
NBER WORKING PAPER SERIES

CAUSALITY, STRUCTURE, AND THE UNIQUENESS OF RATIONAL EXPECTATIONS
EQUILIBRIA

Bennett T. McCallum

Working Paper 15234
http://www.nber.org/papers/w15234

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2009

The author is indebted to Seonghoon Cho, Robert Lucas, and Holger Sieg for helpful comments on
earlier drafts. The views expressed herein are those of the author(s) and do not necessarily reflect the
views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2009 by Bennett T. McCallum. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Causality, Structure, and the Uniqueness of Rational Expectations Equilibria
Bennett T. McCallum
NBER Working Paper No. 15234
August 2009
JEL No. C61,C62,E37

ABSTRACT

Consider a rational expectations (RE) model that includes a relationship between variables xt and zt+1.
To be considered structural and potentially useful as a guide to actual behavior, this model must specify
whether xt is influenced by the expectation at t of zt+1 or, alternatively, that zt+1 is directly influenced
(via some inertial mechanism) by xt (i.e., that zt is influenced by xt-1). These are quite different phenomena.
Here it is shown that, for a very broad class of multivariate linear RE models, distinct causal specifications
involving both expectational and inertial influences will be uniquely associated with distinct solutions—which
will result operationally from different specifications concerning which of the model’s variables are
predetermined.  It follows that for a given structure, and with a natural continuity assumption, there
is only one RE solution that is fully consistent with the model’s specification.  Furthermore, this solution
does not involve “sunspot” phenomena.

Bennett T. McCallum
Tepper School of Business, Posner 256
Carnegie Mellon University
Pittsburgh, PA 15213
and NBER
bm05@andrew.cmu.edu



 1

1. Introduction 
 
 It is well known that there exists a huge and still-growing literature concerning 

the multiplicity of rational expectations (RE) solutions, i.e., processes that satisfy the 

relevant model’s equations and RE orthogonality conditions.  In recent monetary 

economics, the  usual response of researchers has been to hope for a unique stable 

solution while designing policy so as to avoid indeterminacy, the latter being defined as a 

system with more than one stable solution.  There are several ways, however, in which 

this approach is unsatisfactory.   Cochrane (2007), for example, argues that a finding of 

determinacy—i.e., a single stable solution—is not sufficient to imply a particular 

inflation outcome.  From a different perspective, McCallum (2003, 2007) argues that 

determinacy is not necessary for a unique solution to be implied because learnability [as 

developed in Evans and Honkapohja (2001)] is necessary for a solution to be plausible.  

In addition, Cho and McCallum (2009) describe “another weakness” of determinacy as a 

selection criterion. Of course, indeterminacy also arises in non-monetary models 

including the Calvo (1979) overlapping-generations model of land pricing or various 

examples with increasing returns. 

 Here I wish to argue that there is an important sense in which these RE solutions 

reflect not a multiplicity of solutions for a single model, but instead a multiplicity of 

models each with a single solution.  Specifically, I will argue that if attention is paid to 

the “direction of causality” of intertemporal relationships—expectational vs. inertial—

then one of the RE solutions stands out uniquely as a candidate for “equilibrium.”  In 

addition, structural models—e.g., ones based on optimizing analysis—typically require 

such attention in their specification.  In making this argument, I will add only one new 
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ingredient to those standard in the RE literature; it constitutes an assumption of continuity 

of solution coefficients with respect to structural parameters (in the vicinity of zero).   

 I begin by asserting that there can be little if anything more fundamental and 

critical, in dynamic economic modelling, than the specification and interpretation of the 

direction of causality in intertemporal relationships.  For example, the “model”  

(1) yt − αyt+1 = 0 

can be interpreted as representing a system in which the variable yt is determined by 

agents’ expectations in t of yt+1 or, alternatively, as representing a system in which yt+1
 is 

directly influenced by the previous period’s realization of yt (or, equivalently, that yt is 

influenced by yt-1).  These two interpretations or specifications represent drastically 

different models of yt determination.1  The first features a crucial role for agents’ current 

expectations of future values (with no influence from the past) whereas the latter assigns 

an impact to past values via, e.g., adjustment costs, and has no role for expectations 

(possibly because of an extreme discounting of the future).2  In terms of dynamic 

properties, to continue with the contrast, in the former case the system will be 

dynamically stable for any finite value of the parameter α, while the latter case features 

dynamic stability only if 1α > .  Also, simulations in stochastic versions with rational 

expectations are conducted quite differently in the two cases.   

 Accordingly, specifying the postulated direction of causation for all relations is an 

essential part of a model’s specification, if that model is intended to represent the way in 

which data is generated by some economic system in which agents’ expectations are 

                                                 
1 It should be clear that we are referring to “causality” in the model-specification sense of Simon (1953), 
not to Granger causality.  For a useful discussion, see Zellner (1979), especially pp. 21-25. 
2 In the first, the causality is not unidirectional; instead yt and expectations about yt+1 are determined jointly.  
In the second, however, yt-1 is not influenced by yt—it is predetermined. 
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potentionally important.3   Of course it is the case that many—perhaps most—models 

include both expectational and inertial components. (These are the terms that will be used 

henceforth to refer to the two types of influences.)  In such cases, the considerations just 

described remain fundamental; among other things, it is essential not to confuse 

parameter values relating to expectational components with those descriptive of 

adjustment-cost or other inertial aspects of the modelled mechanism.  Any model that 

purports to be structural must surely be clear about all such distinctions.  Indeed, all 

relevant causal specifications will be generated automatically in any model that is based 

on explicit analysis of agents’ optimization problems plus market clearing (as, e.g., in so-

called DSGE models). 

 How is causality specification accomplished, operationally, in the example under 

discussion, yt − αyt+1 = 0?  The answer is the same whether or not there is a stochastic 

component.  The direction of causation is determined by specifying whether yt is or is not 

predetermined in relation (1)—i.e., unaffected by developments in the period to which 

the relationship pertains.4 Indeed, it will be shown in what follows that multiple solutions 

in linear rational expectations (RE) models invariably reflect multiple specifications 

regarding which variables are predetermined and which are not, and these specifications 

are in fact the operational counterpart of causality specifications.  As most of my 

examples will for simplicity exclude exogenous variables, the predetermined variables 

will in those cases also be the system’s state variables. 

                                                 
3  If the first interpretation above is put forth for model (1), then there is no place for concern regarding 
dynamic stability.  Observation of explosive tendencies in an empirical study of yt behavior would, 
accordingly, tend to discredit a hypothesis to the effect that the model with the first interpretation is 
appropriate for the data-generating mechanism at hand.   
4 If yt is taken to be predetermined in (1) it might be natural to write the relation as (1/α)yt − yt+1 = 0 or, 
equivalently, yt = (1/α)yt-1.  
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 The purpose of the present paper is to argue that recognition of the importance of 

causality specification, in the sense just described—i.e., of distinguishing expectational 

influences from inertial influences via adjustment costs, lags, etc.—will, with the 

adoption of a simple and natural continuity property, eliminate issues relating to possible 

“indeterminacy” of the multiple-stable-solution type in linear rational expectations (RE) 

models.5  Specifically, there is in each model only one RE solution, which may be 

dynamically stable or unstable, that accurately reflects a given causality specification—

that is, reflects a given specification of which variables in the system are predetermined.  

This solution might be regarded as representing a proposed equilibrium refinement.  The 

continuity property that will be adopted is that polynomials and eigenvalues relating to 

solution parameters are continuous functions of the model’s structural parameters.  

Analysis involving these properties has a long and honorable history in economics, 

physics, and engineering.  Some analysts may not be attracted by it, but many, I am 

confident, will find it both attractive in principle and useful in practice. 

2. Basic Univariate Model 

 Let us begin the discussion with a univariate linear model that features inclusion 

of both expectational and inertial influences, assuming of course that the analyst specifies 

which is which.6  That is, in the model 

(2) t t t 1 t 1y aE y cy+ −= γ + + , 

inclusion of the Et operator before yt+1 indicates that the analyst has specified that a is the 

parameter that governs the magnitude of expectational influences of Etyt+1 on yt while c is 

                                                 
5 The importance and prevalence of such issues in monetary economics is stressed in McCallum (2003). 
6 It is possible, of course, to exclude one influence or the other by having either a or c equal to zero. 
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the parameter governing inertial effects of yt-1 on yt.7  It is crucial to recognize that in this 

framework agents are depicted as looking into the future while taking proper account of 

both expectational and inertial effects.8  We could add exogenous variables, stochastic or 

deterministic, to this equation but doing so would have no major influence on the 

argument.  The only state variable is yt-1 (which is predetermined) so the fundamental 

(sunspot-free) forward-looking linear solution is of the form 

(3) t 0 1 t 1y y −= φ + φ . 

Accordingly, t t 1 0 1 0 1 t 1E y ( y )+ −= φ + φ φ + φ  and simple undetermined-coefficient reasoning 

indicates that φ0 and φ1 must satisfy  

(4) 0 0 1 0a aφ = γ + φ + φ φ  

(5) 2
1 1a cφ = φ + . 

For a given value of φ1, (4) determines φ0 uniquely but, clearly, (5) is satisfied by two 

values, which are 

(6a) ( )
1

1 1 4ac
2a

− − −
φ =  

(6b) ( )
1

1 1 4ac
2a

+ + −
φ = . 

 We now ask, is there any connection between these two solutions and the correct 

identification of expectational and inertial components?  Considering the special case in 

which c = 0, so the inertial component is absent, we see that the answer is arguably “yes.”  

                                                 
7 Then, a fully inertial specification with no significant role for expectations, i.e., a = 0, has as its solution  
yt = γ + cyt-1, not yt = (1/a)(yt-1 − cyt-2).  
8 It reflects a solution that Blanchard (1979, p.115) describes as “… a weighted average of two special 
solutions, a backward solution … and a forward solution….”  Our argument is that careful attention to the 
model’s causality properties results in a unique determination of the weights assigned to these special 
solutions.  The lag-operator approach of Sargent (1979) is similar to, but more complete than, Blanchard’s.  
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For in that case, ( )
1 0−φ =  whereas ( )

1 1/ a+φ = .  Thus the solution involving (6a) is 

appropriate whereas (6b) would suggest that causation is from yt-1 to yt rather than from 

Etyt+1 to yt.  

 That position is not accepted, however, by numerous analysts who take the 

position that expectations may depend on additional information variables, ones not 

included in the set of state variables implied by the model’s specification.  If, for 

example, yt-1 is such a variable and is included even when c = 0, then the conclusion that 

φ1 should equal zero when c = 0 will not be accepted.  More generally, this position 

argues for the eligibility as state variables “anything that agents decide to base their 

expectations on,” including “sunspot variables,” ones unrelated to the model at hand. 

 Let us instead consider, therefore, the situation in which a = 0, i.e., in which the 

importance of expectations in model (2) is nil.  That is, we consider the contrasting 

special case in which c is non-zero but a equals zero.  Then from (6b) we see that as 

a 0,→  we have ( )
1

+φ → ±∞ .  By contrast, l’Hospital’s rule shows that  ( )
1

−φ  approaches 

c.9  Thus we find that for this special case, as well as the one with c = 0, ( )
1

−φ  provides the 

a-priori correct value while ( )
1

+φ  implies a value that is incorrect in the sense of departing 

from the causality specification that has been built into the model.  Furthermore, the two 

expressions for φ1 are continuous functions of the basic parameters a and c of the model’s 

structural relations.  Thus for values of either c or a close to zero, the dynamic properties 

of the system, as determined by the value of φ1, will be close to those known to be 

                                                 
9 Both numerator and denominator of (6a) approach zero as a →0, but d[1 1 4ac− − ]/da →2c while 
d[2a]/da = 2 so the expression in (6a) has a limiting value of c. 
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relevant if ( )
1

−φ  is adopted but not if ( )
1

+φ  were chosen for φ1.10  Accordingly, if we adopt 

the principle that the model’s solution implies response functions that are continuous in 

the basic parameter values, we are justified in concluding that ( )
1

−φ  provides the answer in 

general, i.e., it identifies the solution that correctly represents the causal structure implied 

by model (3), in which both expectational and inertial components are potentially present. 

 In light of that contention, it is perhaps natural to ask, “to what causal dynamic 

specification does the solution ( )
1

+φ  pertain?”  The answer is reasonably straightforward.  

Suppose the analyst ignores the expectation operator Et in (2) and interprets the equation 

as a purely inertial model, writing it (with γ = 0) as  

(2′) t t 1 t 2y (1/ a)y (c / a)y− −= − . 

Then for the special case with c = 0 he finds t t 1y (1/ a)y −=  as his solution, which is 

what he would find if he were using ( )
1

+φ .  Generalizing, he might with c ≠ 0 seek a 

solution to (2′) that features only one state variable, i.e., 

 (3′) yt = ψyt-1. 

The latter would imply also that yt = ψ2yt-2, so substitution into (2′) would imply that ψ 

must satisfy 2 (1/ a) (c / a)ψ = ψ − , which with a ≠ 0 has the same form as (5).  

Accordingly, we see that (2′) is a second interpretation that gives rise to the quadratic 

equation (5).  In fact, (2′) is the relation that is associated with the root ( )
1

+φ , not only in 

the special case c = 0, but also for cases with c close to zero, with a close to 0, and indeed 

                                                 
10 This can be verified by numerical examples.  Note for reference below that selection of the solution ( )

1
−φ  

simultaneously implies that 1 0φ →  as c 0→ and that 1 cφ →  as a 0→ , whereas the other solution  has 
( )
1 1/ a+φ →  as c 0→ and ( )

1
+φ → ∞  as a 0→ . 
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in general.  Clearly, the causal structure is entirely different from that implied by the root 

( )
1

−φ .  The root ( )
1

+φ  pertains to an interpretation of model (2) as if it were model (2′), 

which has a different dynamic specification.  

  In sum, the solution based on expression (6b) for φ1 is the solution to a model in 

which agents at time t make decisions about yt on the basis of past values of yt-1 and yt-2, 

plus the constraint implied by (3′), with expectations of yt+1 playing no role.11   This is 

quite different from the model specified in (2), which depicts agents as choosing yt values 

partly on the basis of yt-1 (inertial influences) and also (potentially) on expectations 

regarding yt+1.  From a structural point of view, these are two drastically different models.  

But once the analyst has decided which of the two models he is proposing, there is no 

ambiguity about its solution.12 

 Before moving on, we note that in the simple univariate model at hand the values 

( )
1

−φ  and ( )
1

+φ  equal the eigenvalues of the dynamic system written in first-order form as 

well as possible values of the solution coefficient φ1 in (6).  The analogous equivalence 

does not prevail in multivariate models, but in the latter the system’s eigenvalues 

continue to govern and describe the model’s dynamic stability properties.  And it is well 

known that in a multivariate system eigenvalues are continuous functions of the basic 

parameters of the model’s structural equations.13  Accordingly, it will be possible to 

relate different causal specifications of such a model to different groupings of system  

 

                                                 
11 This is not a very sensible model, but it is what is implied by the solution using (6b).  That is not at all a 
weakness for our argument, which by contrast posits (6a) as the appropriate expression. 
12 This solution might still fail to provide an equilibrium because of the failure of some transversality 
condition or some informational feasibility condition such as least-squares learnability (as developed by 
extensively by Evans and Honkapohja (2001)). 
13 See, e.g., Horn and Johnson (1985, pp. 539-540). 
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eigenvalues—groupings that imply different solutions for the multivariate counterpart  

of φ1.    

 Indeed, it will be possible to generalize the conclusion obtained above—namely, 

that the appropriate RE solution can be identified as the one that results in a value of zero 

for the solution parameter φ1 when the structural parameter c equals zero—by means of 

the multivariate counterpart of equation (2).  It might be noted parenthetically that, in the 

univariate example above, this rule happens to coincide with adoption of the φ1 value that 

is the smaller in absolute value of the two that satisfy the quadratic (5).  Such a 

coincidence does not always obtain, however, in systems with more endogenous 

variables; and in such cases the appropriate solution must be based on the procedure just 

described.  The mechanics of this procedure will be considered and demonstrated in 

Sections 4 and 5 below.   

 An example of model (2) can be provided by the classic analysis of capital 

accumulation.  A simple version can be written as follows: 

(7)  t t t 1 t 1k c Ak (1 )kα
− −+ = + − δ                              

(8)  1
t t 1 tc c [A k (1 )]−σ −σ α−

+= β α + − δ         

Here (7) is the resource constraint (with inelastic labor supply and Cobb-Douglas 

production function) while (8) is the intertemporal Euler equation (with constant 

intertemporal elasticity of substitution in consumption).  One can linearize these and 

obtain 

(7′) t 1 t 2 t 1
ˆ ˆˆk c k −= α + α                       1

c
k

α = − < 0,             α2 = αAkα-1 + 1− δ        

(8′) t 1 t t 1 2 t
ˆˆ ˆc E c k+= β + β                     1 1β = ,                 1

2
1 [ A ( 1)k ] 0α−β = − β α α − >
σ
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where the hatted values represent fractional deviations from steady state.  Then we solve 

(7′) to get t 2 t 1
t

1

ˆ ˆk kĉ −− α
=

α
, substitute into (8′), and rearrange, getting 

(9)  1 2
t t t 1 t 1

1 2 1 2 1 2 1 2

ˆ ˆ ˆk E k k
[1 ] [1 ]+ −

β α
= +

+ β α − α β + β α − α β
         

which can be written as  

(10)  t t t 1 t 1
ˆ ˆ ˆk AE k Ck+ −= + . 

The solution will be of form  

(11) t 1 t 1
ˆ ˆk k −= φ  

and we can consider the limiting cases mentioned above.  Doing so, we find that for 

2 0α → , ( )
1 0−φ →  but ( )

1
1 2

1 1
1

+φ → ≈
− α β

.  In addition, for 1 0β →  we have 

 ( )
1 C−φ → =  2

1 21
α

− α β
  whereas ( )

1
2 .
0

+φ →   These results are analogous to those on pp. 5-6 

and again indicate clearly that ( )
1

−φ  is the solution that features continuity. 

3. Sunspot Solutions 

 Before moving to multivariate models, let us consider “sunspot” solutions for 

model (2).  These can be obtained by looking for solutions not of form (3) but more 

generally of form 

(12) t 0 1 t 1 2 t 2 3 ty y y− −= φ + φ + φ + φ ξ   

where ξt is any stationary stochastic process that has the property Et-1ξt = 0.14  To avoid 

                                                 
14 The multivariate version of (12), considered in Section 4, corresponds to the complete set of solutions 
considered in Sims (2002) and Lubik and Schorfheide (2003).  The latter authors apparently see it as 
desirable that Sims’s method “… does not require the researcher to separate the list of endogenous 
variables … into ‘jump’ and ‘predetermined’ variables” (2003, p. 276).  The position of the present paper is 
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unnecessary symbols, let us take φ0 = 0.  Then we have 

(13) t t 1 1 1 t 1 2 t 2 3 t 2 t 1E y ( y y ) y 0+ − − −= φ φ + φ + φ ξ + φ + . 

Substituting these two expressions into model (2) then gives 

(14)   1 t 1 2 t 2 3 ty y− −φ + φ + φ ξ = a[ 1 1 t 1 2 t 2 3 t 2 t 1( y y ) y− − −φ φ + φ + φ ξ + φ ] + cyt-1. 

Accordingly, we have the undetermined-coefficient requirements  

(15a) 2
1 1 2a a cφ = φ + φ +  

(15b) 2 1 2aφ = φ φ  

(15c) 3 1 3aφ = φ φ . 

Now, the last two of these require that either φ1 = 1/a or that φ2 = φ3 = 0.  But in the latter 

case we have the same solutions as in Section 2.  In the former case, φ3 can be any 

number but then (15a) reduces to  

(16) 2
1 1 a c
a a

= + φ + , 

that is, to φ2 = −c/a, which is not contradicted by (15b).  So there is a sunspot solution  

(17) t t 1 t 2 3 t
1 cy y  y
a a− −= − + φ ξ    

for any value of φ3.  For a suitable range of values of a and c, each of these solutions will 

be dynamically stable.  But whether it is stable or unstable, a solution of form (12) is 

essentially a stochastic extension of (2′) and thus reflects the same direction of causality 

as (3) with ( )
1

+φ  from (6b) above, which we have seen to be inconsistent with the dynamic 

specification of the model (2).  Thus sunspot expressions of the form implied by (12) 

                                                                                                                                                 
basically just the opposite, assuming the desirability of having a structural model (which for Sims would 
perhaps not be the case). 
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with Et-1 ξt = 0 are not candidates for equilibria for the model (2), given that a and c are 

its parameters pertaining to expectational and inertial influences, respectively.  

Equivalently, no sunspot expressions of the indicated form yield candidate equilibria for 

model (2) with the specification that yt-1, but not yt, is predetermined.  Under that 

specification, aφ1 ≠ 1, φ2 = φ3 = 0, and the relevant candidate solution is (3) with (6a).  

 Given the logic of this argument, it seems very likely that our results can be 

extended to multivariate formulations of model (2).  That is because the argument does 

not rely—as does analysis pertaining to E-stability and learnability as in Evans and 

Honkapohja (2001)—on quantitative values of system eigenvalues, which have different 

properties with respect to the crucial magnitude of their real parts for cases in which the 

number of endogenous variables exceeds 1.  (On this point, see Horn and Johnson (1991, 

pp. 123, 130).)  Instead, our argument relies only on the continuity of eigenvalues with 

respect to the model’s parameters, given that we are able to identify each causality 

pattern with a single specification regarding predetermined variables, which in turn 

singles out a particular model solution.  Nevertheless, it would seem desirable to consider 

multivariate formulations explicitly, to verify that the foregoing suggestion is in fact 

correct.  Accordingly, we will sketch such an extension in the next section. 

4. General Multivariate Formulation 

 To extend the results of the previous sections to a multivariate setting we will, 

following McCallum (2007), work with the following class of linear models: 

(18) yt = A Etyt+1 + C yt-1 + D ut, 

where yt is a m×1 vector of endogenous variables, A and C are m×m matrices of real 

numbers, D is m×n, and ut is a n×1 vector of exogenous variables generated by a 
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dynamically stable process 

(19) ut = Ρ  ut-1 + εt,  

with εt a white noise vector and P a matrix with all eigenvalues less than 1.0 in modulus.  

It will not be assumed that A is invertible.  In this formulation the endogenous variables 

in yt are jump variables whereas their lagged values in yt-1 are predetermined, that is, 

dependent only on lagged values of exogenous or endogenous variables.  This 

specification is useful for various reasons, the main one with respect to the issues at hand 

being that it is very broad and inclusive.  In particular, any model satisfying the 

formulations of King and Watson (1998) or Klein (2001), can (with the use of auxiliary 

variables) be written in this form—and the form will accommodate any finite number of 

lags, expectational leads, and lags of expectational leads.15  In that context, we consider 

solutions to model (18)-(19) of the form 

(20) yt = Ω yt-1 + Γ ut. 

in which Ω is required to be real.16  Then we have that Etyt+1 = Ω(Ωyt-1 + Γut) + ΓRut and 

straightforward undetermined-coefficient reasoning shows that Ω and Γ must satisfy 

(21) AΩ2 − Ω + C = 0 

(22) Γ = AΩΓ + AΓR + D. 

For any given Ω, (22) yields a unique Γ generically,17 but there are many matrices of 

order m×m that solve (21) for Ω.  Accordingly, the following analysis centers around 

equation (21). 

                                                 
15 See McCallum (2007, p. 1379). 
16 A constant term can be defined by the coefficient on an exogenous variable that is a driftless random 
walk with innovation variance of zero. 
17 Generically, I − R′⊗[(I − AΩ)-1A] will be invertible, permitting solution for vec(Γ) using the identity 
vec(ABC) = [C′⊗A]vec(B) that holds for any conformable A, B, C. 
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 If A were invertible, we could express (21) in the first-order form 

(23) 
2⎡ ⎤Ω

⎢ ⎥Ω⎣ ⎦
 = 

1A
  I

−⎡
⎢
⎣

   
1A C

    0

− ⎤−
⎥
⎦

 
I
Ω⎡ ⎤

⎢ ⎥
⎣ ⎦

, 

and proceed as in the well-known analysis of Blanchard and Khan (1980), which is based 

on the eigenvalues of the square matrix on the right-hand side of (23).  With A singular, 

however, we proceed as follows.  In place of (23), we write 

(24) 
A
0

⎡
⎢
⎣

0
I

⎤
⎥
⎦

2⎡ ⎤Ω
⎢ ⎥Ω⎣ ⎦

 = 
 I
 I

⎡
⎢
⎣

   
C

  0
− ⎤

⎥
⎦

 
I

Ω⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

in which the first row reproduces the matrix quadratic (21).  Let the 2m×2m matrices on 

the left and right sides of (19) be denoted A  and C , respectively.  Then instead of 

focusing on the eigenvalues of 1A C− , which does not exist when A is singular, we 

instead solve for the (generalized) eigenvalues of the matrix pencil [C A]− λ , 

alternatively termed the (generalized) eigenvalues of C  with respect to A  (e.g., Uhlig 

(1999)).  Thus instead of diagonalizing 1A C− , we use the Schur generalized 

decomposition, which serves the same purpose.  Specifically, the Schur generalized 

decomposition theorem establishes that there exist unitary matrices Q and Z of order 

2m×2m such that QCZ  = T and QAZ  = S with T and S triangular.18  Then eigenvalues 

of the matrix pencil [C A]− λ  are defined as tii/sii. Some of these eigenvalues may be 

“infinite,” in the sense that some sii may equal zero.  This will be the case, indeed, 

whenever A and therefore A  are of less than full rank since then S is also singular.  All 

of the foregoing is true for any ordering of the eigenvalues and associated columns of Z 

                                                 
18 Provided only that there exists some λ for which det[ C  − λ A ] ≠ 0. See Klein (2000) or Golub and Van 
Loan (1996). 
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(and rows of Q).  For the moment, let us temporarily focus on the arrangement that places 

the tii/sii in order of decreasing modulus, which will be referred to as the MOD ordering.  

 To begin the analysis, premultiply (24) by Q.   Since QA  = SH and QC  = TH, 

where H ≡ Z-1, the resulting equation can be written as  

(25) 11

21

S
S

⎡
⎢
⎣ 22

0
S

⎤
⎥
⎦

11

21

H
H

⎡
⎢
⎣

12

22

H
H

⎤
⎥
⎦

2⎡ ⎤Ω
⎢ ⎥Ω⎣ ⎦

   = 11

21

T
T

⎡
⎢
⎣ 22

0
T

⎤
⎥
⎦

11

21

H
H

⎡
⎢
⎣

12

22

H
H

⎤
⎥
⎦ I

⎡ ⎤Ω
⎢ ⎥
⎣ ⎦

. 

The first row of (25) reduces to S11(H11Ω + H12)Ω = T11(H11Ω + H12), so if H11 is 

invertible the latter can be used to solve for Ω, which is m×m, as 

(26) Ω = −H11
-1

 H12 = −Η11
−1(−Η11Ζ12Ζ22

−1) = Ζ12Ζ22
−1, 

where the second equality comes from the upper right-hand submatrix of the identity  

HZ = I, provided that H11 is invertible, which we assume without significant loss of 

generality.  

  As mentioned above, there are many solutions Ω to (21).  These correspond to the 

(2m)!/(m!)2 different combinations of the 2m eigenvalues taken m at a time, which result 

in different groupings of the 2m system eigenvalues into those that do and those that do 

not equal the eigenvalues of Ω.  McCallum (2007) shows that for each such grouping the 

other system eigenvalues will equal the eigenvalues of the matrix F-1 where  

F = (I − AΩ)-1A for the particular Ω at hand.  Each grouping then amounts to a single 

specification as to which m of the system’s 2m variables are predetermined, and therefore 

to a full specification of causality relationships among variables.  Thus, when a particular 

causality specification is adopted, then a particular grouping is implied. 

 What grouping gives the solution such that Ω → C as A → O?  In analogy to the 

univariate case, it is the same as the solution in which C → O implies  Ω → O.  In that 
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case, and only in that case, all of the eigenvalues of Ω will equal zero when C = O.  Thus 

the only solution that reflects the modeller’s causality/predetermination assumptions is 

the one for which Ω → O as elements of C → 0.   It can be identified by replacing C by 

κC in all equations and then letting κ decrease from 1 to 0.  A plot or table of the 

eigenvalues for various κ will indicate which solution—i.e., which Ω—has this property.  

This procedure, mentioned previously in McCallum (2004), will be illustrated below in 

Section 5. 

 Given the foregoing, sunspot solutions can be introduced for model (18)(19) by 

looking for solutions of form 

(27) t t 1 1 t 2 2 ty y y− −= Ω + Φ + Φ ξ  

where I have removed the exogenous vector ut but added yt-2 and the m×1 sunspot vector 

ξt that has the property Et-1ξt = 0.  Then the analysis proceeds in the same manner as in 

Section 3, showing that either AΩ = I or Φ1 = Φ2 = O.  Suppose AΩ ≠ I.  Then it is 

required that Φ1 = O, Φ2 = O, and we have the solution given in Section 4 with no 

sunspot vector.  But if AΩ = I, Φ1 ≠ O and Φ2 is arbitrary.  These solutions—there are 

many Ωs that satisfy AΩ = I—include a sunspot term, but each of them differs from the 

one that has Ω → O as C → O, and the latter is the solution implied by the model.  So 

adoption of a full causality specification rules out sunspots of the form implied by (27). 

5. Two-by-Two Examples 

 Here the purpose is to examine a pair of examples in which there are two 

endogenous variables, y1t and y2t.  For the first we use formulation (18) with the 

following parameter specification: 
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(28) 
0.3

A
0.0

⎡
= ⎢

⎣
  

0.01
0.60

⎤
⎥
⎦

         
0.1

C
0.0

⎡
= ⎢

⎣
  

0.0
0.2

⎤
⎥
⎦

. 

Here the example has two sectors that are related only by the appearance of Ety2t+1 in the 

equation for y1t with a small coefficient a12 set equal to 0.01.  If that coefficient were 

zero, then the system would be a pair of univariate models.  Their system eigenvalues 

would be 3.2301, 0.1032 for the first and 1.4343, 0.2324 for the second.  Thus the MOD 

solutions would be y1t = 0.1032y1t-1 and y2t = 0.2324y2t-1, both of which are dynamically 

stable.  With the slight interaction provided by a12 = 0.01, the bivariate system has almost 

exactly the same properties, the solution being of form (15) with 
0.1032
0.0000

⎡
Ω = ⎢

⎣
  

0.0006
0.2324

⎤
⎥
⎦

. 

 Suppose, however, that we consider one of the other solutions for Ω.  

Computationally, we can do this by using the code QZSWITCH to reverse (relative to the 

MOD ordering) the positions of the m-th and (m+1)-th eigenvalues, a step that has the 

effect of switching positions of two eigenvectors that are columns of the Z matrix that 

appears in equation (22) above.  (More extensive reorderings can be effected by repeated 

application of QZSWITCH, suitably directed.)  If this is done for the system at hand, with 

0.2324 placed ahead of 1.4343 in the ordering that was previously MOD, the resulting Ω 

matrix becomes 
0.1032
0.0000

⎡
Ω = ⎢

⎣
  

0.0382
1.4343

⎤
⎥
⎦

.  What is one to make of this, i.e., what is the 

implied behavior?  Here again the y2t process is autonomous, but now the solution for y2t 

is explosive and entirely “backward looking,” as with the solution (6b) in the example 

given at the start of Section 2.  This occurs because the list of relevant predetermined 

variables for the system has become y1t-1 and y2t, rather than y1t-1 and y2t-1.  In the 



 18

resulting solution, the variable y1t is dependent upon Ety2t+1 via ω12 so it fluctuates in a 

stable manner about the explosive solution for y2t.19   

 In a bivariate system of form (18) for variables y1t and y2t, the six possible pairs of 

predetermined variables are (y1t-1, y2t-1), (y1t-1, y2t), (y1t-1, y1t), (y1t, y2t-1), (y2t, y2t-1), and  

(y1t, y2t). The first of these is the model-implied specification and the sixth one pertains to 

the bivariate formulation in which both structural equations are interpreted as backward 

looking, as in the univariate example presented above in (2′).  It appears that the second 

and fourth can also be given intelligible interpretations, but possibly not the third and 

fifth.  In any case, it is the second that is picked out by the rearrangement that is reported 

above. 

 A tentative conclusion, then, is that the interpretation of alternative solutions, 

obtained by alternative eigenvalue orderings, is in some cases clearcut but in others may  

be somewhat problematical.  But in a certain class of cases, an eigenvalue reordering is 

exactly what is needed to make sense of a model’s causality specification.  The relevant 

class of cases is that in which it is not true that, with the MOD ordering, Ω → O as all 

elements of C approach zeros—which condition we have argued above is necessary for 

the MOD solution to reflect the modeller’s own causality/predetermination assumptions.  

To illustrate the point, let us consider a second example, this one from McCallum (2004). 

 The last-mentioned paper illustrates that a determinate solution—in the sense of 

being the only dynamically stable solution—may differ from the MSV (minimum state 

variable) solution, as defined by McCallum (1983, 2004), for the model at hand.20  Since 

                                                 
19 Here ωij denotes the i,j element of Ω. 
20 It must be noted that there are two different terminological conventions pertaining to the MSV concept.  
Ours makes the MSV concept uniquely equal to the one for which Ω →O as C → O.  A more general 
concept is used by Evans and Honkapohja (2001, p. 194), who are careful to note the distinction. 
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to be determinate a solution must have the MOD ordering, this example illustrates that 

MSV and MOD solutions can differ.  This is a rare but possible occurrence.  The first 

example in the paper is given by equation (13) with the following A, C, and D matrices:21 

(29) A = 
1.5

  0.5
−⎡

⎢
⎣

   
  1.2

1.3
⎤
⎥− ⎦

               C = 
1.2
0.3

⎡
⎢
⎣

   
0.5
1.6

⎤
⎥
⎦

               D = 
0.0
0.0

⎡
⎢
⎣

   
0.0
0.0

⎤
⎥
⎦

. 

The system eigenvalues are −2.7022, 1.0887, −0.9365, and 0.4759, so there is a single 

stable solution.  This solution, however, is not the one for which the matrix Ω approaches 

a null matrix as C or κC approaches zero.  That this is the case is shown in Figure 1, 

where the moduli of the four eigenvalues are plotted against κ.22  At a value of κ close to 

0.7 the paths of the second-largest and third-largest moduli cross, so that it is the second 

and forth largest that approach zeros as κ approaches zero.23  If one takes seriously the 

structural specification of the model, therefore, he needs to obtain the Ω matrix that is 

implied (with the value κ = 1) for the second- and fourth-largest eigenvalues.  

 How can that solution be obtained computationally?  The answer is provided 

above; it is to modify the RE solution code by means of the QZSWITCH routine, thereby 

switching positions for the second and third eigenvalues.  Doing so gives the matrix: 

(30)  Ω = 
0.6995
0.1939

⎡
⎢
⎣

   
0.4489
0.8651

⎤
⎥
⎦

.  

The eigenvalues of this matrix are, of course, 1.0887 and 0.4759.  Accordingly, the  

system is dynamically explosive.  This should not be taken as a flaw; it is an indication 

that the specified model, when care is taken with its dynamic causality structure, implies  

                                                 
21 Please note that c21 = 0.3, not the value 0.5 that is incorrectly given in the published paper (2004, p. 58). 
22 Note that the index plotted on the horizontal axis of Fig. 1 equals 1−5(κ−1). 
23 These eigenvalue paths are labeled “MSV” in an attempt to emphasize the crossing, which the MATLAB 
plotter does not recognize.  There is no danger of ambiguity about the fact of this crossing, since one of the 
eigenvalues is negative and the other positive.  See McCallum (2004, p. 58). 
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Figure 1 
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explosive behavior.  If the model’s specification implies that there is a transversality 

condition that is violated by this explosion, then it is also implied that the solution does 

not represent a dynamic equilibrium.  It represents a situation that should be avoided, 

presumably, if there is a policy component of the model that could be used in that way.     

6. Conclusion 

 Let us conclude with a brief statement, in words, of what the paper has argued.  

Consider a rational expectations (RE) model that includes a relationship between the 

variables xt and zt+1, possibly the same variable at different dates.  For such a model to be 

useful as a guide to actual behavior, it must specify whether xt is influenced (via this 

relationship) by the expectation at t of zt+1 or, alternatively, that zt+1 is influenced (via 

some inertial mechanism) by xt (i.e., that zt is influenced by xt-1). These are very different 
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phenomena, between which an analyst concerned with structure will need to distinguish.  

(The distinctions will be provided automatically if the model is based on optimizing 

analysis of agents’ choice problems.)  The present paper shows that, for a very broad 

class of multivariate linear RE models, distinct causal specifications of these two types 

will be uniquely associated with distinct RE solutions.  Furthermore, the different 

solutions will result operationally from different specifications concerning which of the 

model’s variables are predetermined state variables.  It follows that, for a given structural 

specification and with a natural continuity assumption, there is a single implied solution 

that is a candidate for a refinement equilibrium for the model at hand.  Furthermore, this 

particular solution does not involve “sunspot” phenomena.  Thus the paper’s message 

clashes strongly with the conclusions of a huge literature on sunspots, indeterminacy, and 

related phenomena that can appear in RE models.  It does not clash, by contrast, with the 

notion that, for a RE solution to be plausible, it must not violate any relevant 

transversality condition and/or must be least-squares learnable.  
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