6, Y7, Y8, and Y9 are all assumed to be zero (i.e., this is a restricted quadratic 
regression). 
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 TABLE 5:  Implied Coefficients on Money in Non-Linear Representation, Students vs. 
CEOs 

 
Parameter Estimated value for students Estimated value for CEOs 

γ1 -1236.6 -1281.8 

γ2 11.484 11.902 

φ1  4.5372 4.7003 

φ2 446.13 462.27 

η -2.3813 -2.4681 

ω1 -212.11 -219.56 

ω2 1.2434 1.2863 

ξ1  -2.5193 -2.6076 

ξ2 -0.00011 -0.00012 

The table reports estimates of the parameters γ1, γ2, φ1, φ2, η, ω1, ω2, ξ1, and ξ2 from the estimated 
parameters β1 through β9, for both students and CEOs.  Such a process is tedious, involving 
substantial algebraic manipulation; but it builds on the parameter estimates from Table 3. 
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APPENDIX 1:  EXPERIMENTAL INSTRUCTIONS 
 

INSTRUCTIONS 
Welcome.  This is an experiment in decision making that will take about an hour to complete.  
You will be paid in cash for participating at the end of the experiment.  How much you earn 
depends on your decisions and chance.  Please do not talk and do not try to communicate with 
any other subject during the experiment. If you have a question, please raise your hand and a 
monitor will come over.   If you fail to follow these instructions, you will be asked to leave and 
forfeit any moneys earned. You can leave the experiment at any time without prejudice.   Please 
read these instructions carefully, and then review the answers to the questions on page 4.  
 
AN OVERVIEW:   You will be presented with 40 pairs of options.  For each pair, you will pick 
the option you prefer.   After you have made all 40 choices, you will then play one of the 40 
options to determine your take-home earnings.  
 
THE EXPERIMENT 
Stage #1:  The Option Sheet:  After filling out the waiver and the survey forms, the experiment 
begins.  You start with $100, and your choices and chance affect how much of this money you 
can keep as your take-home earnings.    

You will be given an option sheet with 40 pairs of options.   For each pair, you will 
circle the option you prefer.   Each option is divided into 3 probabilities:   

P1 is the probability you will lose $80;  
P2 is the probability you will lose $30; and  
P3 is the probability you will lose $0.  

For each option, the three probabilities always add up to 100%  (P1 + P2 + P3 = 100%).   For 
example, if an option has P1=20%, P2=50% and P3=30%, this implies you have a 20% chance to 
lose $80, a 50% chance to lose $30, and a 30% chance to lose $0.  
 On your option sheet, you circle your preferred option for each of the 40 pairs.   For 
example, consider the pair of options, A and B, presented below.   Suppose after examining the 
pair of options carefully, you prefer option A to B—then you would circle A (as shown below).  
If you prefer B, you would circle B. 

A      B 
                P1=10%, P2 =20%, P3 =70%        P1=20%, P2 =20%, P3 =60% 
 
Stage #2: The Tan Pitcher:  After filling out your option sheet, please wait until the monitor 
calls you to the front of the room.  When called, bring your waiver form, survey, and option 
sheet with you.    

On the front table is a tan pitcher with 40 chips inside, numbered 1 to 40.  The number on 
the chip represents the option you will play from your option sheet.  You will reach into the tan 
pitcher without looking at the chips, and pick out a chip.  The number on the chip determines 
which option you will play to determine your take-home earnings.   For example, if you draw 
chip #23, you will play the option you circled for the pair #23 on your option sheet.  
 
Stage #3: The Blue Pitcher: After you have selected the option you will play, you then draw a 
different chip from a second pitcher—the blue pitcher.  The blue pitcher has 100 chips, 
numbered 1 to 100.   The number on the chip determines the actual outcome of the option—a 
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loss of either $80, $30, or $0.  
 For example, if your option played has 

P1=10% 
P2=50% 
P3=40%, 

then if you pick a chip numbered between 1 and 10, you lose $80; if you pick a chip between 11 
and 60, you lose $30; or if you pick a chip between 61 and 100, you lose $0.  
 If instead, your option played has  

P1=20% 
P2=20% 
P3=60%, 

then if you pick a chip between 1 and 20, you lose $80; if you pick a chip between 21 and 40, 
you lose $30; or if you pick a chip between 41 and 100, you lose $0.  
 
Stage #4: Ending the experiment:  After playing the option, you fill out a tax form.  The  
monitor will then hand over your take-home earnings, and you can leave the room.   
 
Now please read through the questions and answers on the next page.  
 

QUESTIONS and ANSWERS 
1.  When I make a choice, I will choose between how many options?     

2 
2.  I will make how many choices?           

40 
3.  My initial $$ endowment is how much? 

$100 
4.  P1 represents what? 

The probability of losing $80 
5.  P2 represents what? 

The probability of losing $30 
6.  P3 represents what? 

The probability of losing $0 
7.  For each option, the three probabilities sum to what?         

100% 
8.  What does the number drawn from the tan pitcher represent?     

The option (1 to 40) played from your option sheet 
9.  What does the number drawn from the blue pitcher represent?       

The outcome (1 to 100) of the option played—determining whether 
you lose either $80, $30, or $0 
 

Are there any questions? 
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APPENDIX 2:  THE SURVEY SHEET 
 

1.  Social Security Number:   _______________________________ 
2.  Gender: (circle)                                                    Male    Female  
3.  Birthdate:  _________________ (month/day/year) 
4.  Highest Level of School Completed: (please circle)  

Junior High School     
High School or Equivalency     
College or Trade School 
Graduate or Professional School 

5.  Courses Taken in Mathematics:  (please circle all that apply)  
College Algebra  
Calculus or Business Calculus   
Linear Algebra    
Statistics or Business Statistics 

6.  Family’s Annual Income: _____________________ 
7.  Personal Annual Income:  _____________________ 
 
THANK YOU 
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APPENDIX 3:  THE OPTION SHEET 
 
Social Security Number: _________________________     
An Example:  

             A      B 
                P1=10%, P2 =20%, P3 =70%        P1=20%, P2 =20%, P3 =60% 

              10% chance of losing $80                           20% chance of losing $80  
   20% chance of losing $30       20% chance of losing $30  
   70% chance of losing $0       60% chance of losing $0 
________________________________________________________________________ 
#   A      B 
 
1.       P1=5%, P2=35%, P3=60%                   P1=1%, P2=40%, P3=59% 

2.             P1=20%, P2=0%, P3=80%          P1=20%, P2=39%, P3=41% 

3.       P1=5%, P2=35%, P3=60%        P1=1%, P2=49%, P3=50% 

4.             P1=5%, P2=35%, P3=60%          P1=5%, P2=55%, P3=40% 

5.       P1=5%, P2=55%, P3=40%                     P1=1%, P2=69%, P3=30% 

6.             P1=5%, P2=75%, P3=20%          P1=20%, P2=50%, P3=30% 

7.       P1=5%, P2=55%, P3=40%                     P1=1%, P2=60%, P3=39% 

8.              P1=5%, P2=75%, P3=20%          P1=20%, P2=59%, P3=21% 

9.       P1=5%, P2=75%, P3=20%          P1=1%, P2=89%, P3=10% 

10.                P1=5%, P2=55%, P3=40%          P1=20%, P2=30%, P3=50% 

11.      P1=5%, P2=75%, P3=20%          P1=1%, P2=80%, P3=19% 

12.             P1=5%, P2=55%, P3=40%          P1=20%, P2=39%, P3=41% 

13.      P1=5%, P2=35%, P3=60%                      P1=10%, P2=25%, P3=65% 

14.             P1=5%, P2=35%, P3=60%          P1=20%, P2=10%, P3=70% 

15.      P1=5%, P2=35%, P3=60%          P1=10%, P2=10%, P3=80% 

16.             P1=5%, P2=35%, P3=60%          P1=20%, P2=19%, P3=61% 

17.      P1=5%, P2=55%, P3=40%                      P1=10%, P2=45%, P3=45% 
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18.             P1=5%, P2=75%, P3=20%          P1=10%, P2=60%, P3=30% 

19.      P1=5%, P2=55%, P3=40%                      P1=10%, P2=30%, P3=60% 

20.             P1=5%, P2=75%, P3=20%          P1=10%, P2=69%, P3=21% 

21.      P1=5%, P2=35%, P3=60%           P1=1%, P2=44%, P3=55% 

22.             P1=10%, P2=10%, P3=80%                   P1=10%, P2=49%, P3=41% 

23.      P1=5%, P2=35%, P3=60%                       P1=1%, P2=59%, P3=40% 

24.             P1=1%, P2=40%, P3=59%           P1=1%, P2=79%, P3=20% 

25.      P1=5%, P2=55%, P3=40%                       P1=1%, P2=79%, P3=20% 

26.             P1=5%, P2=75%, P3=20%           P1=20%, P2=40%, P3=40% 

27.      P1=5%, P2=55%, P3=40%                       P1=1%, P2=64%, P3=35% 

28.             P1=5%, P2=75%, P3=20%           P1=20%, P2=55%, P3=25% 

29.      P1=5%, P2=75%, P3=20%            P1=1%, P2=99%, P3=0% 

30.             P1=5%, P2=55%, P3=40%              P1=20%, P2=20%, P3=60% 

31.      P1=5%, P2=75%, P3=20%             P1=1%, P2=84%, P3=15% 

32.             P1=5%, P2=55%, P3=40%           P1=20%, P2=35%, P3=45% 

33.      P1=5%, P2=35%, P3=60%              P1=10%, P2=29%, P3=61% 

34.             P1=5%, P2=35%, P3=60%           P1=20%, P2=0%, P3=80% 

35.      P1=5%, P2=35%, P3=60%   P1=10%, P2=20%, P3=70% 

36.             P1=5%, P2=35%, P3=60%           P1=20%, P2=15%, P3=65% 

37.      P1=5%, P2=55%, P3=40%               P1=10%, P2=49%, P3=41% 

38.             P1=5%, P2=75%, P3=20%           P1=10%, P2=50%, P3=40% 

39.      P1=5%, P2=55%, P3=40%                P1=10%, P2=40%, P3=50% 

40.              P1=5%, P2=75%, P3=20%           P1=10%, P2=65%, P3=25%  


