
NBER WORKING PAPER SERIES

ON THE SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS

Robert J. Barro
Tao Jin

Working Paper 15247
http://www.nber.org/papers/w15247

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2009

We appreciate helpful comments from Xavier Gabaix, Rustam Ibragimov, Chris Sims, and Jose Ursua.
This research has been supported by the National Science Foundation. The views expressed herein
are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic
Research.

© 2009 by Robert J. Barro and Tao Jin. All rights reserved. Short sections of text, not to exceed two
paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



On the Size Distribution of Macroeconomic Disasters
Robert J. Barro and Tao Jin
NBER Working Paper No. 15247
August 2009
JEL No. E20,E32,G01,G12

ABSTRACT

In the rare-disasters setting, a key determinant of the equity premium is the size distribution of macroeconomic
disasters, gauged by proportionate declines in per capita consumption or GDP.  The long-term national-accounts
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 Recent research builds on the rare-disasters idea of Rietz (1988) to explain the long-term 

average equity premium (Barro [2006], Barro and Ursua [2008]).  For a sample of 17 countries 

with long-term data on returns on stocks and short-term government bills, the average annual 

real rates of return were 0.081 on stocks and 0.008 on bills (Barro and Ursua [2008, Table 5]).  

Thus, if the average real bill return is taken as an approximation to the risk-free rate, the average 

observed equity premium was 0.073.  (Since the real bill return is somewhat risky, the risk-free 

rate likely lies below the average real rate of return on bills, and the equity premium would be 

somewhat larger than 0.073.)  An adjustment for typical leverage in corporate financial structure 

(using a debt-equity ratio of 0.5) implied that the corresponding unlevered equity premium was 

around 0.05. 

 Previous research (Barro and Ursua [2008]) sought to explain an average unlevered 

equity premium of 5% within a simple representative-agent model calibrated to accord with the 

long-term history of macroeconomic disasters observed for up to 36 countries.  One element in 

the calibration was the disaster probability, p, measured by the number of macroeconomic 

contractions with magnitude of 10% or more.  Another feature of the calibration was the size 

distribution of disasters, gauged by the observed histogram in the range of 10% and above.   

Given the value of p and the size distribution, a coefficient of relative risk aversion, γ, of around 

3.5 was needed to accord with the target equity premium. 

 The present study shows that the size distribution of macroeconomic disasters can be 

characterized empirically by a power law in which the upper-tail exponent is the key parameter.  

Estimates of the power-law parameters replace the observed histogram in the calibration of the 

model.  This procedure allows for new estimates of γ; that is, for the coefficient of relative risk 
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aversion needed to match the target equity premium.  The confidence intervals applicable to the 

power-law parameters translate into confidence intervals for the estimates of γ. 

 Section I reviews the determination of the equity premium in a simple representative-

agent model with rare disasters.  Section II specifies a familiar (single) power law to describe the 

size distribution of disasters and applies the results to estimate the coefficient of relative risk 

aversion, γ.  Section III generalizes to a double power law to get a better fit to the observed size 

distribution of disasters—and, thereby, more reliable estimates of γ.  Sections IV and V show 

that the results are robust to variations in the disaster probability, p, and the assumed threshold 

size for disasters (set initially at 0.10).  Section VI summarizes the principal findings, with 

emphasis on the estimates of γ. 

 

I.  The Equity Premium in a Model with Rare Disasters 

 Barro (2009) works out the equity premium in a Lucas (1978)-tree model that 

incorporates rare but large macroeconomic disasters.  (Results for the equity premium are similar 

in a model with a linear [AK] technology—this framework allows for endogenous saving and 

investment.)  In the Lucas-tree setting, real GDP, Yt, and consumption, Ct=Yt ,evolve as 

 (1)  log(Yt+1) = log(Yt) + g + ut+1 + vt+1. 

The parameter g≥0 is a constant that reflects exogenous productivity growth.  The random term 

ut+1, which is i.i.d. normal with mean 0 and variance σ2, reflects “normal” economic fluctuations.  

The random term vt+1 picks up low-probability disasters, as in Rietz (1988) and Barro (2006).  In 

these rare events, output and consumption jump down sharply.  The probability of a disaster is 
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the constant p≥0 per unit of time.  In a disaster, output contracts by the fraction b, where 0<b<1.1  

The distribution of vt+1 is given by 

   probability 1-p:  vt+1 = 0, 

   probability p:  vt+1 = log(1-b). 

The disaster size, b, follows some probability density function.  In previous research, this density 

was gauged by the empirical distribution (histogram) of observed disaster sizes.  The present 

analysis specifies the form of this distribution—as a power law—and estimates the key 

parameters of this distribution, including especially the exponent of the upper tail. 

 Barro (2009) shows that, with a representative agent with Epstein-Zin (1989)-Weil 

(1990) preferences, the formula for the unlevered equity premium is (when the period length 

approaches zero): 

 (2)   re - rf = γσ2 + p·E{b·[(1-b)-γ-1]} , 

where re is the expected rate of return on unlevered equity, rf is the risk-free rate, E is the 

expectations operator, and γ is the coefficient of relative risk aversion.  The term in curly 

brackets has a straightforward interpretation under power utility, where γ equals the reciprocal of 

the intertemporal elasticity of substitution (IES) for consumption.  Then this term is the product 

of the proportionate decline in equity value during a disaster, b, and the excess of marginal utility 

of consumption in a disaster state compared to that in a normal state, (1-b)-γ-1.  Note that, in the 

present setting (with constant values of g, σ, p, and the distribution of b), the proportionate fall in 

                                                 
1In this specification, disasters (and normal fluctuations) have permanent effects on the level of output.  Barro, 
Nakamura, Steinsson, and Ursua (2009) generalize to allow for recoveries from disasters; that is, for periods of 
abnormally high growth following large contractions. 
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equity value during a disaster, b, equals the proportionate fall in GDP and consumption during 

the disaster. 

 Equation (2) can also be expressed as 

 (3)  re - rf = γσ2 + p·[E(1-b)-γ – E(1-b)1-γ – Eb]. 

Equation (3) shows that the key properties of the distribution of b are the expectations of the 

variable 1/(1-b) taken to the powers γ and γ-1.  (The Eb term has a minor impact.)  Note that 

1/(1-b) is the ratio of consumption in a normal state to that in a disaster state. 

 Barro and Ursua (2008) computed values of b using long-term annual data for real per 

capita consumer expenditure, C, for 24 countries and real per capita GDP, Y, for 36 countries.  

Time periods went back at least to 1914 and as far back as 1870, depending on the availability of 

data.  The end date was 2006.  These data, including sources, are available at 

http://www.economics.harvard.edu/faculty/barro/data_sets_barro. 

 Proportionate contractions were computed from peak to trough over periods of one or 

more years, and contractions, b, of size 0.10 or greater were considered.2  This method yielded 

95 disasters for C and 152 disasters for Y.  We use here an updated version of this calculation to 

isolate 99 disasters for C (for 24 countries) and 157 for Y (36 countries).  Figure 1a shows the 

resulting histogram for disaster sizes based on C, while Figure 1b shows the comparable diagram 

for Y.  The average disaster sizes, subject to the threshold of 0.10, were similar for the two 

measures—0.215 for C and 0.204 for Y. 

                                                 
2Operationally, the threshold for b was 0.0950; that is, 0.10 to two decimal places. 
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 The disaster probability, p, was computed as the ratio of the number of disasters to the 

number of non-disaster years.  This calculation yields similar estimates for the two cases—

p=0.0380 per year for C and 0.0383 for Y.  Thus, disasters (macroeconomic contractions of 10% 

or more) typically occur around three times per century.  The U.S. experience for C is 

comparatively mild, featuring only two contractions of size 0.10 or more over 137 years—with 

troughs in 1921 and 1933.  However, for Y, the U.S. data show five contractions of size 0.10 or 

more, with troughs in 1908, 1914, 1921, 1933, and 1947.3 

 The earlier procedure used the observed histograms for b from the C and Y data 

(Figures 1a and 1b) to compute the expectation (that is, the sample average) of the expression in 

brackets on the right side of equation (3) for various values of the coefficient of relative risk 

aversion, γ.  The resulting values were multiplied by the estimated values of p to calculate the 

disaster term on the right side of the equation.  The other term on the right side, γσ2, was 

computed under the assumption σ=0.02 per year.  However, as in Mehra and Prescott (1985), 

this term is trivial, compared to the observed equity premium of around 0.05, for plausible values 

of γ (even if we assume higher, but still reasonable, values of σ).  Thus, the disaster term ends up 

doing almost all the work in explaining the equity premium.  A key finding in Barro and Ursua 

(2008, Tables 10 and 11) is that a value for γ around 3.5 was needed to get the model’s equity 

premium into the neighborhood of the target value of 0.05. 

 One shortcoming of the previous methodology is that it sets to zero the probability of 

ever seeing a disaster of size greater than the largest one observed within sample.  This 

restriction matters because the chance—even if small—of experiencing an extremely large 

                                                 
3The 1947 GDP contraction was associated with the demobilization after WWII and did not involve a decline in C.  
The 1908 and 1914 GDP contractions featured declines in C but not up to the threshold of 0.10. 
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disaster has a significant impact on the model’s predicted equity premium.  That is, the large 

values of b in the tail of the histograms in Figures 1a and 1b count disproportionately in 

equations (2) and (3) when γ is well above one.  A second point is that the previous analysis was 

able to calculate an interval of values of γ that would generate a satisfactory equity premium 

(around 0.05) but could not compute a confidence interval for γ.  The present analysis allows for 

the construction of these confidence intervals. 

 

II.  Single Power-Law Distribution 

 In what follows, we work with the transformed disaster size 

 (4)    z ≡ 1/(1-b), 

which is the ratio of normal to disaster consumption or GDP.  Note that this variable appears in 

the formulas for the equity premium in equation (3).  The threshold for b of 0.095 (see n.2) 

translates into a threshold for z of z0=1.105.  As b approaches 1 (its largest possible value), z 

approaches infinity.  This limiting property for z accords with the usual setting for a power-law 

distribution.  The histograms for the transformed disaster size, z, are shown in Figures 2a and 2b 

for C and GDP, respectively. 

 We start with a familiar (single) power law, which specifies the density function as 

 (5)    f(z) = Az-α, 

for z ≥ z0, where A>0 and α>1.  The condition that the density integrate to 1 over the interval 

from z0 to ∞ implies 
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 (6)    A = (α-1)·z0
α-1 . 

The key parameter that describes the power-law density is the exponent α>1. 

 The power-law distribution, given in equation (5), has been applied widely in physics, 

economics, computer science, ecology, biology, astronomy, and so on.  For a review, see 

Mitzenmacher (2003a).  Gabaix (2008) presents numerous examples of power laws in economics 

and discusses forces that can generate these laws.  The economic examples include sizes of cities 

(Gabaix and Ioannides [2004]), stock-market activity (Gabaix, et al. [2003, 2006]), CEO 

compensation (Gabaix and Landier [2008]), and firm size (Luttmer [2007]).  Because of its many 

applications, the power-law distribution has been given many names, including heavy-tail 

distribution, Pareto distribution, Zipfian distribution, and fractal distribution.   

 In the late 19th century, the Italian economist Vilfredo Pareto observed that, for large 

populations, a graph of the logarithm of the number of incomes above a level x against the 

logarithm of x yielded points sitting close to a straight line with a slope that we call –α′ (Pareto 

[1897]). This property corresponds to a density proportional to x−α′−1; hence, α in equation (5) 

corresponds to α′+1.  The straight-line property exhibited in a log-log graph can be used to 

estimate the exponent α; see, for example, Gabaix and Ibragimov (2009), who use a least-squares 

approach.  A more common method to estimate α is maximum likelihood or MLE—see, for 

example, Danielsson, et al. (2001).  We use MLE in our study. 

 In some applications, such as the distribution of income, the power law gives a poor fit to 

the observed frequency data over the whole range but provides a good fit to the upper tail.4  In 

                                                 
4 There have been many attempts to explain this Paretian tail behavior, including Champernowne (1953), 
Mandelbrot (1960), and Reed (2003). 
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many of these cases, the adoption of a double power law—allowing for two different exponents 

over two ranges of a variable z—fits the data well.  For uses of this method, see, for example, 

Reed (2003) on the distribution of income, Mitzenmacher (2003b) on computer file sizes, and 

Yamamoto and Ohtsuki (2008) on “aggregation-chipping processes.”  The double power-law 

specification requires the estimation of a cutoff value, δ, for the variable z, above which the 

upper-tail exponent, α, for the usual power law applies.  In our rare-disasters context, we 

ultimately adopt this double power-law approach.  However, for expository purposes, we begin 

with the standard single power law.  Problems in fitting aspects of the data eventually motivate 

us to shift to the richer specification. 

 The single power-law density in equations (5) and (6) implies that the equity premium in 

equation (3) is given by 

 (7)  re - rf = γσ2 + ݌ · ቄቀ ఈିଵ
ఈିଵିఊ

ቁ ଴ݖ
ఊ െ ቀఈିଵ

ఈିఊ
ቁ ଴ݖ

ఊିଵ ൅ ቀఈିଵ
ఈ

ቁ · ቀ ଵ
௭బ

ቁ െ 1ቅ 

if α-1>γ.  For given p and z0, the disaster term on the right side involves a race between γ, the 

coefficient of relative risk aversion, and α, the tail exponent for the disaster-size density function.  

Higher γ raises the disaster term.  Higher α means a thinner tail and, hence, a smaller disaster 

effect.  If α-1≤γ, the tail is sufficiently thick that the equity premium becomes infinite. This result 

corresponds to a risk-free rate, rf, of -∞.  The formula in equation (7) applies when α-1>γ. 

 The outcome with an infinite equity premium resembles findings highlighted by 

Weitzman (2007).  In his framework, sufficient uncertainty about the parameters of the shock 

distribution can lead to an infinite equity premium, corresponding to a risk-free rate, rf, of -∞.  

However, our assumption is that the left-hand side of equation (7) takes on a known, finite value, 

which we take to be 0.05.  Most importantly, we impose the condition that, with probability 1, 
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re-rf is finite (corresponding to rf being finite).  Therefore, our subsequent estimation will give 

zero weight to situations where α-1≤γ, in which case re-rf would be infinite in the model. 

 We turn now to estimation of the tail exponent, α.  When equation (5) applies, the log 

likelihood for N observations on z (all at least as large as the threshold, z0) is given by 

 (8) log(L) = N·[(α-1)·log(z0) + log(α-1)] – α·[log(z1) + … + log(zN)], 

where we used the condition for the constant A given in equation (6).  The MLE for α follows 

readily as 

 (9)  1/(α-1) = log(z1/z0) + … + log(zN/z0). 

We obtained standard errors and 95% confidence intervals for the estimate of α from the 

percentile bootstrap method.5 

 Table 1 shows that the point estimate of α for the 99 C disasters is 7.27, with a standard 

error of 0.81 and a 95% confidence interval of (5.96, 9.12).  Results based on the 157 GDP 

disasters are similar:  the point estimate of α is 7.86, with a standard error of 0.76 and a 95% 

confidence interval of (6.56, 9.48).   

 Given an estimate for α—and given the values σ=0.02, z0=1.105, and a value for p 

(0.0380 for C and 0.0383 for Y)—we need only a value for γ in equation (7) to determine the 

model’s predicted equity premium, re-rf.  To put it another way, we can find the value of γ 

needed to generate re-rf=0.05 for each specified value of α.  (Note that the resulting γ has to 

satisfy the condition γ<α -1—in order for re-rf to be finite in equation [7].)  For example, the 

                                                 
5See Efron and Tibshirani (1993).  Results were similar using the adjusted (BC_a) method proposed by Efron 
(1987).  We also got similar results based on -2·log(likelihood ratio) being distributed asymptotically as a chi-
squared distribution with one degree of freedom.  See Greene (2002) for a discussion of this likelihood-ratio 
approach. 
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point estimate for α of 7.27 from the C data requires the value γ=3.97 to generate re-rf = 0.05.  

Similarly, the standard errors and confidence intervals for α translate into standard errors and 

confidence intervals for γ.   

 Table 1 shows the resulting estimates of the coefficient of relative risk aversion, γ.  For 

the C data, the point estimate is 3.97, with a standard error of 0.51 and a 95% confidence interval 

of (3.13, 5.13).  For the GDP data, the point estimate is 4.33, with a standard error of 0.48 and a 

95% confidence interval of (3.50, 5.33). 

 The results from the single power law suggest that the coefficient of relative risk 

aversion, γ, likely lies between 3 and 5-1/2 in order to accord with the equity premium of 0.05.  

By way of comparison, the previous results that used the histograms for C and GDP disasters 

(Barro and Ursua [2008, Tables 10 and 11]) indicated that a value of γ in the vicinity of 3.5 was 

needed to generate an equity premium of 0.05.  Thus, the single power-law results suggest 

somewhat higher estimates of γ.  This result is contrary to our expectations, because we 

anticipated that the shift to a parameterized distribution would allow for the possibility of 

disasters higher than any realized within sample and, thereby, lower the value of γ required to fit 

the observed average equity premium.  We think that this conflict between results and 

expectations reflects shortcomings in the single power-law specification. 

 Figure 3a compares the observed histogram for the C disasters with the frequency 

distribution implied by the single power law in equations (5) and (6), using the value α=7.27 

(from Table 1), along with z0=1.105.  Figure 3b gives the parallel information for the GDP 

disasters, using the value α=7.86 (from Table 1), along with z0=1.105.  The vertical axes in 

Figures 3a and 3b show the distribution densities.  For the empirical histograms, multiplication 
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of the values shown on the vertical axis by the bin width of 0.04 gives the fraction of the total 

observations that fall into each bin. 

 Figures 3a and 3b suggest that, with the exception of the lowest C bin, a single power law 

underestimates the number of small and large disasters.  Correspondingly, the single power laws 

tend to overestimate the numbers in the middle.  One way to account for these discrepancies is 

that the tail exponent should be higher at low disaster sizes and lower at high disaster sizes.  A 

tractable way to accord with this pattern is to generalize to a double power law.  This new form 

specifies an upper-tail exponent, α, that applies for z at or above some cutoff value, δ≥z0, and a 

lower-tail exponent, β, that applies below the cutoff, that is, for z0 ≤ z <δ.  This generalization 

requires the estimation of three parameters:  the two exponents, α and β, and the cutoff, δ.  We 

still treat the threshold, z0, as known and equal to 1.105.  We consider later the implications of a 

change in the threshold. 

 

III.  Double Power-Law Distribution 

 The double power-law distribution, with exponents β and α, takes the form:  

 (10)   
⎪
⎩

⎪
⎨

⎧
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where β, α > 1; A, B > 0; z0 >0 is the threshold; and δ≥ z0 is the cutoff separating the lower and 

upper parts of the distribution of z.  The conditions that the density integrate to one over [z0, ∞) 

and that the densities be equal just to the left and right of the cutoff, δ, imply 
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The single power law in equations (5) and 6), corresponding to β=α, is the special case of the 

double power law in equations (10)-(12) when the cutoff, δ, equals the threshold, z0.           

 The position of the cutoff, δ, determines the number, K, among the total observations, N, 

that lie below the cutoff.  The remaining N-K observations are at or above the cutoff.  Therefore, 

the log likelihood can be expressed as a generalization of equation (8) as: 

 (13) log(L) = N·log(A) + K·(β-α)·log(δ) – β·[log(z1) + … + log(zK)]  

     – α·[log(zK+1) + … + log(zN)], 

where A satisfies equation (12).   

 We use maximum likelihood to determine the point estimates of the three parameters α, 

β, and δ.  One complication is that small changes in the cutoff, δ, cause discrete changes in K 

whenever one or more observations lie just at the cutoff.  These jumps do not translate into 

jumps in log(L) because the density is equal just to the left and right of the cutoff.  However, 

jumps do arise in the derivatives of log(L) with respect to the parameters.  This issue does not 

cause problems in finding numerically the values of (α, β, δ) that maximize log(L) in 

equation (13).  Moreover, it turns out that we get virtually the same answers if we rely on the 

first-order conditions for maximizing log(L) that are calculated while ignoring the jump problem 

related to the cutoff.  (In this approach, the number K is treated as fixed in the computation of the 
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first-order conditions for maximizing the likelihood.)  These first-order conditions are 

generalizations of equation (9).6 

 The upper part of Table 2 shows the point estimates of (α, β, δ) for the C data, and the 

lower part shows the corresponding point estimates for the GDP data.  We again compute 

standard errors and 95% confidence intervals using bootstrap methods. 

 A key finding for C and GDP in Table 2 is that the upper-tail exponent, α, is estimated to 

be much smaller than the lower-tail exponent, β.  For example, for C, the point estimate of α is 

5.16, standard error = 0.87, with a confidence interval of (3.66, 7.14), whereas that for β is 11.10, 

standard error = 2.40, with a confidence interval of (8.37, 16.17).  The estimates reject the 

hypothesis α=β in favor of α<β at a very low p-value (for both C and GDP). 

 The point estimate of the cutoff value, δ, for the C disasters is 1.38—recall that this value 

corresponds to the transformed disaster size, z ≡1/(1-b).  The corresponding cutoff for the 

proportionate macroeconomic contraction, b, is 0.275.  With this cutoff, 77 of the C crises fall 

below the cutoff, whereas 22 are above.  The corresponding cutoff for b with the GDP crises is 

0.320, implying that 136 events fall below the cutoff, whereas 21 are above.  Despite the 

comparatively small number of crises that lie above the cutoffs, we know from previous research 

(Barro and Ursua [2008, Tables 10 and 11]) that these really large crises matter a lot for the 

equity premium.  That assessment still holds for the present analysis. 

                                                 
6The expressions are:  

ଵ
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 Figure 4a compares the observed histogram for the C disasters with the frequency 

distribution implied by the double power law in equations (10)-(12), using the values α=5.16, 

β=11.10, and δ=1.38 (from Table 2), along with z0=1.105.  Figure 4b provides the analogous 

information for the GDP disasters, using the values α=4.53, β=11.51, and δ=1.47 (from Table 2), 

along with z0=1.105.  Unlike for the single power laws, considered in Figures 3a and 3b, the 

values implied by the double power laws seem to accord well with the observed histograms.  The 

one exception is again the lowest bin for C, which is overestimated by the double power law. 

 With respect to the equity premium, the key difference between the double power laws in 

Table 2 and the single power laws in Table 1 is the substantially smaller values of the upper-tail 

exponents, α.  Since the values of α are now close to 5, rather than exceeding 7, the upper tails 

are much fatter when gauged by the double power laws.  These fatter tails mean, in turn, that a 

substantially lower coefficient of relative risk aversion, γ, is needed to accord with the observed 

equity premium of 0.05. 

 The formula for the equity premium, re-rf, is again given by equation (3).  For a given γ, a 

specification of the parameters (α, β, δ), along with z0=1.105, determines the moments of the 

disaster-size distribution that appear in equation (3).  That is, we get a more complicated version 

of the expression given in equation (7).  (A finite value for re-rf still requires α-1>γ.)  This result 

allows us to determine the point estimates of γ that correspond to the point estimates of (α, β, δ) 

shown in Table 2 (still assuming σ=0.02 and p=0.0380 for C and 0.0383 for GDP).  This 

procedure yields a point estimate for γ of 3.02 from the C disasters and 2.96 from the GDP 

disasters.   
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 We can also proceed as before to determine standard errors and 95% confidence intervals 

for the estimates of γ.  The main distribution parameter that affects the estimate of γ is the upper-

tail exponent, α.  However, we allow also for variations in β and δ in determining standard errors 

and confidence intervals for γ.  The result is that, for C disasters, the point estimate for γ of 3.02 

has a standard error of 0.52, with a 95% confidence interval of (2.16, 4.15).  For GDP disasters, 

the point estimate for γ of 2.96 has a standard error of 0.56, with a confidence interval of (2.04, 

4.21).  Thus, γ is estimated to be close to 3, with a 95% confidence band of roughly 2 to 4. 

 Because of the fat upper tails with the double power laws, the estimated values of γ are 

well below those estimated from the single power laws (Table 1).  Moreover, as we anticipated, 

the estimated values of γ—centered around 3—are noticeably lower than the value 3.5 implied 

by the observed histograms of disaster sizes (Barro and Ursua [2008, Tables 10 and 11]).  The 

main reason is that the double power law, with an upper-tail exponent, α, around 5, gives some 

weight to outcomes worse than any experienced in the history that underlies the histograms for C 

and GDP (Figures 2a and 2b).  Although the probabilities of these outcomes are very small, the 

large size (magnified in impact by a value for γ around 3) leads to a non-negligible effect on the 

equity premium. 

 

IV.  Variations in the Disaster Probability 

 We could, in principle, consider how uncertainty in the estimates of the disaster 

probability, p, affect the estimates of the coefficient of relative risk aversion, γ.  The estimates of 

p that we used relied on all the sample data, not just the disaster observations.  That is, p equaled 

the ratio of the number of disasters (for C or GDP) to the number of non-disaster years in the full 



16 
 

sample.  A possible approach to assessing uncertainty about the estimate of p would be to use a 

model that incorporates all of the data, not just the disaster realizations, along the lines of Barro, 

Nakamura, Steinsson, and Ursua (2009). 

 We carry out here a more limited analysis that assesses how “reasonable” variations in p 

influence the point estimates and confidence intervals for γ.7  Figure 5a gives the results for C, 

and Figure 5b has the results for GDP.   In Figure 5a, based on the C data, the baseline value for 

p of 0.038 led to a point estimate for γ of 3.00, with a 95% confidence interval of (2.16, 4.15).  

We can see from the figure that lowering p by a full percentage point (to 0.028) increases the 

point estimate of γ only to 3.2, whereas raising p by a full percentage point (to 0.048) decreases 

the point estimate of γ only to 2.8.  Figure 5b shows that similar conclusions emerge from the 

GDP data.  In this case, the point estimate of γ goes from 2.75 at the baseline p of 0.038 to 2.9 

when p=0.028 and 2.6 when p=0.048.  Thus, allowing for substantial uncertainty in the estimates 

of p has only a moderate impact on the point estimates and confidence intervals for γ. 

 

V.  Variations in the Threshold 

 The results obtained, thus far, apply for a fixed threshold of z0=1.105, corresponding to 

proportionate contractions, b, of size 0.10 or greater.  This specification of the threshold is 

arbitrary.  In fact, our estimation of the cutoff value, δ, in the double power law in Table 2 

amounts to endogenizing the threshold that applies to the upper-tail part of the distribution.  We 

were able to estimate δ by MLE because we included in the sample a group of observations that 

                                                 
7Note that, for a given set of observed disaster sizes (for C or GDP), differences in p do not affect the maximum-
likelihood estimates for the parameters of the power-law distributions.  We can think of differences in p as arising 
from changes in the overall sample size while holding fixed the realizations of the number and sizes of disaster 
events.  
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potentially fell below the cutoff.  Similarly, to estimate the threshold, z0, we would have to 

include data that potentially lie below the threshold.  As with estimates of p, this extension 

requires consideration of all (or at least more of) the sample data, not just the disaster 

observations (with sizes above the designated threshold). 

 We carry out here a limited analysis that assesses the impact of variations in the threshold 

on the estimated parameters of the power-law distributions (α for the single power law and α, β, 

and δ for the double power law).  Most importantly, we assess the effects on the estimated 

coefficient of relative risk aversion, γ.  We consider a substantial increase in the threshold, z0, to 

1.170, corresponding to b =0.15 (the value used in Barro [2006]).8  This rise in the threshold 

implies a corresponding fall in the disaster probability, p (gauged still by the ratio of the number 

of disasters to the number of non-disaster years in the full sample).  For the C data, the number 

of disasters declines from 99 to 62, and p decreases from 0.0380 to 0.0225.  For the GDP data, 

the number of disasters falls from 157 to 91, and p declines from 0.0383 to 0.0209.9  That is, the 

probability of a disaster of size 0.15 or more is about 2% per year, corresponding to roughly 2 

events per century. 

 For the single power law, the new results in Table 3 (threshold = 1.170) can be compared 

with the initial findings in Table 1 (threshold = 1.105).  The rise in the threshold means that the 

estimated exponent, α, adjusts toward the value estimated before for the upper part of the double 

power law (Table 2).  Since the upper-tail exponents (α) were lower than the lower-tail 

exponents (β), the estimated α for a single power law tends to fall when the threshold rises.  For 

the C data, the point estimate of α decreases from 7.3 in Table 1 to 6.5 in Table 3.  Similarly, for 

                                                 
8More precisely, we use a value of 0.145, corresponding to 0.15 to two decimal places. 
9The variations in p and the number of disasters do not precisely correspond because a shift in the threshold affects 
the number of non-disaster years in the full sample.  
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GDP, the estimated α declines from 7.9 in Table 1 to 6.7 in Table 3.  In each case, the confidence 

intervals for α shift downward accordingly. 

 The reductions in α imply a thickening of the upper tail of the size distribution for 

disasters and lead, accordingly, to lower estimates of the coefficient of relative risk aversion, γ 

(needed to accord with the target equity premium of 0.05).  For the C data, the estimated γ 

declines from 4.0 in Table 1 to 3.7 in Table 3.  Similarly, with the GDP data, the value falls from 

4.3 in Table 1 to 3.9 in Table 3.  The confidence intervals for γ shift downward 

correspondingly.10 

 With a double power law, the change in the threshold has less of an impact on the 

estimates of the upper-tail exponent, α, which is the key parameter that affects the estimates of 

the coefficient of relative risk aversion, γ.  For the C data, the rise in the threshold moves the 

estimated α from 5.16 in Table 2 to 5.05 in Table 4.  The confidence intervals for α change 

correspondingly little.11  These results imply that the results for γ also change little, going from a 

point estimate of 3.00 with a confidence interval of (2.16, 4.15) in Table 2 to 3.00 with an 

interval of (2.21, 4.29) in Table 4.  Figure 6a describes how the estimates of γ depend on the 

disaster probability, p, with the higher threshold for the C data. 

 For the GDP data, the changes from a rise in the threshold are somewhat harder to 

interpret.  The estimated α goes from 4.53 with a confidence interval of (3.39, 7.07) in Table 2 to 

5.77 with an interval of (3.42, 7.24) in Table 4.  Thus, the confidence interval hardly changes, 

                                                 
10These results apply even though the higher threshold reduces the disaster probability, p.  That is, disaster sizes in 
the range between 0.10 and 0.15 no longer count.  As in Barro and Ursua (2008, Tables 10 and 11), the elimination 
of these comparatively small disasters has only a minor impact on the model’s computed equity premium and, 
hence, on the value of γ required to generate the target premium of 0.05.  The more important force is the thickening 
of the upper tail implied by the reduction of the tail exponent, α. 
11Note, however, that the rise in the threshold dramatically widens the confidence interval for the estimate of the 
lower-tail exponent, β. 
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but the point estimate shifts substantially.12  The apparent discrepancies in the results arise 

because the point estimates are not close to the midpoints of the confidence intervals (falling 

below the center in the first case and above in the second).  The main information is in the 

confidence intervals, not the point estimates. 

 Similarly, for γ, the estimate goes from 2.75 with a confidence interval of (2.04, 4.21) in 

Table 2 to 3.41 with an interval of (2.04, 4.34) in Table 4.  Again, the confidence interval barely 

changes, but the point estimate shifts noticeably.  Figure 6b describes how the estimates of γ 

depend on the disaster probability, p, with the higher threshold for the GDP data. 

 We think that the important result from the C and GDP data is that the confidence 

intervals for α and γ change little when the threshold rises substantially.  Thus, the main message 

is that a substantial increase in the threshold has only minor effects on the principal findings. 

 

VI.  Summary of Main Finding 

 The coefficient of relative risk aversion, γ, is a key parameter for analyses of behavior 

toward risk.  We estimate γ by combining information on the frequency and sizes of 

macroeconomic disasters with the observed long-term average equity premium.  Specifically, we 

figure out what γ has to be to accord with an unlevered equity premium of 5% per year within a 

simple representative-agent model that allows for rare disasters. 

 In our main calibration, based on the long-term global history of macroeconomic 

depressions, the probability of disaster (defined as a contraction in per capita consumption or 

                                                 
12Again, the confidence interval for the lower-tail exponent, β, widens sharply when the threshold rises. 
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GDP by at least 10% over a short period) is 3.8% per year.  The size distribution of disasters 

accords well with a double power-law density, with an upper-tail exponent, α, estimated to be 

around five.  The resulting point estimate of γ is close to three, with a 95% confidence interval 

ranging from two to four. 
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Table 1 
Single Power Law, Estimates of α and γ  

Threshold is z0=1.105 
Parameter Point 

estimate
Standard

error 
0.95 Confidence 

interval 
C data (99 disasters) 

α 7.27 0.81 (5.96, 9.12) 
γ 3.97 0.51 (3.13, 5.13) 

GDP data (157 disasters) 
α 7.86 0.76 (6.56, 9.48) 
γ 4.33 0.48 (3.50, 5.33) 

 

 

Note:  The single power law, given by equations (5) and (6), applies to transformed disasters, 
z≡1/(1-b), where b is the proportionate decline in C (real personal consumer expenditure per 
capita) or real GDP (per capita).  Disasters are all at least as large as the threshold, z0=1.105 
(corresponding to b≥0.095).  The table shows the maximum-likelihood estimate of the tail 
exponent, α.  The standard error and 95% confidence interval come from the percentile bootstrap 
method.  The corresponding estimates of γ, the coefficient of relative risk aversion, come from 
calculating the values needed to generate an unlevered equity premium of 0.05 in equation (7) 
(assuming σ=0.02 and p=0.0380 for C and 0.0383 for GDP). 
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Table 2 
Double Power Law, Estimates of α, β, δ, and γ 

Threshold is z0=1.105 
Parameter Point 

estimate
Standard

error 
0.95 Confidence 

interval 
C data (99 disasters) 

α 5.16 0.87 (3.66, 7.14) 
β 11.10 2.40 (8.37, 16.17) 
δ 1.38 0.13 (1.24, 1.77) 
γ 3.00 0.52 (2.16, 4.15) 

GDP data (157 disasters) 
α 4.53 0.97 (3.39, 7.07) 
β 11.51 3.81 (9.67, 21.98) 
δ 1.47 0.15 (1.21, 1.69) 
γ 2.75 0.56 (2.04, 4.21) 

 

 

Note:  The double power law, given by equations (10)-(12), applies to transformed disasters, 
z≡1/(1-b), where b is the proportionate decline in C (real personal consumer expenditure per 
capita) or real GDP (per capita).  Disasters are all at least as large as the threshold, z0=1.105 
(corresponding to b≥0.095).  The table shows the maximum-likelihood estimates of the two 
exponents, α (above the cutoff) and β (below the cutoff), and the cutoff value, δ.  The standard 
errors and 95% confidence intervals come from the percentile bootstrap method.  The 
corresponding estimates of γ, the coefficient of relative risk aversion, come from calculating the 
values needed to generate an unlevered equity premium of 0.05 in equation (7) (assuming σ=0.02 
and p=0.0380 for C and 0.0383 for GDP). 
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Table 3 
Single Power Law, Estimates of α and γ  

Threshold is z0=1.170 
Parameter Point 

estimate
Standard

error 
0.95 Confidence 

interval 
C data (62 disasters) 

α 6.53 0.85 (5.16, 8.61) 
γ 3.71 0.53 (2.83, 4.97) 

GDP data (91 disasters) 
α 6.67 0.81 (5.39, 8.49) 
γ 3.86 0.51 (3.03, 4.99) 

 

 

Note:  See the notes to Table 1.  Disasters are now all at least as large as the threshold z0=1.170, 
corresponding to b>0.145.  The disaster probability, p, is now 0.0225 for C and 0.0209 for GDP. 
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Table 4 
Double Power Law, Estimates of α, β, δ, and γ 

Threshold is z0=1.170 
Parameter Point 

estimate
Standard

error 
0.95 Confidence 

interval 
C data (62 disasters) 

α 5.05 0.87 (3.81, 7.12) 
β 12.36 8.27 (7.63, 40.78) 
δ 1.37 0.15 (1.21, 1.86) 
γ 3.00 0.54 (2.21, 4.29) 

GDP data (91 disasters) 
α 5.77 1.00 (3.42, 7.24) 
β 60.22 22.13 (8.90, 77.73) 
δ 1.20 0.17 (1.20, 1.75) 
γ 3.41 0.60 (2.04, 4.34) 

 

 

Note:  See the notes to Table 2.  Disasters are now all at least as large as the threshold z0=1.170, 
corresponding to b>0.145.  The disaster probability, p, is now 0.0225 for C and 0.0209 for GDP. 
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Figure 1a 

Note:  The threshold is b=0.095. 
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Figure 1b 

Note:  The threshold is b=0.095. 
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Figure 2a 

 

Note:  The threshold is z0=1.105, corresponding to b=0.095. 
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Figure 2b 

 

Note:  The threshold is z0=1.105, corresponding to b=0.095. 
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Figure 3a 

Note:  For the histogram, multiplication of the value shown on the vertical axis by the bin width 
of 0.04 gives the fraction of the total observations (99) that fall into the indicated bin. 
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Figure 3b 

Note:  For the histogram, multiplication of the value shown on the vertical axis by the bin width 
of 0.04 gives the fraction of the total observations (157) that fall into the indicated bin. 
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Figure 4a 

Note:  For the histogram, multiplication of the value shown on the vertical axis by the bin width 
of 0.04 gives the fraction of the total observations (99) that fall into the indicated bin. 
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Figure 4b 

Note:  For the histogram, multiplication of the value shown on the vertical axis by the bin width 
of 0.04 gives the fraction of the total observations (157) that fall into the indicated bin. 
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Figure 5a 

Estimates of Coefficient of Relative Risk Aversion, γ, for Alternative Disaster Probabilities 

Based on C Data with Threshold of z0=1.105 
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Figure 5b 

Estimates of Coefficient of Relative Risk Aversion, γ, for Alternative Disaster Probabilities 

Based on GDP Data with Threshold of z0=1.105 
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Figure 6a 

Estimates of Coefficient of Relative Risk Aversion, γ, for Alternative Disaster Probabilities 

Based on C Data with Threshold of z0=1.170 
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Figure 6b 

Estimates of Coefficient of Relative Risk Aversion, γ, for Alternative Disaster Probabilities 

Based on GDP Data with Threshold of z0=1.170 
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