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1 Introduction

We consider identification of nonparametric random utility models of multinomial choice
using “micro data,” i.e., observation of the characteristics and choices of individual con-
sumers. Our model of preferences nests random coefficients discrete choice models widely
used in practice with parametric functional form and distributional assumptions. However,
the model is nonparametric and distribution free. It allows choice-specific unobservables,
endogenous choice characteristics, unknown heteroskedasticity, and high-dimensional corre-
lated taste shocks. Under standard “large support” and instrumental variables assumptions,
we show identifiability of the random utility model, i.e., of (i) the choice-specific unobserv-
ables and (ii) the joint distribution of preferences conditional on any vector of observed and
unobserved characteristics. We demonstrate robustness of these results to relaxation of the
large support condition and show that when it is replaced with a weaker “common choice
probability” condition (defined below), the demand structure is still identified. We also show
that key maintained hypotheses are testable.

Motivating our work is the extensive use of discrete choice models of demand for differen-
tiated goods in a wide range of applied fields of economics and related disciplines. Examples
include transportation and urban economics (e.g., Domencich and McFadden (1975)), in-
dustrial organization (e.g., Berry, Levinsohn, and Pakes (1995)), international trade (e.g.,
Goldberg (1995)), marketing (e.g., Guadagni and Little (1983)), education (e.g., Manski and
Wise (1983)), migration (e.g., Schultz (1982)), voting (e.g., Poole and Rosenthal (1985)),
and health economics (e.g., Capps, Dranove, and Satterthwaite (2003)). We focus in par-
ticular on models in the spirit of Berry (1994), Berry, Levinsohn and Pakes (1995, 2004),
Nevo (2001), Petrin (2002) and a large related literature. These models combine two es-
sential features: heterogeneous tastes for choice characteristics, and endogeneity through
market /choice-specific unobservables. Although this class of models is used in a wide range
of applications, their identification has not been addressed in the prior literature. Without
an understanding of the sources of identification in these models, it is difficult to know what

qualifications are necessary when interpreting estimates or policy conclusions.



Our analysis demonstrates that with sufficiently rich micro data, random utility multino-
mial choice models featuring unobserved market /choice characteristics are identified without
the parametric or distributional assumptions used in practice—typically, linear utility with
independent additive and/or multiplicative taste shocks drawn from parametrically specified
distributions. Our results may therefore lead to greater confidence in estimates and policy
conclusions obtained in empirical work based on discrete choice models. In particular, para-
metric specifications used in estimation can often be viewed as parsimonious approximations
in finite samples rather than as essential maintained assumptions. We view this as our
primary message. However, our results also suggest that with large samples even richer
specifications (parametric or nonparametric) of preferences might be considered in empirical
work, and our identification proofs may suggest estimation approaches.

An important strategy in our work is modeling utility as a nonparametric random func-
tion of observed and unobserved characteristics. This contrasts with the usual approach
of building up randomness from random coefficients and/or other taste shocks. Our for-
mulation not only enables us to consider a very general model of preference heterogeneity,
but also leads us to focus directly on identification of the conditional joint distribution of
utilities. The advantage of this approach might be unexpected: a natural intuition is that
added structure on the way randomness enters the model would aid identification. However,
whereas the conditional distribution of utilities has the same dimension as the observable
conditional choice probabilities (i.e., the dimension of the choice set), even the standard lin-
ear random coefficients model will involve taste shocks of larger dimension unless significant
restrictions are placed on the correlation structure. Focusing directly on the joint distribu-
tion of utilities naturally leads to primitives whose dimension exactly matches the dimension
of the observables without imposing strong distributional or functional form restrictions.

A second key aspect of our work is our explicit modeling of market/choice-specific un-
observables. Although this is standard in the applied literature, much of the prior work on
identification of discrete choice models has embedded the sources of randomness in pref-

erences and the sources of endogeneity in the same random variables. In applications to



demand estimation, an endogeneity problem typically arises because some observed choice
characteristics (price being a leading example) depend on unobserved choice characteristics.
For such environments, explicitly modeling market /choice-specific unobservables enables one
to define counterfactuals involving changes in endogenous characteristics within a model of
heteroskedastic random utilities. For example, our formulation allows characterization of
demand elasticities, which require evaluating the effects of a change in price (including re-
sulting changes in the variance or other moments of random utilities), holding unobserved
product characteristics fixed.!

A third novel component of our work is its exploration of both identification of the full
model and identification of “demand,” i.e., the mapping from observed and unobserved char-
acteristics to the vector of choice probabilities. For many questions motivating estimation
of discrete choice models, knowledge of this demand structure suffices. Not surprisingly,
identification of demand can be obtained under weaker conditions than those giving full
identification of the random utility model.

Despite these differences from the prior literature, we rely heavily on two standard ideas.
One is the use of variation in exogenous observables to “trace out” the distribution of un-
observables. Antecedents in the discrete choice literature include Manski (1985), Matzkin
(1992, 1993), Lewbel (2000), Honoré and Lewbel (2002), and Briesch, Chintagunta, and
Matzkin (2005), among others. We show that this strategy is particularly useful in a micro
data setting, where one can exploit variation in individual-level observables within a market,
holding market-level unobservables fixed. As usual, we require the observables tracing out
the joint distribution to have dimension as large as the choice set. However, we show that the
support conditions commonly used with this strategy can be substantially relaxed without
losing identification of demand. A second standard idea is the use of exogenous variation

in choice sets to decompose variation in the distribution of utilities into the contributions

! Although this is the type of endogeneity typically relevant to demand applications, it obviously is not
the only possibility. For example, our model typically would not be appropriate for evaluating treatment
effects on multinomial outcomes when treatments depend on individual-specific unobservables. See Berry
and Haile (2009b) for additional discussion and examples in the context of a generalized regression model.



of observed and unobserved characteristics. This strategy has been exploited in parametric
discrete choice models by, e.g., Berry (1994) and Berry, Levinsohn and Pakes (1995, 2004).
Here we rely heavily on results from the recent literature on nonparametric identification of
regression models using instrumental variables, particularly Newey and Powell (2003) and
Chernozhukov and Hansen (2005). To our knowledge, the applicability of these results to
discrete choice settings has not been previously exploited. An implication of our results is
that the primary requirement for identification of demand is the availability of instruments.
As discussed below, one advantage of micro data is the variety of instruments that may be
available.

In the following section we provide some additional discussion of related literature. We
then set up the choice framework and define the observables and structural features of
interest in section 3. Section 4 provides an illustration of key lines of argument in a simple
case: binary choice with exogenous characteristics. Section 5 addresses full identification
in the case of multinomial choice with endogeneity. There we consider two alternative
instrumental variables conditions that deliver full identification of the model. In section
6 we show identifiability of demand under weaker conditions and illustrate the robustness
of the full identification results to the relaxation of support conditions. Section 7 discusses
testable restrictions of key maintained hypotheses. In section 8 we show how our results
can be reinterpreted to show identification in one type of environment in which only market

level data are available. We conclude in section 9.

2 Relation to the Literature

Our work is motivated by a large applied literature using models of discrete choice demand
incorporating two key components: heterogeneous preferences for choice characteristics and
endogeneity through market/choice-specific unobservables. The former allows a flexible

model of substitution patterns (e.g., cross-elasticities),? while the latter is essential if one

2See, e.g., the discussions in Domencich and McFadden (1975), Hausman and Wise (1978) and Berry,
Levinsohn, and Pakes (1995). Early models of discrete choice with heterogeneous tastes for characteristics
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is to control for the classical endogeneity of prices. Although there is a large literature
on identification of discrete choice models,® there has been no analysis that covers even the
linear version of these models typically used in the applied literature. Thus, although we
relax functional form restrictions considered in the prior identification literature, a more fun-
damental distinction is that our model allows simultaneously for heterogeneity in preferences
for choice characteristics and endogeneity through market /choice-specific unobservables.

Identification of heterogeneous preferences for choice characteristics has been explored by
Ichimura and Thompson (1998) and Briesch, Chintagunta, and Matzkin (2005). Ichimura
and Thompson (1998) studied the linear random coefficients binary choice model. Briesch,
Chintagunta, and Matzkin (2005) considered multinomial choice, allowing generalizations of
the linear random coefficients model. Neither considers endogenous choice characteristics,
and both impose restrictions on how heterogeneity enters that we will not require.

Lewbel (2000) considered identification in the semi-parametric linear random utility

model

Vij = X8 + € (1)

where the distribution of €;; can vary with z;;. Unlike (1), our model makes a distinction
between the unobservables responsible for taste heterogeneity and those responsible for en-
dogeneity.* To see why this is essential in applications to discrete choice demand, suppose
we wish to describe how quantities would change in response to an exogenous change in
the price of good j—e.g., to describe own- and cross-price demand elasticities. Accounting
for heterogeneity in tastes requires that the entire distribution of v;; (not just its mean)
be permitted to change with the change in price. At the same time, controlling for the
endogeneity of price requires that all else (in particular, market/product-level unobservables

that are correlated with price) be held fixed.  Meeting both requirements is not possible

include those in Quandt (1966), Quandt (1968), and Domencich and McFadden (1975).
3Important early work includes Manski (1985, 1987, 1988) and Matzkin (1992, 1993).

4We also relax functional form restrictions; for example, we do not require mean effects of observables to
enter separably from unobservables.



in a model like (1) that incorporates a single “composite” error term. Thus, while (1) pro-
vides an attractive structure if the parameter 3 is the object of interest, the model lacks the
structure needed to define key objects of interest in the context of discrete choice demand.

Honoré and Lewbel (2002) consider a binary panel version of the model in Lewbel (2000),
relying on linearity in a composite error term and focusing on identification of a slope pa-
rameter. Altonji and Matzkin (2005) consider a similar but nonparametric model. Their
results for discrete choice models focus on identification and estimation only of local average
responses. Other work considering models similar to (1) includes Hong and Tamer (2004),
Blundell and Powell (2004), Lewbel (2005), and Magnac and Maurin (2007).

Matzkin (2004) (section 5.1) considers a model incorporating choice-specific unobserv-
ables and an additive preference shock, but in a model without random coefficients or other
sources of heteroskedasticity /heterogeneous tastes for characteristics.”  Hoderlein (2008)
allows for both heteroskedasticity and endogeneity in the case of a binary choice model,
focusing on identification of a particular average derivative. Hoderlein (2008), like Blundell
and Powell (2004) and Matzkin (2004), limit attention to binary choice in semiparametric
triangular models, leading to the applicability of control function methods or the related

"6 For binary choice demand, triangular models can be

idea of “unobserved instruments.
appropriate when price depends on either a demand shock or a cost shock, but not both. In
the case of multinomial choice, standard oligopoly models imply that each price depends on
the entire vector of demand shocks (and cost shocks, if any). Thus, triangular models do not
permit the type of endogeneity relevant for most applications to discrete choice demand.”
Berry and Haile (2009a) considers identification of multinomial choice models allowing

heterogeneity and endogeneity when only market level data are available. There we explore

extensions of ideas developed in this paper as well as a change-of-variables argument with

5See also Matzkin (2007a, 2007b).

6See also Lewbel (2000), Honoré and Lewbel (2002), Altonji and Matzkin (2005), and Petrin and Train
(2009).

"Gautier and Kitamura (2007) have considered binary choice in a linear random coefficients environment.
They include a brief discussion of endogeneity under a triangular structure.



close connections to control function methods and to classical supply and demand analysis.
Lack of micro data makes it impossible to exploit the within-market variation that plays
a central role throughout the present paper, and results are obtained there under more
restrictive representations of preferences than those considered here. Berry and Haile (2009a)
includes results for identification of marginal costs under a variety of oligopoly models. Those
results extend immediately to the micro data environment considered here, given the results
on identification of demand below.

Both Berry and Haile (2009a) and the present paper are distinguished from much of the
prior literature by a neglect of estimation. This limited focus is shared by the concurrent
work of Fox and Gandhi (2009), which explores identifiability of several related models,
including a model of multinomial choice in which consumer types are multinomial and utility
functions are analytic. More recently, Chiappori and Komunjer (2009) have explored
identification of a multinomial choice model with an additive structure in a micro data
environment, allowing for heterogeneous preferences and endogeneity through choice-specific
unobservables. They use a change of variables approach more closely related to one of the

approaches we have explored in Berry and Haile (2009a).

3 Model

3.1 Preferences and Choices

Consistent with the motivation from demand estimation, we describe the model as one in
which each consumer 7 in each market ¢ chooses from a set 7, of available products. We will
use the terms “product,” “good,” and “choice” interchangeably to refer to elements of the
choice set. The term “market” is synonymous with the choice set. In particular, consumers
facing the same choice set are defined to be in the same market. In practice, markets will
typically be defined geographically and/or temporally. Variation in the choice set will of
course be essential to identification, and our explicit reference to markets provides a way to

discuss this clearly.



Each consumer i in market ¢ is associated with a matrix of observables z;; = (214, - - -, Zig,t)-
The j subscript on z;;; allows the possibility that some characteristics are both consumer- and
choice-specific. This can result from interactions between consumer characteristics and prod-
uct characteristics, or from measures that are inherently consumer/choice-specific. Examples
from the literature include interactions between family size and automobile size (Goldberg
(1995), Berry, Levinsohn, and Pakes (2004)), distance from an individual’s home to a hos-
pital, school, or retailer (Capps, Dranove, and Satterthwaite (2003), Hastings, Staiger, and
Kane (2007), Burda, Harding, and Hausman (2008)), household exposure to product-specific
advertising (Ackerberg (2001)), matches between a voter’s position and party affiliation and
those of each candidate (Rivers (1988)), and matches between the income, education and
race of a household to that of a neighborhood (Bayer, Ferreira, and McMillan (2007)). We
will require at least one such measure for each j > 1.8

In applications to demand it is important to model consumers as having the option to
purchase none of the products the researcher focuses on.” We represent this by choice j = 0
and assume 0 € J; Vt. Choice 0 is often referred to as the “outside good.” We denote the
number of “inside goods” by J; = |J;| — 1.} Each inside good j has observable (to us)
characteristics ;. Among other things, z;; can include product dummies and price. Let
xy = (Z14,...,24). Unobservables at the level of the product and/or market are character-
ized by a scalar &, (i) for each j,, z;. This may reflect unobserved choice characteristics,
unobserved market characteristics, and/or unobserved taste for choice j in market ¢t. Al-
though we follow the literature in restricting ;; (2i) to be a scalar, we permit it to vary
across subpopulations with different z;. For simplicity we will assume that &, (2;) has an

atomless marginal distribution in the population for all z;;.

81f zijt = Zi for all j, the identification problem is identical to that in the case of market-level data (see
Berry and Haile (2009a)) conditional on each value of Z;;.

9See, e.g., Bresnahan (1981), Anderson, DePalma, and Thisse (1992), Berry (1994), Berry, Levinsohn,
and Pakes (1995), and Goldberg (1995).

10T applications with no “outside choice” our approach can be adapted by normalizing preferences relative
to those for a given choice. The same adjustment applies when characteristics of the outside good vary
across markets in observable ways.



We consider preferences represented by a random utility model. Letting y denote the
support of (:L‘jt, it (zit) ,zijt), each consumer ¢ in market ¢ has a conditional indirect utility
function uy; : x — R. However, consumers have heterogeneous tastes, even conditional on
observables. Thus, from the perspective of the researcher, each utility function u; can be
viewed as a random draw from a set U of permissible functions {u : x — R} . We will discuss
our assumptions on the set U below.

Formally, we define the random function u; on x as follows. Let (Q,F,P) denote a

probability space. Given any (a:jt, &t (zit) ,Zijt) € X,

Ugt (Ijt7 fjt (Zit) 7Zijt) =u (l‘jt, fjt (Zz't> y Zigjts Wit) (2)

where w;; € €2, and u is measurable in w;. Without loss, the draw from the sample space
) determining the realized function u;; is specified as independent of the arguments of the
function, (mjt, i (2it) ,zijt); i.e., the measure IP does not vary with (xjt, e (2it) ,zijt). This is
without loss because the function u already permits the distribution of (xjt, 13 jt (zit) zijt)
to vary arbitrarily with (xjt,f it (zit) ,zijt). Note that there is also no t subscript on the
probability measure P. This reflects our requirement that all unobserved choice/market-
level heterogeneity be captured by &, (zi).
We let

Vijt = U (ffjt, fjt (Zzt) y it Wit) .

Despite the similarity of this notation to that in Matzkin (2007a) and Matzkin (2007b),
we emphasize that here w;; is not a random variable (or random vector) but an elementary
event in the sample space ). The realization of w; could determine the realizations of an
arbitrarily large number of random variables with arbitrary joint distribution. Using this
observation, the following example shows how to map our general model to a more familiar

special case.



Example 1. Consider the linear random coefficients random utility model
(7 (%‘n Ejts Zijts wit) = Tjifu + zijty + & T €ije- (3)

Here &, (zi) = &, and the random variables (ﬁﬁ,}’, e ,BEtK), €ilty - - - ,etht> can be defined
on the probability space (Q, F,P), for example as ﬁgf) = p® (wir) and €5 = €j (wi). !

This specification permits an arbitrary joint distribution of <6Z(tl ), e BEtK ), Eilty - -+ € Jtt> but

12

i This specification of

requires that it be the same for all t and {(xjt,fjt,zijt)}
(ﬁit, {eijt}j) 1s more general than typically allowed in the literature but more restrictive than
required by our framework, even within a linear random coefficients model. For example,
recalling that x; can include product dummsies, a more general model is obtained by letting
Bir = (5(1) (it wit) 5 - - - , B (zit, wir)) and €5 = € (a:jt, &jts wit). We could generalize further
by specifying €;;; = € (xjt, i (2it) zijt,wit); however, then the sum 3, + zijy + & in (3)

would be redundant and the model would collapse to our completely general formulation (2).

Aside from the restriction to scalar market /choice-specific unobservables, our representa-
tion of preferences is so far fully general. However, for most of our results we will restrict the
specification by requiring separability in one component of z;. Let z;;; = (zz(;t) , 21(122), with
2 eR. Let zl(tl) denote the vector (zl(llt), e ,zf}t)t)I and zl(f) the matrix (21(122» o ,zﬁ?t>,.

ijt
We will require that for every zz(f ) there exist a representation of utilities with the form

burt) + 1 (w0 () A0 wa)  Vij=1,...3 (4)

where the function £ is strictly increasing in ¢, <zz(t2 )) , and the random coeflicient ¢;, =

1 The fact that x; can include dummies for each product j permits us to write choice-specific functions
such as €, (+).

12This structure permits variation in J; across markets. In our formulation, the realization of
wj determines a consumer’s utility function. Thus the realization of w;; should be thought of as gener-
ating values of the random variables €;;; = €; (w;;) for all possible choices j, not just those in the current
choice set.

10



¢ (wyy) is strictly positive with with probability one.'?

Here we have imposed three restrictions:

(i) invariance of &, (i) to 2

(1)

(ii) separability in a “vertical” attribute z;;

(iii) monotonicity in ;.

Part (i) requires that there be one component of z; whose variation is not confounded with

variation in the unobservable. This is an important restriction although the standard as-

4 Part (ii) requires

that, for each zz(f ), there be a monotonic transformation of utilities such that zl(tl ) enters in

sumption in the literature, that & jt (zie) = & it V2, is much stronger.!

15

additively separable form. With separability, the specification of w;; as independent of

Tjt, Pjts it (zit)—previously without loss—now has bite: conditional on (:th, &jts zl(f )>, zfjlt) is

independent of the stochastic component of u;; (mjt, &jts z,-jt) . The invariance and separability

restrictions together give zl(]lt) the properties of a “special regressor” (e.g., Lewbel (2000)) that

will provide a mapping between units of (latent) utility and units of (observable) choice prob-

(2)

6 Part (iii) requires monotonicity of utility in & jt (zit ) Because unobservables

abilities.!

() with fzfjlt) As long as |¢;;| > 0 w.p. 1, identification of the sign of ¢;,

B3If ¢, < 0 w.p. 1, we replace Zijt

is straightforward.
141Based on the results below, it would be easy to derive testable restrictions of this stronger assumption.

For binary choice, if we assume &, (zi) = &, (zl(f)) and that w(x¢, &, (2i), Zig,wi) 18

strictly increasing in zi(tl), then the event {u(zt,&; (2it),2it,wi) >0} is equivalent to the event

{zz(tl ) syl (O;Et (zft2 )) ,sz ),wit) } . This leads to an observationally equivalent model with separability

in zztl . This is well known. Nonetheless, additive separability is not without loss under these assumptions.
This is because there may be no monotonic transformation of the original utility function that leads to

the separable form. For example, suppose that according to u (azt,ft (zl(f )) ,z,;t,w,-t> the marginal rate of

substitution between Zflél ) and x; varies with zl(tl ). This property would be preserved by any monotonic

transformation but fails under separability. An implication is that there can be simultaneous changes in
zl(tl ) and x; that would raise welfare under one model but lower welfare under the other. Thus, although the
separable structure preserves consumers’ ordinal rankings of the outside good and any inside good, it need
not preserve their ordinal rankings of alternative inside goods. Nonetheless, the observational equivalence
demonstrates why it may be difficult to obtain full identification without a restriction like the separability
we assume. Note that quasilinearity also provides a cardinal representation of utility, making it possible to
characterize aggregate welfare.

€] (2)
t

16We can allow Z;i to be an index g (¢;;1) where ¢;j; is a vector, as long as it (zl ) Al ¢;5;. Fixing ¢t and

zgf), utilities have the form v;jr = g (cijt) + 1,5, With cijell pi;5,. If g () is linear, identification of g (-) follows

11



have no natural order, monotonicity would be without loss if consumers had homogeneous
tastes for characteristics, as in standard multinomial logit, nested logit, and multinomial
probit models. With heterogeneous tastes for choice characteristics, monotonicity imposes
a restriction that & (zl(f )> be a “vertical” rather than “horizontal” choice characteristic: all
consumers agree that (all else equal) larger values of ¢, (sz )) are preferred.'”  Of course,

we allow heterogeneity in tastes for £, (21(3 )> and for the vertical observable 2"

it Fuar-

thermore, we allow a different representation (4) for each value of sz ). 'We show in section
1)

7 that invariance, monotonicity in z;;;, and monotonicity in ;, <zz(t2 )) all lead to testable
implications.
Henceforth we will condition on J; = J, with |J| = J. We also condition on a value of

zl(f ) and suppress this in the notation. For simplicity, we will now write only z;;; and z; to

1)

represent z;;; and zi(tl), respectively. Likewise, we will write &, instead of & <zl(t2 )> .

3.2 Normalizations

Before discussing identification, we must have a unique representation of preferences for
which the identification question can be posed. This requires several normalizations.

First, because unobservables enter non-separably and have no natural units, we must
normalize the location and scale of §;,. For most of the paper we will assume without loss
that ¢, has a uniform marginal distribution on (0,1).

We must also normalize the location and scale of utilities. Without loss, we normalize
the scale of consumer 4’s utility using his marginal utility from z;;, yielding utilities with

the form
/]j (%‘t, fjm wit)
Diy

Here we include a subscript j on the function ji; because in general we will have conditioned

Vi,j=1,...,.

Zijt +

by standard results (e.g., Manski (1985)). Identification of nonlinear g (-) can be obtained under restrictions
considered in Matzkin (1993).

17 Athey and Imbens (2007) point out that the assumption of a scalar vertical unobservable & j+ can lead to
testable restrictions in some models. Although their observation does not apply to our more general model,
below we derive a testable implication that does.

12



@

on a different value of z;;; for each j. Letting

I (:Cjtagjwwit)
Diy

Ky (Ijufjtawit) =
this gives the representation of preferences we will work with below:
Vije = Zije + [ (%’t, fjtawit) Vi,j=1,...,J. (5)

To normalize the location we set v;; = 0 Vi,t. Treating the utility from the outside good
as non-stochastic is without loss, since choices are determined by differences in utilities and

we have not restricted correlation in the random components of utility across choices.

3.3 Observables and Structural Features of Interest

Each consumer i maximizes her utility, choosing good j whenever v;;; > vy, Vk € J — {j}.
For simplicity we assume that any ties with the outside good are broken in favor of the

outside good. We denote consumer s choice by
Y = argmax v
JjeTJ J

We will typically require excluded instruments, which we denote by w;;. One advantage
of micro data is the variety of instrumental variables that may be available. Depending
on the environment, instruments for prices'® might include cost shifters excludable from the
utility function, prices in other markets (e.g., Hausman (1996), Nevo (2001)), characteristics
of competing products (e.g., Berry, Levinsohn, and Pakes (1995)), and/or “average” values

of z; in market t (e.g., Waldfogel (2003), Gentzkow and Shapiro (2007)).!" Because the

18We discuss instruments for prices here because price is the leading case of an endogenous product char-
acteristic. Our results permit any number/types of endogenous characteristics as long as valid instruments
are available.

9The last of these obviously is unavailable without micro data. The analysis in Berry and Haile (2009a)
suggests that characteristics of other goods may not be sufficient on their own without micro data or addi-
tional restrictions on preferences.
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arguments are standard, we will not discuss assumptions necessary to justify the exclusion
restrictions, which we will assume directly.

The observables then consist of

(t, vit, {xje, Wt 2ije biea) -

To discuss identification, we treat their joint distribution as known. In particular, we take

the conditional probabilities

Pijt = Prp (Yir = Jlt, {The, Wies Zikt fres) (6)

as known. Loosely speaking, we consider the case of observations from a large number of
markets, each with a large number of consumers, who are anonymous conditional on z;;.

Our first objective is to derive sufficient conditions for identification of the market /choice-
specific unobservables and the distribution of preferences over choices in sets 7, conditional
on the characteristics {xjt, Zijt, € jt}je 7 In particular, we will show identification of {f jt}je 7
and of the joint distribution of {v;j; }je 7 conditional on any {mjt, Zijt, & jt}je 7 in their support.
These conditional distributions fully characterize the primitives of this model. We therefore
refer to identification of these probability distributions as full identification of the random
utility model.

We will also consider a type of partial identification: identification of demand. For many
economic questions motivating estimation of discrete choice demand models, the joint distri-
bution of utilities is not needed. For example, to discuss cross-price elasticities, equilibrium
markups, or pricing/market shares under counterfactual ownership or cost structures, one
requires identification of demand, not the full random utility structure. Identification of
demand naturally requires less from the model and/or data than identification of the distri-

bution of preferences. Demand is fully characterized by the unobservables {f jt}je 7 and the
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structural choice probabilities

p; ({2, E5s 2ie tieq) = Pr (i = GH{@je s 2ije e ) - (7)

These conditional probabilities are not directly observable from (6) because of the unobserv-

ables ;.

4 Illustration: Binary Choice with Exogenous Charac-
teristics

To illustrate key elements of our approach, we begin with the simple case of binary choice

with exogenous z;;. Dropping the j subscripts, consumer ¢ selects the inside good whenever
Zig + 1 (24, &, wir) > 0.

We consider identification under the following assumptions.
Assumption 1. &, Il (zy, z) -
Assumption 2. supp zy|z; = R Vz.

Assumption 1 merely states that we consider here the special case of exogenous observ-
ables. This assumption is dropped in the following section. A “large support” condition
like Assumption 2 is common in the econometrics literature on nonparametric and semipara-
metric identification of discrete choice models (e.g., Manski (1985), Matzkin (1992), Matzkin
(1993), Lewbel (2000)).2° We relax this assumption in section 6, where the analysis will also
clarify the role that the large support assumption plays in the results that do use it.

Here we show that Assumptions 1 and 2 are sufficient for full identification of the random

20As usual, the support of z;; need not equal the entire real line but need only cover the support of
w(xe, & wir).  We will nonetheless use the real line (real hyperplane below) for simplicity of exposition.
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utility model. We can rewrite (5) as

Vit = Zit + iy (8)

where we have let p;, = p (24, &;,w;) as shorthand. Holding the market ¢ fixed, all variation
in p;; is due to w;. Thus, conditional ¢, p,;, is independent of z;. Since the observed

conditional probability that a consumer chooses the outside good is

Po (x4, zit) = Pr (g, < —zit|xy, 2it)

Assumption 2 then guarantees that F), j; (-), the distribution of |, is identified from vari-
ation in z; within market ¢t. This argument can be repeated for all markets ¢.

In writing p,;,|t, we condition on the values of x; and ¢,, although only the former is
actually observed. However, once we know the distribution of yu,|t for all ¢, we can recover

the value of each &, as well. To see this, let

0 = med [pu;,|t] = med [p (4, & wir) |7, &) -

With F), ¢ (-) now known, each ¢, is known and is a function only of z;, and ;; i.e.,

0y = D (1,&,) (9)

for some function D that is strictly increasing in its second argument. Identification of each
¢, then follows standard arguments. In particular, for 7 € (0,1) let 6" (x;) denote the Tth

quantile of §;|x; across markets. By (9), strict monotonicity of D in &,, and the normalization

of &,
5T ('rt) =D (IIHT) .

Since " (z;) is known for all z; and 7, D is identified on {supp z;} x (0,1). With D known,

each &, is known as well.
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Thus far we have shown identification of F}, ; and of each latent §,. So for any (x,§;)

in their support, the value of

F,(r|lze, &) = Pr(p (e, &, wir) < rlag, §,)

Fﬂit|t (T)

is uniquely determined for all » € R. Since v;; = z;z + p;, this proves the following result.

Theorem 1. Consider the binary choice setting with preferences given by (5). Under As-

sumptions 1 and 2, each &, and the distribution of vy conditional on any (z4,&;, zi) € X is

identified.

Our argument involved two simple steps, each standard on its own. First, we showed that
variation in z;; can be used to trace out the distribution of preferences across consumers. It is
in this step that the role of idiosyncratic variation in tastes is identified. Antecedents for this
step include Matzkin (1992), Matzkin (1993), Lewbel (2000).?! Here we apply this step within
each market, exploiting the fact that conditioning on the market fixes all characteristics of
the choice set, even those not observed. In the second step, we use variation in choice
characteristics across markets to decompose the variation in utilities across products into
the variation due to observables and that due to the unobservables £,. This idea has been
used extensively in estimation of parametric multinomial choice demand models following
Berry (1994), Berry, Levinsohn, and Pakes (1995), and Berry, Levinsohn, and Pakes (2004).
This second step is essential once we allow the possibility of endogenous choice characteristics
(e.g., correlation between price and &,), as will typically be necessary in demand estimation.

Our approach for the more general cases follows the same broad outline.

21See also Matzkin (2007a, 2007b).
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5 Multinomial Choice: Full Identification

We now consider the general case of multinomial choice with endogenous characteristics
using the specification of preferences in (5). We will use the following generalization of the

large support assumption:
Assumption 3. supp {Zijt}jzl,..,,J | {xﬁ}jzl,...,J =R’.

This is a strong assumption, essentially requiring sufficient variation in (2, . .., 2i,¢)

2 Equivalent conditions are

to move choice probabilities through the entire unit simplex.?
assumed in prior work on multinomial choice by, e.g., Matzkin (1993), Lewbel (2000), and
Briesch, Chintagunta, and Matzkin (2005). Such an assumption provides a natural bench-
mark for exploring identifiability under ideal conditions. However, we will also explore
results that do not require this assumption in section 6.

Without Assumption 1, we will require instrumental variables. Let x; = (xﬁ),a:ﬁ)),
where a:ﬁ) denotes the endogenous characteristics. We then let wj; = <x§f), ﬁvjt) denote the
vector of exogenous conditioning variables. We will consider two alternative sets of instru-

mental variables conditions below, each taken from the recent literature on nonparametric

instrumental variables regression.

5.1 Identification with Fully Independent Instruments

We first explore identification using instrumental variables conditions from Chernozhukov

(1)
t

and Hansen (2005). Here we assume x,” is continuously distributed, with conditional density

function f;, <x§1)|wﬁ> 2 We will condition on a value of (xﬁ), . ,xf,?), suppress these
arguments in the notation, and let x;; now denote 3551) Let

dje = D; (iﬂjufjt) = med [Mj (%‘t,fjpwit) ‘ $jta§jt} (10)

22This is only “essentially” required by the large support condition because we do not require continuity
of choice probabilities in zl(tl ),

23This could be dropped by appealing below to Theorems 2 and 3 (and the associated rank conditions)
in Chernozhukov and Hansen (2005) instead of their Theorem 4. We focus on continuous endogenous
characteristics here because price is our leading example.
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and let fs, (-|7;;, wj) denote its conditional density.
Let €, and ¢; be some small positive constants. For each j and 7 € (0, 1) define £; (1)
as the convex hull of functions m; (-, 7) that satisty
(a) for all wj,, Pr(6;s < myj (2, 7)|wj) € [T — €, 7+ €]; and
(b) for all zj;, m; (zje,7) € sj(xje) = {0 : f5, (6lzje, W) > € Vw with f,, (z|w) > 0}.
We now assume the following instrumental variables conditions, from Chernozhukov and

Hansen (2005, Appendix C).**
Assumption 4. &, Il (wjq, 2ij:) Vj, t.

Assumption 5. For all j and 7 € (0,1), (i) for any bounded function B; (z,7) = m; (x,7)—
Dj (z,7) withm; (-,7) € L; (1) and ey = 8;,—D; (250, 7), E [Bj (j0, 7) ¥, (250, Wje, 7) |Wje] =
0 a.s. only if B; (z;;,7) = 0 a.s., for ¢, (z,w,7) = fol fe, (0Bj (x,7) |z, w) do > 0.

(ii) the density f., (e|z,w) of €; is continuous and bounded in e over R a.s.;

(lll) Dj ((Ejta 7') € Sj(xjt) for all T .

Assumption 4 is a strong exclusion restriction requiring fully independent instruments.
Assumption 5 is a particular type of “bounded completeness” condition, requiring that the
instruments induce sufficient variation in the endogenous variables. This condition plays the
role of the standard rank condition for linear models, but for the nonparametric nonseparable

model §; = D;(z,&).% With these assumptions, we obtain the following result.

Theorem 2. Under the representation of preferences in (5), suppose Assumptions 8—5 hold.

Then each &;, and the joint distribution of {viji}jes conditional on any { (2, Zijt7€jt)}j€j

in their support is identified.

24Chernozhukov and Hansen’s “rank invariance” property holds here because the same unobservable & jt
determines potential values of §;; for all possible values of the endogenous characteristics. ~ Note that, as
in their framework, d;; and z;; can be assumed without loss to be tranformed such that they have bounded
support.

25 Chernozhukov and Hansen (2005) discuss sufficient conditions. We also consider an alternative to As-
sumption 5 below.
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Proof. Let pu;5, = p; (250, €y, wit) and observe that?®

i Pige = Pr (2t + p50 > Ol2) -

Vk#]

Holding ¢ fixed, j1;;, Il 2;5; so that Assumption 3 guarantees identification of the marginal

distribution of p, |t for each j. This implies identification of the conditional median

0t = med [Mj (xjt,fjtawit) |$jt7fjt] = med [Mj (%‘t,fjtawit) |t] . (11)

Thus, the left side of (10) can be treated as known for all j and ¢. Noting that the function

Dj in (10) must be strictly increasing in §;,, Theorem 4 of Chernozhukov and Hansen (2005)
then implies that under Assumptions 4 and 5, each function D; (and therefore each &},) is

identified. Finally, observe that for any market ¢

pior = Pr(zie+ iy < 0,000, zige + g <018, 2ing, -, Zigt) (12)

= Pr(pp < =2ty fige < —Zige| t, Zing, - - -5 Zig)

so that Assumption 3 implies identification of the joint distribution of (114 ..., i) |t
Since each zj; is observed and each {;, is identified, this implies identification of the joint
distribution of (11, ..., ;) conditional on any {(, 2, & jt)}je . in their support. Since

Vijt = Zijt + Mg, the result follows. 0

26Because we assume the large support condition from the beginning, our proof exploits this, using an
“identification at infinity” argument commonly employed in this literature (e.g., Matzkin (1993)). We show
in section 6 that this is not essential, however. See also Berry and Haile (2009a), which does not use an
identification at infinity argument. They provide results for a market data setting, which is equivalent to a
micro data setting with no variation in z;.
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5.2 Identification with Mean-Independent Instruments

Any application of instrumental variables methods requires that the instruments induce
sufficient exogenous variation in the endogenous variables. Assumption 5 provides the ap-
propriate formal condition for the model above, and this is the same condition that has
been used to show identification of nonseparable regression models. Nonetheless, a possible
limitation of Theorem 2 is that Assumption 5 may be difficult to check and/or interpret.
Whether there are useful sufficient conditions on economic primitives delivering this prop-
erty is an open question of broad interest in the literature on nonparametric instrumental

" However, if we are willing to

variables regression, but beyond the scope of this paper.?
impose additional structure on the utility function, we can utilize a somewhat more intuitive
sufficient condition for full identification. Doing so also enables us to relax the excludability
restriction to require only mean independence.

Conditioning on w?) as in the prior section, suppose (for this subsection only) that each

consumer ¢’s conditional indirect utilities can be represented as

Vijt = Bitzijt + ﬂj (%’t,wz't) + %tfjt j=1...,J (13)

where (3, and -y, are strictly positive with probability one and the expectations F [3;],
E[yy), and E [ji; (zj1,wy) |zj:] are finite. This imposes a restriction relative to (5) but is
still quite general relative to the prior literature. A representation of preferences equivalent
to (13) is

Vije = Zije + g (@55 &y win) Vi,j=1,...,J (14)
where now

Ay (@, Wie) | Yir o

. 15
B B " (15)

oy (l‘jt;fjtawit) =

2TIn Berry and Haile (2009a) we explore an alternative argument relying on classical exclusion and support
conditions in an environment combining discrete choice demand with a partially specified model of supply.
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Here we will also use a different normalization of ;.  Instead of letting {;, have a

standard uniform distribution, we make the location normalization

E [fjt} =0 vy

and scale normalization

E {g—j = 1. (16)

Both are without further loss of generality.
With this structure we can replace the full independence assumption with mean inde-

pendence.
Assumption 6. F [Ejt|wjt, zijt} = 0 V75, t,wjt, 2iji-

To show identification of the joint distribution of {vz-jt}j e conditional on {xjt, Zijtys §jt }je 7
first note that the marginal distribution of j;;|t for each j is identified using the same ar-
gument used in the first lines of the proof of Theorem 2. This implies identification of the

conditional means

5jt =F [,U] (xjtagjtawitﬂt]

for all j and ¢t. With the separable structure (15) and the normalization (16), for each j and

t we have

0ji = Dj (wj0) + &

for some unknown function D; It is then straightforward to confirm that, under Assumption
6, the following “completeness” condition is equivalent to identification of each function D;

from observation of (8, xj;, W;;) (Newey and Powell (2003)).

Assumption 7. For all j and all functions B, (z;;) with finite expectation, E [B; (z;:) |wji| =
0 a.s. implies B; (x;) = 0 a.s.
The completeness condition is the analog of the standard rank condition for identifiability

in linear models. Like the standard rank condition, completeness requires that variation
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in w;;; induce sufficient variation in xﬁ) to distinguish the true function D; (-) from other
functions of xﬁ) using the conditional mean restriction of Assumption 6.2

We can now state a second full identification result for the multinomial choice model.

Theorem 3. Under the representation of preferences in (14)-(15), suppose Assumptions 3
and 6 hold. Then each §;, and the joint distribution of {vij}jes conditional on any

{(xjt, Zijts Sjt)}jej in their support is identified if and only if Assumption 7 holds.

Proof. From the preceding argument, under the completeness Assumption 7, we have iden-
tification of each D; and therefore of each {;;. The remainder of the proof then follows that

of Theorem 2 exactly, beginning with (12). O

6 Identification of Demand Using Limited Support

The large support assumption (Assumption 3) in the preceding section is both common in
the literature and controversial. Our results using this condition demonstrate that sufficient
variation in the vector (z,...,z;,) can identify the joint distribution of utilities on their
full support. Although our results describe only sufficient conditions for identifiability, it
should not be surprising that a large support assumption may be needed: if the exogenous
observables can move choice probabilities only through a subset of the unit simplex, we
should only hope to identify the joint distribution of utilities on a subset of their support.
Of course, one would like to understand how heavily the results rely on the tails of the large
support and what can be learned from more limited variation. We explore these questions
here.

We show that more limited variation is sufficient to identify demand, i.e., to identify the
unobservables ¢, and the structural choice probabilities p; ({xjt, &jts Zijt }je J) at all points

of support. We also show continuity of the identified features with respect to the support of

2Lehman and Romano (2005) give standard sufficient conditions and references. See also Newey and
Powell (2003) and Severini and Tripathi (2006). If we add the assumption that E [fi; (zj¢,&;;) |25¢] is
bounded, the completeness assumption could be replaced with bounded completeness.
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the micro data. In particular, moving from our limited support condition to the full support
condition moves the identified features of the model smoothly toward the full identification
results of the preceding sections.

For multinomial choice we obtain these results under a somewhat more restrictive spec-
ification of preferences than that in (5). Up to this qualification, however, these results
should be a comforting. Demand is identified without the large support condition. And
although we require the large support for full identifiability of the random utility model in
the previous section, the identification is not knife-edge: the tails of the large support are

needed only to determine the tails of the joint distributions of utilities.

6.1 Binary Choice
6.1.1 Identification of Demand

As before, we begin with binary choice to illustrate our main insights. We begin with
the relaxed support condition on z;, requiring a single “common choice probability” that is

attainable in all markets by the appropriate choice of z;;.

Assumption 8. For some ¢ € (0,1), for every market ¢ there exists a unique z{ €supp z;

such that Pr (y;; = 1]zi = 2{) = q.

Here we require sufficient variation in z; to push the choice probability to ¢ in each
market, not over the whole interval (0,1) in each market.?? This is not innocuous but is
much less demanding than the full support condition.

In the case of binary choice we obtain results using the general specification of preferences

in (5). Here, the consumer chooses the inside good whenever (fixing zl(f ) and suppressing it)

Zit + M ('rta ft?wit> > 0

Tmplicitly we also require a continuous (region of) support for u (zy, &, w;) |74, &, to ensure uniqueness.
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Under Assumption 8, for each market ¢ we can find the z{ such that

Pr (—p (24, & wir) < zitlwe, &4, 2it) zy=zd — 4
Observe that each z{ is the gth quantile of the random variable —pu,; = —pu (%, &, wi)
conditional on ¢, i.e., on (z4,&,). Thus, we can write
7 = C(21,€459) (17)

for some function ¢ (-; ¢) that is strictly decreasing in &,. This strict monotonicity is the key
idea here: holding z; fixed, markets with high values of z{ are those with low values of the
unobservable &,.

Identification of the function ¢ (+;¢), and therefore of each ¢,, follows from (17) as in the
preceding sections, using the nonparametric instrumental variables result of Chernozhukov
and Hansen (2005). This holds under the same type of bounded completeness assumption
made in section 5.1; we state this condition formally as Assumption 12 in the Appendix.
With each &, known, the observable choice probabilities reveal the structural choice proba-
bilities

P (xe, & Zit) = Pr(ya = 1w, &, 2it) (18)

at all points (zy, &, z;;) of support. This gives the following result.

Theorem 4. In the binary choice model with preferences given by (5), suppose Assump-
tions 4, 8, and 12 hold. Then each &, is identified and the structural choice probabilities

p (x4, &, zit) are identified at all points (x4, &, zi) in their support.

6.1.2 Continuity of the Identified Features

Theorem 4 required only one common choice probability. If there is more than one, each
provides additional information about the distribution of v;|xs, z;4,&,. In particular, we

can identify a function ( (+; ¢) for each common choice probability ¢, each then determining
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the gth quantile of —p (4, &,, wir) |, &, Since vy = zy + p (4, &, wir), this determines the
corresponding quantiles of the distribution of v;; conditional on (zy,&;, z;). In the limit—
i.e., with sufficient variation in z;; to make every ¢ € (0,1) a common choice probability—all
quantiles of v;; conditional on (zy,&,, z;;) are identified, and we are back to full identification
as in Theorem 2. This illustrates the notion of “continuity” described above and shows that
the tails of z;;; under the large support assumption are used only to identify the tails of the

conditional distributions of utilities.

6.2 Multinomial Choice

For multinomial choice we will require a different representation of preferences:*’

vije = pt; (Zije + Ejor Tj Wit Vi,j=1,...,J (19)

where each 1, is strictly increasing in its first argument. This is similar to (13) in requiring
that z;;; and £, be perfectly substitutable. Here we require all consumers to have the same

marginal rate of substitution (normalized to one) between z;;; and £, but allow the index

jts
2ijt + &, to enter the utility function in a fully nonparametric way.

A key implication of (19) is that choice probabilities depend on the sums
Aijt = Zijt + &1

rather than on each z;;; and §, separately. Letting \; = (Ni1g, - - -, Aige) and v = (214, ..., T y¢),

we can then write the structural choice probabilities as

p; (Aesxi) -

For the multinomial choice model our results rely on invertibility of the mapping from

30Here we focus on identification of demand. Continuity of the identified features can be obtained as in
the binary model if we have the separable structure z;j; + &, + p; (e, wit)-
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the latent indexes A\; to the market shares implied by utility maximization. To show that
this holds we require a weak notion of the choice set J being a set of substitute goods that
“belong” in the same market. To state this “connected substitutes” condition, we first need

a definition.

Definition 1. Product k substitutes to product € at (A, x¢) if p, (A, x1) is strictly decreasing

in )\ikt.gl

This definition provides a directional notion of one product being a substitute for another.
For example, if a reduction in ,;, leads (all else equal) to a larger market share for product
¢, we say that product k substitutes to product /.

Given any values of (A, z;), let ¥ (J) denote the (J + 1) x (J + 1) matrix of zeros and
ones, with the (7, ¢) element equal to one if product (r — 1) substitutes to product (¢ —1) at
(At,x¢). We will assume that the products j € J all belong in the same choice set in the

following sense.

Assumption 9. At any ()\;,r;) such that (p; (\t,¢) ..., p; (A,7¢)) is on the interior of A7,

the directed graph of 3 () is strongly connected.

The directed graph of ¥ (7) has nodes (vertices) representing each product and an edge
from product k to product ¢ whenever product k substitutes to product £.3>  Our “con-
nected substitutes” condition (Assumption 9) requires that there be a directed path from
any product j € J to any other product j/ € J. Of course, the path between j and
j" may be through other nodes. Thus, for example, even a market with two independent
goods satisfies this condition if both substitute to and from the outside good. On the other
hand, if the connected substitutes condition fails, then there is some strict subset of 7 that

substitute only among themselves for at least some values of (A\;,z;). In Berry and Haile

31 Because we introduce this assumption after normalizing the utility of the outside good to zero, we define
an increase in Ao, to mean equal reductions in Az for all 7 > 0. Thus product 0 substitutes to product j
if the probability good j is selected goes up whenever \;x; increases by an equal amount for all k£ > 0.

$2In standard models 3 (J) will typically be symmetric, so the edges of its directed graph will be bi-
directional.
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(2009a) we provide additional discussion of this condition and show that it is satisfied in
standard models. There we also point out that this condition is equivalent to a condition
used by Gandhi (2008) to show invertibility of market shares. Using his argument, we can
show the following result for our framework, generalizing well-known invertibility results for
linear discrete choice models in Hotz and Miller (1993), Berry (1994) and Berry and Pakes
(2007).%3

Lemma 1. Consider any choice probability vector p = (p1,...,ps)" on the interior of A”.
Under Assumption 9, for any x; there is at most one vector A € R’ such that p; (N x¢) = pj

for all j.

Proof. See Berry and Haile (2009a). O

Finally, we generalize the previous common choice probability assumption in the natural

way.
Assumption 10. There exists ¢ = (qo, 1, - - -, ¢7) on the interior of A7 such that for every
market ¢ there is a vector z{ = (21,,...,2{,) €supp(zis, ..., zise) such that for all j, ¢; =
Pr(yit == j |x1t7 ey Ugty Zilty - - - 7Ztht>zit:zg'

Assumption 10 requires the vector (zy,...,z.:) have sufficient support to drive the

choice probability vector to ¢ in each market. Note that the value of ¢ satisfying this
condition need not be known a priori, since this is observable. Indeed, the existence of the
common choice probability is directly testable. This condition still requires sufficiently rich
J-dimensional micro data; however, it is considerably weaker than the full support condition,

which essentially required all elements of /A7 to be common choice probabilities.

33Berry (1994) and Berry and Pakes (2007) show existence and uniqueness of an inverse choice probability
in models with an additive structure. Gandhi (2008) relaxes the separability requirement. Our lemma
addresses only uniqueness conditional on existence. Under the maintained assumption that the model is
correctly specified, any observed choice probability vector must have a vector (A1, ..., As) that rationalizes it.
Gandhi (2008) provides additional conditions guaranteeing that an inverse exists for every choice probability
vector in A7, Our uniqueness result differs from his only slightly, mainly in recognizing that the argument
applies to a somewhat more general model of preferences.
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Theorem 5. In the multinomial choice model with preferences given by (19), suppose As-
sumptions 6, 7, 9, and 10 hold. Then each £, is identified and the structural choice proba-

bilities p; ({:Bjt,f'jt, Zijt}jej) are identified at all {x;;,&;, 2iji }jeq in their support.

Proof. Fix x; = (214, ...,x ;) and let ¢ be the common choice probability vector. By Lemma

1, there is a unique vector A (z¢,q) = (A1 (z4,9) -, ..., Ay (24, q)) such that

p; (M@, q) ,20) = q; V.

Further, by the definition of 2/ and \; (74, q), A; (v, q) = €, + 2§, so that
Z?t = Aj (w4, q) — fjt Vj,t. (20)

Under Assumptions 6 and 7, the equations (20) identify the functions \; (-,¢) and each &,
for all j and ¢, using the identification result in Newey and Powell (2003) for nonparametric
regression with instrumental variables. As demonstrated above, knowledge of all § ;, identifies

the structural choice probability functions. 0

Note that, in contrast to the results in section 5, here the entire x; vector appears as an
argument of the “regression” function A; in (20). One implication is that characteristics of

competing products are not available as instruments.

7 Testable Restrictions

The models we have considered incorporate two important maintained assumptions: (i)
existence of a vertical consumer-choice observable z;;; (ii) a scalar vertical market/choice-
specific unobservable, & ;. Here we show that these assumptions imply testable restrictions.

The following remark points out that the assumption of a vertical z;;; has immediate im-
plications for the observed conditional choice probabilities: choice probabilities must increase

in Zijt -
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Remark 1. (i) Suppose preferences can be characterized by (5) with z;j, independent of
50 Then Pr(yu = jl{xji, wie, zirfreg) is increasing in z. (i) Suppose preferences can
be characterized by (5) or by (19) with p strictly increasing in its first argument. Then

Pr (yi = jlt, {Zikt treg) is increasing in z;j.

The first implication in Remark 1 involves variation in choice probabilities across markets
and depends on independence between z;;; and ;. The second addresses variation within
a market, where {f jt}je 7 are held fixed, so that independence between z;;; and &;; is not
required. Both implications are immediate from the requirement that the utility from good
J be strictly increasing in z;;;. Furthermore, it is clear that the restriction need not hold if
utilities sometimes are decreasing in z;j;.

The assumption of a scalar vertical unobservable also leads to testable implications. For
simplicity we show this here for binary choice. To state the result it will be useful to recall
Theorem 4 and let &, (2/; ¢, z;) denote the value of &, identified from the common choice

probability ¢ in market ¢.

Remark 2. In the binary choice model with preferences given by (5), suppose Assumptions

4, 12, and 8 hold. Then &, (z{;q,x;) must be strictly decreasing in z} across markets.

This follows from the fact that v;; is strictly increasing in both z; and &, under the as-
sumptions of the model. Thus, the value z{ required to attain the common choice probability
q in market ¢ will be higher when the unobservable &, is lower. The following example shows
one way that a model with a horizontal rather than a vertical unobservable characteristic

can lead to a violation of this restriction.

Example 2. Suppose p (x4, &, ¢;) = —vie,, with vy ~N(0,1). Take g > 1/2 and consider
the set of markets in which &, (z{;q, ;) > 0. Recall that each z] is observable and is defined

such that Pr (v, < z{) = q. Letting ® denote the standard normal CDF, this requires

o(2) =g w 1)
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Therefore, by construction, Z—gwféll take the same value in every market. Since each z] must
t
also be positive when q > 1/2, this requires a strictly positive correspondence between z] and

&, across markets, violating the restriction from Theorem 2.

The restriction in Remark 2 follows from the requirement of a vertical {;;. ~An additional
restriction is implied by the restriction to a scalar choice/market-specific unobservable &,
that is invariant to z; : the values of ¢}, inferred from any two common choice probabilities

must agree.

Remark 3. In the binary choice model with preferences given by (5), suppose Assumptions
4 and 12 hold. In addition, suppose that for distinct q and ¢ in the interval (0, 1), for every
market t there exists a unique z{ €supp z; such that Pr (y;; = 1|z = 2{) = q and a unique
20 esupp zy such that Pr (yit =1z = zf/> =¢q'. Then&, (z{;q,x;) =&, (zf/; q’,:rt> for all
t.

Proof. This is immediate from the fact that, under the assumptions of the model, &, (2/; ¢, x;) =
& (23 Qq/axt) =&, ]
The hypothesis of Remark 3 merely requires that there be two distinct common quantiles.

The following example demonstrates that the resulting restriction can fail if the assumption

of a scalar unobservable is violated.

Example 3. Consider a model with two vertical unobservables, &} and £2. Let

Vit (5%"’5?) Vit<1/2

2 (xt7€t17€§awit) = 1 9
Vit (ft + 2@) Vit 2 1/2

with vy, ~u[0,1]. Let & and & be independent, each uniform on (0,1). By definition, when
zit = 2§ only consumers with vy > 1 — q choose the inside good. Thus, the value of z} is
determined by the preferences of the consumer with vy = 1 —q. Now consider the &, (q)
inferred under the incorrect assumption of a scalar unobservable. From the observations

above, when q > 1/2 we have §, (q) = Fa e (& + &) where Fe 2 is the CDF of the sum
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of two independent uniform random wvariables.  Thus, if for market t, (&% —|—£f) falls at
the o quantile in the cross-section of markets, &, (q) will equal o. Similarly, for ¢ < 1/2,
& (d) = Fglizﬁ (ftl + 25?); ice., if & + 262 fall at the o' quantile of this sum in the cross

section of markets, &, (¢') will be o’. In general, o # o.

8 Aggregate Data with Market Groups

In many applications one is forced to work without micro data linking choices to individual
characteristics, relying instead on market level choice probabilities (i.e., market shares). In
Berry and Haile (2009a) we explore identification in such settings. However, there is at least
one case in which the ideas in the present paper can be directly applied to the case of market
level data.

Eliminating the micro data z;j; from the model, the observables are now (y;;, z;:). Note
that each xj; could contain attributes of products j or attributes of markets ¢. Partition
into <x§?, 335?)) and suppose preferences can be represented by conditional indirect utilities
of the form

Viji = :135? + ,u(mg?), Et> Wit)- (22)

Assume that the set of markets can be partitioned into market groups I' such that for
all t € T, ( j?),g jt) = ( EZFZ), £ jp>. One natural example of such an environment is that
of a national industry (e.g., the U.S. automobile industry) in which the physical products
themselves are identical across regions of the nation, but regions may differ in average income,
product prices (e.g., due to f.o.b. pricing), prices of complementary goods (e.g., gasoline),
availability of substitute goods (e.g., public transportation), etc.

For simplicity, we illustrate the argument formally only for the case of full identification

with exogenous product characteristics. However, it will be clear that all the identification

results obtained above have analogs in this setting.

Assumption 11. supp (z\), ..., 20| . 20 = R7 vt
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Assumption 11 is different from the parallel large support Assumption 3. Here we re-
quire sufficient variation in a special product characteristic rather than an special consumer-
product characteristic. The role of this assumption is the same, however: to trace out the
distribution of the random component of (22). Here, however, the notion of “market group”

(@)

replaces that of “market.” Within a market group, x;, now plays the role of the micro data.

With this reinterpretation, the setup is isomorphic to that in section 5, and the prior

(0 O, oo vj £

arguments apply directly. Variation in x ;" across market groups at the limit x

J identifies the distribution of y, (x%), ¢ jp> exactly as in section 5. Letting ¢ (x%), ¢ jp) =
E [ui (mﬁ?),fjp> |:17%),§jp], identification of the function § (m%),f jr> (and therefore each
§,r) follows exactly as in the previous sections. ~With each ¢, and the distribution of
1 (x%),ﬁjF) known, the conditional joint distribution of {v;j};jecs ‘ (j, {(xjt,ﬁjt)}jej) is
uniquely determined at any (j , {(xjt, & jt)}je j> in their support.

Because the setup here is isomorphic to that for the original micro data setting, extensions

to the case of endogenous characteristics (elements of xgzl)), a separable error structure, and

identification of demand with limited support follow directly as well.>4

9 Conclusion

We have studied nonparametric identification of models of multinomial choice demand, al-
lowing for market /choice-specific unobservables, endogenous choice characteristics, and ar-

bitrary random heterogeneity across consumers in tastes for products and/or characteristics.

34 An interesting but unresolved question is what can be learned in a single market with a large choice
set, i.e., with J — oo (see Berry, Linton, and Pakes (2004)). Suppose that x;; does not include product
dummies but preferences can still be represented by (5), imposing a symmetry condition that the same
function g apply to all products. Fixing a market with a finite choice set, the market share of the outside

good is
po =Pr (21(11) +p (21, &y, wi) <0, ~;ZZ-(}) +p (s, &y wit) < 0) .

For any finite J, a large support condition would give identification of the joint distribution of
(p(z1, &, wit) -y (2 g,€ 5, wit)), so that each ¢; = med p (a?j,fj,wit) |zj,€; could be considered known.
As J — oo one would then obtain an arbitrarily good approximation of the joint distribution of (d;,z;). If
this joint distribution were instead known, the fact that §; = D (a:j, 13 j) would allow identification of D from
the results of Chernozhukov and Hansen (2005). Identification of demand and full identification would then
follow.
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We obtained full identification using the same kind of large support assumption used to
show identification in even the simplest semiparametric discrete choice models, and the
same instrumental variables conditions required for identification of nonparametric regres-
sion models. Further, the results rely on the large support only for identification of tail
probabilities, whereas identification of demand holds under a significantly weaker support
condition.

While one goal of our work has been to obtain results with few restrictions on prefer-
ences, there are some costs to a choice not to place more structure on the form of utility
functions. One is that some types of counterfactuals will not be identifiable. An example
is demand for a hypothetical product with characteristics outside their support in the data
generating process. This kind of limitation is not special to our setting, but is inherent to a
nonparametric analysis: extrapolation and interpolation typically require some parametric
structure. Of course, one may have more confidence in extrapolations when identification
holds nonparametrically within the support of the observables.

A second limitation concerns welfare. Our model (5) incorporates quasilinear preferences.
This provides a specification of cardinal utility that can be used to characterize changes in
utilitarian social welfare (in aggregate, or across subpopulations defined by observables)?
or changes in welfare under any social welfare function that is anonymous conditional on
observables. However, our model lacks the structure required for welfare analysis that
depends on the distribution of changes in individual utilities. Characterization of Pareto
improvements, for example, would require tracking each individual consumer’s position in
the distribution of utilities before a policy change to that after. Our model specifies a dis-
tribution of conditional indirect utilities, not a distribution of parameters whose realizations
can be associated with individual consumers. This points out a limitation of nonparametric

random utility models as a theoretical foundation for some kinds of welfare analysis: such

35The quasilinearity generally will not be in income, but one can describe changes in aggregate compen-
sating/equivalent variation in units of the normalized marginal utility for zz(]lt) . Income (and/or price) will
typically enter preferences through the function p in (5). The potential nonlinearity of p, combined with our
inability to track individuals’ positions in the distributions of normalized utilities as the choice environment

varies, prevents characterization of aggregate compensating variation or equivalent variation in income units.
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welfare calculations require additional a prior: structure.
An example of a model with sufficient structure to address all welfare questions (and to
extrapolate/interpolate) is the linear random coefficients random utility model of Example

1

Y

Vijt = TjtBi + Zigey + i + € (23)

This generates a special case of our model, so we have provided conditions for identification of
{fjt}jej and the joint distribution of {v;i}, ;| {1, 5, Zijt}jej' However, it is clear that
the joint distribution of (3, €1¢, - - -, €:s¢) is not identified without additional restrictions.3¢
Going from our results to identification of the distribution of parameters in (23) is equivalent
to the standard problem of identification of a linear random coefficients regression model.
Beran and Hall (1992) and Beran, Feuerverger, and Hall (1996) have discussed sufficient
conditions, which involve regularity and support requirements beyond those required for
our results. Whether pursuing this line of argument enables any relaxation of existing
identification results for linear random coefficients models (e.g., Ichimura and Thompson
(1998), Briesch, Chintagunta, and Matzkin (2005), Gautier and Kitamura (2007)) is an
open question.

Finally, while a novel aspect of our work is its examination of identification without
large support conditions, even our weaker “common choice probability” condition requires
J-dimensional micro data. One can easily imagine applications where this will not be
available. When no micro data are available, one is in the case of market-level data, and
we explore that case in Berry and Haile (2009a).  Whether the sufficient conditions for
identification there could be relaxed in intermediate cases—where there is some micro data,
but of a lower dimension than that of the choice set—is an interesting question for future

work.

36For any true model with the form (23), an observationally equivalent model is obtained by set-
ting B, = v = 0 and letting the joint distribution of (€i1s,...,€it) [{Tj1, 2ije,§ ¢ fjes equal that of
(Vite = &1gs - Vide — Egp) |{$jtazijt,§jt}j€.7~
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Appendix

Here we state Assumption 12, used in Theorem 4. From equation (17) we have

2l = C(2,€459)

where x; denotes the endogenous characteristic of choice 1. Let f,q (+|z;, w;) denote the
density of z{ conditional on z; and the instruments w;. Fix some small positive constants
€, €7 > 0. Fix g € (0,1). For each 7 € (0,1), define £ (7) to be the convex hull of functions
m (-, 7) that satisfy

(a) for all wy, Pr(z{ <m(x,7)|wy) € [T —€,,7 +€]; and

(b) for all z in the support of x;,, m (z,7) € s(x) = {d : fs5 (§|]z, w) > € Vw with f, (z|w) > 0}.

Assumption 12. For all 7 € (0,1), (i) for any bounded function B (z,7) = m (z,7) —
C(z,7;q) withm (-,7) € L(7) and &, = 2} — ( (x4, 75q), E[B (x4, 7)Y (x4, Wy, 7) W] = 0 a.s.
only if B (z¢,7) =0 a.s., for ¢ (z,w,7) = fol fe (@B (z,7)|z,w) do.

(iii) the density f. (e|z,w) of ¢ is continuous and bounded in e over R a.s.;

(iv) ¢ (x4, 75q) € s (xy) for all a;.
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