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1 Introduction

Over the last fifty years there have been dramatic changes in the intellectual foundation guiding

monetary policy. The understanding of the nature of the trade-off between inflation on the one

hand, and unemployment and real activity on the other, played a central role in this evolution.

According to typical textbook accounts of this evolution, monetary policy in the 1960s was

believed to have a lasting influence on unemployment and real activity, which could be achieved

by trading off higher inflation with lower unemployment. In the late 1960s and 1970s, the

work of Friedman and Phelps leading to the natural-rate hypothesis, the new understanding

of the role of expectations, and the bruising macroeconomic experience of high inflation, all

led to a fundamental shift in the paradigm. Since then, monetary policy’s ability to influence

unemployment and real activity is believed to be short lived, and has only a lasting effect on

inflation.

Given this evolution of the understanding of the economic environment, it is difficult to

believe that the conduct of monetary policy – the way policy authorities respond to the state of

the economy – did not change in substantial ways. Sargent (1999) explains the rise of inflation

in the 1970s and its subsequent fall in the 1980s on the basis of evolving beliefs about the

trade-off between inflation and real activity. The Volcker disinflation in the early 1980s is

an important and well-known example of the influence of the shifting paradigm on the actual

conduct of monetary policy. The increased independence of central banks and the adoption of

inflation targeting by many countries since the early 1990s are other clear manifestations of

how the evolution of monetary policy theory has influenced monetary authorities.1 Such shifts

would have translated into time-varying responses of the Fed to inflation and real activity.

Not surprisingly, there has been a voluminous empirical literature attempting to document

and quantify the importance of the changes in monetary policy.2 One question that has received

little attention so far is the implications of the shifting response of monetary policy to inflation

and real activity on the term structure of interest rates. A growing number of studies that have

employed macro factors in term structure models have found that macroeconomic fluctuations

1 The implied evolution of monetary policy is complex and is not necessarily confined to a unidirectional evo-

lution from worse to better. Romer and Romer (2002) discuss how the evolution of economic theory maps into

changes in the way stabilization policies have been conducted. They argue that monetary policy in the 1980s is

much more similar to monetary policy during the 1950s and 1960s than monetary policy during the 1970s.
2 See, among many others, Clarida, Galı́ and Gertler (2000), Orphanides (2001), Cogley and Sargent (2001,

2005), Sims and Zha (2006), and Boivin (2006).
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are an important source of uncertainty affecting bond risk premia.3 Shifts in monetary policy

could produce similar effects and be priced risk factors. In fact, monetary policy changes should

affect the entire term structure because the actions of the Fed at the short end of the yield curve

influence the dynamics of the long end of the yield curve through no-arbitrage restrictions.4

However, it is not clear how changing monetary policy affects long-term yields. Suppose

the post-Volcker period can indeed be characterized as a much stronger desire to control infla-

tion. On the one hand, for a given expected inflation rate, the higher sensitivity of short term

interest rate to inflation might build up into higher long-term interest rates. On the other hand,

the stronger stance on inflation, if credible, might lead to lower and less variable expected in-

flation, and thus, lower risk premia. Another interesting episode is the recent flattening yield

curve between 2002 and 2005: an open question question is how much of this behavior is due

to changes in monetary policy stances as opposed to other macro forces, such as the risk of

deflation and low economic growth.

One central goal of this paper is to investigate the implications of the changes in the conduct

of monetary policy on the shape and dynamics of the term structure of interest rates. To the ex-

tent that monetary policy has implications for the whole term structure, this also means that the

entire yield curve, not just the short rate, contains potentially valuable information about mon-

etary policy shifts. Exploiting additional information to identify policy shifts is useful because

the literature has not come to a consensus in characterizing the nature of monetary policy shifts

and their quantitative importance. On one side, Clarida, Galı́ and Gertler (2000) and Cogley

and Sargent (2003, 2005) conclude that there have been important changes in the conduct of

monetary policy that overall line up with a shift pre- and post-Volcker. On the opposite side of

the debate, Orphanides (2001, 2003) and Sims and Zha (2005) find that either the conduct of

monetary policy has not changed, or that if it did, the changes are not quantitatively important.

3 A now large literature incorporating Taylor (1993) policy rules into term structure models following Ang and

Piazzesi (2003) documents that the yield curve prices inflation and economic growth risk. Recently, Duffee (2006)

disputes how much macro risk matters in bond prices, but most recent work including Buraschi and Jiltsov (2007),

Ang, Bekaert and Wei (2008), Rudebusch and Wu (2008), and Joslin, Priebsch and Singleton (2009) find that

inflation or economic growth, or both, play important roles in determining bond risk premia. Other studies that use

other measures of macro factors like Pennachi (1991), who uses inflation surveys, and Buraschi and Jiltsov (2005),

who use monetary aggregates, also find macro factors are priced.
4 Two papers allowing for discrete regime shifts in monetary policy affecting the yield curve are Fuhrer (1996)

and Bikbov (2006). As we explain below, our monetary policy shifts can approximate discrete regime shifts but

better account for more a gradual evolution of monetary policy. Neither Fuhrer (1996) nor Bikbov (2006) estimate

the price of risk of monetary policy changes.
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Following this literature, we estimate monetary policy shifts by estimating changes in the pa-

rameters of a reaction function, where the Fed implements monetary policy through the setting

of a short-term interest rate. Our study is the first to use a no-arbitrage model to identify policy

shifts, which carry their own prices of risk, that allows information from the whole yield curve

to be used.

We estimate a quadratic term structure model, where the dynamics of the short rate follow a

version of Taylor’s (1993) policy rule. Our no-arbitrage model allows for the Fed responses to

inflation and output to potentially vary over time. Their evolution is assumed to obey a VAR that

includes inflation and real activity. This allows changes in the policy parameters to be arbitrarily

persistent and entertains the possibility that their current value may be influenced by the past

behavior of the economy. For instance, an aggressive inflation response today might be due to

inflation being high in the past. This is in contrast to most existing studies which assume that

the time variation in the policy parameters is exogenous. Most importantly, modeling the policy

shifts as stationary processes allows us to let agents form expectations with the knowledge that

monetary policy is shifting. That is, agents are not oblivious to the fact that monetary policy

changes over time and take into account future changes in forming prices. Since one objective

is estimating the price of risk of policy shifts, this modeling approach is particularly desirable.5

We perform a series of exercises with the estimated model. We document the importance of

the historical changes in monetary policy and discuss these changes in the context of evolving

economic views. We investigate the effect of these policy changes on the term structure of

interest rates by computing impulse responses and expected holding period returns. Finally, we

directly estimate the price of risk of monetary policy shifts.

Our key findings can be summarized as follows. First, our estimates suggest that monetary

policy changed substantially over the last 50 years. In particular, the Fed’s sensitivity to inflation

has changed markedly over time and our estimates are consistent with the broad contours of

shifts in the intellectual framework behind monetary policy practice. In this respect, these

estimates are largely consistent with the evidence reported in Clarida, Galı́ and Gertler (2000),

and Cogley and Sargent (2005). One important feature of our results is that the evolution of

monetary policy cannot be simply summarized by a once and for all shift of monetary policy

under Volcker. For instance, we find that the response to inflation under Greenspan has been

subject to large fluctuations and that in the early 1990s and in 2003-2004, it was as low or lower

5 Note this modeling approach is in the spirit of Christopher Sims’ perspective on policy intervention in a

rational expectations context. See Sargent (1984) and Sims (1987).
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than in the 1970s. The use of term structure information in the estimation of the policy rule

leads to sharp parameter estimates, which statistically allow us to reject the hypothesis that the

nominal short rate increased by more than inflation – the so-called Taylor principle – throughout

the 1970s.

Second, we find shifts of monetary policy stances with regards to the output gap exhibit

small variation. Our model estimates imply that most of the discretion in monetary policy has

resulted from changing the response of the Fed to inflation rather than to output. The finding of

very small variation in the output loadings is the opposite conclusion to estimates from models

using random walks to capture the time variation of monetary policy coefficients. In these

models estimated without yield curve information the policy loadings on output shocks exhibit

much larger time variation.

Third, changes in monetary policy have a quantitatively important influence on the shape

of the term structure. A surprise increase in the Fed response to inflation fluctuations, ceteris

paribus, raises short term rates and increases the term spread. This suggests that investors

perceive a higher response to inflation at the short-end of the yield curve as giving bonds of

all maturities greater exposure to inflation and other macro risk. A stronger inflation policy

response does not reduce inflation and other risk premia. Surprise increases in the inflation

response induce a relatively large increase in yield spreads. In contrast, the effect of a surprise

increase in the output gap stance increases the short rate and shrinks the term spread, which is

also qualitatively similar to the effect of positive surprise to inflation or real activity. However,

output gap components account for a relatively small proportion of yield movements.

We find that recently the stance of the Fed to inflation has decreased dramatically during the

post-2001 period. The Fed response to inflation decreased to below one in 2001 and reached a

low close to zero in 2003. This is consistent with an aggressive response of the Fed to a deflation

threat during that period.6 This would imply that the relationship between the Fed’s forecast

for inflation and current and past values of inflation and real activity changed over this period.

Another interpretation is that short-term interest rates were held too low for too long a period

of time in the face of deflationary threats from the aftermath of the 2001 recession and the

September 2001 terrorist attacks.7 Short rates reached 0.90% in 2003:Q2. If the Fed had held

6 The Fed was concerned about the possibility of deflation at the time. Since contemporaneous inflation re-

mained positive and we estimate the policy response to contemporaneous inflation, an aggressive reduction in the

policy rate justified by expected deflation would be estimated in our framework as a weaker response to current

inflation.
7 This is a popular view taken by some media commentators including John B. Taylor in “How Government
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its responses on the output gap and inflation constant at their values during 2000, the short rate

during this period would have been 2.74%. Thus, according to this counter-factual experiment,

interest rates would have been substantially higher if the Fed had not eased its stance to inflation

as much as it did during the early 2000s.

The rest of the paper is organized as follows. Section 2 describes the modeling framework.

It first describes the short rate equation, specified as a time-varying policy reaction function, and

then derives bond prices based on a quadratic, arbitrage-free, term structure model. Section 3

describes the data. In Section 4 we discuss the parameter estimates, describe the estimated time

series of the policy coefficients, show how policy changes affect the yield curve, and quantify

how policy shift risk is priced. Section 5 concludes. The details of the bond pricing derivations

and the Bayesian estimation technique can be found in the Appendix.

2 Model

We begin by describing a standard Taylor (1993) policy rule without policy shifts and then

introduce shifts in inflation and output gap responses in Section 2.1. We model factor dynamics

in Section 2.2 and compute bond prices in Section 2.3.

2.1 Policy Rules

2.1.1 Rule with No Policy Shifts

In a standard Taylor (1993) policy rule, the monetary authority sets the short rate as a linear

function of inflation and the output gap:

rt = δ0 + āgt + b̄πt + f std
t , (1)

where rt is the short rate which we take to be the three-month T-bill yield, gt is the output gap,

and πt is inflation.8 In this specification, the Fed response to output and inflation in the system-

atic component of monetary policy, δ0 + āgt + b̄πt, is held fixed. The mean-zero residual in the

Created the Financial Crisis,” Wall Street Journal, February 9, 2009.
8 The original Taylor (1993) rule was applied to the federal funds rate (FFR). We follow Cogley and Sargent

(2001), Ang and Piazzesi (2003), and many others by using the three-month T-bill, which has a correlation of

96.7% with the FFR over 1954:Q3 to 2007:Q4 (the FFR is unavailable in the beginning nine quarters of our full

sample). Several reasons for the difference between T-bill yields and FFRs are greater liquidity for T-bills, the

ability of T-bills to be used as collateral, and default risk (the FFR embeds default risk while T-bills do not). We

use the T-bill yield as the basic building block because it has the same maturity as the quarterly frequency of the
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standard policy rule, f std
t , can be interpreted as a monetary policy shock where the superscript

“std” refers to a standard Taylor rule. If f std
t is correlated with the macro variables gt and πt

then OLS does not yield consistent estimates of the Fed responses ā and b̄ to output gap and

inflation shocks, respectively. However, Ang, Dong and Piazzesi (2006), Bikbov and Chernov

(2006), and others show that ft can be identified by the movements of long-term bond prices

in a no-arbitrage model. Ang and Piazzesi (2003) show that estimating equation (1) yields a

process of ft that is very persistent and is highly correlated with short rate movements. We

refer to the policy rule in equation (1) as the constant Taylor rule.

Our Taylor rule specification assumes that the policy instrument used by the Fed throughout

this period is the short term interest rate. This might seem at odds with some anecdotal evidence,

including some Fed official statements, suggesting that the Fed has used different instruments at

different points in time. For instance, between 1979 and 1982, the Fed was officially targeting

non-borrowed reserves. In practice, however, existing evidence suggests that using the short

term interest is a good approximation to the operating procedure followed by Fed throughout

that period, at least outside of the 1979-1982 period.9 This is why most of the empirical litera-

ture modeling the Fed’s behavior specifies a policy reaction function in terms of the short term

interest rate.10 In fact, all the existing evidence on changes in the conduct of monetary policy

of which we are aware, including the evidence cited in this paper, is based on this assumption.

Still, the fact remains that this assumption might be more problematic between 1979 and 1982,

and we should keep in mind that this could contaminate our results for this period. However,

this would not explain why the changes have persisted outside 1979-1982. In particular, this

could not explain the fact that we observe a dramatically different conduct of monetary in the

1970s versus the 1980s, or during the early 2000s.

macro variables, the model is specified at the quarterly frequency, and, like the other Treasury bonds used in the

estimation, it is a risk-free rate.
9 Bernanke and Mihov (1998) estimate parameters describing the operating procedure of the Fed over time.

They find that the Fed followed something very close to an interest rate target since the 1950s, except perhaps

between the Volcker non-borrowed reserved targeting experiment between 1979 and 1982. Cook (1989) argues

that the Fed funds rate is a good indicator of monetary policy even during 1979-1982.
10 Notable exceptions are Bakshi and Chen (1996) and Burashi and Jiltsov (2005) who specify a policy reaction

function in terms of a money aggregate.
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2.1.2 Rules with Policy Shifts

In order to capture the changing responses of the Federal Reserve to the macro environment, we

let the policy responses on output and inflation vary over time. In our benchmark specification

we set the systematic component of monetary policy to be

rt = δ0 + atgt + btπt, (2)

where the policy responses to gt and πt are stochastic processes. If there has been no change to

the Fed’s policy reaction function, then at = ā and bt = b̄ for all t, otherwise time variation in

at and bt represent policy shifts in the relative importance of output gap or inflation shocks in

the Fed’s policy rule.

The monetary policy rule with policy shifts in equation (2) can be written in a similar form

of the standard time-invariant Taylor rule in (1) by redefining the policy shock to explicitly

depend on the level of the output gap and inflation combined with a time-varying policy stance:

rt = δ0 + (ā + at − ā)gt + (b̄ + bt − b̄)πt

= δ0 + āgt + b̄πt + [(at − ā)gt + (bt − b̄)πt]

= δ0 + āgt + b̄πt + f bmk
t (3)

where the redefined discretionary policy shock is f bmk
t = (at − ā)gt + (bt − b̄)πt, where the

superscript “bmk” refers to the implied policy shock from our benchmark specification. Our

estimations show that (at− ā)gt +(bt− b̄)πt is highly correlated with the linear factor f std
t from

the constant Taylor rule (2). Thus, the constant Taylor rule may potentially confuse changes in

systematic policy reaction components with true discretionary shocks. Previous research like

Ang, Dong and Piazzesi (2006) has also shown that latent linear factors like ft are correlated

with output and inflation. In our setup, we decompose this traditional ft term into policy shifts

by the Fed (the (at − ā) and (bt − b̄) terms) and separate shocks to the output gap and inflation

components.

In a final specification, we consider the possibility that there is also a linear policy shock in

addition to the time-varying policy shifts in the benchmark specification in (2):

rt = δ0 + atgt + btπt + f ext
t , (4)

where we specify f ext
t to be orthogonal to at and gt. We refer to equation (4) as the extended

model. We find that by allowing the policy shifts at and bt, the effect of the monetary policy

shock factor f ext
t becomes small. Thus, in presenting our results we concentrate on the bench-

mark model, but also compare our results across the models.
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2.2 Factor Dynamics

We collect the macro and policy variables in the state vector Xt = [gt πt at bt ft]
>, where ft

is either f std
t in the constant Taylor rule or f ext

t in the extended Taylor rule, which follows the

stationary VAR:

Xt = µ + ΦXt−1 + Σεt, (5)

where εt ∼ IID N(0, I). We order the macro variables first in the VAR. The constant Taylor

rule and benchmark specifications omit the dynamics of (at, bt) and ft, respectively, and are

special cases of the extended model.

We parameterize Φ as

Φ =




Φgg Φgπ Φga 0 Φgf

Φπg Φππ 0 Φπb Φπf

Φag 0 Φaa 0 0

0 Φbπ 0 Φbb 0

0 0 0 0 Φff




. (6)

The upper 2× 2 matrix of Φ represents a regular VAR of output and inflation. The coefficients

Φga and Φπb allow changes in the policy coefficients to influence the future path of output and

inflation.11 Similarly, non-zero Φgf and Φπf imply that discretionary linear policy shocks affect

output and inflation next period. Previous research by Clarida, Galı́ and Gertler (2000) and

many others find negative estimates of Φπf so tighter monetary policy reduces future inflation.

We capture an endogenous response of the Fed policy to changing output and inflation in the

coefficients Φag and Φbπ. Specifically, we allow the response of inflation and output to depend

on whether past inflation or output is high or low. If Φbπ is positive, then the Fed becomes more

aggressive in responding to inflation shocks when past inflation is high.12

11 We do not allow the Fed’s response to inflation to influence the future output gap or the Fed’s output gap

sensitivity to influence future inflation (Φgb = Φπa = 0). In systems with latent factors, the same reduced-form

model may often be produced by arbitrarily scaling or shifting the coefficients governing the dynamics of at and

bt in Φ or Σ. To identify at and bt, we allow their shocks to be correlated in Σ, but do not allow any feedback

between at and bt in Φ.
12 A version of the Lucas critique would suggest that the time variation in the policy rule could imply time

variation in the upper left 2× 2 block of the matrix Φ. Unfortunately, modeling this time variation takes us outside

the tractable class of quadratic term structure models (see below) and we can no longer derive long-term bond

prices. In our current setup, the first two equations have thus to be interpreted as a first-order approximation to the

true dynamics of these two variables.
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We set Σ to take the following form:

Σ =




Σgg 0 0 0 0

Σπg Σππ 0 0 0

Σaa Σaπ Σaa 0 0

Σbg Σbπ Σba Σbb 0

0 0 0 0 Σff




. (7)

Our specification of Σ allows inflation, output and policy shifts to be contemporaneously cor-

related. We also specify that conditional shocks to ft are orthogonal to all other factors as an

identifying assumption.

We treat the policy variables, at and bt, and the policy shock factor, ft as latent factors.

We are especially interested in the variation of at and bt through the sample. We assume that

the time variation in the policy coefficients is a covariance stationary process, that is all the

eigenvalues of Φ lie inside the unit circle. Under our formulation, agents form expectations

taking into account the probability that monetary policy will shift in the future according to a

known stationary law of motion. That is, agents know that monetary policy has changed and will

change again. Our specification thus accounts for a version of the Lucas critique, in the spirit

of the Sims’ perspective on policy intervention in a rational expectations context (see Sargent,

1984; Sims, 1987). Furthermore, the time variation of at and bt is also allowed to endogenously

depend on past macro variables, as is potentially the future path of gt and πt allowed to depend

on the current monetary policy stance. Since the persistence of the process could be estimated

to be arbitrarily high, our setup can approximate the random walk specification that have been

used in previous studies (see, among others, Cooley and Prescott, 1976; Cogley and Sargent,

2001, 2005; Cogley, 2005; Boivin, 2006; Justiniano and Primiceri, 2006).

The benchmark Taylor rule with changing policy stances (equation (2)) and the extended

version which also incorporates additional policy shocks (equation (4)) are examples of regres-

sion models with stochastically varying coefficients. Using only macro data and short rates,

these systems may be asymptotically identified (see Pagan, 1980). However, it is hard to use

only one observable variable, short rates, to identify two or more latent processes in small sam-

ples. Fortunately, it is not only the short rate that responds to policy shifts – we identify the

variation in at, bt, and ft by using information from the entire yield curve. A further advantage

of using the entire term structure is that we can identify the prices of risk that agents assign

to the policy authority’s time-varying policy rules. Thus, we can infer the effect on long-term

yields of a policy shift by the Fed on its inflation stance, as well as the traditional analysis of
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tracing through the effect of an inflation shock on the term structure. We now show how bond

prices embed the dynamics of all factors through no arbitrage.

2.3 Bond Prices

To derive bond prices from the policy shift model of equation (2), we write the short rate as a

quadratic function of the factors Xt = [gt πt at bt ft]
>:

rt = δ0 + δ>1 Xt + X>
t ΩXt (8)

where δ0 is a scalar and δ1 = [0 0 0 0 1]>, which picks up the linear factor ft. In the quadratic

term X>
t ΩXt in equation (8), Ω is specified as

Ω =




0 0 1
2

0 0

0 0 0 1
2

0
1
2

0 0 0 0

0 1
2

0 0 0

0 0 0 0 0




. (9)

The short rate is linear in the observable macro variables and the quadratic form results from the

interaction of the stochastic policy coefficients at and bt with the macro factors gt and πt. The

constant Taylor rule model is a standard affine term structure model where at and bt are constant

at at = ā and bt = b̄ and the vector of loadings in the short rate takes the form δ1 = [ā b̄ 1]> for

the factors [g π f std]>.

To price long-term bonds, we specify the pricing kernel to take the form:

mt+1 = exp

(
−rt − 1

2
λ>t λt − λ>t εt+1

)
, (10)

with the time-varying prices of risk depending on the state variables Xt following Duffee (2002)

and others:

λt = λ0 + λ1Xt, (11)

for the 4 × 1 vector λ0 and the 4 × 4 matrix λ1. The prices of risk control the response of

long-term yields to macro and policy shocks and cause the expected holding period returns of

long-term bonds to vary over time (see Dai and Singleton, 2002). We can rewrite equation (10)

to emphasize how each shock is separately priced:

mt+1 = exp

(
−rt − 1

2
λ>t λt − λg

t ε
g
t − λπ

t επ
t − λa

t ε
a
t − λb

tε
b
t − λf

t ε
f
t

)
,
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for εt = [εg
t επ

t εa
t εb

t εf
t ]
> and λt = [λg

t λπ
t λa

t λb
t λf

t ]
>. If a risk is not priced, then the

corresponding row of λt is equal to zero and payoffs of an asset correlated with those factor

innovations receive no risk premium. Of particular interest are the risk premia parameters λa
t

and λb
t on the policy shift variables at and bt. These have not been examined before because

the prices of risk in equation (11) have almost exclusively been employed in traditional affine

macro-term structure models where the policy coefficients are constant (see, for example, Ang

and Piazzesi, 2003).

The pricing kernel prices zero-coupon bonds from the recursive relation

P n
t = Et[mt+1P

n−1
t+1 ],

where P n
t is the price of a zero-coupon bond of maturity n quarters at time t. Equivalently we

can solve the price of a zero-coupon bond as

P n
t = EQt

[
exp

(
−

n−1∑
i=0

rt+i

)]
, (12)

where EQt denotes the expectation under the risk-neutral probability measure Q, under which

the dynamics of the state vector Xt are characterized by the risk-neutral constant and companion

form matrix:

µQ = µ− Σλ0

ΦQ = Φ− Σλ1, (13)

where Xt follows the process

Xt = µQ + ΦQXt−1 + Σεt

under Q. In our estimation, we impose ΦQ to take the same restrictions as the companion form

under the real measure, Φ, given in equation (6). The relevant dynamics for bond prices are

given by the risk-neutral parameters µQ and ΦQ.

The quadratic short rate (2) or (8), combined with the linear VAR in equation (5), and the

pricing kernel (10) gives rise to a quadratic term structure model. We can write the bond price

for maturity n implied by the model as:

P n
t = exp(An + B>

n Xt + X>
t CnXt), (14)

where the terms An, Bn, and Cn are given in Appendix A. Hence, if we denote the yield on a

zero-coupon bond with maturity n quarters as yn
t = −1/n log P n

t , yields are quadratic functions
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of Xt:

yn
t = an + b>n Xt + X>

t cnXt, (15)

where an = −An/n, bn = −Bn/n, and cn = −Cn/n. This analytical form enables the

estimation of the model and allows us to investigate how the entire term structure responds to

policy changes and macro shocks.

We define an excess holding period return as the return on holding a long-term bond in

excess of the short rate:

xhprn
t+1 = log

P̂ n−1
t+1

P̂ n
t

− rt,

where the notation xhprn
t+1 denotes that the excess holding period return applies to a zero

coupon bond of n periods today at time t. The conditional expected excess holding period

return implied by the model is also given by a quadratic function:

Et[xhprn
t+1] = Ān + B̄>

n Xt + X>
t C̄nXt, (16)

where the coefficients Ān, B̄n and C̄n are given in Appendix A.

Since the yields are quadratic functions of the state variables, the model belongs to the class

of quadratic term structure models developed by Longstaff (1989), Beaglehold and Tenney

(1992), Constantinides (1992), Leippold and Wu (2002, 2003), and Ahn, Dittmar and Gallant

(2002).13 None of these authors incorporate observable macro factors or investigate policy

shifts. Ahn, Dittmar and Gallant (2002) and Brandt and Chapman (2003) demonstrate that

quadratic models have several advantages over the Duffie and Kan (1996) affine class in adding

more flexibility to better match conditional moments of yields and matching correlations across

yields. The non-linearity of yields also aids in estimating prices of risk because there is an addi-

tional source of identification, through the non-linear mapping of state variables to yields, that

is absent in an affine setting. Our model naturally shares these advantages. However, while we

share the main technical methodology of the general class of quadratic term structure models,

in our setting the quadratic structure arises naturally by allowing policy shifts in a Taylor pol-

icy rule, rather than immediately assuming the use of a quadratic term structure model. Thus,

we provide some economic interpretation behind a general quadratic term structure model and

interpret the factors and prices of risk in an interesting and important policy application.
13 These quadratic models are related to the broader class of Wishart term structure models as they have linear

representations of yields involving factors Xt and second moments of factors, vech(XtX
′
t). In these models, the

quadratic term itself follows an affine process, as shown by Filipovic and Teichmann (2002) and Gourieroux and

Sufana (2003). Buraschi, Cieslak and Trojani (2007) show that the quadratic short rate process can be supported

in a Cox, Ingersoll and Ross (1985) production economy with a representative agent.
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To estimate the model, we assume that all yields, including the short rate, are measured with

error. Specifically, we assume:

ỹn
t = yn

t + un
t , (17)

where yn
t is the model-implied yield in equation (15), ỹn

t is the yield observed in data, and un
t

IID ∼ N(0, σ2
n), are additive measurement errors for all yields n. The quadratic form of the

yields implies that there is not a one-to-one correspondence between certain yields assumed to

be observed without error and latent state variables. Thus, standard Kalman filtering techniques

for estimating affine models cannot be used to estimate our quadratic term structure model. We

employ a Bayesian filtering algorithm that requires no approximation to estimate the model,

which we detail in Appendix B.

3 Data

All our data is at a quarterly frequency and the sample period is from June 1952 to December

2007. The output gap is constructed following Rudebusch and Svensson (2002) and is given by

gt =
1

4

Qt −Q∗
t

Q∗
t

, (18)

where Qt is real GDP and Q∗
t is potential GDP. We obtain real GDP from the Bureau of Eco-

nomic Analysis (BEA), which is produced using chained 2000 dollars. We use the measure of

potential output published by the Congressional Budget Office (CBO) in the Budget and Eco-

nomic Outlook using chained 1996 dollars. To make the BEA series comparable to the CBO

series, we translate real GDP to 1996 dollars. Finally, we demean the output gap and divide the

output gap by four to correspond to quarterly units. Since we will be using per quarter short

rates, this allows us to read the coefficient on the output gap as an annualized number. Our series

for inflation is the year-on-year GDP deflator expressed as a continuously compounded growth

rate. This is also divided by four to be in per quarter units. In addition to the one-quarter short

rate, our term structure of interest rates comprises take zero-coupon bond yields from CRSP of

maturities 4, 8, 12, 16, and 20 quarters. These are all expressed as continuously compounded

yields per quarter.

Figure 1 plots the output gap, inflation, and the short rate over our sample in annualized

terms. The output gap decreases during all the NBER recessions and reaches a low of -7.1%

during the 1981:Q3 to 1983:Q4 recession. The output gap strongly trends upwards during

the expansions of the 1960’s, the mid-1980’s, and the 1990’s. Inflation is slightly negatively
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correlated with the output gap at -0.245. Inflation rises to near 10% during the mid-1970’s and

early 1980’s, but otherwise remains below 5%. In the data, the correlation between the output

gap and the short rate is -0.147 and the correlation between inflation and the short rate is 0.698.

These correlations are matched closely by the model, with implied correlations of gt and πt with

the short rate of -0.135 and 0.788, respectively.

As a benchmark, we report OLS estimates of simple Taylor (1993) rules where the short

rate is a linear combination of macro factors and lagged inflation:

rt = 0.005 + 0.025 gt + 0.906 πt + εt,

(0.001) (0.059) (0.063)
(19)

where standard errors are reported in parentheses. Adding lagged short rates we obtain

rt = 0.000 + 0.072 gt + 0.143 πt + 0.872 rt−1 + εt,

(0.000) (0.028) (0.040) (0.031)
(20)

which can be written in partial adjustment format as:

rt = 0.001 + 0.872 rt−1 + (1− 0.872)(0.562 gt + 1.117 πt) + εt.

These estimates are very similar to those reported in the literature. We report these OLS coeffi-

cients for comparison. In our model, the latent factor f std
t in the constant Taylor rule or extended

model and the redefined residual term f bmk
t = (at − ā)gt + (bt − b̄)πt in the benchmark model

are correlated with the regressors. This implies that our estimated (time-varying) loadings may

be potentially different from the OLS estimates.

In Table 1 we report summary statistics of the factors in data and implied by the bench-

mark model. The factors and yields are expressed in percentage terms at a quarterly frequency.

The model provides a good match to the data, with model-implied unconditional means and

standard deviations very close to the moments in data. In Panel A, the unconditional moments

of the output gap and inflation implied by the model are well within 95% confidence bounds

of the data estimates. Panel B of Table 1 compares the yields in data with the model-implied

yields. We construct the posterior moments of the model-implied yields by using the generated

latent factors in each iteration from the Gibbs sampler estimation. The tight posterior standard

deviations indicate that the draws of the latent at and bt factors in the estimation result in yields

that very closely lie around the data yields. All of the model-implied estimates are very similar

to the data. Note that we match the mean of the short rate exactly in the estimation.
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4 Empirical Results

Section 4.1 discusses the parameter estimates starting from the constant Taylor rule model and

working up to the extended model. Section 4.2 documents how the Fed reaction to output gap

and inflation shocks have changed over time. In Section 4.3, we discuss how the yield curve

reacts to changes in the Fed’s policy parameters. Section 4.4 characterizes risk premia of long-

term bonds. In Section 4.5, we present a counter-factual experiment of how the yield curve in

the early 2000s might have been had the Fed not lowered its output gap and inflation stance as

much as it did during this time.

4.1 Parameter Estimates

We report parameter estimates of the constant Taylor rule model in Table 2, the benchmark

model in Table 3, and the extended model in Table 4. Each table reports posterior means of the

model parameters, with posterior standard deviations in parentheses.

Across all specifications we find that high inflation Granger-causes lower economic growth

and higher economic activity Granger-causes higher inflation consistent with a Phillips curve.

For example, in the benchmark specification Φgπ = −0.083 with a posterior standard devia-

tion of 0.036 and Φπg = 0.064 with a posterior standard deviation of 0.011. In the conditional

covariance matrix, Σ, conditional shocks to the output gap and inflation have almost zero cor-

relation. These effects have been noted before in standard VAR macro models like Christiano,

Eichenbaum and Evans (1996, 1999). Consistent with previous macro-affine models estimated

in the literature, there are several significant price of risk parameters for gt and πt indicating

that macro risk plays an important role in bond pricing.

4.1.1 Constant Taylor Rule Model

Table 2 reports that for the constant Taylor rule model the policy rule is given by

rt = 0.008 + 0.364 gt + 0.609 πt + f std
t ,

(0.002) (0.063) (0.237)

which are different to the OLS estimates in equation (19) as the policy shock factor f std
t has

an unconditional correlation with gt and πt of 7.2% and -16.4%, respectively. In particular,

the long-term output gap response ā = 0.364 compared to the OLS estimate of 0.025 and the

long-term inflation response is b̄ = 0.609 compared to the OLS estimate of 0.906.
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Not surprisingly, Table 2 shows that the f std factor is highly persistent with Φff = 0.940

as f std inherits the high autocorrelation of the short rate. The correlation of f std with the short

rate is 0.849. Thus, in common with other affine estimations like Ang and Piazzesi (2003),

f is a “level” factor in the sense of Knez, Litterman and Scheinkman (1994) and affects all

yields across the term structure in a parallel fashion. Table 2 shows there is some evidence that

high f values Granger-cause lower economic activity and lower inflation with coefficients of

Φgf = −0.023 and Φπf = −0.015. While statistically weak, these coefficients are economically

consistent with previous estimates in the literature that monetary policy shocks influence future

inflation and output.

4.1.2 Benchmark Model

In the benchmark model the response of the Fed to the output gap and inflation vary through

time. In Table 3 we report two estimates for the long-run Fed responses, which we refer to

as ā and b̄. The first “sample” estimate is the average posterior values of at and bt over the

sample. The second long-run estimate is the population long-run mean implied by the VAR.

Both estimates are similar to each other. The sample long-run response to the output gap is

ā = 0.356 with a posterior standard deviation of 0.047. The long-run inflation response in the

sample is b̄ = 1.117 with a posterior standard deviation of 0.138. The corresponding population

VAR-implied long-run values are very similar at ā = 0.372 and b̄ = 1.154, respectively.14

According to the benchmark model, the long-run inflation response of b̄ = 1.154 is higher

than the OLS estimate of 0.906 in equation (19) and is also higher than the constant Taylor rule

estimate of 0.609 in Table 2. This suggests that the time variation of at and bt plays an important

role in determining the short rate. We further explore the policy shift dynamics of the output

gap and inflation responses below.

The benchmark model’s implied policy factor, f bmk
t , in equation (3) is dependent on the

time-varying at and bt coefficients and should be highly correlated with the latent f std
t factor

from the model with the constant Taylor rule. This is indeed the case with a correlation of 0.864

between f std
t and f bmk

t . Thus, most of the variation of a standard linear policy factor is attributed

to time-varying policy stances in the benchmark model.

Table 3 shows there is little evidence that changes in at and bt affect the future path of output

14 The posterior standard deviations for the VAR-implied values are larger the sample estimates because the

population-implied value from the VAR can takes a wider range of values, especially when a simulated value for

Φ is close to the unit circle.
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and inflation, with estimates of Φga = Φπb = 0. In contrast, we find large endogenous responses

of the Fed to the macro environment, but these estimates have posterior standard deviations that

are quite wide. A 1% increase in the output gap lowers at by 1.114, with a posterior standard

deviation of 0.763, and a 1% increase in inflation increases bt by 2.682, but this coefficient has

a fairly large posterior standard deviation of 2.595. Thus, overall we find only weak statistical

evidence that monetary policy stances endogenously respond to past output gap and inflation

realizations.

In the conditional volatility matrix, the conditional shocks of at and bt have a correlation of

85.4% with each other indicating that the Fed is likely to raise or lower the responses on inflation

and output simultaneously. Conditional shocks to the macro factors and at and bt have relatively

low correlations, but some of these are significant. The conditional correlation of shocks to πt

and shocks to at and bt are -0.332 and -0.203, respectively, with posterior standard deviations

of 0.077 and 0.075. This implies that the Fed has a slight tendency to lower its stances to macro

shocks at times when larger macro shocks are expected. The conditional volatility matrix also

reveals that the conditional volatility of bt is 0.048 and is approximately 10 times the conditional

volatility of at, so the Fed’s stance to output gap shocks has been much more stable than the

Fed’s response to inflation. Below, we further investigate the time-series variation of at and bt.

4.1.3 Extended Model

Table 4 reports the estimates of the extended model, which are largely similar to the benchmark

model for the common parameters. The estimates of the long-run Fed responses to the output

gap and inflation are also very similar across the benchmark and extended models. For example,

the sample long-run inflation response is 1.075 in the full model and 1.117 in the benchmark

model. Similar to the benchmark model, we find weak evidence of Granger-causality of past

inflation to next-period bt values. In the extended model, Φbπ = 2.952, with a posterior standard

deviation of 2.334, compared to Φbπ = 2.682 with a posterior standard deviation of 2.595 in the

benchmark model.

The extended model has a linear latent f ext
t model in addition to time-varying policy load-

ings. Table 4 shows that the conditional volatility of f ext
t is 0.007×10−3 which is several orders

of magnitude smaller than the conditional volatilities of the policy shift parameters at and bt,

which are 0.003 and 0.036, respectively. The correlation between f ext
t and the short rate is low at

0.228 and thus must of the movements in the short rate come from changing gt and πt interacted

with monetary policy shifts. Put another way, time-varying at and bt in the benchmark mone-
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tary policy shock, f bmk
t accounts for most of the movements of the short rate, and the extended

model’s remainder monetary policy effect, f ext
t , plays a relatively small role in explaining short

rate movements.

This is also seen in a formal variance decomposition of the short rate, where f ext accounts

for 4.6% of the total short rate variance, which is computed as

1− varf (r)
var(r)

,

where varf (r) is the variance of the short rate computed through the sample where f ext is set to

be constant at its sample mean and var(r) is the variance of the short rate in data.15 In contrast,

the corresponding variance decomposition for f bmk in the benchmark model is 0.257. This is as

expected. The benchmark model already allows the output gap and inflation response to vary

over time and further allowing an independent f ext factor in addition to the at and bt variation

indicates that the role of f ext is small. Furthermore, since the estimated time-series paths of at

and bt are very similar across the benchmark and the extended models, we concentrate on the

benchmark model for looking at how Fed policy shifts have changed over time, which we turn

to next.

4.2 Policy Shifts in Output and Inflation Responses

4.2.1 Short Rate Components

In the benchmark model, short rates move due to movements in the output gap component, atgt,

or movements in the inflation component, btπt. A formal variance decomposition is given by

(See Appendix C for details):

var(rt) = var(atgt) + var(btπt) + 2cov(atgt, btπt)

100% = 7.74% 98.67% -6.41%

Thus, almost all movements in the short rate are attributable to inflation and the Fed response

to inflation. The variation of the output component of the short rate is relatively very small.

Although the unconditional standard deviation (in annual terms) in the output gap and inflation

are similar at 2.35% and 2.20% for gt and πt, respectively (see Table 1), the smaller policy

responses on output shocks and the relatively larger responses on inflation cause the inflation

component to dominate.
15 The variance decompositions of long-term yields in the extended model in terms of f ext are also very small.

For example, the variance decomposition for the 20-quarter yield for f ext is 0.008.
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Figure 2 reports the decomposition of the short rate into these two components in the bench-

mark model. The policy factors are evaluated at the best estimates of at and bt through the

sample, together with the short rate. The correlation between the actual short rate and the fitted

components δ0 + atgt + btπt is 0.976, indicating that movements in the macro variables and

policy rule account for almost all of the variation in the short rate and the observation error

component is small. The bottom panel of Figure 2 visually confirms the very high attribution to

btπt in the variance decomposition of the short rate by clearly demonstrating that the inflation

components shadow the level of the short rate while the output gap terms are relatively stable.

Figure 3 displays the policy parameters at and bt over the sample from the benchmark model.

We plot the mean posterior estimates at each point in time of the Fed’s response to output and

inflation produced by the Gibbs sampler, along with two posterior standard deviations. There

are two main differences between the Fed’s output gap and inflation responses. First, the overall

variation of the output gap loading is small compared to the inflation loading variation. The

sample standard deviation of the posterior mean of at is 0.167 compared to 0.552 for the bt

loadings. Thus, the Fed has exhibited relatively little change in its responsiveness to economic

growth and comparatively large changes in its inflation response.16

Second, the Fed places relatively more importance on responding to inflation than it does to

the output gap. The inflation loading in the second panel of Figure 3 has a long-run mean of

b̄ = 1.117 compared to ā = 0.356 and ranges from a low of 0.08 in 2003:Q3 to a high of 2.43

in 1983:Q4. These estimates lend support to the conjecture that the changes in monetary policy,

at least to inflation, during this period were substantial.

4.2.2 Shifts in Inflation Stance

We now comment in detail on changes in Fed sensitivities to inflation plotted in the bottom

panel of Figure 3. The response to inflation during the 1950s starts well below one at around

0.2 and sharply increases to above 2 during the late 1950s. In the last quarter of 1959 bt reaches

a temporary high of 2.23. From this high, the Fed’s inflation coefficient starts to decrease during

the 1960s, dips below one in the mid-1960s and stays low through the 1970s until 1979-1980.

For instance, by the end of the 1970 recession, the response to inflation is less than 0.5.

In the late 1970s the Fed’s inflation response starts to increase. Interestingly, and as in

16 A previous version of the paper shows that there is significantly more variation in the output gap loading when

the additional term structure information that this model brings to bear on the identification of policy stances is

ignored. These results are available upon request.
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Boivin (2006), the sharpest increase in the inflation response is not in late 1979, as is often

assumed because of the appointment of Volcker in July 1979, but after 1981. At the beginning

of January 1979 bt starts out at 1.17 and reaches a high of 2.42 in June 1984. From this high

the inflation loading starts to decrease over the 1980s and early 1990s. In 1992:Q3 bt decreases

to 0.68 before increasing to 2.05 in December 1994. Interestingly, this increase is completely

consistent with anecdotal accounts of the Fed’s “preemptive strike on inflation,” which is the

name given to this unprecedented episode as the Fed started to tighten monetary policy well

before any concrete signs of inflation started to materialize (see Beckner, 1996, for further

details on these events).

Recently the response to inflation falls well below one during the 2001 recession and the

aftermath of the September 2001 terrorism acts. Specifically, the short rate declines from 4.25%

in 2001:Q1 to 0.90% in 2003:Q2. During this time the Fed’s response to inflation shocks also

sinks below one in 2001:Q1 to 0.98 reaching a low of 0.08 in 2003:Q3. Thus, we find that

the last few years of monetary policy under Greenspan was similar to monetary policy in the

1950s and 1970s with policy coefficients of inflation below one. From the low in 2003:Q3 to

the 2007:Q2, the Fed response to inflation increases sharply, rising above one in 20055:Q4 to a

value of 1.45 in 2007:Q2. Our estimates indicate a slight decrease in the inflation loading during

the second part of 2007 associated with the beginning of the current financial and economic

crisis.

The time-series pattern of the inflation coefficient is in broad agreement with the evidence

reported in Clarida, Galı́ and Gertler (2000), Cogley and Sargent (2005), and Boivin (2006). In

general, we find a low response to inflation in the 1970s and much higher response in the early

1980s. The response in most of the 1960s and 1970s is such that a unit increase in inflation

translates into a less than a unit increase in the nominal policy rate, thus a decline in the real

rate, and hence implies an easing of monetary policy. If agents had been expecting the response

to inflation to remain permanently below one, it might have been possible for inflation expecta-

tions, and thus economic fluctuations, to be driven by non-fundamental sunspot shocks. Some

commentators argue that the failure to rule out the presence of such shocks is responsible for

the greater economic volatility of the 1970s (see the discussion by Taylor, 1999; Clarida, Galı́

and Gertler, 2000). It is important to note that in the context of our model, however, agents

understand that the response to inflation shift in the future. As long as they believe that the

long-run mean of the response to inflation is above one, sunspot fluctuations should be ruled

out, even if the response is temporarily below one.
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It is also reassuring to observe that the secular evolution of our estimates of inflation stances

is also consistent with the evolution of the intellectual debate and development of monetary

policy theory. In particular, Romer and Romer (2002) argue that this evolution has not been

a linear improvement in the understanding of the economy, but rather “it is a more interesting

evolution from a crude but fundamentally sensible model of how the economy worked in the

1950s, to more formal but faulty models in the 1960s and 1970s, and finally to a model that was

both sensible and sophisticated in the 1980s and 1990s.” This lines up well with our estimated

response to inflation, where monetary policy in the late 1950s is quite similar to the one observed

in the early 1980s under Volcker and in the mid-1990s under Greenspan.

Interestingly, the more recent evidence suggests that monetary policy in the 2003-2004 pe-

riod is closer to monetary policy observed in the 1970s with both periods having inflation re-

sponses below one. However, there is an important difference with the 1970s: during the 2003-

2004 episode, the Fed was concerned about the possibility of deflation. Since we are modeling

the Fed’s response to contemporaneous inflation, the estimated decline in the response to infla-

tion could be explained by expected deflation at the time that was not reflected in current in-

flation. This explanation requires that the historical relationship between the Fed’s forecast for

inflation at that point in time and other macro variables broke down during that period. Whether

it is due to markedly different forecasts for inflation or an actual change in the Fed’s response

to inflation, this period certainly stands out as unusual relative to our historical estimates.

A final comment is that the timing of monetary policy shifts in Figure 3 is broadly consistent

with the general increase in volatility in the 1960s and 1970s and the general decline of macro

volatility in the mid-1980s, suggesting monetary policy could have played a significant role in

this pattern of change in inflation and economic growth.17 This view might be reinforced by the

fact that the increased volatility in the last few years of our sample is preceded, according to our

estimates, by a substantial reduction in the response to inflation between 2003-2004. However,

this remains highly speculative at this stage.

4.3 Policy Shifts and the Yield Curve

To gauge how important each factor is in determining the dynamics of yields, we compute

unconditional variance decompositions in Table 5. Movements in GDP growth account for only

a small proportion of yield curve movements whereas inflation accounts for 60.3% of short

17 This issue is explored by, among others, Stock and Watson (2003), Boivin and Giannoni (2006), Sims and Zha

(2006), and Justiniano and Primiceri (2006).
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rate movements and 19.1% of long rate movements. Time-varying output gap loadings have

their greatest impact on yield variation at the middle part of the yield curve with a variance

decomposition reaching 11.6% at at a one-year maturity. Similarly, the attribution of yield

variance to movements in bt is the highest at a two-year maturity with a value of 27.5%. The

majority of yield variation is given by the inflation term btπt for all maturities, which echoes the

high comovement between btπt and the short rate in Figure 8. These variance decompositions

suggest that the main determinants of yield curve variation are inflation and inflation loadings.

In Figure 4 we plot the impulse response of the yield curve to macro shocks and inflation

policy shifts. Since the yields are non-linear functions of macro and policy variables, we com-

pute the impulse responses numerically, which we detail in Appendix D. We graph in columns

the response of an unconditional one-standard deviation shock to each factor and trace the ef-

fect on the short rate rt, the 20-quarter long rate, y20
t , and the yield spread, y20

t − rt, which are

presented in rows. The units on the x-axis are in quarters whereas the impulse responses are

expressed in annualized percentage terms.

In the first column, a positive output shock initially increases short rates and decreases

spreads. A unit unconditional standard deviation shock to gt of 2.35% first increases the short

rate by 0.79% and reaches a peak of 1.31% at 12 quarters. The effect on the long yield is

smaller, which initially increases by 0.42%. Consequently the term spread initially shrinks by

-0.37% before shrinking to its maximum absolute value of -0.50% at 13 quarters. A similar

pattern is observed for a shock to inflation on the yield curve in the second column. A 2.20%

shock to inflation causes the short rate to jump 0.93% and shrinks the term spread by 0.66%.

These effects die out faster than the output gap shock, with the effect of an inflation shock on

the short rate dying out by 30 quarters. These results are similar to those reported by Ang and

Piazzesi (2003), among many others, who show that the macro shocks have a greater influence

on the short end of the yield curve compared to the long end of the yield curve.

The third and fourth columns of Figure 4 show the response of the yield curve to monetary

policy shifts. Note that these responses would be the same across the yield curve if monetary

policy shifts were not priced or the price of at and bt risk were constant. The third column

traces the response of an unconditional one standard deviation change in at, which is 0.170.

This causes the short rate to increase to 1.70% and the 20-quarter yield to increase to 0.64%.

Whereas the shock to the long bond dies out quickly after 20 quarters, the shock to at on the

short rate persists up to 40 quarters. Thus, changing the output gap response mostly affects the

short end of the yield curve and causes the term spread to shrink.
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In contrast, the last column shows inflation policy shifts affect the long end of the yield

curve more than the short end. In the last column we shock the short rate, long yield, and term

spread by an unconditional one standard deviation shock in bt, which is 0.560. This increases

the short rate by 1.81%, which dies out after 30 quarters. The 20-quarter yield moves almost

twice as much as the short rate to 3.36%. The shock to bt also has a more persistent effect on the

long end of the yield curve than the short rate, which does not reach close to zero until around

40 quarters.

The stronger effect on the long end of the yield curve of changing inflation stances compared

to changing economic growth stances is also observed in Figure 5. We plot the yield curve as

a function of maturity in quarters on the x-axis and trace the response of the yield curve after

an initial shock at t = 0 for various t in quarters in rows. The left-hand column, which plots

the effect of a unit unconditional standard deviation shock to at has overall smaller responses,

which die out more quickly, than the term structure responses in the right-hand column, which

traces the effect of an initial unconditional one standard deviation shock to bt. Figure 5 shows

the effect of the shocks to at and bt are monotonic across the yield curve with the at shocks

affecting short maturities more whereas the long end of the yield curve is more sensitive to

changes in bt. After 20 quarters the whole yield curve is still around 50 basis points higher for

the bt shock, with the long yield slightly higher than the short rate, but only the short end of the

yield curve remains around 50 basis points for the at shock. In summary, long-term yields are

especially sensitive to policy changes in inflation loadings.

What can explain the stronger effect of bt on long-term yields compared to short-term

yields? In principle, if investors perceived the stronger inflation response as implying lower

and less variable inflation, it would suggest bt might carry a negative price of risk and long-term

yields may decrease to reflect lower risk premia when bt is higher. Instead, according to our

estimates, when bt changes the short rate, and by no arbitrage the entire yield curve, becomes

more exposed to inflation risk. This suggests bt carries a positive risk premium. Moreover, since

bt does not affect (or barely affects) the path of future inflation, raising bt then causes all bond

prices to be exposed to greater inflation and other macro risk – and since bt also responds to

inflation but not vice versa, this effect is magnified. Long-maturity bonds pick up this feedback

sensitivity and hence are relatively more sensitive to changes in bt. To investigate this further

we now examine bond risk premia and factor prices of risk.
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4.4 Risk Premia

In this section we characterize risk premia of long-term bonds by computing expected excess

holding period returns. We first examine impulse responses of risk premia and then directly

examine the price of risk of monetary policy shifts.

4.4.1 Risk Premia Responses

Figure 6 graphs the response of expected excess holding period returns, Et[xhprn
t+1], defined in

equation (16) of the n = 4-quarter bond plotted in the solid line and the n = 20-quarter bond

plotted in the dashed line. The shocks are unit unconditional standard deviation shocks to each

factor and the conditional risk premia are evaluated at the model’s implied unconditional mean.

The top row shows that bond risk premia are strongly counter-cyclical, as documented by many

studies. Positive output gap shocks decrease risk premia with a 2.35% shock to gt producing a

0.32% decrease in the intermediate-term bond risk premium and a 1.96% decrease in the long-

term bond risk premium. These shocks are very persistent and for the long bond do not die

out until after 40 quarters. Similarly, during economic expansions when inflation is high, risk

premia also decrease. These responses are relatively larger than the risk premia responses to

the output gap. In particular, a 2.20% inflation shock decreases the long-bond risk premium by

2.71%.

The bottom row of Figure 6 shows the risk premia responses to shocks in monetary policy

stances. The 0.170 shock to at increases the risk premium of the four-quarter bond by 0.19%

while the same shock produces a maximum decrease in the 20-quarter bond risk premium of

0.36% after 15 quarters. The non-linear effect comes from the quadratic form and implies that

an unexpected more responsive stance to output gap shocks is felt non-monotonically across the

yield curve with higher risk premia on intermediate-bonds and lower risk premia on long-term

bonds. However, the absolute size of the the risk premia responses to changes in at shocks

is relatively small, which is consistent with the small role that output gap components play in

determining the short rate and term structure.

The lower right-hand panel of Figure 6 shows that risk premia are very responsive to bt

shocks. A 0.560 shock to bt increases the risk premium on the four-quarter bond by 1.79%

and the 20-quarter bond by 6.86%. Both responses die out monotonically and disappear after

40 quarters for the long bond. These responses are large and reflect a risk premium for agents

being subject to changing inflation policy stances, which we now directly examine.
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4.4.2 Interpreting Price of Risk Parameters

To directly interpret the λ0 and λ1 price of risk coefficients consider first a standard CRRA

representative agent economy with the pricing kernel

mt+1 =

(
Ct+1

Ct

)−γ

= exp(−γ(µc + σcε
c
t+1)),

where Ct is aggregate consumption, γ is the representative agent’s risk aversion, µc and σc are

the mean and volatility of log consumption growth, respectively, and εc
t+1 ∼ N(0, 1) is the

shock to consumption growth. In this economy consider a security paying off εc
t+1, which is a

unit consumption shock. This has price

Pt = Et[mt+1ε
c
t+1] = Et[e

−γ(µc+σcεc
t+1)εc

t+1]

= −γe−rt , (21)

where the risk-free rate rt = γµc− 1
2
γ2σ2

c . Equation (21) shows that the price of this security is

equal to a bond multiplied by minus the degree of risk aversion. The security has a mean zero

payoff since E[εc
t+1] = 0. If agents are risk neutral, then the price of the security has the same

zero value as its mean payoff. If agents are risk averse, γ > 0, then the price of the security is

negative. In this case, agents bid down the price of the security below its risk neutral price and

must be paid to bear consumption risk. Consequently, consumption risk carries a positive risk

premium.

In the term structure model there is no direct correspondence to representative risk aversion

because there are multiple shocks, the prices of risk vary over time, and the prices of risk of at

and bt also depend on the correlated movements of gt and πt as well as each other. Nevertheless,

we can use the difference between the actual price and risk-neutral price of claims to the factor

shocks to provide economic intuition for the policy shift risk priced by the yield curve. The

prices of unit shock payoffs are given by

Et[mt+1εt+1] = Et

[
exp

(
−rt − 1

2
λ>t λt − λ>t εt+1

)
εt+1

]

= −λte
−rt = −(λ0 + λ1Xt)e

−rt , (22)

where we use the definition of the pricing kernel in equation (10) and the short rate rt = δ0 +

δ>1 Xt + X>
t ΩXt is also a function of Xt.

Equation (22) carries the same intuition as the simple CRRA economy in equation (21). In

this case the effect of risk aversion is specified over multiple factors and if the price of a factor
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shock is negative, the risk premium attached to that factor shock is positive, and vice versa. In

the model the prices of risk also depend on the level of the state variables. Note that because

there is no structural representative agent utility in the model, we cannot directly translate the

price of a factor shock to an overall aggregate measure of risk aversion.

Figure 7 plots the price of a unit shock to at and bt as a function of the policy loadings.

We denote with vertical lines the steady-state values of ā = 0.372 and b̄ = 1.154. Figure 7

shows that both the price of risk of at and the price of risk of bt are positive indicating that

agents demand a risk premium for bearing at and bt factor shocks. Note that the pure factor risk

prices do not translate directly into a one-to-one relation into risk premia, as Figure 6 shows.

This happens even in an affine model because multiple factors are correlated, but the effects

are exacerbated in our non-linear setting. Nevertheless, for changing inflation stances, which

play the most important role in explaining term structure movements, the higher risk premia

on bt shocks when bt is high is consistent with agents demanding higher risk premia on bonds

when bt is high (see Figure 6). Intuitively, when bt is high the entire yield curve becomes more

exposed to inflation risk and the risk of bt itself. Agents dislike this risk and bid down the prices

of bonds and increase long-term yields.

It is also possible to price the implied monetary policy shock, f bmk, in equation (3) implied

by the benchmark model:

Et[mt+1f
bmk] = Et[mt+1[(at − ā)gt + (bt − b̄)πt],

which can be computed in closed form as a function of various quadratic terms. Evaluated at the

posterior mean of all factors, this price is 0.001 and is close to zero for all sample values of the

parameters. Hence, the benchmark model implies that agents apply a price of risk to monetary

policy shifts but not to a linear monetary policy shock.

4.5 The Post-2001 Episode

It is an interesting question to see what the yield curve would have looked like had the Fed not

changed its inflation loading over the post-2001 period. Some commentators have raised the

possibility that short-term interest rates were held too low for too long after the Fed lowered in-

terest rates to respond to the September 2001 terrorist attacks and the 2001 recession. However,

during the early 2000s, inflation was low, possibly even below an implicit target (see Figure 1)

and the output gap was negative, so interest rates may have declined over this period even with

unchanged policy coefficients. Our model provides a way to precisely quantify at what level
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interest rates would have been in the counter-factual experiment where the Fed did not change

its stance to output or inflation in the years following 2001.18

Figure 8 reports the results of a counter-factual experiment where we hold the Fed weight on

the output gap and inflation at the average weight of at and bt over 2000 and trace the effects on

the yields post-2001. We allow the other macro factors, gt and πt, to take their sample values.

Figure 8 plots the path of the short rate and term spread if the Fed had maintained the same

output and inflation stance as in 2000 in the dashed lines and overlays the actual short rate and

term spread in the solid lines.

The top panel of Figure 8 shows that had the Fed not changed its output and inflation stances

since 2000, short rates would indeed have been higher post-2001 than in data. During 2002 the

average difference between the actual short rate and the theoretical short rate had the Fed not

changed its policy stance is 1.19%. Thus, even with no additional policy response to the terrorist

attacks and the recession, short term interest rates would have fallen. However, the gap between

the short rate in data and the theoretical short rate with no policy changes widens in 2003

and 2004 to 2.12% and 2.96%, respectively. Short rates reach a minimum level of 0.90% in

2003:Q2, whereas at this time the short rate without any policy shifts would have been 2.74%.

Even in 2005, short rates in data remain considerably below the short rates predicted by the

Fed’s 2000 policy stance with an average difference of 1.37%.

The bottom panel graphs the five-year term spread. Figure 8 shows that there is qualitatively

little difference between the slope of the yield curve over 2001-2004 comparing actual data and

the counter-factual exercise where the Fed did not take a more dovish stance. The overall

pattern of both the data and the predicted term spread with no policy changes is similar with

both exhibiting an overall decrease post-2001 over the next five years. In summary, if the Fed

had maintained its output gap and inflation stance during 2000 over the early 2000s, the overall

level of the yield curve would have been much higher than observed in data but there would

have been little effect on the slope of the yield curve compared to its data realization. Thus,

the reduction in the response to inflation between post-2001 does not explain any part in the

flattening of the yield curve during this period (the so-called Greenspan conundrum).

18 Naturally, like any counter-factual experiment, the usual caveats on the Lucas critique apply since agents

would have reacted differently if they would have known the Fed’s monetary policy stance would be fixed under

the counter-factual.
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5 Conclusion

Despite how convincing the anecdotal evidence and historical accounts may be, diverging con-

clusions have been reached in the literature concerning the importance, or even the existence, of

changes in the conduct of monetary policy over the last 50 years. The literature has also concen-

trated on using only short rate information to estimate changes in policy stances, but potential

shifts in monetary policy should affect the entire term structure; the actions of the Fed at the

short end of the yield curve influence the dynamics of the long end of the yield curve through

no-arbitrage restrictions. These shifts in monetary policy are in principle another source of un-

certainty affecting bond risk premia. Thus, long-term bonds provide valuable information on

identifying monetary policy shifts.

In this paper we propose to model monetary policy and the term structure of interest rates

jointly using a quadratic term structure model, where the coefficients of the short rate equation

– which describe the monetary policy response to the state of the economy – can change over

time. The model allows the entire yield curve to be used to estimate potential monetary policy

shifts. Importantly, long-term bonds are priced by agents who care about shifting monetary

policy risk. These agents are not oblivious to the fact that monetary policy changes over time

and take into account future changes in forming prices.

We find that monetary policy has changed in quantitatively important ways which are almost

entirely summarized by the evolution of the the Fed’s response to inflation. The response of the

Fed to the output gap has remained relatively constant. Our estimates of the time-varying infla-

tion response line up largely with narrative accounts of monetary policy and with some existing

empirical estimates. The Fed’s response to inflation lies below one during the 1970s, increases

during the 1980s, and again decreases below one during the early 2000s. The changing response

to inflation carries a positive price of risk with an unexpected increase in the Fed’s response to

inflation increasing the short rate and increasing the term spread. Intuitively investors perceive

a higher policy loading to inflation at the short-end of the yield curve as giving bonds of all

maturities greater exposure to inflation and other risk.
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Appendix

A Bond Pricing
The price of a one-period zero-coupon bond is given by:

P 1
t = exp(−rt) = exp(−δ0 − δ>1 Xt −X>

t ΩXt)

= exp(A1 + B>
1 Xt + X>

t C1Xt), (A-1)

where A1 = −δ0, B1 = −δ1 = −[0 0 0 0 1]>, and C1 = −Ω, with Ω given in equation (9).
Under measure Q, the price of a n-period zero-coupon bond, Pn

t , is:

Pn
t = EQt (exp(−rt)Pn−1

t+1 )

= EQt (exp
(−rt + An−1 + B>

n−1Xt+1 + X>
t+1Cn−1Xt+1)

)

= exp
(−rt + An−1 + B>

n−1(µ
Q + ΦQXt) + (µQ + ΦQXt)>Cn−1(µQ + ΦQXt)

)
(A-2)

× EQt (exp
(
(B>

n−1Σ + 2(µQ + ΦQXt)>Cn−1Σ)εt+1 + ε>t+1Σ
>Cn−1Σεt+1)

)
.

To take the expectation, note that the expectation of the exponential of a quadratic Gaussian variable is given by:

E[exp(A>ε + ε>Γε)] = exp
(
−1

2
ln det (I − 2ΨΓ) +

1
2
A>(Ψ−1 − 2Γ)−1A

)

for ε ∼ N(0, Ψ). This can be derived by general properties of Gaussian quadratic forms (see Mathai and Provost,
1992; Searle, 1997).

After taking the expectation and equating the terms with

Pn
t = exp(An + B>

n Xt + X>
t CnXt),

the coefficients An, Bn, and Cn are given by the recursions:

An = −δ0 + An−1 + B>
n−1µ

Q + µQ>Cn−1µ
Q − 1

2
ln det(I − 2Σ>Cn−1Σ)

+
1
2
(Σ>Bn−1 + 2Σ>Cn−1µ

Q)>(I − 2Σ>Cn−1Σ)−1(Σ>Bn−1 + 2Σ>Cn−1µ
Q)

B>
n = −δ>1 + B>

n−1Φ
Q + 2µQ>Cn−1ΦQ + 2(Σ>Bn−1 + 2Σ>Cn−1µ

Q)>(I − 2Σ>Cn−1Σ)−1Σ>Cn−1ΦQ

Cn = −Ω + ΦQ>Cn−1ΦQ + 2(Σ>Cn−1ΦQ)>(I − 2Σ>Cn−1Σ)−1(Σ>Cn−1ΦQ) (A-3)

If the model were specified in continuous time, then the recursions in equation (A-3) are versions of the ordinary
differential equations derived by Ahn, Dittmar and Gallant (2002) on the bond pricing coefficients.

To compute conditional excess holding period returns, we use the exponential quadratic form for zero-coupon
bond prices in equation (14) to write:

xhprn
t+1 = log

Pn−1
t+1

Pn
t

− rt

= An−1 + B>
n−1Xt+1 + X>

t+1Cn−1Xt+1 − (An + B>
n Xt + X>

t CnXt)

+(A1 + B>
1 Xt + X>

t C1Xt). (A-4)

Since Xt+1 ∼ N(µ + ΦXt, ΣΣ>), we can write the expectation of a quadratic form, Et(X>
t+1CXt+1), as:

Et(X>
t+1CXt+1) = tr(CΣΣ>) + (µ + ΦXt)>C(µ + ΦXt).

This allows us to compute the expectation as:

Et[xhprn
t+1] = Ān + B̄>

n Xt + X>
t C̄nXt, (A-5)
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where

Ān = An−1 −An + A1 + tr(Cn−1ΣΣ>) + µ>Cn−1µ + B>
n−1µ

B̄n = Φ>Bn−1 −Bn + B1 + 2Φ>Cn−1µ

C̄n = Φ>Cn−1Φ− Cn + C1. (A-6)

B Estimating the Model
The model is estimated using a Bayesian Gibbs sampling algorithm. While there are several examples of these
types of estimations for affine models (see, among others, Lamoureux and Witte, 2002; Johannes and Polson,
2005; Ang, Dong and Piazzesi, 2006; Dong, 2006), these cannot be directly employed to estimate the quadratic
model because in an affine setting, drawing the latent factors requires a Kalman filter. The Kalman filter assumes
that yields are linear functions of state variables, whereas they are non-linear functions in the quadratic model. In
this appendix, we develop an acceptance-rejection algorithm to draw the latent factors without approximation.

For ease of notation, we group the macro variables as Mt = [gt πt]> and the latent factors as Lt = [at bt ft]>

and rewrite the dynamics of Xt =
[
M>

t L>t
]> in equation (5) as:

(
Mt

Lt

)
=

(
µ1

µ2

)
+

(
Φ11 Φ12

Φ21 Φ22

)(
Mt−1

Lt−1

)
+

(
Σ11 0
Σ21 Σ22

)(
εM,t

εL,t

)
, (B-1)

where εt = (ε>M,t ε>L,t)
> ∼ IID N(0, I) and Σ11 and Σ22 are lower triangular.

The parameters of the model are Θ = (µ, Φ, Σ, δ0, δ1, Ω, µQ, ΦQ, σu), where µQ and ΦQ are parameters
governing the state variable process under the risk neutral probability measure, and σu denotes the vector of
observation error volatilities {σn}. We draw µQ and ΦQ, but invert the prices of risk λ0 and λ1 using the relations:

λ0 = Σ−1(µ− µQ)

λ1 = Σ−1(Φ− ΦQ). (B-2)

The latent factors Lt = {at bt ft} are generated in each iteration of the Gibbs sampler. Note that Ω and δ1 are not
estimated, given that they are fixed from equation (9). We also do not draw δ0, but set this parameter to match the
sample mean of the short rate in each iteration.

We simulate 500,000 observations in addition to using a burn-in period of 50,000. We sample every fifth
observation to lower the serial correlation of the parameter draws. To check the adequacy of the number of
simulations, we use the tests of Geweke (1992) and Raftery and Lewis (1992). For all parameters the simulation
length is more than adequate except for some companion form parameters where the stationarity constraint is
binding. These parameters are estimated to be always close to the unit circle no matter how many iterations are
used as they capture the high persistence of the factors.

We now detail the procedure for drawing each of these variables. We denote the factors X = {Xt} and the
set of yields for all maturities in data as Ỹ = {ỹn

t }. Note that the model-implied yields Y = {yn
t } differ from the

yields in data, Y , by observation error. By definition, Ỹ = Y + u, where u = {un
t } is the set of all observation

errors for all yields. This notation also implies that the short rate in data, r̃t, is the same as ỹ1
t .

B.1 Drawing the Latent Factors
We use a single-move algorithm based on Jacquier, Polson and Rossi (1994, 2004) adapted to our model. We
derive a draw from the distribution P (Lt|Ỹ , L−t,M), where Lt is the t-th observation of the latent factors, L−t

denotes all the latent factors except the t-th observation, and Ỹ and M are the complete time-series of yields and
macro variables, respectively. We use the notation Ỹt and Mt to denote the t-th observation of the set of yields and
macro variables. We draw the latent factors Lt conditional on the macro factors, yields, and other parameters.

From the Markov structure of the model, we can write:

P (Lt|L−t, Ỹ , M, Θ) ∝ P (Lt|Lt−1,M, Θ)P (Ỹt|Lt,M, Θ)P (Lt+1|Lt,M, Θ). (B-3)

To keep the notation to a minimum, we write this as:

P (Lt|L−t) ∝ P (Lt|Lt−1)P (Ỹt|Lt)P (Lt+1|Lt).
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Since M and Θ are treated as known, we can write the dynamics for Lt in equation (B-1) as

Lt = µ2 + Σ12εM,t + Φ21Mt−1 + Φ22Lt−1 + Σ22εL,t

= µL,t + ΦLLt−1 + ΣLεL,t, (B-4)

where µL,t = µ2 + Σ12εM,t, ΦL = Φ22, and ΣL = Σ22. Since M is observable and we hold Θ as fixed, µL,t is
known at time t.

Each conditional distribution of the RHS of equation (B-3) is known. From equation (B-4) we have

P (Lt|Lt−1) ∝ exp
(
−1

2
(Lt − µL,t − ΦLLt−1)>(ΣLΣ>L )−1(Lt − µL,t − ΦLLt−1)

)
. (B-5)

Similarly, from the VAR in equation (B-4) we can write:

P (Lt+1|Lt) ∝ exp
(
−1

2
(Lt+1 − µL,t − ΦLLt)>(ΣLΣ>L )−1(Lt+1 − µL,t − ΦLLt)

)
. (B-6)

Finally, the likelihood of bond yields, P (Ỹt|Lt), is given by:

P (Yt|Lt) ∝ exp

(
−1

2

∑
n

[
(ỹn

t − (an + b>n Xt + X>
t cnXt))2

σ2
n

])
, (B-7)

where Xt = [L>t M>
t ] and the summation is taken over yield maturities n. In the likelihood, the model-implied

yield, yn
t = an + b>n Xt + X>

t cnXt, is given in equation (15), and σ2
n is the observation error variance of the yield

of maturity n.
We can combine equations (B-5)-(B-7) and complete the square to obtain:

P (Lt|L−t) ∝ P (Ỹt|Lt) exp
(
− 1

2

[
L>t (Φ′>L (ΣLΣ>L )−1ΦL + (ΣLΣ>L )−1)Lt (B-8)

−2(L>t+1(ΣLΣ>L )−1ΦL + L>t−1ΦL(ΣLΣ>L )−1 − µL(ΣLΣ>L )−1ΦL + µL(ΣLΣ>L )−1)Lt

])

∝ P (Ỹt|Lt) exp
(
−1

2
(Lt − µ∗t )

>(Σ∗t )
−1(Lt − µ∗t )

)

where

Σ∗t =
(
Φ′>L (ΣLΣ>L )−1ΦL + (ΣLΣ>L )−1

)−1

µ∗t = Σ∗t (L
>
t+1(ΣLΣ>L )−1ΦL + L>t−1ΦL(ΣLΣ>L )−1 − µL,t(ΣLΣ>L )−1ΦL + µL,t(ΣLΣ>L )−1)>.

Since this distribution is not recognizable, we use a Metropolis draw. We draw a proposal from the distribution
N(µ∗t ,Σ

∗
t ) and then the acceptance probability is based on the likelihood of P (Ỹt|Lt).

In the three-factor constant Taylor rule model, yields are linear functions of the factors and there is no need for
the single-move algorithm. In this case, we employ the more efficient Carter and Kohn (1994) forward-backward
algorithm to first run a Kalman filter forward and then sample ft backwards. When the single-move algorithm
is employed, it produces parameter values and posterior sample paths of ft that are almost identical to those
produced by the forward-backward algorithm. Since we specify the mean of ft to be zero for identification, we set
each generated draw of this factor to have a mean of zero.

In the benchmark four-factor specification, we additionally require that at each point in time both at and bt are
non-negative for purposes of identification.

In the extended five-factor model, we impose a prior for the draw of at and bt period by period. Specifically,
the prior used is given by the uniform distribution on the interval [kp

t - σp
k,t ; kp

t + σp
k,t] for k = a, b; where kp

t

and σp
k,t represent the posterior mean and standard deviation of factor k in period t from the estimated benchmark

model. The motivation for imposing this prior is that we want the latent factor f ext
t in the extended model to capture

only for short rate and term structure movements not accounted for by the four factors [gt πt at bt]> since the
model specifies f ext

t as a factor orthogonal to [gt πt at bt]> .
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B.2 Drawing µ and Φ
We follow Johannes and Polson (2005) and explicitly differentiate between {µ, Φ} under the real measure and
{µQ,ΦQ} under the risk-neutral measure. As Xt follows a VAR in equation (5), we follow standard Gibbs sam-
pling and use conjugate normal priors and posteriors for the draw of µ and Φ. We note that the posterior of µ and
Φ conditional on X , Ỹ and the other parameters is:

P (µ, Φ|Θ−, X, Ỹ ) ∝ P (Ỹ |Θ, X)P (X|µ, Φ, Σ)P (µ, Φ) (B-9)

∝ P (Ỹ |Σ, δ0, δ1, µ
Q, ΦQ, ση, X)P (X|µ,Φ,Σ)P (µ, Φ)

∝ P (X|µ,Φ,Σ)P (µ, Φ), (B-10)

where Θ− denotes the set of all parameters except µ and Φ, and P (X|µ, Φ,Σ) is the likelihood function of the
VAR, which is normally distributed from the assumption of normality for the errors in the VAR. The validity of
going from the first line to the second line is ensured by the bond recursion in equation (A-3): given µQ and
ΦQ, the bond price is independent of µ and Φ. We specify the prior P (µ, Φ) to be N(0, 1000), which effectively
represents an uninformative prior. We draw µ and Φ separately for each equation in the VAR system (5). Given
that we impose the restriction that ft is mean zero for identification, we set µf to zero.

B.3 Drawing ΣΣ>

To draw ΣΣ>, we note that the posterior of ΣΣ> conditional on X , Ỹ and the other parameters is:

P (ΣΣ>|Θ−, X, Ỹ ) ∝ P (Y |Θ, X)P (X|µ,Φ,Σ)P (ΣΣ>), (B-11)

where Θ− denotes the set of all parameters except Σ. This posterior suggests an Independence Metropolis draw.
We draw ΣΣ> from the proposal density

q(ΣΣ>) = P (X | µ,Φ,Σ)P (ΣΣ>),

which is an Inverse Wishart (IW ) distribution if we specify the prior P (ΣΣ>) to be IW , so that q(ΣΣ>) is an
IW natural conjugate. The proposal draw (ΣΣ>)m+1 for the (m + 1)th draw is then accepted with probability α,
where

α = min

{
P ((ΣΣ>)m+1 | Θ−, X, Ỹ )
P ((ΣΣ>)m | Θ−, X, Ỹ )

q((ΣΣ>)m)
q((ΣΣ>)m+1)

, 1

}

= min

{
P (Ỹ | (ΣΣ>)m+1, Θ−, X)
P (Ỹ | (ΣΣ>)m, Θ−, X)

, 1

}
, (B-12)

where P (Ỹ |µ, Φ, Θ−, X) is the likelihood function of all yields, including the short rate, which is normally dis-
tributed from the assumption of normality for the observation errors. From equation (B-12), α is just the ratio of
the likelihoods of the new draw of ΣΣ> relative to the old draw.

B.4 Drawing µQ and ΦQ

We draw µQ and ΦQ with a Random Walk Metropolis algorithm assuming a flat prior. We draw each parameter
separately in µQ, and each row in ΦQ. The accept/reject probability for the draws of µQ and ΦQ is the ratio of the
likelihood of bond yields based on candidate and last draw of µQ and ΦQ:

α = min

{
P ((µQ, ΦQ)m+1 | Θ−, X, Ỹ )
P ((µQ, ΦQ)m | Θ−, X, Ỹ )

q((µQ, ΦQ)m)
q((µQ, ΦQ)m+1)

, 1

}

= min

{
P (Ỹ | (µQ,ΦQ)m+1, Θ−, X)
P (Ỹ | (µQ, ΦQ)m, Θ−, X)

, 1

}
, (B-13)

In each iteration, we invert λ0 and λ1 and report the estimates of the prices of risk instead of µQ and ΦQ. We
discard non-stationary draws of ΦQ.
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B.5 Drawing σu

Drawing the variance of the observation errors, σ2
u, is straightforward, because we can view the observation errors

η as regression residuals from equation (17). We draw the observation variance (σn
η )2 separately from each yield.

We specify a conjugate prior IG(0, 0.00001), so that the posterior distribution of σ2
η is a natural conjugate Inverse

Gamma distribution. The prior information roughly translates into a 30bp bid-ask spread in Treasury securities,
which is consistent with studies on the liquidity of spot Treasury market yields (see, for example, Fleming, 2000).

C Short Rate Variance Decomposition
For the short rate variance decomposition presented in Section 4.2.1, we write the short rate given by equation (8)
as

rt = δ0 + δ>1 Xt + X>
t Ω1Xt + X>

t Ω2Xt, (C-1)

where the matrices Ω1 and Ω2 have elements Ω1
ga = Ω1

ag = Ω2
πb = Ω2

bπ = 0.5 and zeros elsewhere. Then, the
unconditional variance of the short rate can be decomposed as:

var(rt) = var(atgt) + var(btπt) + 2cov(atgt, btπt)

= var(X>
t Ω1Xt) + var(X>

t Ω2Xt) + 2cov(X>
t Ω1Xt, X>

t Ω2Xt), (C-2)

where

var(X>
t Ω1Xt) = 2tr(Ω1ΣXΣ>X)2 + 4µ>XΩ1ΣXΣ>XΩ1µX

var(X>
t Ω2Xt) = 2tr(Ω2ΣXΣ>X)2 + 4µ>XΩ1ΣXΣ>XΩ2µX

2cov(X>
t Ω1Xt, X>

t Ω2Xt) = 4tr(Ω1ΣXΣ>XΩ2ΣXΣ>X) + 8µ>XΩ1ΣXΣ>XΩ2µX ,

and ΣX is the unconditional covariance matrix of Xt implied by the VAR in equation (5).

D Impulse Responses
Since the yields are non-linear, we follow Gallant, Rossi and Tauchen (1993) and Potter (2000), among others,
and compute the impulse response functions using simulation. We start with the sample series of data (gt and πt)
and the posterior means of the latent factors (at and bt) at each observation t. We term these points X∗

t . From the
VAR in equation (5), we construct an orthogonalized error term νt by taking the Cholesky of ΣΣ>. To construct
the impulse response for the jth variable of Xt, we first draw a shock vt that represents a shock only to variable
j from the error term distribution νt. From the points X∗

t , we construct a new series where each observation has
been shocked by vt, which we denote as Xv

t = X∗
t + vt.

The impulse response functions are taken as the difference between the averaged response of the yields to the
evolution of X∗

t without shocks to the evolution of the shocked Xv
t series:

E(yn
t+k|Xv

t )− E(yn
t+k|X∗

t ).

Using the VAR in equation (5), we simulate out the value of Xv
t+k from Xv

t and the value of X∗
t+k from X∗

t . This
is done at each observation t. Then, we construct the yields, yn

t+k, from equation (15) corresponding to the state
vectors Xv

t+k and X∗
t+k. We take values of k = 1 . . . 60 quarters.

The impulse responses are computed at each observation by taking the average of the sample paths of yn
t+k

computed using Xv
t+k minus the average of the sample paths of yn

t+k computed using X∗
t+k. We report the average

of the impulse responses across all observations t. This procedure results in impulse responses that are identical to
impulse responses computed for traditional VAR systems for large numbers of observations.
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Table 1: Summary Statistics

Panel A: Moments of Macro Factors

Means (%) Standard Deviations (%) Autocorrelations

Data Model Data Model Data Model

g 0.000 -0.094 2.349 2.372 0.930 0.927
(0.323) (0.528) (0.056) (0.116) (0.034) (0.021)

π 3.419 3.327 2.199 2.407 0.982 0.983
(0.321) (2.163) (0.262) (1.051) (0.026) (0.007)

Panel B: Moments of Yields

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

Means (%)

Data 5.083 5.429 5.616 5.775 5.895 5.973
(0.403) (0.400) (0.397) (0.388) (0.385) (0.380)

Model 5.083 5.437 5.660 5.766 5.862 6.005
– (0.051) (0.025) (0.007) (0.008) (0.010)

Standard Deviations (%)

Data 2.820 2.784 2.749 2.683 2.656 2.615
(0.347) (0.308) (0.304) (0.297) (0.296) (0.284)

Model 2.796 2.782 2.754 2.701 2.644 2.597
(0.166) (0.060) (0.013) (0.006) (0.004) (0.008)

The table lists various moments of the factors in data and implied by the four-factor benchmark model.
All the factors and yields are expressed in annualized percentage terms. All standard errors are reported
in parentheses. Panel A lists moments of the output gap and inflation. for the benchmark model Panel B
reports data and benchmark model unconditional moments of n-quarter maturity yields. The benchmark
model has factors Xt = [gt πt at bt]> the short rate equation (2), factor dynamics in equation (5), prices
of risk in equation (11), and observation error standard deviations in equation (17) for yields of maturity n
quarters. For the model, we construct the posterior distribution of unconditional moments by computing the
unconditional moments implied from the parameters in each iteration of the Gibbs sampler. We compute the
posterior distribution of the model-implied yields using the generated latent factors in each iteration of the
Gibbs sampler. In Panels A and B, the data standard errors are computed using GMM with robust standard
errors. The sample period is June 1952 to December 2007 and the data frequency is quarterly.
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Table 2: Constant Taylor Rule Model

Short Rate Parameters

δ0 ā b̄

0.008 0.364 0.609
(0.002) (0.063) (0.237)

VAR Parameters

Φ Volatility ×1000/Correlation

µ× 1000 g π f g π f std

g 0.658 0.904 -0.082 -0.023 0.004 0.018 0
(0.267) (0.025) (0.027) (0.017) (0.000) (0.067) –

π -0.022 0.062 1.004 -0.015 0.018 0.001 0
(0.121) (0.011) (0.012) (0.010) (0.067) (0.000) –

f std 0.016 0 0 0.940 0 0 0.008
(0.185) – – (0.026) – – (0.001)

Risk Premia Parameters

λ1

λ0 g π f std

g 0.243 9.497 7.661 -3.475
(0.797) (23.28) (18.96) (29.28)

π -3.056 100.89 18.76 -98.69
(2.482) (25.16) (17.66) (78.13)

f std 0.133 0 0 -5.944
(0.197) – – (13.71)

Observation Error Standard Deviation

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

σn
u 0.177 0.106 0.052 0.032 0.044 0.058

(0.009) (0.006) (0.003) (0.002) (0.003) (0.003)

The table lists parameter values for the constant Taylor rule model for the factors Xt = [gt πt f std
t ]> with

the short rate equation (1), factor dynamics in equation (5), prices of risk in equation (11), and observation
error standard deviations in equation (17) for yields of maturity n quarters. Any parameters without standard
errors are not estimated. We report the posterior mean and posterior standard deviation (in parentheses) of
each parameter. In the Volatility/Correlation matrix, we report standard deviations of each factor along the
diagonal multiplied by 1000 and correlations between the factors on the off-diagonal elements. The zero
entries in the λ1 matrix result from the companion form Φ taking the form of equation (6) under both the risk
neutral and the real measure. The sample period is June 1952 to December 2007 and the data frequency is
quarterly.
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Table 3: Benchmark Model

Short Rate Parameters

ā b̄

δ0 Sample VAR Sample VAR

0.003 0.356 0.372 1.117 1.154
(0.001) (0.063) (0.186) (0.115) (0.503)

VAR Parameters

Φ Volatility ×1000/Correlation

µ× 1000 g π a b g π a b

g 0.563 0.911 -0.083 0.000 0 0.004 0.011 -0.038 -0.021
(0.690) (0.025) (0.036) (0.001) – (0.000) (0.067) (0.089) (0.106)

π 0.142 0.064 0.990 0 0.000 0.011 0.001 -0.332 -0.203
(0.164) (0.011) (0.007) – (0.000) (0.067) (0.000) (0.077) (0.075)

a 23.042 -1.114 0 0.937 0 -0.038 -0.332 4.072 0.854
(11.50) (0.763) – (0.027) – (0.089) (0.077) (0.994) (0.056)

b 66.593 0 2.682 0 0.922 -0.021 -0.203 0.854 47.832
(41.70) – (2.595) – (0.027) (0.106) (0.075) (0.056) (14.95)

Risk Premia Parameters

λ1

λ0 g π a b

g 0.905 18.545 62.700 2.376 0
(0.360) (11.83) (17.63) (1.152) –

π -3.001 31.444 169.53 -0.027 -0.345
(0.486) (12.88) (12.32) (0.178) (0.218)

a -0.632 -6.314 62.881 -0.577 -0.118
(0.434) (15.28) (17.03) (0.595) (0.077)

b 0.082 23.948 -9.540 1.175 -0.663
(0.574) (23.08) (29.95) (0.832) (0.274)

Observation Error Standard Deviation

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

σn
u 0.168 0.069 0.030 0.021 0.024 0.026

(0.043) (0.026) (0.010) (0.003) (0.003) (0.002)
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Note to Table 3
The table lists parameter values for the benchmark model for the factors Xt = [gt πt at bt]> with the short
rate equation (2), factor dynamics in equation (5), prices of risk in equation (11), and observation error
standard deviations in equation (17) for yields of maturity n quarters. Any parameters without standard
errors are not estimated. We report the posterior mean and posterior standard deviation (in parentheses) of
each parameter. For the short rate parameters, we report two estimated long-run means ā and b̄ for at and bt,
respectively. The “sample” mean is the posterior mean of the latent factors averaged across the sample. For
the “population” mean we compute the population mean of the latent factors implied by the VAR parameters
in each iteration and report the posterior average. In the Volatility/Correlation matrix, we report standard
deviations of each factor along the diagonal multiplied by 1000 and correlations between the factors on the
off-diagonal elements. The zero entries in the λ1 matrix result from the companion form Φ taking the form
of equation (6) under both the risk neutral and the real measure. The sample period is June 1952 to December
2007 and the data frequency is quarterly.
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Table 4: Extended Model

Short Rate Parameters

ā b̄

δ0 Sample VAR Sample VAR

0.003 0.374 0.388 1.075 1.101
(0.000) (0.018) (0.184) (0.031) (0.516)

VAR Parameters

Φ

µ× 1000 g π a b f ext

g 0.355 0.907 -0.080 0.001 0 -0.058
(0.740) (0.025) (0.037) (0.001) – (0.048)

π 0.116 0.064 0.989 0 0.000 -0.014
(0.165) (0.011) (0.007) – (0.000) (0.015)

a 21.23 -1.267 0 0.945 0 0
(11.07) (0.693) – (0.027) – –

b 57.74 0 2.952 0 0.925 0
(36.87) – (2.334) – ( 0.026) –

f ext 0 0 0 0 0 0.672
– – – – – (0.107)

Volatility ×1000/Correlation

g 0.004 0.024 0.006 -0.009 0
(0.000) (0.068) (0.082) (0.078) –

π 0.024 0.001 -0.359 -0.185 0
(0.068) (0.000) (0.068) (0.086) –

a 0.006 -0.359 3.413 0.854 0
(0.082) (0.068) (0.708) (0.068) –

b -0.009 -0.185 0.854 35.818 0
(0.078) (0.086) (0.068) (6.437) –

f ext 0 0 0 0 0.007
– – – – (0.001)
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Table 4 Continued

Risk Premia Parameters

λ1

λ0 g π a b f ext

g 0.711 18.63 65.50 3.130 0 -28.27
(0.925) (11.97) (18.12) (0.707) – (22.72)

g -3.154 30.15 164.15 -0.076 -0.390 -15.49
(0.570) (11.94) (12.26) (0.220) (0.156) (15.94)

g -0.896 -8.92 63.33 -0.422 -0.152 -6.031
(0.391) (15.15) (14.84) (0.537) (0.071) (7.302)

g 0.360 27.04 -14.59 0.878 -0.712 3.899
(0.609) (24.48) (30.25) (0.997) (0.335) (6.053)

f ext 0.063 0 0 0 0 79.33
(0.072) – – – – (52.67)

Observation Error Standard Deviation

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

σn
u 0.081 0.038 0.024 0.018 0.022 0.024

(0.024) (0.004) (0.002) (0.001) (0.002) (0.002)

The table lists parameter values for the benchmark model for the factors Xt = [gt πt at bt f ext
t ]> with the

short rate equation (4), factor dynamics in equation (5), prices of risk in equation (11), and observation error
standard deviations in equation (17) for yields of maturity n quarters. Any parameters without standard
errors are not estimated. We report the posterior mean and posterior standard deviation (in parentheses) of
each parameter. For the short rate parameters, we report two estimated long-run means ā and b̄ for at and bt,
respectively. The “sample” mean is the posterior mean of the latent factors averaged across the sample. For
the “population” mean we compute the population mean of the latent factors implied by the VAR parameters
in each iteration and report the posterior average. In the Volatility/Correlation matrix, we report standard
deviations of each factor along the diagonal multiplied by 1000 and correlations between the factors on the
off-diagonal elements. The zero entries in the λ1 matrix result from the companion form Φ taking the form
of equation (6) under both the risk neutral and the real measure. The sample period is June 1952 to December
2007 and the data frequency is quarterly.
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Table 5: Yield Curve Variance Decompositions

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

g -0.083 -0.132 -0.152 -0.150 -0.140 -0.127
π 0.603 0.493 0.388 0.307 0.241 0.191
a 0.059 0.116 0.026 -0.089 -0.182 -0.249
b 0.170 0.254 0.275 0.247 0.213 0.191
g and a -0.083 -0.046 -0.137 -0.241 -0.320 -0.373
π and b 0.913 0.865 0.734 0.590 0.471 0.389

The table reports variance decompositions of yields implied by the benchmark model. The variance decom-
positions are produced by computing

1− varθ(yn
t )

var(yn
t )

where varθ(yn
t ) is the variance of the n-quarter yield implied by the model through the sample computed by

setting the time-varying factor θ equal to its posterior mean and var(yn
t ) is the full model-implied variance of

the n-quarter yield through the sample.
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Figure 1: Output Gap, Inflation, and the Short Rate

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
−10

−5

0

5

10
Output Gap

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0

3

6

9

12
Inflation

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0

5

10

15

20
Short Rate

We plot the output gap, inflation, and the short rate. The output gap is defined as the proportional difference
between actual and potential real GDP. Inflation is the year-on-year GDP deflator. The short rate is the three-
month T-bill yield. We overlay the NBER recession periods in shaded bars. The sample period is from June
1952 to December 2007 and the data frequency is quarterly. All data is in annualized percentage terms.
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Figure 2: Components of the Short Rate
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The top panel plots the short rate together with the fitted components from the benchmark model, δ0 +atgt +
btπt, where the policy factors at and bt are evaluated at their posterior means at each observation from the
Gibbs sampler. All variables are in annualized units. The bottom panel plots each short rate component
separately. The sample period is from June 1952 to December 2007 and the data frequency is quarterly.
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Figure 3: Time-Varying Policy Coefficients
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We plot the posterior mean of the time-varying loadings at and bt in the thick lines together with two posterior
standard deviation bands in thin lines from the benchmark model. We overlay the NBER recession periods
in shaded bars. The sample period is from June 1952 to December 2007 and the data frequency is quarterly.
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Figure 4: Yield Curve Impulse Responses to Factor Shocks
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We plot the impulse responses of the short rate, rt, the 20-quarter yield, y20
t , and the yield spread, y20

t − rt,
to an unconditional one-standard deviation shock in the output gap and inflation (gt and πt respectively) in
the first two columns and an unconditional one-standard deviation shock to at and bt in the last two columns.
We compute impulse responses following the method in Appendix D. Units on the x-axis are in quarters and
the responses of yields on the y-axis are annualized and in percentages.
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Figure 5: Term Structure Responses to Factor Shocks
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We plot the impulse responses of an unconditional one-standard deviation shock in the output gap (left col-
umn) and inflation (right column) on the term structure of yields, yn

t . We compute impulse responses follow-
ing the method in Appendix D. Yield maturities in quarters, n, are on the x-axis and the responses of yields
on the y-axis are annualized and in percentages. The initial shock occurs at t = 0 and the expected yield
curve is plotted at various t in quarters after the initial shock in rows. The x-axis is marked as a horizontal
dotted line.
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Figure 6: Risk Premia Responses to Factor Shocks
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We plot the impulse responses of an unconditional one-standard deviation shock to the output gap, inflation,
the inflation loading, and the output gap loading (clockwise from the top-left panel) to the expected excess
holding period return, Et[xhprn

t+1], of the n = 4-quarter bond in the solid line and the n = 20-quarter bond
in the dashed line. The conditional risk premia are evaluated at the model’s implied unconditional mean.
Units on the x-axis are in quarters and the responses of risk premia on the y-axis are annualized and in
percentages.
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Figure 7: The Price of Risk of Monetary Policy Shifts
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The figure plots the price of a unit shock to at (first row) and a unit shock to bt (second row) as a function
of the output gap loading at or inflation loading bt. We denote with vertical lines the steady-state value of
ā = 0.372 and b̄ = 1.154. When altering at and bt, we set all other factors equal to their expected conditional
values given the value of at or bt. We plot plus and minus two unconditional standard deviations of at and bt

on the x-axis.
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Figure 8: The Post-2001 Episode

2001 2002 2003 2004 2005 2006 2007 2008
0

2

4

6

8
Short Rate

2001 2002 2003 2004 2005 2006 2007 2008

0

2

4

5−year Bond Spread

 

 

Actual a
t
 and b

t
 at 2000 average

The figure plots the short rate (top panel) and the 5-year term spread (bottom panel), which is the 5-year yield
minus the 3-month T-bill, from the results of a counter-factual experiment. We hold the Fed weight on the
output gap and inflation constant at its average level over 2000 and allow all other factors to take their sample
values. The figure plots the effect on the yield curve post-2001 in the dashed lines along with the actual paths
of the yield curve in the solid lines. Units on the y-axis are annualized and in percentages.
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