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“What information consumes is rather obvious: It consumes the attention of its re-

cipients. Hence a wealth of information creates a poverty of attention, and a need

to allocate that attention efficiently among the overabundance of information sources

that might consume it.” Simon (1971)

The question of whether and how mutual fund managers provide valuable services for their

clients motivates one of the largest literatures in empirical finance. A natural candidate

explanation is that funds process information about future asset values and use that infor-

mation to invest in high-valued assets. But few such theories have been written because

information choice models with many assets are difficult to solve and difficult to test. This

paper tackles both of these problems by developing a new model that uses an observable

variable–the state of the business cycle–to predict information choices and that links those

information choices to observable patterns in portfolio investments and returns.

We use business cycle variation as our observable state because of recent empirical evi-

dence suggesting that the way funds provide value changes over the cycle (Kosowski (2011),

Glode (2011), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014)). We explore a fund

manager’s choice of what information to process in different states of the business cycle. We

find that fund managers optimally choose to process information about aggregate shocks in

recessions and idiosyncratic shocks in booms. The resulting fund portfolios exhibit the same

kind of “time-varying skill” as do those in the data.

To understand how fund information strategies depend on the cycle, we build a new

model. Existing mutual fund theories explain fund flows and fees, but do not tell us how funds

add value.1 Existing models of information processing and portfolio choice either prohibit

managers from choosing between aggregate or idiosyncratic information (Van Nieuwerburgh

and Veldkamp 2010), or require that there are only two assets (Mondria 2010), rendering

all shocks aggregate. Therefore, we develop a new methodology that can accommodate N

assets and information choices with a more general asset payoff and signal structure.

The model’s solution offers a rich set of predictions, which we test with mutual fund

data. Just as importantly, the model is a building block. It can be extended to allow for

asymmetric initial information across investors, multiple countries with home and foreign

1For theoretical models of fees and flows, asset price effects, manager incentive problems, and other aspects
of mutual funds, see e.g., Mamaysky and Spiegel (2002), Berk and Green (2004), Kaniel and Kondor (2013),
Cuoco and Kaniel (2011), Chien, Cole, and Lustig (2011), Chapman, Evans, and Xu (2010), and Pástor and
Stambaugh (2012). A number of recent papers in the empirical mutual fund literature also find that some
managers have skill, e.g., Kacperczyk, Sialm, and Zheng (2005, 2008), Kacperczyk and Seru (2007), Cremers
and Petajisto (2009), Huang, Sialm, and Zhang (2011), Koijen (2014), Baker, Litov, Wachter, and Wurgler
(2010).
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funds, high and low-capacity funds, a choice over the quantity of information capacity, etc.

The framework provides a new lens through which to analyze the empirical literature and to

study which empirical patterns are consistent with optimal information-processing behavior.

In the model, a fraction of investment managers have skill. These skilled managers can

observe a fixed number of signals about asset payoffs and choose what fraction of those signals

will contain aggregate versus stock-specific information. We think of aggregate signals as

macroeconomic data that affect future cash flows of all firms, and of stock-specific signals as

firm-level data that forecast the part of firms’ future cash flows that is independent of the

aggregate shocks. Based on their signals, skilled managers form portfolios, choosing larger

portfolio weights for assets that are more likely to have high returns. In the data, recessions

are times when aggregate volatility rises and the price of risk surges. When we embed these

two forces in our model, both govern attention allocation.

The model generates six main predictions. It predicts how volatility and the price of

risk each affect attention allocation, portfolio dispersion, and portfolio returns. The first

pair of predictions tell us that attention should be reallocated over the business cycle. In

recessions, more volatile aggregate shocks should draw more attention, because it is more

valuable to pay attention to more uncertain outcomes. The elevated price of risk amplifies

this reallocation: Since aggregate shocks affect a large fraction of the portfolio’s value, paying

attention to aggregate shocks resolves more portfolio risk than learning about stock-specific

risks. When the price of risk is high, such risk-minimizing attention choices become more

valuable. While the idea that it is more valuable to shift attention to more volatile shocks is

straightforward, whether changes in the price of risk would amplify or counteract this effect

is not obvious.

The remaining predictions do not come from the reallocation of attention. Rather, they

help to distinguish this theory from non-informational alternatives and support the idea that

at least some portfolio managers are engaging in value-maximizing behavior. The second pair

of results predict business cycle effects on cross-fund portfolio and profit dispersion. Since

recessions are times when large aggregate shocks to asset payoffs create more comovement in

asset payoffs, passive portfolios would have returns that also comove more in recessions, which

would imply less dispersion. In contrast, when investment managers learn about asset payoffs

and manage their portfolios according to what they learn, fund returns comove less and

dispersion increases in recessions. One reason is that when aggregate shocks become more

volatile, managers who learn about aggregate shocks put less weight on their common prior

beliefs, which have less predictive power, and more weight on their heterogeneous signals.
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This generates more heterogeneous beliefs in recessions and therefore more heterogeneous

investment strategies and fund returns. The other reason is that a higher price of risk

induces managers to take less risk, which makes prices less informative. Like prior beliefs,

information in prices is common information. When prices contain less information, this

common information is weighted less and heterogeneous signals are weighted more, resulting

in more heterogeneous portfolio returns.

Finally, the fifth and sixth predictions describe the effect of risk and the price of risk on

fund performance. Since the average fund can only outperform the market if there are other,

non-fund investors who underperform, the model also includes unskilled non-fund investors.

Both the heightened uncertainty about asset payoffs and the elevated price of bearing risk in

recessions make information more valuable. Therefore, the informational advantage of the

skilled over the unskilled increases and generates higher returns for informed managers. The

average fund’s outperformance rises.

We test the model’s predictions on the universe of actively managed U.S. equity mutual

funds. To test the first prediction, a key insight is that managers can only choose portfolios

that covary with shocks they pay attention to. Thus, to detect cyclical changes in attention,

we should look for changes in covariances. We estimate the covariance of each fund’s portfolio

holdings with the aggregate payoff shock, proxied by innovations in industrial production

growth. This covariance measures a manager’s ability to time the market by increasing

(decreasing) her portfolio positions in anticipation of good (bad) macroeconomic news. This

timing covariance rises in recessions. We also calculate the covariance of a fund’s portfolio

holdings with asset-specific shocks, proxied by innovations in firms’ earnings. This covariance

measures managers’ ability to pick stocks that subsequently experience unexpectedly high

earnings. Consistent with the theory, this stock-picking covariance increases in expansions.

The idea that one can test rational inattention models by looking for changes in covariances

is similar to that in Maćkowiak, Moench, and Wiederholt (2009). Our paper exploits time-

series rather than cross-sectional variation in the covariance of shocks and economic outcomes

and uses mutual fund portfolios instead of firm-level pricing data.

Second, we test for cyclical changes in portfolio dispersion. We find that, in recessions,

funds hold portfolios that differ more from one another. As a result, their cross-sectional

return dispersion increases, consistent with the theory. In the model, much of this dispersion

comes from taking different bets on market outcomes, which should show up as dispersion

in CAPM betas. We find evidence in the data for higher beta dispersion in recessions.

Third, we document fund outperformance in recessions, extending earlier results in the
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literature. Risk-adjusted excess fund returns (alphas) are around 1.6 to 4.6% per year higher

in recessions, depending on the specification. Gross alphas (before fees) are not statistically

different from zero in expansions, but they are significantly positive in recessions.2 These

cyclical differences are statistically and economically significant.

Fourth, we decompose effects of recessions on covariance, dispersion, and performance, by

separating them into price of risk and volatility. When we use both price of risk and aggregate

volatility as explanatory variables, we find that both contribute about equally to our three

main results. Showing that these results are truly business-cycle phenomena–as opposed to

merely high volatility phenomena–is interesting because it connects these results with the

existing macroeconomics literature on rational inattention (e.g., Sims (2003), Maćkowiak

and Wiederholt (2009, 2015)).

Related theories of mutual funds Many mutual fund theories account for some of

the facts we document. But they do not explain all our facts jointly or answer our main

question: How do funds go about adding value for investors? One strand of the literature

focuses on changes in fund performance that arise when fund managers change. While

manager turnover and sample selection effects may be important for the measurement of

many mutual fund facts, they do not change the nature of the puzzles our model aims to

explain. In the Supplementary Appendix (Section S.10), we re-estimate our main results

using managers, instead of funds, as the unit of observation, and include manager fixed

effects. We find the same results as at the fund level. Kacperczyk, Van Nieuwerburgh, and

Veldkamp (2014) document that it is the same managers who pick stocks well in booms that

also time the market in recessions, and check that there are no systematic differences in age,

educational background, or experience of fund managers in recessions versus expansions.

Similarly, Chevalier and Ellison (1999) show that young managers with career concerns may

have an incentive to herd. It would seem logical that the concern for being fired would

be greatest in recessions. But if that were the case, herding should be most prevalent in

recessions and it should make the dispersion in portfolios decline. Instead, our results show

that portfolio dispersion rises in recessions. The convex relationship between mutual fund

performance and fund inflows can explain outperformance and higher portfolio dispersion in

recessions (Kaniel and Kondor 2013). Likewise, Glode (2011) argues that funds outperform

2Net alphas (after fees) for the average fund are negative in expansions (-0.6%) and positive (1.0%) in
recessions for our most conservative metric. Gross alphas are higher by about 1% point per year. Since
funds do not set fees in our model, we have no predictions about after-fee alphas. For a theory about why
we should expect net alphas to be zero, see Berk and Green (2004). For recent empirical work, see Berk and
van Binsbergen (2015).
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in recessions because their investors’ marginal utility is highest then. Neither mechanism

explains why performance and dispersion also rise in times of high macro volatility or why

skill measures are cyclical. Each of these theories likely captures an important feature of the

mutual fund market. But the set of facts we present, taken together, are supportive of our

explanation for the information-based origins of mutual fund skill.

The rest of the paper is organized as follows. Section 1 lays out our model. After

describing the setup, we characterize the optimal information and investment choices of

skilled and unskilled investors. We show how equilibrium asset prices are formed. We derive

theoretical predictions for funds’ attention allocation, portfolio dispersion, and performance.

Section 2 explains how we bring the model to the data. Section 3 tests the model’s predictions

using the context of actively managed equity mutual funds. Section 4 concludes.

1 Model

We develop a model whose purpose is to understand how the optimal attention allocation of

investment managers depends on the business cycle, and how attention affects asset holdings

and asset prices. The model builds on the information choice model in Van Nieuwerburgh

and Veldkamp (2010), but with a new solution methodology that allows us to consider signals

about any linear combination of assets, a generalization advocated by Sims (2006). Much

of the complexity of the model comes from the fact that it is an equilibrium model. But in

order to study the effects of attention on asset holdings, asset prices, and fund performance,

having an equilibrium model is a necessity. In particular, an equilibrium model ensures that

for every investor that outperforms the market, there is someone who underperforms.

1.1 Setup

The model has three periods. At time 1, skilled investment managers choose how to allocate

their attention across different assets. At time 2, all investors choose their portfolios of risky

and riskless assets. At time 3, asset payoffs and utility are realized.

Assets The model features 1 riskless and n risky assets. The price of the riskless asset is

normalized to 1 and it pays off r at time 3. Risky assets i ∈ {1, ..., n−1} have random payoffs

fi with respective loadings bi, ..., bn−1 on an aggregate shock zn, and face stock-specific shocks

z1, ..., zn−1. The n-th asset, is a composite asset whose payoff has no stock-specific shock and
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a loading of one on the aggregate shock zn. We use this composite asset as a stand-in for all

other assets. Formally,

fi = µi + bizn + zi, i ∈ {1, . . . , n− 1} (1)

fn = µn + zn (2)

where the risk factors zi ∼ N(0, σi), are mutually independent for i ∈ {1, . . . , n− 1, n}. We

define the n× 1 vector f = [f1, f2, ..fn]
′.

Risk factors The vector of risk factor shocks, z = [z1, z2, ..., zn−1, zn]
′, is normally dis-

tributed as: z ∼ N (0,Σ) where Σ is a diagonal matrix. Stacking the equations above,

we can write f = µ + Γz, where Γ is a n × n invertible matrix of loadings that map risk

factors, z, into the mean-zero payoffs (f − µ). We define the payoff of the risk factors as

f̃ ≡ Γ−1f = Γ−1µ + z. Thus, payoffs of risk factors are linear combinations of payoffs of

the underlying assets. In other words, they are a payoff to a particular portfolio of assets.

Working with risk factor payoffs and prices (denoted with tildes) allows us to solve the model

in a tractable way.

Each risk factor has a stochastic supply given by x̄i + xi, where noise xi is normally dis-

tributed, with mean zero, variance σx, and no correlation with other noises: x ∼ N (0, σxI).

The vector of noisy asset supplies is (Γ′)−1(x̄+x). As in any (standard) noisy rational expec-

tations equilibrium model, the supply is random to prevent the price from fully revealing the

information of informed investors. An important assumption is that the supply of aggregate

risk is large, relative to other risks: x̄n >> x̄i for i 6= n. Its size is what makes aggregate

risk fundamentally different from the other risks in the economy.

Portfolio Choice Problem There is a continuum of atomless investors. Each investor is

endowed with initial wealth, W0.
3 They have mean-variance preferences over time-3 wealth,

with a risk-aversion coefficient, ρ. Let Ej and Vj denote investor j’s expectations and vari-

ances conditioned on all information known at time 2, which includes prices and signals.

Thus, investor j chooses how many shares of each asset to hold, qj to maximize time-2

expected utility, U2j :

U2j = ρEj [Wj ]−
ρ2

2
Vj [Wj] (3)

3Since there are no wealth effects in the preferences, the assumption of identical initial wealth is without
loss of generality.
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subject to the budget constraint: Wj = rW0+ q′j(f −pr), where qj and p are n×1 vectors of

prices and quantities of each asset held by investor j. We can rewrite the budget constraint

in terms of risk factor prices and quantities by defining p̃ ≡ Γ−1p, q̃j ≡ Γ′qj , and substituting

f = Γf̃ to get

Wj = rW0 + q̃′j(f̃ − p̃r). (4)

Prices Equilibrium prices are determined by market clearing:

∫

q̃jdj = x̄+ x, (5)

where the left-hand side of the equation is the vector of aggregate demand and the right-hand

side is the vector of aggregate supply of the risk factors.

Information, updating, and attention allocation At time 1, a skilled investment

manager j chooses the precisions of signals that she will receive at time 2. Allocating

attention to a risk factor means that a manager gets a more precise signal about that risky

outcome. Mathematically, a manager j’s vector of signals is ηj = z+ εj, where the vector of

signal noise is distributed as εj ∼ N (0,Σηj).
4 The variance matrix Σηj is diagonal with ith

diagonal element K−1
ij . Thus, Kij is the precision of investor j’s signal about risk i. Private

signal noise is independent across risks i and managers j. Note that these signals are about

asset payoffs and contain no direct information about asset supply x. Managers combine

signal realizations with priors and information extracted from asset prices to update their

beliefs, using Bayes’ law.

Signal precision choices {Kij} maximize time-1 expected utility, U1j , of the fund’s termi-

nal wealth Wj . The objective is −E[lnEj [exp(−ρWj)]], which is equivalent to maximizing

U1j = E

[

ρEj [Wj ]−
ρ2

2
Vj[Wj ]

]

, (6)

subject to three constraints.5

4This signal structure is similar to that in Mondria (2010) because signals are linear combinations of asset
payoffs, plus normally-distributed noise. While Mondria allows for a choice over the linear combination, he
only works with 2 assets and 1 signal. Appendix B shows how to use our method to solve the N -asset
problem for signals that are about any linear combination of asset payoffs f of the form ηj = ψf + ej , where
ψ is an invertible matrix and f and ej are normally distributed with covariance matrices that need not be
diagonal.

5See Veldkamp (2011) for a discussion of the use of expected mean-variance utility in information choice
problems. The Supplementary Appendix (Section S.2) proves versions of the main propositions for the
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The first constraint is the budget constraint (4) that determines Wj as a function of

investment decisions. The second constraint is information capacity constraint. It states

that the sum of the signal precisions must not exceed the information capacity:

n
∑

i=1

Kij ≤ K. (7)

In Bayesian updating with normal variables, observing one signal with precision Ki or two

signals, each with precision Ki/2, is equivalent. Therefore, one interpretation of the capacity

constraint is that it allows the manager to observe N signal draws, each with precision Ki/N ,

for large N . The investment manager then chooses how many of those N signals will be

about each shock.6 Note that our model holds each manager’s total attention fixed and

studies its allocation in recessions and expansions. Section 1.8 relaxes this assumption.

The third constraint is the no-forgetting constraint, which ensures that the chosen preci-

sions are non-negative:

Kij ≥ 0 i ∈ {1, ..., n− 1, n} (8)

It prevents the manager from erasing any prior information, to make room to gather new

information about another shock.

Skilled and Unskilled Investors The only ex-ante difference between investors is that

a fraction χ of them have skill, meaning that they can choose to observe a set of informative

private signals about the risk factor shocks zi. Unskilled investors are ones with zero signal

precision: Σ−1
ηj = 0, or equivalently, Kij = 0, ∀i. Both unskilled and skilled investors observe

the information in prices, which are public signals, costlessly.7

When we bring the model to the data, we will call all skilled investors mutual funds.

Furthermore, we will distinguish between two types of unskilled investors: unskilled mutual

funds and non-fund investors.8 In the model, the latter two types are identical. The reason

expected exponential utility model.
6The results are not sensitive to the exact nature of the information capacity constraint. The Supplemen-

tary Appendix (Section S.4) re-proves each one of our propositions for a model with an entropy constraint.
The linear constraint (7) makes sense in our setting because additional fund analysts can be hired to process
information. Twice as many analysts could produce twice the precision at twice the cost. To make informa-
tion precision a continuous choice variable, let k̇δ be the precision of each analyst and let ċδ be the cost of
each analyst. Then take lim δ → 0. That problem with a continuous, linear cost function is a dual problem
to our constrained maximization problem.

7If investors must expend capacity to learn from prices, the model predictions are unchanged. See
Supplementary Appendix S.5.

8For our results to hold, it is sufficient to assume that the fraction of non-fund investors that are unskilled
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for modeling non-fund investors is that without them, we cannot talk about average fund

performance. The sum of all funds’ holdings would have to equal the market by market

clearing, and therefore, the average fund return would have to equal the market return.

Without uninformed non-fund investors, the average fund could never systematically out-

perform the market return, in recessions or expansions.

Modeling recessions Since this is a static model, the investment world is either in the

recession (R) or in the expansion state (E). The asset pricing literature identifies three prin-

cipal effects of recessions: (1) returns are more volatile, (2) the price of risk is high, and (3)

returns are unexpectedly low. Section 3 discusses the empirical evidence supporting the first

two effects. The third effect of recessions, unexpectedly low returns, cannot affect attention

allocation because attention must be allocated before returns are observed. Therefore, we

abstract from it and consider only effects (1) and (2). To capture the return volatility effect

(1) in the model, we assume that the prior variance of the aggregate shock in recessions (R)

is higher than the one in expansions (E): σn(R) > σn(E). To capture the varying price of

risk (2), we vary the parameter that governs the price of risk, which is risk aversion. We

assume ρ(R) > ρ(E).We continue to use σn and ρ to denote aggregate shock variance and

risk aversion in the current business cycle state.

1.2 Equilibrium

This paper’s methodological innovation is that its model relaxes an important assumption.

Previous work assumed that assets and signals have the same principal components. Ob-

serving signals about aggregate and idiosyncratic shocks violates that assumption. Updating

with such signals changes the conditional correlations of assets. So to solve the model, we

perform a change of variables. We create linear combinations of assets (synthetic assets) such

that the payoff of each synthetic asset is determined only by one shock (either aggregate or

idiosyncratic). Then, we can choose information about, choose quantities of, and price these

synthetic assets easily because each asset’s payoff is independent of all the others and each

signal is informative about one and only one asset. After we have a solution to the synthetic

asset problem, we can invert the linear transformation to back out portfolios and prices of

the original assets.

We begin by working through the mechanics of Bayesian updating. There are three

types of information that are aggregated in time-2 posteriors beliefs: prior beliefs, price

is higher than that for the mutual funds.
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information, and (private) signals. We conjecture and later verify that a transformation

of prices p̃ generates an unbiased signal about the risk factor payoffs, ηp = z + ǫp, where

ǫp ∼ N(0,Σp), for some diagonal variance matrix Σp. Then, by Bayes’ law, the posterior

beliefs about z are normally distributed with mean ẑj = Σ̂j(Σ
−1
ηj ηj + Σ−1

p ηp) and posterior

precision Σ̂−1
j = Σ−1 +Σ−1

p +Σ−1
ηj . Using the definition f̃ = Γ−1µ+ z, we find that posterior

beliefs about risk factor payoffs are f̃ ∼ N(Ej [f̃ ], Σ̂
−1
j ) where

Ej [f̃ ] = Γ−1µ+ Σ̂j(Σ
−1
ηj ηj + Σ−1

p ηp). (9)

Next, we solve the model in four steps.

Step 1: Solve for the optimal portfolios, given information sets.

Substituting the budget constraint (4) into the objective function (3) and taking the

first-order condition with respect to q̃j reveals that optimal holdings are increasing in the

investor’s risk tolerance, precision of beliefs, and expected return:

q̃j =
1

ρ
Σ̂−1

j (Ej [f̃ ]− p̃r). (10)

Step 2: Clear the asset market.

Substitute each agent j’s optimal portfolio (10) into the market-clearing condition (5).

Collecting terms and simplifying reveals that equilibrium asset prices are linear in payoff risk

shocks and in supply shocks:

Lemma 1. p̃ = 1
r
(A+Bz + Cx)

A detailed derivation of coefficients A, B, and C, expected utility, and the proofs of this

lemma and all further propositions are in the Appendix.

In this model, agents learn from prices because prices are informative about the payoff

shocks z. Next, we deduce what information is implied by Lemma 1. Price information is the

signal about z contained in prices. The transformation of the price vector p̃ that yields an

unbiased signal about z is ηp ≡ B−1(p̃r−A). Note that applying the formula for ηp to Lemma

1 reveals that ηp = z + εp, where the signal noise in prices is εp = B−1Cx. Since we assume

x ∼ N(0, σxI), the price noise is distributed εp ∼ N(0,Σp), where Σp ≡ σxB
−1CC ′B−1′ .

Substituting in the coefficients B and C from the proof of Lemma 1 shows that public signal

precision Σ−1
p is a diagonal matrix with ith diagonal element σ−1

pi =
K̄2

i

ρ2σx
, where K̄i ≡

∫

Kijdj

is the average capacity allocated to risk factor i.

Step 3: Compute ex-ante expected utility.
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Substitute optimal risky asset holdings from equation (10) into the first-period objective

function (6) to get: U1j = rW0+
1
2
E1

[

(Ej[f̃ ]− p̃r)Σ̂−1
j (Ej [f̃ ]− p̃r)

]

. Note that the expected

excess return (Ej[f̃ ]− p̃r) depends on signals and prices, both of which are unknown at time

1. Because asset prices are linear functions of normally distributed shocks, Ej [f̃ ] − p̃r, is

normally distributed as well. Thus, (Ej [f̃ ]−p̃r)Σ̂−1
j (Ej [f̃ ]−p̃r) is a non-central χ2-distributed

variable. Computing its mean yields:

U1j = rW0 +
1

2
trace(Σ̂−1

j V1[Ej[f̃ ]− p̃r]) +
1

2
E1[Ej [f̃ ]− p̃r]′Σ̂−1

j E1[Ej [f̃ ]− p̃r]. (11)

Step 4: Solve for information choices.

Note that in expected utility (11), the choice variables Kij enter only through the pos-

terior variance Σ̂j and through V1[Ej [f̃ ]− p̃r] = V1[f̃ − p̃r]− Σ̂j . Since there is a continuum

of investors, and since V1[f̃ − p̃r] and E1[Ej [f̃ ] − p̃r] depend only on parameters and on

aggregate information choices, each investor takes them as given.

Since Σ̂−1
j and V1[Ej [f̃ ]− p̃r] are both diagonal matrices and E1[Ej [f̃ ]− p̃r] is a vector,

the last two terms of (11) are weighted sums of the diagonal elements of Σ̂−1
j . Thus, (11)

can be rewritten as U1j = rW0 +
∑

i λiΣ̂
−1
j (i, i)− n/2, for positive coefficients λi. Since rW0

is a constant and Σ̂−1
j (i, i) = Σ−1(i, i) + Σ−1

p (i, i) +Kij, the information choice problem is:

max
K1j ,...,Knj

n
∑

i=1

λiKij + constant (12)

s.t.

n
∑

i=1

Kij ≤ K (13)

where λi = σ̄i[1 + (ρ2σx + K̄i)σ̄i] + ρ2x̄2
i σ̄

2
i , (14)

where σ̄−1
i =

∫

Σ̂−1
j (i, i)dj is the average precision of posterior beliefs about risk i. Its inverse,

average variance σ̄i is decreasing in K̄i. Equation (14) is derived in the Appendix.

To maximize a weighted sum (12) subject to an unweighted sum (13), the skilled manager

optimally assigns all capacity to the risk(s) with the highest weight. If there is a unique i∗ =

argmaxiλi, then the solution is to set Ki∗j = K and Klj = 0, ∀l 6= i∗.

In many cases, there will be multiple risks with identical λ weights. That is because λi

is decreasing in K̄i, the average investor’s signal precision. When there exist risks i, l s.t.

λi = λl, then investors are indifferent about which risk to learn about. The next result shows

that this indifference is not a knife-edge case. It arises whenever the aggregate amount of
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information capacity is sufficiently high.

Lemma 2. If x̄i is sufficiently large ∀i and
∑

i

∑

j Kij ≥ K, then there exist risks l and l′

such that λl = λl′.

This is strategic substitutability in information acquisition, an effect first noted by Gross-

man and Stiglitz (1980). The more other investors learn about a risk, the more informative

prices are and the less valuable it is for other investors to learn about the same risk. If one

risk has the highest marginal utility for signal precision, but capacity is high, then many

investors will learn about that risk, causing its marginal utility to fall and equalize with the

next most valuable risk. With more capacity, the highest two λi’s will be driven down until

the equate with the next λ, and so forth. This type of equilibrium is called a “waterfilling”

solution (see, Cover and Thomas (1991)). The equilibrium uniquely pins down which risk

factors are being learned about in equilibrium, and how much is learned about them, but

not which investor learns about which risk factor. For simplicity, we restrict attention to

the unique symmetric equilibrium where all skilled investors choose the same allocation of

information precision. However, only the dispersion results (Propositions 3 and 4) depend

on this restriction.

The following sections explain the model’s key predictions: attention allocation, disper-

sion in investors’ portfolios, average performance, and the effect of recessions on these objects

beyond that of aggregate volatility. For each prediction, we state and prove a proposition.

The next section explains how we test the hypothesis in the data.

1.3 Cyclical Attention Reallocation

Recessions involve changes in the volatility of aggregate shocks and changes in the price

of risk. In order to see the effect of the two recession aspects on the attention allocation

strategies of skilled investors, we consider each separately, beginning with the rise in volatility.

Proposition 1. For each skilled investor j, the optimal attention allocation for risk i (Kij)

is weakly increasing in its variance σi.

The proof of this and subsequent propositions are in the Appendix.

The result tells us that investors prefer to learn more about any shock that has a high

prior payoff variance. Information is most valuable about the most uncertain outcomes. The

shift of attention to aggregate risk in recessions is just one application of this proposition,

but it is the empirically relevant case. Since recessions are times when aggregate volatility
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increases (while idiosyncratic volatilities do not), it is a time when aggregate shocks are

relatively more valuable to learn about. The converse is true in expansions.

The proposition takes into account not only the effect of a marginal increase of variance on

the marginal value of learning about a risk, and hence on the capacity allocated to that risk,

but also the offsetting equilibrium effect. In any interior equilibrium, attention is reallocated

until the marginal values of learning about any risks that are learned about are equalized.

Thus, when σn rises in recessions, the marginal value of learning more about the aggregate

risk rises, more attention is allocated to the aggregate risk, which offsets the increase in

marginal value until indifference in the marginal values across risk factors is restored. The

net result is always a weakly increasing capacity devoted to the risk whose variance increases.

As the proof shows, the “weakly” increasing refers to the cases where either all capacity is

already allocated to the risk whose variance increases or no capacity is allocated to that risk

and the marginal increase in variance does not change that. In all other cases, when risk i

is one of the risks being learned about prior to the increase in σi, the increase in capacity

devoted to i is strict.

Next, we consider the effect of an increase in the price of risk. An increase in the

price of risk induces managers to allocate even more attention to the shock that is in the

most abundant supply. We have assumed that the aggregate risk is the most abundant. The

additional price of risk effect should show up as an effect of recessions on attention allocation,

over and above what aggregate volatility alone can explain. The parameter that governs the

price of risk in our model is risk aversion. The following result implies that an increase in

risk aversion in recessions is an independent force driving the reallocation of attention from

stock-specific to aggregate shocks.

Proposition 2. If x̄i is sufficiently large then, for each skilled investor j, the optimal atten-

tion allocation for risk i (Kij) is weakly increasing in risk aversion ρ.

The intuition for this result rests on the fact that a shock in abundant supply affects

a large fraction of the value of an investor’s portfolio. Therefore, a marginal reduction

in the uncertainty about this shock reduces total portfolio risk by more than the same-

sized reduction in the uncertainty about a less abundant shock. In other words, learning

about the abundant shock, which is the aggregate shock, is the most efficient way to reduce

portfolio risk. The more risk averse an agent is, the more attractive allocating attention

to aggregate shocks becomes. Like the previous one, this result takes into account the

equilibrium reallocation of capacity after the increase in risk aversion.
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These results are robust to many model changes. In the Supplementary Appendix, we

examine versions of the model in which agents learn about the payoffs of assets, rather

than about risks directly (Section S.3) and in which information choices are governed by

an entropy constraint rather than a linear capacity constraint (Section S.4). Both of our

attention allocation results hold in these settings. When the aggregate shock variance rises or

risk aversion increases, agents pay more attention to assets whose returns are most sensitive

to aggregate shocks.

Investors’ optimal attention allocation decisions are reflected in their portfolio holdings.

In recessions, skilled investors predominantly allocate attention to the aggregate payoff shock,

zn. They use the information they observe to form a portfolio that covaries with zn. In times

when they learn that zn will be high, they hold more risky assets whose returns are increasing

in zn. This positive covariance can be seen from equation (10) in which q̃ is increasing in

Ej [f̃ ] and from equation (9) in which Ej[f̃ ] is increasing in ηj , which is further increasing

in zn. The positive covariances between the aggregate shock and funds’ portfolio holdings

in recessions, on the one hand, and between stock-specific shocks and the portfolio holdings

in expansions, on the other hand, directly follow from optimal attention allocation decisions

switching over the business cycle. As such, these covariances are the key moments that

enable us to test the attention allocation predictions of the model. We define the empirical

counterparts to these covariances in Section 2.

1.4 Portfolio Dispersion

Since many empirical studies on investment managers detect no outperformance, perhaps

the most controversial implication of the attention reallocation result is that investment

managers are processing information at all. The next four results speak directly to that

implication. They do not identify changes in attention allocation, but they help to distinguish

our theory from non-information-based alternative explanations for mutual fund performance

patterns.

In recessions, as aggregate shocks become more volatile, the firm-specific shocks to assets’

payoffs account for less of the variation, and the comovement in stock payoffs rises. Since

asset payoffs comove more, the payoffs to all passive investment strategies that put fixed

weights on assets also comove more. Dispersion across investor portfolios and portfolio

returns would fall if investment strategies were passive. But when investment managers are

processing information and actively investing based on that information, this prediction is

reversed. To see why, consider a simple example in which there is no learning from prices.
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A skilled agent is updating beliefs about a random variable f̃ ∼ N(µ,Σ), using a signal

ηj |f̃ ∼ N(f̃ ,Ση). Bayes’ law says that the posterior mean is a weighted average of the prior

mean µ and the signal, where each is weighted by their relative precision:

E[f̃ |ηj ] =
(

Σ−1 + Σ−1
η

)−1 (
Σ−1µ+ Σ−1

η ηj
)

(15)

If in recessions, aggregate shock variance σn rises, then the prior beliefs about asset payoffs

become more uncertain: Σ rises and Σ−1 falls. This makes the weight on prior beliefs µ

decrease and the weight on the signal ηj increase. The prior µ is common across agents,

while the signal realization ηj is heterogeneous. When informed managers weigh their het-

erogeneous signals more, their resulting posterior beliefs become more different from each

other and more different from the beliefs of uninformed managers or investors. More dis-

agreement about asset payoffs results in more heterogeneous portfolios and portfolio returns.

Since price signals are also common, the same result holds once they are incorporated. The

feature of the model that underpins this result is the idiosyncratic component of signal noise.

We could allow signal noise to be correlated across agents, as long as signals are not identical.

Such idiosyncratic signal noise is inherent in the idea of rational inattention.

Thus, the model’s second set of predictions are that in recessions, the cross-sectional

dispersion in funds’ investment strategies and returns should rise.

Proposition 3. If x̄i is sufficiently large then, an increase in variance σi weakly increases

(a) the dispersion of fund portfolios,
∫

E[(q̃j− ¯̃q)′(q̃j− ¯̃q)]dj, and (b) the dispersion of portfolio

excess returns,
∫

E[((q̃j − ¯̃q)′(f̃ − p̃r))2]dj.

This result takes into account that when variance of a shock changes, the equilibrium

allocation of attention and equilibrium asset returns change as well. While this is a generic

result for any risk i, the effect is particularly large for the aggregate risk because it affects

every asset and therefore it is in abundant supply. This shows up in the proof as a high x̄n,

which amplifies the effect of σn on portfolio and return dispersion.

Next, we consider the second effect of recessions: an increase in the price of risk. The

following result shows that, when prices are sufficiently noisy, an increase in the price of risk

increases the dispersion of portfolio returns.

Proposition 4. If σx and x̄n are sufficiently large, then an increase in risk aversion ρ

increases the dispersion of portfolio excess returns,
∫

E[((q̃j − ¯̃q)′(f̃ − p̃r))2]dj.

When risk aversion rises, skilled investors make smaller bets on their information. These
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smaller deviations from the market portfolio affect prices less and make prices less infor-

mative. The reduced precision of price information implies that agents weigh prices less

and private signals more in their posterior beliefs. Just like priors, information in prices is

common. Thus, weighing common signals less and heterogenous private signals more leads

to higher dispersion in beliefs and therefore in portfolio returns as well.

This effect has to offset a counteracting force. Recall that the optimal portfolio for in-

vestor j takes the form q = (1/ρ)Σ̂−1
j (f −pr). If ρ increases, investors scale down their risky

asset positions and q falls. The increase in returns needs to increase dispersion enough to

offset the decrease in dispersion coming from the effect of 1/ρ reducing q. The proof of the

proposition in the Appendix shows that a sufficient condition for the first effect to dominate

is that the elasticity of V1[f̃ − p̃r] with respect to ρ be greater than 1, which requires a

large enough asset supply variance. The high average supply of aggregate risk is what makes

the nth risk aggregate. In addition to this result, we can sign the effect of a change in risk

aversion on the dispersion of risk-adjusted returns as well, with looser conditions on pa-

rameters that produce stronger equilibrium effects through aggregate attention reallocation.

See Supplementary Appendix Section S.6 for a proof. In addition, our numerical example

below confirms that portfolio dispersion increases in risk aversion, even in cases where our

parameter restrictions are not satisfied.

1.5 Fund Performance

To measure performance, we want to measure the portfolio return, adjusted for risk. One risk

adjustment that is both analytically tractable in our model and often used in empirical work

is the certainty equivalent return, which is also an investor’s objective (6). The following

proposition shows that abnormal portfolio returns, defined as the fund’s portfolio return,

q̃′j(f̃ − p̃r), minus the market return, ¯̃q′(f̃ − p̃r), for skilled funds exceeds that for unskilled

funds and non-fund investors by more when volatility is higher.

Proposition 5. If x̄i is sufficiently large then, for each skilled investor j, an increase in the

variance σi weakly increases the portfolio excess return, E[(q̃j − ¯̃q)′(f̃ − p̃r)].

Because aggregate risk factor payoffs are more uncertain in recessions (σn is higher),

recessions are times when information is more valuable. The return effect is larger for the

aggregate shock because it depends on how abundant the risk is (x̄n) and the aggregate

shock is naturally the most abundant one.

Next, we consider the effect of an increase in the price of risk on performance.
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Proposition 6. If σx and x̄n are sufficiently large then, for each skilled investor j, an

increase in risk aversion ρ increases excess return, E[(q̃j − ¯̃q)′(f̃ − p̃r)].

The reason why a higher price of risk leads to higher performance is that information

can resolve risk. Therefore, informed managers are compensated for risk that they do not

bear because the information has resolved some of their uncertainty about random asset

payoffs. When the price of risk rises, the value of being able to resolve this risk rises as

well. Put differently, informed funds take larger positions in risky assets because they are

less uncertain about their returns. These larger positions pay off more on average when the

price of risk is high.

The role of the high σx and x̄n is the same as in Proposition 4. And just like for

Proposition 4, we can prove that risk-adjusted returns rise with looser parameter conditions.

See Supplementary Appendix Section S.6. In addition, our numerical example confirms that

when the price of risk increases, average performance of informed funds rises, for a wide

range of parameter values.

Taken together, these results provide two reasons why skilled investors’ advantage over

unskilled investors increases in recessions. Of course, the model predicts that skilled investors

should always outperform unskilled. In practice, this outperformance is difficult to detect.

The model helps to guide the search for skill by explaining why one ought to focus on

recessions as times when skill should be particularly salient.

Measuring Performance: Mapping skill into alpha The previous outperformance re-

sults were for abnormal fund returns, measured as the fund’s return minus the market return.

One other way to risk-adjust fund returns, which is common in the empirical literature, is

to estimate a Capital Asset Pricing Model (CAPM) using each fund’s returns and look at

the fund’s α, the intercept of the Security Market Line. This CAPM is estimated using only

information that is in every investor’s information set, which is the unconditional moments

of asset returns. The following result shows that if one constructs such an unconditional

CAPM from the fund returns in our model, the fund α captures information capacity K

(skill) and rises in recessions.

Proposition 7. If the net supply of idiosyncratic risk is small, then expected excess portfolio

return of fund j is E[Rj ]−r = αj+βj(E[rm]−r), where αj =
∑

i 1/ρ
(

var[f̃i](σ
−1
i +Kij)− 1

)

−

ρ̄ij.

The model tells us that the CAPM alpha of a fund’s return is increasing in its ability

to process information about each type of risk. But the alpha also varies over the cycle
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as aggregate risk changes. In recessions, aggregate risk (σn) increases, which increases αj .

As in Hansen and Richard (1987), the unconditional CAPM correctly prices all portfolios

constructed using only the common information set and assigns them zero alpha. But when

skilled investors, who have a richer information set, construct portfolios, the portfolios will

lie on a different mean-variance frontier and thus achieve a higher alpha.

1.6 Who Underperforms?

The requirement that markets clear implies that not all investors can be successful at in-

vesting in the right stock at the right time (stock-picking) or at timing the aggregate market

fluctuations. In each period, someone must make poor stock-picking or market-timing de-

cisions if someone else makes profitable decisions. We explain now why rational, unskilled

investors underperform in equilibrium.

In recessions, unskilled investors have negative timing ability. When the aggregate state

zn is low, most skilled investors sell, pushing down asset prices, p, and making prior expected

returns high. The high expected return (high (µ − pr)) causes uninformed investors to

demand more of the asset (equation (10)). The unskilled demand more because they cannot

distinguish low prices that arise because of information from those that arise from positive

asset supply shocks. Thus, unskilled investors’ holdings covary negatively with aggregate

payoffs, making their market timing measure negative. Since no investors learn about the

aggregate shock in expansions, prices do not fall when unexpected aggregate shocks are

negative and market timing is close to zero for both skilled and unskilled.

Likewise, unskilled investors exhibit negative stock-picking ability in expansions. When

the stock-specific shock zi is low, and some investors know this, they sell and depress the

price of asset i. A low price raises the expected return (µi − pir). The high expected return

induces unskilled investors to buy more of the asset. Since they buy more of assets that

subsequently have negative asset-specific payoff shocks, these uninformed investors display

negative stock-picking ability.

Note that when there is a positive aggregate supply shock, prices will be lower (Lemma

1), and assets will look more attractive to both uninformed and informed agents, all else

equal. In that case, both informed and uninformed can trade in the same direction because

of the additional asset supply.
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1.7 Interaction Effects

The previous results describe the effects of aggregate risk and risk aversion separately. But

there is also a subtle interaction between the two. Higher risk aversion amplifies the effect of

aggregate risk on attention allocation, dispersion, and performance. The resulting testable

prediction is that the effect of aggregate volatility on all three outcome variables should be

greater in recessions, when the market price of risk is high. We derive these results in the

Separate Appendix (Section S.7).

1.8 Endogenous Capacity Choice

So far, we have assumed that skilled investment managers choose how to allocate a fixed

information-processing capacity, K. We now extend the model to allow for skilled managers

to add capacity at a cost C (K). We model this cost as a utility penalty, akin to the disutility

from labor in business-cycle models. Since there are no wealth effects in our setting, it

would be equivalent to modeling a cost of capacity through the budget constraint. We

draw three main conclusions. First, the proofs of Propositions 1 and 2 hold for any chosen

level of capacity K, below an upper bound, no matter the functional form of C. The other

propositions also continue to hold because they only depend on the attention reallocation

effects proven in Propositions 1 and 2. Endogenous capacity only has quantitative, not

qualitative implications. Second, because the marginal utility of learning about the aggregate

shock is increasing in its prior variance (Proposition 1), skilled managers choose to acquire

higher capacity in recessions. This extensive-margin effect amplifies our dispersion and

performance results. Third, the degree of amplification depends on the convexity of the

cost function, C (K). The convexity determines how elastic equilibrium capacity choice is

to the cyclical changes in the marginal benefit of learning. The Supplementary Appendix

discusses numerical simulation results from an endogenous-K model; they are similar to our

benchmark results.

2 Bringing the Model to Data

To test the model, we look at various measures of mutual fund investments in recessions and

in non-recession periods. Of course, our model is not a dynamic one. It could be. A simple

dynamic model would amount to a succession of static models that are either in the expansion

or in the recession state. As we stated in the model setup, a recession state would be one in
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which aggregate risk and the price of risk are both high. Aggregate risk is captured by the

variance parameter σa. We capture changes in the price of risk by varying risk aversion ρ. A

variety of economic mechanisms can generate this kind of time-varying price of risk: external

habits, heterogeneous labor income risk and limited commitment, borrowing constraints, or

a concern for model misspecification (see Hansen (2013)). Since these mechanisms are too

complex to embed in our model, we settle for varying a risk aversion parameter.

Propositions 1 and 2 teach us that both the increase aggregate shock variances and

the increased price of risk prompt attention reallocation toward aggregate risk. Thus, the

prediction is that in recessions, the average amount of attention devoted to aggregate shocks

should increase and the average amount of attention devoted to stock-specific shocks should

decrease. But of course, attention is not directly observable. Learning about a shock allows

managers choose portfolio holdings that covary more with that shock. We see this in the

portfolio first order condition (10). A manager who knows nothing about a shock cannot

possibly hold a portfolio that covaries with the shock. It is not a feasible or measurable

strategy. This covariance argument, combined with the reallocation results leads us to make

the first testable prediction:

Prediction 1. In recessions, portfolios should covary more with the aggregate component of

payoffs. Conversely, in expansions, portfolio holdings should covary more with stock-specific

payoff shocks.

Because recessions are times of high aggregate risk and high risk prices, and both forces

increase dispersion (Propositions 3 and 4), we make the next empirical prediction:

Prediction 2. In recessions, the dispersion of fund portfolios should rise.

Finally, both more aggregate risk and the higher price of risk cause skilled funds to

generate higher returns (Propositions 5 and 6). The skill of these funds should be reflected

in their portfolios’ α, which increases in σn (Proposition 7). Since fund managers are skilled

or unskilled, while other investors are only unskilled, an increase in the skill premium implies

that the average mutual fund’s excess return rises in recessions. Together, these findings lead

us to make the following empirical prediction:

Prediction 3. In recessions, the average fund should earn a higher excess return and have

a higher alpha.

Next, we introduce the empirical measures that we use in Section 3 to test each of these

predictions.
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2.1 Market-Timing and Stock-Picking Measures

We define a fund’s fundamentals-based timing ability, Ftiming, as the covariance between its

portfolio weights in deviation from the market portfolio weights, wj
i −wm

i , and the aggregate

payoff shock, zn, over a T -period horizon, averaged across assets:

Ftimingjt =
1

TN j

Nj
∑

i=1

T−1
∑

τ=0

(wj
it+τ − wm

it+τ )(bizn(t+τ+1)), (16)

where N j is the number of individual assets held by fund j. The portfolio weights are dated

t+ τ because they are chosen and thus known at t+ τ . The aggregate shock that affects the

payoff of that portfolio is dated t + τ + 1 because that shock is not fully observed until one

period later. Relative to the market, a fund with a high Ftiming overweights assets that

have high (low) sensitivity to the aggregate shock in anticipation of a positive (negative)

aggregate shock realization and underweights assets with a low (high) sensitivity.

When skilled investment managers allocate attention to stock-specific payoff shocks,

zi, i ∈ {1, . . . , n − 1}, information about zi allows them to choose portfolios that covary

with zi. Fundamentals-based stock-picking ability, Fpicking, measures the covariance of a

fund’s portfolio weights of each stock, relative to the market, with the stock-specific shock,

zi:

Fpickingjt =
1

N j

Nj
∑

i=1

(wj
it − wm

it )(zit+1). (17)

How well can the manager choose portfolio weights in anticipation of future asset-specific

payoff shocks is closely linked to her stock-picking ability.

Ftiming and Fpicking are closely related to commonly used market-timing and stock-

picking variables, which measure how a fund’s holdings of each asset, relative to the market,

covary with the systematic and idiosyncratic components of the stock return. The key differ-

ence is that we measure how a portfolio covaries with aggregate and firm-specific fundamen-

tals. We use the fundamentals-based measures because they correspond more closely to the

idea in the model that funds are learning about fundamentals and using signals about those

fundamentals to time the market and pick stocks. The returns-based picking and timing

facts might be explained by managers who forecast sentiment, momentum, liquidity, etc.

Also, since funds affect asset values, but do not directly affect earnings or production, the

returns-based covariance can come from some reverse causality. The fundamentals-based re-

sults make it clear that the changing covariance between portfolios and returns comes from
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the covariance with one-quarter-ahead fundamentals. That offers a much clearer view of

what information fund managers are collecting and processing. It also significantly narrows

down the set of possible explanations consistent with the covariance facts.

2.2 Dispersion Measures

To connect the propositions to the data, we measure portfolio dispersion as the sum of

squared deviations of fund j’s portfolio weight in asset i at time t, wj
it, from the average

fund’s portfolio weight in asset i at time t, wm
it , summed over all assets held by fund j, N j :

Portfolio Dispersionj
t =

Nj
∑

i=1

(

wj
it − wm

it

)2
(18)

This measure is similar to the portfolio concentration measure in Kacperczyk, Sialm, and

Zheng (2005) and the active share measure in Cremers and Petajisto (2009). The average

dispersion
∫

Portfolio Dispersionj
tdj is the same quantity as in Proposition 3, except that

the number of shares q is replaced with portfolio weights w. In recessions, the portfolios of

the informed managers differ more from each other and more from those of the uninformed

investors. Part of this difference comes from a change in the composition of the risky asset

portfolio and part comes from differences in the fraction of assets held in riskless securities.

Fund j’s portfolio weight wj
it is a fraction of the fund’s assets, including both risky and

riskless, held in asset i. Thus, when one informed fund gets a bearish signal about the market,

its wj
it for all risky assets i falls. Dispersion can rise when funds take different positions in

the risk-free asset, even if the fractional allocation among the risky assets remains identical.

The higher dispersion across funds’ portfolio strategies translates into a higher cross-

sectional dispersion in fund abnormal returns (Rj − Rm). To facilitate comparison with

the data, we define the dispersion of variable X as |Xj − X̄|, where X̄ denotes the equally

weighted cross-sectional average across all fund managers (excluding non-fund investors).

When funds get signals about the aggregate state zn that are heterogenous, they take

different directional bets on the market. Some funds tilt their portfolios to high-beta assets

and other funds to low-beta assets, thus creating dispersion in fund betas. To look for

evidence of this mechanism, we form a CAPM regression for fund j and test for an increase

in the beta dispersion in recessions as well.

We measure outperformance by looking at abnormal fund returns, measured as the fund’s

return minus the market return, and several risk-adjusted returns. One way to do that
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risk adjustment is to estimate a CAPM for each fund’s return and look at the fund α.

Proposition 7 shows that the alpha of a CAPM regression of fund returns on market returns

should capture a fund’s total information capacity, or skill. As a robustness check, we also

compute the α from models with multiple risk factors that are common in the empirical

literature, with the proviso that these additional risk factors are not present in our model.

3 Evidence from Equity Mutual Funds

Our model studies attention allocation over the business cycle, and its consequences for

investors’ strategies. We now turn to a specific set of investors, active U.S. equity mutual

fund managers, to test the predictions of the model. The richness of the data makes the

mutual fund industry a great laboratory for these tests. In principle, similar tests could

be conducted for hedge funds, real estate investment trusts, other professional investment

managers, or even individual investors.

3.1 Data

Our sample builds upon several data sets. We begin with the Center for Research on Security

Prices (CRSP) survivorship bias-free mutual fund database. The CRSP database provides

comprehensive information about fund returns and a host of other fund characteristics, such

as size (total net assets), age, expense ratio, turnover, and load. Given the nature of our

tests and data availability, we focus on actively managed open-end U.S. equity mutual funds.

We further merge the CRSP data with fund holdings data from Thomson Financial. The

total number of funds in our merged sample is 3477.9 We also use the CRSP/Compustat

stock-level database, which is a source of information on individual stocks’ returns, market

capitalizations, book-to-market ratios, momentum, liquidity, and standardized unexpected

earnings (SUE). The aggregate stock market return is the value-weighted average return of

all stocks in the CRSP universe.

We use innovations in monthly seasonally adjusted industrial production, obtained from

the Federal Reserve Statistical Release, as a proxy for aggregate shocks. We measure reces-

sions using the definition of the National Bureau of Economic Research (NBER) business

cycle dating committee. The start of the recession is the peak of economic activity and its

end is the trough. Our aggregate sample spans 312 months of data from January 1980 until

9The unit of observation is a fund. In Supplementary Appendix S.10, we verify that our results are robust
to using the manager as a unit of observation.
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December 2005, among which 38 are NBER recession months (12%). We consider several

alternative recession indicators and find our results to be robust.10

3.2 Motivating Fact: Aggregate Risk and Prices of Risk Rise in

Recessions

At the outset, we present empirical evidence for the main assumption in our model: Reces-

sions are periods in which individual stocks contain more aggregate risk and prices of risk

are higher.

Table 1 shows that an average stock’s aggregate risk increases substantially in recessions

whereas the change in idiosyncratic risk is not statistically different from zero. The table

uses monthly returns for all stocks in the CRSP universe. For each stock and each month, we

estimate a CAPM equation based on a twelve-month rolling-window regression, delivering

the stock’s beta, βi
t , and its residual standard deviation, σi

εt. We define the aggregate risk of

stock i in month t as |βi
tσ

m
t | and its idiosyncratic risk as σi

εt, where σ
m
t is formed monthly as

the realized volatility from daily return observations. Panel A reports the results from a time-

series regression of the aggregate risk (columns 1 and 2), the idiosyncratic risk (columns 3

and 4), and the ratio of aggregate to idiosyncratic risk (columns 5 and 6), all averaged across

stocks, on the NBER recession indicator variable. The aggregate risk is twenty percent higher

in recessions than it is in expansions (8.04% versus 6.69% per month), an economically and

statistically significant difference. In contrast, the stock’s idiosyncratic risk is not statistically

different in expansions and in recessions. As a result, the ratio of aggregate to idiosyncratic

risk increases from 0.508 in expansions to 0.606 in recessions, and this cyclicality is driven

exclusively by the numerator. The results are similar whether one controls for other aggregate

risk factors (columns 2, 4, and 6) or not (columns 1, 3, and 5).

Panel B reports estimates from pooled (panel) regressions of each stock’s aggregate risk

(columns 1 and 2), idiosyncratic risk (columns 3 and 4), or the ratio of aggregate to idiosyn-

cratic risk (columns 5 and 6) on the recession indicator variable, Recession, and additional

stock-specific control variables including size, book-to-market ratio, and leverage. The panel

results confirm the time-series findings.

A large literature in economics and finance presents evidence supporting the results in

Table 1. First, Ang and Chen (2002), Ribeiro and Veronesi (2002), and Forbes and Rigobon

(2002) document that stocks exhibit more comovement in recessions, consistent with stocks

10Results are omitted for brevity but are available from the authors upon request.
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Table 1: Individual Stocks Have More Aggregate Risk in Recessions

For each stock i and month t, we estimate a CAPM equation based on twelve months of data (a twelve-month rolling-window
regression). This estimation delivers the stock’s beta, βi

t , and its residual standard deviation, σi
εt. We define stock i’s aggregate

risk in month t as
∣

∣βi
tσ

m
t

∣

∣ and its idiosyncratic risk as σi
εt, where σm

t is the realized volatility from daily market return

observations. Panel A reports results from a time-series regression of the average stock’s aggregate risk, 1

N

∑N
i=1

∣

∣βi
tσ

m
t

∣

∣, in

columns 1 and 2, of the average idiosyncratic risk, 1

N

∑N
i=1

σi
εt, in columns 3 and 4, and of the ratio of aggregate to average

idiosyncratic risk, in columns 5 and 6, on Recession. Recession is an indicator variable equal to one for every month the
economy is in a recession according to the NBER, and zero otherwise. In columns 2, 4, and 6 we include several aggregate
control variables: the market excess return (MKTPREM), the return on the small-minus-big portfolio (SMB), the return on the
high-minus-low book-to-market portfolio (HML), the return on the up-minus-down momentum portfolio (UMD). The data are
monthly from 1980-2005 (309 months). Standard errors (in parentheses) are corrected for autocorrelation and heteroscedasticity.
Panel B reports results of panel regressions of each stock’s aggregate risk,

∣

∣βi
tσ

m
t

∣

∣, in columns 1 and 2 and of its idiosyncratic

risk, σi
εt, in columns 3 and 4, and of the ratio of a stock’s aggregate to idiosyncratic risk, in columns 5 and 6, on Recession.

In Columns 2, 4, and 6 we include several firm-specific control variables: the log market capitalization of the stock, log(Size),
the ratio of book equity to market equity, B −M , the average return over the past year, Momentum, the stock’s ratio of book
debt to book debt plus book equity, Leverage, and an indicator variable, NASDAQ, equal to one if the stock is traded on
NASDAQ. All control variables are lagged one month. The data are monthly and cover all stocks in the CRSP universe for
1980-2005. Standard errors (in parentheses) are clustered at the stock and time dimensions.

(1) (2) (3) (4) (5) (6)
Aggregate Risk Idiosyncratic Risk Aggregate/Idiosyncratic Risk

Panel A: Time-Series Regression

Recession 1.348 1.308 0.058 0.016 0.098 0.097
(0.693) (0.678) (1.018) (1.016) (0.027) (0.027)

MKTPREM -4.034 -1.865 -0.215
(3.055) (3.043) (0.226)

SMB 8.110 12.045 0.167
(3.780) (4.923) (0.199)

HML 0.292 9.664 -0.308
(5.458) (8.150) (0.302)

UMD -4.279 -1.112 -0.270
(2.349) (3.888) (0.178)

Constant 6.694 6.748 13.229 13.196 0.508 0.513
(0.204) (0.212) (0.286) (0.276) (0.013) (0.014)

Observations 309 309 309 309 309 309
R-squared 6.85 9.70 0.10 3.33 8.58 10.52

Panel B: Pooled Regression

Recession 1.203 1.419 0.064 0.510 0.096 0.104
(0.242) (0.238) (0.493) (0.580) (0.021) (0.024)

Log(Size) -0.145 -1.544 0.043
(0.021) (0.037) (0.002)

B-M Ratio -0.934 -2.691 0.008
(0.056) (0.086) (0.004)

Momentum 0.097 2.059 -0.040
(0.101) (0.177) (0.005)

Leverage -0.600 -1.006 -0.010
(0.074) (0.119) (0.003)

NASDAQ 0.600 1.937 -0.043
(0.075) (0.105) (0.005)

Constant 4.924 4.902 12.641 12.592 0.450 0.450
(0.092) (0.095) (0.122) (0.144) (0.009) (0.009)

Observations 1,312,216 1,312,216 1,312,216 1,312,216 1,312,216 1,312,216
R-squared 0.62 2.90 0.000 19.33 0.58 7.56
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carrying higher systematic risk in recessions. In addition, Schwert (1989, 2011), Hamilton

and Lin (1996), Campbell, Lettau, Malkiel, and Xu (2001), and Engle and Rangel (2008)

show that aggregate stock market return volatility is much higher during periods of low

economic activity. The evidence on the cyclicality of idiosyncratic risk is less unanimous.

Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) find that the cross-sectional

dispersion in firm earnings growth rises in recessions. Using a similar measure of stock-

specific risk as ours, Campbell, Lettau, Malkiel, and Xu (2001) also report an increase

in firm-level risk in recessions. Exploring the difference with the Campbell et al. (2001)

results, Supplementary Appendix S.8 shows that the countercyclicality of idiosyncratic risk

only holds for a value-weighted measure and only in the Campbell, Lettau, Malkiel, and Xu

(2001) sample. For our sample as well as for a long sample, we find no significant differences

between idiosyncratic risk in expansions and recessions. Finally, we reiterate that what

matters for our theoretical results is that aggregate risk rises by more than idiosyncratic risk

in recessions, a conclusion supported by the last two columns of Table 1.

Our second assumption, that the price of risk rises in recessions, is supported in four ways.

First is an empirical literature that documents the countercyclical nature of risk premia

and Sharpe ratios on equity, bonds, options, and currencies.11 Second, a large theoretical

literature has developed models that generate such counter-cyclical market prices of risk

(see Section 2). Third, Dew-Becker (2012) uses the structure of his model to construct an

empirical proxy for risk aversion and shows it rises in recessions. Fourth, several papers show

that aggregate risk aversion rises in recessions because of properties of aggregation.12

3.3 Testing Predictions 1 and 2: Time-Varying Skill

Turning to our main model predictions, we first test whether skilled investment managers

reallocate their attention over the business cycle in a way that is consistent with measures

of time-varying skill. To estimate time-varying skill, we need measures of Ftiming and

Fpicking for each fund j in each month t. We proxy for the aggregate payoff shock with

11E.g., Fama and French (1989), Cochrane (2006), Ludvigson and Ng (2009), Lettau and Ludvigson (2010),
Lustig, Roussanov, and Verdelhan (2014), and the references therein. A related fact consistent with counter-
cyclical market prices of risk is high corporate bond yields in recessions despite only modestly higher default
rates, see Chen (2010).

12See Dumas (1989), Chan and Kogan (2002), and Garleanu and Panageas (2015), among others. In these
models, heterogeneous agents with the same preferences but different risk aversion parameters aggregate
into a representative agent who has wealth-weighted functions of the individual agent’s parameters. Because
more risk-averse agents are more conservative, their relative wealth rises in recessions, making aggregate risk
aversion counter-cyclical.
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the innovation in log industrial production growth, estimated from an AR(1).13 A time

series of Ftimingjt is obtained by computing the covariance of the innovations and each fund

j’s portfolio weights (as in equation (16)), using twelve-month rolling windows. Following

equation (17), Fpicking is computed in each month t as a cross-sectional covariance across

the assets between the fund’s portfolio weights and firm-specific earnings shocks (SUE).

We then estimate the following two equations using pooled (panel) regression model and

calculating standard errors by clustering at the fund and time dimensions.

Fpickingjt = a0 + a1Recessiont + a2X
j
t + ǫjt , (19)

Ftimingjt = a3 + a4Recessiont + a5X
j
t + εjt , (20)

Recessiont is an indicator variable equal to one if the economy in month t is in recession, as

defined by the NBER, and zero otherwise. X is a vector of fund-specific control variables,

including the fund age, the fund size, the average fund expense ratio, the turnover rate, the

percentage flow of new funds, the fund load, the volatility of fund flows, and the fund style

characteristics along the size, value, and momentum dimensions.

Our model predicts that Ftiming should be higher in recessions, which means that the

coefficient of Recession, a4, should be positive. Conversely, the fund’s portfolio holdings

and its returns covary more with subsequent firm-specific shocks in expansions. Therefore,

our hypothesis is that Fpicking should fall in recessions, or that a1 should be negative.

The parameter estimates appear in columns 1, 2, 4, and 5 of Table 2. Column 1 shows

the results for a univariate regression model. In expansions, Ftiming is not different from

zero, implying that funds’ portfolios do not comove with future macroeconomic information

in those periods. In recessions, Ftiming increases. The increase amounts to ten percent of a

standard deviation of Ftiming. It is measured precisely, with a t-statistic of 3. To remedy

the possibility of a bias in the coefficient due to omitted fund characteristics correlated with

recession times, we turn to a multivariate regression. Our findings, in column 2, remain

largely unaffected by the inclusion of the control variables. Columns 4 and 5 of Table 2 show

that the average Fpicking across funds is positive in expansions and substantially lower in

recessions. The effect is statistically significant at the 1% level. It is also economically signif-

icant: Fpicking decreases by approximately ten percent of one standard deviation. In sum,

the data support both main predictions of the theory: Portfolio holdings are more sensitive

13Our results are robust to using industrial productions growth itself. Our results are also robust to
measuring aggregate shocks to fundamentals as innovations in non-farm employment growth
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Table 2: Attention Allocation is Cyclical

Dependent variables: Fund j’s Ftiming
j
t is defined in equation (16), where the rolling window T is 12 months and the aggregate

shock at+1 is the change in industrial production growth between t and t + 1. A fund j’s Fpicking
j
t is defined as in equation

(17), where sit+1 is the change in asset i’s earnings growth between t and t+ 1. All are multiplied by 10,000 for readability.
Independent variables: Recession is an indicator variable equal to one for every month the economy is in a recession according
to the NBER, and zero otherwise. Log(Age) is the natural logarithm of fund age in years. Log(TNA) is the natural logarithm
of a fund total net assets. Expenses is the fund expense ratio. Turnover is the fund turnover ratio. F low is the percentage
growth in a fund’s new money. Load is the total fund load. F lowV ol is the volatility of fund flows, measures from the last
twelve months of fund flows. The last three control variables measure the style of a fund along the size, value, and momentum
dimensions, calculated from the scores of the stocks in their portfolio in that month. They are omitted for brevity. All control
variables are demeaned. Flow and Turnover are winsorized at the 1% level. PriceofRisk is an indicator variable for periods
with high default spread. Default spread is defined as a difference in yields of Baa and Aaa-rated U.S. corporate bonds. Price
of risk equals one if default spread is in the highest 10% of months in the sample. V olatility is an indicator variable for periods
of high volatile earnings. We calculate the twelve-month rolling-window standard deviation of the year-to-year log change in
the earnings of S&P 500 index constituents; the earnings data are from Robert Shiller for 1926-2008. Volatility equals one if
this standard deviation is in the highest 10% of months in the 1926-2008 sample. During 1985-2005, 12% of months are such
high volatility months. The data are monthly and cover the period 1980 to 2005. Standard errors (in parentheses) are clustered
by fund and time.

(1) (2) (3) (4) (5) (6)
Ftiming Fpicking

Recession 0.011 0.012 -0.742 -0.680
(0.003) (0.003) (0.138) (0.126)

Price of Risk 0.019 -2.780
(0.012) (0.514)

Volatility 0.003 -0.440
(0.003) (0.123)

Log(Age) -0.001 -0.001 0.447 0.040
(0.001) (0.001) (0.061) (0.144)

Log(TNA) -0.001 -0.001 -0.130 -0.225
(0.000) (0.000) (0.029) (0.052)

Expenses -0.208 -0.208 96.748 -90.819
(0.219) (0.219) (11.200) (21.241)

Turnover -0.004 -0.004 -0.260 0.182
(0.001) (0.001) (0.063) (0.087)

Flow -0.010 -0.010 0.637 1.305
(0.011) (0.011) (0.652) (0.526)

Load 0.006 0.006 -9.851 -9.876
(0.022) (0.023) (1.951) (5.322)

Flow Vol -0.006 -0.004 6.684 3.931
(0.017) (0.017) (1.042) (1.164)

Constant -0.001 0.000 -0.001 3.082 3.238 3.119
(0.001) (0.002) (0.001) (0.069) (0.107) (0.072)

Observations 221,488 221,488 221,488 165,029 165,029 165,029
R-squared 0.03 0.09 0.08 0.03 0.25 0.21

to aggregate shocks in recessions and more sensitive to firm-specific shocks in expansions.

These results differ from Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014) who

measure timing and picking as covariances with returns, rather than covariances with fun-

damental payoffs. The return-based results in Kacperczyk, Van Nieuwerburgh, and Veld-

kamp (2014) could, in principle, be explained by funds who forecast non-fundamental return

drivers such as sentiment, momentum, liquidity, etc. That would be harder to reconcile with

an information-processing theory like ours. In unreported results, we construct a measure of
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covariation of portfolio weights with innovations to the Baker and Wurgler (2006) sentiment

index. We subsequently correlate this measure with the (return-based) timing measure, but

find no relationship between the two quantities. In contrast, Ftiming shows a strong posi-

tive correlation with the return-based timing measure, highlighting that managers seem to

adjust portfolio weights in anticipation of fundamental news.

Testing for Separate Effects of Volatility and Price of Risk. To identify a more

nuanced prediction of the model, we can split the recession effect into that which comes

from aggregate volatility and that which comes from an increased price of risk. Proposition

1 predicts that an increase in aggregate volatility alone should cause managers to reallocate

attention to aggregate shocks. Furthermore, there should be an additional effect of recessions,

after controlling for aggregate volatility, that comes from the increase in the price of risk

(Proposition 2). To test for these two separate effects, we re-estimate the previous results

with both an indicator for price of risk and an indicator for high aggregate payoff volatility.

The price of risk indicator variable equals one in months with the highest level of default

spread where default spread is defined as a difference in yields between BBB and AAA-

rated bonds. The high-volatility indicator variable equals one in months with the highest

volatility of aggregate earnings growth, where aggregate volatility is estimated from Shiller’s

S&P 500 earnings growth data.14 We include both high price of risk and high aggregate

payoff volatility indicators as explanatory variables in an empirical horse race.

Columns 3 and 6 of Table 2 show that both price of risk and volatility contribute to

a lower Fpicking in expansions. For the Ftiming result, the price of risk effect is much

stronger and drives out some of the volatility effect, while for the Fpicking result both price

of risk and volatility contribute to a large degree. Clearly, there is an effect of recessions

beyond the one coming through volatility. This is consistent with the predictions of our

model, where recessions are characterized both by an increase in aggregate payoff volatility

and an increase in the price of risk. In the Supplementary Appendix (Section S.9), we

also explore a non-linear volatility specification and find the same pattern but somewhat

stronger effects for the highest-volatility periods. Finally, when we interact volatility with a

recession indicator and with an expansion indicator, we find the strongest effects of volatility

in recessions. This is consistent with the model’s prediction that the effect of aggregate risk

14We calculate the twelve-month rolling-window standard deviation of aggregate earnings growth. The
volatility cutoff selects 6% of months. Of the high-volatility periods, 28% are recessions. Of all other
periods (when high-volatility indicator is 0), 10.6% are recessions. Conversely, 14% of recessions are also
high-volatility periods whereas only 4.8% of expansions are high-volatility periods.
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(volatility) should be strong in recessions, when the price of risk is high (Section 1.7).

3.4 Testing Predictions 3 and 4: Dispersion

The second main prediction of the model states that heterogeneity in fund investment strate-

gies and portfolio returns rises in recessions. To test this hypothesis, we estimate the fol-

lowing regression specification, using various return and investment heterogeneity measures,

generically denoted as Dispersionj
t , the dispersion of fund j at month t.

Dispersionj
t = g0 + g1Recessiont + g2X

j
t + ǫjt , (21)

The definitions of Recession and other controls mirror those in regression (19). Our coeffi-

cient of interest is g1.

The first dispersion measure we examine is Portfolio Dispersion, defined in equation

(18). It measures a deviation of a fund’s investment strategy from a passive market strategy,

and hence, in equilibrium, from the strategies of other investors. The results in columns

1 and 2 of Table 3 indicate an increase in average Portfolio Dispersion across funds in

recessions. The increase is statistically significant at the 1% level. It is also economically

significant: The value of portfolio dispersion in recessions goes up by about 15% of a standard

deviation.

Since dispersion in fund strategies should generate dispersion in fund returns, we next

look for evidence of higher return dispersion in recessions. To measure dispersion, we use the

absolute deviation between fund j’s return and the equally weighted cross-sectional average,

|returnj
t −returnt|, as the dependent variable in (21). Columns 5 and 6 of Table 3 show that

return dispersion increases by 17% in recessions. Finally, portfolio and return dispersion in

recessions should come from different directional bets on the market. This should show up as

an increase in the dispersion of portfolio betas. Columns 3 and 4 show that the CAPM-beta

dispersion increases by 36% in recessions, all consistent with the predictions of our model.

These findings are robust. Counter-cyclical dispersion in funds’ portfolio strategies is

also found in measures of fund style shifting and sectoral asset allocation. The dispersion in

returns is also found for abnormal returns and fund alphas. Results are available on request.

Testing for Separate Effects of Volatility and Price of Risk. Propositions 3 and

4 tell us that return dispersion increases in recessions for two reasons. One is that the

volatility of aggregate shocks increases and the other reason is that the price of risk increases.
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Table 3: Portfolio and Return Dispersion Rise in Recessions

Dependent variables: Portfolio dispersion is the Herfindahl index of portfolio weights in stocks i ∈ {1, · · · , N}

in deviation from the market portfolio weights
∑N

i=1(w
j
it − wm

it )
2 × 100. Return dispersion is |returnj

t −

returnt|, where return denotes the (equally weighted) cross-sectional average. The CAPM beta comes from

twelve-month rolling-window regressions of fund-level excess returns on excess market returns (and returns

on SMB, HML, and MOM). Beta dispersion is constructed analogously to return dispersion. The right-hand

side variables, the sample period, and the standard error calculation are the same as in Table 2.

(1) (2) (3) (4) (5) (6) (7)
Portfolio Dispersion Beta Dispersion Return Dispersion

Recession 0.204 0.118 0.083 0.088 0.316 0.380
(0.027) (0.025) (0.015) (0.014) (0.147) (0.146)

Price of Risk 0.188
(0.088)

Volatility 0.637
(0.201)

Log(Age) 0.210 -0.005 -0.121 -0.108
(0.028) (0.002) (0.017) (0.018)

Log(TNA) -0.165 0.004 0.043 0.035
(0.014) (0.001) (0.009) (0.010)

Expenses 31.986 4.162 28.330 25.526
(4.867) (0.212) (2.621) (2.519)

Turnover -0.113 0.013 0.090 0.076
(0.026) (0.001) (0.013) (0.015)

Flow -0.230 -0.004 -0.230 -0.280
(0.108) (0.018) (0.223) (0.218)

Load -1.658 -0.318 -4.071 -3.519
(0.900) (0.041) (0.509) (0.517)

Flow Vol 2.379 0.075 1.570 1.905
(0.304) (0.027) (0.240) (0.242)

Constant 1.525 1.524 0.228 0.228 1.904 1.899 1.843
(0.024) (0.022) (0.006) (0.006) (0.084) (0.077) (0.078)

Observations 227,141 227,141 224,130 224,130 227,141 227,141 227,141
R-squared 0.10 4.80 1.35 8.10 0.19 7.00 7.83

We can disentangle these two effects by regressing return dispersion on volatility and price

of risk simultaneously. The model would predict that volatility should be a significant

determinant of dispersion and that after controlling for volatility, there should be some

additional explanatory power of recessions that comes from the price of risk effect.

Column 7 of Table 3 shows that both the price of risk and the volatility effects are present

in the data. Both are associated with a significant increase in the dispersion of returns. The

volatility and price of risk fluctuations both have significant effects on portfolio dispersion,

with the effect of volatility being somewhat larger. Similar results are found for the other

dispersion measures. A non-linear volatility specification in the Supplementary Appendix

shows that the effect of volatility on return dispersion is strongest in high-volatility periods.

Both recession and high-volatility indicators are significant when a recession indicator is used
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instead of the price of risk as explanatory variable. Finally, the volatility effect on dispersion

is significant both in recessions and expansions. But the fact that it is twice as strong in

recessions supports the interaction effect predicted by the theory (Section 1.7).

3.5 Testing Predictions 5 and 6: Performance

The third prediction of our model is that recessions are times when information allows funds

to earn higher average risk-adjusted returns. Empirical work by Moskowitz (2000), Kosowski

(2011), Glode (2011), and de Souza and Lynch (2012) also documents such evidence. Their

results are based on time-series analysis, while we account for differences in fund size, age,

turnover, flows, loads, style and flow volatility, using the following regression specification:

Performancejt = c0 + c1Recessiont + c2X
j
t + ǫjt (22)

where Performancejt denotes fund j’s performance in month t, measured as fund abnormal

returns, or CAPM, three-factor, or four-factor alphas. All returns are net of management

fees. The coefficient of interest is c1.

Column 1 of Table 4 shows that the average fund’s net return is statistically indistinguish-

able from zero in expansions. But the coefficient of Recession is 38bp per month, implying

that the average mutual fund’s abnormal return is 4.6% per year higher in recessions. This

difference is highly statistically significant and increases further after we control for fund

characteristics (column 2). Similar results (columns 3 and 4) obtain when we use the CAPM

alpha as a measure of fund performance, except that the net alpha is now significantly neg-

ative in expansions. In recessions, the 34bp per month higher net alpha corresponds to 4%

per year. When we use alphas from the three- and four-factor models, the recession return

premium diminishes (columns 5-8). But in recessions, the four-factor alpha still represents a

non-trivial 1% per year risk-adjusted excess return, 1.6% higher (significant at the 1% level)

than the -0.6% recorded in expansions.

The advantage of this cross-sectional regression model is that it allows us to include

fund-specific control variables. The disadvantage is that performance is measured using

past twelve-month rolling-window regressions. Thus, a given observation can be classified

as a recession when some or even all of the remaining eleven months of the window are

expansions. To verify the robustness of our cross-sectional results, we also employ a time-

series approach.15 We explore alternative performance measures, such as gross fund returns,

15In each month, we form the equally weighted portfolio of funds and calculate its net return, in excess of

32



Table 4: Fund Performance Improves in Recessions

Dependent variables: Abnormal Return is the fund return minus the market return. The alphas come from twelve-month

rolling-window regressions of fund-level excess returns on excess market returns for the CAPM alpha, additionally on the size

(SMB) and the book-to-market (HML) factors for the three-factor alpha, and additionally on the momentum (UMD) factor

for the four-factor alpha. The independent variables, the sample period, and the standard error calculations are the same as in

Table 2.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Abnormal Return CAPM Alpha 3-Factor Alpha 4-Factor Alpha

Recession 0.384 0.433 0.339 0.399 0.043 0.062 0.108 0.131
(0.056) (0.059) (0.048) (0.050) (0.034) (0.026) (0.041) (0.033)

Price of Risk 0.052
(0.031)

Volatility 0.149
(0.061)

Log(Age) -0.015 -0.032 -0.023 -0.035 -0.036
(0.021) (0.008) (0.006) (0.006) (0.006)

Log(TNA) 0.023 0.040 0.018 0.019 0.010
(0.013) (0.004) (0.003) (0.003) (0.003)

Expenses -5.120 -0.929 -5.793 -5.970 -8.277
(2.817) (0.892) (0.720) (0.677) (1.248)

Turnover 0.021 -0.054 -0.087 -0.076 -0.068
(0.039) (0.010) (0.010) (0.008) (0.009)

Flow 2.127 2.308 1.510 1.386 1.544
(0.672) (0.172) (0.096) (0.096) (0.056)

Load -0.698 -0.810 -0.143 -0.371 -0.205
(0.457) (0.174) (0.129) (0.139) (0.200)

Flow vol -0.106 1.025 1.461 1.210 1.311
(0.588) (0.137) (0.109) (0.104) (0.109)

Constant -0.032 -0.036 -0.060 -0.065 -0.059 -0.061 -0.051 -0.053 -0.066
(0.064) (0.063) (0.025) (0.024) (0.020) (0.018) (0.023) (0.021) (0.021)

Observations 224,130 224,130 224,130 224,130 224,130 224,130 224,130 224,130 224,130
R-squared 0.01 0.57 1.15 10.70 0.03 6.20 0.16 5.50 5.16

gross alphas, or the information ratio (the ratio of the CAPM alpha to the CAPM residual

volatility). Finally, we find similar results when we lead alpha on the left-hand side by one

month instead of using a contemporaneous alpha. All results point in the same direction:

Outperformance increases in recessions.

Testing for Separate Effects of Volatility and Price of Risk. As before, two forces

increase the performance of funds relative to non-funds in recessions: the increase in volatility

and the increase in the price of risk (Propositions 5 and 6). Column 9 of Table 4 shows that

the data are consistent with each force having a distinct effect on fund outperformance. We

use the 4-factor alpha as the dependent variable for this exercise because we want to avoid

the risk-free rate. We then regress this time series of fund portfolio returns on Recession and common risk
factors, adjusting standard errors for heteroscedasticity and autocorrelation.
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conflating more risk taking in recessions with greater fund outperformance in recessions.

When we regress each fund’s 4-factor alpha on a price of risk indicator and a volatility

measure, both have positive, significant coefficients. We also estimated the effect of price of

risk and volatility on the other three measures of performance. The results are qualitatively

similar but quantitatively stronger. A non-linear volatility specification shows that the effect

of volatility on performance is strongest in high-volatility periods (Supplementary Appendix

S.9). In a specification that adds the recession indicator both recession and high-volatility

indicators retain significance. The volatility effect is only significant in recessions. These

results suggest that fund outperformance in recessions is due mostly to the higher volatility

of aggregate shocks and is due to a lesser extent to the increased price of risk. But the fact

that both variables have a significant relationship with fund outperformance, dispersion,

and attention, in the direction predicted by the theory offers solid support for the model.

Furthermore, the fact that the volatility effect is four times as strong in recessions as in

expansions is empirical support for the interaction effect between volatility and price of risk

predicted by the model.

4 Conclusion

Do investment managers add value for their clients? The answer to this question matters

for issues ranging from the discussion of market efficiency to practical portfolio advice for

households. The large amount of randomness in financial asset returns makes it a difficult

question to answer. The multi-billion investment management industry is first and foremost

an information-processing business. We model investment managers not only as agents

making optimal portfolio decisions, but also as human beings with finite mental capacity

(attention), who optimally allocate that scarce capacity to process information at each point

in time. Since the optimal attention allocation varies with the state of the economy, so do

investment strategies and fund returns. As long as a subset of skilled investment managers

can process information about future asset payoffs, the model predicts a higher covariance

of portfolio holdings with aggregate asset payoff shocks, more cross-sectional dispersion in

portfolio investment strategies and returns across funds, and a higher average outperformance

in recessions. We observe these patterns in investments and returns of actively managed

U.S. mutual funds. Hence, the data are consistent with a world in which some investment

managers have skill.

On the technical side, our paper contributes a novel change-of variable technique to solve
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models with normal signals, but arbitrary signal structures. These tools can be used to gen-

eralize the information assumptions in related models of rational inattention, a generalization

advocated by Sims (2006).

Beyond the mutual fund industry, a sizeable fraction of GDP currently comes from in-

dustries that produce and process information (consulting, business management, product

design, marketing analysis, accounting, rating agencies, equity analysts, etc.). Ever increas-

ing access to information has made the problem of how to best allocate a limited amount

of information-processing capacity ever more relevant. While information choices have con-

sequences for real outcomes, they are often poorly understood because they are difficult to

measure. By predicting how information choices are linked to observable variables (such as

the state of the economy) and by tying information choices to real outcomes (such as portfo-

lio investment), we show how models of information choices can be brought to the data. This

information-choice-based approach could be useful in examining other information-processing

sectors of the economy.
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A Proofs

A.1 Useful notation, matrices and derivatives

All the following matrices are diagonal with ii entry given by:

1. Precision of the information prices convey about shock i: (Σ−1
p )ii =

1
ρ2σx

(Σ̄−1
η )2ii =

K̄2

i

ρ2σx
= σ−1

ip

2. Precision of posterior belief about shock i for an investor j is σ̂−1
ij , which is equivalent to

(Σ̂−1
j )ii = (Σ−1 +Σ−1

ηj +Σ−1
p )ii = σ−1

i +Kij +
K̄2

i

ρ2σx
= σ̂−1

ij (23)

3. Average signal precision: (Σ̄−1
η )ii = K̄i, where K̄i ≡

∫

Kijdj. Since we focus on symmetric equi-

libria and the fraction of skilled investors is χ, K̄i = χKij for any skilled investor j.

4. Average posterior precision of shock i: σ̄−1
i ≡ σ−1

i + K̄i +
K̄2

i

ρ2σx
. The average variance is therefore

Σ̄ii = [
(

σ−1
i + K̄i +

K̄2

i

ρ2σx

)

]−1 = σ̄i, with derivatives:

∂σ̄i
∂σi

=

(

σ̄i
σi

)2

> 0, (24)

∂σ̄i
∂ρ

=
2

ρ

σ̄2
i

σip
> 0. (25)

5. Difference from average posterior beliefs: Recall that Σ̄−1
η ≡

∫

Σ−1
ηj dj is the average private signal

precision and that Σ̄−1 ≡
∫

Σ̂−1
j dj = Σ−1 + Σ−1

p + Σ̄−1
η is the average posterior precision. Define

∆ as the difference between the precision of an informed investor’s posterior beliefs and the average
posterior precision. Since the Σ−1+Σ−1

p terms are equal for all investors, this quantity is also equal to
the difference between the precision of an informed investor’s private signals and the average private
signal precision:

∆ ≡ Σ̂−1
j − Σ̄−1 = Σ−1

ηj − Σ̄−1
η . (26)

In symmetric information choice equilibria, ∆ = (1 − χ)Σ−1
ηj for any skilled investor j.

6. Ex-ante mean and variance of returns: Using Lemma 1 and the coefficients given by (42), we can
write the risk factor return as:

f̃ − p̃r = (I −B)z − Cx−A

= Σ̄

[

Σ−1z + ρ

(

I +
1

ρ2σx
Σ̄−1′

η

)

x

]

+ ρΣ̄x̄.

This expression is a constant plus a linear combination of two normal variables, which is also a normal
variable. Therefore, we can write

f̃ − p̃r = V 1/2u+ w, (27)

where u is a standard normally distributed random variable u ∼ N(0, I), and w is a non-random
vector measuring the ex-ante mean of excess returns

w ≡ ρΣ̄x̄. (28)
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and V is the ex-ante variance matrix of excess returns:

V ≡ Σ̄

[

Σ−1 + ρ2σx

(

I +
1

ρ2σx
Σ̄−1′

η

)(

I +
1

ρ2σx
Σ̄−1′

η

)′
]

Σ̄

= Σ̄

[

Σ−1 + ρ2σx

(

I +
1

ρ2σx
(Σ̄−1′

η + Σ̄−1
η ) +

1

ρ4σ2
x

Σ̄−1′

η Σ̄−1
η

)]

Σ̄

= Σ̄

[

Σ−1 + ρ2σxI + (Σ̄−1′

η + Σ̄−1
η ) +

1

ρ2σx
Σ̄−1′

η Σ̄−1
η

]

Σ̄

= Σ̄
[

ρ2σxI + Σ̄−1′

η +Σ−1 + Σ̄−1
η +Σ−1

p

]

Σ̄

= Σ̄
[

ρ2σxI + Σ̄−1′

η + Σ̄−1
]

Σ̄.

The first line uses E[xx′] = σxI and E[zz′] = Σ, the fourth line uses (43) and the fifth line uses
Σ̄−1 = Σ−1 +Σ−1

p + Σ̄−1
η .

This variance matrix V is a diagonal matrix. Its diagonal elements are:

Vii = (Σ̄
[

ρ2σxI + Σ̄−1
η + Σ̄−1

]

Σ̄)ii

= σ̄i[1 + (ρ2σx + K̄i)σ̄i]. (29)

Diagonals of V have the following derivatives (using (24) and (25)):

∂Vii
∂σi

=

(

σ̄i
σi

)2
(

1 + 2(ρ2σx + K̄i)σ̄i
)

> 0 (30)

∂Vii
∂ρ

= 2ρσxσ̄
2
i

[

1 +
1

ρ2σxσip
(1 + 2(ρ2σx + K̄i)σ̄i)

]

> 0 (31)

7. The elasticity of Vii with respect to ρ is

∂Vii
∂ρ

ρ

Vii
= 2ρσxσ̄

2
i

[

1 +
1

ρ2σxσip
(1 + 2(ρ2σx + K̄i)σ̄i)

]

ρ

σ̄i[1 + (ρ2σx + K̄i)σ̄i]

=
2ρ2σxσ̄i

[1 + (ρ2σx + K̄i)σ̄i]

[

1 +
1

ρ2σxσip
(1 + 2(ρ2σx + K̄i)σ̄i)

]

The second term is always larger than one. We look for a sufficient condition that also makes the first
term larger than one:

2ρ2σxσ̄i > 1 + (ρ2σx + K̄i)σ̄i

ρ2σx > σ̄−1
i + K̄i

ρ2σx > σ−1
i + 2K̄i +

K̄2
i

ρ2σx
(32)

Since the LHS is increasing in σx and the RHS is decreasing in σx, if σx is sufficiently high, the
elasticity of Vii with respect to ρ becomes larger than one.
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A.2 Solving the Model

Step 1: Portfolio Choices From the FOC, the optimal portfolio of risk factors chosen by investor
j is

q̃j =
1

ρ
Σ̂−1

j (Ej [f̃ ]− p̃r) (33)

where Ej [f̃ ] and Σ̂j depend on the skill of the investor.
Next, we compute the risk factor portfolio of the average investor.

¯̃q ≡

∫

q̃jdj =
1

ρ

∫

Σ̂−1
j (Ej [f̃ ]− p̃r)dj

=
1

ρ

(
∫

Σ̂−1
j (Γ−1µ+ Ej [z])dj − Σ̄−1p̃r

)

=
1

ρ

(
∫

Σ−1
ηj ηjdj +Σ−1

p ηp + Σ̄−1(Γ−1µ− p̃r)

)

=
1

ρ

(

Σ̄−1
η z +Σ−1

p ηp + Σ̄−1(Γ−1µ− p̃r)
)

, (34)

where the fourth equality uses the fact that average noise of private signals is zero. Using the portfolio
expressions (33) and (34), we compute the difference between the portfolio of investor j and the average
investor portfolio:

q̃j − ¯̃q =
1

ρ

(

Σ̂−1
j (Ej [f̃ ]− p̃r) − (Σ̄−1

η +Σ−1
p )z − Σ−1

p εp − Σ̄−1(Γ−1µ− p̃r)
)

=
1

ρ

(

(Σ−1
ηj ηj +Σ−1

p ηp)− Σ̄−1
η z − Σ−1

p ηp + (Σ̂−1
j − Σ̄−1)(Γ−1µ− p̃r)

)

=
1

ρ

(

(Σ−1
ηj − Σ̄−1

η )z +Σ−1
ηj εj + (Σ̂−1

j − Σ̄−1)(Γ−1µ− p̃r)
)

=
1

ρ

(

∆(f̃ − p̃r) + Σ−1
ηj εj)

)

(35)

=
1

ρ

[

Σ−1
ηj εj +∆(V 1/2u+ w)

]

, (36)

where the third equality uses ηj = z+ εj, the fourth equality uses (26) and the definition f̃ = Γ−1µ+ z, and
the last line uses (27).

Step 2: Clearing the asset market and computing expected excess return Lemma
1 describes the solution to the market-clearing problem and derives the coefficients A, B, and C in the
pricing equation. The equilibrium price, along with the random signal realizations determines the time-2
expected return (Ej [f̃ ]− p̃r). But at time 1, the equilibrium price and one’s realized signals are not known.
To compute period-1 utility, we need to know the time-1 expectation and variance of this time-2 expected
return.

The time-2 expected excess return can be written as: Ej [f̃ ]− p̃r = Ej [f̃ ]− f̃ + f̃ − p̃r and therefore its
variance is:

V1[Ej [f̃ ]− p̃r] = V1[Ej [f̃ ]− f̃ ] + V1[f̃ − p̃r] + 2Cov1[Ej [f̃ ]− f̃ , f̃ − p̃r]. (37)

Combining (9) with the definitions ηj = z + εj and ηp = z + εp, we can compute expectation errors:

Ej [f̃ ]− f̃ = Σ̂j

[

(Σ−1
ηj +Σ−1

p − Σ̂−1
j )z +Σ−1

ηj εj +Σ−1
p εp

]

= Σ̂j

[

−Σ−1z +Σ−1
ηj εj +Σ−1

p εp
]

.
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Since this is a sum of mean-zero variables, its expectation is E1[Ej [f̃ ]− f̃ ] = 0 and its variance is V1[Ej [f̃ ]−

f̃ ] = Σ̂j

[

Σ−1 +Σ−1
ηj +Σ−1

p

]

Σ̂′
j = Σ̂j .

From (27) we know that V1[f̃ − p̃r] = V . To compute the covariance term, we can use the definition
f̃ = Γ−1µ+ z and rearrange the definition of ηp to get p̃r = Bηp +A and ηp = z + εp to write

f̃ − p̃r = Γ−1µ+ (I −B)z −A−Bεp (38)

= ρΣ̄x̄+ Σ̄Σ−1z − (I − Σ̄Σ−1)εp (39)

where the second line comes from substituting the coefficients A and B from Lemma 1. Since the constant
ρΣ̄x̄ does not affect the covariance, we can write

Cov1[Ej [f̃ ]− f̃ , f̃ − p̃r] = Cov[−Σ̂jΣ
−1z + Σ̂jΣ

−1
p εp, Σ̄Σ

−1z − (I − Σ̄Σ−1)εp]

= −Σ̂jΣ
−1ΣΣ̄Σ−1 − Σ̂jΣ

−1
p Σp(I − Σ̄Σ−1)]

= −Σ̂jΣ̄Σ
−1 − Σ̂j(I − Σ̄Σ−1) = −Σ̂j

Substituting the three variance and covariance terms into (37), we find that the variance of excess return is
V1[Ej [f̃ ]− p̃r] = Σ̂j + V − 2Σ̂j = V − Σ̂j . Note that this is a diagonal matrix. Substituting the expressions

(29) and (23) for the diagonal elements of V and Σ̂j we have

V1[Ej [f̃ ]− p̃r] = (V − Σ̂j)ii = (σ̄i − σ̂i) + (ρ2σx + K̄i)σ̄
2
i

In summary, the excess return is normally distributed as Ej [f̃ ]− p̃r ∼ N (w, V − Σ̂j).

Step 3: Compute ex-ante expected utility Ex-ante expected utility for investor j is U1j =

E1

[

ρEj [Wj ]−
ρ2

2 Vj [Wj ]
]

. In period 2, the investor has chosen his portfolio and the price is in his information

set, therefore the only random variable is z. We substitute the budget constraint in the optimal portfolio
choice from (33) and take expectation and variance conditioning on Ej [f̃ ] and Σ̂j to obtain U1j = ρrW0 +
1
2E1[(Ej [f̃ ]− p̃r)′Σ̂j(Ej [f̃ ]− p̃r)].

Define m ≡ Σ̂
−1/2
j (Ej [f̃ ]− p̃r) and note that m ∼ N (Σ̂

−1/2
j w, Σ̂−1

j V − I). The second term in the Uij is
equal to E[m′m], which is the mean of a non-central Chi-square. Using the formula, ifm ∼ N (E[m], V ar[m]),
then E[m′m] = tr(V ar[m]) + E[m]′E[m], we get

U1j = ρrW0 +
1

2
tr(Σ̂−1

j V − I) +
1

2
w′Σ̂−1

j w.

Finally, we substitute the expressions for Σ̂−1
j and w from (23) and (28):

U1j = ρrW0 −
N

2
+

1

2

N
∑

i=1

(

σ−1
i +Kij +

K̄2
i

ρ2σx

)

Vii +
ρ2

2

N
∑

i=1

x̄2i σ̄
2
i

(

σ−1
i +Kij +

K̄2
i

ρ2σx

)

=
1

2

N
∑

i=1

Kij [Vii + ρ2x̄2i σ̄
2
i ] + ρrW0 −

N

2
+

1

2

N
∑

i=1

(

σ−1
i +

K̄2
i

ρ2σx

)

[Vii + ρ2x̄2i σ̄
2
i ]

=
1

2

N
∑

i=1

Kijλi + constant (40)

λi = σ̄i[1 + (ρ2σx + K̄i)σ̄i] + ρ2x̄2i σ̄
2
i (41)

where the weights λi are given by the variance of expected excess return Vii from (29) plus a term that
depends on the supply of the risk.

42



Step 4: Information choices The attention allocation problem maximizes ex-ante utility in (40)
subject to the information capacity and no-forgetting constraints:

max
{Kij}N

i=1

1

2

N
∑

i=1

Kijλi + constant

subject to

N
∑

i=1

Kij ≤ K and Kij ≥ 0 ∀i

Observe that λi depends only on parameters and on aggregate average precisions. Since each investor has
zero mass within a continuum of investors, he takes λi as given. Since the constant is irrelevant, the optimal
choice maximizes a weighted sum of attention allocations, where the weights are given by λi (equation (14)),
subject to a constraint on an un-weighted sum. This is not a concave objective, so a first-order approach
will not deliver a solution. A simple variational argument reveals that allocating all capacity to the risk(s)
with the highest λi achieves the maximum utility. For a formal proof of this result, see Van Nieuwerburgh
and Veldkamp (2010). Thus, the solution is given by: Kij = K if λi = maxk λk, and Kij = 0, otherwise.
There may be multiple risks i that achieve the same maximum value of λi. In that case, the manager is
indifferent about how to allocate attention between those risks. We focus on symmetric equilibria.

A.3 Proofs

Proof of Lemma 1

Proof. Following Admati (1985), we know that the equilibrium price takes the following form p̃r = A+Bz+
Cx where

A = Γ−1µ− ρΣ̄x̄

B = I − Σ̄Σ−1 (42)

C = −ρΣ̄

(

I +
1

ρ2σx
Σ̄−1′

η

)

and therefore the price is given by p̃r = Γ−1µ+Σ̄
[

(Σ̄−1 − Σ−1)z − ρ(x̄ + x)− 1
ρσx

Σ̄−1′

η x
]

. Furthermore, the

precision of the public signal is

Σ−1
p ≡

(

σxB
−1CC′B−1′

)−1

=
1

ρ2σx
Σ̄−1′

η Σ̄−1
η (43)

Proof of Lemma 2

Proof. To show: If x̄i is sufficiently large ∀i and
∑

i

∑

j Kij ≥ K, then there exist risks l and l′ such that
λl = λl′ .

Suppose not. Then, there would be a unique maximum λi in the set of {λl}
N
l=1, no matter how large

K is. Since there is a unique maximum, the solution above dictates that all information capacity is used to
study this risk: Kij = K for all skilled investors j. Thus, K̄i becomes arbitrarily large.

However, the value of learning about risk i falls as the aggregate capacity devoted to studying it increases:
∂λi/∂K̄i < 0. We show this next. The solution for λi is given by (41). It is clearly increasing in K̄i directly.
But there is also an indirect negative effect through σ̄i. Recall that by Bayes’ Law, the average posterior

43



precision σ̄−1
i = σ−1

i + σ−1
pi + K̄i. Thus,

∂σ̄i

∂K̄i
< 0. To sign the net effect, it is helpful to rewrite λi as

λi = σ̄2
i

[

σ̄−1
i + ρ2(σx + x̄2i ) + K̄i

]

Substituting in σ̄−1
i = σ−1

i + σ−1
pi + K̄i, we get

λi =
σ−1
i + σ−1

pi + ρ2(σx + 2x̄2i ) + K̄i

(σ−1
i + σ−1

pi + K̄i)2

Finally, the partial derivative with respect to K̄i is

∂λi
∂K̄i

=
2(σ−1

i + σ−1
pi + K̄i)− 2(σ−1

i + σ−1
pi + ρ2(σx + 2x̄2i ) + K̄i)

(σ−1
i + σ−1

pi + K̄i)3

=
−2ρ2(σx + 2x̄2i )− 2K̄i)

(σ−1
i + σ−1

pi + K̄i)3
< 0

Since the numerator is all terms that can only be negative and the denominator is a sum of precisions, that
can only be positive, the sign is negative. This proves that λi is decreasing in K̄i.

Furthermore, as the supply of the risk factor x̄i becomes large, ∂λi/∂K̄i becomes an arbitrarily large
negative number. Thus, for a sufficiently large x̄i, there exists a K such that if K̄i = K, then λi < λi′ for
some other risk i′. But then, λi is not a unique maximum in the set of {λl}Nl=1, which is a contradiction.

Proof of Proposition 1 For each skilled investor j, the optimal attention allocation for risk i (Kij)
is weakly increasing in its variance σi.

Proof. The information choice problem is not a concave optimization problem. Therefore, a first-order
approach is not valid. Instead we need to consider each of the various possible corner solutions, one by one.
Let j denote an informed investor. From step 4 of the model solution, we know that when there is a unique
maximum λi the optimal information choice is Klj = K if λl = maxi λi, and Klj = 0, otherwise. If multiple
risks achieve the same maximum λl then all attention will be allocated amongst those risks. Therefore, there
are three cases to consider.

Case 1: λl is the unique maximum λi. Holding attention allocations constant, a marginal increase in σl
will cause λl to increase:

∂λl
∂σl

=
[

1 + 2σ̄i(ρ
2(σx + x̄2l ) + K̄l)

]

(

σ̄l
σl

)2

> 0.

The marginal increase in σl will not effect λl′ for l
′ 6= l (see equations (14) and (23)). It follows that after

the increase in σl, λl will still be the unique maximum λi. Therefore, in the new equilibrium, attention
allocation is unchanged.

Case 2: Prior to the increase in σl, multiple risks – including risk l – attain the maximum λi. Let IM be
the set of such risks. If σl marginally increases and we held attention allocations fixed, then λl would be the
unique maximum λi. If λl is the unique maximum, then Klj should increase and Kl′j for l′ ∈ IM \ l should
decrease. However, using equations (14) and (23) we can show that an increase in Klj would decrease λl:

∂λl

∂K̄l
= −2σ̄2

l

{ K̄l

ρ2σx
+ σ̄l

[

ρ2(σx + x̄2l ) + K̄l

]

(

1 +
2K̄l

ρ2σx

)}

< 0, (44)

and since K̄l = χKlj , ∂λl/∂Klj < 0. This effect works to partially offset the initial increase in λl. In the rest
of the proof that follows, we construct the new equilibrium attention allocation, following an initial increase
in λl and show that even though the attention reallocation works to reduce λl, the net effect is a larger K̄l.
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This solution to this type of convex problem is referred to as a “waterfilling” solution in the information
theory literature. (See textbook by (Cover and Thomas 1991).) To construct a new equilibrium, we reallocate
attention from risk l′ ∈ IM \ l to risk l (increasing K̄l, decreasing K̄l′). This decreases λl and increases λl′ .
We continue to reallocate attention from all risks l′ ∈ IM \ l to risk l in such a way that λl′ = λl′′ for all
l′, l′′ ∈ IM \ l is maintained. We do this until either (i) all attention has been allocated to risk l or (ii)
λl = λl′ for all l′ ∈ IM \ l. Note that in the new equilibrium λl will be larger than before and the new
equilibrium K̄i will be larger than before.

Case 3: Prior to the increase in σl, λl < λl′ for some l′ 6= l. Because λl is a continuous function of σl, a
marginal increase in σl, will only change λl marginally. Because λl is discretely less than λ′l, the ranking of
the λi’s will not change and the new equilibrium will maintain the same attention allocation.

In cases one and three Klj does not change in response to a marginal increase in σl. In case two Klj is
strictly increasing in σl. Therefore, Klj is weakly increasing in σl.

Proof of Proposition 2 If x̄i is sufficiently large then, for each skilled investor j, the optimal attention
allocation for risk i (Kij) is weakly increasing in risk aversion ρ.

Proof. Let j denote an informed investor. Differentiating (41), we see that the partial derivative of λi with
respect to ρ is

∂λi
∂ρ

= 2σ̄2
i

[

ρ(σx + x̄2i ) +
K̄2

i

ρ3σx

(

1 + 2σ̄i[ρ
2(σx + x̄2i ) + K̄i]

)]

> 0. (45)

The remaining task is to determine how the change in the marginal value of all signals λi, ∀i affects the
attention allocation K̄i, ∀i. There are again three cases to consider.

Case 1: Prior to the increase in ρ, there is a unique maximum λi. Holding K̄i fixed, λi is continuous
in ρ, so a marginal change in ρ cannot change the rankings of the λi’s. Therefore, it is an equilibrium to
maintain the same Kij for all i.

Case 2: Let IM be the set of risks which attain the maximum λl. In the previous proof, we showed that
an increase in λl increases K̄l if λl ∈ IM . The same equilibrium assignment argument demonstrates that K̄l

will increase after the change in ρ if ∂λl/∂ρ ≥ ∂λl′/∂ρ for all l′ ∈ IM \ l.
From equation (45) we see that, ∂λi/∂ρ is strictly increasing in x̄i, finite-valued and not bounded above.

Therefore, there exists x̄∗ such that ∂λi/∂ρ > ∂λi′/∂ρ, ∀i′ if x̄i > x̄∗. It follows that K̄i, and therefore Kij ,
is weakly increasing in ρ if x̄i > x̄∗.

Case 3: Prior to the increase in ρ, λi < maxj λj . Since λi is not part of the maximal set, K̄i = 0 before
the increase in ρ. But λi is continuous in ρ, so a marginal change in ρ cannot cause λi ≥ maxj λj to hold.
Since λi is not part of the maximal set, K̄i = 0 after the increase in ρ. Thus, K̄i does not change.

In all three cases, Kij , is weakly increasing in ρ if x̄i > x̄∗.

Derivation of excess returns and their dispersion We begin by calculating the portfolio
excess return. Note that the return of the portfolio expressed in terms of assets is equal to the return
expressed in risk factors:

(qj − q̄)′(f − pr) = (qj − q̄)′Γ−1(Γf − Γpr) = (q̃j − ¯̃q)′(f̃ − p̃r) (46)
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Substitute (27) and (36) into (46) to get

E[(q̃j − ¯̃q)′(f̃ − p̃r)] =
1

ρ
E

[

(

Σ−1
ηj εj +∆(V 1/2u+ w)

)′

(V 1/2u+ w)

]

=
1

ρ
E
[

ǫ′jΣ
−1
ηj w + ǫ′jΣ

−1
ηj V

1/2u+ 2w′∆V 1/2u+ w′∆w + u′V 1/2∆V 1/2u
]

=
1

ρ
E
[

w′∆w + u′V 1/2∆V 1/2u
]

=
1

ρ

[

ρ2x̄′Σ̄∆Σ̄x̄+ Tr
(

V 1/2∆V 1/2E(uu′)
)]

= ρT r(x̄′Σ̄∆Σ̄x̄) +
1

ρ
T r(∆V ) (47)

where the third equality comes from the fact that w is a constant and εj and u are mean zero and uncorrelated.
To get return dispersion, we substitute (27) and (36) into (46), then square the excess return and take

the expectation:

E[((q̃j − ¯̃q)′(f̃ − p̃r))2] = E

[

(

1

ρ
[Σ−1

η εj +∆V 1/2u+∆w]′(w + V 1/2u)

)2
]

Using the fact that for any random variable x, V (x) = E(x2) − E2(x), the dispersion of funds’ portfolio
returns is equal to:

E[((q̃j − ¯̃q)′(f̃ − p̃r))2] =
1

ρ2
V
(

[Σ−1
ηj εj +∆V 1/2u+∆w]′(V 1/2u+ w)

)

+
1

ρ2

(

E[Σ−1
ηj εj +∆V 1/2u+∆w]′(V 1/2u+ w)

)2

We compute each term separately.

V (·) = V
[

ε′jΣ
−1
ηj w + ε′jΣ

−1
ηj V

1/2u+ 2w′∆V 1/2u+ w′∆w + u′V 1/2∆V 1/2u
]

= w′Σ−1
ηj w + 0 + 4w′∆V∆w + 0 + 2Tr(∆V∆V )

= ρ2Tr(x̄′Σ̄Σ−1
ηj Σ̄x̄) + 4ρ2Tr(x̄′Σ̄∆V∆Σ̄x̄) + 2Tr(∆V∆V )

E(·)2 = (w′∆w + Tr(∆V ))
2
=
(

ρ2x̄′Σ̄∆Σ̄x̄+ Tr(∆V )
)2

where the last lines uses the definition of w from (28). Next, we use the definition of ∆ and the focus
on symmetric information acquisition equilibria to get ∆ = (1 − χ)Kj for any informed investor j. For
an uninformed investor, the expression is the same, except that the (1 − χ) terms are replaced with −χ.
Substituting in the squared expectation and variance, we have that for any informed investor j:

E[((q̃j − q̄z)′(f̃ − p̃r))2] = Tr(x̄′Σ̄Σ−1
ηj Σ̄x̄) + 4(1− χ)Tr(x̄′Σ̄KjV∆Σ̄x̄)

+
2

ρ2
(1− χ)2Tr(∆KjV KjV ) +

(1 − χ)2

ρ2
(

ρ2x̄′Σ̄KjΣ̄x̄+ Tr(KjV )
)2

=

n
∑

i=1

x̄2i σ̄
2
iKij

(

1 + 4(1− χ)2KijVii
)

+
2

ρ2
(1− χ)2K2

ijV
2
ii

+(1− χ)2

(

n
∑

i=1

ρx̄2i σ̄
2
iKij +

1

ρ
KijVii

)2

(48)
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The last line uses the fact that all square matrices are diagonal and that the trace is the sum of the diagonal
elements.

Proof of Proposition 3 We prove part (a) and then part(b).

Proposition 3(a) If x̄i is sufficiently large then an increase in variance σi weakly increases the dispersion
of fund portfolios,

∫

E[(q̃j − ¯̃q)′(q̃j − ¯̃q)]dj.

Proof. We prove the proposition by proving that for any given investor j, E[(q̃j − ¯̃q)′(q̃j − ¯̃q)] increases.
Thus, the integral over j increases as well.

From (35), we know that q̃j − ¯̃qj =
1
ρ (∆(f̃ − p̃r) + Σ−1

ηj εj)) where ∆ and Ση are diagonal matrices with

diagonal elements ∆ii = Kij − K̄i and (Σ−1
ηj )ii = Kij . Using these elements, we can write

E[(q̃j − ¯̃q)′(q̃j − ¯̃q)] =
1

ρ2
E

[

n
∑

l=1

(

(Klj − K̄l)(f̃l − p̃lr) +Kljεlj

)2
]

.

Recall that the expected return is f̃ − p̃r = V 1/2u+w, with u ∼ N(0, 1) and w ≡ ρΣ̄x̄. Since E[ε2ij ] = K−1
ij ,

εlj is uncorrelated with (f̃l − p̃lr), ul ∼ N(0, 1), and in equilibrium
∑

lKlj = K, we get

E[(q̃j − ¯̃q)′(q̃j − ¯̃q)] =
1

ρ2
E

[

∑

l

(Klj − K̄l)
2(V

1/2
ll ul + wl)

2

]

+
1

ρ2
K

=
1

ρ2

∑

l

(Klj − K̄l)
2
(

Vll + ρ2σ̄2
l x̄

2
l

)

+
1

ρ2
K. (49)

To assess the effect of an increase in σi we consider two cases. The first case is when there is no change in
attention allocation after a marginal increase in σi and the second case is when there is a change in attention
allocation. The first case occurs if all attention or no attention is allocated to risk i before the change in σi,
otherwise the second case occurs (this is explained in the proof of Proposition 1).

Case 1 (includes also what was previously called case 3): A marginal increase in σi will only change two
variables on the right-hand side of equation (49), Vii and σ̄i. In equations (24) and (30), we showed that
that both σ̄i and Vii are strictly increasing in σi. If all attention or no attention is allocated to risk i before
the increase in σi, then Kij−K̄i > 0 or Kij−K̄i = 0, respectively. Therefore, when all attention is allocated
to risk i before the change in σi, E[(q̃j − ¯̃q)′(q̃j − ¯̃q)] strictly increases in σi. When no attention is allocated
to risk i E[(q̃j − ¯̃q)′(q̃j − ¯̃q)] is constant in σi.

Case 2: From Proposition 1 we know that a marginal increase in σi will cause Kij − K̄i to increase and
Klj − K̄l to decrease for all risks l ∈ IM \ i. The other variables that will change in equation (49) are Vll
and σ̄l for all risks l ∈ IM . If x̄i is sufficiently large then the sign of the effect of σi on E[(q̃j − ¯̃q)′(q̃j − ¯̃q)]
will be determined by its effect on σ̄i. We will now show that, when x̄i is sufficiently large, σ̄i is increasing
in σi, even after accounting for the reallocation of attention, so E[(q̃j − ¯̃q)′(q̃j − ¯̃q)] is increasing in σi. We
will prove this by contradiction.

Suppose that σ̄i decreases when σi increases. Recall that

λi = σ̄i[1 + (ρ2σx + K̄i)σ̄i] + ρ2x̄2i σ̄
2
i .

Therefore, if x̄i is sufficiently large and σ̄i decreases, λi decreases. But, we know from Proposition 1 that if
Kij > 0 and σi increases, then λi increases. Therefore, σ̄i must increase in σi.

Combining cases, if x̄i is sufficiently large, dispersion weakly increases in σi.
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Proposition 3(b) Prove: If x̄i is sufficiently large then an increase in variance σi weakly increases the
dispersion of portfolio excess returns,

∫

E[((q̃j − ¯̃q)′(f̃ − p̃r))2]dj.

Proof. As before, we prove that the integral increases by proving that the expectation increases for every
investor j, and we consider three cases: The first case is when all attention is allocated to risk i before the
change in σi. The second case is where some, but not all, attention is allocated to risk i. In the third case,
no attention is allocated to risk i

Case 1: All attention is allocated to risk i. Since λi > λl, ∀l 6= i, a marginal change in σi will change λ’s
continuously and will not reverse the inequality. Thus λi will still be the unique maximum and attention will
not change. The only variables on the right-hand side of equation (48) that will change when σi increases
are Vii and σ̄i. Both will increase strictly. Both are multiplied by quantities and parameters that are always
non-negative. Thus, dispersion increases strictly.

Case 2: For an informed investor some, but not all, attention is allocated to risk i before the change
in σi. To prove that expression (48) increases in σi we use the same method that we used for this case
in the proof of Proposition 3(a). If x̄i is sufficiently large, then the positive effect of the increase in Kij

and σ̄i will outweigh any negative effect of the decrease in Klj and σ̄l for l 6= i. We established in the
proof of Proposition 3(a) that an increase in σi causes σ̄i to increase. Therefore, if x̄i is sufficiently large,
E[((q̃j − ¯̃q)′(f̃ − p̃r))2] is increasing in σi.

Case 3: When no attention is allocated to risk i (Kij = 0), dispersion is constant in σi because all the
σi and Vii terms are multiplied by Kij .

For an uninformed investor, dispersion is the same, except that the (1 − χ)2 terms are replace with
(−χ)2 terms. Since both are non-negative, the same arguments hold for any uninformed investor j. Since
E[((q̃j − ¯̃q)′(f̃ − p̃r))2] weakly increases in σi for every investor j, the integral

∫

E[((q̃j − ¯̃q)′(f̃ − p̃r))2]dj
weakly increases as well.

Proof of Proposition 4 If σx and x̄n are sufficiently large, then an increase in risk aversion ρ
increases the dispersion of portfolio excess returns,

∫

E[((q̃j − ¯̃q)′(f̃ − p̃r))2]dj.

Proof. Dispersion of excess returns is given in (48). We first work through the direct effect of ρ on σ̄l and
Vll and then turn to the indirect effect that works through attention allocation K. Both σ̄l and Vll are
increasing in ρ, as shown in (25) and (31). Both are multiplied by parameters and variables that are always
non-negative. Therefore, the only terms of (48) whose derivative we need to work out to sign are the ones
with Vii/ρ or V 2

ii/ρ
2.

∂

∂ρ

Vll
ρ

=
1

ρ

[

∂Vll
∂ρ

−
Vll
ρ

]

This expression is positive if the elasticity of Vll with respect to ρ is larger than one for all l, which is
ensured if σx is sufficiently large, i.e. it satisfies (32). Thus, the direct effect of risk aversion is to increase
E[((q̃j − ¯̃q)′(f̃ − p̃r))2] for each investor j and therefore increase

∫

E[((q̃j − ¯̃q)′(f̃ − p̃r))2]dj as well.
The total derivative is the sum of the partial derivative and the indirect effect that comes from reallocation

of attention: d/dρ = ∂/∂ρ+ (∂/∂Kj)(∂Kj/∂ρ). The previous part of the proof signed the first term. This
second part signs the second term.

From (41), note that ∂λi/∂x̄i = 2ρ2σ̄2
i x̄i. This is positive and increasing in x̄i. For any values of ρ2σ̄2

i ,
there is an x̄i sufficiently large that λi > λj , ∀j 6= i. Specifically for the supply of aggregate risk, if x̄n
is sufficiently large then λn > λj , ∀j 6= n and thus Knj = K, for all informed investors j. At this corner
solution, where λn > λj , with strict inequality ∀j 6= n, a marginal change in ρ will not change the inequality
because λi is continuous in ρ. Thus, after a marginal change in ρ, it is still true that Knj = K, for all
informed investors j. Because attention allocation is unchanged by a marginal change in ρ, the direct effect
and the total effect are identical. Next, consider lower levels of x̄n where a marginal increase in ρ does change
the attention allocation. Since dispersion is continuously differentiable in Kj, and is strictly increasing in ρ
for a given capacity allocation, there exists a ball of parameters such that ∂Kij/∂ρ > 0 for some risk i 6= n

and d/dρE[((q̃j − ¯̃q)′(f̃ − p̃r))2] > 0.
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Proof of Proposition 5 If x̄i is sufficiently large then an increase in the variance σi weakly increases
the portfolio excess return of an informed fund, E[(q̃j − ¯̃q)′(f̃ − p̃r)].

Proof. Writing the trace terms in equation (47) as sums and using the definition of ∆ yields:

E[(q̃j − ¯̃q)′(f̃ − p̃r)] =
1

ρ

[

∑

l

(Klj − K̄l)(Vll + (ρσ̄lx̄l)
2)
]

. (50)

To determine the effect of an increase in σi on this expression we consider two cases. The first case is when
there is no change in attention allocation after the increase in σi and the second one is when there is a change
in attention allocation. Recall (from the proof of Proposition 1) that the first case occurs if all attention or
no attention is allocated to risk i before the change in σi, otherwise the second case occurs.

Case 1: As discussed in the proof of Proposition 3(a), the only variables that will change on the right-
hand side of equation (50) when σi increases are Vii and σ̄i. Both will increase. If no attention is allocated
to risk i before the change in σi then Kij− K̄i = 0, and the change in σi has no effect on E[(q̃j − ¯̃q)′(f̃ − p̃r)].

If all attention is allocated to risk i then Kij − K̄i > 0. Thus, the increase in σi causes E[(q̃j − ¯̃q)′(f̃ − p̃r)]
to increase strictly.

Case 2: As argued in the proof of 3(a), if x̄i is sufficiently large then we can assess the effect of an
increase in σi on E[(q̃j − ¯̃q)′(f̃ − p̃r)] by only considering the effect on Kij − K̄i, Vii and σ̄i. As proved in
Proposition 3(a), Kij − K̄i is increasing in σi and, if x̄i is large enough, σ̄i is increasing in σi. Therefore, it

follows from equation (50) that if x̄i is sufficiently large then E[(q̃j − ¯̃q)′(f̃ − p̃r)] is increasing in σi.

Proof of Proposition 6 If σx and x̄n are sufficiently large, then an increase in risk aversion ρ
increases expected excess return, E[(q̃j − ¯̃q)′(f̃ − p̃r)].

Proof. Taking a partial derivative of (47) with respect to ρ, we get:

∂E[(q̃j − ¯̃q)′(f̃ − p̃r)]

∂ρ
= Tr(x̄′Σ̄∆Σ̄x̄) + 2ρT r

(

x̄′∆

[

∂Σ̄

∂ρ

]

Σ̄x̄
)

−
1

ρ2
Tr(∆V ) +

1

ρ
T r
(

∆

[

∂V

∂ρ

]

)

= Tr(x̄′Σ̄∆Σ̄x̄) + 2ρT r
(

x̄′∆

[

∂Σ̄

∂ρ

]

Σ̄x̄
)

+
1

ρ

[

Tr
(

∆

[

∂V

∂ρ
−
V

ρ

]

)

]

.

Since (25) tells us that ∂Σ̄ii/∂ρ ≥ 0, ∀i, a sufficient condition for this expression to be positive is ∂V
∂ρ − V

ρ > 0,
which is equivalent to the elasticity of Vii with respect to ρ larger than one for each i. This holds if σx is
sufficiently large, i.e. it satisfies (32).

The total derivative is the sum of the partial derivative and the indirect effect that comes from reallocation
of attention: d/dρ = ∂/∂ρ+ (∂/∂Kj)(∂Kj/∂ρ). The previous part of the proof signed the first term. This
second part signs the second term. Note that capacity allocation Kj enters through ∆.

From (41), note that ∂λi/∂x̄i = 2ρ2σ̄2
i x̄i. This is positive increasing in x̄i. For any values of ρ2σ̄2

i , there
is an x̄i sufficiently large that λi > λj , ∀j 6= i. Specifically for the supply of aggregate risk, if x̄n is sufficiently
large then λn > λj , ∀j 6= n and thus Knj = K, for all informed investors j. At this corner solution, where
λn > λj , with strict inequality ∀j 6= n, a marginal change in ρ will not change the inequality because λi is
continuous in ρ. Thus, after a marginal change in ρ, it is still true that Knj = K, for all informed investors
j. Because K is unchanged by a marginal change in ρ, the direct effect and the total effect are identical.
Next, consider lower levels of x̄n where a marginal increase in ρ does change K. Since expected return is
continuously differentiable in Kj, and is strictly increasing in ρ for a given capacity allocation, there exists

a ball of parameters such that ∂Kij/∂ρ > 0 for some risk i and E[(q̃j − ¯̃q)′(f̃ − p̃r)] is still increasing in risk
aversion.

Proof of Proposition 7 If the net supply of idiosyncratic risk is small, then expected excess portfolio

return of fund j is E[Rj ]− r = αj + βj(E[rm]− r), where αj =
∑

i 1/ρ
(

var[f̃i](σ
−1
i +Kij)− 1

)

− ρ̄ij.
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Proof. Define the weight that fund j puts on asset i as

ωij ≡
qijpi

∑

k qkjpk
=
qijpi
W0

,

let ωj ≡ [ω1j . . . ωnj ]
′ and define Rj ≡ ω′

jR, where R is the vector of all risky asset returns, [r1, r2, . . . , rn]
′.

The unconditional expected value of fund j’s excess return Rj is

E[ω′
j(R− r)] =

∑

i

E[ωij(ri − r)]

Next, we substitute in the following definitions. Let R be a vector of returns with ith entry Ri ≡ fi/pi and
ωij = piqij/W0 be portfolio weight of investor j on asset i, where W0 is initial wealth and by the budget
constraint W0 =

∑

i piqij .

E[ω′
j(R− r)] =

∑

i

E[
1

W0
piqij(

fi
pi

− r)]

=
1

W0

∑

i

E[qij(fi − pir)]

=
1

W0

∑

i

E[qij ]E[(fi − pir)] + cov[qij , (fi − pir)]

where the last line follows from the definition of a covariance.
First, we work out the sum of the covariances. In matrix notation, this sum is

∑

i cov[qij , (fi − pir)] =
Tr(Cov(qj , (f − pr))). This covariance is slightly different from the unconditional covariance we worked
out to solve the model, because this is a covariance conditional on the signals and price in fund j’s interim
information set. This is the term that will distinguish skilled funds, whose portfolios covary with payoffs,
from unskilled ones. Since f = Γf̃ , qj = (Γ′)−1q̃j , and (Γ′)−1 = (Γ−1)′ we can express this covariance in

terms of risk quantities and payoffs as Tr(Cov((Γ−1)′q̃j ,Γ(f̃ − p̃r))) = Γ−1ΓTr(Cov(q̃j , f̃ − p̃r)). Canceling

the Γ terms and rewriting this as a sum, we obtain
∑

i cov[q̃ij , (f̃i− p̃ir)]. Recall from the portfolio first-order

condition that q̃ij =
1
ρ σ̂

−1
ij (Ej [f̃i]− p̃ir). Thus,

cov[q̃ij , (f̃i − p̃ir)] = 1/(ρσ̂i)var[Ej [f̃i]].

By the law of total variance, the unconditional variance of a posterior belief var[Ej [f̃i]] is the variance of
the prior σi minus the posterior variance σ̂i.

cov[q̃ij , (f̃i − p̃ir)] = 1/(ρσ̂ij)(σi − σ̂ij).

By Bayes’ law, this posterior variance is σ̂ij = 1/(σ−1
i +Kij). Substituting this in we get

cov[q̃ij , (f̃i − p̃ir)] =
1

ρ

(

σi(σ
−1
i +Ki)− 1

)

Since ρ > 0 and the variance term is positive, this covariance is increasing in signal precision Ki.
Next, we work out the product of the expectations E[qij ]E[(fi − pir)] and rewrite it in a CAPM repre-

sentation.

E[qij ]E[(fi − pir)] = E[qij ]E[pi(Ri − r)]

= E[qij ] (E[pi]E[Ri − r] + cov(pi, Ri))

= E[qij ]E[pi]βi(E[rm]− r) + E[qij ]cov(pi, Ri)
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where the last line holds approximately if the relative supply of aggregate risk is large, and thus Ri = βirm.
Using the definitions ω̂ij ≡ E[qij ]E[pi]/W0 and ρ̄ij ≡ −E[qij ]cov(pi, Ri)/W0, we can write

1

W0
E[qij ]E[(fi − pir)] = ω̂jβi(E[rm]− r) − ρ̄ij

Note that since Ri = fi/pi, cov(fi, Ri) < 0, the ρ̄ij terms are positive for positive expected portfolio holdings.
Putting the two pieces together,

Rj =
∑

i

ω̂ijβi(E[rm]− r)− ρ̄ij +
1

ρ

(

var[f̃i](σ
−1
i +Ki)− 1

)

Rj = αj + βj(E[rm]− r)

where αj =
∑

i 1/ρ
(

var[f̃i](σ
−1
i +Ki)− 1

)

− ρ̄ij and βj =
∑

i ω̂ijβi.
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B Model with a General Signal Covariance Structure

For the purposes of this mutual fund theory, we assumed a particular risk factor structure and assumed the
signals are the payoffs of these risk factors, plus independent noise. However, our methodology can solve a
much more general class of models. We show here how to transform any problem with an arbitrary asset
and signal covariance structure into an equivalent problem of independent signals about independent risk
factors.

Model: Suppose there are N assets with a random N × 1 vector of payoffs f ∼ N(µ,Σ). Each agent j
receives a signal vector ηj about linear combinations of these asset payoffs plus noise:

ηj = ψf + ej (51)

where ψ is invertible and the N × 1 vector of signal noise ej ∼ N(0,Σe). Σe and Σ need not be diagonal,
but must be positive-definite and invertible. As before, portfolio choices q maximize (3) subject to (4) and
information choices maximize (6) subject to (7) and (8).

Solution: Begin by using a Cholesky decomposition to transform signals so that each signal is about an
independent payoff event. Consider the transformed signal

Σ−1/2ψ−1ηj = Σ−1/2f +Σ−1/2ψ−1ej (52)

Note that var(Σ−1/2f) = I. Thus, each signal in the signal vector Σ−1/2ψ−1ηj is about an independent
random event – an entry of Σ−1/2f , albeit with correlated signal error.

Next, use an eigen-decomposition to make the signal noise independent. The variance-covariance matrix
of the transformed signal above is Σ−1/2ψ−1Σeψ

−1′Σ−1/2′ = GLG′ where G is the eigenvector matrix and
L is the diagonal matrix of eigenvalues of the variance-covariance matrix. Next, let η̃j ≡ G′Σ−1/2ψ−1ηj , let

f̃ ≡ G′Σ−1/2f and let ẽj ≡ G′Σ−1/2ψ−1ej . Then, premultiplying each term in (52) by G′ yields

η̃j = f̃ + ẽj s.t. var(f̃ ) = I and var(ẽj) = L (diagonal). (53)

The new signal η̃j is simply a linear combination of observed signals ηj . Each new signal (element of

η̃j) is about an independent event – an element of the vector f̃ and each has independent signal noise. To

see that, note that var(f̃ ) = G′Σ−1/2ΣΣ−1/2G. Cancelling inverse matrices yields G′G. Since eigenvector
matrices are idempotent, G′G = I. Thus, var(f̃ ) = I. Furthermore, var(ẽj) = G′Σ−1/2ψ−1Σeψ

−1′Σ−1/2′G.
Substituting in the definition of the eigen-decomposition GLG′, we get var(ẽj) = G′GLG′G. Since G′G = I,
var(ẽj) = L. Since L is an eigenvalue matrix, it is diagonal.

Given this set of independent signals about independent risk factors (combinations of assets with payoffs
f̃), we can follow the steps above to solve our portfolio choice problem: Choose quantities q̃ of each risk
to hold. Compute expected utility from that portfolio problem for a given signal precision matrix Σ−1

e .
Then choose precisions, diagonal entries of the L−1 matrix, to maximize the expected continuation utility,
as outlined in the steps below. Finally, map the solutions of the risk-factor problem q∗, L∗ back to quantities
and precision in the underlying problem: q = Σ−1/2Gq̃∗ and Σe = ψΣ1/2GL∗G′Σ1/2ψ′.
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