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1 Introduction

One of the largest challenges for standard dynamic asset pricing models is to ex-

plain the enormous countercylical variation in the risk-return trade-off in equity

markets. Our paper establishes that the participation of passive investors in eq-

uity markets who do not respond to changes in the investment opportunity set and

who fail to continuously rebalance should be considered as a plausible alternative

explanation.1

There is a large group of households that invest in equities but only change

their portfolio shares infrequently, even after large common shocks to asset returns.

Ameriks and Zeldes (2004) find that over a period of 10 years 44% of households in

a TIAA-CREF panel made no changes to either flow or asset allocations, while 17 %

of households made only a single change. Calvet, Campbell, and Sodini (2009), in a

comprehensive dataset of Swedish households, found a weak response of portfolio

shares to common variation in returns: between 1999 and 2002, the equal-weighted

share of household financial wealth invested in risky assets drops from 57% to

45% in 2002, which is indicative of very weak re-balancing by the average Swedish

household during the bear market.

Without a specific model in mind, it is hard to know what effect, if any, in-

frequent re-balancing would have on equilibrium asset prices. In an equilibrium

where all households are equally exposed to aggregate shocks, there is no need for

any single household to re-balance his or her portfolio in response to an aggregate

shock. This is clearest in a representative agent economy. However, in an environ-

ment in which households have heterogeneous exposures to aggregate shocks, the

frequency of re-balancing may have important aggregate effects.

We conjecture that infrequent re-balancing on the part of passive investors may

contribute to countercylical volatility in risk prices because intermittent rebalancers

mimick the portfolio behavior of households with countercyclical risk aversion. To

check the validity of this conjecture, we set up a standard incomplete markets model

in which investors are subject to idiosyncratic and aggregate risk. The investors

have heterogeneous trading technologies; a large mass of households are passive in-

vestors, who do not change their portfolio in response to changes in the investment

opportunity set, but a smaller mass of active investors do. We consider two types

of passive investors: those that re-balance their portfolio each period to keep their

portfolio shares constant, and those that re-balance intermittently. In the economy

1The standard explanations rely on countercyclical risk aversion and heteroscedasticity in aggre-
gate consumption growth, but they fall short quantitatively.
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with passive investors, who rebalance infrequently, we find that the volatility of the

price of aggregate risk is more than three times higher than in the economy with

continuously re-balancing passive investors. While the individual welfare loss asso-

ciated with intermittent rebalancing is small, and hence small costs would suffice to

explain this behavior, the aggregate effects of non-rebalancing are large. When the

economy is affected by an adverse aggregate shock and the price of equity declines

as a result, passive investors who re-balance end up buying equities to keep their

portfolio shares constant, while intermittent rebalancers do not. This means that

in the case of intermittent rebalancers more aggregate risk is concentrated among

the smaller pool of active investors whenever the economy is affected by a negative

aggregate shock. Hence, in a way, these intermittent rebalancers act like households

with countercyclical risk aversion.

In our approach, the intermittent rebalancers choose an intertemporal consump-

tion path to satisfy the Euler equation in each period, but, in between rebalanc-

ing times, their savings decisions can only affect their holdings of the risk-free

assets. Only in rebalancing periods can they actually change their equity hold-

ings. Following Duffie and Sun (1990), we assume that dividends are re-invested

in equity and interest earnings are re-invested in the risk-free asset during non-

adjustment periods. Hence, our approach is different from the one adopted by

Lynch (1996) and Gabaix and Laibson (2002). They consider households who do

not adjust consumption in each period; these investors are off their Euler equation

in non-adjustment periods.2Gabaix and Laibson (2002) assume the portfolio is con-

tinuously rebalanced. This approach potentially introduces serial correlation and

predictability in aggregate consumption growth (Piazzesi (2002)). In contrast, we

fix the properties of aggregate consumption growth; we rely on a small mass of

active investors to clear the goods and asset markets in each period.

From the perspective of existing Dynamic Asset Pricing Models (DAPM’s), there

is a puzzling amount of variation in the risk-return trade-off in financial markets. In

standard asset pricing models, the price of aggregate risk is constant (see, e.g., the

Capital Asset Pricing Model of Sharpe (1964) and Lintner (1965)) or approximately

constant (see, e.g., Mehra and Prescott (1985)’s calibration of the Consumption-

CAPM). In the data, there is some variation in the conditional volatility of ag-

gregate consumption growth that can deliver time-varying risk prices in a stan-

dard Consumption-CAPM, but probably not enough –and not of the right type–

to explain the variation in the data. Recently, Campbell and Cochrane (1999) and

2 Reis (2006) adopts a rational inattention approach to rationalize this type of behavior.
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Barberis, Huang, and Santos (2001) have shown that standard representative agent

models with different, non-standard preferences can rationalize counter-cyclical

variation in Sharpe ratios.

Lettau and Ludvigson (2001) measure the time-variation in the Sharpe ratio on

equities in the data. This time variation is driven by variation in the conditional

mean of returns (i.e. the predictability of returns) as well the variation in the con-

ditional volatility of stock returns. In the data, these two objects are negatively

correlated, according to Lettau and Ludvigson (2001), and this gives rise to a con-

siderable amount of variation in the conditional Sharpe ratio: the annual stan-

dard deviation of the estimated Sharpe ratio is on the order of 50 % per annum.

Lettau and Ludvigson (2001) compare their estimate of the conditional Sharpe ra-

tio to that implied by the Campbell and Cochrane (1999) external habit model, and

they find that their model dramatically understates the volatility of the conditional

Sharpe ratio. In addition, they find that the heteroscedasticity in U.S. aggregate

consumption growth does not help to explain the variation in the Sharpe ratio.

Related Literature There is a large literature on infrequent consumption adjust-

ment starting with Grossman and Laroque (1990)’s analysis of durable consump-

tion in a representative agent setting. Lynch (1996) specifically focuses on the ag-

gregate effects of infrequent consumption adjustment by heterogeneous consumers

to explain the equity premium puzzle. Gabaix and Laibson (2002) extend this anal-

ysis to a continuous-time setup that allows for closed-form solutions. Our paper is

more narrowly focused on the aggregate effects of infrequent portfolio adjustment,

but the households in our model face aggregate as well as idiosyncratic risk. This

feature is critical to generate reasonable consumption implications. In our model,

sophisticated investors load up on aggregate consumption risk. This seems con-

sistent with the data. The consumption of the 10 % wealthiest households is five

times more exposed to aggregate consumption growth than that of the average US

household (Parker and Vissing-Jorgensen (2009)). In contrast, less sophisticated in-

vestors are more exposed to idiosyncratic risk. This is broadly in line with the data.

Malloy, Moskowitz, and Vissing-Jorgensen (2009) find that the average consump-

tion growth rate for stock-holders is between 1.4 and two times as volatile as that of

non-stock holders. They also find that aggregate stockholder consumption growth

for the wealthiest segment (upper third) is up to 3 times as sensitive to aggregate

consumption growth shocks as that of non-stock holders.

To solve for the equilibrium allocations and prices, we develop an extension
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of the multiplier method developed by Chien, Cole, and Lustig (2007) to handle

intermittent rebalancers. In continuous-time finance, Cuoco and He (2001) and

Basak and Cuoco (1998) used stochastic weighting schemes to characterize alloca-

tions and prices. Our approach differs because it provides a tractable and com-

putationally efficient algorithm for computing equilibria in environments with a

large number of agents subject to idiosyncratic risk as well as aggregate risk, and

heterogeneity in trading opportunities. The use of cumulative multipliers in solv-

ing macro-economic equilibrium models was pioneered by Kehoe and Perri (2002),

building on earlier work by Marcet and Marimon (1999). Our use of measurability

constraints to capture portfolio restrictions is similar to that in

Aiyagari, Marcet, Sargent, and Seppala (2002) and Lustig, Sleet, and Yeltekin (2007),

who consider an optimal taxation problem, while the aggregation result extends

that in Chien and Lustig (2009) to an incomplete markets environment.

Abel, Eberly, and Panageas (2006) consider a portfolio problem in which the in-

vestor pays a cost to observe her portfolio, and they show that even small costs can

rationalize fairly large intervals in which the household does not check its portfolio,

and finances its consumption out of the riskless account. We do not endogenize the

decision to observe the value of the portfolio, but, instead, we focus on the aggre-

gate equilibrium implications of what Abel, Eberly, and Panageas (2006) call ‘stock

market inattention’. However, we assume that our investor knows the value of his

holdings when making consumption decisions, even in non-rebalancing periods.

Hence, we are implicitly assuming that it is the cost of reallocating his portfolio

that is prevent continuous adjustment rather than the cost of finding out about the

value of his portfolio.

2 Counter-cyclical and volatile Sharpe ratios

Lettau and Ludvigson (2001) measure the conditional Sharpe ratio on U.S. equities

by forecasting stock market returns and realized volatility (of stock returns) using

different predictors, and they obtain highly countercyclical and volatile Sharpe ra-

tios. To get a clear sense of the link with business cycles, we consider a simple

exercise. In expansions (recessions), the investor buys the stock market index in the

n-th quarter after the NBER through (peak) and sells after 4 quarters. The NBER

defines recessions as periods that stretch from the peak to the through. Strictly

speaking, this is not an implementable investment strategy, because NBER peaks
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and throughs are only announced with a delay.3 Nonetheless, the average returns

on this investment strategy, reported in Table 1, provide a clear indication of the

cyclical behavior of the expected returns conditional on the aggregate state being

expansion (recessions). We report the returns on buying one quarter through five

quarters after the trough (peak). The top panel looks at expansions. The bottom

panel looks at recessions. The evidence is striking.

In the top panel, we see that expected excess returns decline in an expansion.

The average returns, conditional on being in an expansion, decline as we enter the

expansion from 9.85% (17.30% in the whole sample) in the 1st quarter after the

through to .86% (3.48%) in the third quarter after the through. The 17% is suspect

because it is largely driven by one exceptional quarter (1933.II) during the Great

Depression. After 3 quarters, average returns tend to increase again. The volatility

of stock returns tends to decline somewhat during expansions, from 8.62% in the

first quarter to 6.97% in the last quarter.

In the bottom panel, we see that expected excess returns increase in a recession.

The average returns, conditional on being in a recession, increase as we enter the

recession from 6.22% (2.88% in the whole sample) in the 1st quarter after the peak

to 12.63% (11.73%) in the third quarter after the peak. After 3 quarters, average

returns tend to decrease again. The volatility of stock returns tends to increase

increase initially during recessions, but then it declines.

However, if we compare say the midpoint (3rd quarter) of a recession with the

midpoint of an expansion, we see a large difference in volatilities: 8.50% (8.70%) in

an expansion and 11.00% (12.07%) in a recession. We also observe a large differ-

ence in the risk compensation per unit of risk: the Sharpe ratio is .051 (.20) in the

midpoint of an expansion, compared to .54 (.49) in the midpoint of a recession.

[Table 1 about here.]

3 Model

We consider an endowment economy in which households sequentially trade assets

and consume. All households are ex ante identical, except for the restrictions they

face on the menu of assets that they can trade. These restrictions are imposed

exogenously. We refer to the set of restrictions that a household faces as a household

3 The NBER has been announcing these dates since 1929.
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trading technology. The goal of these restrictions is to capture the observed portfolio

behavior of most households.

We will refer to households as being passive traders if they take their portfolio

composition as given and simply choose how much to save or dissave in each pe-

riod. We will also allow for other households to optimally change their portfolio

in response to changes in the investment opportunity set. We refer to these traders

as active traders since they actively manage the composition of their portfolio each

period. To solve for the equilibrium allocations and prices, we extend the method

developed by Chien, Cole, and Lustig (2007) (hereafter CCL) to allow for passive

traders who only intermittently adjust their portfolio. In this section we describe

the environment, and we describe the household problem for each of different asset

trading technologies. We also define an equilibrium for this economy.

3.1 Environment

We consider an endowment economy with a unit measure of households who are

subject to both aggregate and idiosyncratic income shocks. Households are ex ante

identical, except for the trading technology they are endowed with. Ex post, these

households differ in terms of their idiosyncratic income shock realizations. All of

the households face the same stochastic process for idiosyncratic income shocks,

and all households start with the same present value of tradeable wealth.

In the model time is discrete, infinite, and indexed by t = 0, 1, 2, ... The first pe-

riod, t = 0, is a planning period in which financial contracting takes place. We use

zt ∈ Z to denote the aggregate shock in period t and ηt ∈ N to denote the idiosyn-

cratic shock in period t. zt denotes the history of aggregate shocks, and, similarly,

ηt, denotes the history of idiosyncratic shocks for a household. The idiosyncratic

events η are i.i.d. across households. We use π(zt, ηt) to denote the unconditional

probability of state (zt, ηt) being realized. The events are first-order Markov, and

we assume that

π(zt+1, ηt+1|zt, ηt) = π(zt+1|zt)π(ηt+1|zt+1, ηt).

Since we can appeal to a law of large number, π(zt, ηt)/π(zt) also denotes the

fraction of agents in state zt that have drawn a history ηt. We use π(ηt|zt) to denote

that fraction. We introduce some additional notation: zt+1 ≻ zt or yt+1 ≻ yt means

that the left hand side node is a successor node to the right hand side node. We

denote by
{

zτ ≻ zt
}

the set of successor aggregate histories for zt including those
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many periods in the future; ditto for
{

ητ ≻ ηt
}

. When we use �, we include the

current nodes zt or ηt in the summation.

There is a single non-durable good available for consumption in each period,

and its aggregate supply is given by Yt(zt), which evolves according to

Yt(zt) = exp{zt}Y(zt−1), (1)

with Y(z1) = exp{z1}. This endowment good comes in two forms. The first part is

non-tradeable income which is subject to idiosyncratic risk and is given by γY(zt)ηt;

hence γ is the share of income that is non-tradeable. The second part is diversifiable

income, which is not subject to the idiosyncratic shock, and is given by (1−γ)Yt(zt).

All households are infinitely lived and rank stochastic consumption streams{
c(zt, ηt)

}
according to the following criterion

U ({c}) =
∞

∑
t≥1,(zt,ηt)

βtπ(zt, ηt)
ct(zt, ηt)1−α

1 − α
, (2)

where α > 0 denotes the coefficient of relative risk aversion, and ct(zt, ηt) denotes

the household’s consumption in state (zt, ηt).

3.2 Assets Traded

Households trade assets in securities markets that re-open in every period. These

assets are claims on diversifiable income, and the set of traded assets, depending

on the trading technology, can include one-period Arrow securities as well as debt

and equity claims. Households cannot directly trade their claim to aggregate non-

diversifiable income (labor income).

Debt and Equity We follow Abel (1999) in defining equity as a leveraged claim to

aggregate diversifiable income (capital income (1 − γ)Yt(zt)). We use Vt[{X}](zt)

to denote the no-arbitrage price in zt units of consumption of a claim to a payoff

stream {X}, and we use Rt+k,t[{X}](zt+k) to denote the gross return between t and

t + k. To construct the debt and the equity claim, we will assume that aggregate

diversifiable income in each period is split into a debt component (aggregate inter-

est payments net of new issuance) and an equity component (aggregate dividend

payments denoted Dt(zt)). For simplicity, the bonds are taken to be one-period risk-

free bonds. Since we assume a constant leverage ratio ψ, the supply of one-period
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non-contingent bonds Bs
t (zt) in each period needs to adjust such that:

Bs
t (zt) = ψ

[
(1 − γ)Vt[{Y}](zt)− Bs

t (zt)
]

,

where V[{Y}](zt) denotes the value of a claim to aggregate income in node zt. The

payouts to bond holders are given by Rt,t−1[1](zt−1)Bs
t−1(zt−1) − Bs

t (zt), and the

payments to shareholders, Dt(zt), are then determined residually as:

Dt(zt) = (1 − γ)Yt(zt)− Rt,t−1(zt−1)[1]Bs
t−1(zt−1) + Bs

t (zt).

A trader who invests a fraction ψ/(1 + ψ) in equities and the rest in debt is holding

the market portfolio. We can denote the value of the dividend claim as Vt[{D}](zt).

We denote the price of a unit claim to the final good in aggregate state zt+1

acquired in aggregate state zt by Qt(zt+1, zt). If there is a group of agents who trade

claims with payoffs that are contingent on their idiosyncratic shocks, the absence of

arbitrage would imply that the price Qt(ηt+1, zt+1; ηt, zt) of a claim to output in state

(zt+1, ηt+1) acquired in state (zt, ηt) would be equal to π(ηt+1|zt+1, ηt)Qt(zt+1, zt).

We consider a household entering the period with net financial wealth ât(zt, ηt).

This household buys securities in financial markets (state contingent bonds at(zt+1, ηt+1),

non-contingent bonds bt(zt, ηt), and equity shares sD
t (zt, ηt)) and consumption ct(zt, ηt)

in the good markets subject to this one-period budget constraint:

∑
zt+1≻zt,ηt+1≻ηt

Qt(ηt+1, zt+1; ηt, zt)at(zt+1, ηt+1) + sD
t (zt, ηt)Vt[{D}](zt)

+bt(zt, ηt) + ct(zt, ηt) ≤ ât(zt, ηt) + γYt(zt)ηt, for all zt, ηt, (3)

where ât(zt, ηt), the agent’s net financial wealth in state (zt, ηt), and is given by his

state-contingent bond payoffs from bonds acquired last period, the payoffs from his

equity position and the non-contingent bond payoffs:

ât(zt, ηt) = at−1(zt, ηt)+ sD
t (zt−1, ηt−1)

[
Dt(zt) + Vt[{D}](zt)

]
+ Rt,t−1[1](zt−1)bt−1(zt−1).

(4)

3.3 Trading Technology

A trading technology is a restriction on the menu of assets that the agent can trade

in any given period. This includes restrictions on the frequency of trading as well;

some trades are not allowed in each period for all households. The set of asset
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trading technologies that we consider can be divided into two main classes: active

trading technologies and passive trading technologies.

Agents with an active trading technology optimally choose their portfolio com-

position given the set of assets that they are allowed to trade in each period and

given the state of the investment opportunity set. Passive traders do not. We con-

sider two types of active traders. For complete traders this set consists of all state-

contingent securities, with payoffs contingent on aggregate and idiosyncratic shocks

–including, of course, non-contingent debt and equity. For z-complete traders this

set consists of only aggregate state-contingent securities –including non-contingent

debt and equity.

Finally, for all passive trading technologies, this menu of traded assets only

consists of debt and equity claims. A passive trading technology specifies an ex-

ogenously assigned target ̟⋆ for the equity share. A continuous-rebalancer adjust

his equity position continuously (.i.e., in each period) to the target ̟⋆ in each pe-

riod.4. An intermittent-rebalancer adjust his equity position to the target only every

n periods; in non-rebalancing periods, all (dis-)savings occur through adjusting the

holdings of the investor’s risk-free asset .

We allow for the possibility that there could be multiple types of both active and

passive traders.

All households are initially endowed with a claim to their per capita share of

both diversifiable and non-diversifiable income. Finally, each agent’s period 1 fi-

nancial wealth is constrained by the value of their claim to tradeable wealth in the

period 0 planning period, which is given by

(1 − γ)V0[{Y}](z0) ≥ ∑
z1

Q(z1, z0)â0(z1, η0), (5)

where both z0 and η0 simply indicate the degenerate starting values for the stochas-

tic income process.

In the quantitative analysis we only look at the ergodic equilibrium of the econ-

omy; hence, the assumptions about initial wealth are largely irrelevant. We assume

that, during the initial trading period, households with portfolio restriction sell their

claim to diversifiable income in exchange for their type appropriate fixed weighted

portfolio of bonds and equities.

The households face exogenous limits on their net asset positions, or solvency

4One could think of this household delegating the management of its portfolio to a fund manager
(see Abel, Eberly, and Panageas, 2006)
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constraints,

ât(zt, ηt) ≥ Mt(zt, ηt). (6)

In determining the solvency constraint, we assume that the value of the household’s

net assets must always be greater than −ξ times the value of their non-diversifiable

income, where ξ ∈ (0, 1). We allow households to trade away or borrow up to 100%

of the value of their claims to diversifiable capital. We also allow for the possibility

that this borrowing constraint may itself be a function of the aggregate history of

shocks.

3.4 Measurability Restrictions

To capture the portfolio restrictions, we use measurability constraints.

Active Trader Since idiosyncratic shocks are not spanned for the z-complete trader,

his net wealth needs to satisfy:

ât

(
zt,

[
ηt, ηt−1

])
= ât

(
zt,

[
η̃t, ηt−1

])
, (7)

for all t and ηt, η̃t ∈ N.

Continuous-Rebalancing (crb) Passive Trader Passive traders who re-balance their

portfolio in each period to a fixed fraction ̟⋆ in levered equity and 1−̟star in non-

contingent bonds earn a return:

Rcrb
t (̟⋆, zt) = ̟⋆Rt,t−1[{D}](zt) + (1 − ̟⋆)Rt,t−1[1](zt−1)

Hence, their net financial wealth will satisfy the measurability restriction:

ât

(
[zt−1, zt],

[
ηt, ηt−1

])

Rcrb
t (̟⋆, [zt−1, zt])

=
ât

(
[zt−1, z̃t],

[
η̃t, ηt−1

])

Rcrb
t (̟⋆, [zt−1, z̃t])

, (8)

for all t, zt, z̃t ∈ Z, and ηt, η̃t ∈ N. If ̟⋆ = ψ/(1 + ψ), then this trader holds the

market in each period and earns the return on a claim to all tradeable income, or

Rt,t−1[{Y}](zt). We will refer to this type of passive trader as a diversified trader.

Intermittent-Rebalancing Passive (irb) Trader Next we characterize the constraints

on a passive trader’s type is specified by his portfolio target (denoted ̟⋆) and the
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periods in which he rebalances (denoted T). We assume that his rebalancing takes

place at fixed intervals. For example if he rebalances every other period, then

T = {1, 3, 5, ...} or T = {2, 4, 6, ...}.

After non-rebalancing periods, traders who do not re-balance their portfolio,

with an equity share ̟t−1, earn a rate of return:

Rirb
t (̟t−1, zt) = ̟t−1(zt−1)Rt,t−1[{D}](zt) + (1 − ̟t−1(zt−1))Rt,t−1[1](zt−1)

and they face the following measurability restriction on their net wealth:

ât

(
[zt−1, zt],

[
ηt, ηt−1

])

Rirb
t (̟t−1, [zt−1, zt])

=
ât

(
[zt−1, z̃t],

[
η̃t, ηt−1

])

Rirb
t (̟t−1, [zt−1, z̃t])

, (9)

for all t, zt, z̃t ∈ Z, and ηt,η̃t ∈ N, with ̟t = ̟⋆ in rebalancing periods.

We define the trader’s equity holdings as et(zt, ηt) = st(zt, ηt)Vt[{D}](zt). In

re-balancing periods, this trader’s equity holdings satisfy:

et(zt, ηt)

et(zt, ηt) + bt(zt, ηt)
= ̟⋆.

However, in non-rebalancing periods, the trader’s equity holdings evolve according

to the following law of motion:

et(zt, ηt) = et−1(zt−1, ηt−1)Rt,t−1[{D}](zt)

for each t /∈ T. Since this agent cannot hold any type of state-contingent bond, his

flow budget constraint in non-rebalancing periods reduces to:

γYt(zt)ηt + bt−1(zt−1, ηt−1)Rt,t−1[1](zt−1) ≥ ct(zt, ηt) + bt(zt, ηt) ∀(zt, ηt).

for each t /∈ T. Since setting T = {1, 2, 3, ...} generates the continuous-rebalancer’s

measurability constraint, the continuous-rebalancer can simply be thought of as a

degenerate case of the intermittent-rebalancer. Hence, we can state without loss of

generality that a passive trading technology is completely characterized by (̟⋆, T).

4 Solving the Trader’s Optimization Problem

Active Traders For our active traders, we distinguish between two types. The z-

complete trader’s problem is to choose {ct(zt, ηt), at(zt+1, ηt+1), et(zt, ηt), bt(zt, ηt)},
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so as to maximize his total expected utility (eq. (2)) subject the flow budget con-

straint (eq. (3)), the solvency constraint (eq. (6)), and the appropriate measurabil-

ity constraint (eq. (7)). The complete trader solves the same optimization problem

without the measurability constraint (eq. (7)).

Passive Traders For our passive traders, we distinguish between two types. The

crb trader’s problem is to choose {ct(zt, ηt), at(zt+1, ηt+1), et(zt, ηt), bt(zt, ηt)} in each

period, so as to maximize his total expected utility (eq. (2)) subject to the flow bud-

get constraint (eq. (3)) in each period, the solvency constraint (eq. (6)), and the ap-

propriate crb measurability constraint (eq. (8)). The irb solves the same optimization

problem with the irb measurability constraint (eq. (9)).

4.1 Time Zero Trading

We find it useful to write agent’s problems in terms of their equivalent time-zero

trading problem in which they select the optimal policy sequence given a com-

plete set of Arrow-Debreu securities, subject to a sequence of measurability and

debt constraints (see Chien, Cole, and Lustig, 2007). This section reformulates the

household’s problem in terms of a present-value budget constraint, and sequences

of measurability constraints and solvency constraints. These measurability con-

straints capture the restrictions imposed by the different trading technologies of

households.

From the aggregate contingent claim prices, we can back out the present-value

state prices recursively as follows:

π(zt, ηt)P(zt, ηt) = Q(zt, zt−1)Q(zt−1, zt−2) · · · Q(z1, z0)Q(z0).

We use P̃t(zt, ηt) to denote the state prices Pt(zt)π(zt, ηt). Let Mt+1,t(zt+1|zt) =

P(zt+1)/P(zt) denote the stochastic discount factor that prices any random payoffs.

Using these state prices, we can compute the no-arbitrage price of a claim to random

payoffs {X} as:

Vt[{X}](zt) = ∑
τ≥t,zτ≻zt

P̃τ(zτ , ητ)

P̃t(zt, ηt)
Xτ(zτ , ητ).

Given this, we can also state the solvency constraint as:

Mt(zt, ηt) = −ξV [{γηY − c}] (zt, ηt)
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Active Traders The complete trader chooses a consumption plan {ct(zt, ηt)} to

maximize her expected utility U ({c}) (in eq. (2)) subject to a single time zero bud-

get constraint:

Vt [{γηY − c}] (z0) + (1 − γ)V0[{Y}](z0) ≥ 0. (10)

and the solvency constraint in each node (zt, ηt):

Vt [{γηY − c}] (zt, ηt) ≤ −Mt(zt, ηt). (11)

This is a standard Arrow-Debreu household optimization problem.

The z-complete trader’s problem is the same as the complete-trader’s problem

except that we need to enforce his measurability constraint (eq. (7)) in each node

(zt, ηt):

V [{γηY − c}] (zt, ηt) is measurable w.r.t. (zt, ηt−1).

Hence, we can think of the the z-complete trader choosing a consumption plan

{ct(zt, ηt)} and a net wealth plan {ât(zt, ηt−1)} to maximize her expected utility

U ({c}) subject to the time zero budget constraint (eq. (10)), the solvency constraints

(eq. (11)) in each node (zt, ηt), and the measurability constraint in each node (zt, ηt):

Vt [{γηY − c}] (zt, ηt) = ât(zt, ηt−1). (12)

The appendix contains a detailed description of the corresponding saddle point

problem in section A. Since the complete-trader’s problem is merely a simplification

of the z-complete’s, we focus on the z-complete trader in our discussion.

Let χ denote the multiplier on the time zero budget constraint in eq. (10), let

ϕt(zt, ηt) denote the multiplier on the debt constraint in node (zt, ηt) (eq. (11)), and,

finally, let νt(zt, ηt) denote the multiplier on the measurability constraint (eq. (12))

in node (zt, ηt), . We will show how to use the multipliers on these constraints to

fully characterize equilibrium allocations and prices.

Following Chien, Cole, and Lustig (2007), we can construct new weights for this

Lagrangian as follows. First, we define the initial cumulative multiplier to be equal

to the multiplier on the budget constraint: ζ0 = χ. Second, the multiplier evolves

over time as follows for all t ≥ 1:

ζt(zt, ηt) = ζt(zt−1, ηt−1) + νt

(
zt, ηt

)
− ϕt(zt, ηt). (13)

The first order condition for consumption leads to a consumption sharing rule
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that does not depend on the trading technology. Using the law of motion for cu-

mulative multipliers in eq. (13) to restate the first order condition for consumption

from the saddle point problem, in terms of our cumulative multiplier, we obtain the

following condition:
βtu′(c(zt, ηt))

P(zt)
= ζt(zt, ηt). (14)

This condition is common to all of our traders irrespective of their trading tech-

nology because differences in their trading technology does not effect the way in

which ct(zt, ηt) enters the objective function or the constraint. This implies that

the marginal utility of households is proportional to their cumulative multiplier,

regardless of their trading technology. As a result, we can derive a consumption

sharing rule. The household consumption share, for all traders is given by

c(zt, ηt)

C(zt)
=

ζ(zt , ηt)
−1
α

h(zt)
, where h(zt) = ∑

ηt

ζ(zt , ηt)
−1
α π(ηt|zt). (15)

Moreover, the SDF is given by the Breeden-Lucas SDF and a multiplicative adjust-

ment:

Mt,t+1(zt+1|zt) ≡ β

(
C(zt+1)

C(zt)

)−α (
h(zt+1)

h(zt)

)α

. (16)

The first order condition for net financial wealth leads to a martingale condition

for the cumulative multipliers which does depend on the trading technology. The

first order condition with respect to net wealth ât(zt+1, ηt) is given by:

∑
ηt+1≻ηt

ν
(

zt+1, ηt+1
)

π(zt+1, ηt+1)P(zt+1) = 0. (17)

This condition, which determines the dynamics of the multipliers, is specific to the

trading technology. For the z-complete trader, it implies that the average measura-

bility multiplier across idiosyncratic states ηt+1 is zero since P(zt+1) is independent

of ηt+1. In each aggregate node zt+1, the household’s marginal utility innovations

not driven by the solvency constraints νt+1 have to be white noise. The trader has

high marginal utility growth in low η states and low marginal utility growth in

high η states, but these innovations to marginal utility growth average out to zero

in each node (zt, zt+1).

Combining eq. (17) with eq. (13), we obtain the following supermartingale re-

sult:

E
[

ζt+1|z
t+1

]
≤ ζt,
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which holds with equality if the solvency constraint do not bind in zt+1. For the un-

constrained z-complete market trader, the martingale condition Et+1

[
ζt+1|z

t+1
]

=

ζt and the consumption sharing rule imply that his IMRS equals the SDF on average

in each aggregate node zt+1, averaged over idiosyncratic all states:

Mt,t+1 ≥ Et+1

[
β

(
ct+1

ct

)−α

|zt+1

]
,

with equality if the solvency constraints do not bind in zt+1.

For the complete trader, the first-order condition for to net wealth ât(zt+1, ηt+1)

is given by:

ν
(

zt+1, ηt+1
)

π(zt+1, ηt+1)P(zt+1) = 0, (18)

and this implies that if the solvency constraints do not bind, the cumulative mul-

tipliers are constant. For the complete market trader, the martingale condition

ζt+1 = ζt and the consumption sharing rule imply that his IMRS is less than or

equal to the SDF, state-by-state:

Mt,t+1 ≥ β

(
ct+1

ct

)−α

,

with equality if the solvency constraint does not bind in (zt+1, ηt+1).

As in Chien, Cole, and Lustig (2007), we can characterize equilibrium prices and

allocations using the household’s multipliers and the aggregate multipliers. Con-

sumption is allocated on the basis of a consumption-sharing rule which is indepen-

dent of

Passive Traders Since the crb passive trader is a special case of the irb passive

trader, we start with the irb. The passive trader faces an additional restriction on

the dynamics of his equity position. The passive traders’ equity position evolves

according to:

et(zt, ηt) =





̟⋆

1−̟⋆ bt(zt, ηt) if t ∈ T

Rt,t−1[{D}](zt)et−1(zt−1, ηt−1) everywhere else

. (19)

The passive trader’s equity position is being determined in rebalancing periods

by his current debt position bt, and in nonrebalancing periods by his past equity
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position et−1. Thus, it is completely determined by the bond position he took in

rebalancing periods and the returns on equity.

The irb passive trader trader chooses a consumption plan {ct(zt, ηt)} and a net

wealth plan {ât(zt, ηt−1)} to maximize her expected utility U ({c}) subject to the

time zero budget constraint (eq. (10)), the solvency constraints (eq. (11)), the mea-

surability constraint in each node (zt, ηt):

Vt [{γηY − c}] (zt, ηt) = ât(zt, ηt−1), (20)

where net financial wealth in node zt, ηt is given by the non-contingent bond hold-

ings and equity holdings:

ât(zt, ηt−1) = bt−1(zt−1, ηt−1)Rt,t−1[1](zt−1) + et−1(zt−1, ηt−1)Rt,t−1[{D}](zt),

and, finally, subject to the equity transition restriction in eq. (19).

As before, let χ denote the multiplier on the time-zero budget constraint in (10),

let ϕ(zt, ηt) denote the multiplier on the solvency constraint in (11), let κ(zt , ηt)

denote the multiplier on the equity transition condition in (19), and let ν(zt, ηt)

denote the multiplier on the measurability constraint in node (zt, ηt) in (20).

The saddle point problem of a passive trader with trading technology (φ∗, T) is

stated in section A of the appendix. As before, we define the cumulative multipliers

as in eq. (13).

To keep the notation tractable, we define the continuous-rebalancing one-period

portfolio return as:

Rcrb
t+1,t(̟⋆, zt+1) = ̟⋆Rt+1,t[1](zt) + (1 − ̟⋆)Rt+1,t[{D}](zt+1),

and we define the intermittent-rebalancing two-period portfolio return as:

Rirb
t+2,t(̟⋆, zt+2) = ̟⋆Rt+2,t[1](zt) + (1 − ̟⋆)Rt+2,t[{D}](zt+2).

To develop some intuition, consider the simplest case in which the rebalancing

takes place every other period. The intermittent-rebalancer’s first-order condition

for net financial wealth can be stated as follows:
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1. in the rebalancing periods t ∈ T:

0 = ∑
(zt+1,ηt+1)

νt+1(zt+1, ηt+1)P̃(zt+1, ηt+1)Rcrb
t+1,t(zt+1) (21)

+ ∑
(zt+2,ηt+2)

ν(zt+2, ηt+2)P̃(zt+2, ηt+2)Rirb
t+2,t(zt+2).

2. in the nonrebalancing periods t /∈ T:

̟⋆ ∑
(zt+1,ηt+1)

ν(zt+1, ηt+1)P̃(zt+1, ηt+1)Rt+1,t[1](zt) = 0. (22)

In the non-rebalancing periods, the passive trader faces the same first order con-

dition as the non-participant in eq. (22), but in re-balancing periods, the standard

martingale condition is augmented with a forward looking component, because the

passive trader anticipates that the next period is not a rebalancing period. Combin-

ing eq. (21) with the law of motion for the cumulative multiplier in eq. (13) leads to

a martingale condition under a different measure that looks two periods ahead:

Et

[(
Mt,t+2Rirb

t+2,t

)
ζt+2|z

t, ηt
]
≤ ζt,

with equality if the passive trader’s solvency constraints do not bind in period

t + 1. This martingale condition, combined with the consumption sharing rule,

leads to the following Euler equation for an unconstrained passive trader, who is

re-balancing at t, who is not re-balancing at t+1:

Et

[
β

(
ct+2

ct

)−α

Rirb
t+2,t|z

t, ηt

]
≤ 1, t ∈ T, t + 1 /∈ T, t + 2 ∈ T

4.2 Equilibrium

We allow for the possibility that there may be a positive measure of multiple types

of active and passive traders. We assume there is always a non-zero measure of

either complete or z-complete traders to guarantee the uniqueness of the stochastic

discount factor. For our active traders, let µc denote the measure of complete traders

and µz denote the measure of z-complete traders. For our passive traders, we will

assume for simplicity that there are only two types participating passive traders: irb

(crb) traders with measure µirb (µcrb) and portfolio target ̟⋆, and nonparticipants
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with measure µnp and portfolio target equal to zero. The non-state-contingent bond

market clearing condition is given by

∑
ηt

[
µcbc

t (zt, ηt) + µzbz
t (zt, ηt)

+µirbbicb
t (zt, ηt) + µnpb

np
t (zt, ηt)

]
π(ηt|zt) = V[{(1 − γ)Y − D}](zt)), (23)

and the equity market clearing condition is given by

∑
ηt

[
µcec

t (zt, ηt) + µzez
t (zt, ηt)

+µirbeicb
t (zt, ηt) + µnpe

np
t (zt, ηt)

]
π(ηt|zt) = V[{D}](zt), (24)

where we index the holdings by {c, z, irb, np} of the complete-markets, z-complete,

intermittent rebalancers, and non-participants respectively. For the sake of clarity,

we use (e.g.) ηt−1(ηt) to denote the history from zero to t − 1 contained in ηt. We

use the same convention for the aggregate histories. Using this notation, the market

clearing condition in the state-contingent bond market is given by:

∑
ηt

[
µcac

t−1(zt, ηt) + µzaz
t−1(zt, ηt−1(ηt))

]
π(ηt|zt) = 0. (25)

An equilibrium for this economy is defined in the standard way. It consists of

a list of bond and dividend claim holdings, a consumption allocation and a list of

bond and tradeable output claim prices such that: (i) given these prices, a trader’s

asset and consumption choices maximizer her expected utility subject to the budget

constraints, the solvency constraints and the measurability constraints, and (ii) the

asset markets clear (eqs. (23), (24),(25)).

4.3 The Importance of Rebalancing

We define the aggregate multiplier for each trading segment:

hj(zt) = ∑
ηt

ζ j(zt, ηt)
−1
α π(ηt|zt).

By aggregating household wealth across all households in a trading segment j, we

can define the aggregate net wealth for each group of traders j ∈ {c, z, crb}

Â
j
t(zt) = Vt

[
{(

hj

h
− γµj)Y}

]
(zt),
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where we use the linearity of the pricing functional. Finally, total aggregate wealth

equals the market portfolio:

∑
j∈{c,z,irb,np}

Â
j
t(zt) = (1 − γ)Vt[{Y}](zt).

Now, in an i.i.d. version of our economy, in which aggregate consumption

growth is not predictable, there is an equilibrium with passive traders in the market

in which the ratio of Aj to total financial wealth is constant, but only if the passive

traders rebalance continuously, not if they rebalance intermittently.

IID Example To grasp the importance of rebalancing for aggregate risk sharing,

we consider a stylized example in which the aggregate consumption growth shocks

are i.i.d. :

φ(z′|z) = φ(z′), (26)

and the distribution of idiosyncratic shocks is independent of aggregate shocks:

π(η′, z′|η, z)/φ(z′) = ϕ(η′|η). (27)

Suppose that the passive trader belongs to the class of continuous-rebalancers (crb),

and holds the market portfolios: ̟⋆ = ψ. Also, suppose that there are no non-

participants.

One household consumption path that is feasible for the crb trader is propor-

tional to aggregate output:

ct(zt, ηt) = ĉt(ηt)Yt(zt). (28)

Krueger and Lustig (2009) show that we can analyze an equivalent stationary econ-

omy without aggregate consumption growth (with a unit aggregate endowment)

and an adjusted transition probability matrix to solve for the equilibrium alloca-

tions and prices. To do so, we transform our growing model into a stationary model

with a stochastic time discount rate and a growth-adjusted probability matrix, fol-

lowing Alvarez and Jermann (2001). First, we define growth deflated consumption

allocations (or consumption shares) as in eq. (28). Next, we define growth-adjusted

probabilities and the growth-adjusted discount factor as:

φ̂(zt+1|zt) =
φ(zt+1|zt) exp(zt+1)

1−γ

∑zt+1
φ(zt+1|zt) exp(zt+1)1−γ

and β̂ = β ∑
zt+1

φ(zt+1|zt) exp(zt+1)
1−γ.
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Note that π̂ is a well-defined Markov matrix in that ∑zt+1
φ̂(zt+1|zt) = 1 for all zt.

Finally, we let Û(ĉ)(st) denote the lifetime expected continuation utility in node st,

under the new transition probabilities and discount factor, defined over consump-

tion shares
{

ĉt(st)
}

5

Û(ĉ)(st) = u(ĉt(st)) + β̂ ∑
st+1

π̂(st+1|st)Û(ĉ)(st, st+1). (29)

Finally, we use V̂t[{X̂} to denote the no-arbitrage price of a claim to X̂t in the

stationary economy, where the payoffs X̂t only depend on ηt. In this stationary

economy, the measurability constraints of the passive continuous-rebalancers can

be stated as:

V̂t [{γη − ĉ}] (ηt) is measurable w.r.t. ηt−1. (30)

Hence, these measurability constraints in the stationary economy do not depend

on the aggregate history. As a result, the active z-complete traders face the exact

same measurability constraint in the stationary economy as the passive crb traders.

Hence, given the assumptions we have imposed on the nature of aggregate and id-

iosyncratic shocks, the distinction between active and passive trader becomes moot.

We can solve for {ĉt} in the stationary economy, scale it by Yt, to obtain equilib-

rium household consumption {ĉtYt}. In this equilibrium, the relative wealth of the

passive crb , traders Âcrb
t (zt)/ ∑ j∈{z,crb} Â

j
t(zt) is invariant to aggregate shocks.

Now, this particular consumption path in eq. (28) is feasible for the passive

trader simply by trading a claim to aggregate consumption (the market), .i.e., main-

taining a portfolio with ̟⋆ = 1/(1 + ψ) invested in equity. However, for the irb

trader, this consumption path is not feasible, because holding the market requires

re-balancing every period. Instead, consider what happens to an irb trader who

starts out by holding the aggregate consumption claim. After a negative aggregate

consumption growth shocks zt, the equity share of his portfolio drops below ψ, and

the passive trader no longer holds the market. After a series of negative aggregate

consumption growth shocks, the equity share ̟t−1 would be much lower than what

5It is easy to show that this transformation does not alter the agents’ ranking of different con-
sumption streams. Households rank consumption share allocations in the de-trended model in
exactly the same way as they rank the corresponding consumption allocations in the original model
with growth: for any st and any two consumption allocations c, c′

U(c)(st) ≥ U(c′)(st) ⇐⇒ Û(ĉ)(st) ≥ Û(ĉ′)(st)

where the transformation of consumption into consumption shares is given by (??).This result is
crucial for demonstrating that equilibrium allocations c for the stochastically growing model can be
found by solving for equilibrium allocations ĉ in the transformed model.
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is prescribed to hold the market, and Rirb
t (̟t−1, z̃t) is increasingly less exposed to

aggregate consumption risk. In this equilibrium, the relative wealth of the passive

crb , traders Âirb
t (zt)/ ∑ j∈{z,irb} Â

j
t(zt) cannot be invariant w.r.t aggregate shocks.

Hence, these intermittent rebalancers act like households with counter-cyclical risk

aversion, because of the nature of the trading technology: adverse aggregate shocks

endogenously concentrate aggregate risk among the active traders. In contrast, the

crb trader would be buying equity after each negative aggregate shock, to re-balance

his portfolio. Even in the case of i.i.d. aggregate shocks, without non-participants,

the irrelevance result in Krueger and Lustig (2009) no longer holds if some of the

passive traders do not continuously rebalance.

In the calibrated version of the model, we introduce non-participants as well.

These non-participants create residual aggregate risk that needs to be transferred to

the other market participants.

5 Quantitative Results

This section evaluates a calibrated version of the model to examine the extent to

which the our model can account for the empirical moments of asset prices, and

in particular the counter-cyclical volatility. The first subsection discusses the cali-

bration of the parameters and the endowment processes. We follow the algorithm

described in Chien, Cole and Lustig (2008) for computing the equilibrium of this

economy.

We then examine the response of the moments of equilibrium asset prices, con-

sumption growth, portfolio returns and the distribution of financial wealth respond

to changes in the frequency of rebalancing by passive equity holders, the level of

their equity target, and the composition of the active trader traders between z-

complete and complete traders.

5.1 Calibration

Preferences and Endowments The model is calibrated to annual data. We choose

a coefficient of relative risk aversion α of five and a time discount factor β of .95.

These preference parameters allow us to match the collaterizable wealth to income

ratio in the data when the tradeable or collateralizable income share 1 − γ is 10%,

as discussed below. Non-diversifiable income includes both labor income and en-

trepreneurial income, among other forms.
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Our model is calibrated to match the aggregate consumption growth moments

from Alvarez and Jermann (2001). The average consumption growth rate is 1.8%.

The standard deviation is 3.15%. Recessions are less frequent than expansions:

27% of realizations are low aggregate consumption growth states. The first-order

autocorrelation coefficient of aggregate consumption growth (ρz) is -.14.

We calibrate the labor income process as in Storesletten, Telmer, and Yaron (2004,

2006), who find evidence that the cross-sectional variance of labor income risk is

counter-cylical (henceforth CCV). The Markov process for log η(y, z) has a standard

deviation of .60, and the autocorrelation is 0.89. We use a 4-state discretization for

both aggregate and idiosyncratic risk. The elements of the process for log η are

{0.38, 1.61}.

In addition, we also report the results for a second calibration of the Markov

process for log η(y, z) in which we follow Storesletten, Telmer, and Yaron (2006)’s

calibration, except that we eliminate the CCV and we eliminate the autocorrelation

in aggregate consumption growth (see section 5.3).

The average ratio of household wealth to aggregate income in the US is 4.30

between 1950 and 2005. The wealth measure is total net wealth of households

and non-profit organizations (Flow of Funds Tables). We choose a collateralizable

income ratio α of 10%. The implied ratio of wealth to consumption is 4.88 in the

model’s benchmark calibration.6

Equity in our model is simply a leveraged claim to diversifiable income. In the

Flow of Funds, the ratio of corporate debt-to-net worth is around 0.65, suggesting

a leverage parameter ψ of 2. However, Cecchetti, Lam, and Mark (1990) report that

standard deviation of the growth rate of dividends is at least 3.6 times that of

aggregate consumption, suggesting that the appropriate leverage level is over 3.

Following Abel (1999) and Bansal and Yaron (2004), we choose to set the leverage

parameter ψ to 3.

Composition of Trader Pools In the most recent Survey of Consumer Finance,

51.1 % reported owning stocks directly or indirectly. We set the share of passive

traders who hold equities equal to 45%, and the overall share of active traders to

5%. We consider two types of passive equity holders: (1) those who rebalance every

period and those who rebalance every 3 periods. These shares can be interpreted

6As is standard in this literature, we compare the ratio of total outside wealth to aggregate non-
durable consumption in our endowment economy to the ratio of total tradeable wealth to aggregate
income in the data. Aggregate income exceeds aggregate non-durable consumption because of
durable consumption and investment.
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as shares of human wealth. We also consider three different rebalancing targets for

our passive equity holders: 30%, 35% and 40%. We will assume that our traders

cannot borrow against their labor income, ξ = 0.

5.2 Results in Benchmark Economy

Table 2 reports moments of asset prices generated by simulating data from a model

with 3,000 agents for 10,000 periods. The panel on the left reports result for the

case of active traders that are unable to insure against idiosyncratic shocks (z-

complete traders). The panel on the right reports for the case in which the ac-

tive traders are able to (partly) insure against idiosyncratic shocks. The top panel

reports result for the case when ̟⋆, the target equity share of the passive trader

is 30 %, the middle panel looks at the case of 35 %, and, finally, the bottom

panel looks at the case of 40 %. We report the maximum unconditional Sharpe

ratio ( σ(m)
E(m)

), the standard deviation of the maximum SR (Std( σt(m)
Et(m)

) ), the equity

risk premium E (Rt+1,t[D] − Rt+1,t[1]), the standard deviation of excess returns

σ (Rt+1,t[D] − Rt+1,t[1]), the Sharpe ratio on equity, the mean risk-free rate and the

standard deviation of the risk-free rate.

[Table 2 about here.]

The participation of passive traders tends to increase the volatility in risk premia.

In our model, this force operates in two ways: (i) as we increase the target share of

equity in the passive trader’s portfolio and (ii) as we shift passive traders from the

crb type to the irb type. We discuss both of these effects.

5.2.1 Passive Trader Pool

Asset Prices First, we focus on the importance of the composition of the passive

trader pool. We start with the case of a 30 % equity target (top panel). In the

benchmark economy with only crb passive traders, the maximum SR is .43 and its

standard deviation is only 3 %. The equity premium is 8.9 %. The mean risk-free

rate is 1.58 %, and the volatility of the risk-free rate is 3%. When we change the crb

to irb passive traders, the volatility of the market price of risk increases threefold to

9 %. That is the main effect of this change in the composition of the passive trader

segment. The equity premium drops by 77 basis points, the maximum SR drops by

one percentage point. Most importantly, the volatility of the risk-free rate drops to

2.7%.
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In the case of a 35 % equity target, the maximum Sharpe ratio is substantially

lower (.37), and the average equity premium is 7.44 %. Changing the crb traders

into irb traders has a similar effect on the volatility of risk prices in this case; the

standard deviation increases from 3.9 % to 14.8 %, more than threefold. The equity

premium drops by 68 basis points and the volatility of the riskfree declines from

3 % to 2.6 %. Finally, in the case of a 40 % equity target, reported in the bottom

panel, the volatility of the market price increases from 6.1 % to 17.7%. Hence, as we

increase the equity holdings of the passive traders, the unconditional market price

of risk (equity premium) decreases, but the volatility of risk prices increases from 9

% to 17.7 %.

Table 3 decomposes the variation in the conditional Sharpe ratio on equity into

the variation in the equity risk premium and the variation in the conditional volatil-

ity of stock returns. In the benchmark case with a 35 % equity target, the standard

deviation of the conditional equity premium increases from 1 % to 2.3 % as we com-

pare the crb case to the irb case, the standard deviation of the vol increases from 2.3

% to 3.1 %. The combined effect translates into an increase in the volatility of the

conditional Sharpe ratio from 3.13 to 9 % per annum. In the case of a 40 % equity

target, the volatility of the equity risk premium increases even more, from 1.18 %

to 3.77 %, and the volatility of the conditional SR increases from 6.18 % to 20 %.

Clearly, the shift from crb to irb traders increases the volatility of risk prices by

a factor of three. However, increasing the target share of equity for crb traders also

increases the volatility substantially from 3.1 %, in the case of the 30 % target (see

top panel of Table 2), to 6 % in the case of the 40 % target (see bottom panel of Table

2). The more equity passive traders hold, the higher the volatility of risk prices. A

10 percentage point increase in the target share doubles the volatility of risk prices.

[Table 3 about here.]

The variation created by the irb traders is counter-cycclical. Figure 1 plots the

conditional risk premium on equity, the conditional standard deviation and the

conditional Sharpe ratio on equity against the history of aggregate consumption

growth shocks for the benchmark case of a 35 % equity share. The shaded areas

denote the low aggregate consumption growth realizations. The dotted line shows

the crb results; the full line shows the irb results. Clearly, in the irb case, the con-

ditional risk premium on equity increases with each low aggregate consumption

growth realization, and decreases with each high aggregate consumption growth

realization. The conditional Sharpe ratio is even more counter-cyclical, because the
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conditional volatility decreases with each negative aggregate consumption growth

realization. This is in line with the findings of Lettau and Ludvigson (2001) who

document that the conditional risk premium and the conditional volatility of stock

returns are negatively correlated.

On the other hand, in the crb case, the conditional risk premium does not vary

as much, and it is not clearly counter-cyclical. Moreover, the Sharpe ratio is only

weakly counter-cyclical.

[Figure 1 about here.]

As we increase the target equity share to 40 %, the equity risk premium actu-

ally turns negative after a series of high aggregate consumption growth shocks, as

shown in Figure 2, which plots the conditional risk premum, volatility and Sharpe

ratio for the same history of aggregate consumption growth shocks as in Figure 1.

This explains why the volatility of the Sharpe ratio surpasses that of the market

price of risk.

[Figure 2 about here.]

Portfolio, Wealth, Consumption and Welfare Costs The top panel in Table 4 re-

ports the moments of household portfolio returns. The active z-traders realize an

excess return of 4.26% and a SR of .39, compared to only 2.36 and .29% respectively

for the irb trader. The optimal average portfolio share for a passive trader is only

49 % (compared to 57 % in the crb case), because the equity premium is lower.

Interestingly, these numbers change to 27 % (and 34 %) if we increase the target to

35 %, which reflects the sensitivity of the optimal portfolio share to changes in the

average risk premium.

However, the cost of being a passive crb trader in this case is 3 times higher in

the irb case than in the crb case, simply because the risk premium is much more

volatile and hence the cost of not responding to variation in the investment oppor-

tunity set is much larger. We also report the cost of being a crb trader, compared

to an irb trader. The cost is small but positive. This is surprising, but can easily

be understood by looking at the optimal equity share (49 %), which is much higher

than 35 %. The irb traders gets closer on average to this target, because expan-

sions are more frequent than recessions, and because their equity share drifts up

in expansions. This benefit outweighs the cost of intermittent rebelancing.7 So, the

7However, if we would force the average equity shares to be the same for these traders, the cost
would obviously be negative. In any case, this shows that the direct cost of intermittent rebalancing
has to be small.
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crb trader is willing to give up some of his consumption to attain a larger average

equity share.

The second panel in Table 4 reports the moments of household consumption

growth, and the moments of aggregate consumption growth for each group of

traders. In the case of crb traders, the volatility of household consumption growth

is inversely related to the degree of sophistication of the trader: 3.06 % for active

traders, 3.22 % for the crb traders, for 3.63 % for non-participants. However, it is

important to point out that these traders are exposed to different types of risk. This

becomes apparent when we consider the moments for group consumption. The

volatility for the active trader segment is 1.47 %, compared to 1.23 % for the passive

equity holders, and 1.47 % for the active traders. The relation between consump-

tion volatility and trader sophistication reverses itself at the group level. Now, in

the case of the irb traders, the volatility of the active trader’s consumption growth

(at the group level) increases to 1.66 %, while, at the household level, the volatility

of household consumption growth for passive equity holders increases from 3.22 %

to 3.63 %. Other than that, the consumption numbers are very similar.

Finally, the bottom panel in Table 4 reports the household wealth statistics. The

active (z-complete) trader accumulates 1.82 times as much wealth as the average

household in the baseline rcb case, while the passive trader accumulates 1.16 times

as much and the non-participant .76. These fractions are virtually unchanged int

he irb case. However, the wealth of the passive trader (expressed as a fraction of

average wealth) of the passive traders becomes more volatile –it increases from 8.5

to 12 %.

[Table 4 about here.]

5.2.2 Active Trader Pool

While the results reported sofar show that irb passive traders amplify the volatility

of risk prices, the numbers are still small compared to the 50 % standard devia-

tion of the SR reported by Lettau and Ludvigson (2001). However, the composition

of the active trader pool is equally important for the volatility of the market price

of risk. The z-complete traders are subject to idiosyncratic risk and hence have a

precautionary motive to accumulate wealth. We now look at what happens when

we introduce traders who are not subject to idiosyncratic risk or can hedge against

it. We think of these traders as a stand-in for highly levered, active market partici-

pants like hedge funds. These participants will tend to increase the volatility of risk
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premia if they are subject to occasionally binding solvency constraints.

As we change the active traders from z-complete traders to complete traders,

the volatility of the market price of risk increases from 9% in the irb case to 18 % in

the top panel (30 % target); from 17.7% to 26.2 % in the case of a 40 % target. As

shown in Table 3, the volatility of the conditional Sharpe ratio on equity increases

to 18 % in the case of a 30 % target, 29 % in the benchmark case with a 35 % equity

target, and finally, 34 % in the case of 40 %. This means we do get much closer to

the target in the data if we introduce these complete active traders.

The volatility of risk prices is much higher because these complete traders have

no precautionary motive to accumulate wealth, and hence run into more binding

solvency constraints more frequently. Moreoever the maximum SR increases as well

from .42 to .52 in the 30 % case; from .32 to .45 in the 40 % case. The welfare cost

of being a passive trader increases from 1.5 % to 10 % of aggregate consumption,

simply because the volatility of risk premia is so much higher.

In addition, these complete traders load up on more aggregate risk, as is ap-

parent from the results in the right panel of Table 4. The complete traders realize

average excess returns of up to 11.5 % per annum. At the household level, in the

baseline case with crb traders, we get the same relation between trader sophis-

tication and consumption growth volatility: the standard deviation of household

consumption growth is 2.30 % for the active traders, compared to 3.15 % for the

passive equity holders and 3.64 % for the non-participants. However, the compo-

sition is very different: the group volatility is 1.88 for the active traders, compared

to 1.20 for the passive equity holders and .68 for the non-participants. Figure 3

plots the risk premium, the volatility and the SR against the history of aggregate

consumption growth shocks in the benchmark case with a 35 % equity target. The

conditional SR varies between 1.2 and zero.

[Figure 3 about here.]

Overall, what is striking is how similar the unconditional moments are in the

case of crb and irb traders, both in terms of portfolio returns and consumption

growth. The main quantitative difference is the increase in the volatility of house-

hold consumption growth for the passive equity holders.

5.3 IID Economy

Alvarez and Jermann (2001) match the first-order autocorrelation of aggregate con-

sumption growth shocks reported by Mehra and Prescott (1985) (ρz = . − .14). In
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addition, the Storesletten, Telmer, and Yaron (2006) calibration of idiosyncratic risk

turns on the CCV (counter-cyclical cross-sectional variation) mechanism; in low ag-

gregate consumption growth states, the volatility of idiosyncratic risk increases. We

check the sensitivity of our results to the negative autocorrelation of aggregate con-

sumption growth shocks and the CCV mechanism by choosing an IID calibration

of aggregate consumption growth shocks without the CCV mechanism. This cal-

ibration satisfies the assumption we imposed in the IID example (see 4.3). In this

version of model, without non-participants, the representative agent risk premium

obtains if all passive traders are of crb type.

The key moments of the stochastic discount factor are reported in Table 5. In the

benchmark case of a 35 , the standard deviation of the market price of risk increases

from 5.4% in the crb case to 11 % in the irb case, a smaller 103 percent increase,

compared to a 190 percent increase in the volatility in the benchmark calibration

(see results reported in Table 2). The volatility is smaller in the IID economy, but

the irb traders do amplify the volatility of the market prices of risk.

[Table 5 about here.]

6 Conclusion

Our paper shows that intermittent re-balancing should be considered as a potential

explanation for the puzzling volatility of Sharpe ratios in equity markets. This ex-

planation does not rely on non-standard preferences, but instead it simply assumes

that some traders fail to continuously re-balance their portfolios. However, the

welfare cost calculations suggest that small costs might suffice to deter households

from continuously re-balancing. Even though the individual welfare loss from not

rebalancing may be small, the aggregate impact on pricing is large. This makes it

an appealing friction.
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A Saddle Point

A.1 Active
The saddle point problem of an z-complete trader can be stated as:

L = min
{χ,ν,ϕ}

max
{c,â}

∞

∑
t=1

βt ∑
(zt ,ηt)

u(c(zt, ηt))π(zt, ηt)

+χ




∑
t≥1

∑
(zt,ηt)

P̃(zt, ηt)
[
γY(zt)ηt − c(zt, ηt)

]
+ ̟(z0)






+ ∑
t≥1

∑
(zt,ηt)

ν(zt, ηt)



∑

τ≥t
∑

(zτ ,ητ)�(zt,ηt)

P̃(zτ, ητ) [γY(zτ)ητ − c(zτ, ητ)] + P̃(zt, ηt)ât−1(zt, ηt−1)





+ ∑
t≥1

∑
(zt,ηt)

ϕ(zt, ηt)




−Mt(zt, ηt)P̃(zt, ηt)− ∑
τ≥t

∑
(zτ ,ητ)�(zt,ηt)

P̃(zτ , ητ) [γY(zτ)ητ − c(zτ, ητ)]




 ,

where P̃(zt, ηt) = π(zt, ηt)P(zt, ηt). This is a standard convex programming problem –the constraint set is still convex, even

with the measurability conditions and the solvency constraints. The first order conditions are necessary and sufficient. The
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complete-trader’s problem is simply this problem where with net financial wealth allowed to depend on the full idiosyncratic

history, or ât−1(zt, ηt), and hence this measurability constraint is degenerate.

Let χ denote the multiplier on the present-value budget constraint, let ν(zt, ηt) denote the multiplier on the measurability

constraint in node (zt, ηt), and, finally, let ϕ(zt, ηt) denote the multiplier on the debt constraint.

The first-order condition for consumption is given by

βtu′(c(zt, ηt))π(zt, ηt) = χ + ∑
(zt,ηt)�(zτ,ητ)

[ν(zτ, ητ)− ϕ(zτ , ητ)] P̃(zt, ηt),

A.2 Passive
Here again, we will work with the present-value problem. As before, let χ denote the multiplier on the present-value budget

constraint, let ν(zt, ηt) denote the multiplier on the measurability constraint in node (zt, ηt), let ϕ(zt, ηt) denote the multiplier

on the debt constraint. In addition, let κ(zt, ηt) denote the multiplier on the equity transition condition. The saddle point

problem of a passive trader with trading technology (φ∗, T) can be stated as:

L = min
{χ,ν,ϕ}

max
{c,b,e}

∞

∑
t=1

βt ∑
(zt ,ηt)

u(c(zt, ηt))π(zt, ηt)

+ χ




∑
t≥1

∑
(zt,ηt)

P̃(zt, ηt)
[
γY(zt)ηt − c(zt, ηt)

]
+ ̟(z0)






+ ∑
t≥1

∑
(zt ,ηt)

ν(zt, ηt)

{
∑τ≥t ∑(zτ ,ητ)�(zt,ηt) P̃(zτ , ητ) [γY(zτ)ητ − c(zτ , ητ)]

+P̃(zt, ηt)
[
b(zt−1, ηt−1)R f (zt−1) + I{t∈T}e(zt−1, ηt−1)Re(zt)

]
}

+ ∑
t≥1

∑
(zt ,ηt)

ϕ(zt, ηt)

{
−Mt(zt, ηt)P̃(zt, ηt)

− ∑τ≥t ∑(zτ ,ητ)�(zt,ηt) P̃(zτ, ητ) [γY(zτ)ητ − c(zτ, ητ)]

}

+ ∑
t≥1

∑
(zt ,ηt)

κ(zt , ηt)

{
I{t∈T}

[
e(zt, ηt)− ̟⋆

1−̟⋆ b(zt, ηt)
]

+I{t /∈T}

[
e(zt, ηt)− Re(zt)e(zt−1, ηt−1)

]

}
.

where P̃(zt, ηt) = π(zt, ηt)P(zt, ηt). This is a standard convex programming problem. We list the first-order conditions for

consumption c:

βtu′(c(zt, ηt))π(zt, ηt) =




χ + ∑
(zt,ηt)�(zτ,ητ)

[ν(zτ, ητ)− ϕ(zτ , ητ)]




 P̃(zt, ηt),

for bonds bt

∑
(zt+1,ηt+1)

ν(zt+1, ηt+1)P̃(zt+1, ηt+1)R f (zt)− I{t∈T}κ(zt, ηt)
̟⋆

1 − ̟⋆
= 0,

and finally for equity holdings e:

∑
(zt+1,ηt+1)

{
ν(zt+1, ηt+1)I{t+1∈T}P̃(zt+1, ηt+1)Re(zt+1)

−κ(zt+1, ηt+1)I{t+1/∈T}Re(zt+1)

}
+ κ(zt, ηt) = 0.

Taxonomy There are four cases with respect to the last two first-order conditions depending upon whether t and/or

t + 1 is an element of T, the set of rebalancing periods. Here is an overview of these different cases:

i. If t ∈ T and t + 1 ∈ T then the last two conditions reduce to

∑
(zt+1,ηt+1)

νt+1(zt+1, ηt+1)P̃t+1(zt+1, ηt+1)
[
(1 − ̟⋆)Rt+1,t[1](zt) + ̟⋆Rt+1,t[{D}](zt+1)

]
= 0,

where
[
(1 − ̟⋆)Rt+1,t[1](zt) + ̟⋆Rt+1,t[{D}](zt+1)

]
is the simply overall return on the agent’s portfolio conditional

on the transition from zt to zt+1. This is the martingale condition for the continuous-rebalancing trader.
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ii. If t ∈ T and t + 1 /∈ T then the last two conditions become

1 − ̟⋆

̟⋆ ∑
(zt+1,ηt+1)

νt+1(zt+1, ηt+1)P̃t+1(zt+1, ηt+1)Rt+1,t[1](zt) = κ(zt, ηt),

and

∑
(zt+1,ηt+1)

Rt+1,t[{D}](zt+1)
{

νt+1(zt+1, ηt+1)P̃t+1(zt+1, ηt+1)− κt+1(zt+1, ηt+1)
}

= −κt(zt, ηt).

iii. If t /∈ T and t + 1 ∈ T then the last two conditions become

1 − ̟⋆

̟⋆ ∑
(zt+1,ηt+1)

νt+1(zt+1, ηt+1)P̃t+1(zt+1, ηt+1)Rt+1,t[1](zt) = 0,

and

∑
(zt+1,ηt+1)

νt+1(zt+1, ηt+1)P̃(zt+1, ηt+1)Rt+1,t[{D}](zt+1) = −κt(zt, ηt).

iv. If t /∈ T and t + 1 /∈ T then the last two conditions become

1 − ̟⋆

̟⋆ ∑
(zt+1,ηt+1)

νt+1(zt+1, ηt+1)P̃t+1(zt+1, ηt+1)Rt+1,t[1](zt) = 0,

and

∑
(zt+1,ηt+1)

Rt+1,t[{D}](zt+1)
{

νt+1(zt+1, ηt+1)P̃(zt+1, ηt+1) − κ(zt+1, ηt+1)
}

= −κt(zt, ηt).

In the simple case in which the rebalancing takes place every other period, then these conditions boil down to

0 = ∑
(zt+1,ηt+1)

{
ν(zt+1, ηt+1)P̃(zt+1, ηt+1)

[
φ∗R f (zt)

]}

+ ∑
(zt+2,ηt+2)

{
ν(zt+2, ηt+2)P̃(zt+2, ηt+2)

[
Rt+2,t[{D}](zt+2)

]}

in the rebalancing periods, and

φ∗
∑

(zt+1,ηt+1)

ν(zt+1, ηt+1)P̃(zt+1, ηt+1)Rt+1,t[1](zt) = 0.

in the nonrebalancing periods.

B Proofs
Proof of Result in eq. (16):

Proof. The consumption sharing rule follows directly from the ratio of the first order conditions and the market clearing

condition. Condition (14) implies that

c(zt, ηt) = u′−1

[
ζ(zt, ηt)P(zt)

βt

]
.

In addition, the sum of individual consumptions aggregate up to aggregate consumption:

C(zt) = ∑
ηt

c(zt, ηt)π(ηt|zt).
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This implies that the consumption share of the individual with history (zt, ηt) is

c(zt, ηt)

C(zt)
=

u′−1
[

ζ(zt,ηt)P(zt)
βt

]

∑ηt u′−1
[

ζ(zt,ηt)P(zt)
βt

]
π(ηt|zt)

.

With CRRA preferences, this implies that the consumption share is given by

c(zt, ηt)

C(zt)
=

ζ(zt, ηt)
−1
α

h(zt)
, where h(zt) = ∑

ηt

ζ(zt, ηt)
−1
α π(ηt|zt).

Hence, the −1/αth moment of the multipliers summarizes risk sharing within this economy. We refer to this moment of the

multipliers simply as the aggregate multiplier. The equilibrium SDF is the standard Breeden-Lucas SDF times the growth

rate of the aggregate multiplier. This aggregate multiplier reflects the aggregate shadow cost of the measurability and the

borrowing constraints faced by households. The expression for the SDF can be recovered directly by substituting for the

consumption sharing rule in the household’s first order condition for consumption (14).
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Table 1: The Conditional Sharpe Ratio in Equity Markets and the Business Cycle

In expansions (recessions), the investor buys the stock market index in the n-th quarter after the NBER through (peak) and
sells after 4 quarters. Table reports moments of excess returns for thhis investment strategy implemented on the CRSP-
VW index of NYSE-AMEX-NASDAQ realized. The riskfree rate is the 90-days T-bill rate (also from CRSP). The entire
sample comprises 1925.IV-2009.II. The postwar sample comprises 1945.I-2009.II. We report the average excess return on this
investment strategy (annualized) in the first panel, the standard deviation (not annualized) in the second panel and the
Sharpe ratio (annualized) in the third panel.

Expansions

Buy in n − th quarter after through

1st 2nd 3rd 4th 5th

Conditional Expected Excess Return

whole 17.30% 4.29% 3.48% 8.22% 2.11%
postwar 9.85% 1.45% 0.86% 5.51% 5.51%

Conditional Stdev. of Excess Return

whole 14.75% 9.17% 8.70% 7.74% 8.57%
postwar 8.62% 8.95% 8.50% 7.77% 6.97%

Conditional Sharpe Ratio

whole 0.586 0.234 0.200 0.531 0.123
postwar 0.571 0.081 0.051 0.355 0.396

Recessions

Buy in n − th quarter after peak

1st 2nd 3rd 4th 5th

Conditional Expected Excess Return

whole 2.88% 8.43% 11.73% 10.76% 2.46%
postwar 6.22% 10.70% 12.63% 10.57% 3.82%

Conditional Stdev. of Excess Return

whole 12.54% 12.61% 12.07% 10.84% 10.79%
postwar 10.47% 11.20% 11.00% 9.78% 9.87%

Conditional Sharpe Ratio

whole 0.115 0.334 0.486 0.496 0.114
postwar 0.297 0.478 0.574 0.540 0.193
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Table 2: Moments of Asset Prices Moments of annual returns. The irb traders re-balance every three periods
in a staggered fashion (1/3 each year). Storesletten, Telmer, and Yaron (2006) of idiosyncratic shocks; Alvarez and Jermann
(2001) calibration of aggregate consumption growth shocks. Parameters: γ = 5, β = 0.95, collateralized share of income is
10%. The results are generated by simulating an economy with 3, 000 agents and 10, 000 periods.

z-Complete Complete

crb irb crb irb

Active z 5% 5% 0% 0%
Active c 0% 0% 5% 5%
Passive crb 45% 0% 45% 0%
Passive irb 0% 45% 0% 45%
Passive np 50% 50% 50% 50%

30% equity share passive target (̟⋆)
σ(M)
E(M)

0.438 0.420 0.516 0.526

Std
[

σt(M)
Et(M)

]
0.031 0.090 0.065 0.184

E (Rt+1,t[D]− Rt+1,t[1]) 8.918 8.14 10.14 9.29

σ (Rt+1,t[D]− Rt+1,t[1]) 20.56 20.56 20.16 20.35

Sharpe Ratio 0.433 0.396 0.503 0.456

E (Rt+1,t[1]) 1.58 1.78 1.60 1.80

σ (Rt+1,t[1]) 3.02 2.68 2.94 2.46

35% equity share passive target (̟⋆)
σ(M)
E(M)

0.370 0.365 0.459 0.487

Std
[

σt(M)
Et(M)

]
0.039 0.148 0.084 0.288

E (Rt+1,t[D]− Rt+1,t[1]) 7.44 6.76 8.61 7.49

σ (Rt+1,t[D]− Rt+1,t[1]) 20.45 21.97 19.52 23.48

Sharpe Ratio 0.364 0.308 0.441 0.319

E (Rt+1,t[1]) 1.94 2.12 1.85 2.16

σ (Rt+1,t[1]) 2.98 2.60 2.80 2.22

40 % equity share passive target (̟⋆)
σ(M)
E(M)

0.266 0.322 0.314 0.457

Std
[

σt(M)
Et(M)

]
0.061 0.177 0.127 0.262

E (Rt+1,t[D]− Rt+1,t[1]) 5.201 5.05 5.67 5.25

σ (Rt+1,t[D]− Rt+1,t[1]) 20.53 23.7 21.0 27.78

Sharpe Ratio 0.253 0.212 0.268 0.189

E (Rt+1,t[1]) 2.451 2.52 2.44 2.73

σ (Rt+1,t[1]) 2.890 2.50 2.80 2.12
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Table 3: Conditional Moments Moments of annual returns conditional on history of aggregate shocks zt . The
irb traders re-balance every three periods in a staggered fashion (1/3 each year). Storesletten, Telmer, and Yaron (2006) of
idiosyncratic shocks; Alvarez and Jermann (2001) calibration of aggregate consumption growth shocks. Parameters: γ = 5,
β = 0.95, collateralized share of income is 10%. The results are generated by simulating an economy with 3, 000 agents and
10, 000 periods.

z-Complete Complete

crb irb crb irb

Active z 5% 5% 0% 0%
Active c 0% 0% 5% 5%
Passive crb 45% 0% 45% 0%
Passive irb 0% 45% 0% 45%
Passive np 50% 50% 50% 50%

30% equity share passive target (̟⋆)

Std [Et (Rt+1,t[D]− Rt+1,t[1])] 1.17 1.23 1.06 1.92

Std [σt (Rt+1,t[D]− Rt+1,t[1])] 2.37 3.13 2.39 3.42

Std [SRt] 3.13 9.06 6.52 18.42

35% equity share passive target (̟⋆)

Std [Et (Rt+1,t[D]− Rt+1,t[1])] 1.04 2.30 0.999 4.40

Std [σt (Rt+1,t[D]− Rt+1,t[1])] 2.33 3.67 2.22 5.10

Std [SRt] 3.89 14.79 8.44 28.79

40% equity share passive target (̟⋆)

Std [Et (Rt+1,t[D]− Rt+1,t[1])] 1.18 3.77 2.22 7.20

Std [σt (Rt+1,t[D]− Rt+1,t[1])] 2.39 4.75 2.94 7.85

Std [SRt] 6.18 19.91 12.78 34.16
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Table 4: Moments of Household Portfolio Returns and Consumption Panel I reports
moments of household portfolio returns, Panel II reports moments of household consumption, and Panel III reports moments
of household wealth: we report the average excess returns on household portfolios and the Sharpe ratios, we report the
standard deviation of household consumption growth (as a multiple of the standard deviation of aggregate consumption
growth), and we report the standard deviation of group consumption growth (as a multiple of the standard deviation of
aggregate consumption growth); the last panel reports the average household wealth as a share of total wealth, and the
standard deviation of household wealth, as a share of total wealth. Results for 35% equity share passive target (̟⋆).Moments
of annual returns and consumption flows. The irb traders re-balance every three periods in a staggered fashion (1/3 each
year). Storesletten, Telmer, and Yaron (2006) of idiosyncratic shocks; Alvarez and Jermann (2001) calibration of aggregate
consumption growth shocks. Parameters: γ = 5, β = 0.95, collateralized share of income is 10%. The results are generated
by simulating an economy with 3, 000 agents and 10, 000 periods.

z-Complete Complete

crb irb crb irb

Active z 5% 5% 0% 0%
Active c 0% 0% 5% 5%
Passive crb 45% 0% 45% 0%
Passive irb 0% 45% 0% 45%
Passive np 50% 50% 50% 50%

Panel I: Household Portfolio

Excess Return

Active Trader 4.38 4.26 11.5 11.2

Passive Equity Holder 2.59 2.36 3.00 2.54

Sharpe Ratio

Active Trader 0.370 0.398 0.082 0.090

Passive Equity Holder 0.364 0.298 0.443 0.305

Additional Stats

Optimal Equity Share for crb 0.57 0.49 0.81 0.54

Welfare cost of crb to z 1.15 3.76 1.74 10.72

Welfare cost of crb to irb 2.12 1.69 2.34 1.66

Panel II Household Consumption

Std. Dev. at Household level

Active Trader 3.06 3.09 2.30 2.43

Passive Equity Holder 3.22 3.63 3.15 3.58

Passive non-participant 3.63 3.59 3.64 3.58

Std. Dev. of Group Average

Active Trader 1.47 1.66 1.88 1.91

Passive Equity Holder 1.23 1.26 1.20 1.25

Passive non-participant 0.66 0.66 0.68 0.67

Panel III: Household Wealth

Average Household Wealth Share

Active Trader 1.82 1.75 0.555 0.619

Passive Equity Holder 1.16 1.13 1.27 1.22

Passive non-participant 0.768 0.798 0.794 0.832

Stdev. of Household Wealth Share

Active Trader 0.446 0.421 0.123 0.241

Passive Equity Holder 0.085 0.121 0.097 0.128

Passive non-participant 0.115 0.115 0.098 0.113

Stdev. of Aggregate Equity Share

Passive Equity Holder 0.059 0.120 0.027 0.100

Correlation of Aggregate Equity Share

Passive Equity Holder 0.771 0.805 0.785 0.760

39



Table 5: Moments of Asset Prices with IID Calibration Moments of annual returns. The irb
traders re-balance every three periods in a staggered fashion (1/3 each year). Storesletten, Telmer, and Yaron (2006) calib
of idiosyncratic shocks without CCV; Alvarez and Jermann (2001) calibration of aggregate consumption growth shocks with
AR(1) coefficient for aggregate consumption growth ρz = 0. Parameters: γ = 5, β = 0.95, collateralized share of income is
10%. The results are generated by simulating an economy with 3, 000 agents and 10, 000 periods.

z-Complete Complete

crb irb crb irb

Active z 5% 5% 0% 0%
Active c 0% 0% 5% 5%
Passive crb 45% 0% 45% 0%
Passive irb 0% 45% 0% 45%
Passive np 50% 50% 50% 50%

30% equity share passive target (̟⋆)
σ(m)
E(m)

0.443 0.430 0.517 0.516

Std( σt(m)
Et(m)

) 0.051 0.087 0.0748 0.123

35% equity share passive target (̟⋆)
σ(m)
E(m)

0.400 0.379 0.497 0.489

Std( σt(m)
Et(m)

) 0.054 0.110 0.081 0.160

40% equity share passive target (̟⋆)
σ(m)
E(m)

0.341 0.325 0.432 0.422

Std( σt(m)
Et(m)

) 0.063 0.145 0.084 0.231
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Figure 1: Counter-Cyclical Time Variation: Benchmark case with z-Complete Active
Traders

This calibration has 50 % non-participants, 5% complete and 45 % either in crb or irb traders. The target equity share is 35 %.
The irb traders re-balance every three periods in a staggered fashion (1/3 each year). Storesletten, Telmer, and Yaron (2006)
of idiosyncratic shocks; Alvarez and Jermann (2001) calibration of aggregate consumption growth shocks. Parameters: γ = 5,
β = 0.95, collateralized share of income is 10%. The results are generated by simulating an economy with 3, 000 agents and
10, 000 periods.
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Figure 2: Counter-Cyclical Time Variation: 40 % Equity Share

This calibration has 50 % non-participants, 5% complete and 45 % either in crb or irb traders. The target equity share is 40 %.
The irb traders re-balance every three periods in a staggered fashion (1/3 each year). Storesletten, Telmer, and Yaron (2006)
of idiosyncratic shocks; Alvarez and Jermann (2001) calibration of aggregate consumption growth shocks. Parameters: γ = 5,
β = 0.95, collateralized share of income is 10%. The results are generated by simulating an economy with 3, 000 agents and
10, 000 periods.
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Figure 3: Counter-Cyclical Time Variation: Complete Active Traders

This calibration has 50 % non-participants, 5% complete and 45 % either in crb or irb traders. The irb traders re-balance
every three periods in a staggered fashion (1/3 each year). Storesletten, Telmer, and Yaron (2006) of idiosyncratic shocks;
Alvarez and Jermann (2001) calibration of aggregate consumption growth shocks. Parameters: γ = 5, β = 0.95, collateralized
share of income is 10%. The results are generated by simulating an economy with 3, 000 agents and 10, 000 periods.
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