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1 Introduction

The standard theory of lifetime utility maximization under uncertainty and liquidity constraints

places enormous informational and computational demands on the consumer. Carroll (2001), a

leading researcher in the area, presents this theory and argues that “when there is uncertainty

about the future level of labor income, it appears to be impossible under plausible assumptions

about the utility function to derive an explicit solution for consumption as a direct (analytical)

function of the model’s parameters”. Similarly, Allen and Carroll (2001) admit that “finding

the exact nonlinear consumption policy rule (as economists have done) is an extraordinarily

difficult mathematical problem”. This problem raises two closely related questions. First, are

there simpler rules that have low welfare costs? And, second, can consumers learn the optimal

rule or a simple low-cost rule? The first question has been studied with positive results for

certain models (see Akerlof and Yellen, 1985a,b; Allen and Carroll, 2001; Cochrane, 1989). On

the other hand, the second question has only been addressed, as far as we know, by Lettau and

Uhlig (1999) and Allen and Carroll (2001), but with negative results.

In this paper, we propose an alternative adaptive theory of consumption behavior, which,

in the spirit of Simon (1990), Arthur (1994) and Clark (1997), places limited demands on

the consumer. We show that consumers who use this adaptive mechanism are able to learn

a rule with a low welfare cost after a few periods. In particular, we show that constant-

relative-risk-aversion consumers who follow a linear consumption rule in wealth and use our

proposed algorithm, which adaptively adjusts the parameters of their rule, lose less than 0.5%

of the equivalent consumption of the fully rational consumption rule within 500 periods with a

probability higher than 0.9. Furthermore, we show that under social learning, the time required

to attain a loss of 0.5% falls to less than 100 periods for some parametrizations. Additionally,

the mean and median welfare losses, under both individual and social learning, fall to around

1% in less than 25 periods.1

1In an independent paper, Evans and McGough (2009) also address the question of adaptive approximation
to optimal intertemporal choice. They present a procedure for updating expectations that is asymptotically fully
optimal in a linear-quadratic environment, given that the decision maker knows enough about her environment
to specify the correct functional form of her policy function. By contrast, we have found an adaptive procedure
for updating the parameters of the policy function that works “reasonably well” even outside a linear-quadratic
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The main problem with adaptive intertemporal choice is that there is no obvious simple

criterion by which to measure the success of a rule one is trying out. Clearly, one has to look

beyond the immediate utility flow it is generating, because the rule also has the potential of

generating consumption in the future. But how does one evaluate that future potential in the

same terms as the current utility flow, without undertaking computations that are as elaborate

as those involved in solving the dynamic programming problem directly?

In both Lettau and Uhlig (1999) and Allen and Carroll (2001) the criterion of success

is an estimate, based on past performance, of the discounted infinite sum of utilities. Lettau

and Uhlig use a variant of Holland’s (1992) classifier system, in which they call the measure

of a rule’s success its “strength”. In each period after a rule has been used, its strength is

adjusted partially towards the sum of the immediate utility attained under the rule last period

plus the discounted strength of the rule that has succeeded it. They show however that the

classifier system does a poor job of approximating optimal consumption behavior, even when

the optimal consumption rule is available to the consumer. Their result follows from the fact

that the system exhibits “state bias”; that is, it favors rules that apply in good states. Allen

and Carroll, on the other hand, assume that the consumer is able to perform what amounts to a

Monte Carlo simulation to evaluate each rule. They show that this procedure, instead of being

quick and simple, actually needs 4 million periods in order to determine the optimal rule in their

parameterization.2 Accordingly, they argue that the procedure “is not an adequate description

of the process by which consumers learn about consumer behavior” (Allen and Carroll, 2001,

p.268).

Our approach follows Allen and Carroll in restricting consumers to rules that are linear in

current wealth (for their parameterization they show that the optimal linear rule is almost as

good as the optimal unrestricted rule). But instead of responding to a measure of cumulative

discounted utility, we assume that the consumer adjusts her rule gradually in response to

environment when the decision-maker does not know the correct functional form. (Özak’s (2009) analytical
results show that our procedure will almost never be asymptotically fully optimal.)

2Allen and Carroll use a 5% threshold in order to assume the optimal rule has been found successfully. Under
this assumption they require 1 million periods in order to get a success rate of 0.75 and of 4 million to get at
least a success rate of 0.85.

3



the difference between the immediate marginal utility implied by the rule and the discounted

marginal utility of next period’s consumption. In effect our criterion of success is the ex post

Euler equation error, and our algorithm operates like a stochastic approximation (see Robbins

and Monro (1951), Ljung (1977) or Kushner and Yin (2003)) for solving the consumer’s Euler

equation.3

Although our approach presumes an awareness of sophisticated notions of Euler equations

and numerical methods, nevertheless the informational and computational requirements of our

algorithm are very low. Moreover, these requirements are independent of the size of the set

of rules or states, which make it a good candidate for an adaptive procedure under bounded

rationality for the problem at hand. In contrast, both requirements are increasing in the number

of rules and states for Lettau and Uhlig and for Allen and Carroll. The reason for this difference

is that in our algorithm, each period a consumer needs to revise the two parameters defining

her linear rule, based only on its performance last period, whereas in the other papers, the

consumer must to keep track of the past performance of a large number of rules under all

states.

In our simulations, the algorithm converges with very high probability (at least 0.80, see

table 4) in less than 500 periods for a set of parameters, which includes the same parameter-

ization that took 4 million periods under the Carroll-Allen procedure. Although this is a big

improvement vis-à-vis previous work, 500 periods is a long time for agents to learn. For exam-

ple, Brown, Chua, and Camerer (2009) who study saving decisions in an experimental setting,

find that their experimental subjects require around 120 periods to learn to behave optimally,

with the average subject attaining around 80% of the optimal around that period. But in a

world of boundedly rational consumers, clearly what matters to them in economic terms is not

how long it takes to converge to a high degree of mathematical precision, but how long it takes

before the welfare loss is small, say two or three percent. In those terms, even after 50 periods

our mechanism imposes a small welfare cost on almost all consumers compared to the fully

3The idea that the opportunity cost of current spending could be learned adaptively through experience
rather than calculated ex ante was suggested by Leijonhufvud (1993) in the context of Marshallian demand
theory.
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optimal nonlinear consumption function (see figures 12-21).

Even 50 years might seem too long for the procedure to be a reasonable description of

opportunistic behavior on the part of the representative consumer. But in our view we should

think of the representative consumer in statistical terms - as the mean or median consumer. This

view accords with a long tradition in economics dating back at least to Marshall (1890, III,3.5),

according to which economists cannot hope to account for the behavior of each individual

with his or her idiosyncrasies, just the average behavior of large groups of individuals. In this

respect it appears that our procedure approximates the optimal consumption behavior of a

representative agent very well indeed; as we shall see in more detail below (tables 7-12), the

mean or median welfare loss under our algorithm in most parameterizations is less than 2%

after less than 10 periods.

In addition to our baseline simulations, we generalize our mechanism in order to study

the effects of social learning, relaxation of credit constraints and changes to the agent’s income

process. Our brief analysis of social learning suggests that when imitation is allowed for, the

time required for losses to be less than 0.5% with probability 0.9 falls to around 100 periods,

while both the mean and median welfare losses become small even faster. On the other hand,

we find that the relaxation of the credit constraint diminishes the incentives for the agents to

learn a good rule and, thus, slows down their learning process. Interestingly, Brown, Chua, and

Camerer (2009) find similar effects in their experiments.

Finally, we deal with the problem of changes in the agent’s environment, in particular

her income process. Obviously, in light of the Lucas critique, any adaptive mechanism must

deal with the question of how to adapt to a change in the consumer’s environment. We argue

below that our procedure can be modified to make the consumer aware of changes in regime.

Furthermore, since for some paramerizations she uses a constant gain adjustment procedure,

even when she is not aware of the change, her ex post reaction to a regime change will be quick

and in the appropriate direction.

The paper proceeds as follows: section 2 presents the model and the different consumption

rules we use; section 3 presents the adaptive algorithm and its properties; section 4 presents
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the measures of welfare we use; section 5 shows the results of the simulations we conducted and

section 6 concludes. All tables and figures are presented in appendix A.

2 The setting

The consumer’s lifetime utility function is U =
∑∞

t=1 δ
tu(ct) where the period utility function

is isoelastic, i.e.

u(ct) =






c1−θ
t −1

1−θ
if θ 6= 1

ln ct if θ = 1

and the discount rate exceeds the rate of interest, so that

0 < δR < 1

where δ is the discount factor, R ≥ 1 is the constant interest factor on one-period bonds. She

starts each period t with wealth wt, of which she consumes the amount ct. She faces a liquidity

constraint

ct ≤ wt (1)

and her wealth evolves according to the flow budget constraint

wt+1 = R (wt − ct) + yt+1,

where yt+1 is next period’s income. We assume that income is an independently and identically

distributed random variable with discrete support {yi}
n

i=1 where y1 < y2 < . . . < yn and the

probability of each yi is pi > 0.

The consumer’s behavior is determined by a consumption function

ct = c (wt) ,

which obeys the liquidity constraint (1). We assume that the consumption function is derived
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from a “notional” consumption function, ĉ (wt), that ignores the liquidity constraint, so that

c (wt) = min {ĉ (wt) , wt} .

We refer to the notional function ĉ(·) as the consumer’s “rule”. In what follows, we assume

that ĉ(·) is increasing and concave, and satisfies

Assumption A. There exists w̃ > 0 such that R (w − ĉ(w)) + yn < w for all w > w̃.

This last assumption guarantees that the consumer’s wealth will be bounded above by

w̃ in the long run. Specifically, theorem 1.2 in Özak (2009, p.7) assures that under the above

assumptions there is a unique invariant wealth distribution, π, whose support is contained in

the interval [y1, w̃].

Additionally, we assume that

ĉ (0) ≥ 0 and (2)

ĉ (w) − w = 0 for some w ∈
(
y1, yn

)
(3)

This implies that when wealth surpasses w the consumer is no longer liquidity constrained, so

that

c (w) =






w if w ≤ w

ĉ (w) < w if w > w

.

We refer to w as the consumer’s “crossover wealth”. The assumption that w > y1 requires

the liquidity constraint to be binding for at least some observable wealth levels in the long-run,

for otherwise, although the agent might start off at a wealth level for which she is constrained,

she would immediately after the first period get income and wealth levels under which she could

never again be constrained.4 On the other hand, the assumption that w < yn requires the

consumer to save with positive probability in the long run, since otherwise (given Assumption

4This follows directly from the liquidity constraint (1) and the flow budget constraint, which together imply
that wt, t ≥ 1, cannot fall below y1.
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A) she would in finite time end up with ct = wt = yt for all t. We call a rule ĉ(·) admissible

if it is increasing, concave and satisfies (2), (3) and Assumption A. The adaptive algorithm we

specify below for revising the consumer’s rule ensures that the rule always remains admissible.

In the next two subsections we show conditions under which the fully optimal consumption

rule and a linear rule are admissible.

2.1 Optimal consumption

The optimal consumption function c∗ (w) can be derived from the dynamic programming prob-

lem:

V (w) = max
c≤w

{u (c) + δEyV (R (w − c) + y)}

where Ey is the expectation with respect to income y. This corresponds to the notional function

ĉ∗ (w) = arg max
c

{u (c) + δEyV (R (w − c) + y)} ,

which we refer to as the “fully optimal” rule. For future reference, note that the first-order

condition defining ĉ∗ (w) is

u′ (c) = Eyq,

where q is the marginal continuation value

q = δRu′
(
c∗

(
R(w − c) + y

))

whose value is not known when c is chosen because it depends on next period’s income y.

It is known that under our assumptions the fully optimal rule ĉ∗(·) is indeed increasing

and concave, that it satisfies (2) and Assumption A, and that for δR large enough (i.e. if the

consumer is patient enough or the interest rate is high enough) it also satisfies (3) and hence

is admissible (see e.g. Carroll, 2004; Carroll and Kimball, 1996; Özak, 2009). From now on

we assume that the consumer is indeed patient enough, so that ĉ∗(·) satisfies (3) and is thus

admissible.
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2.2 Linear consumption

We follow Carroll and Allen (2001) in assuming that the consumer’s consumption rule is linear

with coefficients γ = (α, β), so that

ĉ γ (w) = α + βw.

In order for ĉ γ(·) to be increasing and to obey (2) we need α and β both to be non-negative.

In order to satisfy (3) we also need the marginal propensity to consume β to be less than unity.

The consumer’s crossover wealth is then

w γ =
α

1 − β
> 0

and the consumption function can be written as

cγ (w) = min {wγ + β (w − wγ) , w}

Assumption (3) also requires

(1 − β) y1 < α < (1 − β) yn (4)

and Assumption A requires

β >
R− 1

R
(5)

We say that a coefficient vector γ is admissible if the rule ĉ γ(·) is admissible. Thus, we see that

Proposition 1. The coefficients (α, β) are admissible if and only if α ≥ 0, β < 1 and they

satisfy (4) and (5).

The set of admissible coefficients is denoted A and is illustrated by the shaded triangular area

in Figure 1 below.
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3 Revising the coefficients

The consumer chooses ct according to the consumption function defined by the linear rule ĉ γt(·)

with coefficients γt = (αt, βt), i.e.

ct = min {αt + βtwt, wt}

Then income yt+1 is realized and next period’s wealth becomes

wt+1 = R (wt − ct) + yt+1

Before choosing next period’s consumption the consumer has an opportunity to revise the

coefficients γt. In doing so she first computes the “error” she made in period t− 1

et−1 = qt − u′ (αt−1 + βt−1wt−1)

where qt is the realized marginal continuation value

qt = δRu′ (ct)

Clearly if et−1 = 0 then if she had known that the marginal continuation value was going to

be qt she would have been happy with her choice of coefficients, because it led her to choose a

notional consumption whose marginal utility was just equal to its marginal cost. In this sense,

even with hindsight she did not make a mistake. On the other hand if et−1 6= 0 she made an

ex post error of consuming too much (if et−1 > 0) or too little (if et−1 < 0).

Accordingly, we suppose that her revisions will depend on this error according to the

following multi-step procedure. She begins with a symmetric 2 × 2 “moment” matrix Mt−1,

and then goes through the following steps:
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Algorithm.

1. Choose a new moment matrix Mt using the formula

Mt = (1 − ε)Mt−1 +
[
ξet−1u

′′′ (αt−1 + βt−1wt−1) + u′′ (αt−1 + βt−1wt−1)
2]




1 wt−1

wt−1 w2
t−1




where ε ∈ [0, 1) is a constant gain parameter, ξ ∈ {0, 1} is a parameter allowing further

simplification of the procedure.5

2. If Mt is well conditioned 6 choose a provisional coefficient vector γpt+1 =
(
αpt+1, β

p
t+1

)
ac-

cording to



αpt+1

βpt+1


 =



αpt

βpt


 +M−1

t [et−1u
′′ (αt−1 + βt−1wt−1)]




1

wt−1




3. If Mt is not well conditioned or if the provisional γpt+1 chosen in step 1 is not admissible,

choose the nearest vector to γt that would have eliminated the most recent error, i.e. let

γpt+1 = arg min
γ

(γ − γt)
2

subj to qt − u′ (α + βwt−1) = 0

4. If γpt+1 is still inadmissible, set γpt+1 = γt.

5. Shrink the step size by a factor η ∈ (0, 1] and set the new coefficients according to

γt+1 = γt + η
(
γpt+1 − γt

)
.

5If ε = 0 this algorithm can be written as a decreasing gain algorithm. If ξ = 0 then what would have been
a quasi-Newton method, as explained in the next section, becomes what is known in numerical analysis as a
quasi-Gauss-Newton method, which obviates the need for calculating the third derivative u′′′.

6Specifically, if the condition number r2 (Mt) is less than the conventional limit 1010, indicating that the
matrix is reliably nonsingular. See Judd (1998).
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3.1 Numerical motivation

The first two parts of this procedure (assuming ξ = 1) constitute a simplified, recursive variant

of the standard Newton method for solving the nonlinear weighted least squares problem of

choosing (α, β) to minimize the weighted sum of squared errors:

1

t

k=t∑

k=1

λt−k (u′ (α + βwk−1) − qk)
2

where λ = 1−ε, given the history of marginal continuation values and wealth levels {wk−1, qk}
t

k=1.

The first iteration in Newton’s method starting at αt−1, βt−1 would be




∆αt

∆βt


 = H−1

t

k=t∑

k=1

λt−k [ek−1u
′′ (αt−1 + βt−1wk−1)]




1

wk−1




where Ht is the Hessian matrix

Ht =
k=t∑

k=1

λt−k
[
ek−1u

′′′ (αt−1 + βt−1wk−1) + u′′ (αt−1 + βt−1wk−1)
2]




1 wk−1

wk−1 w2
k−1




Step 2 above produces the same iteration except that (a) it uses only the term involving the

most recent error et−1 whereas the Newton iteration considers all past errors {ek−1}
t−1
1 , and (b)

it uses the moment matrixMt rather than the Hessian Ht. Moreover, the formula in step 1 above

for changing Mt is the same as the formula that describes the change in Ht when observation

t− 1 is added. Thus the first two steps are equivalent to taking a single Newton iteration but

failing to use information from past errors and then failing to update the parameter values

(αk−1, βk−1) in any but the most recent term of the Hessian.

The fallback procedure in step 3 is a myopic steepest-descent method for solving the

same nonlinear least-squares problem. It works as a provisional “projection facility” in case the

recursive quasi-Newton method, which depends on past history as embodied in the moment

matrix fails; specifically, in that case she chooses to ignore history and minimize the most recent

error. This is in the spirit of the Levenberg-Marquard method for solving systems of equations,
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which combines the Newton method with the steepest-descent method in each step. Here the

steepest descent method is used only as a fallback option.

In step 4 the consumer gives up if she still cannot find an admissible coefficient vector. Step

5 is a commonly used prudential measure to reduce the danger of instability from overreacting

to new information.

3.1.1 Q learning

The procedure is also related to what is known in the Artificial Intelligence literature as q

learning (Watkins, 1989). In the present context, q learning would have the consumer attempt

to estimate a relationship between wt−1 and qt, perhaps through least squares learning or neural

networks. Each period she would choose ct according to the rule

u′ (ct) = Êt (qt|wt−1)

where Êt (qt|wt−1) is the estimated value of qt given the current wealth level wt−1 according to

her most recently estimated relationship.

3.2 Informational and computational requirements

The procedure outlined above requires a certain amount of sophistication, in the sense that mo-

ment matrices, Newton methods, condition numbers, Euler equations are not familiar household

names. The consumer must also be sophisticated enough to realize that (a) if her crossover

wealth is less than y1 then her liquidity constraint will never bind, (b) if her marginal propen-

sity to consume is less than (R− 1) /R then her wealth will accumulate with no upper limit

and (c) if her crossover wealth is greater than yn then she will eventually reach a situation

in which her liquidity constraint is binding from then on and will never save. Moreover she

needs to realize that all three of these outcomes are suboptimal for someone with a rate of

time preference greater than the rate of interest but small enough to warrant precautionary

saving, and hence that she should restrict herself to admissible rules. Although this level of
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economic sophistication might seem excessive for a boundedly rational agent, we show below

that dispensing with it, i.e. allowing for rules in a superset of the set of admissible rules, does

not change our results dramatically.

Nevertheless the procedure makes relatively few informational or computational demands

on the consumer, especially in comparison to the demands involved in calculating the optimal

consumption function. This is an important consideration for intelligent behavior in a world

where information storage capacity and computational time are scarce resources. In particular,

all the consumer needs to know is her lifetime utility function, the interest factor R, the gain

parameter ε, the shrinkage factor η and the minimal and maximal possible income levels y1 and

yn. Each period she must remember only 10 numbers: the two most recent coefficient vectors

γt and γt−1, the most recent marginal continuation value qt, the two most recent wealth levels

wt and wt−1, and the three elements defining the most recent moment matrix Mt−1. In addition

to elementary addition and multiplication, she just needs to be able to compute the first three

derivatives of her utility function, to determine the conditioning value of a 2× 2 matrix and to

compute its inverse.

4 Welfare cost

We use two different indices to measure the welfare cost for a consumer of following a specific

linear consumption rule rather than the fully optimal rule. Both indices are based on ex-ante

equivalent consumption for an agent following a certain rule, starting from a randomly assigned

wealth; but each index uses a different probability distribution for assigning initial wealth. The

first index uses the stationary distribution implied by the fully optimal consumption rule,

whereas the second one uses the stationary distribution implied by the specific linear rule. In

either case, the index measures the percentage difference in certainty equivalent consumption

between the fully optimal rule and the linear rule. As will be seen, the two indices produce

very similar results.

More specifically, suppose that initial wealth w0 is assigned randomly according to some
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distribution λ. The ex ante expected lifetime utility of a consumer using the fully optimal rule

is given by

EV ∗ ≡

∫

W

V (w)λ(dw) (EV ∗)

where the value function V is defined in section xxx above. Thus we can define the certainty

equivalent consumption of the fully optimal rule as

CE∗ ≡ u−1(EV ∗ · (1 − δ)) =
[
1 + (1 − θ)(1 − δ)EV ∗

] 1

1−θ

(CE∗)

For any given w0, the expected life-time utility of a consumer using the specific linear rule

ĉ γ(w) with parameters γ = (α, β), is given by

Uγ(w0) =
∞∑

t=0

E0

[
δtu

(
min {α+ βwt, wt}

)]
, (6)

where wt evolves according to the flow budget constraint. So, given the distribution λ of w0,

the ex-ante expected lifetime utility and the certainty equivalent consumption for this specific

rule are given by

EV γ ≡

∫

W

Uγ(w)λ(dw) and (EV γ)

CEγ ≡ u−1(EV γ · (1 − δ)) =
[
1 + (1 − θ)(1 − δ)EV γ

] 1

1−θ

(CEγ)

If the wealth process generated by c∗(w) satisfies Assumption A, then there exists a unique

ergodic invariant distribution over wealth π∗. In this case, let EV ∗
∗ , CE∗

∗ , EV
γ
∗ and CEγ

∗ be

the values implied respectively by (EV ∗), (CE∗), (EV γ) and (CEγ) when λ = π∗. Thus our

first index of welfare cost for a consumer using the rule ĉγ is

Dγ
1 =

EC∗
∗ − ECγ

∗

EC∗
∗

∗ 100.

If the linear consumption rule satisfies Assumption A, let πγ be the unique invariant distribution

determined by the rule and let EV ∗
γ , CE

∗
γ , EV

γ
γ and CEγ

γ be the values when λ = πγ. Thus
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our second index of welfare cost for a consumer using the rule ĉ γ is

Dγ
2 =

EC∗
γ − ECγ

γ

EC∗
γ

∗ 100.

5 Numerical results

5.1 Baseline scenario

In order to study the behavior of the algorithm, we simulate the model for a set of values of

the CRRA parameter θ and the discount factor δ, using the same interest factor R and the

same income process but with different initial conditions. We used the income process studied

by Allen and Carroll (2001), which according to these authors “matches (very roughly) the

empirical evidence on the amount of transitory variation in annual household income observed

in the Panel Study of Income Dynamics”. The income process is defined by (y1, y2, y3) =

(0.7, 1.0, 1.3) with probabilities (p1, p2, p3) = (0.2, 0.6, 0.2) respectively. We also assumed R = 1

as these authors do, allowing us to compare our algorithm with theirs in a transparent way. We

took δ ∈ {0.9, 0.95}, θ ∈ {1.5, 2, 3.0, 3.5, 4}, which includes the values Allen and Carroll (2001)

assumed in their work (δ = 0.95 and θ = 3), η ∈ {0.5, 1}, ξ ∈ {0, 1} and ε ∈ {0, 0.2}. We

evaluated the linear rules in the [0, 2]× [0, 2] space with a grid of 40,000 points, each separated

at a distance of 0.01. Finally, we analyzed all rules, both the optimal one and the linear ones,

constraining wealth to be in [0, 5] at all times.

5.1.1 Consumption rules and welfare

As a first step, we calculated the optimal consumption function c∗(w) for each parameter config-

uration. Figure 2 shows the rational consumption function c∗ for each parameter configuration.

Under our assumptions, we have that Assumption A is satisfied if c∗(w) = 1.3 for some w, which

as the figure shows, clearly holds for all our parameters, so there exists a unique distribution

π∗ for each parameter configuration, allowing us to calculate EV ∗
∗ and CE∗

∗ . As can be seen in

table 1, EV ∗
∗ is decreasing in both δ and θ, while CE∗

∗ is decreasing in θ and increasing in δ.
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In table 3 we present the optimal linear rule for each set of parameters. As can be seen there,

all optimal rules imply that Assumption A holds, so we can also compute EV γ
∗ , ECγ

∗ , EV γ
γ ,

ECγ
γ , EV

∗
γ and CE∗

γ . Our calculations show that the behavior of all EV ’s and EC’s is similar

to EV ∗
∗ and EC∗

∗ with respect to the underlying parameters, i.e. all EV ’s decrease in both θ

and δ, while all EC’s decrease in θ and increase in δ.

As can be seen in figures 3-7, most linear rules in [0, 2] × [0, 2] generally have a low cost,

according to both our indices. Furthermore, as figures 8-11 show, the set of consumption rules

that achieve a percentage deviation less than or equal to 0.5% under both the optimal and the

actual distribution of initial wealth is compact and of positive Lebesgue measure. The optimal

linear rule belongs to this set, has a marginal propensity to consume in the range 0.2-0.4 and

its costs are in the range 0.2%-0.3% for our set of parameters (see table 3), which is very

low and generalizes the case studied by Allen and Carroll (2001). Table 3 also shows the loss

incurred when the agent follows the “consume everything” rule γ = (0, 1) and the expected loss

of taking a rule at random from the whole set of parameters and from the admissible set.7 As

can be seen there, if the agent figures out that she should always have a rule in the admissible

set, she can lower her expected loss by almost 40%. On the other hand, if she follows the

“consume everything” rule, which is the simplest of all rules, she can lower her loss even below

her expected loss in the admissible set. This is an interesting result, which we are not aware

has been pointed out in the literature, and which might be an explanation as to why people

save less than optimally. If consumers are boundedly rational and try a random rule in order

to see if it performs better than the consume everything rule, they will be disappointed in

general, which will favor the continued use of the consume everything rule. This feature makes

it a good convention to follow. Still, there are big gains to be attained from figuring out the

optimal consumption rule, which can lower losses three to twentyfold compared to the consume

everything rule.

7Cochrane (1989) realizes similar calculations and finds even smaller levels of losses. This is due in part to
the fact that he uses aggregate income in order to simulate the income process of the agent. As will be seen
below, the support of the distribution of the income process has a big impact on the welfare losses each linear
rule generates.
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5.1.2 Adaptive behavior

In order to understand the behavior of the algorithm we ran 20,000 simulations for each pa-

rameter configuration with random initial wealth and a random initial admissible linear rule.

Figures 12-21 show the behavior of the distribution of welfare losses Dγt

1 and Dγt

2 across time

for all simulations for ε = 0, ξ = 1 and η = 1, where Dγt

1 and Dγt

2 are calculated for the rule

with parameters γt = (αt, βt). The behavior of the distribution is summarized in these figures

by the maximum and minimum loss (black lines), the mean (blue), the median (green) and the

25-th, 75-th, 90-th, 95-th, 99-th and 99.9-th percentiles (red lines). Notice that the values of all

these measures decrease for the first 100-250 periods and then follow a flatter trajectory, which

seems to indicate that within that time frame the algorithm achieves its stationary distribution,

which is more concentrated around the mean.

In those same figures (12-21) we present the behavior of the consumption rule parameters

and their distribution. The story here is also similar, showing convergence towards a long-run

distribution of the parameters and a higher concentration of the probability of those param-

eters around their mean in roughly 250 periods or less. In order to better appreciate what is

happening, in table 4 we show for periods 0, 50, 100, 250 and 500, the probability of having a

loss less than or equal to 0.5%, i.e. the probability that the consumption rule in that period

belongs to the sets identified in figures 8-11. As can be seen in this table, the probability rises

extremely fast, going from almost zero in period 0 for most parameter configurations, to values

above 30-40% in period 50, increasing above 40-60% in period 100, reaching levels above 80%

by period 250 and above 90% by period 500. Clearly there is much variation in the speed of

convergence to these sets, with the cases (δ, θ) = (0.9, 1.5) and (δ, θ) = (0.95, 1.5) being the

ones with the highest rates of convergence and the cases (δ, θ) = (0.9, 4) and (δ, θ) = (0.95, 3.5)

with the slowest convergence rates. This seems to be explained by the effect that both increases

in δ and in θ have on the size of the set of parameters that achieve a loss of less than 0.5%.

However, it is not clear how changes in the underlying parameters affect the speed of conver-

gence, though this relation seems highly non-linear. In part, this seems to be generated by the

fact that changes in θ and δ have similar effects on the curvature of c∗, where increases in δ or
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in θ make the function more concave. So, two functions, one with a high value of δ and a low θ

and the other with a low δ and high θ might be very similar on the domain of interest (see e.g.

the rational consumption functions for (δ, θ) = (0.9, 4) and (δ, θ) = (0.95, 2), or, (δ, θ) = (0.9, 3)

and (δ, θ) = (0.95, 1.5)), so that their respective rates of convergence are also similar.

We repeated the simulations assuming different values of (ε, η, ξ). Given the overall sim-

ilarity of the results we do not present them here in detail, but limit ourselves to highlight

the major differences with our previous simulations.8 Under this new set of parameters, the

behavior of the distributions of losses and parameters in terms of convergence to a stationary

distribution within 250 periods was similar as before, though the dispersion around the mean

increased and the speed of convergence decreased especially for ε = 0.2. One striking effect of

this was that the long-run probability of having a consumption rule in the set of consumption

rules with losses less than or equal to 0.5% fell, in some cases dramatically, and stayed sta-

tionary at that level without any tendency to converge towards 1 as was the case before. Still,

this probability was bounded away from zero for all the simulations we realized. In table 5 we

compare the different trajectories for the case θ = 3.5 and δ = 0.95, which was the case with

the slowest convergence rate in our baseline simulations.

5.1.3 Social Learning

We additionally looked at the effects of allowing agents to learn through social interaction. To

do so, we set up agents on circles of 25, 50, 100, 200 individuals and allowed each agent to

interact with his left, right or both left and right neighbors. Each agent was allowed to see her

neighbor’s γpt+1. Let i denote the agent and Ni the set of neighbors of agent i, φ ∈ [0, 1], then

step 5 of the algorithm works in the following way

(5’) Shrink the step size by a factor η ∈ (0, 1]:

γi,t+1 = γi,t + η
(
φγpi,t+1 +

(1 − φ)

|Ni|

∑

j∈Ni

γpj,t+1 − γi,t

)

8These results can be obtained from the authors by request.
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Allowing for this type of interaction speeds up and increases the probability of convergence

of the algorithm significantly as can be seen in table 6. Since neighbor’s initial conditions were

randomly set, this type of social learning can be interpreted as a “keeping up with the Jones’”

scheme, where each agent considers each of her neighbors as the Jones family.

5.1.4 Credit constraints

Additionally, we analyzed how the credit constraint affected learning. So, we relaxed the

credit constraint allowing agents to consume at most wt + B every period, where we took

B ∈ {0.1, 0.3}. These simulations showed that the more the constraint was relaxed the slower

agents seemed to learn. This result can be seen as a confirmation of the conjecture proposed by

Satz and Ferejohn (1994), who argue that the more constrained agents are, the more powerful

their incentives to behave rationally. Overall we found that the behavior of this new set of

simulations was similar to the ones described previously, i.e. the less rational agents were

assumed to be, the slower they learned, though they did learn nonetheless.

5.2 Shocks to income

In all the previous simulations we held the income process fixed and changed the different

parameters of the model. In this subsection we hold the parameters fixed at θ = 3.5, δ = 0.95,

B = 0, η = 1, ǫ = 0, ξ = 1 and φ = 1, but change the income process. We analyze 4 additional

income processes and compare the behavior of the algorithm and the implied welfare costs under

these new processes with the one implied by the original process. In order to have comparable

results across simulations, we now allow wealth to be in the range [0, 10] and consider a grid of
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wealth levels 0.0025 apart. The income processes we consider are:

Y 1 = (0.7, 1, 1.3) P 1 = (0.2, 0.6, 0.2)

Y 2 = (1.4, 2, 2.6) P 2 = (0.2, 0.6, 0.2)

Y 3 = (1, 1.4, 2, 4.1) P 3 = (0.1, 0.2, 0.6, 0.1)

Y 4 = (0.3, 0.7, 1, 2.1) P 4 = (0.05, 0.25, 0.6, 0.1)

Y 5 = (0.1, 0.7, 1, 1.3, 1.9) P 5 = (0.05, 0.15, 0.6, 0.15, 0.05)

Figure 22 shows the optimal consumption rules for these cases, while table 13 presents the losses

and optimal rules for these income processes. As can be seen there, the differences in the income

processes generate quite big and striking differences in the expected losses an agent faces under

different rules. For some income processes, e.g. Y 4 and Y 5, only very few linear rules have low

expected losses, as can be seen in figures 23-26. This implies that using a random rule is quite

costly. Also, the consume everything rule fares badly, since in these cases the lowest income is

close to zero, generating huge losses for the agent if she ends up being wealth constrained. On

the contrary, the optimal linear rule for each process still has a relatively low associated loss.

Furthermore, the marginal propensity to consume stays in the same range across cases (ca.

0.17-0.25). These results imply that a simple adaptive algorithm, as the one proposed in this

paper, can have big welfare effects for boundedly rational agents, if the algorithm converges

to low welfare losses in general. Table 14 shows the evolution of the probability of having a

rule with a loss lower than 3% when using the algorithm. We increased the range to 3% given

that for some of the income processes no rule has a loss less than 0.5% and almost no rule

has a loss less than 1%. As can be seen in table 14, the qualitative dynamics are very similar

to the ones we had found in our original setup, so that the rate of convergence is similar to

our baseline simulation for most processes. The exception is Y 5 for which convergence requires

close to double the time as in the other scenarios.

Until now, we have assumed that agents do not use any other information of the income

process except its lowest and highest possible levels. One way in which this might slow con-
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vergence to the optimal rule is that the agent cannot distinguish a situation where the Euler

error et−1 is high because of a bad income draw from a situation in which et−1 is high because

of a bad rule. Furthermore, the agent would not notice any changes in the stochastic process

determining income, if these do not affect the range of values that can occur. This is especially

important in the case where ǫ = 0, since this would imply that if she had been learning for

while, it would be difficult for her to change her behavior. On the other hand, if ǫ > 0 the

agent’s behavior never settles down, so that she will incorporate any changes in her environment

into her behavior, even if she does not realize there has been a change.

In order to deal with this issue, we now assume that agents update their parameters in

the same way as before, but change the manner in which they calculate qt. Instead of using

the realized continuation value, an agent uses the average realization of the continuation value

under their current parameters, i.e.

qt = δR

n∑

i=1

piu′(cit), (ID)

where cit is the amount she would have consumed if she had received income level yi in period

t, i.e.

cit = min
{
αt + βt(R(wt−1 − ct−1) + yi), R(wt−1 − ct−1) + yi

}
, i = 1, . . . , n.

This change requires the agent to know the whole distribution of the income process, so that

2(n−1) additional numbers have to be remembered by the agent. Table 15 shows the evolution

of the probability of being at a loss lower than 3%. As expected, the time to convergence is

generally lowered, or equivalently, the probability of being close to the optimal rule is increased

for any period for all income processes studied.

This modification to our algorithm inoculates it against the Lucas critique. That is,

the agent can now respond immediately to a change in regime by modifying her behavior

accordingly. To see how this works, we analyzed the effects of a shock to income in which the

income process changes to some other one in the set of processes we have studied, and then 25
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years later returns unexpectedly to the original process, assuming that the consumer is informed

immediately of each change in the income process. Given that we have assumed that agents are

sophisticated enough to know that the optimal rule lies in the set AY of admissible rules, which

depends on the income process, we need an assumption specifying the way in which agents

react to the new information of a change in the income process. One possible assumption is

that agents dismiss all their accumulated experience up to that point and start the process from

scratch. This amounts to almost the same exercise we have done in the previous simulations,

except that the initial distribution of wealth will be closer to the stationary distribution of

the original process. Given the fact that initial wealth conditions do not affect the long-run

evolution of the system, we do not need to analyze this scenario again. Instead, we assume

that agents keep their marginal propensity to consume β, while changing α in such a way as to

keep the relative position of the rule in the new set AY ′ similar to the one in AY . In particular,

assuming that the agent’s rule is γt = (αt, βt) at the moment of the shock, she can determine

the value ψ ∈ (0, 1) such that βt = αt ∗
(
ψy1 + (1 − ψ)yn

)
, and then use that value in order

to find her new starting α′
t = βt

ψy
′1+(1−ψ)y

′n
. Figures 27-30 show the dynamics when agents’

income follows Y 1 in periods 1-25 and 51-100, while it follows Y i, i 6= 1 during periods 26-50.

As can be seen there, a permanent shock to income has various effects. First, the distribution

of consumption, wealth, (αt, βt), and losses become more disperse during the shock. Second,

welfare losses overshoot, and only slowly decrease towards the minimum loss. Interestingly, the

effect on welfare is bigger on the average than on the median. This seems to come from the

huge difference between the low losses implied by good rules and the big losses generated by

bad rules. Thus, even the existence of one individual with a significantly bad loss, increases

the average loss towards high values, even though most individuals might be having low losses.

Third, although the effect on consumption comes mostly from the change in the value of the

intercept, which jumps discretely at the moment of the shock, it is the distribution of the

marginal propensity to consume that changes the most during the shock period.
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6 Conclusion

The assumption of complete rationality has increasingly been criticized due in part to the high

complexity of many solutions in economic models under this assumption. In response, models

of bounded rationality and learning have recently flourished in economics, though the study

and application of these ideas to approximate solutions of stochastic dynamic programming

problems is still an emerging area. In particular, the study of consumption-saving decisions

under uncertainty and liquidity constraints has been pursued by only a couple of papers with

limited or negative results.

In this paper we have proposed an adaptive algorithm based on Euler equations and have

studied its behavior through time using simulations. We have shown that this algorithm allows

agents to have low welfare losses with high probability in a short time. In our simulations

the probability of being in a neighborhood of the optimal rule is close to 1 within 500 periods

for a set of commonly used parameterizations. Furthermore, we have generalized our adaptive

procedure in order to allow for social learning and changes in the environment. In both cases

the procedure had a similar behavior to our baseline model, with convergence of behavior to

rules with low associated costs (less than 3%) with probabilities over 0.85 within 500 periods

for most parametrizations. Additionally, we analyzed the effect of softer liquidity constraints

on agent’s behavior. As expected, we found that lower constraint levels induce agents to learn

more slowly, since the cost of not behaving optimally falls. These results imply much faster

learning than previous results in the literature, which were derived from learning algorithms

based on estimation of the value function for different rules.

An additional feature of the adaptive theory we studied here is its continual out-of-

equilibrium non-optimal dynamics at the individual level, where each agent’s behavior never

settles down and is non-optimal almost all the time. At the same time, aggregate behavior

converges to an equilibrium, in which the average or median agent seems to be behaving (nearly)

optimally. This property is missing in many macroeconomic models, in which both the system

and the individual behave similarly, falling into a fallacy of composition. We have shown that

very simple variations of the model can incorporate ideas of social learning and structural
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change, without generating an increased informational or computational burden for the agent.

Furthermore, the theory is so simple that any sophisticated agent could use pen and paper to

update their consumption rule in a way that will give her a higher level of welfare.

Even though our results seem promising, more research into this model and its extensions

is required in order to see if such an approximation to the rational solution is learnable within

the lifetime of one individual.9 All the simulations were based on parameterizations, which

implied an annual interpretation of time. It would be interesting to analyze the model under

parameterizations that allowed for updating of the rule to occur on a monthly or quarterly

basis. If the time for convergence is still of the same order, one could argue with confidence

that this is a good model of adaptive consumption behavior.

If further exploration of the model proves successful, it would be a step in the direction

of an alternative bottom-up approach to macroeconomics, along the lines advocated by Wein-

traub (1979), Leijonhufvud (1993) and others.10 This bottom-up approach would endow agents

not with decision rules that are always perfectly tailored to their specific environment, but

rather with simple all-purpose rules that allow the agent to adapt in a plausibly opportunistic

yet imperfect fashion to any given environment. This approach would allow us to ask how an

economic system works to coordinate, for better or worse, the independent decisions of hetero-

geneous interacting agents; a question that the more conventional top-down approach evades

by restricting attention to equilibrium states. We need a bottom-up approach in order to un-

derstand how the “invisible hand” works in actual free market systems, to diagnose what has

gone wrong when coordination failure leads to macroeconomic crisis, and to prescribe system

changes that reduce the likelihood of such failures.

9Özak (2009) presents analytical results on the behavior of the model for both linear and polynomial con-
sumption rules.

10In particular, Weintraub (1979) argues that “a successful reconciliation of micro and macro might entail a
return to Marshallian price theory, or a well worked out statement of individual behavior in a non-optimizing
framework” (Weintraub, 1979, p.157).
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Appendices

A Tables and Figures

Table 1: EV ∗
∗ , EC∗

∗ , EV
∗
γ and EC∗

γ under optimal linear rule, for each configuration of δ and θ

δ θ EV ∗
∗ EC∗

∗ EV ∗
γ EC∗

γ

0.9 1.5 -0.1607 0.9841 -0.1650 0.9837

2 -0.1731 0.9830 -0.1786 0.9824

3 -0.2001 0.9806 -0.2027 0.9803

3.5 -0.2128 0.9795 -0.2220 0.9786

4 -0.2257 0.9784 -0.2275 0.9782

0.95 1.5 -0.1962 0.9903 -0.1987 0.9901

2 -0.2184 0.9892 -0.2213 0.9891

3 -0.2555 0.9875 -0.2554 0.9875

3.5 -0.2709 0.9868 -0.2819 0.9862

4 -0.2856 0.9861 -0.2848 0.9862
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Figure 1: Admissible set of parameters.
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Figure 2: Optimal Consumption function for different parametrizations
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Table 2: EV γ
∗ , ECγ

∗ , EV γ
γ and ECγ

γ under optimal linear rule, for each configuration of δ and θ

δ θ EV γ
∗ ECγ

∗ EV γ
γ ECγ

γ

0.9 1.5 -0.1961 0.9807 -0.2003 0.9803

2 -0.2092 0.9795 -0.2148 0.9790

3 -0.2382 0.9770 -0.2408 0.9768

3.5 -0.2515 0.9759 -0.2607 0.9751

4 -0.2662 0.9747 -0.2680 0.9746

0.95 1.5 -0.2705 0.9866 -0.2730 0.9865

2 -0.2943 0.9855 -0.2972 0.9854

3 -0.3349 0.9837 -0.3347 0.9837

3.5 -0.3525 0.9829 -0.3635 0.9824

4 -0.3319 0.9839 -0.3310 0.9840
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Table 3: Percentage difference between between equivalent consumption measures, Dγ
1 =

EC∗

∗
−EC

γ
∗

EC∗

∗

∗ 100 and Dγ
2 =

EC∗

γ−EC
γ
γ

EC∗

γ
∗ 100, and optimal linear rule. Percentage loss under the

consume everything rule and expected loss over the whole set of parameters and conditional on
rule being in the admissible set.

Optimal Rule Consume Everything Random Rule

δ θ Dγ
1 Dγ

2 α∗ β∗ D
(0,1)
1 D

(0,1)
2 E(Dγ

1 ) E(Dγ
1 | A) E(Dγ

2 ) E(Dγ
2 | A)

0.9 1.5 0.35 0.35 0.61 0.39 0.98 0.93 6.54 3.79 6.34 3.27

2 0.35 0.35 0.62 0.36 1.54 1.38 7.00 4.19 6.61 3.48

3 0.36 0.36 0.61 0.34 3.00 2.50 8.16 5.28 7.38 4.16

3.5 0.37 0.36 0.65 0.30 3.84 3.11 8.80 5.90 7.82 4.55

4 0.38 0.38 0.65 0.29 4.71 3.74 9.49 6.57 8.28 4.98

0.95 1.5 0.37 0.37 0.63 0.33 1.57 1.45 5.78 3.09 5.64 2.77

2 0.37 0.37 0.66 0.29 2.34 2.10 6.41 3.65 6.14 3.20

3 0.38 0.38 0.71 0.23 4.09 3.52 7.84 4.96 7.28 4.21

3.5 0.39 0.39 0.73 0.21 5.03 4.26 8.60 5.68 7.89 4.75

4 0.22 0.22 0.72 0.21 5.79 4.83 6.97 5.57 4.94 4.19
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Table 4: Probability of Dγt

1 or Dγt

2 below 0.5% at different periods for different parametrizations
of the algorithm for η = 1, ξ = 1 and ε = 0.

t = 0 t = 50 t = 100 t = 250 t = 500

δ θ Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2

0.9 1.5 0.2863 0.2950 0.8980 0.8943 0.9650 0.9581 0.9954 0.9927 0.9997 0.9993

2 0.1410 0.1444 0.7706 0.7748 0.9181 0.9149 0.9847 0.9791 0.9963 0.9945

3 0.0127 0.0127 0.4573 0.4390 0.6538 0.6232 0.8781 0.8398 0.9644 0.9424

3.5 0.0104 0.0107 0.4214 0.4204 0.6241 0.6188 0.8678 0.8577 0.9544 0.9490

4 0.0082 0.0084 0.3706 0.3695 0.5725 0.5667 0.8300 0.8184 0.9405 0.9290

0.95 1.5 0.0659 0.0667 0.7436 0.7461 0.9017 0.9021 0.9772 0.9772 0.9877 0.9877

2 0.0155 0.0155 0.5636 0.5614 0.7575 0.7516 0.9212 0.9159 0.9675 0.9649

3 0.0080 0.0086 0.3535 0.3643 0.5453 0.5575 0.7741 0.7827 0.8909 0.8972

3.5 0.0075 0.0079 0.2739 0.2841 0.4241 0.4376 0.6544 0.6706 0.8003 0.8138

4 0.0159 0.0176 0.4773 0.5009 0.6622 0.6913 0.8552 0.8736 0.9248 0.9319

Table 5: Probability of Dγt

1 or Dγt

2 below 0.5% at different periods for different parametrizations
of the algorithm for θ = 3.5 and δ = 0.95.

t = 0 t = 50 t = 100 t = 250 t = 500

η ξ ε Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2

0.5 0 0.2 0.0075 0.0079 0.2730 0.2783 0.2497 0.2520 0.2284 0.2307 0.2223 0.2243

0.5 0 0 0.0075 0.0079 0.2222 0.2329 0.2919 0.3057 0.3999 0.4193 0.4970 0.5167

0.5 1 0.2 0.0075 0.0079 0.2549 0.2627 0.2893 0.2981 0.2922 0.3000 0.2933 0.3011

0.5 1 0 0.0075 0.0079 0.1468 0.1519 0.1954 0.2019 0.2799 0.2888 0.3660 0.3750

1 0 0.2 0.0075 0.0079 0.1355 0.1395 0.1267 0.1303 0.1203 0.1230 0.1216 0.1243

1 0 0 0.0075 0.0079 0.2234 0.2328 0.3355 0.3497 0.5153 0.5344 0.6404 0.6561

1 1 0.2 0.0075 0.0079 0.1273 0.1324 0.1262 0.1309 0.1265 0.1316 0.1279 0.1324

1 1 0 0.0075 0.0079 0.2739 0.2841 0.4241 0.4376 0.6544 0.6706 0.8003 0.8138
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Table 6: Probability of Dγt

1 or Dγt

2 below 0.5% at different periods for different parametrizations
of the algorithm under social learning for φ = 1

3
, θ = 3.5 and δ = 0.95.

Indiv=200,
Neigh=2

t = 0 t = 50 t = 100 t = 250 t = 500

η ξ ε Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2

0.5 0 0.2 0.0075 0.0079 0.5216 0.5216 0.2787 0.2787 0.1790 0.1790 0.1841 0.1841

0.5 0 0 0.0075 0.0079 0.6502 0.6620 0.8203 0.8243 0.9606 0.9606 0.9939 0.9939

0.5 1 0.2 0.0075 0.0079 0.5980 0.5997 0.6468 0.6475 0.6531 0.6538 0.6380 0.6389

0.5 1 0 0.0075 0.0079 0.0276 0.0278 0.0549 0.0549 0.1800 0.1800 0.2898 0.2898

1 0 0.2 0.0075 0.0079 0.4351 0.4356 0.3520 0.3522 0.3308 0.3308 0.3397 0.3397

1 0 0 0.0075 0.0079 0.8995 0.9020 0.9848 0.9849 0.9992 0.9992 1.0000 1.0000

1 1 0.2 0.0075 0.0079 0.4810 0.4875 0.4794 0.4862 0.4850 0.4910 0.4760 0.4826

1 1 0 0.0075 0.0079 0.7925 0.7960 0.9513 0.9513 0.9991 0.9991 1.0000 1.0000
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Table 7: Expected loss under optimal distribution, EDγt

1 , and under linear rule’s distribution,
EDγt

2 , at different periods for different parametrizations of the consumer’s problem for η = 1,
ξ = 1 and ε = 0.

t = 0 t = 5 t = 10 t = 25 t = 50

δ θ EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2

0.9 1.5 1.20 1.38 1.09 1.26 0.77 0.85 0.48 0.50 0.42 0.42

2 1.33 1.43 1.35 1.48 0.96 1.04 0.58 0.59 0.47 0.48

3 2.12 2.04 1.97 1.97 1.42 1.44 0.81 0.81 0.60 0.60

3.5 2.65 2.46 2.33 2.26 1.70 1.68 0.94 0.94 0.67 0.66

4 3.24 2.93 2.72 2.58 2.00 1.94 1.10 1.08 0.75 0.74

0.95 1.5 1.26 1.28 1.25 1.30 0.90 0.93 0.58 0.58 0.49 0.49

2 1.72 1.69 1.59 1.60 1.12 1.13 0.69 0.69 0.56 0.55

3 2.91 2.70 2.33 2.25 1.69 1.65 0.95 0.93 0.71 0.70

3.5 3.61 3.29 2.79 2.65 2.01 1.94 1.12 1.08 0.80 0.78

4 4.06 3.57 2.96 2.63 2.13 1.94 1.11 1.04 0.73 0.69
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Table 8: Median loss under optimal distribution, MDγt

1 , and linear rule’s distribution, MDγt

2 ,
at different periods for different parametrizations of the consumer’s problem for η = 1, ξ = 1
and ε = 0.

t = 0 t = 5 t = 10 t = 25 t = 50

δ θ MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2

0.9 1.5 0.67 0.65 0.67 0.65 0.55 0.54 0.41 0.42 0.39 0.38

2 0.98 0.92 0.96 0.91 0.73 0.71 0.49 0.48 0.43 0.43

3 2.02 1.79 1.68 1.54 1.14 1.10 0.65 0.65 0.51 0.52

3.5 2.68 2.32 2.10 1.89 1.38 1.30 0.73 0.74 0.54 0.54

4 3.36 2.86 2.54 2.26 1.65 1.55 0.82 0.81 0.58 0.58

0.95 1.5 1.09 1.04 0.94 0.90 0.69 0.69 0.49 0.49 0.44 0.44

2 1.66 1.55 1.27 1.22 0.89 0.87 0.57 0.57 0.48 0.48

3 3.04 2.74 2.06 1.92 1.33 1.28 0.75 0.73 0.57 0.57

3.5 3.84 3.42 2.52 2.32 1.59 1.50 0.85 0.83 0.63 0.62

4 4.42 3.88 2.79 2.52 1.69 1.57 0.78 0.74 0.52 0.50
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Table 9: Expected loss under optimal distribution, EDγt

1 , and under linear rule’s distribution,
EDγt

2 , at different periods for different parametrizations of the algorithm for θ = 3.5 and
δ = 0.95.

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2

0.5 0 0.2 3.61 3.29 2.51 2.30 1.74 1.63 1.05 1.01 0.94 0.93

0.5 0 0 3.61 3.29 2.49 2.30 1.71 1.60 1.12 1.07 0.92 0.89

0.5 1 0.2 3.61 3.29 2.73 2.47 2.02 1.85 1.14 1.09 0.81 0.80

0.5 1 0 3.61 3.29 2.75 2.49 2.13 1.95 1.47 1.38 1.12 1.07

1 0 0.2 3.61 3.29 2.79 2.82 2.67 2.86 2.01 2.07 1.95 2.05

1 0 0 3.61 3.29 2.79 2.81 2.38 2.51 1.51 1.49 1.28 1.26

1 1 0.2 3.61 3.29 2.79 2.65 2.17 2.13 1.40 1.42 1.24 1.25

1 1 0 3.61 3.29 2.79 2.65 2.01 1.94 1.12 1.08 0.80 0.78

Table 10: Median loss under optimal distribution, MDγt

1 , and under linear rule’s distribution,
MDγt

2 , at different periods for different parametrizations of the algorithm for θ = 3.5 and
δ = 0.95.

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2

0.5 0 0.2 3.84 3.42 2.46 2.28 1.39 1.33 0.75 0.74 0.67 0.66

0.5 0 0 3.84 3.42 2.46 2.28 1.31 1.26 0.82 0.79 0.69 0.67

0.5 1 0.2 3.84 3.42 2.84 2.59 1.82 1.69 0.85 0.83 0.66 0.65

0.5 1 0 3.84 3.42 2.87 2.62 1.97 1.84 1.21 1.16 0.92 0.89

1 0 0.2 3.84 3.42 2.13 1.98 1.69 1.61 1.10 1.08 1.00 1.00

1 0 0 3.84 3.42 2.13 2.01 1.52 1.45 0.91 0.88 0.70 0.68

1 1 0.2 3.84 3.42 2.52 2.32 1.72 1.62 1.06 1.03 0.98 0.96

1 1 0 3.84 3.42 2.52 2.32 1.59 1.50 0.85 0.83 0.63 0.62
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Table 11: Expected loss under optimal distribution, EDγt

1 , and under linear rule’s distribution,
EDγt

2 , at different periods for different parametrizations of the algorithm under social learning
for φ = 1

3
, θ = 3.5 and δ = 0.95.

Indiv=200,
Neigh=2

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2 EDγt

1 EDγt

2

0.5 0 0.2 3.61 3.29 2.30 2.11 1.09 1.03 0.54 0.54 0.58 0.59

0.5 0 0 3.61 3.29 2.31 2.11 1.09 1.03 0.57 0.56 0.49 0.48

0.5 1 0.2 3.61 3.29 2.44 2.22 1.52 1.42 0.69 0.68 0.52 0.52

0.5 1 0 3.61 3.29 2.45 2.23 1.63 1.52 1.00 0.97 0.77 0.75

1 0 0.2 3.61 3.29 1.65 1.53 0.97 0.93 0.64 0.63 0.71 0.71

1 0 0 3.61 3.29 1.66 1.54 0.88 0.85 0.50 0.49 0.44 0.44

1 1 0.2 3.61 3.29 1.69 1.56 0.99 0.95 0.61 0.60 0.58 0.58

1 1 0 3.61 3.29 1.71 1.57 0.92 0.88 0.54 0.53 0.46 0.46
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Table 12: Median loss under optimal distribution, MDγt

1 , and under linear rule’s distribution,
MDγt

2 , at different periods for different parametrizations of the algorithm under social learning
for φ = 1

3
, θ = 3.5 and δ = 0.95.

Indiv=200,
Neigh=2

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2 MDγt

1 MDγt

2

0.5 0 0.2 3.84 3.42 2.39 2.21 0.91 0.87 0.46 0.46 0.48 0.48

0.5 0 0 3.84 3.42 2.39 2.22 0.92 0.87 0.51 0.51 0.47 0.47

0.5 1 0.2 3.84 3.42 2.54 2.32 1.46 1.37 0.63 0.62 0.47 0.47

0.5 1 0 3.84 3.42 2.55 2.34 1.59 1.49 0.96 0.93 0.75 0.73

1 0 0.2 3.84 3.42 1.52 1.41 0.74 0.71 0.50 0.49 0.52 0.53

1 0 0 3.84 3.42 1.52 1.42 0.66 0.65 0.46 0.45 0.42 0.42

1 1 0.2 3.84 3.42 1.57 1.44 0.81 0.78 0.53 0.53 0.51 0.51

1 1 0 3.84 3.42 1.58 1.45 0.75 0.73 0.50 0.49 0.45 0.45

Table 13: Percentage difference between between equivalent consumption measures, Dγ
1 =

EC∗

∗
−EC

γ
∗

EC∗

∗

∗ 100 and Dγ
2 =

EC∗

γ−EC
γ
γ

EC∗

γ
∗ 100, and optimal linear rule. Percentage loss under the

consume everything rule and expected loss over the whole set of parameters and conditional on
rule being in the admissible set for θ = 3.5, δ = 0.95, B = 0.

Optimal Rule Consume Everything Random Rule

Process Dγ
1 Dγ

2 α∗ β∗ D
(0,1)
1 D

(0,1)
2 E(Dγ

1 ) E(Dγ
1 | A) E(Dγ

2 ) E(Dγ
2 | A)

1 0.02 0.02 0.72 0.22 4.62 3.88 6.40 3.27 4.46 2.80

2 0.02 0.02 1.46 0.21 4.62 3.88 7.91 6.94 7.50 5.47

3 0.47 0.36 1.26 0.22 14.64 11.76 14.50 13.97 12.64 12.32

4 0.29 0.28 0.66 0.17 23.79 19.51 21.21 18.98 17.17 15.41

5 0.80 0.76 0.44 0.24 65.99 55.90 53.78 52.53 45.53 44.87
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Table 14: Probability of Dγt

1 or Dγt

2 below 3% at different periods for fixed parametrization of
the algorithm under different income processes for θ = 3.5, δ = 0.95, B = 0, η = 1, ǫ = 0, ξ = 1
and φ = 1.

t = 0 t = 50 t = 100 t = 250 t = 500

Process Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2

1 0.3846 0.4980 0.8952 0.8866 0.9064 0.9011 0.9194 0.9141 0.9291 0.9224

2 0.3860 0.4989 0.9054 0.8987 0.9156 0.9124 0.9290 0.9254 0.9373 0.9318

3 0.0252 0.0299 0.3394 0.3441 0.4497 0.4460 0.5427 0.5289 0.5885 0.5701

4 0.0120 0.0129 0.3537 0.3420 0.5006 0.4865 0.6472 0.6335 0.7040 0.6961

5 0.0031 0.0038 0.0462 0.0585 0.0785 0.0958 0.1423 0.1651 0.2142 0.2415

Table 15: Probability of Dγt

1 or Dγt

2 below 3% at different periods for fixed parametrization of
the algorithm under different income processes under ID version of the algorithm for θ = 3.5,
δ = 0.95, B = 0, η = 1, ǫ = 0, ξ = 1 and φ = 1.

t = 0 t = 50 t = 100 t = 250 t = 500

Process Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2 Dγt

1 Dγt

2

1 0.3846 0.4980 0.9680 0.9742 0.9735 0.9785 0.9804 0.9833 0.9847 0.9862

2 0.3860 0.4989 0.9678 0.9742 0.9728 0.9783 0.9790 0.9821 0.9832 0.9847

3 0.0252 0.0299 0.8103 0.8150 0.8495 0.8468 0.8707 0.8650 0.8840 0.8762

4 0.0120 0.0129 0.6666 0.7393 0.7615 0.8062 0.8317 0.8538 0.8590 0.8707

5 0.0031 0.0038 0.2321 0.2829 0.2652 0.3251 0.3024 0.3659 0.3109 0.3773
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Figure 3: Percentage deviation of equivalent consumption of the linear rule from the optimal
consumption function for different values of the intercept and slope, under π∗ (above) and πγ

(below) for θ = 1.5, δ = 0.9 (left) and δ = 0.95 (right).
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Figure 4: Percentage deviation of equivalent consumption of the linear rule from the optimal
consumption function for different values of the intercept and slope, under π∗ (above) and πγ

(below) for θ = 2, δ = 0.9 (left) and δ = 0.95 (right).
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Figure 5: Percentage deviation of equivalent consumption of the linear rule from the optimal
consumption function for different values of the intercept and slope, under π∗ (above) and πγ

(below) for θ = 3, δ = 0.9 (left) and δ = 0.95 (right).
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Figure 6: Percentage deviation of equivalent consumption of the linear rule from the optimal
consumption function for different values of the intercept and slope, under π∗ (above) and πγ

(below) for θ = 3.5, δ = 0.9 (left) and δ = 0.95 (right).
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Figure 7: Percentage deviation of equivalent consumption of the linear rule from the optimal
consumption function for different values of the intercept and slope, under π∗ (above) and πγ

(below) for θ = 4, δ = 0.9 (left) and δ = 0.95 (right).
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Figure 8: Set of consumption rules which have a percentage deviation less than or equal to
0.5%, 1%, 3% and more than 3%.
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Figure 9: Set of consumption rules which have a percentage deviation less than or equal to
0.5% 1%, 3% and more than 3%.
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Figure 10: Set of consumption rules which have a percentage deviation less than or equal to
0.5% 1%, 3% and more than 3%.
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Figure 11: Set of consumption rules which have a percentage deviation less than or equal to
0.5% 1%, 3% and more than 3%.
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Figure 12: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 1.5, δ = 0.9.
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Figure 13: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 1.5, δ = 0.95.
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Figure 14: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 2, δ = 0.9.

49



0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Intercept Distribution Across Periods

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Slope Distribution Across Periods

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30
Percentage Welfare Loss Distribution Across Periods under optimal distribution

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35
Percentage Welfare Loss Distribution Across Periods under actual distribution

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Percentage of runs where Welfare Loss under optimal distribution is less than 1/2,1,3%

 

 
1/2%
1%
3%

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Percentage of runs where Welfare Loss under actual distribution is less than 1/2,1,3%

 

 
1/2%
1%
3%

Figure 15: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 2, δ = 0.95.
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Figure 16: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 3, δ = 0.9.
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Figure 17: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 3, δ = 0.95.
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Figure 18: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 3.5, δ = 0.9.
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Figure 19: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 3.5, δ = 0.95.

54



0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Intercept Distribution Across Periods

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Slope Distribution Across Periods

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30
Percentage Welfare Loss Distribution Across Periods under optimal distribution

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35
Percentage Welfare Loss Distribution Across Periods under actual distribution

 

 
Mean
Min
Max
Median
25−P
75−P
90−P
95−P
99−P
99.9−P

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Percentage of runs where Welfare Loss under optimal distribution is less than 1/2,1,3%

 

 
1/2%
1%
3%

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Percentage of runs where Welfare Loss under actual distribution is less than 1/2,1,3%

 

 
1/2%
1%
3%

Figure 20: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 4, δ = 0.9.
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Figure 21: Distribution of αt, βt, D
γt

1 , Dγt

2 and percentage of simulations with Dγt

1 and Dγt

2 less
than 0.5%, 1%, 3% for θ = 4, δ = 0.95.
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Figure 22: Optimal Consumption function for different income levels for a fixed parametrization
with θ = 3.5, δ = 0.95, B = 0, η = 1, ǫ = 0, ξ = 1 and φ = 1.
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Figure 23: Percentage deviation of equivalent consumption of the linear rule from the optimal
consumption function for different values of the intercept and slope, under π∗ (left) and πγ
(right) for different income processes.
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Figure 24: Percentage deviation of equivalent consumption of the linear rule from the optimal
consumption function for different values of the intercept and slope, under π∗ (left) and πγ
(right) for different income processes.
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Figure 25: Set of consumption rules which have a percentage deviation less than or equal to
0.5% 1%, 3% and more than 3% for different income processes.
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Figure 26: Set of consumption rules which have a percentage deviation less than or equal to
0.5% 1%, 3% and more than 3% for different income processes.
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Figure 27: Dynamics under income shocks. During periods 1-25 and 51-100 agents’ income
follows Y 1. During periods 26-50 their income follows Y 2.
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Figure 28: Dynamics under income shocks. During periods 1-25 and 51-100 agents’ income
follows Y 1. During periods 26-50 their income follows Y 3.
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Figure 29: Dynamics under income shocks. During periods 1-25 and 51-100 agents’ income
follows Y 1. During periods 26-50 their income follows Y 4.
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Figure 30: Dynamics under income shocks. During periods 1-25 and 51-100 agents’ income
follows Y 1. During periods 26-50 their income follows Y 5.
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